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From Dashboard Zoo to Census: A Case Study

With Tableau Public
Arjun Srinivasan , Joanna Purich , Michael Correll , Leilani Battle , Vidya Setlur , and Anamaria Crisan

Abstract—Dashboards remain ubiquitous tools for analyzing
data and disseminating the findings. Understanding the range of
dashboard designs, from simple to complex, can support develop-
ment of authoring tools that enable end-users to meet their analysis
and communication goals. Yet, there has been little work that pro-
vides a quantifiable, systematic, and descriptive overview of dash-
board design patterns. Instead, existing approaches only consider
a handful of designs, which limits the breadth of patterns that can
be surfaced. More quantifiable approaches, inspired by machine
learning (ML), are presently limited to single visualizations or
capture narrow features of dashboard designs. To address this gap,
we present an approach for modeling the content and composition
of dashboards using a graph representation. The graph decomposes
dashboard designs into nodes featuring content “blocks’; and uses
edges to model “relationships”, such as layout proximity and inter-
action, between nodes. To demonstrate the utility of this approach,
and its extension over prior work, we apply this representation
to derive a census of 25,620 dashboards from Tableau Public,
providing a descriptive overview of the core building blocks of
dashboards in the wild and summarizing prevalent dashboard
design patterns. We discuss concrete applications of both a graph
representation for dashboard designs and the resulting census
to guide the development of dashboard authoring tools, making
dashboards accessible, and for leveraging AI/ML techniques. Our
findings underscore the importance of meeting users where they
are by broadly cataloging dashboard designs, both common and
exotic.

Index Terms—Dashboard, interaction, survey, visualization.

I. INTRODUCTION

D
ASHBOARDS are an essential tool for supporting data-

driven decision-making across a broad spectrum of do-

mains, including medicine, finance, education, and science.

Their applications range from initial exploration of data to

monitoring changes in real-time, and finally as a communication
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tool that can support persuasion and learning [1], [2], [3], [4],

[5], [6]. A broad and carefully considered examination of a

dashboard corpus is an important precursor to many down-

stream visual analytics research topics. Its results may reveal

not only the diversity of designs across application domains

but also surface common design patterns and potential pain

points that could inform the requirements of authoring tools.

For AI/ML-supported tasks such as dashboard recommendation

or interactive guidance, such an examination allows researchers

to assess the quality and suitability of the corpus to serve as

training data, as well as design filters to identify high-quality

source data to boost model performance.

Visualization research has predominantly adopted a ‘close

reading’ qualitative approach to investigate dashboard de-

signs [7], [8] – that is, a detailed analysis of a small number

of dashboards. While this approach reveals a rich design space,

it also imposes some notable constraints. First, a manual inspec-

tion of dashboards is subjective, time-consuming, and practical

only at the limited scale of dozens or perhaps hundreds of

examples – a small fraction of what exists, making it difficult to

capture the significance of dashboard design patterns. Second,

many of the dashboards from these prior studies hand-pick

examples from different sources across the internet, including

news websites, dashboard galleries, and social media. It is not

clear how representative these examples are of design practices

in general. They may instead represent idealized dashboard

designs, authored through a variety of tools at different stages

of the design process – reflecting the results of highly skilled

designers proficient in many tools rather than a more typical

creator. The representation of visualizations and dashboards

for use in ML/AI applications (e.g., VizML [9], DMiner [10])

offers an alternative approach, which relies predominately on the

extraction of features. However, in addition to largely overlook-

ing interactions and coordinated views, this approach has not

been explored for describing dashboard corpora to identify and

summarize design patterns. In short, existing work on dashboard

design has predominately focused on a few hand-picked “zoos”

of interesting examples (akin to Heer et al.’s [11] “visualization

zoo” of “more exotic(but practically useful) forms of visual data

representation”).

Borrowing a term and methodology from the digital hu-

manities, we propose a complementary “distant reading” [12]

approach that allows for a broader overview of dashboards,

essentially a ‘census.’ To derive a census of dashboard design

patterns, we propose a graph representation that decomposes

dashboards into “blocks” and “connections” These blocks can
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describe the content of a dashboard, while connections reveal

their relationships, such as spatial proximity and interactivity.

Our approach integrates disparate abstractions from prior studies

of visualization and dashboard corpora [7], [8], [9], [10], [13],

while also incorporating interactions and non-visualization ele-

ments that prior work omits. We demonstrate the utility of this

schema by deriving a census of 25,620 dashboards on Tableau

Public, a large and well-established collection of dashboards

that captures a myriad of design goals and applications. Our

analysis showcases the diversity and prevalence of design pat-

terns that are often overlooked or underappreciated in prior

studies as dashboards. For instance, we find a tight coupling of

story-driven text elements with visualization elements with dash-

boards, the widespread use of simple and canonical visualization

types across dashboards over bespoke or novel forms, and the use

of interaction in dashboards. The prevalence of these patterns,

which are less prominent in prior studies of hand-picked corpora,

suggest unmet challenges for dashboard authoring support.

We distill our findings toward applications of our schema and

the use of dashboard corpora for varied downstream tasks, such

as dashboard authoring, accessibility, and AI/ML-supported

guidance. In summary, our research makes the following

contributions:
� A schematic representation of dashboards as node-link

graphs representing the core design elements as well as

spatial and interactive relationships between them.
� A case study using Tableau Public to create a census of

visual and interaction design patterns. We also release the

anonymized corpus of 25,620 dashboards1

� Applications and future research trajectories for dashboard

authoring tools informed by a design ‘census.’

Dashboards remain an essential tool for extracting actionable

insights from data. We contribute an approach for visualization

researchers to appraise a greater diversity of dashboard design

patterns that can in turn be leveraged to improve end-user

experiences toward authoring dashboards.

II. RELATED WORK

A. Dashboards as Objects of Study

Sarikaya et al. [7] point to a disconnect between the ubiquity

of dashboards in visualization practice and their lack of con-

sideration in visualization study. More recent work has sought

to remedy this gap by 1) further clarifying the various forms

and goals of dashboard designers and users and 2) codifying or

testing design rules or recommendation systems for automating

aspects of dashboard design.

Exploring dashboards (and other visualization practices) is

often done through an analysis of dashboards in a particular

context of use or population of users [14]. For instance, Tory

et al. [15] explore dashboard usage among “data workers.”

While valuable, these analyses require access to both the people

and visualizations they work with and rely on qualitative and

subjective judgments of intent or goal, limiting both the scale and

generalizability of results. For instance, Sarikaya et al. [7], Bach

1We currently provide the corpus at: https://osf.io/r5cfk

et al. [8], Al-Maneea et al. [16] all explore dashboards and multi-

ple view visualizations with an eye toward their visual structure

and topology, but rely on a manual process of coding dashboard

features and connections. These manual inspections are valuable

and afford inferences about qualitative information that would be

difficult to determine automatically. The analysis and observa-

tion of dashboards are often performed in order to compare these

dashboards to existing design guidelines or recommendations

from both the academic and practitioner communities [7], [8],

[16], [17], [18], [19], [20], [21]. For instance, Qu and Hull-

man [20] examine how users attend to design inconsistencies

between visualizations within the same dashboard and translate

their observations into explicit design guidelines for keeping

coordinated visualizations consistent. Kristiansen et al. [22]

extend these consistency constraints by allowing users to specify

relations. Similarly, Langner et al. [23] perform an observational

study of dashboard use and design in large display environments

to inform the design of their coordinated view system. Other

dashboard authoring or recommendation systems, especially

those that use machine learning, attempt to create meaningful

layouts and content [24], [25], [26], [27], but rely on a substantial

training corpora of well-designed or useful dashboards.

