Optimization in Parametric Design Thinking: Are New

Models Needed?

Stephanie Bunt
The University of New Mexico, United States
sbunt@unm.edu

Catherine G.P. Berdanier
The Pennsylvania State University, United States

Nathan C. Brown
The Pennsylvania State University, United States

New theoretical models for design thinking have been proposed in the past
when a new technology emerges. For example, models of parametric design
thinking were developed to explain differences from design thinking with
analog tools. Interacting with increasingly autonomous design tools
involving optimization may introduce yet a new type of design thinking.
This paper identifies key criteria from historical literature that helped
distinguish new design thinking in response to progressions in technology.
Then, design behaviors from a recent architectural design study involving
optimization with parametric tools are analyzed to consider if these criteria
are observed. By comparing the design strategies to the established criteria,
we discuss ways in which employing optimization may involve a new form
of design thinking. Since optimization represents only partial automation
compared to future possibilities with Al, we propose areas for future
research to further map design thinking when working with optimization
tools and beyond.

Design Computing and Cognition DCC’24. ].S. Gero (ed),
pp. xx-yy. © Springer Nature 2024


mailto:sbunt@unm.edu

2 S. Bunt, C. Berdanier, N. Brown

Introduction

Optimization techniques have become common in design, particularly in
engineering. While optimization has been used in fields such as aerospace
engineering for decades, it has only recently gained prevalence in building
design. The recent surge of design optimization for buildings is related to
increased use of parametric modeling in architecture and architectural
engineering, as well as stringent performance goals for buildings. Used in
conjunction with 3D modeling and parametric tools, optimization strategies
allow a designer to rapidly isolate desirable solutions from a large set of
options based on defined variables, performance objectives, and constraints.
A design optimization approach may thus build on parametric design by
using the parameters as design variables in pursuit of defined quantitative
performance goals. A clear example of parametric design in practice is the
Morpheus Hotel, for which the design team at Zaha Hadid Architects
developed a “comprehensive parametric model [combining] all of the
hotel’s aesthetic, structural, and fabrication requirements” [1]. Another
relevant example for design optimization is the British Museum Great Court
Roof [2], which inspired new optimization approaches [3].

By using algorithms to search a design space, an optimization tool can
empower the design process by reducing time-intensive analysis and
exhaustive iteration [4]. As the list of performance objectives grows,
designers increasingly need swift design feedback to make informed
decisions. Computers are used to generate this feedback while producing
plausible solutions to complex problems. Previous researchers have shown
that optimization profoundly influences design action because of its
unprecedented speed in searching a parametric space [5], [6] and how it
introduces new iterative relationships [6]. However, studies have not
demonstrated how using an optimization approach may change design
thinking beyond what is known about parametric design thinking (PDT) in
general, given that in design optimization, more design decisions may be
made independently from the designer.

The designer has been central to any understanding of the design process
[7], 8], [9], [10], [11]. Design thinking models center on the role of the
designer, focusing on processes of formulation, synthesis, and analysis,
though these processes are named differently by various theorists. For
example, an early cognitive model of design thinking, Cross’s designerly
ways of knowing [8], [9], [12], defines design actions taken by the designer
while linking sketch modification, reflection, and modification in
refinement cycles. Schon [10] similarly depicts an iterative moving-seeing-
moving process involving observation and visual documentation.
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This designer-centric lens has persisted across time despite changes in
technology from sketching to digital design to parametric tools. Responding
to the introduction of digital tools for design, Oxman developed a schema
that connects four classes of information with the designer located at the
center, who interprets and interacts with each class [7]. Acknowledging the
source of information and how it is understood is important in design
thinking as some digital tools, like Artificial Intelligence (Al), can make
decisions outside of the designer’s internal logic. While optimization
algorithms are not synonymous with Al they can rapidly reject designs that
do not align with the designer’s prescribed goals. Yet they may also risk
dismissing a design that achieves qualitative criteria that would have
otherwise been recognized by the designer as beneficial. The term
sensemaking has been used to distinguish aspects of human involvement in
Al activities, [13] and can also relate to design thinking involving automated
decision-making. While PDT assumes that the designer’s knowledge
remains central to all decisions [14], optimization strategies may not meet
the same criteria. For example, a process involving significant knowledge-
based decisions made by a computer might be better modeled with both a
designer and Al bot in the center.

