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ABSTRACT
This article studies the convergence properties of trans-dimensional MCMC algorithms when the total
number ofmodels is finite. It is shown that, for reversible and some nonreversible trans-dimensionalMarkov
chains, under mild conditions, geometric convergence is guaranteed if the Markov chains associated with
the within-model moves are geometrically ergodic. This result is proved in an L2 framework using the
technique of Markov chain decomposition. While the technique was previously developed for reversible
chains, this work extends it to the point that it can be applied to some commonly used nonreversible chains.
The theoryherein is applied to reversible jumpalgorithms for threeBayesianmodels: a probit regressionwith
variable selection, a Gaussianmixturemodel with unknown number of components, and an autoregression
with Laplace errors and unknownmodel order. Supplementary materials for this article are available online,
including a standardized description of the materials available for reproducing the work.
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1. Introduction

In many statistical setups, the parameter space of interest is a
union of disjoint subsets, where each subset corresponds to a
model, and the dimensions of the subsets need not be the same.
Trans-dimensional Markov chain Monte Carlo (MCMC) is a
class of algorithms for sampling from distributions defined on
such spaces, which allows for model selection as well as param-
eter estimation. This type of algorithm, especially the reversible
jump MCMC developed by Green (1995), has been applied to
important problems like change-point estimation (Green 1995),
autoregressionmodels (Troughton and Godsill 1998; Ehlers and
Brooks 2002;Vermaak et al. 2004), variable selection (Chevallier,
Fearnhead, and Sutton 2023), wavelet models (Cornish and Lit-
tenberg 2015) etc. The current article aims to provide conditions
on geometric ergodicity for trans-dimensional Markov chains
when the total number of models is finite.

LetK be a finite setwhose elements are referred to as “models.”
Amodel k in K is associated with a non-emptymeasurable space
(Zk,Ak) and a nonzero finite measure �k on (Zk,Ak). Let X =⋃

k∈K{k} × Zk, and letA be the sigma algebra generated by sets
of the form {k} ×A, where k ∈ K and A ∈ Ak. Consider the task
of sampling from the probability measure� on (X,A) such that

�({k} × A) = �k(A)∑
k′∈K �k′(Zk′)

, k ∈ K, A ∈ Ak. (1)

Suppose that a procedure generates a random element (K,Z) ∼
�. Then, for k ∈ K,�k(Zk)/

∑
k′∈K �k′(Zk′) gives the probability

of K = k, and �k(·) = �k(·)/�k(Zk) gives the conditional
distribution of Z given K = k.

In practice,� is often intractable, prompting the use of trans-
dimensional MCMC methods. A central goal of the current
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work is to provide verifiable sufficient conditions for trans-
dimensional MCMC algorithms to be geometrically conver-
gent in the L2 distance. When A is countably generated and
the Markov chain is ϕ-irreducible, L2 geometric convergence
implies the classical notion of �-a.e. geometric ergdoicity. See
Roberts and Rosenthal (1997), Roberts and Tweedie (2001), and
Gallegos-Herrada, Ledvinka, and Rosenthal (2023). Geometric
ergodicity is one of the key conditions ensuring the reliability of
MCMC estimation. It guarantees a central limit theorem (CLT)
for ergodic sums (Jones and Hobert 2001); moreover, consistent
uncertainty assessment through asymptotically valid confidence
intervals is possible under geometric ergodicity (Vats, Flegal,
and Jones 2019).

The convergence behavior of trans-dimensional MCMC
algorithms is in general far from well understood. Roberts and
Rosenthal (2006) established some general conditions for trans-
dimensional Markov chains to be Harris recurrent. Geometric
ergodicity of some specific trans-dimensional algorithms was
established in Geyer and Møller (1994), Andrieu and Doucet
(1999), Ortner, Descombes, and Zerubia (2006), and Schreck
et al. (2015). Existing proofs of geometric ergodicity often
rely on drift and minorization conditions, or in some simple
situations, Doeblin’s condition. The current work instead uses
the decomposition of Markov chains, a remarkable technique
developed by Caracciolo, Pelissetto, and Sokal (1992) and
documented in Madras and Randall (2002). This technique
allows one to decompose the dynamic of a trans-dimensional
Markov chain into within- and between-model movements,
which can be analyzed separately. Using an extended version
of this technique and exploiting the assumption that |K| < ∞,
Theorem 1 is established. This result describes a divide-and-
conquer paradigm that enables one to establish geometric
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convergence of the trans-dimensional chain by combining
the geometric ergodicity of its within-model components.
Quantitative bounds on the convergence rate will also be
provided; see Theorem 7.

Previously, Markov chain decomposition has found its use
in important problems like simulated and parallel tempering.
See, for example, Madras and Randall (2002), Woodard, Schmi-
dler, and Huber (2009), and Ge, Lee, and Risteski (2018). This
technique can be used to analyze a Markov chain whose state
space can be partitioned into subsets such that, within each
subset, the Markov chain’s behavior is easy to analyze. It was
originally developed for reversible Markov chains. The current
work provides an extended version of the technique, given in
Lemma 3, that can deal with some important nonreversible
chains. (Despite their name, reversible jump algorithms can
often be nonreversible.)

The theory developed herein is applied to reversible jump
MCMC algorithms for three practical Bayesian models: a
probit regression model with variable selection, a Gaussian
mixture model with unknown number of components, and an
autoregressive model with Laplace errors and unknown model
order. Among these algorithms, only one is assuredly reversible.
For each algorithm, we demonstrate geometric convergence.
Enabled by geometric ergodicity, we also conduct Monte Carlo
uncertainty assessments.

Finally, it must be emphasized that verifying geometric
ergodicity is but one of the first steps toward fully understanding
the convergence behavior of an MCMC algorithm. A chain
being geometrically convergent does not ensure that it has a fast
convergence rate. While this work does provide a quantitative
convergence rate bound, calculating the quantities involved
in the bound can be practically challenging. Obtaining sharp
estimates for the convergence rate remains an open problem for
most practical trans-dimensional MCMC algorithms.

The rest of this article is organized as follows. Following
a quick overview of the main qualitative result of this arti-
cle, Section 2 contains some preliminary facts on the L2 the-
ory of Markov chains. The main technical results involving
Markov chain decomposition and the convergence rate of trans-
dimensional MCMC are given in Section 3. One toy and two
practical examples are studied in Section 4, followed by a brief
discussion in Section 5. Supplement I contains some minor
results and technical proofs. Supplement II contains yet another
practical example.