Our research explores how we can examine dashboard de-

signs at scale. We integrate and extend elements of prior research

to propose an extensible and machine-readable schematic rep-

resentation of dashboard designs.

B. Analyses of Visualization Corpora

Analyses of large corpora of visualizations have been per-

formed for a variety of reasons. For instance, to describe the

flexibility of a specific tool and the habits of its users [28],

[29], [30], to create and evaluate datasets for training machine

learning models [9], [31], or to simply enumerate the sheer

diversity and structure of a design space [32], [33], [34]. While

our motivations span these categories, we note specific structures

in how these corpora are collected and analyzed.

Existing corpora can be divided along three dimensions: data

collection that manual [7], [16] versus automated [9], [29], [30],

[31], [35], [36], [37], [38], annotation that is manual [7] versus

automated [9], [31], [38], [39] (or both [29]), and analyzing

visualizations as static [9], [29], [38] versus dynamic [7] (i.e., in-

teractive) objects. Each dimension involves trade-offs in the rich-

ness, scope, and quality of analyses supported by the annotated

data. For example, automated extraction allows for thousands

of examples to be collected, but managing the heterogeneity

exhibited in massive corpora can lead to a relatively limited

set of features available for analysis based on what extraction

and annotation programs can reliably detect en masse [29],

[38]. Moreover, assessing the quality of data in this corpus is

also difficult and may require explicit validation steps [31]. In

contrast, manual data collection and annotation can lead to richer

input data and thus a wider variety of potential analyses [7],

but sacrifice scale in return since manual data collection and

annotation involve significant expenditures of time and effort.

A notable exception occurs when a large, consistently format-

ted corpus is available, enabling richer and broader analyses.
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For instance, the VizML project [9] processed over a million

Plotly visualizations, creating a dataset suitable for training

deep learning models. DMiner [10] investigates approximately

850 Tableau dashboards collected from GitHub – similar to

VizML [9], they take advantage of a common specification,

in this case, Tableau XML, to prepare their corpora for a

recommendation task. Both VizML and DMiner use different

approaches to represent visualizations and dashboards by either

extracting features or using a graph-based analysis. However,

these features focus on the individual visualizations and do

not capture other elements present in the dashboard. Moreover,

neither comments on the variety of visualizations or dashboards

(such as the prevalence of emergent patterns and designs) nor

do they discuss interaction.

We present a unique opportunity to analyze and share thou-

sands of dashboard designs in a consistent format amenable to

systematic, quantitative analysis. Our approach also calls at-

tention to an often overlooked consideration of corpora content

and its suitability for downstream research tasks.

C. Graph-Based Analysis of Visualization Designs

Ease in authoring and analyzing visualizations is often linked

to the way that a visualization is specified. When the initial

specifications are not readily available, one could use alternative

techniques, such as image segmentation [29], [39], [40], [41],

[42], [43] to derive approximate representations of visualiza-

tions. However, the heterogeneity of visualization images—and

thus, their approximate representations—limits our ability to

analyze them at scale. It is also hard to precisely extract higher-

level semantics such as layout and interaction properties from

images without rich metadata. In our work, given that we are

interested in the relationships that bind discrete elements within

a dashboard together, we rely on graph-based representations

for our analysis.

A number of works explore graph-based representations of

visualization and dashboard designs. For example, visualization

recommendation algorithms often represent the visualization

design space as a graph, where nodes represent specific encoding

or data transformation choices and edges reflect relationships

between these design decisions [44], [45], [46]. Dashboard de-

signs can also be represented as a graph to capture relationships

between different elements, such as directional relationships

between interactions in one element that change the encodings

or data transformations in another element [47], [48]. Recent

research from Kristiansen et al. [22], [49] proposes a technique

for content-driven graph layout for creating multi-view visual-

izations, including dashboards.

VizML and KG4Vis are most similar to our research.

VizML [9] uses a feature base approach and while KG4Vis [13]

apply a graph structure for mapping dataset properties to low-

level design decisions within static visualizations. KG4Vis takes

this idea one step further by computing embedding vectors over

the knowledge graphs created for individual visualizations, pro-

ducing a numeric representation that can be compared for gen-

erating and ranking visualization recommendations. However,

these methods do not capture relationships between multiple

visualizations or non-visual elements like interaction widgets,

text, and multimedia. This orchestration of visual, interactive,

and textual elements is what distinguishes dashboards from other

genres of charts. The generalizability of these approaches to the

analysis of dashboards at scale is yet to be demonstrated.

We extend the ideas of prior research while also demon-

strating their utility beyond single visualizations. We present

a blocks and connections representation of dashboard content

and composition that can use feature-based and graph-based

analyses to represent both the layout and interactions within an

individual dashboard and summarize these design patterns at

the level of the entire dashboard corpora.

III. DASHBOARD GRAPHS: A SCHEMATIC REPRESENTATION OF

DASHBOARD DESIGN

Here, we present a graph representation of dashboard designs.

We motivate the need for such a representation, define its ele-

ments, and describe its applicability and extensibility.

A. The Need for Consistent Dashboard Design

Representations

To illustrate the challenges of analyzing dashboard designs,

consider Fig. 1—a small slice of the diversity in dashboard

designs—which presents three dashboards that are composed

of different visual elements including (but not limited to) data

visualizations, and with different levels of interactivity. While

these examples are all derived from Tableau Public, a dashboard

can be specified programmatically using visualization libraries

(e.g., D3, Vega-lite, ggplot) or through direct manipulation via

authoring systems (e.g., Tableau, PowerBI, Looker). Each of

these approaches has its own mechanism for creating individual

visualizations, laying them out, and coordinating interactions

between them. To gain insights into the design of these visual-

izations, it would be necessary to examine their specification via

the tool they were created with. However, the task is onerous and

has questionable value in summarizing the dashboard’s design.

An alternative approach would be to consolidate a summary

of their designs and formalize them into a framework or design

space description—an approach adopted by prior work [7], [8].

However, this requires human labor to construct and organize

artifacts. The manual and subjective nature of this process makes

it challenging to apply to large dashboard corpora. We argue

that there also exists a gap between the findings from these

studies and the ability to express these design patterns in a

machine-readable way, for example, as is done with VizML [9]

or DMiner [10]. Notably, even these prior attempts to repre-

sent visualization and dashboard design patterns in a machine-

readable format have been inconsistent and fail to provide

consistent coverage of dashboard elements, non-visualization

features (e.g., text, widgets, multimedia), interaction, and layout.

