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A wealth of information on multiloop string amplitudes is encoded in fermionic two-point functions
known as Szegd kernels. Here we show that cyclic products of any number of Szeg6 kernels on a Riemann
surface of arbitrary genus may be decomposed into linear combinations of modular tensors on moduli
space that carry all the dependence on the spin structure 6. The é-independent coefficients in these
combinations carry all the dependence on the marked points and are composed of the integration kernels of
higher-genus polylogarithms. We determine the antiholomorphic moduli derivatives of the §-dependent

modular tensors.
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Introduction.—In the Ramond-Neveu-Schwarz (RNS)
formulation of superstring theory, space-time supersym-
metry is implemented via the Gliozzi-Scherk-Olive pro-
jection. On a Riemann surface world sheet of genus 4 the
Gliozzi-Scherk-Olive projection is realized by summing
over the 22" different spin structures of the world sheet
fermions, consistently with modular invariance. At genus
one, the Riemann relations between Jacobi 9 functions and
properties of modular forms [1,2] provide systematic tools
for evaluating these spin structure sums explicitly [3-10].
At higher genus, however, carrying out spin structure sums
and thus exposing the simplifications due to space-time
supersymmetry presents a significant challenge which is
often regarded as a drawback of the Ramond-Neveu-
Schwarz formulation for evaluating superstring amplitudes.

In a recent paper, the authors made progress toward
solving the problem of spin structure summations for the
special case of even spin structures at genus two [11]; see
also [7,10,12—15] for earlier work on this subject. It was
shown in [11] that all the dependence on the spin structure
of the cyclic product of an arbitrary number of world sheet
fermion propagators, also known as Szegd kernels, may be
reduced to the spin structure dependence of certain modular
tensors which are locally holomorphic on Torelli space (the
moduli space of Riemann surfaces endowed with a choice
of canonical homology basis). Thanks to certain trilinear
relations between these modular tensors, all spin structure
dependence was further reduced to that of the well-known
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four-point functions. The restriction to genus two stems
from the fact that the results of [11], including the existence
of the trilinear relations, rely heavily on the fact that every
genus-two Riemann surface is hyperelliptic which is
generically not the case at higher genus.

In the present Letter, we shall consider cyclic products
Cs(z) = Cs(zy, ..., z,) of n Szegd kernels,

Cs(z1s v 20) = S5(21,22)S5(22, 23) - Ss(2- 21), (1)

on a Riemann surface X of arbitrary genus /4 and even spin
structure ¢ (encoding the parity-even part of string ampli-
tudes), and an arbitrary number n > 2 of points z; € X.
Generalizations of (1) to open chain products of Szego
kernels may be handled by similar methods and their study
is deferred to future work. Throughout, the dependence on
the moduli of £ will be suppressed. The Szegd kernel
S5(y, z) is a differential (3,0) form in both y and z which,
for even spin structure § and generic moduli, obeys the
chiral Dirac equation [16,17],

0585(y, z) = md(y, 2). (2)

As the main result of this Letter, we completely disentangle
the dependence of Cs(z) on the points z; €X from the
dependence on the spin structure 6 for arbitrary genus /4 and
multiplicity n. Specifically, C5(z) is decomposed into the
following linear combination:

Cs(z) = FO @) + Y_F, ()G (3)
r=2

(1) Cg""l’ are S-dependent but z;-independent modu-
lar tensors of rank r on Torelli space. (ii) F ET) ,r(z) are
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o-independent functions that carry all the dependence of
Cs(z) on the points z;. Their explicit form will be derived
here and related to the construction of higher-genus
polylogarithms of [18]. Therefore, any spin structure
sum over Cy(z) simplifies to a sum over the z;-independent
modular tensors Cf; o

We calculate the moduli variations of C([;'"I’, identify
components that are locally holomorphic in moduli, and
thereby pave the way for their systematic evaluation for
arbitrary genus & > 3 in future work.

The functions F X) I (z) provide the natural mathematical
setting in terms of which the integrands of higher-genus
superstring amplitudes and their low-energy expansions
may be organized. As such, they generalize the Parke-
Taylor factors familiar at genus zero [19] and the Kronecker-
Eisenstein kernels at genus one [8].

