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From Dashboard Zoo to Census: A Case Study
With Tableau Public

Arjun Srinivasan”, Joanna Purich *, Michael Correll

Abstract—Dashboards remain ubiquitous tools for analyzing
data and disseminating the findings. Understanding the range of
dashboard designs, from simple to complex, can support develop-
ment of authoring tools that enable end-users to meet their analysis
and communication goals. Yet, there has been little work that pro-
vides a quantifiable, systematic, and descriptive overview of dash-
board design patterns. Instead, existing approaches only consider
a handful of designs, which limits the breadth of patterns that can
be surfaced. More quantifiable approaches, inspired by machine
learning (ML), are presently limited to single visualizations or
capture narrow features of dashboard designs. To address this gap,
we present an approach for modeling the content and composition
of dashboards using a graph representation. The graph decomposes
dashboard designs into nodes featuring content “blocks’; and uses
edges to model “relationships”, such as layout proximity and inter-
action, between nodes. To demonstrate the utility of this approach,
and its extension over prior work, we apply this representation
to derive a census of 25,620 dashboards from Tableau Public,
providing a descriptive overview of the core building blocks of
dashboards in the wild and summarizing prevalent dashboard
design patterns. We discuss concrete applications of both a graph
representation for dashboard designs and the resulting census
to guide the development of dashboard authoring tools, making
dashboards accessible, and for leveraging AI/ML techniques. Our
findings underscore the importance of meeting users where they
are by broadly cataloging dashboard designs, both common and
exotic.

Index Terms—Dashboard, interaction, survey, visualization.

1. INTRODUCTION

ASHBOARDS are an essential tool for supporting data-
driven decision-making across a broad spectrum of do-
mains, including medicine, finance, education, and science.
Their applications range from initial exploration of data to
monitoring changes in real-time, and finally as a communication

Received 27 August 2024; accepted 16 October 2024. Date of publication
6 November 2024; date of current version 1 August 2025. This work was
supported by National Science Foundation under Grant 2141506 and Grant
2402718. Recommended for acceptance by J. Yang. (Corresponding author:
Anamaria Crisan.)

Arjun Srinivasan, Michael Correll, and Anamaria Crisan are with Tableau
Research, WA 98103 USA (e-mail: asrinivasan@tableau.com; m.correll
@northeasern.edu; ana.crisan @uwaterloo.ca).

Joanna Purich is with the Computer Science, University of Maryland, MD
20724 USA (e-mail: banana@umd.edu).

Leilani Battle is with the Allen School of Computer Science, University of
Washington, WA 98195 USA (e-mail: leibatt@cs.washington.edu).

Vidya Setlur is with Tableau Research, CA 98103 USA (e-mail:
vsetlur@tableau.com).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TVCG.2024.3490259, provided by the authors.

Digital Object Identifier 10.1109/TVCG.2024.3490259

, Leilani Battle

, Vidya Setlur”, and Anamaria Crisan

tool that can support persuasion and learning [1], [2], [3], [4],
[5], [6]. A broad and carefully considered examination of a
dashboard corpus is an important precursor to many down-
stream visual analytics research topics. Its results may reveal
not only the diversity of designs across application domains
but also surface common design patterns and potential pain
points that could inform the requirements of authoring tools.
For AI/ML-supported tasks such as dashboard recommendation
or interactive guidance, such an examination allows researchers
to assess the quality and suitability of the corpus to serve as
training data, as well as design filters to identify high-quality
source data to boost model performance.

Visualization research has predominantly adopted a ‘close
reading’ qualitative approach to investigate dashboard de-
signs [7], [8] — that is, a detailed analysis of a small number
of dashboards. While this approach reveals a rich design space,
it also imposes some notable constraints. First, a manual inspec-
tion of dashboards is subjective, time-consuming, and practical
only at the limited scale of dozens or perhaps hundreds of
examples — a small fraction of what exists, making it difficult to
capture the significance of dashboard design patterns. Second,
many of the dashboards from these prior studies hand-pick
examples from different sources across the internet, including
news websites, dashboard galleries, and social media. It is not
clear how representative these examples are of design practices
in general. They may instead represent idealized dashboard
designs, authored through a variety of tools at different stages
of the design process — reflecting the results of highly skilled
designers proficient in many tools rather than a more typical
creator. The representation of visualizations and dashboards
for use in ML/AI applications (e.g., VizML [9], DMiner [10])
offers an alternative approach, which relies predominately on the
extraction of features. However, in addition to largely overlook-
ing interactions and coordinated views, this approach has not
been explored for describing dashboard corpora to identify and
summarize design patterns. In short, existing work on dashboard
design has predominately focused on a few hand-picked “zoos”
of interesting examples (akin to Heer et al.’s [11] “visualization
700" of “more exotic(but practically useful) forms of visual data
representation”).

Borrowing a term and methodology from the digital hu-
manities, we propose a complementary “distant reading” [12]
approach that allows for a broader overview of dashboards,
essentially a ‘census.” 7o derive a census of dashboard design
patterns, we propose a graph representation that decomposes
dashboards into “blocks” and “connections” These blocks can

1077-2626 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 04,2025 at 18:57:37 UTC from IEEE Xplore. Restrictions apply.



6086

describe the content of a dashboard, while connections reveal
their relationships, such as spatial proximity and interactivity.
Our approach integrates disparate abstractions from prior studies
of visualization and dashboard corpora [7], [8], [9], [10], [13],
while also incorporating interactions and non-visualization ele-
ments that prior work omits. We demonstrate the utility of this
schema by deriving a census of 25,620 dashboards on Tableau
Public, a large and well-established collection of dashboards
that captures a myriad of design goals and applications. Our
analysis showcases the diversity and prevalence of design pat-
terns that are often overlooked or underappreciated in prior
studies as dashboards. For instance, we find a tight coupling of
story-driven fext elements with visualization elements with dash-
boards, the widespread use of simple and canonical visualization
types across dashboards over bespoke or novel forms, and the use
of interaction in dashboards. The prevalence of these patterns,
which are less prominent in prior studies of hand-picked corpora,
suggest unmet challenges for dashboard authoring support.

We distill our findings toward applications of our schema and
the use of dashboard corpora for varied downstream tasks, such
as dashboard authoring, accessibility, and AI/ML-supported
guidance. In summary, our research makes the following
contributions:

® A schematic representation of dashboards as node-link

graphs representing the core design elements as well as
spatial and interactive relationships between them.

® A case study using Tableau Public to create a census of

visual and interaction design patterns. We also release the
anonymized corpus of 25,620 dashboards'

® Applications and future research trajectories for dashboard

authoring tools informed by a design ‘census.’

Dashboards remain an essential tool for extracting actionable
insights from data. We contribute an approach for visualization
researchers to appraise a greater diversity of dashboard design
patterns that can in turn be leveraged to improve end-user
experiences toward authoring dashboards.

II. RELATED WORK

A. Dashboards as Objects of Study

Sarikaya et al. [7] point to a disconnect between the ubiquity
of dashboards in visualization practice and their lack of con-
sideration in visualization study. More recent work has sought
to remedy this gap by 1) further clarifying the various forms
and goals of dashboard designers and users and 2) codifying or
testing design rules or recommendation systems for automating
aspects of dashboard design.

