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The theory of two projections is utilized to study two-component Gibbs
samplers. Through this theory, previously intractable problems regarding the
asymptotic variances of two-component Gibbs samplers are reduced to ele-
mentary matrix algebra exercises. It is found that in terms of asymptotic vari-
ance, the two-component random-scan Gibbs sampler is never much worse,
and could be considerably better than its deterministic-scan counterpart, pro-
vided that the selection probability is appropriately chosen. This is espe-
cially the case when there is a large discrepancy in computation cost be-
tween the two components. The result contrasts with the known fact that the
deterministic-scan version has a faster convergence rate, which can also be
derived from the method herein. On the other hand, a modified version of
the deterministic-scan sampler that accounts for computation cost can out-
perform the random-scan version.

1. Introduction. Gibbs samplers are a class of Markov chain Monte Carlo (MCMC)
algorithms commonly used in statistics for sampling from intractable distributions (Gelfand
and Smith, 1990; Casella and George, 1992). In this work, I will introduce a method for
analyzing different variants of two-component Gibbs samplers via the theory of two projec-
tions developed by Halmos (1969). As a first application of this new method, I will conduct
a detailed comparison between deterministic-scan and random-scan samplers, which I now
define.

Let (X1,B1) and (X2, B2) be measurable spaces and let (X,B) = (X; x Xg,B1 X Ba).
Let 7 be a probability measure on (X, B3) that is the joint distribution of the random element
(X1, X2), where X; is X;-valued for i = 1,2. For x; € X; and z € X, let ma(- | x2) be
the conditional distribution of X | Xo = w2, and let 7y (- | z1) be that of Xs | X7 = ;.
When one cannot sample from 7 directly, but can sample from 71 (-|1) and m2(-|x2), a two-
component Gibbs sampler may be used to produce an approximate sample from 7. Although
simple, Gibbs algorithms with two components are surprisingly useful in practice (Tanner
and Wong, 1987; Albert and Chib, 1993; Polson, Scott and Windle, 2013). There are two
basic forms of two-component Gibbs samplers. Each simulates a Markov chain that has m
as a stationary distribution. Moreover, under mild conditions, the marginal distribution of the
tth element of each Markov chain converges to 7 in some sense as ¢ — oo (Tierney, 1994;
Roberts and Rosenthal, 2006).

The first type, called deterministic-scan Gibbs (DG) sampler, simulates a time-inhomogeneous
Markov chain (Xt) in the following fashion. (7" here is the length of the simulation.)
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Algorithm 1: DG sampler

Draw X, = (X1,0, X2,0) from some initial distribution on (X, 3), and set ¢t = 0;
while t < T do

if t = 2s for some non-negative integer s then
L draw X ;41 from 7 (- | X7 4), set X441 = X1+, and let

Xip1 = (X141, Xog41);

if t = 2s + 1 for some non-negative integer s then
L draw X 441 from mo(- | Xo4), set Xo 411 = Xo 4, and let

X1 = (X191, Xog1);
sett=t+1;

REMARK 1.1. A time-homogeneous version of the DG chain can be obtained through
thinning. Indeed, it is common to discard Xt when ¢ is odd, and only use ()~(25)£62J as a
Monte Carlo sample. However, thinning reduces the efficiency of the sampler (MacEachern

and Berliner, 1994), and is often discouraged (Link and Eaton, 2012).

The second type is called the random-scan Gibbs (RG) sampler. To run the algorithm,
one needs to specify a selection probability » € (0,1). The algorithm then simulates a time-
homogeneous Markov chain (X}) in the following fashion.

Algorithm 2: RG sampler

Draw X, = (X1,0,X2,0) from some initial distribution on (X, 5), and sett =0 ;
while t < T do
draw W from a Bernoulli(r) distribution;

if W =0 then
L draw Xo ;41 from 7 (- | X1 4), and set Xy ;11 = X 43
if W =1 then

L draw X ;41 from mo(- | Xo24), and set Xo 11 = Xo 43

set Xer1 = (X141, Xo,441);
sett=1t-+1;

Both samplers generate new elements by updating X using the conditional distribution
of X | X2, and updating X» using the conditional distribution of X | X;. They only differ
in terms of which component is updated in each iteration.

One important question regarding the DG and RG samplers is which of them performs
better. This problem is not unique to the two-component case, but it is in this case where
substantial progress has been made, as I now describe.

When comparing MCMC algorithms, there are two main aspects to consider: convergence
speed and asymptotic variance (Jones and Hobert, 2001). Moreover, one must also account
for computation cost, i.e., the time it takes to run one iteration of each algorithm. Qin and
Jones (2022) showed that the DG algorithm is better than the RG algorithm in terms of
L? convergence rate. Their result takes computation time into account, and holds for every
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selection probability r € (0,1). As to asymptotic variance, existing comparisons are less
conclusive.

Consider a generic MCMC algorithm that simulates a Markov chain (Xt)fi o Which con-
verges to its stationary distribution 7. Then (5(0, . ,XT_l) forms an approximate Monte
Carlo sample from 7. The Monte Carlo sample is usually used to estimate the mean of a
function f: X - R, i.e., 7nf := fx m(dx). The usual estimator is the sample mean

;=
=5 (%)
t=0
Under regularity conditions, S (f) is subject to the central limit theorem (CLT):

VTS (f) — nf] SN[0,V(f)] asT — oc.

See Dobrushin (1956), Greenwood, McKeague and Wefelmeyer (1998), and Jones (2004) for
Markov chain CLTs under various settings. V' ( f) is called the asymptotic variance, and can
usually be obtained from the formula

T-17-1
o _ 1
V(f)= TlgI;OTVaT[ST(f = jim T~ tz; tZ cov|f F(X)],

where X can be assumed to follow 7. Disregarding computation cost, one may say the
smaller V' (f) the better. Define Vp(f) and Vkr(f,r) to be the asymptotic variances associ-
ated with f for the DG and RG sampler, respectively, where r is the selection probability.
Exact formulas for these quantities will be given in Section 2.1. Greenwood, McKeague and
Wefelmeyer (1998) showed that Vi (f) < Vr(f,1/2). See also Andrieu (2016) where the re-
sult is extended to beyond Gibbs algorithms. As far as I am aware, no similar result existed
for r # 1/2. Moreover, the arguments in Greenwood, McKeague and Wefelmeyer (1998)
and Andrieu (2016) heavily rely on the symmetry of the RG sampler that arises only when
r =1/2, and it seems unlikely that they can be extended to the r # 0.5 case. This motivates
the current work.

To appreciate the potential benefits of using a selection probability r that is not 1/2, one
needs to think about computation cost. Consider this: If the time it takes to draw from 7o (+|22)
is much longer than 7 (-|z;) for 1 € X; and z3 € Xy, then one has an incentive to update
X using 71 (+|1) more frequently, and may want to use an RG sampler with a small r rather
than the DG sampler. To conduct a concrete analysis, I will study the adjusted asymptotic
variance, defined below.

Suppose that on average, the aforementioned generic MCMC algorithm takes 7y units of
time to produce a sample point, so that after running the algorithm for 7 units of time where
7 is large, around 7 /7 sample points are generated. Then the sample mean has variance
roughly equal to 7oV (f)/7. Define the computation time adjusted asymptotic variance to be
V1(f) := 0V (f). Given a fixed amount of computation effort, V1 (f), instead of V' (f), is
what we should focus on. Define VS (f) and VRT (f,r) to be the adjusted asymptotic variance
for the DG and RG samplers, respectively. It will be shown that when r is well chosen,
Vli (f,r) can be much smaller than VDT (f) for certain functions f, especially when the costs
of drawing from 7 and 7y differ significantly. Moreover, for any function f such that f(X)
has finite second moment for X ~ 7, under mild conditions, Vg (f,r) < QVDT (f). given that r
is well chosen. The appropriate value of r depends on the time it takes to draw from the
two conditional distributions, and an explicit formula will be provided. These results mean
that the RG sampler can outperform the DG algorithm by a large margin in some scenarios,
while never being too much worse. This is in contrast with Qin and Jones’s (2022) result on
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convergence rate. However, as discussed in Section 3.3, the DG sampler could still compete
with RG in terms of adjusted asymptotic variance for certain problems.

The DG sampler can be made more robust through a simple modification. Suppose that it
is much less costly draw from 7; compared to 2. Then one may consecutively draw from
71 many times before drawing once from mo. This modified sampler, defined in Section 3.4,
behaves similarly to an RG sampler with some well-chosen 7 in terms of adjusted asymptotic
variance. Moreover, it is possible to parallelize parts of the modified DG algorithm to make
it even more efficient.

Aside from acquiring the more specific results described above, a central goal of this paper
is to demonstrate how some tools in classical linear algebra can trivialize difficult problems
concerning two-component Gibbs. The key is Halmos’s (1969) theory of two projection op-
erators. It is known that the two conditional distributions in a two-component Gibbs sampler
correspond to two orthogonal projections on some function space (Greenwood, McKeague
and Wefelmeyer, 1998; Diaconis, Khare and Saloff-Coste, 2010). Halmos (1969) gave block
matrix representations for any given pair of orthogonal projections. Using these representa-
tions, one can obtain explicit formulas for the asymptotic variance of a given Gibbs sampler.
The framework is powerful because it reduces the problem at hand to simple matrix calcu-
lations. I am unaware of previous works that analyze Gibbs samplers using Halmos’s (1969)
theory. The tools developed here can also be utilized to study the convergence rates of Gibbs
chains, and reproduce Qin and Jones’s (2022) result. Moreover, they can be used to study
other variants of two-component Gibbs samplers, as demonstrated in the Appendix. Indeed,
there are many potentially interesting variants of two-component Gibbs sampler besides the
ones discussed here, and Halmos’s (1969) theory opens an avenue for studying them in a
manner that was not possible before.

The rest of the article is organized as follows. Section 2 provides the necessary prelim-
inaries, including a short introduction to Halmos’s (1969) theory. Section 3 illustrates the
usefulness of Halmos’s (1969) theory via a comparison between the (standard and modified)
DG and RG samplers in terms of adjusted asymptotic variance. A comparison concerning
convergence rate is conducted in Section 4. Also included in this section are some general
formulas involving Markov chain convergence rate as described in the previous paragraph.
Section 5 contains some discussion. Some technical details are relegated to the Appendix.
The Appendix also contains an analysis of a fourth type of two-component Gibbs sampler
using the theory of two projections.