1.1. Conditions for Geometric Ergodicity: AnOverview

Consider a trans-dimensional Markov chain (X(t))∞t=0 =
(K(t),Z(t))∞t=0 whose state space is X. Let P : X × A → [0, 1]
be its Markov transition kernel (Mtk), that is, for (k, z) ∈ X and
A ∈ A, P((k, z),A) is understood as the conditional probability
of (K(t + 1),Z(t + 1)) ∈ A given (K(t),Z(t)) = (k, z). Suppose
that� is a stationary distribution of this chain, that is,� = �P,
or more explicitly, for

⋃
k∈K{k} × Ak ∈ A,∑

k′∈K
�k′(Ak′) =

∑
k∈K

∑
k′∈K

∫
Zk

�k(dz)P((k, z), {k′} × Ak′).

The main results of this article are stated in terms the L2
theory forMarkov chains, which is reviewed in Section 2. Essen-

tially, if T (·, ·) is an Mtk that has a stationary distribution ω,
then T can be regarded as a bounded linear operator on a certain
Hilbert space L20(ω). A sufficient condition for the correspond-
ing chain to be L2 geometrically convergent is that the operator
norm of some power of T is less than one.

One of the main results of this article is stated below. See
Section 3 for more details.

Theorem 1. Assume that each of the following conditions holds
for the trans-dimensional chain:

(H1) There exist a positive integer t0 and a sequence of Mtks
Pk : Zk × Ak → [0, 1], k ∈ K, such that the following
properties hold for each k:

(i) �kPk = �k, where �k(·) = �k(·)/�k(Zk) is the
normalization of �k(·).

(ii) When Pk is regarded as an operator on L20(�k), the
norm of its t0’th power Pt0k is strictly less than 1.

(iii) there exists a constant ck > 0 such that P((k, z), {k}×
A) ≥ ckPk(z,A) for z ∈ Zk and A ∈ Ak.

(H2) The between-model movements are irreducible. To be
precise, the Mtk P̄ : K × 2K → [0, 1] given by P̄(k, {k′}) =∫
Zk

�k(dz)P((k, z), {k′} × Zk′), k, k′ ∈ K, is irreducible.

Then the norm of Pt0 is strictly less than one, and the trans-
dimensional chain is L2(�) geometrically convergent.

Note that P̄(k, {k′}) can be understood as the average proba-
bility flow from model k to model k′, and thus P̄ characterizes
the between movements. Evidently, (H2) holds as long as the
chain is�-irreducible.We give a rigorous proof of this assertion
in Section A of Supplement I. Hence, in practice, (H2) usually
trivially holds.

Trans-dimensional MCMC algorithms typically involve a
within-model move type, where the underlying chain stays in a
model, say k, with probability ck, and move according to an Mtk
Pk such that�kPk = �k. Then such ck and Pk satisfy (i) and (iii)
in (H1). Condition (ii) in (H1) requires a careful analysis of the
within-model moves of an algorithm. According to Lemma 2
below, in several important situations, this condition is implied
by the geometric ergodicity of the chain associated with Pk, or
some closely relatedMarkov chain whose state space is Zk. Since
the space Zk is typically of a fixed dimension, the hope is that
chains that move in Zk can be analyzed using well-established
tools such as drift and minorization or functional inequalities.

Lemma 2. Let k be in K. Suppose thatAk is countably generated,
�kPk = �k, and the chain associated with Pk is ϕ-irreducible.
Then, in each of the following situations, (ii) in (H1) holds with
t0 = 1.

(i) Pk defines a �k-a.e. geometrically ergodic chain that is
reversible with respect to �k.

(ii) Pk defines a deterministic-scan Gibbs chain with two com-
ponents that is �k-a.e. geometrically ergodic.

(iii) Pk defines a deterministic-scan Gibbs chain, and there
exists a �k-a.e. geometrically ergodic random-scan Gibbs
chain based on the same set of conditional distributions.
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Proof. For (i), see Theorem 2.1 of Roberts and Rosenthal (1997)
and Theorem 2 of Roberts and Tweedie (2001). For (ii), see
Lemma3.2 andProposition 3.5 ofQin and Jones (2022). For (iii),
see Theorem 3.1 of Chlebicka, Łatuszyński, and Miasojedow
(2024) and invoke (i).

In Section 4.3, we give an example of establishing and utiliz-
ing (ii) in (H1) with t0 > 1.

2. Preliminaries

Let (Y,F ,ω) be a generic probability space. Let L2(ω) be the
Hilbert space of real functions f : Y → R that are square
integrable with respect toω, with the inner product between two
functions defined as 〈f , g〉ω = ∫

Y f (y)g(y) ω(dy), and the norm
defined as ‖f ‖ω = √〈f , f 〉ω. Denote by L20(ω) the subspace of
L2(ω) that consists of functions f such that ωf := 〈f , 1Y〉ω = 0,
where 1Y(y) = 1 for y ∈ Y. A probability measure μ on (Y,F)

is said to be in L2∗(ω) if dμ/dω exists and is in L2(ω). For two
probability measures μ and ν in L2∗(ω), define their L2 distance
by ‖μ − ν‖ω = ‖dμ/dω − dν/dω‖ω.

Let T : Y × F → [0, 1] be an Mtk whose stationary
distribution is ω. For a probability measure μ on F , define
μT t(·) = ∫

Y μ(dy)T t(y, ·), where T t is the corresponding t-
step Mtk. We say T is L2(ω) geometrically convergent if there
exist ρ < 1 and a function C : L2∗(ω) → [0,∞) such that for
μ ∈ L2∗(ω) and t ≥ 1,

‖μT t − ω‖ω ≤ C(μ)ρt . (2)
Let ‖·‖TV be the total variance distance between two probability
measures. T is said to be ω-a.e. geometrically ergodic if there
exist ρ < 1 and C : Y → [0,∞) such that, for ω-almost every
y ∈ Y and t ≥ 1, ‖T t(y, ·) − ω(·)‖TV ≤ C(y)ρt . Results from
Roberts and Tweedie (2001) indicate that when F is countably
generated, if the chain is L2(ω) geometrically convergent, then
it is ω-a.e. geometrically ergodic; the converse holds if T is
reversible with respect to ω. See also Roberts and Rosenthal
(1997) and Gallegos-Herrada, Ledvinka, and Rosenthal (2023).

The Mtk T can be understood as a linear operator on L20(ω):
for f ∈ L20(ω),T f (·) = ∫

Y T (·, dy)f (y). One can use theCauchy-
Schwarz inequality to show that the L2 norm of T , defined as

‖T ‖ω = sup
f∈L20(ω)\{0}

‖T f ‖ω

‖f ‖ω

,

is no greater than 1. The operator norms of T and its pow-
ers quantify the Markov chain’s convergence rate, with smaller
norms indicating faster convergence. Indeed, if s is a positive
integer, then (2) holds for all μ ∈ L2∗(ω) and t ≥ 1 with
ρ = ‖T s‖1/sω and some C(·). See Theorem 2.1 of Roberts and
Rosenthal (1997) formore details on the interpretation of ‖T ‖ω.