We summarize these challenges as an abstraction gap between

the low-level programmatic specifications of the dashboard and

the resulting design and higher-level emergent patterns. Prior

research, such as work by Bach [8], Hu [9], Li [13], and Lin [10]

are mid-level abstractions that emphasize different elements of

dashboard designs. We argue that these abstractions are not
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(a) (b) (c)

Fig. 1. Example dashboards are decomposed into block-connection form and reconstructed as interaction and adjacency graphs. Blocks are represented

via icons and colored by type ( , , , , ). Directed edges show interactions between blocks, while
undirected edges indicate that two blocks are adjacent. Block adjacency is algorithmically computed, based upon how elements are laid out and spaced in

the dashboard (see Section IV-C). Solid links in the block diagrams and interaction graphs represent → interactions, and dashed links represent

��� or ��� interactions. Since (b) has no interactive blocks, its interaction graph contains no edges. Likewise, the adjacency
graph in (c) is disconnected due to the usage of white space between blocks.

interoperable, nor do they fully cover the range of possibilities

illustrated in Fig. 1. For these reasons, we propose an inte-

grative schema that defines dashboard designs as blocks and

connections.

B. Proposed Schema: Blocks and Connections

We present a node-link (graph) representation of dashboard

designs that comprise blocks (nodes) that contain content el-

ements and connections (edges) that capture the composition

of these elements in a dashboard. This schematic representation

integrates aspects of prior work that examines dashboard content

qualitatively [7], [8], individual visualizations at scale [9], [13],

and smaller collections of dashboard corpora [50]. We now de-

scribe these components of the node-link representation and how

it can be used to capture design patterns, including interaction,

in dashboard corpora.

Blocks represent individual content elements of a dashboard:

Blocks do not only include visualizations but can also represent

text, legends, filter widgets, and multimedia elements such as

images or embedded web pages. We note that prior research (see

Section II) primarily captures visualization elements without

consideration of other elements that may exist in the dashboard

(Fig. 1). The precise composition of a block can be flexibly

defined based on the desired level of granularity. For example, a

faceted chart can be represented by a single block (as we do in

Section IV) or as multiple blocks representing each facet. Each

block has a set of properties that can be ascribed to it. All blocks

contain positional properties that capture their spatial position

in the dashboard as coordinates, size, and aspect ratio. Blocks

also contain descriptive properties based upon the content type.

For example, visualization elements can contain sets of features

described, such as those described in VizML [9]. Text or images

will contain different sets of properties (e.g., topics, semantic

aspects). Importantly, the richness of descriptive properties can

vary across elements of the same type – some visualizations have

richer features than others.

Connections capture relationships between blocks to repre-

sent their composition in a dashboard: Two of the primary types

of connections that we focus on here are layout and interaction.

Layout considers the position of blocks in a dashboard. We can

establish a connection if blocks share a common edge or overlap

spatially (e.g., the bar chart on the left in Fig. 1(a) is adjacent

to all other charts, the text block on the bottom-right corner in

Fig. 1(b) is overlain on the bar chart). Interactions with one block

that influence others (e.g., cross-filtering) establish interaction

connections. Just as with blocks, additional type-specific prop-

erties can be utilized to capture supplemental information, such

as the interaction type (e.g., filter or highlight). Other types of

connections can be considered, for example, shared dimensions

across elements, such as a data attribute used across multiple

visualizations and referenced in text elements.
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We now describe how blocks and channels can be organized

into one or more graphs that represent the design of a dashboard:

Here, we propose the use of two graphs to represent layout and

interaction connections between a common set of nodes. The

adjacency graph is an undirected graph that codifies the spatial

layout blocks of a dashboard according to their positional proper-

ties and connections. The interaction graph is a directed graph

showing how blocks influence each other through interaction

connections. These two graphs can be jointly analyzed for a

holistic analysis of design patterns [51]. While it is technically

possible to represent multiple types of connections on a single

graph, including layout and interaction, we recommend against

this for the following reasons. First, interactive elements have

directions, and omitting them can result in a loss of information.

For example, prior qualitative research [8], [43] presents design

patterns like ‘drill-down,’ which can be identified by proper con-

sideration of interaction directionality. Second, edges can have

different meanings, and rather than overloading edge properties,

it can be more useful to represent them separately. Prior work

uses a single graph because they model just one type of connec-

tion between dashboard elements (e.g., DMiner [10]) or model

something unrelated to dashboard design (e.g., KG4VIS [13],

VizML [9]).

C. Leveraging Dashboard Graphs for Distant Reading

We now describe the ‘distant reading’ affordances enabled

through a blocks and connections lens of dashboard patterns.

Blocks and connections enable a consistent decomposition of

dashboard design: In Fig. 1, we show how three different types

of dashboards are represented using the block and connections

representation. Fig. 1(a) displays a classic multiple coordinated

views style of a dashboard for interactive exploration of cancer

treatment statistics. Fig. 1(b) showcases a single-use plastic

and its impact on the ocean. It is an example of using addi-

tional elements besides visualizations. Finally, the dashboard

in Fig. 1(c) displaying data on coffee beans around the world

shows the diversity of blocks and connection types. By applying

our schema, we can quickly spot and compare several pertinent

design considerations between these different dashboards. For

example, Fig. 1(a) and (c) have many interactions between

elements, while Fig. 1(b) has none. Moreover, the types of

interactive connections (cross filtering between visualization

(→) versus filtering via widgets (���)) are different between

these two examples. Fig. 1(b) and (c) have distinct cliques,

grouping common information, whereas Fig. 1(a) does not. In

aggregate, these kinds of assessments establish design patterns

and their prevalence.

Blocks and connections are flexible and extensible: By fo-

cusing on the core elements of dashboards and how they relate

to one another, our schematic representation generalizes to the

most common dashboard designs

Our approach uses blocks and connections to represent dash-

boards in a way that is independent of how these elements

were created. This method is versatile, capturing a wide range

of design elements, including visualizations, text, and even

non-visual elements like web pages. It applies to any dashboard,

Fig. 2. An example of interaction and adjacency graphs extracted from a
dashboard specified using Vega-Lite. Such graphs can be used to collectively
analyze dashboards agnostic of creation methods or tools.

regardless of whether it was manually designed, automatically

generated, or programmatically specified using visualization

language (Fig. 2). For dashboards in other formats, such as print,

alternative techniques like image segmentation [40], [41], [43],

[52] can be used to identify elements. The strength of our schema

lies in its ability to provide a consistent representation across

different tools.

Enabling scalability for large dashboard corpora: Graph data

structures offer numerous methods for scaling the analysis of

large corpora. Prior analyses of dashboard corpora have not

presented the design patterns of dashboards in a way that allows

us to leverage methods for scaling the analyses of corpora. Still,

a rate-limiting factor is the data preparation necessary to convert

bespoke representations of dashboards, be they images or code

for different programming languages, into a graph schema. In

Section IV, we demonstrate this process using Tableau Public,

with our graph schema serving as the target for data preparation.

Our analysis in Section V then highlights insights into dashboard

design patterns.

IV. CASE STUDY: A CENSUS OF TABLEAU PUBLIC

In this section, we apply the blocks and connections graph

schema to generate a census of a dashboard corpus derived from

Tableau Public. We define a census as a survey of a dashboard

corpora. Thus, our goals are descriptive in nature. We describe

our process for deriving and analyzing blocks and connections,

as well as the attendant adjacency and interaction graphs. We

describe layout and interaction design patterns that we observe

and their prevalence.