2. Preliminaries.

2.1. Basic properties of two-component Gibbs samplers. The transition laws of the DG
and RG Markov chains are described by their Markov transition kernels, or Mtks. In general,
an Mtk on (X, B) is a function K : X x B — [0, 1] such that K (z,-) is a probability measure
for z € X, and K (-, A) is a measurable function for A € B. If K and G are Mtks on (X, B),
then their mixture a X + (1 — a)G with a € [0, 1] defines an Mtk such that

[aK +(1—a)G](z,A)=aK(z,A)+ (1 —a)G(x,A), VreX AeB,
and their product K G is defined to be an Mtk such that

(KG)(x,A):/XK(x,dx’)G(x’,A), Vo eX, AeB.

For a non-negative integer ¢, the tth power of an Mtk K, K t is defined to be Hi:l K, so
that K!' = K, and K°(z,-) is the point mass at z. For a Markov chain (X;) that is possibly
time-inhomogeneous (e.g., the DG chain), its (¢',¢' + ¢)-Mtk, where ¢ and ¢’ are non-negative
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integers, is an Mtk Ky ;. such that Ky py4(z,-) gives the conditional distribution of Xt/H
given f(t/ = . In particular, call K; := K ; the t-step Mtk. If the chain is time-homogeneous
with a single-step Mtk K, then Ky p1 s = K; = K ¢ If the distribution of X’o is given by some
probability measure i, then

(a8 () = [ tdo)Ei(a)
gives the marginal distribution of X.

Let us now write down the Mtks of two-component Gibbs samplers. For a point x in a
generic measurable space, use J,(+) to denote the point mass concentrated at =. Define, for
(x1,72) € Xand A € B,

Pi((on,a), ) = [ mi(do) | 1), (01,
A
(D
Pal(or,2).4) = [ maldt |5, (dey)

Then P, characterizes the transition rule for updating X, through the conditional distribution
of X5 | X1, and P» does the same for updating X; through X; | Xo. In other words, for
i € {1,2}, P, leaves X; the same and updates the other component.

Consider first the Markov chain associated with the DG algorithm. Let Dy ;1 be its
(t',t' +t)-Mtk, and let D; = Dy ;. Then, for a non-negative integer s’ and positive integer s,
the following hold:

Doy a(sits)—1 = Das—1 = (PLP2) ' P, Doy o(s+s) = Das = (PLP2)°",

Dasii12(s+s) = D1,2s = (PaP1)* ' Pa,  Dagiii a(sr4s)+1 = Digsr1 = (PaP1)°.

On the other hand, the RG sampler simulates a time-homogeneous Markov chain, whose
t-step Mtk is

3) Ry :=[(1—7)P, +rP].

One of the main goals of the current work is to conduct a comparison between the two
algorithms in terms of asymptotic variance. As a shorthand notation, for any signed mea-
sure £, and measurable function f on (X, B), let uf = [, f(x)u(dz) whenever the integral is
well-defined. Fix a function f : X — R such that 7 2 < oo, where f?(x) := f(x)? for x € X.
Consider the asymptotic variance of S7(f), where St(f) is the Monte Carlo sample mean
based on either the DG or RG sampler; see the Introduction. Without loss of generality, as-
sume that 7 f = 0. Consider first the DG sampler. Denote by (X;) a DG Markov chain with
Xo ~ . By Lemma 24 in Maire, Douc and Olsson (2014), the asymptotic variance can be
calculated as follows:

Vb(f) =E[f(X0)*] + > E[f (Xo) f(Xas1)] + > E[f(Xo)f(Xas)]

s=1

2)

“4) - -
+ D EIF(X0)f(X2a)] + ) Bl (X1)f (Xasr)):
s=1 s=1
See also Greenwood, McKeague and Wefelmeyer (1998). For the RG algorithm with selec-
tion probability 7 € (0, 1), which simulates a time-homogeneous Markov chain, the asymp-
totic variance is a lot simpler. See, e.g., Jones (2004), Corollary 1. Let (X;) instead be an RG
chain with Xy ~ 7. Then the asymptotic variance is

) VR(f,7) =E[f(X0)*] + 2 E[f(Xo)f(X0)).

t=1
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These two quantities will be analyzed in detail in the next subsection. As mentioned in
the Introduction, one needs to take into account the computation costs of the two algorithms.
Suppose that the time it takes to sample from 7 (- | 1) is a constant (i.e., independent of x7),
and set this to be unit time. Suppose that the time it takes to sample from ma(- | 2) is also
a constant, denoted by 7. Then, on average, the DG algorithm takes (1 4 7)/2 units of time
to produce a sample point, whereas the RG algorithm takes r7 + 1 — r to do so. Although
the above assumption may not always hold in practice, the simplification is necessary for
analyses herein. Multiplying the asymptotic variance of a sampler by the average time it
takes to produce a sample point gives the computation time adjusted asymptotic variance.
For the DG sampler, the adjusted asymptotic variance is

(1+7)

V3(f) = =5 Vo(f).

For the RG sampler, the adjusted asymptotic variance is
VR(for) = (rm + 1= 1)VR(f, 7).

2.2. Markov operators. Suppose that an Mtk K on (X, B) has 7 as a stationary distri-
bution in the sense that 7K = 7. Consider L?(r), the linear space of measurable functions
f : X — R such that

1f[]:= /7 f? < oo.

For f,g € L*(7), say f =g if |f — g|| =0, i.e., f(x) = g(x) 7-almost everywhere. Define
an inner product

(f.9) = /X f(@)g(x)m(dz).

Then (L?(r),(-,-)) forms a real Hilbert space and || - || is the L? norm. It is convenient to
define L3 (), the subspace of L?(7r) that is orthogonal to constant functions. In other words,
L2 () consists of f € L?() such that

(f,1)=nf=0.

We can define a linear operation f — K f for f € Lg(w) in the following way:
Kf(x)= / K(z,d2')f(2'), zeX.
X

One can verify that K f € L3(w) whenever f € L(m). Moreover, by Cauchy-Schwarz,
|K f|| < ||f]|- Therefore, K can be regarded as a bounded linear operator on L(r). This
is called a Markov operator. The operator associated with the mixture (product) of two Mtks
is simply the mixture (product) of their operators.

The Mtks P; and P», as defined in (1), satisfy mP, = m P, = 7, and thus give rise to the
following operators on L3(7):

P1f($17932)=/x [z, ah)m (day | 21),
(6) ’
Pof (1, 20) = /X F(@h wa)ma(da | 2).

The Mtks of the DG and RG samplers, as given in (2) and (3), can then be treated as linear
operators on L3(7) as well. It is straightforward to verify that P, and P; are self-adjoint, i.e.,
fori={1,2} and f,g € L3(7),

(Pif,9) = (f,Pig)-



TWO PROJECTIONS 7

Moreover, P; and P, are idempotent, i.e., P12 = P, and P22 = P,. Indeed, for i € {1,2}, P,
is the orthogonal projection onto the space of functions in L3(7) that only depend on z;.

Various quantities of interest can be studied within the above operator theoretic framework.
For instance, if K (x,-) is the conditional distribution of some random element Y given X =
x, where X ~ m, then, for any f,g € L3(7),

(f, Kg) =cov(f(X),g(Y)).

In particular, for f € L2(), the asymptotic variances in (4) and (5) can be written as

Vo(f) = IIfII” + Z<f, Do2s—1.f) + Z<f, Doosf)

s=1 s=1

+ 3 (fDrasf) + > _(f Drosiaf)

s=1 s=1
(7 . .
= IFIP+ >, (PP)* " Py + Y (f (PLP2)* f)
s=1 s=1
+ D (L (PP T Ry ) (] (PP f),
s=1 s=1
and

® VR =FP+2D (LR =12 +2D (F (A= r)PL+ 7P f).
t=1 t=1

These asymptotic variances will be carefully compared in Section 3.
To continue, I will describe the algebraic foundation of this work.

2.3. Halmos’s Theory of Two Projections. Just for this subsection, let P; and P be two
orthogonal projection operators on a generic Hilbert space (H, (-,-)). Let H; be the range of
P, and Hs, that of P». Then H has the following orthogonal decomposition:

H = My & Mo1 & Mo & M1 & Mg,

where @ denotes direct sum, My = H1 N Ho, My = H1 N HQJ‘, My = HlJ‘ N Hy, M1 =
Hi- N H3-, and My is the rest. Here, | denotes the orthogonal complement of a subspace.
P; and P leave each of Myg, Mo, Mg, M11, and Mg invariant. Thus, My can be further
decomposed into Mg = (P; Mgr) @& (I — P;) Mg, where I is the identity operator on My. The
behavior of Py and P> on M;; for i,j € {0,1} is simple. How the two projections act on
Mg = Py Mg @ (I — P;)MRg is, on the other hand, non-trivial.

I will make use of an important result in linear algebra by Halmos (1969). Some additional
concepts are needed to state the result. Let G’ and H' be subspaces of some linear space, and
let G” and H” be subspaces of another. Suppose that G' N H' =0 and G" N H" =0. A
linear transformation A from G’ @ H' to G” & H" has a 2 x 2 matrix representation. To
see this, let P be the linear operator that maps any gg + g1 € G” & H” (where go € G” and
g1 € H")to gy + 0. Let Agg = PA|c (Where A| means A restricted to G”), Agy = PA
Ap = (I — P)A a, Al = (I — P)A . Then, for go + g1 € G' o H,

1 11
A gi=> > Ay,
i=0

i=0 j=0

H'>
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Agy A
A= 00 Aot )
Ay An
Linear combinations and products of linear transformations can be expressed as those of their
matrix representations. Finally, a self-adjoint operator B on a generic Hilbert space is called
a positive contraction if both B and identity minus B are positive semi-definite.