Exploring dashboards (and other visualization practices) is
often done through an analysis of dashboards in a particular
context of use or population of users [14]. For instance, Tory
et al. [15] explore dashboard usage among “data workers.”
While valuable, these analyses require access to both the people
and visualizations they work with and rely on qualitative and
subjective judgments of intent or goal, limiting both the scale and
generalizability of results. For instance, Sarikaya et al. [7], Bach

'We currently provide the corpus at: https:/osf.io/r5cfk
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etal. [8], Al-Maneea et al. [16] all explore dashboards and multi-
ple view visualizations with an eye toward their visual structure
and topology, but rely on a manual process of coding dashboard
features and connections. These manual inspections are valuable
and afford inferences about qualitative information that would be
difficult to determine automatically. The analysis and observa-
tion of dashboards are often performed in order to compare these
dashboards to existing design guidelines or recommendations
from both the academic and practitioner communities [7], [8],
[16], [17], [18], [19], [20], [21]. For instance, Qu and Hull-
man [20] examine how users attend to design inconsistencies
between visualizations within the same dashboard and translate
their observations into explicit design guidelines for keeping
coordinated visualizations consistent. Kristiansen et al. [22]
extend these consistency constraints by allowing users to specify
relations. Similarly, Langner et al. [23] perform an observational
study of dashboard use and design in large display environments
to inform the design of their coordinated view system. Other
dashboard authoring or recommendation systems, especially
those that use machine learning, attempt to create meaningful
layouts and content [24], [25], [26], [27], but rely on a substantial
training corpora of well-designed or useful dashboards.

Our research explores how we can examine dashboard de-
signs at scale. We integrate and extend elements of prior research
to propose an extensible and machine-readable schematic rep-
resentation of dashboard designs.

B. Analyses of Visualization Corpora

Analyses of large corpora of visualizations have been per-
formed for a variety of reasons. For instance, to describe the
flexibility of a specific tool and the habits of its users [28],
[29], [30], to create and evaluate datasets for training machine
learning models [9], [31], or to simply enumerate the sheer
diversity and structure of a design space [32], [33], [34]. While
our motivations span these categories, we note specific structures
in how these corpora are collected and analyzed.

Existing corpora can be divided along three dimensions: data
collection that manual [7], [16] versus automated [9], [29], [30],
[311, [35], [36], [37], [38], annotation that is manual [7] versus
automated [9], [31], [38], [39] (or both [29]), and analyzing
visualizations as static [9], [29], [38] versus dynamic [7] (i.e., in-
teractive) objects. Each dimension involves trade-offs in the rich-
ness, scope, and quality of analyses supported by the annotated
data. For example, automated extraction allows for thousands
of examples to be collected, but managing the heterogeneity
exhibited in massive corpora can lead to a relatively limited
set of features available for analysis based on what extraction
and annotation programs can reliably detect en masse [29],
[38]. Moreover, assessing the quality of data in this corpus is
also difficult and may require explicit validation steps [31]. In
contrast, manual data collection and annotation can lead to richer
input data and thus a wider variety of potential analyses [7],
but sacrifice scale in return since manual data collection and
annotation involve significant expenditures of time and effort.

A notable exception occurs when a large, consistently format-
ted corpus is available, enabling richer and broader analyses.
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For instance, the VizML project [9] processed over a million
Plotly visualizations, creating a dataset suitable for training
deep learning models. DMiner [10] investigates approximately
850 Tableau dashboards collected from GitHub — similar to
VizML [9], they take advantage of a common specification,
in this case, Tableau XML, to prepare their corpora for a
recommendation task. Both VizML and DMiner use different
approaches to represent visualizations and dashboards by either
extracting features or using a graph-based analysis. However,
these features focus on the individual visualizations and do
not capture other elements present in the dashboard. Moreover,
neither comments on the variety of visualizations or dashboards
(such as the prevalence of emergent patterns and designs) nor
do they discuss interaction.

We present a unique opportunity to analyze and share thou-
sands of dashboard designs in a consistent format amenable to
systematic, quantitative analysis. Our approach also calls at-
tention to an often overlooked consideration of corpora content
and its suitability for downstream research tasks.

C. Graph-Based Analysis of Visualization Designs

Ease in authoring and analyzing visualizations is often linked
to the way that a visualization is specified. When the initial
specifications are not readily available, one could use alternative
techniques, such as image segmentation [29], [39], [40], [41],
[42], [43] to derive approximate representations of visualiza-
tions. However, the heterogeneity of visualization images—and
thus, their approximate representations—Ilimits our ability to
analyze them at scale. It is also hard to precisely extract higher-
level semantics such as layout and interaction properties from
images without rich metadata. In our work, given that we are
interested in the relationships that bind discrete elements within
a dashboard together, we rely on graph-based representations
for our analysis.

A number of works explore graph-based representations of
visualization and dashboard designs. For example, visualization
recommendation algorithms often represent the visualization
design space as a graph, where nodes represent specific encoding
or data transformation choices and edges reflect relationships
between these design decisions [44], [45], [46]. Dashboard de-
signs can also be represented as a graph to capture relationships
between different elements, such as directional relationships
between interactions in one element that change the encodings
or data transformations in another element [47], [48]. Recent
research from Kristiansen et al. [22], [49] proposes a technique
for content-driven graph layout for creating multi-view visual-
izations, including dashboards.

VizML and KG4Vis are most similar to our research.
VizML [9] uses a feature base approach and while KG4Vis [13]
apply a graph structure for mapping dataset properties to low-
level design decisions within static visualizations. KG4Vis takes
this idea one step further by computing embedding vectors over
the knowledge graphs created for individual visualizations, pro-
ducing a numeric representation that can be compared for gen-
erating and ranking visualization recommendations. However,
these methods do not capture relationships between multiple
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visualizations or non-visual elements like interaction widgets,
text, and multimedia. This orchestration of visual, interactive,
and textual elements is what distinguishes dashboards from other
genres of charts. The generalizability of these approaches to the
analysis of dashboards at scale is yet to be demonstrated.

We extend the ideas of prior research while also demon-
strating their utility beyond single visualizations. We present
a blocks and connections representation of dashboard content
and composition that can use feature-based and graph-based
analyses to represent both the layout and interactions within an
individual dashboard and summarize these design patterns at
the level of the entire dashboard corpora.

III. DASHBOARD GRAPHS: A SCHEMATIC REPRESENTATION OF
DASHBOARD DESIGN

Here, we present a graph representation of dashboard designs.
We motivate the need for such a representation, define its ele-
ments, and describe its applicability and extensibility.

A. The Need for Consistent Dashboard Design
Representations

To illustrate the challenges of analyzing dashboard designs,
consider Fig. 1—a small slice of the diversity in dashboard
designs—which presents three dashboards that are composed
of different visual elements including (but not limited to) data
visualizations, and with different levels of interactivity. While
these examples are all derived from Tableau Public, a dashboard
can be specified programmatically using visualization libraries
(e.g., D3, Vega-lite, ggplot) or through direct manipulation via
authoring systems (e.g., Tableau, PowerBI, Looker). Each of
these approaches has its own mechanism for creating individual
visualizations, laying them out, and coordinating interactions
between them. To gain insights into the design of these visual-
izations, it would be necessary to examine their specification via
the tool they were created with. However, the task is onerous and
has questionable value in summarizing the dashboard’s design.

