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Abstract

Regression discontinuity (RD) designs have gained significant popularity as a quasi-experimental device for evaluating
education programs and policies. In this paper, we present a comprehensive review of RD designs, focusing on the continuity-
based framework, the most widely adopted RD framework. We first review the fundamental aspects of RD designs, draw-
ing on potential outcomes and causal graphs. We then discuss the validity threats in RD designs, including manipulation,
discreteness of the running variable, statistical power, and generalizability. Additionally, we provide an overview of the
existing extensions to RD designs. To exemplify the application of RD methods, we analyze the effect of New Jersey’s pre-
kindergarten program on children’s vocabulary test scores, using an educational dataset. Finally, we offer practical guidelines
in the conclusion to promote the appropriate use of RD methods in educational research.

Keywords Regression discontinuity - Quasi-experimental designs - Nonexperimental methods - Causal inference - Program

evaluation - Pre-kindergarten programs

Introduction

A regression discontinuity (RD) design has emerged as a
prominent quasi-experimental design since its original con-
ception by Thistlethwaite and Campbell (1960), and it is
increasingly being used to evaluate programs or policies in
education and the social sciences. Over the past two decades,
researchers have devoted significant efforts to advancing the
methodology and empirical application of RD designs. Sev-
eral reviews have been conducted on these evolving designs,
including works by Cook (2008), Imbens and Lemieux
(2008), Lee and Lemieux (2010), and Cattaneo and Titiunik
(2022). However, these reviews primarily originate from
fields outside of education, and there is limited research that
thoroughly examines the fundamental and practical aspects
of RD designs in the context of education, along with clear
demonstrations. The main goal of this paper is to provide a
comprehensive review of both traditional RD designs and
the latest developments that are particularly relevant in edu-
cation settings. Additionally, the paper aims to illustrate key
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aspects of these designs using a real educational dataset and
provide practical guidelines for implementing RD designs.

In educational programs, eligibility and enrollment poli-
cies often dictate the treatment assignment of students or
children, typically based on factors such as age, abilities,
or special needs. For example, state pre-kindergarten (pre-
K) programs determine enrollment based on a child’s date
of birth. Children with birthdays on or after a specific date
become eligible for enrollment in the pre-K programs,
whereas those with birthdays before it do not qualify. This
situation necessitates the use of RD designs, where the treat-
ment assignment variable (also referred to as the running
variable)—in this case, the birth date—completely deter-
mines the treatment status. Such an RD design is regarded
as a quasi-experimental design that closely approximates a
randomized experiment, given the known treatment assign-
ment mechanism. That is, in the RD design, the variation in
treatment assignment is as good as random near the cutoff
when study units typically cannot control the running vari-
able precisely near the cutoff (Lee and Lemieux, 2010). Fur-
thermore, in an RD setting where treatment status is deter-
mined by the running variable, it is not feasible to employ a
matching design, another popular quasi-experimental design
in education. In the matching design, treated units and con-
trol units are matched based on the similarity of measured
covariates in observed data in order to identify and estimate
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the average treatment effect (ATE) (Steiner and Cook,
2013). However, in the RD setting, there is a lack of overlap
between treated and control units in terms of the running
variable, making the use of matching strategies infeasible.
Consequently, RD designs utilize distinct identification and
estimation strategies compared to matching and other quasi-
experimental designs.

Specifically, nonparametric identification of RD designs
is limited to the ATE at or around the cutoff, as compatibil-
ity between the treated and control groups is achieved only in
the close vicinity of the cutoff score. For the identification of
the ATE at the cutoff in RD designs, two main frameworks
are available: the continuity-based framework and the local
randomization framework. The continuity-based framework,
established by Hahn et al. (2001), provides valid counter-
factuals by assuming that the conditional expectations of
potential outcomes, given the running variable, are continu-
ous at the cutoff. This assumption provides the fundamental
requirement for nonparametric identification of the ATE at
the cutoff; see Sect. “Basics of RD Designs” for details. On
the other hand, the local randomization framework was ini-
tially motivated by the work of Lee (2008), which captures
the original ideas in the seminal article by Thistlethwaite
and Campbell (1960) and interprets RD designs heuristically
as if they were randomly assigned in a small neighborhood
of the cutoff. It was subsequently formalized by Cattaneo
et al. (2015). The local randomization framework relies on
a stronger assumption than the continuity assumption of the
first framework, but it provides justification for employing
estimation and inference methods from the analysis of exper-
iments literature, such as Fisherian or Neyman approaches
(Cattaneo et al., 2019a). In this paper, we primarily focus on
the continuity-based framework due to its wide adoption and
longer history. For those interested in the local randomiza-
tion framework, refer to Cattaneo et al. (2015) and Cattaneo
et al. (2017).

The RD literature has evolved in recent decades, with
departures from the traditional RD design. Researchers have
explored diverse issues, such as incorporating multiple cut-
off values or running variables, utilizing coarse measure-
ments of the running variable, handling multisite/multilevel
data, and investigating different parameters of interest like
regression kink designs; see Sect. “Extensions” for more
details. In addition to methodological advancements, there
has been a substantial increase in the practical application of
RD methods. Recent studies employing RD designs in edu-
cation have investigated a broad range of educational issues.
For instance, these studies have focused on selective public
schools, subsidized loan programs, algebra courses, reclas-
sification of English language learners, test-based retention
or remediation, school turnaround programs, supplemental
reading or literacy programs, cash transfer programs, and
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Table 1 Recent publications on regression discontinuity (RD) in edu-
cation

Publication Setting

Angrist and Rokkanen (2015)
Bergolo and Galvéan (2018)
Brunner et al. (2023)

Carlson and Knowles (2016)

Selective public schools
Cash transfer programs
Selective public schools

English language learner reclas-
sification

Coyne et al. (2018)
Figlio et al. (2018)
Figlio and Ozek (2023)
Heissel and Ladd (2018)
Lee and Soland (2022)

Reading programs

Literacy programs
Test-based remediation
School turnaround programs

English language learner reclas-
sification

McEachin et al. (2020)
Melguizo et al. (2015)

Nomi and Raudenbush (2016)
Schwerdt et al. (2017)

Suk et al. (2022)

Algebra courses
Subsidized loan programs
Algebra courses
Test-based retention

Testing accommodations

testing accommodations. See Table 1 for a list of the recent
publications.'

The remainder of the paper is organized as follows. Sec-
tion “Basics of RD Designs” offers a concise overview
of the fundamentals of RD designs within the continuity-
based framework, drawing on potential outcomes and causal
graphs. Section “Threats to Validity of RD Designs” dis-
cusses the potential threats to the validity of RD designs
and addresses concerns on the underlying assumptions.
Section “Extensions” explores recent advancements and
extensions in RD designs. Section “Educational Example:
New Jersey’s Pre-K Programs” presents an analysis of our
empirical example concerning New Jersey’s pre-K pro-
gram. Conclusions with practical guidelines are provided in
Sect. “Conclusions”.

Basics of RD designs

RD designs come in two main types depending on whether
study units comply with the assigned treatment status. In
cases of perfect compliance, it is known as a sharp RD
design, while with imperfect compliance, it is referred to
as a fuzzy RD design. In the following section, we review
the details of causal estimands, assumptions, and estimation
methods for both of these types.