Consider the matrix representations of P; and P; restricted to Mg = Py Mg @ (I — P1) MR.
They are characterized by the following famous result.

and one may write

LEMMA 2.1. (Halmos, 1969) Assume that Mg # {0}. Then Py Mg and (I — Py) My are
both nontrivial and have the same dimension. Moreover, there exist a unitary transforma-
tion W : (I — Py)Mpg — Py Mg and positive contractions C and S on Py Mg that have the
following properties:

1. C? + 82 = Iy, where I, the identity operator on Py Mg,
2. Ker(C) = Ker(S) = {0}, where Ker denotes the kernel of an operator;

3.
«( Io O
P1|MR:F <6) O>F7
L[ C*> CS
where

_ (1o O
renawe (10,

and I'* = Iy & W* is its adjoint.
REMARK 2.2. S is but a compact way of writing v/ Iy — C2. In particular, C'S = SC.

REMARK 2.3. For more background on the theory of two projections, see Béttcher and
Spitkovsky (2010). For a proof of Halmos’s result, see Bottcher and Spitkovsky (2018).

Using Lemma 2.1, one can obtain useful representations of mixtures of two projections.
For r € (0,1),

f A=7)Ip+rC? rCS
(1—7’)P1’MR+7"P2|MR:F < rCS rS2 I

Let
A(C) = (1-2r)Iy +4r(1 —r)C%.
The following is a result given by Nishio (1985).

LEMMA 2.4. (Nishio, 1985) Assume that Mg # {0}. For r € (0,1), there exists a unitary
operator U : Mg — Mpg such that
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An elementary proof of Lemma 2.4 is provided in Appendix B, along with a matrix repre-
sentation of U which is not given in Nishio (1985).

In the context of Gibbs samplers, H = L%(W), and P and P» are projection operators
given by (6). Hy consists of functions f € Lg(Tr) such that f(x1,x2) depends only on z1,
while Hs consists of functions f € LZ(w) such that f(z1,72) depends only on z5. The DG
algorithm can be viewed as an alternating projection algorithm (Diaconis, Khare and Saloff-
Coste, 2010).

The subspaces M;j, i,j € {0,1}, also have interpretations, although they are not always
easy to identify in practice. The space My consists of f € L3(w) such that f(z1,z2) can
be written as a function of just x; € X; as well as one of just x5 € Xo. The space My
consists of f € L3(r) such that f(x1,72) depends only on z; and that E[f (X1, X2)|X2] =
E[f(X1,X2)] =0, where (X1, X2) ~ 7. The space M, consists of f € L3(r) such that
f(z1,x2) depends only on x9 and that E[f (X1, X2)|X1] = 0. The space M;; consists of f €
L3(7) such that E[f(X1, X2)|X1] =0 and E[f (X1, X2)|X2] = 0. Note that, for f € L3(r),
to say that E[f(X1, X2)|X;] =0 is to say that f(X;,X2) is uncorrelated with any square
integrable function of X;.

Starting from the next section, I will assume that Mo = {0}. To see what this assumption
entails, consider the contrapositive, that is, there exist a nonzero L(Z)(w) function f, some
g: X1 — R, and some h : Xo — R such that f(x,y) = g(x) = h(y) for m-a.e. (x,y). Then
there exists measurable B C R such that 7[f~!(B)] > 0 and #[f~!(B)] > 0. Moreover,
f~YB) and g~Y(B) x h~Y(B) differ only by a m-measure zero set. The same goes for
f71(B¢) and g~ 1(B¢) x h~1(B¢). Then 7 has positive mass on B’ = g~!(B) x h~!(B) and
B" = g=1(B°) x h~1(B¢), and zero mass on everything else. This is a “reducible" structure
that would render two-component Gibbs algorithms ineffective, as any chain that starts in B’
cannot enter B”, and any chain that starts in B” cannot enter B’.

Another assumption that will be made is that Mg # {0}. When Moo = {0}, this assump-
tion states that H; and H» are not orthogonal. In the context of Gibbs samplers, this assump-
tion is equivalent to X not being independent of X, where (X1, X2) has joint distribution 7.
Indeed, for f,g € L&(),

(f,g) = cov[f(X1,X2),9(X1,X2)].

Therefore, there exist f € Hy and g € Ho such that (f, g) # 0 if and only if X; and X are
not independent.

Finally, consider ||C||, where || - || denotes the L? operator norm. (There is a slight abuse
of notation since || - || is also used to denote the L? norm on H = L3(7).) It is well-known
that ||| is the cosine of the Friedrichs angle between H; and Hs, given by

sup {|(£,9)]: f € Hy(\(Hy (VHa)*, g € Ha 1 (Hy 0 Ho), | £ = gl =1}

See, e.g., Bottcher and Spitkovsky (2010), Example 3.10. For (X1, X2) ~ m, this is the max-
imal correlation between X; and Xs. By Theorem 3.2 in Liu, Wong and Kong (1994) along
with Lemma 3.2, Theorem 4.1, and Proposition 3.5 in Qin and Jones (2022), when B is
countably generated, the DG/RG Markov chain is geometrically ergodic only if ||C|| < 1.

EXAMPLE 2.5. Suppose that X; = R? for some positive integer p, Xo = R, and 7 is the
distribution of a (p 4 1)-dimensional normal vector

()~ ((m) (A 1)7):

where m1 € R, mo € RP, A € RP*P g positive definite, and b € RP. To ensure that the preci-
sion matrix is positive definite, assume that 5" A~'b < 1. Assume also that b # 0, so that X
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and X5 are dependent. MCMC is not needed to sample from 7, but pretend that we are to
apply two-component Gibbs anyway. The full conditional 71 (-|x1) is a normal distribution
with mean mo — bT(azl — my) and variance 1, and 7y (-|z2) is a p-variate normal distribu-
tion with mean m; — A~'b(x9 — ms) and covariance matrix A~!. Evidently, Moo = {0}.
The subspace Mg may be difficult to conceptualize, but the following calculation gives two
non-trivial elements of Mg. Let f € L3(7) be such that

9) f(xl,xQ):xg—m2+bT(x1—ml).
Claim: f € (I — P1)MRg. To see this, consider Py P> f, given by

PiPyf(z1,29) = —(1 =0T A7'0)b " (21 — ma).
Then Py Pof € Hy = My, @ Py Mg. For any g € Moy = Hy N Hs-, (P P2 f,9) = (Paf, g) =
0. Thus PP, f € Py Mg. It’s easy to verify that f is a linear combination of P, P, f and
P,P Py f,and P; f = 0. Since MRy is invariant under P, it must hold that f € (I — P;)MRg.
Finally, standard convergence analysis shows that the associated DG Markov chain is geo-

metrically ergodic, so ||C|| < 1. In fact, the squared maximal correlation ||C||? between X
and X, is known to be bT A~1b (see, e.g., Amit, 1991, Lemma 3).

3. Comparing Asymptotic Variances. We now use matrix representations of P, and
P, to study the DG and RG algorithms. Throughout this section, assume that Mgy = {0},
Mg # {0}, and that ||C]| < 1.

3.1. Characterizing Vp(f) and Vx(f,r). Fix f € L3(r). Then one has the orthogonal
decomposition

(10) f = foo+ for + fio + fi1 + fo+ f1,

where f;; € M;j, fo € PiMg, and f; € (I — Py)Mg. Note that foq = 0. Moreover, P; fo1 =

Joi, P1fio=P1f11 =0, P2fi0 = fi0, and P2 fo1 = P2 f11 =0.
Let us characterize the asymptotic variance of the DG sampler using Lemma 2.1.

PROPOSITION 3.1.

(11) Vo (f) =2 forll* + 2| froll* + [ funl* + {fo + f1. Ep(fo + f1)),

where

2Q—2 —1
(12) ED:F*<210+40S 208 >r.

2081 21,

PROOF. Recall from (7) that

V() =IFIP+ D _(f,(PLP)* ' Pif) + ) (f, (P1P2)° )

s=1 s=1

+ Y (PP T R f) ) (f (PP f).
s=1

s=1

By the decomposition of f, this can be written as

(13) Vo (f) =2l forll* + 2/l froll® + | f11l|* + (fo + f1, Z(fo + f1)),
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where

o0 o0
S =T+ (Pilag Palag)*  Prlag + Y (Prlag Palasg)*+

s=1 s=1
oo [e.@]
> (Palarg Prlarg)* ' Palagg + Y (Palnig Pilasg)*
s=1 s=1

For s > 1, we have the matrix representations
. CQs C2s—1 S . CQs 0
(Pl Palag)* =T (() SO Bl Pl =T (oS )T
It follows that

g 2o+43°2, 0 2085372,C*
- 20832, C* I+ 85232, C% )

Since ||C|| < 1,
ZCQS_ Ip—C?)~1=52
and X = Xp. (13) then gives the desired result. ]
Next, consider the RG sampler with selection probability r € (0,1).

PROPOSITION 3.2.
2
(14) Ve(f,r) =

where

+ Al + (fo+ f1,2k(r) (fo + f1)),

2—r 2 -2 2 -1
L B+ 2502872 208
(15) Yr(r)=T < ) (5531 1 L1, )r.

PROOF. Note that
[(1=7)PL+7rP)f = (1—=7)for +7fio+ [(1 —7)P1|ag + 7P| ag](fo + f1),

where
e =7 +7C?* rCS
(1—7’)P1|MR+’I”P2|MR—F < rCS T’S2 I.
By (8), the asymptotic variance is then
(16)
Wlhor) = [P +2 5 (1= )Py + S

t=1

=[I£1” + 22 (L =) forll? + {1 froll® + (fo + f1, [(1 = ) Pilarg + 7 Polaag ) (fo + 1))

7HfloH2 + Al + o+ fL2(fo+ f1)),
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where

o0
=142 [(1=7)Pilag +rPolagg)'-
t=1

By Lemma 2.4,
1
1 =) Pilasg + 7 Polagg | = 5 ||To + /A

It follows that the Neumann series in the expression of ¥ is convergent whenever ||Ip +
A(C)]| < 2, which is equivalent to ||C|| < 1. ¥ can then be written as

S=2[1—(1—7)Pisg —rPalarg ) 1

[ rS?2 —rcs \ !
_2F(—TCS Io—r52> b=1

Evaluating the inverse may seem daunting, but it is completely analogous to calculating the
inverse of a 2 x 2 matrix. It is straightforward to verify that for z € [0, 1],

(0 ey

1 (—r+(1—x2)—1 m/m)

Cr(l—7) ra/vV1— a2 T
Analogously,
( r§2  —rCS )1 1 < —rlp+S72 rCS! )
—rCS Iy—1rS? Cr(l—7) rCS~1 rly ’
Routine calculations show that ¥ = ¥g(r), and the desired result follows from (16). ]

EXAMPLE 3.3. This is a continuation of Example 2.5. Recall that f, as given in (9),
is in (I — Py)Mg. By Propositions 3.1 and 3.2, Vp(f) = 2||f||?, while VR(f,r) = (1 +
nIfI2/(1=r).