Abelian differentials and the Arakelov Green function.—
The basic ingredients in our construction are convolutions
of Abelian differentials and their complex conjugates as
well as the Arakelov Green function to be reviewed below.
Let X be a compact Riemann surface of genus /4 without
boundary. Its first homology group H, (X, Z) supports an
intersection pairing § for which we choose a canonical
basis of cycles 2; and B; with [,J =1,...,h with
intersection pairing J(2;,B,) = 6;; = —-F(B,, A;) and
J(A,LA;) = F(B;,B;) =0. A canonical basis of holo-
morphic Abelian differentials @; is normalized on 2A;
cycles and provides the periods €;; on the B; cycles:

]{ ®; = 6y, % ®; = Q. (4)
A, B,

The period matrix Q is symmetric Q' = Q while its
imaginary part Y = Im(Q) is positive definite. The matrices
Y and Y~! with components Y;; and Y'/, respectively, may
be used to raise and lower indices /, J so that, adopting the
Einstein summation convention, we denote @’ = Y@ and
@' = Y"®,. In terms of these differentials, and their ex-
pressionw; = w;(z)dz inlocal complex coordinates z, 7, we
may define a canonically normalized volume form x on X,

/):KI], (5)

with coordinate volume form d?z = (i/2)dz A dz. The
Arakelov Green function G(x, y) = G(y, x) is a single-valued
function G: £ x £ — R uniquely defined by [20] [the Dirac
5 function is normalized by [ d?z5(z,y)f(z) = f(y)],

i _
K= 5701 A @' = k(z)d*z,

0:0,G(x. y) = —(x. y) + m(x).

/2 K(x)G(x.y) = 0. (6)

whose explicit construction via the prime form E(x, y) may
be found in [21]. Besides, its defining equations, G(x, y) also

satisfies the following useful relations:

0:0,G(x,y) = m5(x, y) — mewy (x)&' (),
0:0,G(x.y) = —0,0,InE(x,y) + no,(x)a' (y). (7)
Modular tensors.—Linear transformations with integer
coefficients that act on H,(X, Z) by preserving the inter-
section pairing § form the modular group Sp(24,Z). An

element M € Sp(2h, Z) transforms the homology cycles
2[1a %J by

B B A B
- M , M = . (8)
A A C D
The modular transformation M acts on the period matrix by

Q- (AQ+B)(CQ+ D)! and on the Abelian differ-
entials by its nonlinear GL(h, C) representation:

R=(CQ+ D)™,
Q=CQ+D. (9)

U
w; > wyRY,

- -
o' — 0la",

Modular tensors 7 of arbitrary rank were defined in [22]
(see also [23,24]) to transform as follows:

11 I, 1 1T Ji J
Ty, = Q@ T Ty g Ry Ry (10)

While the volume form x and the Arakelov Green function
G are invariant under the full modular group Sp(2h, Z),
the Szegd kernel and its cyclic products transform via
Ss(x,y) = S3(x,y) and Cs(z) — Cs(z), where the spin
structure & = [&, 8"] maps to & = [¢,8"] with

(5 )= (5 )05 ) rasme( ) 00
L) = —dia .

5 —c p)\s) 27 cp
Accordingly, Ss(x,y) and Cs(z) are invariant under the
congruence  subgroup [,(2) ={M eSp(2h,Z)|M =
Lpson(mod 2)} that preserves each spin structure. The
z;-independent building blocks C(Is""lf of Cs(z), to be

introduced below, furnish modular tensors of Sp(2h,Z)
for which 6 — & according to (11),

I

I, o
Q" G

C(Islmlr N Qlll’l . r’ (12)
or modular tensors of I',(2) for which & = 6.

Descent procedure for n =2, 3.—In this section, we
shall introduce a simple and systematic procedure by which
Cs(z) may be decomposed into a linear combination of
modular tensors Cg""l’ on Torelli space. As a major
simplification of the spin-structure summation in string
amplitudes, the coefficients of these tensors containing all
the dependence on the points z; no longer depend on 6. The
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method is constructive and recursive and will be referred to
as the descent procedure.

The two-point function, namely the case n = 2 of (1),
offers the simplest such relation [25]:

Cs(x.y) = C¥ w;(x)w;(y) + 0,0,G(x.y).  (13)

This equation may be deduced by using the Fay identities
[2] along with the second relation of (7) resulting in the
symmetric modular tensor,

_0'd/9[5)(0)

S THI0)

— YV, (14)
of I',(2) with derivatives ¢/ 9(5](0) = (9/9¢;)9[8]({) ;o in
the Jacobian variety C"/(Z" + QZ") of the genus-h sur-
face [1,2]. We note that the tensorial transformation law
C§ — Q07 CK" with O and 6 given in (9) and (11),
respectively, emerges only upon combining the transfor-
mations of the two terms on the right-hand side of (14).