A. Motivation and Research Questions

Surveying user-created artifacts can provide valuable insights

into what information is most important to users, how they

represent this information, and how they organize it. A survey

can also suggest gaps in support for further investigation and

follow-up. In this case study, we survey dashboard artifacts
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Fig. 3. An overview of the dashboard winnowing process.

derived from Tableau Public,2 a well-established platform that

supports the authoring and dissemination of dashboards. In

total, it comprises approximately 5 million workbooks created

over a 14-year period. The full workbook corpus represents a

wide range of uses across multiple domains, including public

health, finance, journalism, and others. Moreover, it attracts a

wide variety of end-users, from students to journalists to data

professionals, and captures dashboard designs ranging from

complex and interactive to simplistic and static. In addition to

the diversity of dashboard patterns, the choice of Tableau Public

is also pragmatic. Like prior research [9], [10], we can make use

of a common specification format to simplify the processes of

deriving blocks, connections, and their type-specific properties

or features. In Section III-C we provide an example of how

dashboards specified with different tools can be analyzed once

they are translated into our schematic representation.

We derive a census and present an analysis to answer the

following research question on dashboard designs:
� RQ1: What constitutes a visualization “block” within dash-

boards and what are the spatial relationships between vi-

sualization “blocks” and other types of “blocks”?
� RQ2: Is interactivity common in dashboards, and are there

common patterns of interactions between “blocks”?
� RQ3: Can we detect and characterize high-level dashboard

design patterns?

The first two research questions aim to provide a descrip-

tive overview of the composition and arrangement of design

elements within a dashboard. We place so-called visualization

“blocks”’ at the center of our analyses and seek to get an

overview of what other design elements appear alongside them

(e.g., text, multimedia) and how they influence each other (e.g.,

cross-filtering). The third research question examines to what

extent these individual dashboard designs can be clustered to

reveal design patterns and their prevalence.

B. Preparing the Corpus

Analyzing the full corpus of 5 million workbooks is in-

feasible. The primary reason is that workbook specifications

have changed over time, impacting how visualizations and

dashboards are defined. Workbooks can also be inaccessible

due to user-set permissions or deprecation. Moreover, not all

workbooks contain dashboards, and among those that do, many

can be low quality. We describe winnowing the corpus to arrive

at a subset for our dashboard census in Fig. 3.

1) Winnowing: From the total corpus of 5 million work-

books, a total of 1,342,794 workbooks (∼25% of all workbooks

on Tableau Public) had been published or recently updated to

conform to a contemporary Tableau work version; this addresses

2https://public.tableau.com/app/about/

the issues of older workbooks. Users can create one or more

dashboard objects within a Tableau workbook. Using Tableau’s

definition, only 150,276 (11%) contained at least one dashboard.

An initial exploration of these dashboards revealed that many

were very low quality – often containing a single visualization

(typically a just bar chart). We hypothesize that these dashboards

may represent just trial and error exploration of using the Tableau

Public platform.

To increase the likelihood of higher-quality dashboards, we

used page views (how often a dashboard is viewed by someone

on the internet) as a surrogate metric. We observed that the

distribution of total impressions across the 150,276 workbooks

was left-skewed with a heavy tail with values ranging from just

one impression per workbook to over 32 million; impressions

did not strongly correlate with the publication date. Given this

distribution, we elected to sample the top 10% of workbooks

based on impressions (≥ 42 impressions), yielding a set of

15,090 workbooks that contained 42,951 Tableau dashboards.

2) Extracting Valid Dashboards: We opted to further limit

the corpus to dashboards that had two or more visualizations

elements, allowing us to enhance the possibility of multiple

coordinate views. Applying this criterion resulted in a final

set of 25,620 dashboards that fit prior definitions of the term

as commonly used in visualization research (e.g., “a visual

data representation structured as a tiled layout of simple charts

and/or large numbers” [7]). We provide the anonymized version

of this dataset at https:// osf.io/ r5cfk

C. Deriving Dashboard Block and Connection Graphs

We now describe how we extracted and defined blocks and

connections from existing Tableau workbook specifications.

1) Overview of Workbook Specifications: Workbooks are

XML documents that, among other things, contain specifications

for visualizations and dashboard elements. Within Tableau, in-

dividual data visualizations are constructed in worksheets

by dragging and dropping dataset attributes onto so-called

“shelves” (i.e., row, column) or to specific encoding channels

(i.e., color, size, etc.). A visualization is automatically suggested

or user-specified by selecting a mark type. Workbooks can

contain one or more worksheets. A dashboard is com-

posed of one or more worksheets that can be arranged in a grid

(default) or fluid layout. Regardless of the layout, all dashboard

content is captured as a zone. The contents of a zone need not

be a visualization but could also contain text, images, or layout

elements of the dashboard. Finally, a user can specify actions

that add interactivity between dashboard zones, including high-

lighting, (cross-)filtering, and page navigation.

2) Detecting Blocks: We analyze workbook dashboards,

not individual sheets, to define and extract blocks. Specif-

ically, we parse the zone objects to derive five block types:

containing visualizations, containing wid-

gets like dropdown menus and sliders, displaying

data mappings for graphical encodings like size and color,

blocks including the dashboard title, caption, or addi-

tional commentary, and finally, blocks containing

images or embedded web pages.
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Fig. 4. An overview of the feature extraction process. Given a Tableau dashboard (a), we parse the underlying XML specification file (b) to detect the different
blocks and connections between blocks (c). We then model two graphs depicting the interactive and spatial configurations of the dashboard (d). From these graphs,
we extract 22 features that we use for our analyses (e).

The block type links to the original worksheet that

describes the data visualization, which we use to extract the

visualization type (e.g., bar chart, map, scatterplot, treemap,

Sankey diagram) from the specified marks (e.g., bar, line, circle)

and encodings (e.g., row, column, color). We capture additional

properties of the block, such as its spatial coordinates in a

dashboard and the data attributes for visualizations.

3) Deriving Layout Connections: We establish layout con-

nections between blocks by determining their spatial proximity

and adjacency within a dashboard. We first construct a bounding

box around each block from its spatial coordinates and size

(width, length). Whether a dashboard uses a grid or floating

layout affects how we establish whether two blocks are adjacent.

In grid layouts, blocks can be placed side-by-side, either above,

below, or on either side of another block. In floating layouts, the

position of a block is more flexible, and blocks can be placed on

top of each other. We enumerate all pairs of blocks and classify

into four configurations:
� Partial Overlap: In a floating layout, two blocks may

partially overlap, but neither block is contained entirely

within the other.
� Containment: In floating dashboard layouts, one block can

be contained entirely within another. For example, a

block may be contained entirely with a block

when it is used to annotate an outlying mark in the data

visualization. In this scenario, the coordinate range of one

block entirely overlaps with its pair.
� Adjoining: Primarily, in grid layouts, two blocks can share

an edge when adjacent to one another (e.g., two

blocks containing different visualization types could be

placed next to one another). Compared to partially over-

lapping blocks, these adjoining configurations have very

limited coordinate overlap, often a few pixels, and require

separate treatment to be accurately detected.
� Non-adjacent: A pair of blocks were established not to be

adjacent as they shared no related spatial coordinates.