3.2. The comparison. Propositions 3.1 and 3.2 allow one to compare VDT (f) and VRT (f,m)
(as defined at the end of Section 2.1) for f € L3(w), the asymptotic variances of the two
samplers after adjusting for computation time.

Consider first the unadjusted asymptotic variances. The key result of this section is as
follows.

PROPOSITION 3.4. Forr € (0,1) and f € Li(r),

Vo (f) < kai(r)Ve(f,7),
VR(f)T) < kQ(T)VD(f’T)a

where

kl(T‘):l—T‘—FT‘2—|—\/7’2(1—T)2—|-(1—2T)2,

C1l—r+? V(L =7)2 + (1 —2r)2
2r(1—7) + 2r(1 —r) ’

ka(r)
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o _| T
=
\ — k4
\
0 — \ --- ko
\
\ T
\
—_ © \ /
= \ ,
N’ \ ’
= ,
X N ,
< — . ,
O_

Fig 1: Graph of r — k;(r) fori =1, 2.

PROOF. Decompose f € L(Q) () as in (10). Recall (11) and (14):
Vo (f) =2l forl* + 2l frol* + [l f1a1* + (fo + f1,Zp(fo + f1)),

WR(f,7) = 2;7ﬂ||fO1H2 + 14__:Hf10||2 + 1l + (fo+ f1r, Zr(r) (fo+ f1))-

By Lemma A.3 in the Appendix, Xp < k1(r)XRr(7), and Xgr (1) < ko(r)Xp, where < denotes
Loewner ordering. Then

2r 2(1—r)
2—r 147
2—r 1+r
2r '2(1—7)

VD(f)SmaX{ 71J<71(7”)}VR(f77“),

Vi for) < max{ k() ().

The result then follows from Lemma A.1. O

The bounds in Proposition 3.4 are sharp in the sense that they cannot be improved without
additional knowledge on 7 and f. A more detailed explanation is given in Proposition A.5.
It is easy to verify that 1 < k1 (r) <2, and k;1(1/2) = 1; see Figure 1. This means that when
computation time is not taken into account, the DG algorithm is never much less efficient
compared to the RG algorithm in terms of asymptotic variance.

REMARK 3.5.  Applying (11)-(15) for r = 1/2 yields
0 < VR(f,1/2) = [IfII” =2[Vb(f) — I £I].
This result can be found in Greenwood, McKeague and Wefelmeyer (1998).
In practice, one needs to compare Vg(f) = (14 7)W(f)/2 and Vg(f,r) =(rr+1-

r)VR(f,r), where 7 is the time it takes to sample from 7o (- | x2) if it takes unit time to
sample from 7 (- | 21). The following result follows immediately from Proposition 3.4.
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COROLLARY 3.6. Forr € (0,1) and f € L3(m),

V() < w(mr)ka(r)VE(f.r),
where k1 (r) is given in Proposition 3.4, and

T+1

k(T,r) = m

When 7 = 1, i.e., the times it takes to update X; and X are roughly the same, x(7,7) ~ 1,
and VDT(f) is never much larger than Vli(f, 7). On the other hand, if 7 < 1 or 7> 1, i.e., the
times it takes to update X; and X5 are significantly different, then for some values of r, e.g.,
r=1/y/7 when 7> 1and r =1 — /7 when 7 < 1, k(7,7) can be very large. Intuitively,
if 7> 1, it makes sense to sample from 7o (- | 22) less frequently, i.e., pick a smaller 7.

The following toy example shows that when 7 > 1 and » < 1, VRT (f,r) can be considerably
smaller than VDT (f) for some function f.

EXAMPLE 3.7. This is a continuation of Example 3.3. Recall that for the particular
choice of f, Vp(f) = 2||f]|? and VR(f,r) = (1 +7)| f||*/(1 — r). Suppose that p is large,
and it takes a long time to update X; compared to Xs. Then 7 > 1. Avoid updating X;
frequently by setting » < 1. Then

Vl;r(f,r)_rT—i—l—rl—}—r
VDT(f)_ T+1 1-—7r

< 1.

A general statement is given by the following result.

COROLLARY 3.8. Let r be a function of T such that r — 0 if T — oo. Then, for any
nonzero f € Myo® M1 @ (I — P1)Mg, as 7 — o0,

vi
R 5f7 T) _> 0
Vo (f)
By symmetry, a similar result holds as T — 0 and r — 1.

PROOF. Let f = fio + fi1 + f1 € Mg ® M11 @ (I — Py)Mg be a nonzero function.
By (11)-(15),

Vo (f) =2l froll* + [l fua ]l + 201117 > (1£117,
147

1+7r 9 9 147 9 9
Vi " - < .
/() = T ol Ll 4 TP < T )
Then
VRT(f,r) < 2rr+1—r)1+47r
iy - T+l 1-r
The result follows. O

REMARK 3.9. The space M1y ® M1 @ (I — P;) Mg consists of functions that are orthog-
onal to My; @ P; Mg, which is the space of functions f € L(Q)(ﬂ') such that f(x1,x2) depends
only on ;. In other words, f € Mo @ My @ (I — Py)My if and only if f(X;, X2) is un-
correlated with any L? function of (X7, X5) that only depends on X1, where (X1, X3) ~ 7.
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The question remains whether an RG sampler with a well-chosen r performs well com-
pared to the DG sampler for an arbitrary function f. This is answered by the following.

COROLLARY 3.10. Forr € (0,1) and f € L3(r),
(17)

Vi(f,r) <

kQ(T’)
k(T,T)

rT —r)1—r+r? r2(1—r)?2 —2r)2
vg<f>:2( 7111 Y1—r+ +\ér(§1_r))+(1 2)Vg(f>7

where ko(1) is given in Proposition 3.4, and k(t,r) is given in Corollary 3.6. In particular,
if we let r = 0.5 when T =1, and

a8) LT+ \7{;(_271'4—1)(7'4-2) c(0.1)

when T # 1, then ka(r)/k(T,7) = 2, and thus
VA(f.r) <2V5(6).

PROOF. (17) follows from Proposition 3.4.
When 7 =1 and r = 0.5, the result clearly holds. Fix 7 = 1 and let » be as in (18). It’s
straightforward to verify that r € (0, 1). Moreover, solving for 7 yields

1—=2r++/(1—2r)2+72(1 —r)2
T= .

r2
Then
1 2rl—r—r?4+ /(1 -2r)2+r2(1 1)
R(rr) (=24 /(=22 4721 —7r)2
Routine calculations show that ko (r)/k(7,7) = 2. O

1.0

0.0 02 04 06 038

logo(*)

Fig 2: Relationship between 7 and r as given in (18). 7 is given in log scale.

The relationship between 7 and 7 as given by (18) is plotted in Figure 2. It can be shown
that this choice of r is not much worse than optimal in terms of minimizing ka(r)/k(7, 7).
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Moreover, as 7 — oo, r — 0, and as 7 — 0, » — 1. In other words, this choice of r also
satisfies the conditions in Corollary 3.8.

Corollaries 3.8 and 3.10 show that, in terms of adjusted asymptotic variance, when 7
is extremely large or extremely small, the RG sampler with a good choice of 7 is never
significantly worse than the DG sampler, and can be considerably better in some cases. One
can say that the RG sampler is more robust in this regard.

One may also use other choices of r. By Corollaries 3.8 and 3.10, similar effects can be
achieved whenever r is a decreasing function of 7 such that 1 < 1/r = O(7) when 7 — o0
and 1< 1/(1—7r)=0(1/7) when 7 — 0. Here, 1/r = O(7) means 1/(r7) is bounded.

3.3. Data augmentation. Studying the asymptotic variance V (f) for all f € L3(7) is
relevant only if we care about integrating all L? functions, which is not always the case. For
example, in a data augmentation setting (Tanner and Wong, 1987; van Dyk and Meng, 2001),
one usually only wishes to estimate 7 f for f € L?(r) such that f(x1, ) just depends on 1.
In this case, it is only interesting to compare VDT(f) and Vg(f, r) for f € Hy = My @ P1 Mg.

Let f = fo1 + fo € Mo & P1 M. By (11)-(15),

Vo (f) =2l forll* + (fo, (21o + 4C*S2) fo),

(19) 2 2— 2
VR(fvr)_x||f01H2+<f0,< " TIOJrT 0252> fo>~

Then
2r
V() < max {2 201 )} (o),
Let x(7,7) be defined as in Corollary 3.6. Then
2
W < strmax{ 2 ar -0 bl

Now,

T T

2 1 2 1
k(T,7) max A 2r(1—7) p < T max 77“,21”(1 —r)p < T )
2—r 2 2—r

Thus, when 7 is not too small, the DG algorithm can compete with the RG algorithm in terms
of adjusted asymptotic variance. When 7 < 1, depending on the structure of 7, a result like
Corollary 3.8 could still hold for some f € H;.