An alternative approach would be to consolidate a summary
of their designs and formalize them into a framework or design
space description—an approach adopted by prior work [7], [8].
However, this requires human labor to construct and organize
artifacts. The manual and subjective nature of this process makes
it challenging to apply to large dashboard corpora. We argue
that there also exists a gap between the findings from these
studies and the ability to express these design patterns in a
machine-readable way, for example, as is done with VizML [9]
or DMiner [10]. Notably, even these prior attempts to repre-
sent visualization and dashboard design patterns in a machine-
readable format have been inconsistent and fail to provide
consistent coverage of dashboard elements, non-visualization
features (e.g., text, widgets, multimedia), interaction, and layout.

We summarize these challenges as an abstraction gap between
the low-level programmatic specifications of the dashboard and
the resulting design and higher-level emergent patterns. Prior
research, such as work by Bach [8], Hu [9], Li [13], and Lin [10]
are mid-level abstractions that emphasize different elements of
dashboard designs. We argue that these abstractions are not
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interoperable, nor do they fully cover the range of possibilities
illustrated in Fig. 1. For these reasons, we propose an inte-
grative schema that defines dashboard designs as blocks and
connections.

B. Proposed Schema: Blocks and Connections

We present a node-link (graph) representation of dashboard
designs that comprise blocks (nodes) that contain content el-
ements and connections (edges) that capture the composition
of these elements in a dashboard. This schematic representation
integrates aspects of prior work that examines dashboard content
qualitatively [7], [8], individual visualizations at scale [9], [13],
and smaller collections of dashboard corpora [50]. We now de-
scribe these components of the node-link representation and how
it can be used to capture design patterns, including interaction,
in dashboard corpora.

Blocks represent individual content elements of a dashboard:
Blocks do not only include visualizations but can also represent
text, legends, filter widgets, and multimedia elements such as
images or embedded web pages. We note that prior research (see
Section II) primarily captures visualization elements without
consideration of other elements that may exist in the dashboard
(Fig. 1). The precise composition of a block can be flexibly
defined based on the desired level of granularity. For example, a
faceted chart can be represented by a single block (as we do in

Section IV) or as multiple blocks representing each facet. Each
block has a set of properties that can be ascribed to it. All blocks
contain positional properties that capture their spatial position
in the dashboard as coordinates, size, and aspect ratio. Blocks
also contain descriptive properties based upon the content type.
For example, visualization elements can contain sets of features
described, such as those described in VizML [9]. Text or images
will contain different sets of properties (e.g., topics, semantic
aspects). Importantly, the richness of descriptive properties can
vary across elements of the same type — some visualizations have
richer features than others.

Connections capture relationships between blocks to repre-
sent their composition in a dashboard: Two of the primary types
of connections that we focus on here are layout and interaction.
Layout considers the position of blocks in a dashboard. We can
establish a connection if blocks share a common edge or overlap
spatially (e.g., the bar chart on the left in Fig. 1(a) is adjacent
to all other charts, the text block on the bottom-right corner in
Fig. 1(b) is overlain on the bar chart). Interactions with one block
that influence others (e.g., cross-filtering) establish interaction
connections. Just as with blocks, additional type-specific prop-
erties can be utilized to capture supplemental information, such
as the interaction type (e.g., filter or highlight). Other types of
connections can be considered, for example, shared dimensions
across elements, such as a data attribute used across multiple
visualizations and referenced in text elements.
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We now describe how blocks and channels can be organized
into one or more graphs that represent the design of a dashboard:
Here, we propose the use of two graphs to represent layout and
interaction connections between a common set of nodes. The
adjacency graph is an undirected graph that codifies the spatial
layout blocks of a dashboard according to their positional proper-
ties and connections. The interaction graph is a directed graph
showing how blocks influence each other through interaction
connections. These two graphs can be jointly analyzed for a
holistic analysis of design patterns [51]. While it is technically
possible to represent multiple types of connections on a single
graph, including layout and interaction, we recommend against
this for the following reasons. First, interactive elements have
directions, and omitting them can result in a loss of information.
For example, prior qualitative research [8], [43] presents design
patterns like ‘drill-down,” which can be identified by proper con-
sideration of interaction directionality. Second, edges can have
different meanings, and rather than overloading edge properties,
it can be more useful to represent them separately. Prior work
uses a single graph because they model just one type of connec-
tion between dashboard elements (e.g., DMiner [10]) or model
something unrelated to dashboard design (e.g., KG4VIS [13],
VizML [9]).

C. Leveraging Dashboard Graphs for Distant Reading

We now describe the ‘distant reading’ affordances enabled
through a blocks and connections lens of dashboard patterns.

Blocks and connections enable a consistent decomposition of
dashboard design: In Fig. 1, we show how three different types
of dashboards are represented using the block and connections
representation. Fig. 1(a) displays a classic multiple coordinated
views style of a dashboard for interactive exploration of cancer
treatment statistics. Fig. 1(b) showcases a single-use plastic
and its impact on the ocean. It is an example of using addi-
tional elements besides visualizations. Finally, the dashboard
in Fig. 1(c) displaying data on coffee beans around the world
shows the diversity of blocks and connection types. By applying
our schema, we can quickly spot and compare several pertinent
design considerations between these different dashboards. For
example, Fig. 1(a) and (c) have many interactions between
elements, while Fig. 1(b) has none. Moreover, the types of
interactive connections (cross filtering between visualization
(—) versus filtering via widgets (--+)) are different between
these two examples. Fig. 1(b) and (c) have distinct cliques,
grouping common information, whereas Fig. 1(a) does not. In
aggregate, these kinds of assessments establish design patterns
and their prevalence.

Blocks and connections are flexible and extensible: By fo-
cusing on the core elements of dashboards and how they relate
to one another, our schematic representation generalizes to the
most common dashboard designs

Our approach uses blocks and connections to represent dash-
boards in a way that is independent of how these elements
were created. This method is versatile, capturing a wide range
of design elements, including visualizations, text, and even
non-visual elements like web pages. It applies to any dashboard,
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Fig. 2. An example of interaction and adjacency graphs extracted from a
dashboard specified using Vega-Lite. Such graphs can be used to collectively
analyze dashboards agnostic of creation methods or tools.

regardless of whether it was manually designed, automatically
generated, or programmatically specified using visualization
language (Fig. 2). For dashboards in other formats, such as print,
alternative techniques like image segmentation [40], [41], [43],
[52] can be used to identify elements. The strength of our schema
lies in its ability to provide a consistent representation across
different tools.

Enabling scalability for large dashboard corpora: Graph data
structures offer numerous methods for scaling the analysis of
large corpora. Prior analyses of dashboard corpora have not
presented the design patterns of dashboards in a way that allows
us to leverage methods for scaling the analyses of corpora. Still,
arate-limiting factor is the data preparation necessary to convert
bespoke representations of dashboards, be they images or code
for different programming languages, into a graph schema. In
Section IV, we demonstrate this process using Tableau Public,
with our graph schema serving as the target for data preparation.
Our analysis in Section V then highlights insights into dashboard
design patterns.

IV. CASE STUDY: A CENSUS OF TABLEAU PUBLIC

In this section, we apply the blocks and connections graph
schema to generate a census of a dashboard corpus derived from
Tableau Public. We define a census as a survey of a dashboard
corpora. Thus, our goals are descriptive in nature. We describe
our process for deriving and analyzing blocks and connections,
as well as the attendant adjacency and interaction graphs. We
describe layout and interaction design patterns that we observe
and their prevalence.