! For a list of other RD applications in education, refer to Table 5 in
Lee and Lemieux (2010) and Secti. 4.2 of Villamizar-Villegas et al.
(2021).
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Notation

We use the Neyman-Rubin potential outcomes framework
(Neyman, 1923; Rubin, 1974) to define treatment effects. Let
A; € {0, 1} be a binary treatment variable where A; = 1indi-
cates that child i was assigned to (or eligible for) the pre-K
treatment and A; = 0 indicates the control condition. In a clas-
sic RD design, treatment assignment is based on a continu-
ous running variable X; and a cutoff score x, such that A; = 1
if X; >x.and A; =0if X; <x,. Let T; € {0, 1} denote the
treatment received where 7; = 1if child i actually received the
pre-K program and 7; = 0 if the child did not receive the pro-
gram. Note that when full compliance is achieved with respect
to the assignment/eligibility rule, the assignment status and
treatment received status are identical, i.e., A; = T’

Y;(1) represents the potential treatment outcome if
child i were to receive a pre-K program, and Y;(0) repre-
sents the potential control outcome for the same child but
under the control condition. For every child, the observed
outcome is linked to the potential outcomes as follows:
Y; =T,;Y,(1) + (1 — T;)Y;(0). The equality implies the stable
unit treatment value assumption (SUTVA; Rubin , 1986), that
is, (1) a child’s potential outcomes are independent of other
children’s treatment assignment and (2) there are no different
versions of the treatment. Finally, let W be a set of observed
pre-treatment covariates and U be unobserved covariates.

Sharp RD designs

In this subsection, we review the standard, sharp RD design
with a continuous running variable. Let’s assume that our run-
ning variable is a child’s birth date, which is measured con-
tinuously in days. In this case, children with birthdays after
or on the cutoff, denoted as X; > x,, are assigned to the pre-K
program, but those with birthdays before the cutoff are not
assigned and must wait another year. When there is full com-
pliance with the assigned pre-K status, this design is called a
sharp RD design. Under this design, the causal estimand of
interest is the ATE at the cutoff, which is the average linear
contrast of potential outcomes between the treated and con-
trol groups at the cutoff value of the running variable and is
defined as 7gp:

Terp = E[Y(1) = Y,(0) | X; = x.]. 1)

In our example, the ATE at the cutoff represents the aver-
age effect of the pre-K program for children scoring at the
eligibility cutoff. In sharp RD designs, the probability of
receiving treatment abruptly changes from one to zero when
the running variable X; crosses the cutoff x,. Since A, is a
known deterministic function of X;, we achieve conditional
unconfoundedness, meaning that Y;(1), Y;(0) L A;|X;. How-
ever, there is no common support between treatment and

E[Y()IX]

Outcome Y

X

E[Y(0)X] i

Running Variable X

Fig. 1 Visual representation of a regression discontinuity (RD) design

control units on X; in the sharp RD design. This means that
units scoring above or at the cutoff have a probability of 1
for receiving treatment (Pr(A; = 1|X; > x,) = 1), whereas
those scoring below the cutoff have a probability of O
(Pr(A; = 1|X; < x,) = 0). Therefore, due to the violation of
the positivity assumption (i.e., 0 < Pr(4; = 1|X;) < 1), the
treatment effect for the entire population cannot be non-
parametrically identified. Nevertheless, the treatment effect
for the subpopulation at the cutoff can still be non-paramet-
rically identified if the potential outcomes satisfy the local
continuity assumption at the limiting cutoff as follows:

(A1) Local Continuity of Potential Outcomes:
liTm EY,(D)| X, =x) = lilm EY,(1) | X; =x),

lim E(Y,(0) | X; = x) = lim E(Y,(0) | X; = ).

This assumption means that the average potential treat-
ment and control outcomes just below the cutoff are equal
to the respective average potential outcomes just above the
cutoff. This assumption allows us to establish valid coun-
terfactuals for children near the cutoff (Hahn et al., 2001;
Imbens and Lemieux, 2008). Under Assumption [A1], the
ATE at the cutoff, i.e., Tgp, is identified as follows:

EY,(D) = Y,0) | X; = x.] = lim E(Y; | X; = x)

~ lim E(Y; | X; = ).

In Fig. 1, we illustrate an RD design with (unknown) poten-
tial treatment and control outcome functions represented
by red and blue lines, respectively. The figure highlights
that potential outcomes are continuous at the cutoff, with
no overlap between treatment and control units in terms
of the running variable. Solid lines can be estimated using
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regression smoothers based on observed data, while dashed
lines cannot be estimated due to the unavailability of data.

Before formally estimating the RD effect, a visual inspec-
tion is essential. Researchers create an RD plot by plotting
the relationship between the running variable and the out-
come of interest using a scatterplot and smoothing regres-
sion lines. This RD plot is similar to Fig. 1, but it is based on
observed data and employs empirical regression smoothers
(see an example in Figs. 4 in Sect. Educational example:
New Jersey’s pre-K programs). Plotting such RD plots plays
a crucial role in RD empirical analysis and should precede
the formal estimation of the RD treatment effect.

To formally estimate 7)), researchers can employ vari-
ous approaches, including parametric, semi-parametric,
or nonparametric methods (e.g., Lee and Lemieux 2010;
Imbens and Lemieux 2008; Schochet et al. 2010). First, the
parametric approach fits a regression model that regresses
the outcome on assignment status A; and centered running
variable (X; — x_), as follows:

Y, =py+ BA; + (X, —x.) + €. )

Here, the term f, represents the intercept of the control
group, and f; = g, represents the ATE at the cutoff; f(-)
represents a functional form of the running variable, and ¢;
represents the random error. Typically, the regression slopes
of the running variable differ between the left and right sides
of the cutoff value by including an interaction term between
Aand X, as: ¥; = fy + fiA; + Br(X; — x.) + B3A(X; —x )+
€; (Lee and Lemieux, 2010). Additional higher-order terms
(e.g., quadratic, cubic terms) can be incorporated into the
regression model. The choice of the polynomial functional
form can be based on the statistical significance of higher-
order terms or model-fit criteria, such as the F-test statistic
and Akaike Information Criteria (AIC). However, a limita-
tion of using parametric regression is that it provides global
estimates of the regression function across the entire range
of X, rather than focusing on the subpopulation at the cutoff
(Lee and Lemieux, 2010).2

Alternatively, nonparametric approaches, such as local
polynomial regression, can be utilized and have become
more widely used for RD estimation. In local polynomial
regression, researchers need to determine the kernel func-
tion, bandwidth, and the inclusion of higher-order terms
(Lee and Lemieux, 2010; Imbens and Lemieux, 2008). For
example, a local linear regression model with a rectangular/
uniform kernel (and different slopes) can be written as:

2 When the functional form of the regression model is uncertain, it is
recommended to adopt an overfitting strategy by including more pol-
ynomial and interaction terms than strictly necessary (Shadish et al.,
2002).
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Y, = By + BA + BYX, = x) + BiAX, = x) + €],

_ [ LI —x)l/h< 1 3)
YT 0,0 1 —x )l /R > 1

Here, the bandwidth £ controls the width of the neighbor-
hood around the cutoff and represents half of the window
width. The weight w; = 1 if observation i lies within the
window and w; = 0 if it is outside the window. This means
that observations within the window have equal weight and
observations outside the window are excluded from RD anal-
ysis. While other kernels (e.g., triangular or Epanechnikov)
can also be used, the choice of kernel function usually has
minimal impact. However, choosing bandwidth # is crucial
and involves finding an optimal balance between precision
and bias. A larger bandwidth produces more precise esti-
mates because more observations are available for estimat-
ing the regression, but it introduces more smoothing bias to
the local polynomial approximation. Furthermore, the choice
of bandwidth affects the selection of higher-order terms as
smaller bandwidths require lower higher-order terms (Lee
and Lemieux, 2010; Cattaneo et al., 2019b).