3.4. A Modified DG Sampler. The RG sampler achieves robustness by updating the less
costly component more frequently. Naturally, one can use this idea to modify the DG sampler.
Suppose that 7 > 1, i.e., it is more costly to sample from 7o (- | z2) (which updates X7) than
m1(- | 1) (which updates X5). Consider the following algorithm, which updates Xo ¢ times
consecutively before updating X; once, where ¢ > 1. It simulates a Markov chain that again
has 7 as its stationary distribution.
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Algorithm 3: Modified DG sampler with ¢ repeated draws from 7

Draw X, = (X1,0, X2,0) from some initial distribution on (X, 3), and set ¢t = 0;
while ¢t < T do

if t = s({+ 1) + q for some non-negative integer s and q € {0,...,¢ — 1} then
L draw X ;41 from 7y (- | X7 4), set X441 = X7+, and let

Xip1 = (X141, Xo411);

if t = s(¢ + 1) + ¢ for some non-negative integer s then
L draw X 441 from ma(- | X24), set Xo 411 = Xo 4, and let

X1 = (X191, Xog);
sett=t+1;

Let f € Lg(ﬂ). Let Vm(f,¥) be the unadjusted asymptotic variance associated with this
function and the modified DG algorithm. By Proposition 2 of Greenwood, McKeague and
Wefelmeyer (1998),

Wa(f,0) = | fIP*+ £+1 FPof) + S U (PP Paf) + €3 U (PP )
s=1 s=1
+€( )<f Pif) +€Z [(PIP)° [) + 6 (f,(PLP)*Pif)
s=1

Assume that My = {0}, Mg # {0}, and that ||C|| < 1. Similarly to how Propositions 3.1
and 3.2 are proved, one can establish the following.

PROPOSITION 3.11.

Viu(f,0) = (€ + 1) forl* + HfloH2 + L f11l? + (fo + f1, 2 (O (fo + f1)),

E—i—l
where
o L+ 1)1y +2(0+ 1)025_2 2061
(20) Yu(l)=T ( 2051 ﬁfi’fo T.

REMARK 3.12. If instead one updates X5 once before updating X; ¢ times, then the
asymptotic variance is

_ {+3 _
Vm(f, ) = €+1Hf01HQ + (D froll® + 1l + (fo+ fr.2mE D (fo + f1))
where
. ﬁ—?]g+2(€+1)025_2 MWDo gos—1 -l os
Ym(l) =T 90C5—1 _ W=D ~g 24041 52} 1) g2 I
/+1 {41 {41

To proceed, let us consider the computational cost of the modified DG algorithm. If the
algorithm is run verbatim, then, on average, each iteration takes (7 + ¢)/(¢ + 1) units of
time. It is, however, possible to save time through a parallelization scheme. Note that, in
Algorithm 3, we may first simulate the subchain

X0, Xt Xewt, X (o140 Xoer1)s - > X(sm1) (0 1) 4> Xs(e1): - - -

through the standard DG sampler (Algorithm 1). After simulating the subchain at a given
length, for ¢t = s(¢ + 1) + ¢ where s is a non-negative integer and ¢ € {1,...,¢ — 1},
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Xt = (X1, X24) can be generated by setting X ; = X1,5(6+1)’ and drawing X ; from
71 (- | X1 s(e+1))- Hence, the repeated sampling from 71 can be done through post-processing.
Moreover, in an ideal setting, this can be executed in parallel, resulting in the overall runtime
of the modified DG algorithm being essentially equal to the time it takes to simulate the
subchain. A modified DG chain of length 7' corresponds to a subchain of length roughly
2T /(£ + 1). Thus, depending on how much parallelization is feasible, the per-iteration cost
(in terms of time) of the modified DG algorithm can vary between 2/(¢ + 1) x (1 +1)/2=
(t+1)/(+1)and (T+£)/(£+1).

I will first analyze the modified DG sampler when assuming that there is no parallelization.
It will be shown that even in the absence of parallelization, this sampler is competitive against
the standard DG and RG samplers.

The adjusted asymptotic variance for the modified DG algorithm is

L+
{41

Let us now compare VJJI(f, ?) to VDT(f) and Vg(f,r).

One would expect that the modified DG sampler behaves similarly to the RG sampler
with selection probability » = 1/(¢ 4 1). The following result shows that the modified DG
sampler is better than, but comparable to the RG sampler with r = 1/(¢ 4 1) in terms of
adjusted asymptotic variance.

Vah(f,0) =

COROLLARY 3.13. For{>1and f € L%(ﬂ'),

1 204+1 ¢4+1
V&(f,é)gV,J(f,M>gmax{M,Z}VAZ(f,K).

PROOF. Fix £>1and f € L3(r). By Lemma A 4,

1 20+1 £+1
< — )< I )
EM(E)_ER<€+1)_H1&X{€+1, E }EM(@

It then follows from Propositions 3.2 and 3.11 that

Vat(/. ) < Vi <f, Hﬂ) < max{iffll, “61} Vat(/,0).

The desired result is obtained by noting that 1 —r+r7 = ({+7)/({+1)ifr=1/(¢+1). O

A comparison between VRT(T) and VJI(Z) for a general r that is not 1/(¢ 4 1) can be
conducted on a case-by-case basis. The key step is verifying whether operators of the form
EXm(€) — Xr(r) and kXR(r) — Xm(£) are positive semi-definite. A tool for this is provided
in Lemma A.2.

Naturally, just like the RG sampler, the modified DG sampler enjoys robustness over the
vanilla DG sampler, given that £ is well-chosen. The next two results are derived from Propo-
sitions 3.1, 3.11, and Lemma A.4. The proofs are extremely similar to those of Corollaries 3.8
and 3.10, so they will be omitted.

COROLLARY 3.14. Let £ be a function of T such that { — oo if 7 — oo. Then, for any
nonzero f € Mo ® My, @ (I — Py) Mg, as 7 — o0,

Vi (f.0)
Va(f)
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COROLLARY 3.15. For{>1and f € L3(m),

20+7) CHi4+24+ (-1 /(+1)2+1

T
Vulh 0= e+ 200+ 1)

Va(f).

In particular, if

1 1+4 1
1) (< + +4(r + )’
2
then

V(£ 0) < 2vi(F).

If 7> 1, then letting £ > 1 under the restriction of (21) would give the desired robustness.
In fact, having £>> 1 and ¢ = O(7) would yield a similar effect.

When post-processing and parallelization is fully exploited, VJI( f,2) can be further di-
minished. Indeed, if we assume full parallelization and consider only the cost of computation

time, then VJ[(f, )= (t+1)VMm(f,£)/(£+1), rather than (7 4+ £)Vm(f,£)/(£+ 1) as before.

One may then multiply a factor of (74 1) /(7 +£) to the any upper or lower bounds on VIJI (0)
in Corollaries 3.13 and 3.15.

4. Convergence Rate. I will now use Halmos’s (1969) theory to study the convergence
properties of two-component Gibbs samplers, and provide an alternative proof of Qin and
Jones (2022) main result, which, loosely speaking, states that the DG Markov chain converges
faster than the RG chain.

I will first provide some general results regarding the convergence rates of possibly time-
inhomogeneous Markov chains. Define L?(7) to be the set of probability measures y such
that 4 is absolutely continuous with respect to 7, and that dy/dm € L?(r). For p,v € L?(7),
one can define their L? distance

dp dv

dr dm

l—vli=  sup Ud—vﬂ=’
feLs(m), |l fll=1

This distance is often used in the convergence analysis of Markov chains. Let K be the ¢-step
transition kernel of a possibly time-inhomogeneous Markov chain such that 7 is invariant,
i.e., TK; = 7 for each positive integer t. It can be checked that uK; € L?(w) whenever
€ L2(m). If (X;) is a chain associated with this Mtk and X ~ p € L2(r), then p K is the
marginal distribution of X}. The L? distance between K and 7 is

ok —mle=  swp  (u—mf
FeLj(m), [l flI=1

= sup <du - 17th>
feLi(m), If1I=1

du
—|Ky (SE 1
| (&-1)]
~/dp . (dp 12
(e ()

(22)

where K is the adjoint of K.
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Evidently, the behavior of the positive semi-definite operator KK as t — oo is closely
related to the convergence properties of the chain. To make this relationship more explicit,
consider the convergence rate

po = exp sup  limsupt'log || uK; — 7|«
pEL2(m), uFm  t—00

(Roberts and Tweedie, 2001; Qin and Hobert, 2020). It can be shown that py € [0,1]. If
po < p € (0,1], then for each p1 € L?() there exists M,, < oo such that

(23) |k — | < Myp"

for every positive integer t. Conversely, if (23) holds for each ¢, then pg < p. Hence, the
smaller the rate, the faster the convergence.

The following result is proved using standard techniques like those from Fill (1991);
Roberts and Rosenthal (1997); Paulin (2015), with details given in Appendix C. Readers
are also referred to Kontorovich and Ramanan (2008), which establishes concentration in-
equalities for time-inhomogeneous chains.

PROPOSITION 4.1. Let K; be the t-step transition kernel of a Markov chain with sta-
tionary distribution 7. Then

sup  limsupt tlog ||uK; — 7|« = log sup lim sup(f, KtKZ‘f>1/(2t) )
peLZ(m), pFm =00 feLy(m), |Ifl=1 t—oo
That is,

po = sup limsup(f, KtK;kf)l/(%).

feLg(m), Ifll=1 t—o0

Let pp and pr(r) be the convergence rates of the DG and RG chains, respectively, where
is the selection probability. That is,

pD = exp sup  limsupt~ ' log ||uD; — 7|, | ,
WEL2(m), pFm t—00

pr(T) :=exp sup  limsupt log||uRs — 7|+ | -
peEL2(m), pFr =00
Let us now use Proposition 4.1 to find the relationship between the two rates. The following

lemma is useful.