A. Motivation and Research Questions

Surveying user-created artifacts can provide valuable insights
into what information is most important to users, how they
represent this information, and how they organize it. A survey
can also suggest gaps in support for further investigation and
follow-up. In this case study, we survey dashboard artifacts
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derived from Tableau Public,? a well-established platform that
supports the authoring and dissemination of dashboards. In
total, it comprises approximately 5 million workbooks created
over a 14-year period. The full workbook corpus represents a
wide range of uses across multiple domains, including public
health, finance, journalism, and others. Moreover, it attracts a
wide variety of end-users, from students to journalists to data
professionals, and captures dashboard designs ranging from
complex and interactive to simplistic and static. In addition to
the diversity of dashboard patterns, the choice of Tableau Public
is also pragmatic. Like prior research [9], [10], we can make use
of a common specification format to simplify the processes of
deriving blocks, connections, and their type-specific properties
or features. In Section III-C we provide an example of how
dashboards specified with different tools can be analyzed once
they are translated into our schematic representation.

We derive a census and present an analysis to answer the
following research question on dashboard designs:

e RQI: What constitutes a visualization “block” within dash-
boards and what are the spatial relationships between vi-
sualization “blocks” and other types of “blocks™?

® RQ2: Is interactivity common in dashboards, and are there
common patterns of interactions between “blocks”?

® R(Q3:Can we detect and characterize high-level dashboard
design patterns?

The first two research questions aim to provide a descrip-
tive overview of the composition and arrangement of design
elements within a dashboard. We place so-called visualization
“blocks™ at the center of our analyses and seek to get an
overview of what other design elements appear alongside them
(e.g., text, multimedia) and how they influence each other (e.g.,
cross-filtering). The third research question examines to what
extent these individual dashboard designs can be clustered to
reveal design patterns and their prevalence.

B. Preparing the Corpus

Analyzing the full corpus of 5 million workbooks is in-
feasible. The primary reason is that workbook specifications
have changed over time, impacting how visualizations and
dashboards are defined. Workbooks can also be inaccessible
due to user-set permissions or deprecation. Moreover, not all
workbooks contain dashboards, and among those that do, many
can be low quality. We describe winnowing the corpus to arrive
at a subset for our dashboard census in Fig. 3.

1) Winnowing: From the total corpus of 5 million work-
books, a total of 1,342,794 workbooks (~25% of all workbooks
on Tableau Public) had been published or recently updated to
conform to a contemporary Tableau work version; this addresses

Zhttps://public.tableau.com/app/about/
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the issues of older workbooks. Users can create one or more
dashboard objects within a Tableau workbook. Using Tableau’s
definition, only 150,276 (11%) contained at least one dashboard.
An initial exploration of these dashboards revealed that many
were very low quality — often containing a single visualization
(typically a just bar chart). We hypothesize that these dashboards
may represent just trial and error exploration of using the Tableau
Public platform.

To increase the likelihood of higher-quality dashboards, we
used page views (how often a dashboard is viewed by someone
on the internet) as a surrogate metric. We observed that the
distribution of total impressions across the 150,276 workbooks
was left-skewed with a heavy tail with values ranging from just
one impression per workbook to over 32 million; impressions
did not strongly correlate with the publication date. Given this
distribution, we elected to sample the top 10% of workbooks
based on impressions (> 42 impressions), yielding a set of
15,090 workbooks that contained 42,951 Tableau dashboards.

2) Extracting Valid Dashboards: We opted to further limit
the corpus to dashboards that had two or more visualizations
elements, allowing us to enhance the possibility of multiple
coordinate views. Applying this criterion resulted in a final
set of 25,620 dashboards that fit prior definitions of the term
as commonly used in visualization research (e.g., “a visual
data representation structured as a tiled layout of simple charts
and/or large numbers” [T]). We provide the anonymized version
of this dataset at https:// osf.io/r5cfk

C. Deriving Dashboard Block and Connection Graphs

We now describe how we extracted and defined blocks and
connections from existing Tableau workbook specifications.

1) Overview of Workbook Specifications: Workbooks are
XML documents that, among other things, contain specifications
for visualizations and dashboard elements. Within Tableau, in-
dividual data visualizations are constructed in worksheets
by dragging and dropping dataset attributes onto so-called
“shelves” (i.e., row, column) or to specific encoding channels
(i.e., color, size, etc.). A visualization is automatically suggested
or user-specified by selecting a mark type. Workbooks can
contain one or more worksheets. A dashboard is com-
posed of one or more worksheets that can be arranged in a grid
(default) or fluid layout. Regardless of the layout, all dashboard
content is captured as a zone. The contents of a zone need not
be a visualization but could also contain text, images, or layout
elements of the dashboard. Finally, a user can specify actions
that add interactivity between dashboard zones, including high-
lighting, (cross-)filtering, and page navigation.

2) Detecting Blocks: We analyze workbook dashboards,
not individual sheets, to define and extract blocks. Specif-
ically, we parse the zone objects to derive five block types:
il charts containing visualizations, Y filters containing wid-

gets like dropdown menus and sliders, @® legends displaying
data mappings for graphical encodings like size and color,
= text blocks including the dashboard title, caption, or addi-
tional commentary, and finally, ® multimedia blocks containing
images or embedded web pages.
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/T <dashboard name="..">
<zones>

<zone type=“color”
x=0 y=0 .>

</zone> r

<zone type=“sheet”
x=0 y=20..>

</zone>
‘‘‘‘ </zones>
</dashboard>

(@) (b)

Fig. 4.
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nodes: 6
nodes_chart: 2
nodes_text: 1
nodes_legend: 1
Qo . nodes_multimedia: 1
nodes.filter: 1

inter_num_edges: 4
inter_hops_mean: 1
inter_indegree_mean: 0.67

adj_num_edges: 7
adj_hops_mean: 1.27
adj_clique_count: 3

(22 features)

(c) () ()

An overview of the feature extraction process. Given a Tableau dashboard (a), we parse the underlying XML specification file (b) to detect the different

blocks and connections between blocks (c). We then model two graphs depicting the interactive and spatial configurations of the dashboard (d). From these graphs,

we extract 22 features that we use for our analyses (e).

The LM chart block type links to the original worksheet that
describes the data visualization, which we use to extract the
visualization type (e.g., bar chart, map, scatterplot, treemap,
Sankey diagram) from the specified marks (e.g., bar, line, circle)
and encodings (e.g., row, column, color). We capture additional
properties of the block, such as its spatial coordinates in a
dashboard and the data attributes for visualizations.

3) Deriving Layout Connections: We establish layout con-
nections between blocks by determining their spatial proximity
and adjacency within a dashboard. We first construct a bounding
box around each block from its spatial coordinates and size
(width, length). Whether a dashboard uses a grid or floating
layout affects how we establish whether two blocks are adjacent.
In grid layouts, blocks can be placed side-by-side, either above,
below, or on either side of another block. In floating layouts, the
position of a block is more flexible, and blocks can be placed on
top of each other. We enumerate all pairs of blocks and classify
into four configurations:

® Partial Overlap: In a floating layout, two blocks may
partially overlap, but neither block is contained entirely
within the other.

e Containment: In floating dashboard layouts, one block can
be contained entirely within another. For example,a = text
block may be contained entirely with a L chart block
when it is used to annotate an outlying mark in the data
visualization. In this scenario, the coordinate range of one
block entirely overlaps with its pair.

® Adjoining: Primarily, in grid layouts, two blocks can share
an edge when adjacent to one another (e.g., tWo |4 chart
blocks containing different visualization types could be
placed next to one another). Compared to partially over-
lapping blocks, these adjoining configurations have very
limited coordinate overlap, often a few pixels, and require
separate treatment to be accurately detected.