Two main procedures are commonly used to select band-
widths. The first procedure involves characterizing the
optimal bandwidth in terms of the unknown functionals
(e.g., mean, variance) of the data distribution. These func-
tionals can then be estimated using data-driven methods,
and plugged into the optimal bandwidth function (Imbens
and Kalyanaraman, 2012; Calonico et al., 2014, 2019). An
increasingly popular method in the first procedure is to find
the value of 4 by minimizing the mean square error (MSE)
of the RD effect estimator 7, given a choice of polyno-
mial order and kernel function (Cattaneo et al., 2019b).
The second approach to choosing bandwidths is based on a
cross-validation procedure as demonstrated by Ludwig and
Miller (2007). This approach determines the optimal band-
width by selecting the value of /& that minimizes the MSE
between the predicted and observed value of Y. Currently,
the first procedure has become more popular because choos-
ing a bandwidth that is optimal for estimating zgg,, is more
relevant in RD settings (Imbens and Kalyanaraman, 2012;
Cattaneo et al., 2019b).

Regarding baseline covariates W, it is not necessary to
include them in RD analysis to obtain consistent estimates
of the RD effect. However, the key advantage of incorpo-
rating baseline covariates into regressions is an efficiency
gain. In other words, it allows us to improve the precision
of the estimated effect if baseline covariates are correlated
with the outcome variable. Additionally, when the window
or bandwidth size is wide and we include observations that
are farther away from the cutoff in RD analysis, using addi-
tional covariates can potentially help mitigate bias arising
from these additional observations (Imbens and Lemieux,
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2008; Calonico et al., 2019). For more information on the
estimation and inference in sharp RD designs, refer to Lee
and Lemieux (2010), Cattaneo et al. (2019b), and Cattaneo
and Titiunik (2022). Additionally, Sect. Educational exam-
ple: New Jersey’s pre-K programs of this paper provides a
detailed demonstration.

Fuzzy RD designs

In practice, it is often observed that study administrators
deviate from the assignment rules, or participants fail to
comply with their assigned treatment status. For example,
children who are eligible for a pre-K program based on their
birth dates may not participate, and ineligible children might
actually participate due to specific rules or exemptions.
When such non-compliance occurs, the probability of
receiving the treatment is less than one but greater than zero,
ie,0 <ImPr(T;,=1|X;=x)-limPr(T;=1]X;=x) <1,
xlx, xTx,

and we have what is known as a fuzzy RD design.

In this design, two causal estimands are of interest: the
intent-to-treat (ITT) effect and local average treatment effect
(LATE), both at the cutoff score. The ITT effect at the cutoff
is defined as Eq. (1). It is identified and estimated using the
same approach as the ATE in the sharp RD design discussed
in Sect. Sharp RD designs, where the pre-K assignment/
eligibility status, A;, serves as the “treatment” indicator. To
define the LATE at the cutoff, we now use potential out-
comes notations for treatment receipt. Let 7;(1) denote a
child’s potential pre-K receipt if they were eligible (A; = 1),
and let 7;(0) denote their potential non-receipt if they were
ineligible (A; = 0). We assume T; = A;T;(1)+ (1 — A)T,(0).
Because both 7;(0) and 7;(1) are binary indicators, there are
four possible values for the pair of potential responses to
treatment assignment. The first group, referred to as compli-
ers includes units who always comply with their assignment
(i.e., T;(0) = 0,T,(1) = 1). In this study, compliers mean stu-
dents who would receive the pre-K program if eligible and
would not receive it if ineligible. All other units are classified
as noncompliers, but they can be categorized into three dis-
tinct types: never-takers, always-takers, and defiers. Never-
takers are units who never take the treatment, regardless of
their assignment (i.e., 7;(0) = 0,7;(1) = 0), whereas always-
takers are those who would always take the treatment,
regardless of their assignment (i.e., 7;,(0) = 1, T,(1) = 1).
Finally, defiers are those who would act contrary to their
assignment (i.e., 7;(0) = 1, T;(1) = 0) (Imbens and Rubin,
2015).

Under the fuzzy RD design, the LATE at the cutoff,
denoted as 7z, is the ATE at the cutoff for the subpopula-
tion of compliers, which is formally defined as follows:

trrp = EIY,(D) = Yi(0) [ X; = x,, T;(1) = 1,T;(0) = 0]~ (4)

In our setting, Tz, represents the average effect of receiv-
ing the pre-K program for students who comply with the
treatment assigned status at the cutoff. To identity the LATE
at the cutoff, the fuzzy RD design make two additional
assumptions:

(A2) Local Monotonicity:

mPA(T(1) < T(0) | X; = x) = imPr(T,(1) < T,(0) | X, =) = 0

(A3) Local Exclusion Restriction:

Pr(Y,(1,1) # Y(0,1) | X; = x,) = Oforeacht =0, 1,
and where the potential outcomes Y,(a, f) are now
functions of both the treatment assigned/eligible sta-
tus (a) and the treatment received status (¢).

The local monotonicity assumption ensures the absence of
defiers at the cutoff, which, in our empirical example, refers
to children who would receive the pre-K program if ineli-
gible but would not receive it if eligible. The local exclu-
sion restriction assumption states that potential outcomes
depend solely on treatment receipt (7;) and are unaffected
by treatment assignment (A;) at the cutoff; that is, under
this assumption, i.e., Y;(a, t) = Y;(t). Assumptions [A1]-[A3]
allow us to identify the LATE at the cutoff as follows:

E[Y,(D)-Y,0) | X; =x,T,(1) =1,T,0) = 0]
imB(Y; | X; = ) ~ imE(Y; | X; = x)

T mE(T, [ X, = x) — imE(T, | X, = x)°
xlx, x1x,

To estimate 7, in fuzzy RD designs, researchers have the
option to use either parametric regression with polynomial
and interaction terms or nonparametric regression (Imbens
and Lemieux, 2008; Lee and Lemieux, 2010). In the para-
metric approach, instrumental variable regression or two-
stage least squares (TSLS) regression can be employed.
However, similar to sharp RD designs, a limitation of this
parametric approach is that it relies on all values of X with-
out exclusively using the subpopulation near the cutoff. On
the other hand, nonparametric regression focuses on a small
neighborhood around the cutoff point, where local polyno-
mial regression is commonly used to estimate the numera-
tor and denominator of the ratio in 75, (Lee and Lemieux,
2010). Like sharp RD designs, researchers need to select
the kernel function, bandwidth, and the inclusion of higher-
order terms for both the treatment regression and outcome
regression. In practical applications, it is desirable to use the
same bandwidth for both the numerator and denominator
(assuming the same kernel function and polynomial order).
This enhances transparency and simplifies computation in
RD analysis, because researches can clarify which obser-
vations are included in their calculations. Similar to sharp
RD designs, the bandwidth can be chosen using an optimal
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Fig.2 Causal graphs and causal
graphical identification for
evaluating a pre-K program
based on sharp and fuzzy RD
designs. X represents the run-
ning variable, which is a child’s
birth date. A represents the
pre-K assigned status. T repre-
sents the pre-K received status.
Y represents the outcome, which