LEMMA 4.2. Suppose that in Proposition 4.1, K; K} = A™Y) for t sufficiently large,
where A is a positive contraction on L3(r) and m(t) is a non-negative function of t. Then

sup limsup<f, KtKZf>1/(2t) = HAHm?
feL(m), [Ifl=1 t—oo

where

m = liminf (2t) " tm(t).

t—o00

PROOF. Because A is positive semi-definite and m(t) is non-negative, for f € L2(r),

(f, AT f) < AT = || A0
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Then, since || Al| <1,

sup  limsup(f, K,K; )V = sup  Timsup(f, A" £)VED <A™,
FeLi(m), Ifll=1 t—oo feLi(m), Ifll=1 t—oo

Consider the reverse inequality, which obviously holds when ||A|| = 0. Suppose that | A|| >
0, and let € € (0,]|Al|) be arbitrary. A has a spectral decomposition A = [ XE4(d)),
where F 4 is the projection-valued measure associated with A (see, e.g., Kubrusly, 2012,
Theorem 3.15). There exists a function f(.) in the range of Ea((||A[l —¢,[|A[]]) such that
| o)l = L. Then

sup  limsup(f, K K7 )Y@ > limsup(fo), A™Y f)) /Y
feLim), Ifl=1 t-oe t-vo0

- 1/(2t)
= limsup < / XD (fioy, Ea(dN) f, (5)>>

t—o0 —00
> (Al =)™
Since ¢ is arbitrary,

sup  limsup(f, KoK; £)1/ @) > || 4],
feLg(m), Ifll=1 t—o0

O]

Consider the DG and RG Markov chains. Recall from (2) and (3) that their Mtks are as
follows: Das_1 = (P1P)* 1Py and Doy = (P P,)?® for any positive integer s, while R; =
[(1 —r)Py + rP,]! for any positive integer . Note that for t > 2, D,D;j = (P, P,P;)! 1. In
light of Proposition 4.1 and Lemma 4.2,

pp =[PP P12, pr(r) = ||(1 — )Py + 1Py

Let f € L3(r) be decomposed as in (10). That is, f = Zil:O Z;’:O fij + fo+ fi. Assume
that Moo = {0} and My # {0}. One can use Lemma 2.1 to obtain P, P, P f = C? fo. Then
| P1P2Py|| = ||C||?. On the other hand,

(1 =7r)Pr+rP]f = (1—7)for +7fi0+ [(1 —7)Piag +7Pelag](fo + f1)-

It then follows from Lemma 2.4 that

I 1—2r)2+4r(1 - 2
\|(1—T)P1+1“P2H:max{1—r, T, 1o+ V/( r)+dr(d - n)C ’}

2

1 1—-2r)2+4r(1 - 2
:max{l—T,Tu v r) ;— A T)HCH}

C1+/(1=2r)2 +4r(1 = 1)[|C]?
= 5 _
Note that the second equality holds since 0 < ||C|| < Iy, and
N 14+ /(1 —2r)2 +4r(1 —r)a?
2

is an increasing function on [0, 1]. In summary, we have obtained the following result, which
is Qin and Jones’s (2022) Theorem 4.1.

T
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COROLLARY 4.3.  (Qin and Jones, 2022) Assume that Moo = {0} and Mg # {0}. Then

14++/(1—=2r)2+4r(1 —7)||C|]2
=l pulr)= LH TP FIA=IOP

REMARK 4.4. The formula pp = ||C|| can be viewed as a special case of well-known
results concerning the convergence rates of alternating projections (Kayalar and Weinert,
1988; Badea, Grivaux and Miiller, 2012).

Corollary 4.3 allows for a comparison between pgr(7) and pp. To adjust for computation
time, one should raise a convergence rate to the power of the number of iterations that the
associated algorithm can simulate in unit time. To be precise, assume as before that one
iteration of the DG and RG algorithms take (1+47)/2 and 7+ 1 —r units of time respectively,
and let

p]T) :p%/(ur)’ pr(r)f :pR(T)l/(T'T+177")'

By Corollary 4.3 and Young’s inequality, for r € (0, 1),
PR(T)T > ”CHZT‘(l*T)/(TT‘Fl*T) > HC”?/(lJrT) _ p]T).

Moreover, equality holds only if ||C|| = 1. It is in this sense that the DG chain has a faster
rate of convergence than the RG chain, after adjusting for computational cost. It is worth
mentioning that this does not imply that

16D 2t/(14m)) — Tl S NER 14y Grrr1-r)) — Tl

for every y1 € L2(7) and t large enough. That is, for certain starting distributions s, it is still
possible for the RG chain to approach 7 faster than the DG chain.

Finally, consider the modified DG algorithm with ¢ consecutive draws from 7, as de-
scribed in Section 3.4. Denote its convergence rate by pm(¢). For t = (¢ + 1)s + ¢, where s
is a non-negative integer, and ¢ € {0,...,¢}, the t-step Mtk of the modified DG chain
is M(Z—I—l)s—‘rq = (Pl_PQ)S if q = 0, and M(€+l)s+q = (P1P2)SP1 if qc {1,. . . ,f} Using
Lemma 2.1, Proposition 4.1, and Lemma 4.2, one can then establish the following.

PROPOSITION 4.5.  Assume that Moo = {0} and Mg # {0}. Then
pu () = [|C[P/ .

When there is no post-processing and parallelization, it takes (¢ + 7)/(¢ + 1) units
of time to simulate one step of the chain. To adjust for computation cost, let p;(,l(f) =
pm(0)EHD/(ET) Then we have the following comparison result:

+1

This, along with Corollary 3.13, shows that if » = 1/(¢ + 1), the modified DG algorithm is
better than, but comparable to the RG algorithm in terms of adjusted asymptotic variance and
convergence rate. The standard DG algorithm is the best out of the three algorithms in terms
of convergence rate, but least robust in terms of asymptotic variance.

If post-processing and parallelization is employed, then, in the best case scenario, the
modified DG algorithm would have the same convergence rate as the standard DG algorithm.
Indeed, with full parallelization, the per-iteration cost of the modified DG algorithm is (7 +

1)/(£+1). In this case, pl;(£) = pm(£)EHD/ T+ — || €2/ T+, 50 pl (0) = pl..

1
i < ) > [|C|PIENE] > ol (0) = [[C ) > o)) = pf,.
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5. Discussion. The methods herein can be used to analyze other variants of two-
component Gibbs samplers. Indeed, let (X;) be a Markov chain with (¢/, ¢’ +t)-Mtk Ky 444.
Suppose that for non-negative integers ¢ and ¢', the operator Ky 444 is in an algebra of finite
type generated by P, P», and the identity operator I. Then Ky 44 leaves Moo, Moy, Mo,
My, and My invariant. Moreover, Ky /| Mg has a matrix representation in accordance
with Lemma 2.1. In principle, one can analyze the convergence rate and asymptotic variance
of the associated MCMC algorithm through elementary matrix calculations. In Appendix D,
this idea is applied to a random sequence scan Gibbs sampler that has Mtk (P, P, + P> Py) /2.
There are many other interesting variants of two-component Gibbs samplers that can be stud-
ied in future works. It’d be interesting to know which variant is optimal in terms of asymptotic
variance and/or convergence rate.

In applications of MCMC, one often needs to evaluate 7f = fx )m(dz) for some
vector-valued f : X — RP, where p is some positive 1nteger (Vats Flegal and Jones, 2019).
Based on a Markov chain (X;), the sample mean St (f) = Z (X¢) is then a ran-

dom vector. Under regularity conditions, the multivariate central limit theorem holds:
VTIST(f) = 7 f] SN0,V () as T — oo,

where V(f) is an asymptotic covariance matrix. If we use Vi (f) and Vr(f, ) to denote the
asymptotic covariance matrices associated with the DG and RG samplers, respectively. Then
for a € RP,

VD(an) = aTVD(f)av VR(ana T) = aTVR(fv T)CL.
Thus, Proposition 3.4 provides a Loewner ordering for Vi (f) and Vk(f). That is,

W(f) <ki(r)WR(fr),  VR(ET) < k() Vo (),

where k1 and ko are defined in the said proposition.

One future research avenue is to study the efficiency of the RG sampler with  # 1/2 and
the modified DG sampler with £ > 1 when there is a large discrepancy in the variability of X
and X». For instance, assume that we wish to estimate 7 f and wg where f(x1,22) depends
only on z; and g(z1,x2) depends only on x5. If the variance of f(X;,X2) is much larger
than that of g(X7, X5), how much can be gained from more frequent updates of X;?

A natural question is whether the techniques herein can be used to study Gibbs sam-
pler with more than two components. Gibbs samplers with n components are associated
with Markov operators generated by n orthogonal projections. Unfortunately, results like
Lemma 2.1 do not extend to the n > 3 case in general. See Section 11 of Bottcher and
Spitkovsky (2010) for a review. Whether it is possible to extend results in this work to the
n > 3 case is a subject for future work. See Greenwood, McKeague and Wefelmeyer (1998),
Andrieu (2016), Roberts and Rosenthal (2016), and the recent work Chlebicka, Latuszynski
and Miasojedow (2023) for studies on this topic based on other tools.

APPENDIX A: TECHNICAL RESULTS
LEMMA A.1. Let ki(r) and ko(r) be defined as in Proposition 3.4, i.e.,
ki(r)y=1—7r+7r24+/r2(1 —r)2 + (1 —2r)2,

L—r+7r2  /r2(1—r)2+(1—2r)?
2r(1—r) 2r(1—r)
Then, for r € (0,1), each of the following holds.

k‘Q(’I") =
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(i) ki(r)>1;, (i) ki(r)>2r/(2—7);,  (iii) ki(r) >2(1—7)/(1 +7r);
(i) ka(r) 22 (W kalr)> (2= 1)/(2r); (vi) ka(r) > (14 7)/[2(1 = 7).
PROOF. It’s obvious that
ki(r)>1—r+ri+|r—r?,
so (i) holds. Moreover,

ki(r)>1—r+7r*+]1—2r|,

Thus,
9 2r
ki(r)>r —|—r=7‘(1+r)>2 )
—r
and
B(r) > 2—3r 42 = (1— )2 =) > 20 =7)
r —3r+r‘=(1-7r)2—-r .
W= 147
This proves (i)-(iii).
The proofs for (iv)-(vi) are similar. ]

LEMMA A.2. Let A be a linear operator on Mg with matrix representation

AT ( dly +aC?S~2 pCS~1

bCS-1 el >F, a,b,c,d eR.

Then A is positive semi-definite if each of the following conditions holds:

1) a,c,d>0;
(i) ac—b%>0.

PROOF. If ¢ =0, then (i7) implies that b = 0, and the proof is trivial. Assume that ¢ > 0.
Then A > B, where > denotes Loewner ordering, and

b% M2 g—2 -1
e [ BC2572 p0S
b=t ( bCSt el )F'

Recall that I' = Iy @ W where W : (I — P;)Mgr — MR is unitary. For fy € Py Mg and f; €
(I — Py) Mg,

2
(fo+ f1,B(fo+ f1)) =%<f07025_2f0> +b(fo, CST'W f1) + b(f1, W*CS™! fo) + ¢l 1]]?