To allow for flexibility in determining adjacency, we use a

tolerance criterion of 10pixels that allows two blocks to be

positioned a very small distance apart (no shared coordinates)

but still be considered adjoining.

4) Deriving Interaction Connections: Finally, after detect-

ing the dashboard blocks, we extract actions from the

XML specification to define interaction connections between

blocks. Each action provides the interaction type (e.g., filter,

highlight) as well as the source and target blocks in the

dashboard that we use to record connections. The action

specification establishes whether there exists cross filtering be-

tween blocks that contain visualizations ( → ),

or visualization is filtered by another type of block, for

example, a filter ( ��� ) or a legend widget

( ��� ).

5) Constructing Adjacency and Interaction Graphs: Having

extracted blocks and establishing the structure of their layouts

and interactions, it is then simple to construct the adjacency

and interaction graphs. In both of these graphs, the blocks

are nodes. In the adjacency graph, undirected edges between

these nodes are formed when pairs of blocks have either partial

overlap, containment, or adjoining adjacency. In the interaction

graph, edges are directed and formed between nodes where some

interaction has been established between blocks. In both graphs,

we check whether there exist duplicate edges and self-loops and

remove them.

D. Methodology for Deriving a Census

The graph representation provides a consistent description

of dashboards that we can use to conduct our census – much

like a common set of questions is used to conduct a census of

human populations. Moreover, much like a census of people we

can aggregate over individual results to get an overview of a

population, or in our case a dashboard corpora.

1) Census Summaries via Descriptive Statistics: To address

RQ1 and RQ2 we conduct a descriptive statistical analysis. We

enumerate the total number of blocks and block types across

all dashboards and describe their distribution (via median and

mode). We also summarize the co-occurrence of block types

within a dashboard. We do so by applying a clique-detecting

algorithm to the adjacency graphs of each dashboard. We then

enumerate and sort commonly occurring cliques by their preva-

lence. We also apply descriptive statistics to understand the

extent of interactivity in dashboards and the prevalence of inter-

action between visualizations and other types of blocks.

Having a descriptive overview of the blocks has several uses.

First, it can be used to identify common and recurrent structures.

These can represent design patterns that multiple users find use-

ful because they either independently arrive at the same choice or

borrow it from others. Second, by focusing on prevalence, we can

see the diversity of dashboard content via blocks. Low diversity
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may signal pain points. Finally, understanding different patterns

and their diversity can enable judgments on the suitability of the

corpus, or some subset of it, for downstream tasks.

2) Summarizing Design Patterns via Cluster Analysis: We

also explored whether there were emergent dashboard design

patterns (RQ3). Specifically, we used the features derived from

the graph representations (Section IV-D) to perform an unsu-

pervised cluster analysis using the hierarchical density-based

clustering (HDBSCAN) [53] algorithm. In the supplemental

materials, we provide more details on our choice of clustering

algorithm (i.e., the choice of HDBSCAN versus K-means) and

a sensitivity analysis for our parameter choices.

Ahead of clustering, we derived a set of 22 features from

the properties of nodes and the topological structures of the

adjacency and interaction graphs, summarized as follows:
� Descriptive Features: The number and the types of blocks

within both the adjacency and interaction graphs are iden-

tical, allowing us to extract a common set of features from

both. These features include the total number of blocks in

each graph and the presence of specific block types. We use

one-hot encoding to represent the presence (and absence)

of block types. We standardize the total number of blocks

by the mean degree, by its mean, and by unit variance

(standard scaling). We also summarize the total number of

edges and the mean degree of nodes and apply the standard

scaling transform.
� Adjacency-Specific Features: We derived features that add

context to the spatial layouts. For all pairs of blocks in a

graph, we compute the average shortest path. As an addi-

tional proxy of layout complexity, we examine adjacency

graphs for the presence of one or more maximal cliques

and, when detected, compute the average size of all cliques.

We apply the standard scaling transformation to the path

lengths, number of maximal cliques, and mean clique size.
� Interaction-Specific Features: For the interaction graph,

we compute the average in-degree and out-degree of

the nodes, also applying a standard scaling transfor-

mation. We tabulate the presence of the three edge

types ( ��� , ��� and

→ ) that describe the interactive relation-

ships between two blocks; these edge types are also one-hot

encoded.

There are a variety of different features that can be derived

to provide a different or simply more nuanced lens of visu-

alization design patterns. For example, VizML [9] presents a

list of visualization-specific features that we could have used

here. The features we have chosen emphasize the topological

characteristics of the adjacency and layout graphs. We argue this

is more reflective of the level that design patterns are explored

in prior qualitative research [7], [8]. However, by making our

dataset and analysis available, others may derive alternative

analyses that answer different questions.

V. RESULTS

In this section, we provide an overview of what our census

reveals, according to the descriptive statistical analysis and

feature-based unsupervised clustering. We present these results

in accordance with our research questions.

A. Content and Composition of Dashboards

Addressing RQ1, we examine the visual composition of dash-

boards focusing on blocks and their spatial relationships.

1) What are the Visual Components of a Dashboard?: We

identified a total of 250,794 blocks across the 25,620 dash-

boards. The number of blocks per dashboard ranged from 2

to 267 (median: 8, mode: 4). We observed that 121,068 out

of 250,794 blocks (49%) were , followed by 53,267

blocks (21%), and subsequently (36,472 or

15%), (22,446 or 9%), and (17541 or

7%). We note the importance and centrality of and

as the building blocks of dashboards: together, over

70% of the blocks in our analysis were one of these two block

types. Fig. 5(a) shows these results in detail.

For the blocks, we also examined the distribution of

visualization types across dashboards. We found that bar charts

were the most common visualization type, appearing in 15,392

out of 25,620 (60%) dashboards. The next most frequently used

charts were line charts (n=6,524; 25%), maps (n=6,454; 25%),

and finally, tables (n = 6,154; 24%). Besides other simple chart

types (e.g., scatterplots, bar charts), there were also instances

of more bespoke visualizations, such as Sankey diagrams and

waterfall charts, but they were present in only 116 dashboards

(<0.5%). These findings show that only a very small subset

of our corpora constitute sophisticated designs that are often

explored in ‘close reading’ of dashboard corpora. Our census

suggests that authors generally create very simple dashboards

constituting two or three simple charts.

Considering the distribution of blocks and block types across

dashboards, we can derive several important takeaways. First,

text plays a prominent role in the construction of dashboards.

Note that text related to titles or axes labels of visualizations

are retained within a block; thus blocks

are deliberately added to include additional information. The

amount of text and the number of blocks was highly

variable amongst dashboards. Another finding was the high

prevalence of multimedia elements, primary images, that ac-

company dashboards. Images are often contextually related to

the dashboard content. It is noteworthy that prior research on

dashboard designs [7], [8] and recommendation algorithms [10]

emphasize what we would call blocks to the exclusion

of other widely used types.

2) What are Common Structural Relationships Between

Visual Components in a Dashboard?: We analyzed the ad-

jacency graphs for the 25,620 dashboards to identify po-

tential design patterns around block layouts. The graphs

had 2-267 nodes (median: 8, mode: 4) and 0-4926 edges

(median: 11, mode: 3). For each graph, we extracted the

list of all maximal cliques, capturing the block type for

each node in a clique (e.g., { − − },

{ − }, { }). Aggregating these max-

imal clique patterns across all graphs, we found a total of 1,430

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 04,2025 at 18:57:37 UTC from IEEE Xplore.  Restrictions apply. 