The bounded operator T has a unique adjoint T ∗. It is well-
known that ‖T ‖2ω = ‖T ∗‖2ω = ‖T T ∗‖ω = ‖T ∗T ‖ω. The
Mtk T is reversible with respect to ω if and only if the operator
T is self-adjoint, that is, T = T ∗. The operator T is positive
semidefinite if it is self-adjoint, and 〈T f , f 〉ω ≥ 0 for f ∈ L20(ω).

When T is self-adjoint, its spectral gap is defined to be

Gapω(T ) = 1 − sup
f∈L20(ω)\{0}

〈f , T f 〉ω
‖f ‖2ω

.

Note that Gapω(T ) ≥ 1 − ‖T ‖ω ≥ 0. If T is positive
semidefinite, ‖T ‖ω = 1 − Gapω(T ).

3. Convergence Analysis

3.1. Markov Chain Decomposition

This section describes the main probabilistic tool for proving
Theorem 1.

Again, let (Y,F ,ω) be a probability space. Suppose that Y
can be partitioned into a collection of disjoint subsets, (Yk)k∈K.
For this section, allow K to be countably infinite. Assume that
ω(Yk) > 0 for each k. Caracciolo, Pelissetto, and Sokal (1992)
proposed a framework for analyzing a Markov chain moving
in Y by decomposing its dynamic into local movements within a
subset Yk and global movements across the disjoint subsets. The
key technical result, published in Madras and Randall (2002), is
stated for reversible chains (see also, e.g., Guan and Krone 2007;
Woodard, Schmidler, and Huber 2009). Here, it is extended to a
possibly nonreversible setting.

For k ∈ K, letFk be the restriction ofF onYk, and letωk(B) =
ω(B)/ω(Yk) for B ∈ Fk. Let ω̄({k}) = ω(Yk) for k ∈ K. For an
Mtk S : Y × F → [0, 1] such that ωS = ω, let S̄ be an Mtk on
the discrete space K such that, for k, k′ ∈ K,

S̄(k, {k′}) = 1
ω(Yk)

〈1Yk , S1Yk′ 〉ω = 1
ω(Yk)

∫
Yk

ω(dy)S(y, Yk′).

Then ω̄S̄ = ω̄. It can be checked that S̄ defines a self-adjoint
(resp. positive semidefinite) operator on L20(ω̄) whenever S is
self-adjoint (resp. positive semidefinite). In the same vein, define
the Mtk S∗S on K, which takes the form

S∗S(k, {k′}) = 1
ω(Yk)

〈1Yk , S∗S1Yk′ 〉ω

= 1
ω(Yk)

∫
Y
ω(dy)S(y, Yk)S(y, Yk′).

As long asωS = ω,S∗S defines a positive semidefinite operator
on L20(ω̄).

Below is the key technical lemma of this section.

Lemma 3. Let T and S be Mtks such that ωT = ωS = ω.
Suppose that for k ∈ K, there exists anMtk Tk : Yk×Fk → [0, 1]
such that ωkTk = ωk. Assume further that there exists c ∈ [0, 1]
such that T (y, B) ≥ cTk(y, B) for k ∈ K, y ∈ Yk and B ∈ Fk.
Then

1 − ‖T S∗‖2ω ≥ c2
(
1 − sup

k∈K
‖Tk‖2ωk

)
Gapω̄(S∗S). (3)

In particular, if furthermore S = T , then

1 − ‖T ‖4ω ≥ c2
(
1 − sup

k∈K
‖Tk‖2ωk

)
Gapω̄(T ∗T ).

Remark 4. Lemma 3 extends Theorem A.1 of Madras and
Randall (2002), originally formulated by Caracciolo, Pelissetto,
and Sokal (1992). FromCaracciolo, Pelissetto, and Sokal’s (1992)
result, it can be deduced that, if, in addition to the assumptions
in Lemma 3, T and S are reversible with respect to ω, Tk is
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reversible with respect to ωk for k ∈ K, and the operator S is
positive semidefinite, then

Gapω(S1/2T S1/2) ≥ c inf
k∈K

Gapωk
(Tk)Gapω̄(S̄).

In particular, if furthermore S = T , then

1 − ‖T ‖2ω = Gapω(T 2) ≥ c inf
k∈K

Gapωk
(Tk)Gapω̄(T̄ ).

Remark 5. The proof of Lemma 3 is given in Section B of
Supplement I. It adopts the general idea of the proof of Theorem
A.1 of Madras and Randall (2002), with alterations made to
tackle non-reversibility. Notably, Madras and Randall (2002)
studied how a reversible T acts on functions of the form S1/2f
for f ∈ L20(ω) by decomposing the Dirichlet form ‖S1/2f ‖2ω −
〈S1/2f , T S1/2f 〉ω into local and global components. Here, we
study how a possibly nonreversible T acts on functions of the
form S∗f by decomposing ‖S∗f ‖2ω − ‖T S∗f ‖2ω.
Remark 6. Using standard techniques, it is straightforward to
derive the following bound in the opposite direction of those
given in Lemma 3 and Madras and Randall (2002):

1 − ‖T ‖2ω ≤ Gapω̄(T ∗T ) ≤ 1 − ‖T̄ ‖2ω̄.

We provide a brief derivation at the end of Section B in Supple-
ment I.

3.2. Geometric Convergence of the Trans-Dimensional
Chain

Lemma 3 can be used to construct an upper bound on the norm
of Pt for some t ≥ 1, where P is theMtk of the trans-dimensional
chain defined in the Introduction.

Recall the definitions of S̄ and S∗S , and consider letting
(Y,F ,ω) = (X,A,�) and S = P. Then P̄ is defined as in (H2),
and

P∗P(k, {k′}) = 1
�k(Zk)

∑
k′′∈K

∫
Zk′′

�k′′(dz)P((k′′, z), {k} × Zk)

P((k′′, z), {k′} × Zk′).

These two Mtks describe the between-model movements of
the trans-dimensional chain. P̄(k, {k′}) can be understood as
the average probability of moving from model k to model k′.
P∗P(k, {k′}) is similar, but with P replaced by P∗P. Indeed, under
mild conditions, P∗ and thus P∗P can be seen as Mtks that
leave � invariant (Paulin 2015; Choi 2020), and one can show
that P∗P(k, {k′}) = ∫

Zk
�k(dz)P∗P((k, z), {k′} × Zk′). P∗P is

called the “multiplicative reversibilization” of P. Multiplicative
reversibilizations are commonly investigated for nonreversible
chains since at least Fill (1991). If P defines a self adjoint (resp.
positive semipositive) operator on L20(�), then P̄ defines a self
adjoint (resp. positive semipositive) operator on L20(�̄), where
�̄({k}) = �k(Zk)/

∑
k′∈K �k′(Zk′) for k ∈ K. On the other hand,

P∗P always defines a positive semidefinite operator on L20(�̄).
We now provide a quantitative bound concerning the conver-

gence rate of the trans-dimensional chain.