It is worth noting that process models for optimization also exist, which
tend to emphasize an iterative relationship with optimization tools [6], [15].
Yet these models often show that optimization strongly relies on data
analysis for decisions [5S] which deviates from traditional methods for
analyzing architectural design options. It is thus difficult to distinguish
whether working collaboratively with an optimization process represents
another technology-driven evolution in design thinking.

In response, this paper discerns previous criteria in the literature that
helped encourage the creation of new models of design thinking. These
criteria were previously used to distinguish parametric thinking and digital
design from traditional methods, constituting novel leaps in design thinking.
We then compare design behavior of building designers when performing
optimization, collected from a new design study, to discuss how interactive,
iterative optimization may show new forms of design thinking. This
research is a first conceptual step towards better understanding how design
decisions are made with optimization, primarily at the level of theory testing
rather than theory development [16]. With the increase of automation in the
architectural design process, it is important to continually challenge our
understanding of designer autonomy and inform future models that will
describe Al-assisted design.
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Background

Over time, design research has established theories for design process while
continually challenging existing models as new technologies are introduced.
Digital tools, which change how collaboration occurs, how expertise is
shared, and how reflection relates to action, have been important in design
theory development. However, Cash posits that across publications on
design research, there are disagreements about how to best address research
impact and theory development [16]. According to Colquitt and Zapata-
Phelan, theory has explanatory and predictive power, but its development
requires both theory building and theory testing at various levels [17].
Within this framework, our paper tests the edge of current theory, while
considering if additional theory building is warranted for the specific
instance of using optimization in early conceptual design. To explain our
approach, we first review relevant models of design thinking.

Models of design thinking

Design thinking can be defined as “a process of exploration and creative
strategies” [14] and many researchers have described design process
through diagrammatic models [18], [19], [20]. Early models of design varied
in terminology but established a general structure of problem/situation
formulation, synthesis/generation, representation, and evaluation. A
designer may cycle through these steps, iterating their ideas. Additional
models have added context, such as Gero and Kannengiesser’s Situated FBS
Ontology [11], which accounts for the conceptual space in which decisions
are being made. This model has been useful in defining behaviors in
different design disciplines [21], [22] and in digital design interfaces [23],
particularly with the integration of technology in design.

With increased use of digital tools in design, researchers have established
distinctions between digital design and computational design. From an
extensive literature review, Caetano et al. states that digital design is “the
use of computer tools in the design process,” [24] whereas computational
design entails the use of computation to develop designs [24]. Caetano et al.
explains that computational design does not depend on digital tools, as in
work by Frei Otto. Nevertheless, the use of computers has impacted how
designers think about their designs. In 2006, Oxman established that there
is a need to reassess theories and methodologies in response to digital
design’s growing integration in design practice and to guide future research
[7]. She developed a schema to describe design information relationships
between representation, generation, evaluation, and performance, with the
designer at the center of all decisions. From this model, she argued that
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digital technologies prompt a new type of design thinking. With the growing
integration of design with technology, she continued to investigate designer
thinking while extending into parametric design.

Models of parametric design thinking

Oxman defines parametric design as “a formation process of parametric
structures of associative geometries that generates the geometry of desired
objects of design” [14]. Leach has a similar definition, suggesting that a
significant change from traditional methods to a parametric approach is the
focus on a design “logic” rather than a design “object” [25]. Broadening
thinking beyond traditional aptitudes, Woodbury acknowledges that
parametric design requires the skills of a designer, mathematician, and
computer scientist [26]. In Stals et al.’s model of the parametric process, the
“emergence of a concept” and development of a “parametric definition and
exploration” are split into two phases with exploratory amplitude cycling in
greater variation compared to traditional tools [27]. These concepts have
been tested through research. Yu and Gero compared Parametric Design
Exploration to Geometric Modeling Exploration and identified that in the
early design stage, parametric processes focus more on solutions than
formulating the problem [28]. They concluded that, with support from
additional literature, parametric thinking is beneficial for solution
exploration and supportive for creativity.