SRINIVASAN et al.: FROM DASHBOARD ZOO TO CENSUS: A CASE STUDY WITH TABLEAU PUBLIC 6093

(a) (b)

Fig. 5. Summary statistics for (a) distribution of block types across dashboards and (b) distribution of interactive connection types across dashboards.

Fig. 6. Frequently occurring clique patterns from the adjacency graph analysis.

Nodes map to different block types including , , ,

, and .

unique block patterns. The smallest-sized cliques contained just

2 blocks, and the largest contained 60, and the median clique size

was 9. The most frequently occurring clique patterns contained

just two blocks, typically including a and one of the

other block types; a summary of the most frequently occurring

patterns is in Fig. 6(a).

Focusing on blocks specifically, we also examined

the creation of juxtaposed views. Of all 1,430 unique clique pat-

terns, more than half (n = 747) contained a spatial arrangement

of two or more ; we list the five most frequently oc-

curring clique patterns in Fig. 6(b). The most dominant patterns

are cliques containing only block types, varying in size

from 2 to 4. When two blocks occur with other blocks,

it was more common for those other blocks to be a or

block.

The clique analysis shows that like is often juxtaposed with

like in dashboards: common dashboard elements are visually

grouped together. As with the aforementioned block composi-

tion analysis, the results emphasize simpler dashboard designs

but reiterate that authors do experiment with more complex

designs that mix block types within close spatial proximity, such

as having or blocks that are connected to

multiple .

B. Interactivity in Dashboards

Complementing our analysis of the visual components of

dashboards, we also analyzed the connections between blocks

to understand what types of interactions dashboards commonly

support (RQ3). Note that we refer to a dashboard as interactive

if clicking on one block updates another block (e.g., by filtering,

highlighting, or changing visualized data fields), as opposed to

other forms of interactivity that only involve individual blocks

(e.g., hovering over a point in a single chart to generate a tooltip).

1) Is Interactivity Common in Dashboards?: We found that

19,304 of the 25,620 dashboards in our corpus (75%) were

interactive and that their design patterns varied considerably. In

particular, the number of interaction connections between blocks

ranged from 1 (e.g., a filter acting as a control for a single chart) to

992 (median: 6, mode: 2) interaction connections in a dashboard.

Recall that a single block can be the source or target of multiple

interactions. The maximum possible interaction connections in

a Tableau dashboard are bound by ( -1 +

+ ) * . On average, 58% of the possible

interactions between blocks were applied (median: 50%, mode:

100%), suggesting that when authors add interactions, they tend

to make a considerable portion of the dashboard interactive.

2) How Does Interaction Commonly Manifest?: Of the three

Tableau blocks that support interaction connections ( ,

, and ), ��� was most common

with 13,228 out of the 19,304 interactive dashboards (69%) sup-

porting this style of interaction, followed by →

(46% of dashboards) and ��� (43% of dash-

boards). These results are summarized in Fig. 5(b) and suggest

that there are multiple strategies for interaction design or entry

points for users of an interactive dashboard.

Collecting both spatial adjacency and interactivity in graph

structures sharing common nodes allows us to assess the rela-

tionship between these two factors. While one might assume

that the blocks that control a particular portion of the dashboard

would be spatially next to each other, we found that this was

not always the case. In fact, out of a total of 343,929 inter-

actions, only 105,317 (30%) were in cases where blocks were

adjacent. Out of these 105,317 adjacent + interactive connec-

tions, 58275 (55%) were → interactions, 37186
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Fig. 7. Dendrogram generated by the HDBSCAN algorithm summarizing
cluster hierarchies. Cluster IDs are colored to match the design patterns they
were mapped to. The distinct split between clusters 0-4 on the right and clusters
5-15 on the left illustrates that the algorithm picked up on the presence (or
absence) of interactions as a salient feature for clustering.

(35%) were ��� , and the remaining 9856 (10%)

were ��� interactions. This distribution sug-

gests two broad genres or patterns of interaction design: one was

cliques or tightly connected subgroups of mutually

interact and another “light switch” style where a control panel

with and interacts with many if not all

charts on a dashboard.

C. Characterizing Clusters of Dashboard Design Patterns

Finally, to explore the design patterns across our corpus we

conduct a clustering analysis (see Section IV-D2 for method-

ological details and parameter sensitivity analysis). We analyzed

the features and topological relationships from the adjacency and

interaction graphs and applied HDBSCAN to derive clusters.

As a reminder, unlike k-means (a commonly used clustering

method), HDBSCAN does not force each dashboard into a

cluster, which can mean that the resulting cluster has more

consistent design patterns; unclustered items may be outliers,

have too few examples, or might exist resemble two clusters.

Our analysis identified 16 clusters covering 15,013 out of 25,620

(59%) dashboards, while the remainder was flagged as noise.

In Fig. 8(a), we summarize the characteristics of each cluster

according to their total number of blocks, the prevalence of non-

visualization blocks, and their connection types. As a reminder,

our inclusion criteria requires that dashboards contain at least

two or more blocks. To convey the cohesiveness of each

cluster, we compute the silhouette score. A score of one indicates

that dashboards all have exactly the same design (which would

be a concerning finding). The scores in Fig. 8, however, show

that, while sharing common elements, there is diversity within

each cluster, but this is less than the diversity between clusters.

1) Delineating Dashboard Design Patterns: Similar to

Bach et al. [8] and Sarikaya et al. [7] we used the composition

of the dashboards, via automated clusters and then qualitative

coding, to identify design patterns (genres) of dashboards. In

Fig. 7 we show the results of the clustering analysis and in

Fig. 8 we provide an overview of their characteristics according

to our census dimensions. The first major distinction between

patterns is static (18% of dashboards in our corpus) and inter-

active (82%); these numbers have a similar distribution to those

reported by [8]. We then examine clusters and based on the

summary statistics of each (Fig. 8) we attempted to apply the

classifications from either Bach et al. [8] and Sarikaya et al. [7].

In general, we found that without additional user interviews, it

was too difficult to ascribe a specific intent of the dashboard (e.g.,

dashboards for motivation and learning, dashboards for decision

making) that were described by Sarikaya et al. [7]; this could

be a fruitful avenue for future work. Our findings aligned more

composition and layout patterns described by Bach et al. [8],

specifically, Analytic, Magazine, and Infographic styles. There

was not a precise linear relationship between the definitions

described by Bach et al. [8] and our clusters. For example, we

use multimedia blocks to align with the pictograms and gauges

that characterize the infographic style in [8].

Magazine dashboards (n= 1,913; 7.4%) predominately static

and typically include multiple blocks that complement

the and provide additional commentary about the

data and key takeaways. While, infographic dashboards (n =

1,125;4.4%) generally include a richer mix of block types,

including at least one and block in addition

to . One important difference between our charac-

terization of infographic and multimedia is the prevalence of

, which is not discussed in either [8] or [7]. Analytic

dashboards (n = 22,582; 88%) were much more interactive but

did not use elements as regularly (except cluster 6)

and had elements that were less verbose compared to the

magazine and infographic patterns. Analytic dashboards exhib-

ited more cross-filtering between charts (see Connection types in

Fig. 8), conforming to the definitions of this genre from [8]. One

exception is cluster 2, which contains only visualizations and has

no interactions, but still constitutes approximately 6% of dash-

boards in our corpus; these may be proto-analytic dashboards,

reflecting either initial design explorations or be indicators of

difficulties adding other elements or interactions.