The three-point function offers the lowest-order case
solved by using the descent equations. We consider the
problem at a generic point in moduli space, where the
Szego kernel satisfies Eq. (2), so that Cs(1,2,3) satisfies
the following Cauchy-Riemann equations,

0,C5(1.2,3) = m(5(1.2) — 5(1,3)) C5(2. 3),
0,C5(1,2,3) = n(5(2,3) = 8(2,1))C5(1,3),
0;C5(1,2,3) = (5(3.1) = 8(3.2)) Cs(1.2). (15)

with 5]» =0, The descent proceeds by solving the first
equation as a function of z; with the help of the Arakelov
Green function defined by (6). The solution is, however, not
unique as the 0, operator acting on (1,0) differentials has a
nontrivial kernel spanned by the holomorphic Abelian
differentials of X. Thus, the general solution may be
expressed as follows,

C5(12.3) =0, (1)CH(2.3)~ (016(1.2)~0,G(1.3)) C5(2.3),
(16)

where C(2, 3) is independent of z;. In view of the modular
invariance of Cs(z) and G(1,a), the coefficient C5(2,3)
transforms as a modular tensor of I',(2), i.e., according
to (12) with r = 1. The descent proceeds by evaluating
the Cauchy-Riemann operators d, and d; on (16), using
the second equation of (15), the relation 0,Cs(2,3) =
70,6(2,3), and the second relation in (7), and we obtain
after some simplifications:

0,CL(2,3) = n8(2.3)CY w, (3) — 7@ (2)C5(2.3).
05CL(2.3) = —18(2,3)C w0, (2) + zd (3)C5(2.3). (17)

To solve the first equation of (17) in z, we first decompose
Cs(2,3) using (13)

3,CL(2.3) = nCIK (5(2,3)8, — @' (2)w,(2)) w0k (3)
— 70! (2)0,0,G(2.3). (18)

Both lines of the right-hand side are separately integrable
since their respective integrals over X vanish. The following
convolutions involving Abelian differentials and the
Arakelov Green function,

o (x) = /2 P26(x, ) (), (2),
G (x.y) = / P2G(x. )@ (0.6(z.y).  (19)

solve the corresponding differential equations:

0:0,@"(x) = 7x(x)8" ) — 7" (x)ow (),
a}'caxgl(xv y) = _”@[(x)axg(x’ y) (20)

More succinctly, the special combination defined by
F15(x,y) = 0,5 (x) = 0,G(x, y)&', (21)
solves the differential equation,
f'y(x.y) = 8 18(x.y) — 7d! (x)w, (x),  (22)
so that the general solution to (18) is given as follows:

C5(2,3) = ,(2)CF (3) + f1,(2.3)C5F w0k (3)
+0,0,G'(2.3). (23)

Finally, we determine the modular tensor C¥ (3) from the 05
derivative of (23) using the second equation in (17), and the
following relations:

05! 1(x.y) = =185 (8(x.y) — wx (X)X (y)).
050, (x,y) = —nf!;(x.y)@’ (v). (24)

We obtain an integrable differential equation,
0,CY (3) = z(@' (3)C3¥ — &' (3)CYF ) wk (3).  (25)
whose integral may be obtained in terms of ® in (19),

C3'(3) = ok (3)C3
— C}¥ 0,0 ¢ (3) + CiK 0, @'« (3),  (26)

where C (Isj K'is a z;-independent modular tensor. The relations
(16), (23), and (26) give a formula for CI/X,
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I 1115 = < /dZZ Cl) >C5(Z1722’ Z3) (27)

which proves that C5¥ inherits the total ant1symmetry in/,

J, K from total antisymmetry of Cs(x,y,z) in x, y, 2
1K
ClK = cl'X, (28)

Eliminating C4(2,3) and C¥ (3) from (16), (23), and (26)
expresses Cs(1,2,3) in the general form (3), where

FO(z) = —(0,G(1.2) — 0,G(1.3))9,0;G(2.3)
+w,(1)0,0,G'(2.,3),

FiR(z) = (0,()w;(2) — o, (1)w,(2)) 050/ (3)
— (9:6(1.2) = 9,6(1.3)) w, (2)arg (3)
+ (1) f5(2,3)wk (3),

Fiik(z) = w(1)w, (2)ak (3). (29)

Clearly, all spin-structure dependence has been reduced to
the modular tensors C5'X and C%/, while all the dependence
on the points z;, z,, z3 enters via the d-independent single-
valued functions @, G, and f.