In the paper defining PDT, Oxman establishes several axioms to
differentiate PDT [14]. It is a distinct design approach in that it can create
something that is otherwise unachievable by paper-based means. In PDT,
the designer also requires skills in scripting, or writing code, which provides
a new way of design thinking. Oxman diagrams PDT as an intersection of
the research fields “parametric models of design,” “cognitive models of
architectural knowledge,” and “computational models of digital design
process” [14]. Oxman goes on to describe how different applications of
parametric thinking can be categorized by her generic schema of process
models [7]. She concludes that “design research in this area should become
more strategic, computationally informed, and performance-based; it should
be oriented to the production of knowledge relative to specific programmatic
and functional requirements given by specific contexts” [11, p. 37].

Optimization in architectural design

While Oxman’s schema considers some approaches that could be called
optimization, the term “optimization” can be broad or narrow in different
fields, ranging from architecture to engineering to pure mathematics.
Although optimization can generally refer to “finding the best possible
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solution by changing variables that can be controlled, often subject to
constraints” [6], a human interpreter is assumed to interpret the results in
many design models. From an engineering design perspective, Martins and
Ning presents a model comparing the optimization process to a conventional
process [6]. They say that in optimization, a designer may ask “is optimality
achieved?” as a separate question from “is the design good?” to guide their
next design steps. These two questions address quantitative and qualitative
goals, suggesting that an optimization tool cannot dictate the final solution
without a designer’s interpretation. This idea is also supported in
architectural design by Canestrino: “optimization can be traced, with
extreme synthesis, to the search for maximum (or minimum) points of
certain functions associated with a design’s performance” [5]. This
definition emphasizes synthesis of ideas, acknowledging the role of the
designer and non-explicit criteria, even as optimization possibly enhances
or even overly constraints their process.

Optimization involves mathematic functions, with researchers
historically using extensive numerical models to implement optimization
methods [29]. In building design, it requires designers to configure a design
space and solution space, often through a parametric model. Following
algorithmic processes, designers can account for multiple performance
goals, such as daylight [30] and structure [31], to find a “best” option.
However, quantitative objectives are often inversely related, and a clear
solution is not always obvious. A designer must analyze and interpret the
information returned to them to best influence their design decisions. In
optimization, designers may take on the role of data analyst, drawing on
skills not traditionally associated with building design. Canestrino states that
optimization is dependent on large amounts of data [5]. While it may be
tempting to let automated processes parse this data and solve design
problems to save time, Canestrino warns that this naive view of optimization
may restrain design exploration to the pre-determined model.

Canestrino also acknowledges that there is a conflict in addressing a
designerly knowledge of aspirational design solutions and numerical
performance [5], referencing Sigfried Giedion’s observation of “the schism
between architecture and technology” [32]. Canestrino states that to “access
the possibility of an automated optimization process, [designers] must
necessarily design in a certain way, opening up many opportunities given
by digital tools but also losing many others” [5]. By selecting a discrete point
on a graph of performance objectives that seems “best,” optimization may
reduce flexible topological thinking in design exploration that is
characteristic of parametric thinking [14].

Instances of this behavior in optimization align with Caetano et al.’s
description of algorithmic design, which is not synonymous with parametric
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design [24]. Caetano et al. explains that the terms Parametric Design,
Generative Design, and Algorithmic Design are often used in parallel and
confused with one another in literature. It defines the three terms in a
layering pattern, with parametric design as a broader “approach that
describes a design symbolically based on the use parameters” [24];
generative design as more autonomous descriptions than parametric design;
and algorithmic design as a subset of generative design that “focuses on the
envisioned design at the expense of producing fewer surprising results” [24]
with a finer degree of control. When working in automated processes,
designer autonomy is of concern. This concern for designer autonomy, and
the models that center it, begins to appear even with simple optimization and
only grows with increasing reliance on Al in design [33]. Opportunities for
Al to improve sustainable building design processes have been identified
[34], so it is important to better understand how automated processes
influence design thinking.

To summarize, despite ample design research, a lack of continuous theory
building and theory testing can hinder theory development over time [16].
As an initial step towards extending theory of design thinking with the
incorporation of automated methods, we identify criteria used in past
research that signaled new design thinking. These criteria may help us
determine if optimization techniques introduce novel processes in design
thinking, particularly for conceptual building design, even if this is not true
of all processes that use optimization strategies.

Method

In this section, we first consider which criteria have been used in past
literature to define digital design and parametric design as novel processes,
with new types of design thinking. We then review the optimization-related
design behaviors and strategies identified in a recently conducted design
study against these past criteria to discuss optimization in the context of
architectural design.