2) Content Prevalence and Design Patterns: Our cluster

analysis shows that we can use our graph schema to apply genres

and patterns from prior research via automated methods. Our

analysis can also go further and reveal variations within the

broader genres, represented as subclusters in Fig. 8, which adds

context to the prevalence of elements in dashboards – something

that prior work does not do at scale. This is an example of

how a design census adds perspective to qualitative surveys

of dashboard “zoos”. One way that we interpret our results is

they suggest that, in practice, dashboard designs are simpler

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 04,2025 at 18:57:37 UTC from IEEE Xplore.  Restrictions apply. 



SRINIVASAN et al.: FROM DASHBOARD ZOO TO CENSUS: A CASE STUDY WITH TABLEAU PUBLIC 6095

Fig. 8. (a) Characteristics of Analytic, Magazine, and Infographic design patterns distributed amongst sub-clusters. N is the total number of dashboards in the

cluster, % values refer to the percentage of dashboards containing an element (e.g., in cluster 6, 100% means all dashboards contain have ) (b) Examples
and summary characteristics of each design pattern with our graph schema representation.

than some of the examples covered in prior work [7], [8]. We

arrive at this conclusion by considering the prevalence of content

elements across dashboards (Sections V-A1 and V-B1 and their

composition into higher-level patterns, which suggest that many

dashboards are quite simple because they contain limited inter-

actions and have relatively few dashboard elements including

visualizations. While neither Bach et al. [8] nor Sarikaya et al. [7]

make explicit claims about the variability or complexity of

dashboards within each genre, the absence of such information

and the use of more “charismatic” examples, could produce a

false impression of what users actually do.

While Tableau does impose a learning curve and constraints

on the authoring experience, it may be that simplicity is desired.

Alternatively, users do not know how to compose more complex

dashboards that could eventually meet their needs, and our

census captures this issue. While there exist power users that

can create rich and complex dashboards—the kinds likely to

be studied in prior research—our findings suggest users are the

exception and not the norm. Authoring experiences catering to

these power users neglect the majority of the population.

VI. APPLICATIONS FOR A DASHBOARD CENSUS

We return to the original premise we articulated in

Section IV-A that a census of dashboard design patterns helps

visualization researchers understand user practices and support

gaps via further investigation. To lay the groundwork and help

foster ideas for future research and development, we describe

some exemplary use cases and applications of the blocks and

connections graph schema in addition to the dataset.

A. Application of a Census Dataset and Findings

The census dataset itself and its results can be used for

different downstream research objectives. Our primary interest is

in the use of this dataset to inform the development of dashboard

authoring tools. However, our findings can be used to highlight
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gaps in need of further investigation, such as user onboarding

and authoring support, in addition to providing more insight

into existing practices, like intent inference, recommendation,

and guidance. While the utility of this data ultimately depends on

richness and appropriateness for the task at hand, having a census

remains an important precursor for making such a determination.

Developing Better Onboarding Techniques to Support In-

teraction: Our census shows that 75% of the dashboards

in our corpus were interactive and supported using at least

one block to visually update one or more other blocks. We

also found that interactions are configured between differ-

ent pairs of blocks ( ��� , → ,

��� ) and are not always consistently used

in a dashboard (e.g., may only update a subset of

). While this nuanced configuration of interactions

suggests that current tools provide a rich set of features to author

interactivity, it raises questions about the discoverability and

usability of such dashboards from a viewer standpoint. One

important direction for future systems is to incorporate built-in

strategies to improve the dashboard onboarding process [54] and

orient viewers to a dashboard and its use (e.g., through over-

laid walkthroughs or using assistive tooltips and guiding text).

Notably, the graph schema can also be valuable for designing

features such as the underlying links that can be used to identify

the flow of actions between blocks.

Prioritizing support for customization of simple charts over

authoring bespoke charts: As stated in Section V-A1, our

analysis showed that basic visualizations, including bar charts,

maps, line charts, tables, pie charts, etc., are more prevalent in

dashboards with only a minor subset of dashboards containing

bespoke charts. However, while inspecting examples during the

cluster analysis, we observed that the absence of bespoke charts

did not dampen the “richness” of dashboard designs and that

authors either heavily formatted basic charts or combined basic

charts such as maps and pie charts in innovative ways to create

visually compelling designs. Unfortunately, creating such highly

stylized and custom designs with tools like Tableau can require

substantial expertise, forcing new or novice authors, in particu-

lar, to resort to default visuals or integrate artifacts across design

and visualization tools. As the user base for dashboard design

tools broadens, it is more important to provide more expressive

and flexible authoring interfaces for formatting (including using

images and icons as marks [55]) and integrating basic charts than

to focus on allowing dashboard authors to create and incorporate

more bespoke visualizations.

Enhancing dashboard authoring through AI/ML supported

intent inference, recommendations, and guidance: A large cor-

pus of dashboards is a useful dataset for training or fine-tuning

AI/ML models. We examine several useful applications based on

the content of our corpora. Prior work has shown that dashboards

are generated for a variety of purposes and that intents play

an integral role in dashboard design [7], [56]. However, the

process of inferring dashboard intent in their work has been

largely qualitative and performed at a small scale. For instance,

Pandey et al. [56] derive dashboard intents such as “change

analysis” and “category analysis” by manually inspecting the

views, filtering widgets, and textual content of 200 dashboards.

Our schematic representation and dataset present an opportunity

to investigate this idea at scale and explore how a combination

of information from blocks ( , , and )

and their connections can be used to programmatically infer

dashboard intent. Intent is also to guide recommendations and

guidance that is tailored to the user needs at the present moment

of their analysis [57].

However, our census points to both optimism and caution

when using large dashboard corpora, ours, or others that may

emerge in the future. Given that the distribution of dashboard

designs skews toward simplicity, the signals for user intent can

be washed out. Instead, it may be more appropriate to use a

census to guide a principled selection of dashboards to form

a training or fine-tuning dataset. Further, the left-out, simpler

dashboards still serve a critical purpose: they become useful

boundary markers delineating the minimum viable content and

composition necessary to derive useful recommendations.

B. Application of Blocks and Connections Graph Schema

The blocks and connections graph schema is simple and exten-

sible and can easily incorporate features from prior work, such as

by making their properties of blocks or new features that others

wish to study, or that emerge as dashboard authoring practices

change. Graphs, more generally, are flexible data structures that

have an attendant analytic toolbox that can enable practical and

informative assessments of user practices.

Improving Support for Non-Chart Blocks: Dashboards have

conventionally been considered as visual analytic artifacts com-

posed predominantly of multiple coordinated views [6]. How-

ever, our analysis shows that, in practice, non- blocks

such as and (e.g., images) play an integral

role in dashboard design. An important consideration for future

dashboard tools is to provide ample support for authoring and

incorporating such content in flexible ways. The prevalence of

, in particular (Fig. 5(a) ), also hints at potential synergies

with recent research on interactively linking text and charts [50],

[58], [59], and presents an opportunity to further explore this

relationship.