(a) Sharp RD design

X‘/

[~

(b) Identification for sharp RD

X — xz, W, U

is vocabulary test scores. W
represents measured covariates,
and U represents unmeasured
covariates

(¢) Fuzzy RD design

Y A Y
(d) Identification for fuzzy RD

X — x.

data-driven approach that aims to minimize the MSE of the
fuzzy RD effect estimator. Alternatively, researchers can
determine the optimal bandwidth through a cross-validation
procedure that minimizes the MSE between the predicted
and observed outcomes.’ Lastly, incorporating covariates W,
into the analysis can enhance the efficiency of the estimator
and may help mitigate potential covariate imbalance aris-
ing from the inclusion of observations that are farther away
from the cutoff within the window. For more information on
the estimation and inference in fuzzy RD designs, refer to
Imbens and Lemieux (2008), Lee and Lemieux (2010), and
Cattaneo et al. (2019a). An example of implementation is
discussed in Sect. Educational example: New Jersey’s pre-K
programs.

A graphical perspective on RD designs

Causal graphs, known as directed acyclic graphs (DAGs),
provide a useful framework to describe the causal relation-
ships between variables and offer a formal yet intuitive dis-
cussion of causal identification in both sharp and fuzzy RD
designs (Pearl, 2009; Steiner et al., 2017). We use the data-
generating models underlying RD designs as represented by
causal graphs in Fig. 2. In the figure, the pre-K assignment/
eligibility status (A) is exclusively determined by the run-
ning variable, a child’s birth date (X). In Fig. 2a for the sharp
RD design, the running variable X affects the eligibility

3 Note that in fuzzy RD designs, it is recommended to select the
bandwidth based on the outcome regression and then use the same
bandwidth for the treatment regression. This recommendation is
based on the observation that the treatment regression typically
requires a wider bandwidth, as it is expected to exhibit a very flat
relationship.
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status A and the outcome Y, and thus, it confounds the causal
relationship between A and Y. Observed and unobserved
covariate sets (W, U) affect the running variable X and the
outcome Y, which introduces confounding in the causal rela-
tionship between A and Y via X. Although conditioning on
X blocks the confounding backdoor paths between A and
Y,* the ATE of A on Y for the overall population remains
unidentified due to the violation of the positivity assump-
tion, i.e., 0 < Pr(A = 1|X) < 1. That is, we lack the overlap
of the running variable, meaning that eligible and ineligi-
ble students are situated in non-overlapping regions of the
running variable. Thus, we leverage the discontinuity at the
cutoff, instead of matching methods, to identify the ATE of
A on Y at the cutoff.

Figure 2b demonstrates the graphical identification for the
sharp RD design at the limiting cutoff score, X — x_ (Steiner
et al., 2017). In this scenario, the running variable (X) still
determines pre-K eligibility (A), but it no longer directly
affects the outcome (Y) nor is it influenced by the measured
and unmeasured covariates (W and U). Consequently, in
the proximity of the cutoff score, pre-K eligibility becomes
independent of W and U, allowing for the identification of
the ATE at the cutoff without any adjustments for covariates.
Note that incorporating measured covariates W enhances
the efficiency of the treatment effect by explaining the vari-
ance of Y.

A

* The backdoor criterion in causal graphs (Pearl, 1995) involves
identifying and adjusting for variables that lie on “backdoor paths”
between the treatment and outcome variables. By conditioning on
these variables, non-causal paths are blocked, and this blocking
allows for unbiased estimation of causal effects in observational stud-
ies.
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On the other hand, in Fig. 2¢ for a fuzzy RD design, the
pre-K eligibility status (A) differs from the pre-K receipt
status (7), which depends on the eligibility status (A) and
covariates (W, U). Administrators may offer the pre-K pro-
gram to ineligible children or withhold them from eligible
children based on the values of W and U. Measured covari-
ates W may include child background variables like gender,
race/ethnicity, or free lunch status. Unmeasured covari-
ates U may include a child’s developmental immaturity or
prior academic performance. In the fuzzy RD design, as the
covariate sets W and U influence T and Y, they introduce
confounding in both the ATE of A on Y and the ATE of T on
Y for the overall population. Consequently, without covariate
adjustments, these two ATEs remain unidentified. However,
the presence of unmeasured covariates U renders matching
methods infeasible. Instead, we leverage the discontinuity
at the cutoff.

Figure 2d illustrates the graphical identification for the
fuzzy RD design at the limiting cutoff score, X — x,. Simi-
lar to the sharp RD design, the running variable (X) solely
determines pre-K eligibility (A) at the cutoff without any
relationship with covariates W and U. Thus, the ITT at the
cutoff, representing the effect transmitted along A — Y, can
be identified by limiting X — x,., without covariate adjust-
ments for W and U. Moreover, using A as an instrument
for pre-K receipt (7) enables the identification of LATE at
the cutoff, i.e., the effect of T — Y. It should be also noted
that incorporating measured covariates W improves the effi-
ciency of the treatment effect by accounting for the variance
inTand Y.

Threats to validity of RD designs

This section discusses potential threats to the validity of RD
designs, focusing on four main issues: manipulation or sort-
ing around the cutoff, discreteness of the running variable,
statistical power, and generalizability.

Manipulation or sorting around the cutoff

RD designs are appropriate and considered as good as ran-
domized experiments when individuals cannot manipulate
the running variable to precisely sort around the cutoff value.
Manipulation refers to the systematic changes of values of
the running variable for some units to influence treatment
assignment (Schochet et al., 2010). Manipulation of the run-
ning variable can occur when the treatment has significant
benefits or harms. For example, if the running variable for
assigning a beneficial program is self-reported age with a
publicly known cutoff value, one might see relatively more
individuals with a reported age just below (or just above)
the cutoff to participate (or not participate) in the program.

This manipulation undermines the validity of the RD design
and hinders the identification of the RD treatment effect,
because units just below are no longer comparable to those
just above. To assess whether the underlying assumption of
individuals’ inability to precisely manipulate the assignment
variable is unwarranted, two types of tests are available; one
examines the density continuity of the running variable, and
the other examines the continuity of covariate distributions,
both at the cutoff. One advantage of the former test is that it
can be always conducted in an RD setting, while the latter
test depends on the availability of data on these covariates. If
either test yields significant results, it challenges the validity
of the continuity assumption.