2

— H\%CSlfo N

>0.

Thus, B is positive semi-definite, and so is A. O

LEMMA A3. Forr € (0,1), let ¥p and Yg(r) be defined as in (12) and (15), and let
k1(r) and ko(r) be defined as in Lemma A. 1. Then Xp < k1 (r)Xg(r), and Xg(r) < ka(r)Xp,
where < denotes Loewner ordering.
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PROOF. I will establish ¥p < ki (r)Xg(r). The other inequality can be proved in a similar
way.

() == =1 < d(r)lo +a(r)C2572 b(r)CS™! ) r,

b(r)CS—! e(r)Io
where
o) = () —4
br) = (1) =2,
o) = T ka(r) -2,
) = 2=k () — 2,

By Lemma A.1, a(r), c(r),d(r) > 0. Straightforward calculations reveal that

a(r)e(r) —b(r)? = 2 M
(r)e(r) = b(r) Cor(l—7) r(l—r)

It follows from Lemma A.2 that Xp < ky(r)3r(r). O

Ey(r)? — ki(r) +4=0.

The following result can be proved in a similar fashion.

LEMMA A4. Let Xp, Xg(r), Xy (£) be defined as in (12), (15), and (20). Then, for £ > 1,
1 204+1 ¢+1
< S I et M
Ym(l) < X <€+1> _{ ] }EM(Z),

Cri+2+(0—1)/(l+1)2+1
<
Enf) = 200+ 1)
<€2+€+2+(€—1) ((+1)2+1
- (0+1)2

and

ED)

Xp

Su(0).

In Section 3 it was claimed that the bounds in Proposition 3.4 are sharp. The following
proposition makes this precise.

PROPOSITION A.5. Suppose that Moy = {0} and Mg # {0}. Let r € (0,1) be given,
and let k1 (), ka(r) be defined as in Lemma A.1. Then, for any n < ki(r), if ||C|| is smaller
than but sufficiently close to 1, one can find a non-zero f € L3(m) such that

Vo (f) >nVe(f,7).

Moreover, for any n < ka(r), if ||C|| is smaller than but sufficiently close to 1, one can find a
non-zero f € L&(m) such that

Ve(f,r) >nVp(f).

PROOF. TI'll prove the first assertion. The proof of the second is similar.
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Let n < k1 (r) be arbitrary. For k& > 0, define

2
a(k)_r(l—r)k_4’
Bk =Tk 2,
k)= T k2

Then

2, At —r41)
Cr(l—7) r(l—r)

k = k1(r) is the larger root of the equation a(k)y(k) — B(k)? = 0, which always has two

roots. Moreover, by Lemma A.1, (k1 (r)) > 0. Without loss of generality, assume that 7 is
sufficiently close to k1 (7) so that

a(n)y(n) — Bn)*<0, ~(n) >0.

a(k)y(k) — B(k)* k+4.

One can show that

(24)

n¥r(r) — ¥p
8 o2 g2 -1 2-r _ BM2] 202

_pe [ Ser€ST BmOST b b [ (=2 Dot la(n) - 28 c2572 0 .
B(n)CS~ v(n) 1o 0 0

Basic properties regarding continuous functions of self-adjoint operators imply that
IC2572|| = [|C*(To — C*) | = [IC1?/(1 = | CIP?).
Thus as ||C|| — 1 from below, ||C?S~2|| — co. Moreover, C2S~2 is positive semi-definite.

When ||C| is sufficiently close to 1, one can find a non-constant function fo € Py Mg such
that

(=2 1l + fato - 20 e o252 <o

Let f = fo — B(n)y(n) *W*CS~!f,, where W* is the lower right block of I'*. Then by
Propositions 3.1 and 3.2 along with (24),

nVR(f,r) = Vo(f) = (f, [n3r(r) — Xp]f)

= <f0, [Q;TU - 2} fo+ [04(77) - 57((737))2] 025_2f0>

< 0.

APPENDIX B: PROOF OF LEMMA 2.4
Recall that the lemma states that for r € (0, 1),
1—7r)P P, =T r
=Pl =0 (IO e, Jon
where U : Mg — MR is unitary, and
A(C) = (1—2r)Iy +4r(1 —r)C?.
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Consider first the case » = 1/2. When this is the case,

. Io/2+C?/2 CS/2
(1—7’)P1’MR+TP2‘MR:F ( CS/Q 52/2 T,

A(C) = C?, and the result holds with
o (VEEDE VE=OR )
VI -0)/2 —/(Ih+C)/2 )"
Assume that r # 1/2. For x € (0, 1), define
A(z)=(1-2r)?+4r(1 —r)a”.

Also, for z € (0,1), let
hoo(z) = 14+ A(x)]x 7
VA =)+ /A@)a? + [2r — 1+ VA@)P?
214 VA@NWI= 2

hio(z) = ;
VA=)l + VA@)? + 20 — 1+ /A2
hot () = 1—Ax)]z 7
VA =)l — /A@)a? + [2r — 1 - A()P?
[2r — 1 — /A(z)]V1 — 2?2
hll(ﬂf

)= .
VA=)l = VA@)? + 20 — 1 - /A2

When r < 1/2, let hoo(O) =1, h10(0> =0, h01(0) =0, hn(O) = —1, and let hoo(l) =1,
hlo(l) =0, hol(l) =0, hll(l) =—1.Whenr > 1/2, let hoo(O) =0, hlo(o) =1, h01 (O) =1,
hll(O) =0, and let hoo(l) =1, hlo(l) =0, h()l(l) =0, hn(l) = —1. Then, for i € {0, 1},
hi; is continuous on [0, 1]. For r € (0,1) and = € [0, 1], the matrix

( hoole) hou(a)
“(x)—<h33<m> hfi(a:))

is unitary since u(z) " u(z) = I. Moreover,

<1—7“—|—7"x2 rac\/l—xQ) (z) = ()([1+\/A(ZL')]/2 0 )
reyv1—a2  r(1—2?) ) = e 0 1—A@)]/2 )’

SO
(1—r+rm2 m@)zu@)<[1+\/m1/2 0 )U(w)—r
raVT—a2 r(l-a?) 0 1= VA@)/2 |

The spectrum of C' is a subset of [0, 1]. Using polynomial approximation (see, e.g., Helm-
berg, 2014, §32), one can define h;;(C) for i, j € {1,2}. Let

{ hoo(C©) hon(©)
U= < ho(C) hn(C) >

For any two real continuous functions hy and hg on [0, 1], it holds that hi(C) + he(C) =
(h1 + h2)(C), and hi(C)ha(C) = (h1h2)(C). By previous calculations, one can then con-
clude that U is unitary, and that Lemma 2.4 holds.

1
)
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APPENDIX C: PROOF OF PROPOSITION 4.1
Let p € L2() be such that i # 7, and set g = dp/dm — 1 € LE(r). Then, by (22),

st log e, . = tog (1imsup o]/ Ll Ki K70/ lal) /)
o0

t—o0

—tog (tmsupto/ ol K701} )
—00

It follows that

sup  limsupt tlog ||uK; — 7|« <log sup lim sup(f, KtK;ff>1/(2t) )
HEL?(m), p#m  L—00 feLi(m), lIfll=1 t—oo

To prove the reverse inequality, let f € L3(7) be such that || || = 1, and decompose it into
positive and negative parts: f = f — f_. Then

c=7nfr=nf_>0.

Let 14 and p_ be probability measures such that dyy /dmr =c¢ ' f, and dp_ /dr =c71f_.
Then piy, i € L2(7), and neither of the two is equal to 7. By (22),

(f KK )Y = e[ K[ e = 1) = (¢ - = D))
<l KF (e = Dl F el K (- = 1)
— ey K — 7lls + - Ki — L
For a,b > 0, log(a + b) <log2 + max{loga, logb}. It follows that

log ((f, KtK;‘f>1/(2t)> <t 1log(2¢)+max {t_l log ||py Kt — 7|+, t 1 log || K; — |}

For two sequences of real numbers (a;) and (b;),

lim sup max{ay, b;} = max {lim sup a¢, lim sup bt} .

t—o00 t—o00 t—o00

Thus,

log ( limsup(f, K; K} f 1/(2t) = limsuplog ( (f, K; K/ f 1/(21)
t t

t—o00 t—o00

< sup  limsupt tlog||uK; — ||
WELZ(m), pFm L300

Taking supremum with respect to f shows that

log sup lim sup(f, KtK;‘f>1/(2t) < sup limsupt ™! log ||uK; — |,
fFeL(m), If=1 t—oo HEL2 (), ptm t—00

APPENDIX D: ANOTHER VARIANT OF TWO-COMPONENT GIBBS

One can use the theory of two projections to analyze other variants of two-component
Gibbs samplers. As a demonstration, consider the following random sequence scan Gibbs
sampler.
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Algorithm 4: Random sequence scan Gibbs sampler

Draw X, = (X1,0,X2,0) from some initial distribution on (X, 5), and set t =0 ;
while t < T do
draw W from a Bernoulli(1/2) distribution;

if W =0 then
| draw Xy, from (- | X1,), then draw X1 ;41 from 7o (- | Xo441);
if W =1 then

| Draw X ;41 from mo(- | Xo4), then draw Xy 41 from 7y (- | X1 441);

set Xy11 = (X1,641, X2.441);
sett=1t¢t+1;

The underlying Markov chain X} is time-homogeneous, and the associated ¢-step Mtk is
S =(PiPyJ2+ PPy /2)".

It is clear that 7S; = 7, so the chain has 7 as a stationary distribution. Assume that
My = {0} and that Mg # {0}. Then, for f € L3(w) with orthogonal decomposition f =

Z%:o Z;:U fij + fo+ f1 asin (10),
(25) S1f = (Prlug Pol g /2 + Pa| g Prlvg /2) (fo + f1)-

By Lemma 2.1, the following matrix representation holds:

L[ C? CS)2
(26) Pi|aig Palvig /2 + Polaig Prlagg /2=T <cs/2 o/ >F‘

For f € L3(r) defined above, the associated asymptotic variance is

Vs(f) = E[f(X0)*] +2) _ E[f(Xo) f(X1)],

t=1

where X'O ~ 7 (see, e.g., Jones, 2004).