Having better support for non-visualization blocks can also

enable a richer analysis of dashboard content. One reason we

examine a limited set of features is that visualization blocks

tend to have more and richer features than, for example, text

or images. The visualization blocks would have dominated the

analysis. Knowing that users create other types of blocks can

prime future dashboard authoring tools to prompt the user for

richer, non-visualization data or to suggest options to users. Our

census suggests that, at present, only power users are likely to

make full use of these features.

Developing Dashboard Linters for Layout and Interaction

designs: Poor choices in dashboard design or layout can produce

designs that are confusing or even misleading. In particular, Qu

& Hullman [20] suggest that keeping multiple views “consis-

tent” is important for the legibility of dashboards. In our corpus,

we observed occasional mistakes or violations in dashboard de-

sign that were visible through inspection of the graph structure
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alone. For instance, interactive that were centrally

placed and only applied to some (but not all) of the in

a dashboard, a commonly placed although two charts

used a different color mapping, etc. This suggests the ability for

our graph schemas to be used to automatically “lint” or otherwise

“audit” [60], [61] dashboards and surface potential issues during

dashboard authoring.

Designing accessible dashboards: Recent research has high-

lighted the importance of making dashboards accessible to

people with disabilities [62], [63], [64]. To this end, effectively

understanding a dashboard’s composition and design can help

both assess and improve its accessibility. For instance, in a

recent co-design study with screen reader users, Srinivasan

et al. [64] suggested that dashboards are more accessible via

screen readers if they provide explicit filtering widgets that

users can easily navigate to and adjust. The authors used our

proposed graph-based schema to model the layout and interac-

tion design of dashboards and subsequently redesign them to be

more accessible: This application exemplifies how the proposed

graph schema can be used to validate if dashboards meet dif-

ferent accessibility criteria. Furthermore, modeling accessible

dashboard design practices as graph heuristics can also help

automatically update dashboard designs and make them more

accessible at scale (e.g., interaction graphs should be updated

such that any → connections should have an

equivalent ��� connection).

Enhancing dashboard search: Dashboards are challenging

artifacts to search over because both their content and composi-

tion can be relevant to end-users. However, dashboard search

currently prioritizes content elements, and more specifically,

dashboard metadata or, when present, text that is encapsulated

in the dashboard. When metadata or text content is poor, the

opportunity to search over dashboards can be limited. Using a

graph schema creates richer search opportunities. For example,

comparing a given dashboard’s graph schema to a repository

of dashboard graphs can enable searching for dashboards that

exhibit a similar visual layout and/or interactivity. Alternatively,

it is also possible to create an embedding representation from

the dashboard graphs and then perform a search over these

embeddings [65]. This approach is explored with knowledge

graphs of single visualizations in KG4VIS [13], but can be

extended to more general graphs that capture additional aspects

of dashboard content and composition.

VII. DISCUSSION AND CONCLUSION

Collections of user-created artifacts are an important resource

for understanding existing user practices and motivating re-

search agendas and trajectories. Here, we consider a corpus

of dashboards, a complex artifact that ties together different

content elements, including inter-mixing visualizations with

other media, composed in both interactive and static configura-

tions. Aspects of dashboards have been examined individually,

most notably the visualization elements [9], [13], and together

to reveal composition patterns [7], [8], [10]. Although these

attempts use a variety of approaches to capture different aspects

of dashboard content and composition, no one approach fully

covers the others, and none have been tested on a large corpus

of dashboards.

Our research advances prior work by proposing a block and

connections representation of dashboards. Our approach brings

together and extends prior research through a simple graph

schema. Blocks define content, while connections define their

relationships. We show that this approach can be used to capture

and examine dashboard design patterns en masse to derive a

census of these user artifacts.

A. From a “Zoo” to a “Census” of Dashboards

Prior research that closely examines dashboards primarily

uses ‘close reading’ approaches to annotate dashboard features

and derive design patterns. However, this approach can only

reasonably analyze a limited number of dashboards due to their

intensive manual labor demands. As with Heer et al.’s [11] “vi-

sualization zoo”, these hand-picked and hand-analyzed corpora

may not reflect common practice or dashboards of everyday

use: “After all, you don’t go to the zoo to see chihuahuas

and raccoons; you go to admire the majestic polar bear, the

graceful zebra, and the terrifying Sumatran tiger.” A research

agenda emphasizing charismatic fauna while overlooking the

more prevalent raccoon has limitations.

In our census, we show that dashboard quality varies consid-

erably, with many being far simpler than prior research accounts

for: While we cannot identify a singular mechanism behind this

variability or this bias toward simplicity, potential rationales sug-

gest missing areas in our current thinking and understanding of

dashboard design and use. For instance, existing authoring tools

may not offer sufficient support for the majority of dashboard

authors to create richer dashboards. New authoring paradigms or

tools could address this mismatch. Or alternatively, the analytical

needs and data literacy of dashboard audiences may be fully met

by simple and static collections of one or two simple charts; if

so, then research that focuses on more “exotic” forms of visual

presentation and interactivity may fail to meet users where they

are and assist them with their everyday analytical goals [66].

With the growth of data-intensive AI/ML applications, our

census also offers an opportunity for reflection: Prior uses of

visualization and dashboard corpora do not comment on what

the corpora contain or how it could impact the recommen-

dations or guidance of AI/ML models. While at face value,

large corpora may invite complex analyses, the distribution of

patterns surfaced by a census can inform if the analyses are

feasible and appropriate. The necessary data may not exist, or,

for example, if analyzing text content, it may be too sparse and

simple to be usable. Developing a “zoo” of exotic examples again

risks misalignment with user needs. We present initial evidence

for how a census could clarify appropriate AI/ML usage of

dashboard corpora. Further, our graph schema could be used

to generate data cards to inform how these corpora should be

used by downstream models.

B. Limitations

The primary limitation of our research is that we only use

the Tableau Public corpus. However, prior research has also
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made use of corpora obtained from a single source and defined

using a common specification to simply their analytic work-

loads without loss of generality. For example, VizML [9] uses

Plotly charts without consideration of visualizations made with

other libraries. DMiner [10] considers a set of approximately

850 Tableau dashboards mined from Github. The majority of

the corpus analyzed by Bach et al. [8] is also reported on in

Sarikaya et al. [7]. While corpora are generated and defined

differently, and so may highlight different aspects of dashboard

design, we hypothesize that our finding of dashboard design

patterns skewing toward simplicity will likely hold. A final

limitation is that we analyze relationships between dashboard

elements via their interactive relationships and positional place-

ments. There are potentially other ways of defining relationships

between these elements, such as shared data or semantic infor-

mation that we do not explore. What we analyze here is the

minimum when considering multiple elements. For example,

a representative text image may not share data with a visual

encoding (see Fig. 1 for an example), but we are able to model

their adjacency or overlaps. Future work may seek to go further

and explore other edge types. We make our corpora publicly

available so that others can build on our findings or compare

them to prior research in ways we do not cover or anticipate.
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