Criteria for a parametric design as a novel process

Previous researchers have established novel approaches to design thinking
in digital design and parametric design [7], [14]. Table 1 presents an
overview of the criteria used for establishing the progressions in designer-
technology models of design across the literature, as we identified them.
One distinction requiring new models of design is when the role of the
designer changes. Rather than designing a building alone, like in traditional
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methods, parametric modeling prompts the designer to design code and
logic. In scripting a parametric model, the potential building becomes a
series of associative relationships in lieu of static individual elements [14],
[26]. This change in the designer’s role also influences a shift in the
exploration of problem- and solution-spaces in CAD modeling [35], with
parametric coding [27] magnifying the iterations for consideration. With
this shift in design thinking, the designer’s analysis of their design also
changes. Designers begin to review a matrix of options rather than discrete,
single objects [14], [36]. By displaying an array of options, novel
approaches to design thinking also produce solutions not previously
achievable. Oxman [37] observed that digital design transformed how
design could be achieved, while Aish & Bredell [38] identified that
parametric modeling allowed a designer to envision an idea beyond
traditional methods. Notably, as the design thinking models progress with
technology, the designer remains central to the design decision process
[14]. Cross established that designerly decisions are anchored in designerly
knowledge and that a designer will work through complex iterative
cognitive processes using introspection and reflection [8], [9]. For an
optimization process to require a new model of design thinking for
explanatory and predictive accuracy, these criteria will likely also be present
while working with the new technology. If optimization in building design
introduces a new model of design thinking, then a new theory is necessary
to understand and explain design behavior in optimization processes.

Table 1 Table of criteria to define a new model in design process thinking.

Criteria Citation
The role of the designer changes Stals 2021; Oxman 2017; Woodbury
2010;

Shift in solution exploration and analysis Stals 2021; Oxman 2017; Reas &
Fry 2014; Davis et al. 2011

Produce a design not otherwise achievable | Aish & Bredella 2017; Oxman 2006

Oxman 2006; Cross 2006; Schon
Designer remains central to decisions 1983; Cross 1982;

Optimization strategies

To better understand optimization strategies in early conceptual building
design, we conducted a study that considered the behavior of 19 participants
in response to an optimization design task. In the study, 10 design graduate
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students and 9 practitioners in building design professions were asked to
develop an atrium solution for a fictional client in the Southwestern United
States. All participants had experience modeling in the study’s primary
design tools (Rhino for 3D modeling and Grasshopper for parametric
scripting) and were able to employ optimization strategies. The students
were required to have completed one course in optimization with at least six
months of experience in Grasshopper, and the practitioners had to have
completed at least five projects using optimization techniques in practice.
The participants were provided with a base Grasshopper file with site
context for their design and were required to consider the visual appearance
of their design. They were also asked to account for two of three
performance objectives of solar radiation, daylight, and structural stiffness.
They were provided with pre-built rapid simulations for these objectives.
Participants were asked to employ optimization but were given freedom
to select a plug-in or algorithm of their choice. In the digital tools, using an
optimization tool to search a parametric model requires the designer to
specify the variables and objectives to be searched and is initiated by the
designer clicking a “run” button. While the tool “runs” the optimization
process, it also rapidly displays the geometric models of the tested iterations
in the modeling space. The designer may stop the optimization search at any
time or let it complete the search based on specified constraints and stopping
criteria. The designer can then review the “best” performing options and
either select one or continue to edit the model. At the end of the design
sessions, the participants presented 1-2 design proposals for the client.
During the design sessions, the eye movements and screen recordings of
the designers were captured, and established methods for documenting
design processes were used to code optimization behavior. Since the
designers were moving between their internal ideas, expressed ideas, and
interpreted ideas through the design interfaces, we used Gero and
Kannengiesser’s Situated FBS Ontology [11] to develop the codebook and
describe distinct cycles and more comprehensive behaviors. In a previous
paper on designerly behavior [39], we identified 3 types of optimization
cycles: a Complete Cyle where the designer reviews the design feedback
from the optimization tool and edits their design, a Coarse Cycle where they
review the results from the optimization algorithm but does not respond to
the feedback, and a Partial Cycle in which the designer uses an optimization
tool but does not review the suggested performance feedback from the tool.
These cycles revealed unexpected uses of optimization tools that were not
exclusively quantitative, and thus did not necessarily follow established
process models for design optimization, like Martins and Ning’s diagrams
of the optimization process [6]. Some incidents of Coarse and Partial cycles
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9

also lacked “extreme synthesis,” as Canestrino [5] required in defining

architectural optimization.