Theorem 7. Just for this theorem, allow |K| to be countably
infinite. Suppose that, for each k ∈ K, there exists an Mtk Pk :
Zk×Ak → [0, 1] such that�kPk = �k. Suppose further that, for
k ∈ K, there exists ck > 0 such thatP((k, z), {k}×A) ≥ ckPk(z,A)

for z ∈ Zk and A ∈ Ak. Then, for any positive integer t,

1 − ‖Pt‖4� ≥
(
inf
k∈K

ctk

)2 (
1 − sup

k∈K
‖Ptk‖2�k

)
Gap�̄(P∗P). (4)

If, furthermore, P defines a positive semidefinite operator on
L20(�) and Pk is reversible with respect to �k for k ∈ K, then
there is the simpler bound

1 − ‖P‖2� ≥
(
inf
k∈K

ck
)[

inf
k∈K

Gap�k
(Pk)

]
Gap�̄(P̄). (5)

Proof. We will establish (4) using Lemma 3; (5) can be estab-
lished in a similar fashion using the original Markov chain
decomposition result in Remark 4.

Fix a positive integer t. In Lemma 3, take (Y,F ,ω) =
(X,A,�), T = Pt and S = P. For k ∈ K, let Yk = {k} × Zk.
ThenFk consists of sets of the form {k}×A, where A ∈ Ak, and
ωk({k}×A) = �k(A) forA ∈ Ak. For k ∈ K, z ∈ Zk, andA ∈ Ak,
let Tk((k, z), {k}×A) = Ptk(z,A). Since�kPk = �k, it holds that
ωkTk = ωk. Since P((k, z), {k} × A) ≥ ckPk(z,A) for z ∈ Zk and
A ∈ Ak, it holds that, for (k, z) ∈ Yk and {k} × A ∈ Fk,

T ((k, z), {k} × A) ≥ ctkP
t
k(z,A) ≥ cTk((k, z), {k} × A),

where c = infk∈K ctk. Thus, the assumptions of Lemma 3 are
satisfied.

The next step is identifying the objects in (3). Obviously,
‖T S∗‖ω = ‖PtP∗‖�. Standard arguments show that ‖Tk‖ωk =
‖Ptk‖�k . The distribution ω̄ corresponds to �̄, while the Mtk
S∗S is P∗P. Then, by Lemma 3,

1 − ‖PtP∗‖2� ≥ c2
(
1 − sup

k∈K
‖Ptk‖2�k

)
Gap�̄(P∗P).

Finally, note that

‖Pt‖2� = ‖PtP∗t‖� ≤ ‖PtP∗‖�‖P∗t−1‖�

= ‖PtP∗‖�‖Pt−1‖� ≤ ‖PtP∗‖�.

The desired result then follows.

Theorem 7 connects the convergence properties of the trans-
dimensional chain, quantified by ‖P‖�, to the convergence
properties of the within- and between-model movements,
quantified by the ‖Pk‖�k ’s and Gap�̄(P∗P) (or Gap�̄(P̄)),
respectively. In Section 4.1, we use a toy example to test the
sharpness of the bounds in Theorem 7, and investigate how the
within- and between-model components may affect ‖P‖� and
its bound.

Remark 8. By Remark 6, we also have 1− ‖P‖2� ≤ Gap�̄(P∗P),
and if P is reversible, 1 − ‖P‖� ≤ Gap�̄(P̄). Thus, ‖P‖� is
controlled by Gap�̄(P∗P) from above and below. In particular,
combining (4) with the above yields

1
4

(
inf
k∈K

ck
)2 (

1 − sup
k∈K

‖Pk‖2�k

)
≤ 1 − ‖P‖�

Gap�̄(P∗P)
≤ 1.
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Similarly, if P is positive semidefinite and Pk is reversible for
each k,

1
2

(
inf
k∈K

ck
)[

inf
k∈K

Gap�k
(Pk)

]
≤ 1 − ‖P‖�

Gap�̄(P̄)
≤ 1.

Quantities such as Gap�̄(P∗P) and ‖Pk‖�k may be difficult
to compute in practice. However, when |K| < ∞, Theorem 7
immediately yields Theorem 1, which is stated again below:

Theorem 1. Assume that (H1) and (H2) hold. Then ‖Pt0‖� < 1,
and P is L2(�) geometrically convergent.

Proof. By Theorem 7, it suffices to show that(
min
k∈K

ct0k

)2 (
1 − max

k∈K
‖Pt0k ‖2�k

)
Gap�̄(P∗P) > 0.

By (iii) in (H1), mink∈K ct0k > 0. By (ii) in (H1), maxk∈K
‖Pt0k ‖2�k

< 1.
It remains to show that Gap�̄(P∗P) > 0. Assume the oppo-

site, that is, Gap�̄(P∗P) = 0. Because K is finite and P∗P is
reversible, this implies that the largest eigenvalue of P∗P is 1. It
then follows that P∗P is reducible (Hairer 2006, Theorem 3.11).
By (iii) in (H1), for k, k′ ∈ K,

P∗P(k, {k′}) ≥
∫
Zk

�k(dz)P((k, z), {k} × Zk)P((k, z), {k′} × Zk′)

≥ ckP̄(k, {k′}).
So P̄ must be reducible as well. But this contradicts with (H2).
Hence, Gap�̄(P∗P) > 0.

Theorem 1 will be used to establish geometric convergence
for two practical examples in Section 4 and another one in
Section 5.

4. Examples

This section contains a toy example and two practical problems
concerning variable selection and mixture models, respectively.
For a third practical example concerning autoregression, see
Supplement II.

4.1. A Toy Chain

We first use a toy algorithm to test the sharpness of the quanti-
tative bounds in Theorem 7.

Let kmax and n be positive integers. Let K = {1, . . . , kmax}.
Consider a simple scenario where all the �k’s are the same. To
be specific, for k = 1, . . . , kmax, let Zk = {1, . . . , n}, and let�k be
the countingmeasure on Zk. Then� is the uniform distribution
on X = ⋃

k∈K{k} × Zk.
We consider a type of MCMC algorithm targeting �. Given

the current state (k, z) ∈ X, the algorithm either makes a local or
a global move, each with probability 1/2. A local move sends
the underlying Markov chain to (k, z′) where z′ ∈ Zk, and a
global move sends the chain to (k′, z)where k′ ∈ K. We consider
three types of local moves and two types of global moves. The
three types of local moves are “fast,” “slow,” and “varied.” In a fast

local move, the chain randomly and uniformly selects z′ ∈ Zk
to move to. In a slow local move, the chain can either stay in
place with probability 1/2, or move to one of the within-model
neighbors. Within a model k, two states z and z′ are neighbors
if they differ by 1, or if one of them is 1 and the other is n.
In a varied local move, the movement of the chain varies with
the current model k. To be precise, the chain stays in place
with probability 1 − 1/k, and move randomly and uniformly
across Zk with probability 1/k. The two types of global moves
are “fast” and “slow.” In a fast global move, the chain randomly
and uniformly selects a new model k′ ∈ K to move to. In a slow
global move, the chain can stay in place with probability 1/2, or
move to one of the neighboringmodels. Twomodels k and k′ are
neighbors if they differ by 1, or if one of them is 1 and the other
is kmax. Each combination of local and global move types gives
rise to a concrete algorithm, and we may define six algorithms
in this manner.