® Non-adjacent: A pair of blocks were established not to be
adjacent as they shared no related spatial coordinates.

To allow for flexibility in determining adjacency, we use a
tolerance criterion of 10pixels that allows two blocks to be
positioned a very small distance apart (no shared coordinates)
but still be considered adjoining.

4) Deriving Interaction Connections: Finally, after detect-
ing the dashboard blocks, we extract actions from the
XML specification to define interaction connections between
blocks. Each action provides the interaction type (e.g., filter,

highlight) as well as the source and target blocks in the
dashboard that we use to record connections. The action
specification establishes whether there exists cross filtering be-
tween blocks that contain visualizations (14 chart — L chart ),
or visualization is filtered by another type of block, for
example, a filter (V filier --» L4 chart ) or a legend widget
( @ legend ——» [ char ).

5) Constructing Adjacency and Interaction Graphs: Having
extracted blocks and establishing the structure of their layouts
and interactions, it is then simple to construct the adjacency
and interaction graphs. In both of these graphs, the blocks
are nodes. In the adjacency graph, undirected edges between
these nodes are formed when pairs of blocks have either partial
overlap, containment, or adjoining adjacency. In the interaction
graph, edges are directed and formed between nodes where some
interaction has been established between blocks. In both graphs,
we check whether there exist duplicate edges and self-loops and
remove them.

D. Methodology for Deriving a Census

The graph representation provides a consistent description
of dashboards that we can use to conduct our census — much
like a common set of questions is used to conduct a census of
human populations. Moreover, much like a census of people we
can aggregate over individual results to get an overview of a
population, or in our case a dashboard corpora.

1) Census Summaries via Descriptive Statistics: To address
RQ1I and RQ2 we conduct a descriptive statistical analysis. We
enumerate the total number of blocks and block types across
all dashboards and describe their distribution (via median and
mode). We also summarize the co-occurrence of block types
within a dashboard. We do so by applying a clique-detecting
algorithm to the adjacency graphs of each dashboard. We then
enumerate and sort commonly occurring cliques by their preva-
lence. We also apply descriptive statistics to understand the
extent of interactivity in dashboards and the prevalence of inter-
action between visualizations and other types of blocks.

Having a descriptive overview of the blocks has several uses.
First, it can be used to identify common and recurrent structures.
These can represent design patterns that multiple users find use-
ful because they either independently arrive at the same choice or
borrow it from others. Second, by focusing on prevalence, we can
see the diversity of dashboard content via blocks. Low diversity
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may signal pain points. Finally, understanding different patterns
and their diversity can enable judgments on the suitability of the
corpus, or some subset of it, for downstream tasks.

2) Summarizing Design Patterns via Cluster Analysis: We
also explored whether there were emergent dashboard design
patterns (RQ3). Specifically, we used the features derived from
the graph representations (Section IV-D) to perform an unsu-
pervised cluster analysis using the hierarchical density-based
clustering (HDBSCAN) [53] algorithm. In the supplemental
materials, we provide more details on our choice of clustering
algorithm (i.e., the choice of HDBSCAN versus K-means) and
a sensitivity analysis for our parameter choices.

Ahead of clustering, we derived a set of 22 features from
the properties of nodes and the topological structures of the
adjacency and interaction graphs, summarized as follows:

® Descriptive Features: The number and the types of blocks

within both the adjacency and interaction graphs are iden-
tical, allowing us to extract a common set of features from
both. These features include the total number of blocks in
each graph and the presence of specific block types. We use
one-hot encoding to represent the presence (and absence)
of block types. We standardize the total number of blocks
by the mean degree, by its mean, and by unit variance
(standard scaling). We also summarize the total number of
edges and the mean degree of nodes and apply the standard
scaling transform.

® Adjacency-Specific Features: We derived features that add

context to the spatial layouts. For all pairs of blocks in a
graph, we compute the average shortest path. As an addi-
tional proxy of layout complexity, we examine adjacency
graphs for the presence of one or more maximal cliques
and, when detected, compute the average size of all cliques.
We apply the standard scaling transformation to the path
lengths, number of maximal cliques, and mean clique size.

e [nteraction-Specific Features: For the interaction graph,

we compute the average in-degree and out-degree of
the nodes, also applying a standard scaling transfor-
mation. We tabulate the presence of the three edge
types ( Y filter ——» [l chare , @ legend - |l chart
[0 chart — L chare ) that describe the interactive relation-
ships between two blocks; these edge types are also one-hot
encoded.

There are a variety of different features that can be derived
to provide a different or simply more nuanced lens of visu-
alization design patterns. For example, VizML [9] presents a
list of visualization-specific features that we could have used
here. The features we have chosen emphasize the topological
characteristics of the adjacency and layout graphs. We argue this
is more reflective of the level that design patterns are explored
in prior qualitative research [7], [8]. However, by making our
dataset and analysis available, others may derive alternative
analyses that answer different questions.

and

V. RESULTS

In this section, we provide an overview of what our census
reveals, according to the descriptive statistical analysis and
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feature-based unsupervised clustering. We present these results
in accordance with our research questions.

A. Content and Composition of Dashboards

Addressing RQ1, we examine the visual composition of dash-
boards focusing on blocks and their spatial relationships.

1) What are the Visual Components of a Dashboard?: We
identified a total of 250,794 blocks across the 25,620 dash-
boards. The number of blocks per dashboard ranged from 2
to 267 (median: 8, mode: 4). We observed that 121,068 out
of 250,794 blocks (49%) were |4 charts , followed by 53,267

= text blocks (21%), and subsequently Y filter (36,472 or
15%), @ legend (22,446 or 9%), and 3 multimedia (17541 or
7%). We note the importance and centrality of = text and
il charts as the building blocks of dashboards: together, over
70% of the blocks in our analysis were one of these two block
types. Fig. 5(a) shows these results in detail.

For the |4 chare blocks, we also examined the distribution of
visualization types across dashboards. We found that bar charts
were the most common visualization type, appearing in 15,392
out of 25,620 (60%) dashboards. The next most frequently used
charts were line charts (n = 6,524;25%), maps (n = 6,454;25%),
and finally, tables (n = 6,154; 24%). Besides other simple chart
types (e.g., scatterplots, bar charts), there were also instances
of more bespoke visualizations, such as Sankey diagrams and
waterfall charts, but they were present in only 116 dashboards
(<0.5%). These findings show that only a very small subset
of our corpora constitute sophisticated designs that are often
explored in ‘close reading’ of dashboard corpora. Our census
suggests that authors generally create very simple dashboards
constituting two or three simple charts.

Considering the distribution of blocks and block types across
dashboards, we can derive several important takeaways. First,
text plays a prominent role in the construction of dashboards.
Note that text related to titles or axes labels of visualizations
are retained within a |4 charts block; thus #= text blocks
are deliberately added to include additional information. The
amount of text and the number of = text blocks was highly
variable amongst dashboards. Another finding was the high
prevalence of multimedia elements, primary images, that ac-
company dashboards. Images are often contextually related to
the dashboard content. It is noteworthy that prior research on
dashboard designs [7], [8] and recommendation algorithms [10]
emphasize what we would call |4 charts blocks to the exclusion
of other widely used types.