Results

From the design sessions captured in our study, we found that optimization
strategies vary, and that resultant patterns of design thinking may not exhibit
our criteria for a novel model of design thinking. In addition, while
optimization may support decisions, it may not always change how a
designer thinks about a problem.

Overview of the iterative cycles from our study

Previously, we identified three optimization strategies including Complete,
Coarse, and Partial Cycles [39]. With the inclusion of more participants, we
also identified an option in which a designer chose not to use an optimization
tool at all, which we call an Independent Cycle. Figure 1 shows a
diagrammatic representation of their strategies and indicates the number of
participants represented by each cycle type.

Complete (9 participants) Coarse (6 participants)

Develops Selects Develops
parametric model fm.ﬁI i parametric model

»[ “Uses” optimization tool }\ “Uses” optimization tool

Reviews quant. Reviews quant.
feedback feedback

Edits model

Selects
final design

Partial (2 participanis) Independent (2 participanis)

Develops N Develops
s o Selects o S
parametric model final design parametric model

“Uses” optimization tool ]_l

Selects
final design

Edits model

Fig. 1 The complete, coarse, partial, and independent cycles of optimization
strategies identified and how many participants aligned with each cycle type.
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Complete Cycle — In a complete cycle, the designer reviewed the
quantitative “best” options from the tool, edited their model in response to
feedback, and used the optimization tool again at least once. This represents
thorough use of the mathematical advantages of an optimization tool, using
suggestions from the tool to not only “select” a design, but to inform further
exploration or modifications to the associative relationships in the model
that can lead to even better performance. However, while some designers
eventually selected a final design from the optimization suggestions, a few
changed the design slightly from the “best” option to meet a qualitative goal
based on the designers’ knowledge. Some designers exhibited a Complete
Cycle but constructed their parametric model to have little variation in its
geometric characteristics, reducing design options before using the
optimization tool.

Coarse Cycle — A coarse cycle represents that a participant “ran” the
optimization tool, reviewed the “best” suggestions, but did not edit the
model in response to the feedback. Participants who had design sessions in
this category often ran the optimization tool only once and did not exhibit
“extreme synthesis” [5] of their design. This is an example of when
optimization strategies may reduce flexibility in design thinking as the
designer selects the discrete point on a graph that seems “best” rather than
exploring options. In the context of a design study, however, the participants
may have been less inclined to iterate an idea due to external time constraints
or perceived expectations. They may also have viewed optimization as a
final step in their process and not an integral part of their decision making.

Partial Cycle — In a Partial Cycle, the designer initiated a search with the
optimization tool, but either did not review the tools suggestions or stopped
the optimizer before it completed. While a Partial Cycle may indicate a
designer’s oversight on using the tool, there were also sessions when a
participant used the optimization tool to review the extents and potential
designs generated from their parametric model. One participant mentioned
after initiating the optimization search that their model did not have the
range of visual solutions that they desired, so they stopped the search to edit
their model. Another observed that two variables, which controlled the
shape of their atrium, caused the structure to flatten and disappear when the
optimization tool drove to certain solutions. This participant repeatedly ran
the optimization tool and edited the model to account for unexpected errors
before letting the optimization tool run a full search. Both are examples of
using an optimization tool as a mechanism to learn about their parametric
models, not necessarily find an improved final design. In addition, a
participant who did not review the suggestions from the optimization tool
did not engage with the data analysis step of an optimization process. We
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did not expect to find a strategy that used an optimization tool without the
designer’s interest in the performance of the model, since optimization
primarily benefits quantitative searches. However, the optimization tools
often used in architectural design provide visual feedback as well as numeric
and may prompt design thinking different from other professions.

Independent — Two participants chose not to use an optimization tool in
developing their solutions. While the participants were aware that the study
focused on optimization, the design prompt did not explicitly require an
optimization technique. One participant disregarded the formal design
objectives, stating that they would consider those values at a later stage in
project development, and they were more interested in passive sun strategies
in the conceptual stage. The second participant wanted more control of their
final design rather than subjecting their model to an optimization search and
chose to manually check the objective values for an improved solution,
balancing qualitative goals with quantitative performance. This act suggests
that using an optimization tool, from the perspective of this participant,
would relinquish some of their autonomy as a designer.