Convolutions and modular tensors.—The descent pro-
cedure for higher n necessitates higher-rank generalizations
of the tensors G (x, y) and @/ (x) in (19) obtained from the
following convolutions of Arakelov Green functions and
Abelian differentials with r > 2,

(I)Il"'lrj( ) /d2zg(x Z) [](Z>a L1 ( )’

Gghtr(x.y) = / d*zG(x,2)@" (2)0.G" " (z.y).  (30)
b

which frequently occur in the combination,

Fl (6, y) = 0, (x) = 0,61 (x,y)8y . (31)
Conversely, 0G and 0® may be obtained as the trace and
traceless parts of f. The functions @, G, and f transform as
modular tensors under Sp(2h, Z) and furnish the integra-
tion kernels in the recent construction of higher-genus
polylogarithms [18] (see also [26-28] for different
approaches to higher-genus polylogarithms in the math-
ematics literature). More specifically, the higher-genus
polylogarithms in [18] are defined though iterated integrals
over a flat connection whose entire dependence on marked
points on X is expressible in terms of @;(x) and the tensor
functions (31). One may recast the convolutions used to
define @, G, and f given in (30) in terms of recursive
differential equations obtained for r > 2 from the trace or
traceless part of

ocf1lry(x,y) = —m@" (x) f1 1 (x, p),
O f1lr y(x,y) = by flr e (x, y)@K (v). (32)

Based on the tensor functions in this section, the descent
procedure introduced for n <3 may be extended to
arbitrary n; see Appendix B in the Supplemental
Material [17] for the case n = 4.

Descent procedure for any n.—In this section, we apply
the descent procedure to the case of arbitrary n > 3.
Inspection of the results (29) for the special case n =3
(and Appendix B in the Supplemental Material [17] for
n = 4) shows that both the differential relations between

the various intermediate tensor functions Ci "(j+
1,...,n) and the recursive decomposition of Cs(1,...,n)
expose a simple and important pattern that may be extended
and proven for arbitrary n. While the differential relations
can be found in Appendix C in the Supplemental Material

[17], the integrated relations for j=1,...,n—2 are
given by

LDy, .

Cs '(j,....n)

- a;,(j)Cg""l-”‘J(j +1....n)

+Zf’/ Tty (7, 1) G )

- aj(glj-1~-'11 (j,j+1)=Ghrhj, n))C5(j +1,...,n),

(33)
which successively express the dependence of Cs(1, ..., n)
on z; in terms of w,(j) and the convolutions of the previous

section. The cases j =n and j = n — 1 require separate
formulas,

Cy 2 (n=1n) = w;(n—1)Cy "= (n)
n-2

£ ety (0= 1) CL T ()
i=2

+ flalsh  (p — l,n)CgKCUK(”)
+an—langln_2mlz,1<n_ l’n)’ (34)

as well as

Chlmi(n) = wy(n)Ch 1! z_: (-~

1<i<j
(i./)#(1.n=1)
Iy M

X an®[112"'1i—1m’n—lln—Z"'lHlM(I’l)c(; ! )

(35)

where the shuffle of multi-indices 7 J is understood as
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() = N DKy (n). (36)

Combining (33) and (35) determines the z;-dependent

.1 (z) of Cs(z) in the notation of (3).

We conclude this sectlon with integral representations of
the modular tensors C5'""" in terms of Cy(1, ..., n),

chh ( I/sz >cé(z1,. wza). (37)

which generalize (27) to arbitrary n and imply dihedral
(anti)symmetry Cy">"" = ¢l = (—1)rchPh,
Variations in modulz —While the modular tensor C
enters a term in the descent of Cy(zi,...,2,) that is
meromorphic in the points z; €X, it is not, in general,
meromorphic in moduli. We will study antiholomorphic
derivatives in moduli through complex structure variations
Omw Which, in a conformal field theory setting, amount to
an insertion of the stress tensor at a point w € £ [29-32].

constituents F

11,

The antiholomorphic §;; variation of Cg'”'l" may
be constructed via the relations &;;Q;; = 85w (2) =
35 wSs(x,y) =0,
5vT/v'vQIJ = —27Ti5)1(W)67)J(W),
8@ (x) = =@ (w)9:0:G(x, w), (38)

so that we have &;;C5(z) = 0. While the variation of the
two-point function &;,CY = z?@!(w)@’(w) readily fol-
lows from (14), the variation 5WVC§‘ Tatn >3 may be
derived from the integral representation (37),

5ﬁ/y_1;c(13]m]” — ﬂ'&)ll (W)a‘,‘v (F(ISZ‘IS"'IH (W) _ Ffsn‘IZ"'In—l (W))

+ cycl(1, ..., n), (39)

in terms of w-dependent modular tensors Fs of T',(2):

ol () — / d2,6(w.2)a"(2)C 7 (2).  (40)

Total symmetrization in n > 3 indices /4, ..., I,, cancels the
right-hand side of (39), implying that the left-hand side
obeys

S CY 1 =0, (41)

and the totally symmetric modular tensor C(Il 1) s
actually a holomorphic modular tensor on Torelh space.