For a given algorithm, let P be the Mtk of the underlying
chain, and let Pk be the Mtk associated with the local movement
within model k. One can check that, for each of the six algo-
rithms, P is positive semidefinite, and so are the Pk’s. The local
and global behavior of P is summarized as follows.

• When the localmove type is fast, ‖Pk‖�k = 0.When the local
move type is slow, ‖Pk‖�k is a function of n, and it goes to 1 as
n → ∞. When the local move is varied, ‖Pk‖�k = 1 − 1/k.

• When the global move type is fast, Gap�̄(P∗P) = 3/4
and Gap�̄(P̄) = 1/2. When the local move type is slow,
Gap�̄(P∗P) is a function of kmax, and it goes to 0 as kmax →
∞; the same goes for Gap�̄(P̄).

Using Theorem 7, we may construct upper bounds on ‖P‖�.
The bound derived from (4) with ck = 1/2 and t = 1 will
be denoted by ‖P‖†�, while the bound derived from (5), which
exploits reversibility, is denoted by ‖P‖‡�.

Since X is finite, the true value of ‖P‖� can be computed.
We test the performance of the bounds through numerical sim-
ulation, and the results are given in Figure 1. Table 1 loosely
summarizes how the local and global move types affect the
sharpness of ‖P‖†�. The bound ‖P‖‡� is sharper than ‖P‖†�, but
the two bounds are comparable.

4.2. Variable Selection in Bayesian Probit Regression

4.2.1. TheModel
For i = 1, . . . , n, let xi = (xi,1, . . . , xi,r)
 ∈ R

r be a
known vector of predictors. Let Y1, . . . ,Yn be independent
binary responses, where Yi follows a Bernoulli distribution with
success probability F(A + x


i B), with F(·) being the cumulative
distribution function of the standard normal distribution. The
scalar A ∈ R is an unknown intercept, while the vector
B = (B1, . . . ,Br)
 ∈ R

r is an unknown regression coefficient.
To perform Bayesian variable selection, put a spike and slab

prior on B. To be specific, let K = (K1, . . . ,Kr)
 ∈ {0, 1}r .
Let JK = {j ∈ {1, . . . , r} : Kj = 1}. Place a prior distri-
bution on K that has probability mass function proportional
to p|Jk|, where p ∈ (0, 1) is a hyperparameter. Assume that
given K, the Bj’s are independent. If Kj = 0, Bj is set to be
zero; otherwise, Bj follows the N(0, σ 2) distribution, where σ
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Figure 1. Performance of the quantitative bounds for the toy chain. Left: (1−‖P‖�)/(1−‖P‖†�) for various values of nwhen kmax = 15.Middle: (1−‖P‖�)/(1−‖P‖†�)

for various values of kmax when n = 15. Right: (1 − ‖P‖†�)/(1 − ‖P‖‡�) for various values of kmax when n = 15.

Table 1. Performance of the bound (4) for the toy chain.

Locally fast Locally slow Locally varied

Globally
fast

Well
behaved

Well behaved Deteriorates
slowly as
kmax → ∞

Globally
slow

Well
behaved

Situation
dependent

Deteriorates as
kmax → ∞

is a positive hyperparameter. Thus, K indicates the collection
of relevant predictors. The intercept A is independent of (B,K)

and follows theN(0, σ 2) distribution. LetZ = (A,B
)
. Having
observedY = (Y1, . . . ,Yn)
, the goal is tomake inference about
(K,Z).

The parameter space, that is, the range of (K,Z), is X =⋃
k∈K{k} × Zk, where K = {0, 1}r , and, for k = (k1, . . . , kr) ∈ K,

Zk is the set of (α,β1, . . . ,βr) ∈ R
r+1 such that βj = 0 whenever

kj = 0. The posterior distribution � of (K,Z) given Y = y =
(y1, . . . , yn) is of the form (1). Evaluated at z = (α,β
)
 ∈ Zk,
the density function of �k is

π(k, z | y) = 1√
2πσ

(
p√
2πσ

)|Jk|
exp

(
−α2 +∑

j∈Jk β2
j

2σ 2

)

n∏
i=1

F

⎛
⎝α +

∑
j∈Jk

xi,jβj

⎞
⎠

yi

⎡
⎣1 − F

⎛
⎝α +

∑
j∈Jk

xi,jβj

⎞
⎠
⎤
⎦
1−yi

.

4.2.2. A Reversible JumpMCMCAlgorithm
For a fixed model k = (k1, . . . , kr), one can use a well-known
data augmentation algorithm (a type of reversible MCMC
algorithm) devised by Albert and Chib (1993) to sample from
�k, the normalization of �k. The algorithm is now briefly
described. Suppose that Jk = {j1, . . . , jd}, where d = |Jk|

and j1 < · · · < jd. Let M(k) denote the n × (d + 1) matrix
whose ith row is (1, xi,j1 , . . . , xi,jd)
. Given the current state
z = (α,β1, . . . ,βr)
 ∈ Zk, the next state z′ = (α′,β ′

1, . . . ,β ′
r)



is drawn through the following procedure: Independently for
i = 1, . . . , n, drawui from theN(α+∑r

j=1 xi,jβj, 12)distribution
truncated to (0,∞) if yi = 1 and to (−∞, 0) otherwise. Let
u = (u1, . . . , un)
. Draw (α′,β ′

j1 , . . . ,β
′
jd)


 from the normal
distribution

Nd+1

([
M(k)
M(k) + σ−2Id+1

]−1
M(k)
u,

[
M(k)
M(k) + σ−2Id+1

]−1
)
,

and set the remaining elements of z′ to zero.
The reversible jump MCMC algorithm considered herein

is a combination of the data augmentation algorithm and a
standard reversible jump scheme. Given the current state (k, z),
the algorithm randomly performs a U (update), B (birth), or D
(death) move. It is assumed that the probability of choosing a
move depends on (k, z) only through k, and the probabilities are
denoted by qU(k), qB(k), and qD(k), respectively.

• Umove: Draw z′ using one iteration of Albert and Chib’s data
augmentation algorithm. Set the new state to (k, z′).