A direct and straightforward test is on examining whether
the density of the running variable is continuous at the cut-
off. Such tests include the McCrary’s test based on a density
function (McCrary, 2008), an empirical likelihood testing
procedure (Otsu et al., 2013), and a local polynomial density
estimator (Cattaneo et al., 2018, 2020). While a continuous
density of the running variable at the cutoff is not by itself
sufficient to confirm the validity of an RD design, a discon-
tinuous density indicates endogenous sorting of units around
the cutoff and should raise serious doubts about the appro-
priateness of the RD design (Cattaneo and Titiunik, 2022).

Another way to test the validity of the RD design is to
examine whether baseline covariates are locally balanced or
continuous on either side of the cutoff. If individuals can-
not precisely manipulate the assignment variable in the RD
design, the treatment assignment is locally randomized at the
cutoff, and individuals in close proximity to the cutoff are
expected to be comparable in terms of baseline covariates.
That is, the baseline covariates are locally balanced on either
side of the cutoff. Therefore, the distributions of observed
baseline covariates should not change discontinuously at the
cutoff (Imbens and Lemieux, 2008; Schochet et al., 2010;
Lee and Lemieux, 2010). If the distribution of each covari-
ate (conditional on the running variable) is discontinuous, it
suggests non-random sorting of units into groups based on
the given covariate. To test for non-random sorting based on
baseline covariates, researchers can use estimation methods,
such as local polynomial regression discussed in Sect. Sharp
RD designs, with the response being each measured covari-
ate instead of the outcome variable. However, it is not pos-
sible to test whether unmeasured covariates are continuously
associated with the running variable at the cutoff. We pro-
vide an illustration of these falsification tests in Sect. Fal-
sification tests.

Discreteness of the running variable
In practice, the running variable is often measured on a dis-

crete scale, represented by X € {x,x,, ..., X._|, Xz ... Xg }
with K discrete values. For example, the running variable of
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«Fig. 3 Extensions in regression discontinuity (RD) designs. Dashed
lines indicate the cutoff points. Red and blue colors are associated
with observed treatment and control units, respectively. a RD design
with multiple running variables, denoted as X; and X,. b RD design
with an ordinal running variable, such as the final letter grade for
academic performance. ¢ Multisite RD design, involving multiple
sites (e.g., schools, hospitals). d Regression kink design, targeting
the slope difference at the cutoff. e RD design combined with a rand-
omized experiment. f Comparative RD design with a pretest or non-
equivalent comparison group

a child’s birth date would be measured based on intervals of
5 days rather than on a daily basis. Despite this discretization
of the running variable, when certain conditions are met,
researchers can still utilize the identification and estimation
strategies discussed in Sect. Basics of RD designs. These
conditions include (a) the accurate and precious (implicit)
extrapolation from X; = x,._; to X; = x,. and (b) a large num-
ber of unique values K (Cattaneo and Titiunik, 2022).

However, when the running variable has only a few dis-
tinct values, such as a child’s birth date measured in months,
the aforementioned identification and estimation strategies
are not valid for analyzing RD designs. In such a case, Lee
and Card (2008) propose using regressions to estimate the
conditional expectation of the outcome variable at the cutoff
point through extrapolation. This approach assumes that the
parametric functional form on both sides of the cutoff score
is correctly specified, which enables accurate extrapolation
to the cutoff score. Additionally, the statistical uncertainty
arising from the discreteness of the running variable should
be considered by estimating cluster standard errors (Lee
and Card, 2008). There are alternative approaches for RD
designs with a discrete running variable, including one pro-
posed by Dong (2014) that specifically addresses rounding
errors in the running variable.

Low statistical power

In general, RD designs exhibit lower statistical power com-
pared to randomized experiments with equal sample sizes
due to greater sampling variance. Consequently, RD designs
typically require much larger sample sizes to achieve the
same level of statistical power (Goldberger, 1972; Shadish
et al., 2002; Schochet, 2009). Statistical power depends on
factors such as the significance level, effect size, sample
size, and is also influenced by measurement error. Specifi-
cally, research by Goldberger (1972) revealed that for non-
clustered designs, an RD design typically requires a sample
size 2.75 times larger than a corresponding experiment to
achieve the same level of statistical precision. For clustered
designs, Schochet (2009) found that three to four times
larger samples are usually required in RD designs compared
to experimental clustered designs to attain the same level of
precision. The reduced precision in RD designs arises due to

the inherent correlation between treatment assignment and
running variables included in the regression models, but this
correlation is absent in randomized experiments (Schochet,
2009). However, when working with large-scale educational
datasets, sample sizes are generally more than adequate to
ensure sufficient power. Therefore, this potential limitation
of RDD is often less problematic in practice compared to the
other challenges we discuss.

Measurement error in data can also reduce statistical
power in RD settings as in randomized experiments or other
quasi-experimental designs. When the measurement error
is not properly accounted for, it leads to an overestimation
of power. Specifically, while the measurement error in the
outcome is unlikely to introduce bias in the RD treatment
effect, it increases the uncertainty of the effect estimate,
making it more challenging to distinguish true effects from
random variation or measurement error (Shadish et al.,
2002). Therefore, in the presence of measurement outcome
error, the minimum detectable effect (i.e., the smallest true
effect size that can be detected) will increase, and thus, a
larger sample size is typically required to achieve the same
level of precision.

To account for potential power issues, researchers plan-
ning new experiments or surveys in RD designs can conduct
power calculations and determine the required sample size
at the design stage. Cattaneo et al. (2019) discuss power
calculations and optimal sample size selection using local
polynomial estimation and inference methods in RD designs,
and Schochet (2009) and Bulus (2021) discuss power issues
using parametric regression specifications for clustered RD
designs.

Limited generalizability

As mentioned earlier, the RD treatment effect applies spe-
cifically to the subpopulation of individuals at or around the
cutoff value, as there is no overlap of the running variable.
While this allows for the identification of the treatment effect
within this subpopulation, it does not provide information
about the effect in other subpopulations or the entire popula-
tion. Without strong assumptions justifying extrapolation to
other subpopulations (such as homogeneity of the treatment
effect or parametric modeling assumptions on the treatment
effect), it is not possible to estimate treatment effects away
from the cutoff or the overall ATE (Imbens and Lemieux,
2008).

To address the extrapolation or generalizability in RD
designs, several approaches have been proposed. These
include using external pre-treatment measures and paramet-
ric imputation methods (Mealli and Rampichini, 2012; Wing
and Cook, 2013), incorporating pre-treatment covariates
under local conditional ignorability (Angrist and Rokkanen,
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2015), employing a local extrapolation method via marginal
treatment effects (Dong and Lewbel, 2015), utilizing mul-
tiple measures of the running score with a factor model
(Rokkanen, 2015), and employing multiple cutoffs under
the constant bias assumption (Cattaneo et al., 2020).

Extensions

This section explores methodological advancements and
extensions in RD designs that are particularly relevant in
education settings. These extensions involve incorporating
multiple running variables, utilizing an ordinal running
variable, analyzing multisite/multilevel data, and intro-
ducing a novel parameter of interest from regression kink
designs. We also briefly discuss variations that combine
RD designs with other existing causal inference methods.
Figure 3 visually illustrates each extension, and we pro-
vide a concise overview of their key features below.