2) What are Common Structural Relationships Between
Visual Components in a Dashboard?: We analyzed the ad-
jacency graphs for the 25,620 dashboards to identify po-
tential design patterns around block layouts. The graphs
had 2-267 nodes (median: 8, mode: 4) and 0-4926 edges
(median: 11, mode: 3). For each graph, we extracted the
list of all maximal cliques, capturing the block type for
each node in a clique (e.g., { LM chart — LM chart| — b chart },
{ Lt chare — T filter }, { #3 multimedia }). Aggregating these max-
imal clique patterns across all graphs, we found a total of 1,430
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Overall Per Dashboard Distribution Variation by dashboard type
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(b) Most frequently occurring clique patterns with two or more chart blocks

Fig.6.
Nodes map to different block types including [l chart, ® text , ¥ filter ,

Frequently occurring clique patterns from the adjacency graph analysis.

@ legend | and P multimedia -

unique block patterns. The smallest-sized cliques contained just
2 blocks, and the largest contained 60, and the median clique size
was 9. The most frequently occurring clique patterns contained
just two blocks, typically including a [ chare and one of the
other block types; a summary of the most frequently occurring
patterns is in Fig. 6(a).

Focusing on L chart blocks specifically, we also examined
the creation of juxtaposed views. Of all 1,430 unique clique pat-
terns, more than half (n = 747) contained a spatial arrangement
of two or more | charts ; we list the five most frequently oc-
curring clique patterns in Fig. 6(b). The most dominant patterns
are cliques containing only | chart block types, varying in size
from 2 to 4. When two [t chare blocks occur with other blocks,
it was more common for those other blocks to be a = ext or
B multimedia block.

The clique analysis shows that /ike is often juxtaposed with
like in dashboards: common dashboard elements are visually
grouped together. As with the aforementioned block composi-
tion analysis, the results emphasize simpler dashboard designs
but reiterate that authors do experiment with more complex
designs that mix block types within close spatial proximity, such
as having #® text or P multimedia blocks that are connected to

multiple L charts .
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Overall Per Dashboard Distribution
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Summary statistics for (a) distribution of block types across dashboards and (b) distribution of interactive connection types across dashboards.

B. Interactivity in Dashboards

Complementing our analysis of the visual components of
dashboards, we also analyzed the connections between blocks
to understand what types of interactions dashboards commonly
support (RQ3). Note that we refer to a dashboard as interactive
if clicking on one block updates another block (e.g., by filtering,
highlighting, or changing visualized data fields), as opposed to
other forms of interactivity that only involve individual blocks
(e.g., hovering over a point in a single chart to generate a tooltip).

1) Is Interactivity Common in Dashboards?: We found that
19,304 of the 25,620 dashboards in our corpus (75%) were
interactive and that their design patterns varied considerably. In
particular, the number of interaction connections between blocks
ranged from 1 (e.g., afilter acting as a control for a single chart) to
992 (median: 6, mode: 2) interaction connections in a dashboard.
Recall that a single block can be the source or target of multiple
interactions. The maximum possible interaction connections in
a Tableau dashboard are bound by (l#! charts -1 + @ legend

+ Y filters ) * Lul charts . On average, 58% of the possible
interactions between blocks were applied (median: 50%, mode:
100%), suggesting that when authors add interactions, they tend
to make a considerable portion of the dashboard interactive.

2) How Does Interaction Commonly Manifest?: Of the three
Tableau blocks that support interaction connections ( Lt chart ,
Y filter , and @ legend ), YV filter ——» L4 chare Was most common
with 13,228 out of the 19,304 interactive dashboards (69%) sup-
porting this style of interaction, followed by L chart — L chart
(46% of dashboards) and @ legend —-» [ chare (43% of dash-
boards). These results are summarized in Fig. 5(b) and suggest
that there are multiple strategies for interaction design or entry
points for users of an interactive dashboard.

Collecting both spatial adjacency and interactivity in graph
structures sharing common nodes allows us to assess the rela-
tionship between these two factors. While one might assume
that the blocks that control a particular portion of the dashboard
would be spatially next to each other, we found that this was
not always the case. In fact, out of a total of 343,929 inter-
actions, only 105,317 (30%) were in cases where blocks were
adjacent. Out of these 105,317 adjacent + interactive connec-
tions, 58275 (55%) were L chart — L chare interactions, 37186
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Fig. 7. Dendrogram generated by the HDBSCAN algorithm summarizing

cluster hierarchies. Cluster IDs are colored to match the design patterns they
were mapped to. The distinct split between clusters 0-4 on the right and clusters
5-15 on the left illustrates that the algorithm picked up on the presence (or
absence) of interactions as a salient feature for clustering.

(35%) were Y filter —=» |4 char( , and the remaining 9856 (10%)

were @ legend —-» [l ¢ interactions. This distribution sug-
gests two broad genres or patterns of interaction design: one was
cliques or tightly connected subgroups of Ll charts mutually
interact and another “light switch” style where a control panel

with Y filters and @ legends interacts with many if not all
charts on a dashboard.

C. Characterizing Clusters of Dashboard Design Patterns

Finally, to explore the design patterns across our corpus we
conduct a clustering analysis (see Section IV-D2 for method-
ological details and parameter sensitivity analysis). We analyzed
the features and topological relationships from the adjacency and
interaction graphs and applied HDBSCAN to derive clusters.
As a reminder, unlike k-means (a commonly used clustering
method), HDBSCAN does not force each dashboard into a
cluster, which can mean that the resulting cluster has more
consistent design patterns; unclustered items may be outliers,
have too few examples, or might exist resemble two clusters.
Our analysis identified 16 clusters covering 15,013 out of 25,620
(59%) dashboards, while the remainder was flagged as noise.
In Fig. 8(a), we summarize the characteristics of each cluster
according to their total number of blocks, the prevalence of non-
visualization blocks, and their connection types. As a reminder,
our inclusion criteria requires that dashboards contain at least
two or more | char¢ blocks. To convey the cohesiveness of each
cluster, we compute the silhouette score. A score of one indicates
that dashboards all have exactly the same design (which would
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be a concerning finding). The scores in Fig. 8, however, show
that, while sharing common elements, there is diversity within
each cluster, but this is less than the diversity between clusters.

1) Delineating Dashboard Design Patterns: Similar to
Bach et al. [8] and Sarikaya et al. [7] we used the composition
of the dashboards, via automated clusters and then qualitative
coding, to identify design patterns (genres) of dashboards. In
Fig. 7 we show the results of the clustering analysis and in
Fig. 8 we provide an overview of their characteristics according
to our census dimensions. The first major distinction between
patterns is static (18% of dashboards in our corpus) and inter-
active (82%); these numbers have a similar distribution to those
reported by [8]. We then examine clusters and based on the
summary statistics of each (Fig. 8) we attempted to apply the
classifications from either Bach et al. [8] and Sarikaya et al. [7].
In general, we found that without additional user interviews, it
was too difficult to ascribe a specific intent of the dashboard (e.g.,
dashboards for motivation and learning, dashboards for decision
making) that were described by Sarikaya et al. [7]; this could
be a fruitful avenue for future work. Our findings aligned more
composition and layout patterns described by Bach et al. [8],
specifically, Analytic, Magazine, and Infographic styles. There
was not a precise linear relationship between the definitions
described by Bach et al. [8] and our clusters. For example, we
use multimedia blocks to align with the pictograms and gauges
that characterize the infographic style in [8].