Comparing optimization behaviors against criteria for new forms of
design thinking

For each of the criteria that we identified, we discuss how those working
with optimization show or do not show a new type of design thinking.

Role of the designer changes — In optimization, the designer is still a coder
of variable relationships as they are in parametric design. However, as
observed from our study, optimization tools allow a designer to rapidly test
the boundaries of their parametric model while not necessarily focusing on
a final design. In this way, the designer is more like a data analyst, which
requires them to conduct a “process of inspecting and modeling data with
the intent of discovering useful information, informing conclusions, and
supporting decision-making” [40]. This was evident in several participants.
One participant, who used the optimization tool to reveal errors in the model
and edit the variable bounds, was informed by the feedback data. In addition,
several participants following Complete Cycles reviewed the Pareto front
from their optimization search, interpreted the results for their qualitative
and quantitative merits, and made informed decisions in selecting a final
design. Although there is a change of the designer’s role to include data
analyst, a distinct shift in the exploration of solutions is less clear.

Shift in solution exploration and analysis — A marked difference between
traditional design methods and parametric modeling is that the designer
reviews an array of diverse options rather than a few at a time [14], [36], and
thus can think topologically in terms of gradients rather than typologically.
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Optimization tools also display an array of options within the parametric
space, which does not separate them from parametric modeling. In addition,
the behavior of several participants followed Caeterno et al.’s definition of
algorithmic design which “focuses on the envisioned design at the expense
of producing fewer surprising results” [24]. In this way, algorithmic design
is a subset of parametric design, but may restrict design thinking.

For several participants, the visual variation of final solutions was
subjectively small, and exploration of options was limited. This
characteristic of the model reduced advantages afforded by optimization
searches. For example, in models that generated more variation of geometric
or design properties, the “better” performing options were informed by the
optimization search without the designer searching the performance space
on their own. Since the designer does not need to limit the design space to
manually account for less desirable options, a model that is built to
incorporate optimization may produce more unexpected solutions.
However, the designer’s efforts towards a final design may not always be
informed by the optimization tool’s quantitative feedback, as we observed
in Coarse and Partial Cycles. Regardless, in reviewing optimization results,
it is valuable for the interface displaying performance objectives and design
options from an optimization tool to clearly communicate information for
rapid interpretation. Many tool developers have created optimization tools
with graphical interfaces, such as Galapagos [41], Wallacei [42], and
Octopus [43], which display data feedback with customizable visual aids.
The introduction of tools made specifically to provide better data feedback
also supports the expansion of the designer’s role to include data analyst.

Producing a design not otherwise achievable — While optimization tools
increased speed of performance-based design exploration beyond what is
achievable in parametric tools alone [5], the designs are still contained in
the limits of the original parametric design space, unless the parametric
script itself was updated. Optimization might find a high-performance
design that is unlikely to ever be uncovered by a manual search, but this is
difficult to judge within our design study since each parametric model was
custom-built by the participant. In the study sessions where the designer
used the optimization tool to learn about their model, a novel design process
is plausible. However, in design sessions where model variation was limited
geometrically, the parametric model did not reveal new options and the use
of an optimization tool was somewhat superficial.

Designer remains central to decisions — While the use of an optimization
tool and response to its feedback is at the discretion of a designer, several
Independent Cycle participants were concerned with how an optimization
tool may remove their design autonomy. Those participants expressed that
using an optimization tool in the conceptual design stage would limit their
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goals and control of the model. In addition, while the optimization tool can
rapidly provide improved solutions, it may also dismiss options that the
designer’s “knowledge” may have identified, removing decisions from the
designer. There were also participants in the Partial Cycles that did not
review final options but selected the “first” option from the optimization
tool by default. These participants did not perform any synthesis of their
design after optimizing, suggesting that optimization processes may not
hold the designer central to all design decisions in all instances.

In summary, while optimization may qualify as a unique design process
in some ways based on previous evolutions of design thinking, the use of an
optimization tool does not guarantee a unique or improved design process.
In addition, the use of an optimization tool may make designers feel more
limited than empowered and behave accordingly. With increasing use of
computers to aid in rapid design development, in the future it may be
beneficial to consider the computer as an autonomous agent alongside the
designer, and update models accordingly, but that is not necessarily the case
for optimization.