• B move: Randomly and uniformly choose an index j from
Jck, where the complement is taken with respect to the set
{1, . . . , r}. Change the jth element of k to 1 and call the
resultant binary vector k′. Draw b∗ from some distribution
on R associated with a density function g(· | k, k′, z, y).
Replace the (j + 1)th element of z = (α,β1, . . . ,βr)
 by b∗,
and call the resultant vector z′. With probability

min
{
1,

π(k′, z′ | y) qD(k′) (|Jk| + 1)−1

π(k, z | y) qB(k) (r − |Jk|)−1g(b∗ | k, k′, z, y)

}
,

set the next state to (k′, z′); otherwise, keep the old state. This
move type is available only when |Jk| < r.
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• Dmove: Randomly and uniformly choose an index j from Jk.
Change the jth element of k to 0 and call the resultant binary
vector k′. Let βj be the (j + 1)th element of z. Let z′ be the
vector obtained by changing the (j + 1)th element of z to 0.
With probability

min

{
1,

π(k′, z′ | y) qB(k′) (r − |Jk| + 1)−1g(βj | k′, k, z′, y)
π(k, z | y) qD(k) |Jk|−1

}
,

set the next state to (k′, z′); otherwise, keep the old state. This
move type is available only when |Jk| > 0.

The resultant trans-dimensional chain is reversible with
respect to �.

4.2.3. Convergence Analysis
For k ∈ K, let Pk be the Mtk of the data augmentation chain tar-
geting �k. Chakraborty and Khare (2017) proved the following
result regarding Pk using the drift and minorization technique.
See also Roy and Hobert (2007).

Lemma 9. For k ∈ K, Pk is �k-a.e. geometrically ergodic.

Given k, the data augmentation Mtk Pk is reversible with
respect to�k. One can then establish geometric convergence for
the reversible jump chain.

Proposition 10. Suppose that qU(k) > 0 for k ∈ K, qB(k) >

0 when |Jk| < r, qD(k) > 0 when |Jk| > 0. Then the
reversible jump chain isL2(�)-geometrically convergent and�-
a.e. geometrically ergodic.

Proof. Apply Theorem 1. Let P be theMtk of the reversible jump
chain. By Lemma 9 and (i) of Lemma 2, ‖Pk‖�k < 1 for k ∈ K.
It follows that, for k ∈ K, (i) and (ii) of (H1) hold with t0 = 1.
Evidently, (iii) of (H1) also holds with ck = qU(k).

To verify (H2), note that for k, k′ ∈ K, P̄(k, {k′}) > 0
whenever k and k′ differ by at most 1 element. Then it
is clear that P̄ is irreducible. (Alternatively, note that P is
�-irreducible.)

The chain is thus L2(�) geometrically convergent. By Theo-
rem 1 of Roberts and Tweedie (2001), it is �-a.e. geometrically
ergodic.

4.2.4. Application to a Dataset
Geometric ergodicity allows one to estimate the importance of
features in a variable selection problem with confidence. The
reversible jump algorithm is applied to the Spambase dataset
(Hopkins et al. 1999). This dataset contains n = 4601 e-mails.
The responseYi indicates whether the ith e-mail is spam. Each e-
mail is associatedwith r = 57 attributes, including the frequency
of certain words and the length of sequences of consecutive
capital letters. To perform variable selection, a spike and slab
prior with p = 0.5 is used.

In the B move of the reversible jump algorithm, g(· |
k, k′, z, y) is chosen to be the density of a normal distribution,
whose parameters are selected using ideas fromBrooks, Giudici,
and Roberts (2003). The probabilities of proposing birth and

death moves are as follows:

qB(k) = 1
3
min

{
1,
p (r − |Jk|)
|Jk| + 1

}
,

qD(k) = 1
3
min

{
1,

|Jk|
p (r − |Jk| + 1)

}
.

By Proposition 10, the reversible jump chain is�-a.e. geometri-
cally ergodic.

A chain (K(t),Z(t))mt=1 of length m = 105 is simulated.
The quantities of interest are the posterior probabilities of Kj =
1 for j = 1, . . . , 57, that is, the posterior probability of any
given predictor being present in the regression model. They are
estimated using the sample proportionsm−1∑m

t=1 Kj(t). Under
geometric ergodicity, the sample proportions are asymptotically
normally distributed, and the asymptotic variances can be con-
sistently estimated using the batch means method (Jones et al.
2006). To avoid underestimation, which is a problem exhibited
by batch means estimators when the Monte Carlo sample size
is not sufficiently large (Flegal and Jones 2010, sec. 4), we add
(logm)

√
1/b2m + bm/m to the estimated asymptotic variances,

where bm ≈ m0.6 is the batch size, and 1/b2m + bm/m is on
the same order as the mean squared error of the batch means
estimator (Flegal and Jones 2010, sec. 3). This adjustment is
further discussed in Section E of Supplement I. We construct
95% simultaneous Wald confidence intervals for the posterior
probabilities. Bonferroni correction is used here, althoughmore
sophisticated multivariate methods could be considered; see
Section 5. The confidence intervals for the last 10 variables
(attributes) are presented in Figure 2. This figure shows how
important each predictor is according to theMCMC simulation,
as well as the errors of their estimated importance.

4.3. GaussianMixtureModel

4.3.1. TheModel
Let Y1, . . . ,Yn be iid random variables drawn from the mixture
ofK normal distributions. For j = 1, . . . ,K, letWj be the weight
associated with the jth normal distribution, and let Uj and Tj
be, respectively, the mean and variance of that normal distri-
bution. Equivalently, we may formulate the model as follows.
Let (Y1,A1), . . . , (Yn,An) be iid random vectors that take values
in R × {1, . . . , k}, where, for each i, Yi given Ai follows the
N(UAi ,TAi) distribution, and marginally P(Ai = j) = Wj for
j = 1, . . . ,K. Suppose thatY = (Y1, . . . ,Yn) is observable, while
A = (A1, . . . ,An), W = (W1, . . . ,WK), U = (U1, . . . ,UK),
T = (T1, . . . ,TK), and K are unknown.

To perform Bayesian analysis, we assume that K has a prior
probability mass function k �→ fK(k) that is supported on a
finite set K = {1, . . . , kmax}. We then put a Dirichlet prior on
W, inverse gamma priors on T, and normal priors on U. To
address the label switching problem and enforce identifiability,
we shall assume that U1 ≤ U2 ≤ · · · ≤ UK in the prior
distribution. To be precise, we shall assume that, given K = k,
the prior density function of (W,T,U) evaluated at (w, τ , u) =
((w1, . . . ,wk), (τ1, . . . , τk), (u1, . . . , uk)) has the following form:

fW,T,U(w, τ , u | k) =
⎧⎨
⎩

k∏
j=1

wγ−1
j

bc

�(c)
τ−c−1
j e−b/τj 1√

2πτ0τj
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Figure 2. Estimated posterior probabilities of selecting each variable (attribute), with 95% simultaneous confidence intervals. Only the last 10 variables are shown.

exp

[
− (uj − u0)2

2τ0τj

]
1(0,∞)(τj)

}

�(kγ )

�(γ )k
1Sk(w) k! 1Gk(u). (6)

In the above display, γ , b, c, τ0, u0 are positive hyperparameters,
�(·) is the gamma function, Sk = {(w1, . . . ,wk) ∈ (0, 1)k :∑k

j=1 wj = 1}, Gk = {(u1, . . . , uk) ∈ R
k : u1 ≤ · · · ≤ uk}.