PROPOSITION D.1.  Assume that |C|| < 1. Then

Vs(f) = Il forll* + L froll® + 1 f12l* + (fo + f1, Zs(fo + f1)),

where

S =I* Ag BT,

Ao (In—C?/4)~! 0 Bee Ip+2C%S~2+(C?%/4 (0SS!
5= 0 (Ip—C?/0)~t ) 75— cst Iy+C%/4 )

PROOF. By (25),

Vs(f) =IF17+2) (f,(PP2/2+ PP /2)' f)
27) P

= foll2 + I froll® + 1 faall® + (fo + f1,2(fo + f1)),
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where

o
S=1+2) (Pilag Palarg /2 + Polasg Pilns /2)"
t=1

By the matrix representation,

[ee] 2 t
E:I+2F*Z( ¢ CS/2> r

cs/2 0
t=1
(28) 2 _ -1
=2I'* S CS/2 r—r1
—-CS/2 Iy
=3.
The desired result then follows from (27). ]

The following lemma holds for Xg.

LEMMA D.2. Let Xp and X5 be as in (12) and (28), respectively. Then
¥ip < 2¥s.

PROOF. Recall that
Ys=T"AsBsT,

where Ag and Bg are given in Proposition D.1. Since 0 < ||C|| < 1, As > I. Moreover,
(As — 1 )1/ 2 commutes with Bs. It is straightforward to verify that Bg is positive semi-
definite. Then

Y —I"BgI' = F*(AS — I)Bsr = F*(AS — I)1/2BS(AS — 1)1/21‘"
Hence, X5 > I'* BsI'. On the other hand,

To+20252 ¢S\ 1
51 L )P

The desired result then follows. UJ

I*Bsl > T* (

Recall from Proposition 3.1 that the asymptotic variance for the DG sampler is

Vo (f) = 2[ forll? + 2l froll* + L fuall* + {fo + f1, Zp(fo + f))-
It then follows from Proposition D.1 and Lemma D.2 that

W (f) <2Vs(f).

On average, one iteration of the random sequence scan algorithm takes twice the time one
iteration of the DG algorithm takes. Let VST (f) be the computation time adjusted asymptotic
variance of the random sequence scan algorithm, i.e., VST( f)=(r+1)Vs(f). Then

Vi <vd ).

Thus, the random sequence scan sampler is no more efficient than the DG sampler in terms
of adjusted asymptotic variance (and thus could be much worse than the RG sampler).
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Consider now the convergence rate of the chain. Define
ps = exp sup  limsupt 'log||uS; — ||
RELZ(m), pFm 100
By Proposition 4.1 and Lemma 4.2,
ps =||P1P2/2 + Py Py /2|| = || Pyl aig Polaig /2 + Palaig Pr
where the second equality follows from (25). Consider the matrix representation (26) and

note that
Cc? CS8)2 Iy +C)C/2 0 .

where

<\/Io+C)/2 V(o —C)/2 )
V(o —C —/ (o +C)/2

is unitary and U7 = Uy is its adjoint. Then
ps = || Pilag Polasg /2 + Polarg Prlarg /2] = (L + G C /2.

After adjusting for computation time, the convergence rate is
1/(1+
pk=pd T = [ CDIICN MO,

It is obvious that Ps > pD, where pT = ||C|#/(*+7) is given in Section 4. Depending on the

value of ||C||, r, and T, pg can be larger or smaller than pE( ).

Acknowledgments. The author thanks the Editors, an anonymous Associate Editor, and
two anonymous referees for their valuable feedback. In particular, the referees suggested
studying the modified DG sampler and its parallelization. The author would like to thank
Riddhiman Bhattacharya, Austin Brown, James P. Hobert, Galin L. Jones, and Haoxiang Li
for their helpful comments.

Funding. The author was supported by NSF Grant DMS-2112887.

REFERENCES

ALBERT, J. H. and CHIB, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of
the American Statistical Association 88 669—679.

AMIT, Y. (1991). On rates of convergence of stochastic relaxation for Gaussian and non-Gaussian distributions.
Journal of Multivariate Analysis 38 82-99.

ANDRIEU, C. (2016). On random-and systematic-scan samplers. Biometrika 103 719-726.

BADEA, C., GRIVAUX, S. and MULLER, V. (2012). The rate of convergence in the method of alternating projec-
tions. St. Petersburg Mathematical Journal 23 413-434.

BOTTCHER, A. and SPITKOVSKY, I. M. (2010). A gentle guide to the basics of two projections theory. Linear
Algebra and its Applications 432 1412-1459.

BOTTCHER, A. and SPITKOVSKY, I. M. (2018). Robert Sheckley’s answerer for two orthogonal projections. In
The Diversity and Beauty of Applied Operator Theory 125-138. Springer.

CASELLA, G. and GEORGE, E. I. (1992). Explaining the Gibbs sampler. The American Statistician 46 167-174.

CHLEBICKA, 1., EATUSZYNSKI, K. and MIASOJEDOW, B. (2023). Solidarity of Gibbs Samplers: the spectral
gap. arXiv preprint.

DiAcoNIs, P., KHARE, K. and SALOFF-COSTE, L. (2010). Stochastic alternating projections. /llinois Journal
of Mathematics 54 963-979.

DOBRUSHIN, R. L. (1956). Central limit theorem for nonstationary Markov chains. 1. Theory of Probability &
Its Applications 1 65-80.



32 QIN

FILL, J. A. (1991). Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, with an
application to the exclusion process. Annals of Applied Probability 62-87.

GELFAND, A. E. and SMITH, A. F. (1990). Sampling-based approaches to calculating marginal densities. Journal
of the American statistical association 85 398—409.

GREENWOOD, P. E., MCKEAGUE, I. W. and WEFELMEYER, W. (1998). Information bounds for Gibbs sam-
plers. Annals of Statistics 26 2128-2156.

HALMOS, P. R. (1969). Two subspaces. Transactions of the American Mathematical Society 144 381-389.

HELMBERG, G. (2014). Introduction to Spectral Theory in Hilbert Space. Elsevier.

JONES, G. L. (2004). On the Markov chain central limit theorem. Probability Surveys 1 299-320.

JONES, G. L. and HOBERT, J. P. (2001). Honest exploration of intractable probability distributions via Markov
chain Monte Carlo. Statistical Science 16 312-334.

KAYALAR, S. and WEINERT, H. L. (1988). Error bounds for the method of alternating projections. Mathematics
of Control, Signals and Systems 1 43-59.

KONTOROVICH, L. and RAMANAN, K. (2008). Concentration inequalities for dependent random variables via
the martingale method. Annals of Applied Probability 36 2126-2158.

KUBRUSLY, C. S. (2012). Spectral theory of operators on Hilbert spaces. Springer Science & Business Media.

LINK, W. A. and EATON, M. J. (2012). On thinning of chains in MCMC. Methods in Ecology and Evolution 3
112-115.

Liu, J. S., WONG, W. H. and KONG, A. (1994). Covariance Structure of the Gibbs Sampler with Applications
to the Comparisons of Estimators and Augmentation Schemes. Biometrika 81 27-40.

MACEACHERN, S. N. and BERLINER, L. M. (1994). Subsampling the Gibbs sampler. The American Statistician
48 188-190.

MAIRE, F., Douc, R. and OLSSON, J. (2014). Comparison of asymptotic variances of inhomogeneous Markov
chains with application to Markov chain Monte Carlo methods. Annals of Statistics 42 1483-1510.

NisHIO, K. (1985). The structure of a real linear combination of two projections. Linear Algebra and Its Appli-
cations 66 169-176.

PAULIN, D. (2015). Concentration inequalities for Markov chains by Marton couplings and spectral methods.
Electronic Journal of Probability 20 1-32.

PoLsON, N. G., ScoTT, J. G. and WINDLE, J. (2013). Bayesian inference for logistic models using Pdlya—
Gamma latent variables. Journal of the American Statistical Association 108 1339-1349.

QIN, Q. and HOBERT, J. P. (2020). On the limitations of single-step drift and minorization in Markov chain
convergence analysis. Annals of Applied Probability 31 1633-1659.

QIN, Q. and JONES, G. L. (2022). Convergence rates of two-component MCMC samplers. Bernoulli 28 859—
885.

ROBERTS, G. O. and ROSENTHAL, J. S. (1997). Geometric ergodicity and hybrid Markov chains. Electronic
Communications in Probability 2 13-25.

ROBERTS, G. O. and ROSENTHAL, J. S. (2006). Harris recurrence of Metropolis-within-Gibbs and trans-
dimensional Markov chains. Annals of Applied Probability 16 2123-2139.

ROBERTS, G. O. and ROSENTHAL, J. S. (2016). Surprising convergence properties of some simple Gibbs sam-
plers under various scans. International Journal of Statistics and Probability § 51-60.

ROBERTS, G. O. and TWEEDIE, R. L. (2001). Geometric L% and L' convergence are equivalent for reversible
Markov chains. Journal of Applied Probability 38 37—41.

TANNER, M. A. and WONG, W. H. (1987). The calculation of posterior distributions by data augmentation (with
discussion). Journal of the American Statistical Association 82 528-540.

TIERNEY, L. (1994). Markov chains for exploring posterior distributions. the Annals of Statistics 22 1701-1728.

VAN DYK, D. A. and MENG, X.-L. (2001). The art of data augmentation (with discussion). Journal of Compu-
tational and Graphical Statistics 10 1-50.

VATS, D., FLEGAL, J. M. and JONES, G. L. (2019). Multivariate output analysis for Markov chain Monte Carlo.
Biometrika 106 321-337.



	Introduction
	Preliminaries
	Basic properties of two-component Gibbs samplers
	Markov operators
	Halmos's Theory of Two Projections

	Comparing Asymptotic Variances
	Characterizing VD(f) and VR(f,r)
	The comparison
	Data augmentation
	A Modified DG Sampler

	Convergence Rate
	Discussion
	Technical Results
	Proof of Lemma 2.4
	Proof of Proposition 4.1
	Another Variant of Two-component Gibbs
	Acknowledgments
	Funding
	References