RD designs with multiple running variables

Multiple running variables are commonly employed for
assigning units to treatment conditions, especially when
additional exclusion or inclusion criteria are present. Sup-
pose students are assigned to a gifted program based on
their scores in two tests, denoted as X;; and X,;, where
the first test measures reading ability and the second test
measures math ability, as depicted in Fig. 3a. If a stu-
dent’s scores in both reading and mathematics are at
or above the specified cutoff scores x, and x,, respec-
tively, they are assigned to the gifted program, i.e.,
T, =1X,; 2 xcl)I(le- > xcz), where I(-) is the indicator
function. When using multiple running variables, there is
an infinite collection of cutoff points where the treatment
assignment sharply changes from zero to one, as shown in
Fig. 3a. This motivates the use of a treatment effect curve,
which incorporates infinitely many cutoff points, rather
than focusing on a single-point treatment effect. Various
approaches exist for conducting RD designs with multiple
running variables, such as response surface RD analysis,
which utilizes the multidimensional response surface, and
frontier RD analysis, which estimates pairwise treatment
effects using a subset of the data. For more details on mul-
tiple running variables, refer to Reardon and Robinson
(2012) and Wong et al. (2013).

A special case of RD designs with multiple running
variables is a geographic RD design, where latitude and
longitude in coordinate systems serve as the running vari-
ables. In this design, units receive treatment if they are
located within a specific geographic area, whereas they do
not receive it in adjacent areas. Geographic RD designs are
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particularly useful for evaluating programs or policies that
operate differently in cities or states located near borders.
Standard RD estimation methods that include two running
variables can be applied to geographic RD designs with
minor adjustments. For further information on geographic
RD, refer to Keele and Titiunik (2015).

RD designs with an ordinal running variable

In practice, the running variable in RD designs can often be
measured on an ordinal scale. Examples of ordinal running
variables include the final letter grade for academic perfor-
mance (e.g., At,A,A7,B*, ... F, as illustrated in Fig. 3b)
and English proficiency levels of English language learners
(Suk et al., 2022), bond ratings (Li et al., 2021), and inmate
classification scores (Hjalmarsson, 2009). Using an ordinal
running variable presents challenges due to the lack of a
meaningful scale of distance. They also have limited obser-
vations in a small neighborhood below (or above) the cutoff,
which requires extrapolation as depicted with a dashed line
in Fig. 3b.

There are some approaches for conducting RD designs
with ordinal running variables, notably discussed in Suk
et al. (2022) and Li et al. (2021). Suk et al. (2022) employ
a scale function to map the ordinal running variable onto a
numeric scale and incorporate parametric modeling assump-
tions on the outcome (and treatment) for causal identifica-
tion in RD settings. They also present sensitivity analyses
to check the conclusions’ robustness to different design fac-
tors, such as the choice of the scaling function, the choice of
the cutoff value, and unobserved confounding due to model
misspecification. On the other hand, Li et al. (2021) utilize
propensity scores as a surrogate continuous running vari-
able, and unlike Suk et al. (2022), this approach is under
the local randomization framework; see Li et al. (2021) for
more details.

Multisite RD designs

Multisite RD designs are often employed in education set-
tings where the treatment or intervention is implemented
within sites (e.g., schools). These designs introduce several
additional considerations not encountered in non-clustered
data, including the heterogeneity of the treatment effect
across sites, the use of different cutoff values or running var-
iables across sites, and the endogeneity of the study design,
which is typically influenced by site sizes and the propor-
tions of treated units. Figure 3¢ provides an illustration of
multisite RD designs with the same running variable and
the same cutoff across sites. The figure demonstrates that
the RD treatment effects vary depending on the sites, with
Site 1 showing the largest effect, and that the proportions of
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treated units are not constant across sites, with Site 2 having
the highest proportion.

When using multisite RD designs, researchers typically
estimate site-specific RD effects and then combine these
estimates to obtain a single, pooled RD treatment effect
through meta-analysis, similar to multisite randomized trials.
Multisite RD designs often aim to target cross-site heteroge-
neity of treatment and estimate the cross-site treatment effect
variance using random effects models or fixed intercepts ran-
dom coefficient models (Nomi and Raudenbush, 2016; Lee
and Soland, 2022; Brunner et al., 2023; McEachin et al.,
2020). However, methodological advancements for multisite
RD designs have been progressing slowly, and to the best of
our knowledge, practical guidelines for implementing mul-
tisite RD designs are not yet available.

Regression kink designs

Regression kink designs, originally introduced by Nielsen
et al. (2010), are employed when a treatment is determined
by a known assignment rule that alters the slope between the
treatment and the running variable at a specific cutoff point
(referred to as the kink point) (Card et al., 2015, 2017). As
depicted in Fig. 3d, in the kink design, the expectation is that
the outcome regression function will be continuous at all
values of the running variable, but its slope will exhibit dis-
continuity at the cutoff point. Therefore, instead of focusing
on a vertical gap at the cutoff as in conventional RD designs,
the kink design examines whether the slope of the relation-
ship between the outcome and the running variable shows
a kink or discontinuity at the cutoff point. Any observed
kink in the outcome, given the comparability of individu-
als on either side of the kink point, can be attributed to the
treatment effect (Card et al., 2015). Estimation methods for
kink treatment effects can be adapted from RD estimation
methods, such as employing (local) polynomial regressions.
However, the focus is on estimating the first derivatives of
the regression functions rather than estimating a shift in the
intercept. For more details of regression kink designs, refer
to Card et al. (2017).

Other variations

There are several other research designs that combine RD
designs with existing causal inference methods. On one
hand, RD designs can be combined with randomized experi-
ments by utilizing a cutoff interval between two cutoff val-
ues, as shown in Fig. 3e. Within this interval, units are ran-
domly assigned to treatment conditions, whereas units above
or below the interval are assigned to a single condition. This
combination increases the statistical power for testing treat-
ment effects and enhances external validity (Shadish et al.,
2002).

On the other hand, RD designs can be combined with
other quasi-experimental designs, such as matching or
propensity score designs (e.g., Linden and Adams 2012),
difference-in-differences (e.g., Grembi et al. 2016) (often
referred to as difference-in-discontinuities designs), inter-
rupted time series (e.g., Hausman and Rapson 2018) (often
referred to as regression-discontinuity-in-time designs), and
multiple control groups (Suk and Kim, 2023). Moreover,
RD designs can incorporate an additional untreated out-
come comparison function, like a pretest or a comparison
group’s posttest, as illustrated in Fig. 3f. Integrating this
untreated comparison data to RD designs is often referred
to as comparative RD designs (Wing and Cook, 2013a; Tang
et al., 2017). These combined designs enhance RD designs
in various ways, serving as sensitivity analyses, highlighting
focused developments in specific settings (e.g., time-series
data), or improving efficiency. The integration of regression
discontinuity with other quasi-experimental designs is an
emerging field, and there are many opportunities for further
exploration.