Magazine dashboards (n = 1,913; 7.4%) predominately static
and typically include multiple = text blocks that complement
the [ charts and provide additional commentary about the
data and key takeaways. While, infographic dashboards (n =
1,125;4.4%) generally include a richer mix of block types,
including at least one P multimedia and # text block in addition
to L4 charts . One important difference between our charac-
terization of infographic and multimedia is the prevalence of
= (ext , which is not discussed in either [8] or [7]. Analytic
dashboards (n = 22,582; 88%) were much more interactive but
did notuse P multimedia elements as regularly (except cluster 6)
andhad = text elements that were less verbose compared to the
magazine and infographic patterns. Analytic dashboards exhib-
ited more cross-filtering between charts (see Connection types in
Fig. 8), conforming to the definitions of this genre from [8]. One
exception is cluster 2, which contains only visualizations and has
no interactions, but still constitutes approximately 6% of dash-
boards in our corpus; these may be proto-analytic dashboards,
reflecting either initial design explorations or be indicators of
difficulties adding other elements or interactions.

2) Content Prevalence and Design Patterns: Our cluster
analysis shows that we can use our graph schema to apply genres
and patterns from prior research via automated methods. Our
analysis can also go further and reveal variations within the
broader genres, represented as subclusters in Fig. 8, which adds
context to the prevalence of elements in dashboards — something
that prior work does not do at scale. This is an example of
how a design census adds perspective to qualitative surveys
of dashboard “zoos”. One way that we interpret our results is
they suggest that, in practice, dashboard designs are simpler
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A) Cluster Characteristics
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B) Summary and Examples
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Fig. 8.

(a) Characteristics of Analytic, Magazine, and Infographic design patterns distributed amongst sub-clusters. N is the total number of dashboards in the

cluster, % values refer to the percentage of dashboards containing an element (e.g., in cluster 6, 100% means all dashboards contain have # text ) (b) Examples
and summary characteristics of each design pattern with our graph schema representation.

than some of the examples covered in prior work [7], [8]. We
arrive at this conclusion by considering the prevalence of content
elements across dashboards (Sections V-A1l and V-B1 and their
composition into higher-level patterns, which suggest that many
dashboards are quite simple because they contain limited inter-
actions and have relatively few dashboard elements including
visualizations. While neither Bach et al. [8] nor Sarikayaetal. [7]
make explicit claims about the variability or complexity of
dashboards within each genre, the absence of such information
and the use of more “charismatic” examples, could produce a
false impression of what users actually do.

While Tableau does impose a learning curve and constraints
on the authoring experience, it may be that simplicity is desired.
Alternatively, users do not know how to compose more complex
dashboards that could eventually meet their needs, and our
census captures this issue. While there exist power users that
can create rich and complex dashboards—the kinds likely to
be studied in prior research—our findings suggest users are the

exception and not the norm. Authoring experiences catering to
these power users neglect the majority of the population.

VI. APPLICATIONS FOR A DASHBOARD CENSUS

We return to the original premise we articulated in
Section I'V-A that a census of dashboard design patterns helps
visualization researchers understand user practices and support
gaps via further investigation. To lay the groundwork and help
foster ideas for future research and development, we describe
some exemplary use cases and applications of the blocks and
connections graph schema in addition to the dataset.

A. Application of a Census Dataset and Findings

The census dataset itself and its results can be used for
different downstream research objectives. Our primary interest is
in the use of this dataset to inform the development of dashboard
authoring tools. However, our findings can be used to highlight
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gaps in need of further investigation, such as user onboarding
and authoring support, in addition to providing more insight
into existing practices, like intent inference, recommendation,
and guidance. While the utility of this data ultimately depends on
richness and appropriateness for the task athand, having a census
remains an important precursor for making such a determination.

Developing Better Onboarding Techniques to Support In-
teraction: Our census shows that 75% of the dashboards
in our corpus were interactive and supported using at least
one block to visually update one or more other blocks. We
also found that interactions are configured between differ-
ent pairs of blocks (Y filter ——+ LM chart , LM chart — LM chart ,
@ legend --» [l chare ) and are not always consistently used
in a dashboard (e.g., V filters may only update a subset of
L4 charts ). While this nuanced configuration of interactions
suggests that current tools provide a rich set of features to author
interactivity, it raises questions about the discoverability and
usability of such dashboards from a viewer standpoint. One
important direction for future systems is to incorporate built-in
strategies to improve the dashboard onboarding process [54] and
orient viewers to a dashboard and its use (e.g., through over-
laid walkthroughs or using assistive tooltips and guiding text).
Notably, the graph schema can also be valuable for designing
features such as the underlying links that can be used to identify
the flow of actions between blocks.

Prioritizing support for customization of simple charts over
authoring bespoke charts: As stated in Section V-Al, our
analysis showed that basic visualizations, including bar charts,
maps, line charts, tables, pie charts, etc., are more prevalent in
dashboards with only a minor subset of dashboards containing
bespoke charts. However, while inspecting examples during the
cluster analysis, we observed that the absence of bespoke charts
did not dampen the “richness” of dashboard designs and that
authors either heavily formatted basic charts or combined basic
charts such as maps and pie charts in innovative ways to create
visually compelling designs. Unfortunately, creating such highly
stylized and custom designs with tools like Tableau can require
substantial expertise, forcing new or novice authors, in particu-
lar, to resort to default visuals or integrate artifacts across design
and visualization tools. As the user base for dashboard design
tools broadens, it is more important to provide more expressive
and flexible authoring interfaces for formatting (including using
images and icons as marks [55]) and integrating basic charts than
to focus on allowing dashboard authors to create and incorporate
more bespoke visualizations.

Enhancing dashboard authoring through AI/ML supported
intent inference, recommendations, and guidance: A large cor-
pus of dashboards is a useful dataset for training or fine-tuning
AI/ML models. We examine several useful applications based on
the content of our corpora. Prior work has shown that dashboards
are generated for a variety of purposes and that intents play
an integral role in dashboard design [7], [56]. However, the
process of inferring dashboard intent in their work has been
largely qualitative and performed at a small scale. For instance,
Pandey et al. [56] derive dashboard intents such as “change
analysis” and “category analysis” by manually inspecting the
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views, filtering widgets, and textual content of 200 dashboards.
Our schematic representation and dataset present an opportunity
to investigate this idea at scale and explore how a combination
of information from blocks (Lt charts , ® text ,and Y filters )
and their connections can be used to programmatically infer
dashboard intent. Intent is also to guide recommendations and
guidance that is tailored to the user needs at the present moment
of their analysis [57].

However, our census points to both optimism and caution
when using large dashboard corpora, ours, or others that may
emerge in the future. Given that the distribution of dashboard
designs skews toward simplicity, the signals for user intent can
be washed out. Instead, it may be more appropriate to use a
census to guide a principled selection of dashboards to form
a training or fine-tuning dataset. Further, the left-out, simpler
dashboards still serve a critical purpose: they become useful
boundary markers delineating the minimum viable content and
composition necessary to derive useful recommendations.

B. Application of Blocks and Connections Graph Schema

The blocks and connections graph schema is simple and exten-
sible and can easily incorporate features from prior work, such as
by making their properties of blocks or new features that others
wish to study, or that emerge as dashboard authoring practices
change. Graphs, more generally, are flexible data structures that
have an attendant analytic toolbox that can enable practical and
informative assessments of user practices.