Discussion: A proposal for future updates

Based on these findings, we propose potential expansions to existing
theories, as well as to the criteria in this paper. Historically, with each
proposal of a new form of design thinking, a new field of research was
introduced. We consider a new category in the progression in design
thinking in Figure 2. We borrow language from Oxman’s diagram of PDT
[14] to describe the stages and reframe the historical development of a
design thinking that incorporates optimization. Initial research into
Traditional Design Thinking (or design thinking using traditional, non-
digital tools) focused on Cognitive Models of Architectural Knowledge,
such as Cross’ designerly ways of knowing [9]. With the introduction of
digital tools, research on Digital Design Thinking included Computational
Models of Digital Design Process, such as Oxman’s 2006 work Theory and
Design in the First Digital Age [7]. For research in PDT, Oxman includes
the field of Parametric Models of Design. Oxman’s resulting work in
modeling digital processes was foundational to our own understanding of
design behaviors when working with parametric design optimization tools.
While optimization allow for explaining generative and form finding models
that bypass the designer before presenting results back to the designer in the
center, there may be more opportunities to expand the theory to include the
computer as an autonomous agent. Future diagrams could be more explicit
about how the designer and computational agent relate to one another, often
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mediated by more significant data analysis and visualization tools than were
common in early parametric software.
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Fig. 2 Intersecting research fields evolving to Optimization Design Thinking

While optimization is dependent on parametric relationships, it requires
substantial understanding of an additional field of knowledge to be
implemented successfully. Therefore, we consider incorporating a new field
of research for determining an evolution in design thinking: Optimization
Models for Decision Making. This specific field of research is less clearly
defined, although research in design decision-making is extensive and
researchers are already considering the impact of Al assistance on
optimization and decision making [33], [34], [44]. While much literature
discusses approaches to optimization [4], [6], [29] and others model
optimization as a design process [15], [45], we propose future research that
focuses on the influence of optimization strategies on design thinking.

Within Optimization Design Thinking, a designer may follow expected
procedures to produce an optimization informed design, like in Martin’s
model of an optimization design process [6]. Alternatively, there could also
be unintended consequences of using optimization in design, as we observed
in our study. In our empirical study, not all participants used optimization
tools to explore their model for quantitative characteristics, some instead
using the tool as an idea generator or parametric script checker. In addition,
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some participants chose not to use the optimization tools at all at risk of
losing their autonomy. While optimization tools help direct a designer’s
focus by parsing undesirable solutions based on criteria established by the
designer, it may also discard unanticipated solutions that the designer would
want to consider. Although optimization is not synonymous with Al, the
increased incorporation of automation in design requires us to account for
changes in design thinking that may move away from designer autonomy.

Limitations

Optimization processes can occur in any field and proceed with many
different computer tools, so the outcomes from our theoretical assessment
in our design study may vary by other tools or professions. In addition, the
use of optimization techniques over the full development of a design project
in practice may elicit different behaviors. However, we provide a basis for
discussion in theory testing and development, based on our previously
defined design behaviors when working with optimization tools. In addition,
we acknowledge that others may interpret the criteria for needing a novel
model of design process differently. Our list was established based on what
we consider to be leading researchers in the area, and it could be further
discussed and expanded in future publications. Our qualitative design study
does not reach the level of statistical significance regarding the prevalence
of certain behaviors, but we aimed to explore our list of criteria against what
we observed, rather than making sweeping conclusions about all designers
who use optimization tools. Each participant represents a rich amount of
data for this type of interpretation.

Conclusion

With the ever-growing use of computer technology to help in producing and
improving design solutions, it is important to maintain our understanding of
the design process. Optimization tools can vastly improve our design efforts
for better buildings, but they may also challenge how we understand design
autonomy. This paper seeks to stimulate potential pathways for future theory
testing and development around situations in which computation is
transitioning from design fool to design partner [33], of which using
optimization is only an initial step. Future models to describe design
thinking involving optimization can consider the changing role of the
designer, who must increasingly analyze large amounts of design data, and
weigh the potential for creating designs that were not previously possible
with shifts in designer autonomy.
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