The un-normalized posterior density of (K,A,W,T,U) is
then

π(k,α,w, τ , u | y) =
{ n∏
i=1

wαi
1√
2πταi

exp
[
− 1
2ταi

(yi − uαi)
2
]}

fW,T,U(w, τ , u | k)fK(k),

where αi denotes the ith element of α. The corresponding
measure � has the form (1), with the density of �k given
by (α,w, τ , u) �→ π(k,α,w, τ , u | y). In this context, Zk =
{1, . . . , k}n × Sk × (0,∞)k × Gk.

4.3.2. A Reversible Jump Algorithm
The algorithm we consider is modified from Richardson and
Green’s (1997) reversible jump algorithm, with a new within-
model move type and simplified between-model move types.

We shall first propose an algorithm for sampling from �K
whenK is known. For k ∈ K and (w, τ , u) ∈ Sk×(0,∞)k×R

k, let
f̃W,T,U(w, τ , u | k) be the same as (6) but without the constraint
1Gk(u). It can be shown that, given k ∈ K, for α ∈ {1, . . . , k}n,

π̃A(α | k, y)

:=
∫
Sk×(0,∞)p×Rp

{ n∏
i=1

wαi
1√
2πταi

exp
[
− 1
2ταi

(yi − uαi)
2
]}

f̃W,T,U(w, τ , u) d(w, τ ,μ)

∝
k∏

j=1

[τ0 nj(α) + 1]−1/2 �(nj(α) + γ ) �(nj(α)/2 + c){
ssj(α)/2 + u20/(2τ0) − [sj(α) + u0/τ0]2/[2(nj(α) + 1/τ0)] + b

}nj(α)/2+c ,

where nj(α) = ∑n
i=1 1{j}(αi), sj(α) = ∑n

i=1 yi1{j}(αi), and
ssj(α) = ∑n

i=1 y2i 1{j}(αi). Let z = (α,w, τ , u) ∈ Zk be the
current state. The next state z′ = (α′,w′, τ ′, u′) is drawn via the
following steps:

1. Let α(0) = (σ (α1), . . . , σ(αn)), where σ is a randomly and
uniformly selected permutation of {1, . . . , k}.

2. For i from 1 to n, do the following. Randomly and uniformly
draw ji from {1, . . . , k}. Let α(i−1)

i←ji ∈ {1, . . . , k}n be the vector
obtained from α(i−1) by changing its ith element to ji. With
probability

min

⎧⎨
⎩1,

π̃A(α
(i−1)
i←ji | k, y)

π̃A(α(i−1) | k, y)

⎫⎬
⎭ ,

let α(i) = α
(i−1)
i←ji ; otherwise, let α(i) = α(i−1). Denote α(n)

by α′′.

3. Draww′′ = (w′′
1 , . . . ,w′′

k) from theDirichlet distributionwith
concentration parameter (n1(α′′) + γ , . . . , nk(α′′) + γ ).

4. For j = 1, . . . , k, independently draw τ ′′
j from the inverse

gamma distribution with shape parameter c + nj(α′′)/2 and
scale parameter

ssj(α′′)
2

+ u20
2τ0

− [sj(α′′) + μ0/τ0]2
2[nj(α′′) + 1/τ0] + b.

5. For j = 1, . . . , k, independently draw u′′
1 , . . . , u′′

k from the
normal distribution

N

(
sj(α′′) + u0/τ0
nj(α′′) + 1/τ0

,
τ ′′
j

nj(α′′) + 1/τ0

)
.

6. Order u′′
1 , . . . , u′′

k so that we find distinct indices j1, . . . , jk
such that u′′

j1 ≤ · · · ≤ u′′
jk . For i = 1, . . . , n, find the index

�i ∈ {1, . . . , k} such that α′′
i = j�i , and let α′

i = �i. For
� = 1, . . . , k, let w′

� = w′′
j� , τ

′
� = τ ′′

j� , and u′
� = u′′

j� .
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We shall call the sampler the Metropolis re-ordering algo-
rithm. The following lemma is proved in Section C of Supple-
ment I.

Lemma 11. The underlying Markov chain of the Metropolis re-
ordering algorithm leaves �k invariant for k ∈ K.

A nice property of the Metropolis re-ordering algorithm is
that starting from any allocation α ∈ {1, . . . , k}n, it is possible
for the chain to move to any allocation α′ ∈ {1, . . . , k}n in a
single iteration.

Consider now a reversible jump algorithm for sampling
from �, which is part of an algorithm constructed by Richard-
son and Green (1997). When the current state is (k, z) =
(k,α,w, τ , u), the algorithm randomly performs a U, B, or D
move. It is assumed that the probabilities of choosing these
moves depend on the current state only through k, and are,
respectively, qU(k), qB(k), qD(k). The three move types are
defined as follows:

• U move: Draw z′ using one iteration of the Metropolis re-
ordering algorithm. Set the new state to (k, z′).

• Bmove: Draw (w∗, τ∗, u∗) from some distribution on (0, 1)×
(0,∞)×R with density function g(· | k,α,w, τ , u). Find � ∈
{1, . . . , k+ 1} such that uj ≤ u∗ whenever j < �, and uj ≥ u∗
whenever j ≥ � — that is, u∗ is the �th smallest number in
the set {u1, . . . , uk, u∗}. Let α′ = (α′

1, . . . ,α′
n) be such that,

for i ∈ {1, . . . , n}, α′
i = αi if αi < � and α′

i = αi + 1 if αi ≥ �.
Let

w′ = ((1 − w∗)w1, . . . , (1 − w∗)w�−1,w∗,
(1 − w∗)w�, . . . , (1 − w∗)wk),

τ ′ = (τ1, . . . , τ�−1, τ∗, τ�, . . . , τk),
u′ = (u1, . . . , u�−1, u∗, u�, . . . , uk).

With probability

min

⎧⎨
⎩1,

π(k + 1,α′ ,w′ , τ ′ , u′ | y) qD(k + 1) [∑k+1
j=1 1{0}(nj(α′))]−1 (1 − w∗)k−1

π(k,α,w, τ , u | y) qB(k) g(w∗ , τ∗ , u∗ | k,α,w, τ , u)

⎫⎬
⎭ ,

set the new state to (k + 1,α′,w′, τ ′, u′); otherwise, keep the
old state. This move is available only when k < kmax.