Specialization to genus < 2.—At genus one, each tensor

ch ! - 111 has a single component (which vanishes

at odd rank n) and is a degree-two polynomial in

es€{p}). p(r/2), p[(1 +7)/2]} at even n [7,10], where

we set Q;; = 7. The Weierstrass g function at genus one is
evaluated at the half-periods associated with the three even
spin structures, and the coefficients of e3, e}, e are
combinations of holomorphic Eisenstein series; see
Appendix D in the Supplemental Material [17] for exam-
ples at n < 8.

At genus two, the results of [11], translated into the
language of 9 functions, again organize the entire spin-
structure dependence of Cs(1, ..., n) into degree-two poly-
nomials in the components of the z;-independent, sym-
metric modular tensor of I',_,(2),

2ri ¥
1 _ 1J 10
% = 10‘3 In <8[5}(0)20>’ (42)

where ¥, denotes the Igusa cusp form (a Siegel modular
form of weight ten), and 0"/ =1 (1 + 6')(9/0€,) are the
moduli derivatives. In the two-point function,

Cs(x,y) = w(x)a; (y)8 — p(x.y),

2ri
p(x.y) = 0,0, InE(x.y) + 750V In¥yy.  (43)

the modular tensor % in (42) offers an alternative to
capturing the § dependence through the modular tensor C%
in (14), and g denotes the Sp(4, Z)-invariant genus-two
generalization of the Weierstrass function.

A first key result of [11] is that all spin-structure
dependence of Cjs(z) at genus two and any multiplicity
n may be reduced to a linear combination of tensor powers
of 8. A second result of [11] is that the tensor %/ satisfies
the trilinear relations, eliminating any tensor power higher
than two and leading to the major simplification:

11, NI, qlida qlad
G = (251 ))111121314251 RV
(@ @) (44)

The modular tensors . of Sp(4, Z) are independent of z;

and ¢ but, just as C]l I , they are not necessarily locally
holomorphic in moduh. Since spin-structure independent
modular tensors of odd rank must vanish at genus two, the

modular tensors ‘Iff) and therefore C(IS‘ I jtself must vanish
at genus two for odd values of n. Examples up to n = 4 can
be found in Appendix E in the Supplemental Material [17].

Conclusion and outlook—The descent procedure
described in this work reorganizes cyclic products of
Szegd kernels such that their dependences on the points
Z1, ..., 2, and on the even spin structure o are completely
disentangled. The key results apply to Riemann surfaces of
arbitrary genus which find an increasingly universal
appearance in different areas of theoretical physics and
mathematics.
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First, the function space identified through the §-inde-
pendent building blocks of this work plays a crucial role in
the explicit evaluation of multiparticle string amplitudes
beyond genus one, as well as in bootstrap approaches to the
construction of such amplitudes [33]. Their intimate con-
nection with the higher-genus polylogarithms of [18] will
strengthen the symbiosis between algebraic geometry,
string perturbation theory, and particle physics, stimulating,
for instance, the application to higher-genus surfaces in
Feynman integrals [34-37].

Second, the descent procedure introduced here sheds
further light on the cohomology structure of chiral blocks
investigated in [38] as the cyclic products Cjs(z) are
automatically part of the chiral-block structure [31,39].
Accordingly, the field-theory limit will translate our sim-
plifications of Cs(z) into new double-copy representations
of multiloop amplitudes in supergravity theories, expressed
via bilinears of gauge-theory building blocks [40,41].

Among the numerous directions of follow-up research,
the results of this work suggest future investigations of the
following problems: (a) to simplify the spin-structure sums
in the proposal of [42] for the genus-three four-point
superstring amplitude by means of the four-point results
in Appendix B in the Supplemental Material [17]; (b) to
explore generalizations of the structure obtained in (44) to
higher genus, i.e., whether the § dependence of Cg""l" at
arbitrary n and fixed & > 3 can still be reduced to finitely
many tensor products of lower-rank tensors; (c) to explic-
itly compute the modular tensors Cg"“l” of T',(2), starting
with CYX at genus h = 3 and the components of CY¥X at
h = 2 beyond the symmetrized ones in Appendix E in the
Supplemental Material [17].
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