Educational example: New Jersey’s pre-K
programs

Data and methods

State pre-K programs are educational initiatives that receive
funding or oversight from the state and are often adminis-
trated by local school districts (Wong et al., 2007). They
can produce short-term effects, such as improved academic
performance during early school years, and may also have
long-term effects like higher high school graduation rates
(Campbell and Ramey, 1994; Wong et al., 2007). Wong et al.
(2007) used RD designs to evaluate the effects of five-state
pre-K programs on children’s vocabulary, math, and print
awareness skills, using a child’s birth date as the running
variable. The data collection focused on pre-K programs
for 4-year-olds. In this paper, we used the data from one
state, New Jersey, and evaluated the effect of New Jersey’s
Abbott Preschool Program, one of three state-funded pre-K
initiatives in the state. The data in New Jersey were obtained
through stratified random sampling, with stratification based
on factors such as district enrollment, geographic location,
and urban versus rural area.

For our data analysis, we used vocabulary test scores
as the outcome variable Y;. As mentioned earlier, pre-K
eligibility A, is a binary variable, where A; = 1 denotes that
a child was eligible for the state pre-K program, and A; =0
denotes that a child was ineligible for the program. The
eligibility status was determined based on a child’s birth
date, our running variable X;, with the cutoff date being
October 1st. However, the assignment status A; is not the
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Fig.4 Regression discontinuity plot for evaluating the average treat-
ment effect of New Jersey’s pre-K program in the vocabulary test

same as the receipt status 7; due to non-compliance. Spe-
cifically, the data exhibit two-sided non-compliance; some
eligible students did not receive the pre-K program (4; = 1
but 7; = 0), while some ineligible students received it
(A; =0but 7; = 1). In our analysis, we used a set of pre-
treatment covariates W;, including gender, race/ethnic-
ity, free lunch status, and test language type (English or
Spanish), in the outcome and treatment regressions. We
constrained our target sample to +365 days from the cutoff
date and excluded 9 cases with missing values in the out-
come variable. As a result, our analytic sample consisted
of 1,993 children, which accounted for 96.2% of the origi-
nal sample in New Jersey.

Since there was non-compliance, we employed a fuzzy
RD design and estimated the ITT and LATE of the state
pre-K program at the cutoff. To estimate the ITT effect at
the cutoff, we used local linear regression with a triangular
kernel. The local linear regression model for the ITT at the
cutoff with different slopes is written as follows:

Y, =y + PlA; + b (X, —x.) + A X; —x) + €,

A= 1, if X; >x,
P00 X <x, 5)
=X = x )/ B X = x ) /< 1
"= o, if (X, —x)|/h>1

Here, the term ff; = 74z, represents the ITT at the cutoff. The
triangular kernel weight w; = 1 — |(X; — x,)|/h if observa-
tion i lies within the window and w; = 0 if it is outside the
window. This means that observations closer to the cutoff
receives larger weights, while observations with w; = 0 are
excluded from RD analysis. We chose the optimal data-
driven bandwidth that minimizes the MSE of the RD effect
estimator 7¢;, given our empirical data. Note again that the
choice of kernel typically has little impact in practice when
both the bandwidth and the polynomial order are fixed. We
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computed conventional confidence intervals based ordi-
nary least squares (OLS) and robust (bias-corrected) con-
fidence intervals. The robust confidence interval eliminates
misspecification bias in the asymptotic approximation and
adjusts the standard error to reflect extra variability from
bias estimation. Unlike conventional intervals, this robust
version is based on a valid standard normal distributional
approximation (Calonico et al., 2014). We also used addi-
tional adjustment for measured covariates W potentially to
improve efficiency.

To estimate the LATE at the cutoff, we employed local
linear regression with kernel weights for both the treatment
and the outcome. In this approach, we treated the model for
T; as the first-stage regression and the model for Y; as the
second-stage regression. This TSLS model for 7; and Y; with
triangular kernel weights can be written as follows:

T; = ag + A + 0,(X; — x.) + 1A, (X; — x.) + €, (6)

Yi=ro+nTi+ X —x) + 1A —x) + €,

&z{Lﬂ&Z% ,

0, if X, < x,. %)
_ 11X =Xl /b, if (X = x )l /R <1
"= o, if | —x)/h> 1

In the first-stage regression (6), @, captures the discontinuity
in the treatment probabilities between eligible and ineligible
children at the cutoff. In the second-stage regression (7), we
use the predicted value YA} as a regressor instead of A;. This
enables us to estimate y; = 7z, representing the LATE at
the cutoff value. Similar to the ITT estimation, we chose a
MSE-optimal data-driven bandwidth, and we computed con-
ventional confidence intervals and robust confidence inter-
vals. We also did additional adjustments that include meas-
ured covariates in Egs. (6) and (7) to improve efficiency.

Finally, we conducted falsification tests, as discussed
in Sect. Manipulation or sorting around the cutoff, specifi-
cally focusing on manipulation or non-random sorting near
the cutoft. For software, we used the R package rdrobust
(Calonico et al., 2023) to conduct RD analysis, and we also
used the R package rddensity (Cattaneo et al., 2023) to per-
form a manipulation test based on density discontinuity. R
codes for our data analysis can be found at the first author’s
GitHub repository (https://github.com/youmisuk/RDDre
view).

Results
ITT at the cutoff

Figure 4 presents a visual representation of the RD design
for the ITT at the cutoff, i.e., the ATE at the cutoff, where the
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Table2 Intent-to-treat (ITT) Bandwidth Estimate Effect Size 95% CI 95% Robust CI

effect of New Jersey’s pre-K

program at the cutoff ITT (Optimal BW) 97.50 6.26 0.32 [0.47, 12.06] [-0.04, 13.66]
Optimal BW w/ Covs 97.50 4.19 0.21 [-1.28,9.65] [-7.03,9.52]
Half-BW 48.75 5.97 0.30 [—1.98, 13.93] [—7.06, 14.64]

Effect sizes are calculated using the empirical sample standard deviation of the outcome

CI represents the confidence interval, BW represents the bandwidth, and Covs represents covariate adjust-

ment

Table 3 Compliance for New Jersey’s pre-K program by pre-K eligi-
ble status

Eligibility Non-Received Received Total
Ineligible 852 19 871

Eligible 21 1,101 1122
Total 873 1,120 1993

x-axis represents the centered running variable with the cut-
off set to zero. The figure includes a local linear regression
line (red solid line) with an optimal, data-driven bandwidth
of 97.5 days. Clearly, there is a discontinuity at the cutoff,
and this potentially indicates the presence of a positive ATE
at the cutoff.

Table 2 provides a summary of the ITT results for with
and without additional covariate adjustment as well as differ-
ent bandwidth choices. We report the effect size estimates by
dividing the ITT estimates by the sample standard deviation
of the outcome (19.83 points), and also report conventional
OLS confidence intervals and robust (bias-corrected) con-
fidence intervals. The ITT estimate using the MSE-optimal
bandwidth of 97.5 days was 6.26 points, but it was not sta-
tistically significant with respect to the robust confidence
interval. The corresponding effect size was 0.32, indicating
a small effect based on Cohen’s criterion.