Improving Support for Non-Chart Blocks: Dashboards have
conventionally been considered as visual analytic artifacts com-
posed predominantly of multiple coordinated views [6]. How-
ever, our analysis shows that, in practice, non- |4 chart blocks
suchas # text and @3 multimedia (€.g., images) play an integral
role in dashboard design. An important consideration for future
dashboard tools is to provide ample support for authoring and
incorporating such content in flexible ways. The prevalence of

= (ext ,in particular (Fig. 5(a) ), also hints at potential synergies
with recent research on interactively linking text and charts [50],
[58], [59], and presents an opportunity to further explore this
relationship.

Having better support for non-visualization blocks can also
enable a richer analysis of dashboard content. One reason we
examine a limited set of features is that visualization blocks
tend to have more and richer features than, for example, text
or images. The visualization blocks would have dominated the
analysis. Knowing that users create other types of blocks can
prime future dashboard authoring tools to prompt the user for
richer, non-visualization data or to suggest options to users. Our
census suggests that, at present, only power users are likely to
make full use of these features.

Developing Dashboard Linters for Layout and Interaction
designs: Poor choices in dashboard design or layout can produce
designs that are confusing or even misleading. In particular, Qu
& Hullman [20] suggest that keeping multiple views “consis-
tent” is important for the legibility of dashboards. In our corpus,
we observed occasional mistakes or violations in dashboard de-
sign that were visible through inspection of the graph structure
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alone. For instance, interactive Y filters that were centrally
placed and only applied to some (but not all) of the | charts in

a dashboard, a commonly placed @ legend although two charts
used a different color mapping, etc. This suggests the ability for
our graph schemas to be used to automatically “lint” or otherwise
“audit” [60], [61] dashboards and surface potential issues during
dashboard authoring.

Designing accessible dashboards: Recent research has high-
lighted the importance of making dashboards accessible to
people with disabilities [62], [63], [64]. To this end, effectively
understanding a dashboard’s composition and design can help
both assess and improve its accessibility. For instance, in a
recent co-design study with screen reader users, Srinivasan
et al. [64] suggested that dashboards are more accessible via
screen readers if they provide explicit filtering widgets that
users can easily navigate to and adjust. The authors used our
proposed graph-based schema to model the layout and interac-
tion design of dashboards and subsequently redesign them to be
more accessible: This application exemplifies how the proposed
graph schema can be used to validate if dashboards meet dif-
ferent accessibility criteria. Furthermore, modeling accessible
dashboard design practices as graph heuristics can also help
automatically update dashboard designs and make them more
accessible at scale (e.g., interaction graphs should be updated
such that any [ chart — Ll charc connections should have an

equivalent Y filter ——» [l char¢ connection).

Enhancing dashboard search: Dashboards are challenging
artifacts to search over because both their content and composi-
tion can be relevant to end-users. However, dashboard search
currently prioritizes content elements, and more specifically,
dashboard metadata or, when present, text that is encapsulated
in the dashboard. When metadata or text content is poor, the
opportunity to search over dashboards can be limited. Using a
graph schema creates richer search opportunities. For example,
comparing a given dashboard’s graph schema to a repository
of dashboard graphs can enable searching for dashboards that
exhibit a similar visual layout and/or interactivity. Alternatively,
it is also possible to create an embedding representation from
the dashboard graphs and then perform a search over these
embeddings [65]. This approach is explored with knowledge
graphs of single visualizations in KG4VIS [13], but can be
extended to more general graphs that capture additional aspects
of dashboard content and composition.

VII. DISCUSSION AND CONCLUSION

Collections of user-created artifacts are an important resource
for understanding existing user practices and motivating re-
search agendas and trajectories. Here, we consider a corpus
of dashboards, a complex artifact that ties together different
content elements, including inter-mixing visualizations with
other media, composed in both interactive and static configura-
tions. Aspects of dashboards have been examined individually,
most notably the visualization elements [9], [13], and together
to reveal composition patterns [7], [8], [10]. Although these
attempts use a variety of approaches to capture different aspects
of dashboard content and composition, no one approach fully
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covers the others, and none have been tested on a large corpus
of dashboards.

Our research advances prior work by proposing a block and
connections representation of dashboards. Our approach brings
together and extends prior research through a simple graph
schema. Blocks define content, while connections define their
relationships. We show that this approach can be used to capture
and examine dashboard design patterns en masse to derive a
census of these user artifacts.

A. Froma “Zoo” to a “Census” of Dashboards

Prior research that closely examines dashboards primarily
uses ‘close reading’ approaches to annotate dashboard features
and derive design patterns. However, this approach can only
reasonably analyze a limited number of dashboards due to their
intensive manual labor demands. As with Heer et al.’s [11] “vi-
sualization zoo”, these hand-picked and hand-analyzed corpora
may not reflect common practice or dashboards of everyday
use: “After all, you don’t go to the zoo to see chihuahuas
and raccoons; you go to admire the majestic polar bear, the
graceful zebra, and the terrifying Sumatran tiger.” A research
agenda emphasizing charismatic fauna while overlooking the
more prevalent raccoon has limitations.

In our census, we show that dashboard quality varies consid-
erably, with many being far simpler than prior research accounts
for: While we cannot identify a singular mechanism behind this
variability or this bias toward simplicity, potential rationales sug-
gest missing areas in our current thinking and understanding of
dashboard design and use. For instance, existing authoring tools
may not offer sufficient support for the majority of dashboard
authors to create richer dashboards. New authoring paradigms or
tools could address this mismatch. Or alternatively, the analytical
needs and data literacy of dashboard audiences may be fully met
by simple and static collections of one or two simple charts; if
so, then research that focuses on more “exotic” forms of visual
presentation and interactivity may fail to meet users where they
are and assist them with their everyday analytical goals [66].

With the growth of data-intensive AI/ML applications, our
census also offers an opportunity for reflection: Prior uses of
visualization and dashboard corpora do not comment on what
the corpora contain or how it could impact the recommen-
dations or guidance of AI/ML models. While at face value,
large corpora may invite complex analyses, the distribution of
patterns surfaced by a census can inform if the analyses are
feasible and appropriate. The necessary data may not exist, or,
for example, if analyzing text content, it may be too sparse and
simple to be usable. Developing a “zoo” of exotic examples again
risks misalignment with user needs. We present initial evidence
for how a census could clarify appropriate AI/ML usage of
dashboard corpora. Further, our graph schema could be used
to generate data cards to inform how these corpora should be
used by downstream models.

B. Limitations

The primary limitation of our research is that we only use
the Tableau Public corpus. However, prior research has also
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made use of corpora obtained from a single source and defined
using a common specification to simply their analytic work-
loads without loss of generality. For example, VizML [9] uses
Plotly charts without consideration of visualizations made with
other libraries. DMiner [10] considers a set of approximately
850 Tableau dashboards mined from Github. The majority of
the corpus analyzed by Bach et al. [8] is also reported on in
Sarikaya et al. [7]. While corpora are generated and defined
differently, and so may highlight different aspects of dashboard
design, we hypothesize that our finding of dashboard design
patterns skewing toward simplicity will likely hold. A final
limitation is that we analyze relationships between dashboard
elements via their interactive relationships and positional place-
ments. There are potentially other ways of defining relationships
between these elements, such as shared data or semantic infor-
mation that we do not explore. What we analyze here is the
minimum when considering multiple elements. For example,
a representative text image may not share data with a visual
encoding (see Fig. 1 for an example), but we are able to model
their adjacency or overlaps. Future work may seek to go further
and explore other edge types. We make our corpora publicly
available so that others can build on our findings or compare
them to prior research in ways we do not cover or anticipate.
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