• D move: Let Ek(α) ⊂ {1, . . . , k} be the set of j’s such that
nj(α) = 0. Keep the old state if Ek(α) = ∅, and follow the
procedure below otherwise. Randomly and uniformly select
� from Ek(α). Let α′ = (α′

1, . . . ,α′
n) be such that, for i =

1, . . . , n, α′
i = αi if αi < � and α′

i = αi − 1 if αi > �. Let

w′ = (w1/(1 − w�), . . . ,w�−1/(1 − w�),
w�+1/(1 − w�),wk/(1 − w�)),

τ ′ = (τ1, . . . , τ�−1, τ�+1, . . . , τk),
u′ = (u1, . . . , u�−1, u�+1, . . . , uk).

With probability

min

⎧⎨
⎩1,

π(k − 1,α′ ,w′ , τ ′ , u′ | y) qB(k − 1) g(w� , τ� , u� | k − 1,α′ ,w′ , τ ′ , u′)
π(k,α,w, τ , u | y) qD(k) [∑k

j=1 1{0}(nj(α))]−1 (1 − w�)
k−2

⎫⎬
⎭ ,

set the new state to (k − 1,α′,w′, τ ′, u′); otherwise, keep the
old state. This move is available only when k > 1.

The resultant chain has � as its stationary distribution due
to the reversible jump construction. On the other hand, the
Metropolis-reordering algorithm is not classified as a well-
known reversible algorithm, and it remains unclear whether
the U move type is reversible or positive semidefinite.

For illustration, the algorithm is applied to the galaxy dataset
described by Roeder (1990) and studied by Richardson and
Green (1997). In the B move, w∗ is drawn from the beta dis-
tribution with parameters 1 and n, τ∗ is drawn from the inverse
gamma distribution with shape parameter c and scale parame-
ter b, and u∗ is drawn from the N(0, τ0τ∗) distribution. Follow-
ing Green (1995), the birth and death probabilities are set to

qB(k) = 1
3
min

{
1,
fK(k + 1)
fK(k)

}
,

qD(k) = 1
3
min

{
1,
fK(k − 1)
fK(k)

}
.

The trans-dimensional chain (K(t),A(t),W(t),T(t),U(t))∞t=1 is
simulated for 105 iterations. The empirical performance of the
algorithm is shown in Figure 3. The predictive density eval-
uated at a point x is the sample average of

∑K(t)
j=1 Wj(t)f (x |

Uj(t),Tj(t)), where f (· | u, τ) denotes the density of the N(u, τ)

distribution.We can see that the sampler appears to performwell
empirically, especially in terms of within-model moves.

4.3.3. Convergence Analysis
For k ∈ K, let Pk be the Mtk associated with the Metropolis re-
ordering algorithm targeting�k. We prove the following lemma
in Section D of Supplement I. The proof is constructed based on
the fact that, in the Metropolis re-ordering algorithm, the next
state depends on the current state (α,w, τ , u) only through α,
which takes value in a finite set.

Lemma 12. For k ∈ K, ‖P2k‖�k < 1.

With Lemma12 in hand, it is now straightforward to establish
the geometric ergodicity of the reversible jump algorithm.

Proposition 13. Suppose that qU(k) > 0 for k ∈ K, qB(k) > 0 for
k < kmax, and qD(k) > 0 for k > 0. Then the reversible jump
chain is L2(�) geometrically convergent and �-a.e. geometri-
cally ergodic.

Proof. Apply Theorem 1. Let P be theMtk of the reversible jump
chain. For k ∈ K, (i) and (iii) in (H1) hold with ck = qU(k). By
Lemma 12, (ii) in (H1) holds with t0 = 2.

To verify (H2), note that P̄(k, {k′}) > 0whenever |k−k′| ≤ 1.
It is then evident that P̄ is irreducible.

Thus, P is L2(�) geometrically convergent. By Theorem 1
of Roberts and Tweedie (2001), it is �-a.e. geometrically
ergodic.

Remark 14. The reversible jump algorithm can be further
improved by adding more sophisticated between-model move
types such as split and merge (Richardson and Green 1997;
Zhang et al. 2004). Geometric convergence is preserved as long
as the between-model movements remain irreducible.
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Figure 3. Top left: trace plot of K(t); top right: trace plot of U2(t) when K(t) = 5; bottom left: histogram and predictive density for the galaxy dataset; bottom right:
estimated posterior probabilities of K = k and their 95% simultaneous confidence intervals. Hyperparameters: kmax = 30, γ = 2, b = 2, c = 3, τ0 = 1000, u0 = 20.
fK (k) ∝ 1/2k .

Geometric ergodicity allows us to construct 95% simultane-
ous Wald confidence intervals for the posterior probabilities of
K = k for k = 1, . . . , kmax. This is shown for the galaxy dataset
in Figure 3. We have added (logm)

√
1/b2m + bm/m to the esti-

mated asymptotic variances of the estimated probabilities, as in
Section 4.2.4.

5. Discussion

L2(�) geoemtrically convergence implies �-a.e. geometric
ergodicity. Harris recurrence, a regularity condition commonly
used in MCMC analysis, can be enforced provided that we
restrict our attention to some absorbing set (Meyn and Tweedie
2012, Theorem 9.0.1). See also Roberts and Rosenthal (2006)
for conditions for Harris ergodicity in the context of trans-
dimensional chains.

Under geometric ergodicity, one may use methods from for
example, Jones et al. (2006) and Vats, Flegal, and Jones (2019) to
construct confidence regions for uncertainty quantification. In
our examples, we used Bonferroni correction to construct mul-
tipleWald confidence intervals, butmore sophisticatedmethods
exist (Vats, Flegal, and Jones 2019; Robertson et al. 2020).

Some of the formulas in the proof of Lemma 3 (found in
Section B of Supplement I) can be formulated in terms ofDirich-
let forms. Dirichlet forms may be used to study Markov chains
in terms of the conductance (Lawler and Sokal 1988), Peskun-
Tierney ordering (Andrieu and Livingstone 2021), and func-
tional inequalities (Power et al. 2024).

An obvious avenue for future research is obtaining practical
quantitative convergence bounds for trans-dimensional chains.
In particular, ways of computing or estimating Gap�̄(P∗P) and
Gap�̄(P̄) would be useful for selecting good proposal distribu-
tions in a reversible jump algorithm. Whether our convergence
bounds can be further sharpened and extended to the casewhere
K is infinite is also of interest.

Supplementary Materials

Supplement I: Minor Results and Technical Proofs. This document contains
a proof for the assertion that�-irreducibility implies (H2), proofs for Lem-
mas 3, 11, 12, and simulation results concerning Monte Carlo confidence
intervals.

Supplement II: Autoregression with Laplace errors. This document con-
tains an application of the theory and methods herein to an autoregressive
model with Laplace errors and unknown model order.
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