We conducted sensitivity checks with the inclusion of
covariates or the bandwidth size. Including covariates in RD
analysis can enhance efficiency and potentially adjust covari-
ate imbalance in the subsample within the window. Conse-
quently, the effect estimate was 4.19, and it was somewhat
reduced with narrower Cls. The effect size also decreased
to 0.21. When using the half-size bandwidth, it resulted in
a minor variation in the ITT estimate, with effect size dif-
ferences of about 0.02. None of sensivity analysis results
reached statistical significance with respect to the conven-
tional or robust confidence intervals. Overall, there is insuf-
ficient evidence to support a positive effect of students being
assigned to the state’s pre-K program at the cutoff.
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Fig.5 Discontinuity in the treatment probability at the cutoff

LATE at the cutoff

Table 3 presents the compliance rates for New Jersey’s pre-K
program based on the eligibility and receipt statuses of chil-
dren. In our study sample, approximately 56.3% of the stu-
dents (1,122 students) were eligible for the pre-K program.
Among those who were eligible, around 98.1% actually
received the program, while 97.8% of the ineligible students
did not receive it. This yields a non-compliance rate of about
2%, which is very small. When focusing on observations
near cutoff, such as within an optimal bandwidth of 69.4
days, the compliance rate is further reduced to about 1%.

Furthermore, Fig. 5 displays a visual plot of the RD
design for the treatment probability at the cutoff using local
linear regression. The figure reveals an evident discontinuity
at the cutoff, although it is less than 1 due to noncompliance
cases.

Table 4 summarizes the LATE results for different band-
width choices, with and without additional covariate adjust-
ment. Similar to ITT estimates, effect size estimates are also
provided. The LATE estimates were larger than the corre-
sponding ITT estimates. Note that the LATE is always larger
than the ITT effect on an absolute scale because the LATE
estimate is calculated as the ITT estimate divided by the
estimated difference in the probability of receiving treat-
ment between either side of the cutoff. Specifically, using
an optimal bandwidth of 69.4 days, the LATE estimate
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Table 4 Local average
treatment effect (LATE) of New

Jersey’s pre-K program at the
cutoff

Bandwidth Estimate Effect Size 95% CI 95% Robust CI
LATE (Optimal BW) 69.4 9.57 0.48 [—1.31,20.45] [—2.09, 22.42]
Optimal BW w/ Covs 69.4 4.34 0.22 [-6.50,15.17] [—14.35,17.88]
Half-BW 34.7 8.64 0.44 [—7.04, 24.33] [—16.77, 24.05]

Effect sizes are calculated using the empirical sample standard deviation of the outcome

CI represents the confidence interval, BW represents the bandwidth, and Covs represents covariate adjust-

ment

(a) Manipulation of the running variable
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Fig.6 Results of falsification tests

was 9.57 points, but it was not statistically significant. The
effect size associated with this estimate was 0.48, indicating
a small to medium effect. Incorporating additional covari-
ate adjustments improved efficiency of the LATE estimate,
but reduced the LATE estimate to 4.34 with an effect size
of 0.22, which is about half of the original effect size esti-
mate. The differences in LATE estimates without and with
covariates may be due to potential attribution or selection
bias between either side of the cutoff within the window.
This observation is further discussed in the next subsection
below. When using a different bandwidth, reducing it by
half only resulted in a decrease of less-than one point in the
LATE estimate, with effect size differences of about 0.04.
Overall, there is insufficient evidence to support a positive
effect of receiving the state’s pre-K program among compli-
ers at the cutoff, although the point estimates and effect sizes
are larger compared to those of the ITT effect.

Falsification tests

We conducted a set of falsification tests to (i) detect whether
the running variable is manipulated at the cutoff (i.e.,
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(b) Covariate discontinuity at the cutoff
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whether the density of the running variable is discontinuous
at the cutoff) and (ii) evaluate whether units from different
sides of the cutoff have differences in measured covariates at
the cutoff (i.e., whether the measured covariates are discon-
tinuous at the cutoff). Figure 6a visualizes the results of the
manipulation test using the local polynomial density estima-
tor proposed by Cattaneo et al. (2020), an improved version
of McCrary’s (2008) test. The figure suggests that the level
to the left of the cutoff (i.e., the control condition) is lower
than that to the right (i.e., the treatment condition), which
could indicate potential differential attrition issues between
the two sides of the cutoff. However, the confidence bands
overlap at the cutoff, and this indicates that the observed
discontinuity at this point is not statistically significant. Fur-
thermore, the numerical results from the manipulation test
using the estimator proposed by Cattaneo et al. (2020) show
insignificance (test statistic = 0.3177, p-value = 0.7507), in
contrast to the significant result obtained from the McCrary
(2008) test (test statistic = 2.1137, p-value = 0.0345). While
we may rely on the former test due to its improved develop-
ment, we should still exercise caution when interpreting RD
results, given the visual inspection results that potentially



Regression discontinuity designs in education: a practitioner’s guide

643

indicate differential attrition or sample selection around the
cutoff.

To examine the discontinuity of measured covariates at
the cutoff, we analyzed the relationship between the running
variable and each covariate in the data. Figure 6b presents
the result for the gender variable (female = 1, male = 0). The
plot includes a local linear regression line with confidence
intervals, and there is no clear evidence of a discontinuity
in the gender proportion at the cutoff. We performed simi-
lar analyses for other covariates and found no indications
of discontinuity at the cutoff. As a result, we are not con-
cerned about non-random sorting near the cutoff from meas-
ured covariates. However, it is important to note that there
remains a possibility of non-random sorting with respect to
unmeasured covariates (e.g., pre-test).

Conclusions

In this paper, we have provided a comprehensive review of
traditional RD designs and recent developments, particu-
larly those that are more related to educational contexts. Our
empirical analysis in Sect. Educational example: New Jer-
sey’s pre-K programs demonstrates specific instructions on
the RD designs. To conclude, we offer practical guidelines
for utilizing RD designs:

1. Plot the data using scatterplots and summary smoothing
lines to visualize the relationship between the running
variable and the outcome (see Fig. 4). Adjust the regres-
sion lines with appropriate bandwidths and degrees of
polynomial to assess local discontinuity at the cutoff.

2. Estimate the treatment effect using nonparametric or
parametric regression. For nonparametric regression,
determine an optimal bandwidth that minimizes the
MSE of the RD effect estimator and use robust standard
errors or confidence intervals (see Table 2). For para-
metric regression, assess the appropriate degrees of
polynomials based on F-tests or the AIC.

3. Conduct the sensitivity of the RD treatment effects by
varying the bandwidths (for nonparametric regression)
and including measured covariates in the regression
models (see Table 2).

4. Assess threats to validity regarding manipulation or sort-
ing near the cutoff (see Sect. Falsification tests). Con-
duct visual inspections and perform formal statistical
tests (e.g., the manipulation test using Cattaneo et al.
(2020)).

For the fuzzy RD design with imperfect compliance,
we adhere to the above guidelines for examining the ITT
at the cutoff. To assess the LATE at the cutoff, we pro-
vide additional guidelines:

5. Summarize the compliance rates (see Table 3) and plot
the relationship between the running variable and treat-
ment (see Fig. 5), in addition to the RD plot with out-
come.

6. Estimate the treatment effect using parametric TSLS
regression or nonparametric approaches (see Table 4).
Use the same bandwidth and order of polynomials for
both the treatment regression and outcome regression.

Overall, although this review paper does not cover every
aspect of RD designs due to space limitations, we hope
that our review and practical guidelines will be valuable for
researchers who are interested in applying RD designs to
evaluate education policies or programs.
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