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Abstract

Regression discontinuity (RD) designs have gained significant popularity as a quasi-experimental device for evaluating 
education programs and policies. In this paper, we present a comprehensive review of RD designs, focusing on the continuity-
based framework, the most widely adopted RD framework. We first review the fundamental aspects of RD designs, draw-
ing on potential outcomes and causal graphs. We then discuss the validity threats in RD designs, including manipulation, 
discreteness of the running variable, statistical power, and generalizability. Additionally, we provide an overview of the 
existing extensions to RD designs. To exemplify the application of RD methods, we analyze the effect of New Jersey’s pre-
kindergarten program on children’s vocabulary test scores, using an educational dataset. Finally, we offer practical guidelines 
in the conclusion to promote the appropriate use of RD methods in educational research.

Keywords Regression discontinuity · Quasi-experimental designs · Nonexperimental methods · Causal inference · Program 
evaluation · Pre-kindergarten programs

Introduction

A regression discontinuity (RD) design has emerged as a 
prominent quasi-experimental design since its original con-
ception by Thistlethwaite and Campbell (1960), and it is 
increasingly being used to evaluate programs or policies in 
education and the social sciences. Over the past two decades, 
researchers have devoted significant efforts to advancing the 
methodology and empirical application of RD designs. Sev-
eral reviews have been conducted on these evolving designs, 
including works by Cook (2008), Imbens and Lemieux 
(2008), Lee and Lemieux (2010), and Cattaneo and Titiunik 
(2022). However, these reviews primarily originate from 
fields outside of education, and there is limited research that 
thoroughly examines the fundamental and practical aspects 
of RD designs in the context of education, along with clear 
demonstrations. The main goal of this paper is to provide a 
comprehensive review of both traditional RD designs and 
the latest developments that are particularly relevant in edu-
cation settings. Additionally, the paper aims to illustrate key 

aspects of these designs using a real educational dataset and 
provide practical guidelines for implementing RD designs.

In educational programs, eligibility and enrollment poli-
cies often dictate the treatment assignment of students or 
children, typically based on factors such as age, abilities, 
or special needs. For example, state pre-kindergarten (pre-
K) programs determine enrollment based on a child’s date 
of birth. Children with birthdays on or after a specific date 
become eligible for enrollment in the pre-K programs, 
whereas those with birthdays before it do not qualify. This 
situation necessitates the use of RD designs, where the treat-
ment assignment variable (also referred to as the running 
variable)—in this case, the birth date—completely deter-
mines the treatment status. Such an RD design is regarded 
as a quasi-experimental design that closely approximates a 
randomized experiment, given the known treatment assign-
ment mechanism. That is, in the RD design, the variation in 
treatment assignment is as good as random near the cutoff 
when study units typically cannot control the running vari-
able precisely near the cutoff (Lee and Lemieux, 2010). Fur-
thermore, in an RD setting where treatment status is deter-
mined by the running variable, it is not feasible to employ a 
matching design, another popular quasi-experimental design 
in education. In the matching design, treated units and con-
trol units are matched based on the similarity of measured 
covariates in observed data in order to identify and estimate 
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the average treatment effect (ATE) (Steiner and Cook, 
2013). However, in the RD setting, there is a lack of overlap 
between treated and control units in terms of the running 
variable, making the use of matching strategies infeasible. 
Consequently, RD designs utilize distinct identification and 
estimation strategies compared to matching and other quasi-
experimental designs.

Specifically, nonparametric identification of RD designs 
is limited to the ATE at or around the cutoff, as compatibil-
ity between the treated and control groups is achieved only in 
the close vicinity of the cutoff score. For the identification of 
the ATE at the cutoff in RD designs, two main frameworks 
are available: the continuity-based framework and the local 
randomization framework. The continuity-based framework, 
established by Hahn et al. (2001), provides valid counter-
factuals by assuming that the conditional expectations of 
potential outcomes, given the running variable, are continu-
ous at the cutoff. This assumption provides the fundamental 
requirement for nonparametric identification of the ATE at 
the cutoff; see Sect. “Basics of RD Designs” for details. On 
the other hand, the local randomization framework was ini-
tially motivated by the work of Lee (2008), which captures 
the original ideas in the seminal article by Thistlethwaite 
and Campbell (1960) and interprets RD designs heuristically 
as if they were randomly assigned in a small neighborhood 
of the cutoff. It was subsequently formalized by Cattaneo 
et al. (2015). The local randomization framework relies on 
a stronger assumption than the continuity assumption of the 
first framework, but it provides justification for employing 
estimation and inference methods from the analysis of exper-
iments literature, such as Fisherian or Neyman approaches 
(Cattaneo et al., 2019a). In this paper, we primarily focus on 
the continuity-based framework due to its wide adoption and 
longer history. For those interested in the local randomiza-
tion framework, refer to Cattaneo et al. (2015) and Cattaneo 
et al. (2017).

The RD literature has evolved in recent decades, with 
departures from the traditional RD design. Researchers have 
explored diverse issues, such as incorporating multiple cut-
off values or running variables, utilizing coarse measure-
ments of the running variable, handling multisite/multilevel 
data, and investigating different parameters of interest like 
regression kink designs; see Sect. “Extensions” for more 
details. In addition to methodological advancements, there 
has been a substantial increase in the practical application of 
RD methods. Recent studies employing RD designs in edu-
cation have investigated a broad range of educational issues. 
For instance, these studies have focused on selective public 
schools, subsidized loan programs, algebra courses, reclas-
sification of English language learners, test-based retention 
or remediation, school turnaround programs, supplemental 
reading or literacy programs, cash transfer programs, and 

testing accommodations. See Table 1 for a list of the recent 
publications.1

The remainder of the paper is organized as follows. Sec-
tion “Basics of RD Designs” offers a concise overview 
of the fundamentals of RD designs within the continuity-
based framework, drawing on potential outcomes and causal 
graphs. Section “Threats to Validity of RD Designs” dis-
cusses the potential threats to the validity of RD designs 
and addresses concerns on the underlying assumptions. 
Section “Extensions” explores recent advancements and 
extensions in RD designs. Section “Educational Example: 
New Jersey’s Pre-K Programs” presents an analysis of our 
empirical example concerning New Jersey’s pre-K pro-
gram. Conclusions with practical guidelines are provided in 
Sect. “Conclusions”.

Basics of RD designs

RD designs come in two main types depending on whether 
study units comply with the assigned treatment status. In 
cases of perfect compliance, it is known as a sharp RD 
design, while with imperfect compliance, it is referred to 
as a fuzzy RD design. In the following section, we review 
the details of causal estimands, assumptions, and estimation 
methods for both of these types.

Table 1  Recent publications on regression discontinuity (RD) in edu-
cation

Publication Setting

Angrist and Rokkanen (2015) Selective public schools

Bergolo and Galván (2018) Cash transfer programs

Brunner et al. (2023) Selective public schools

Carlson and Knowles (2016) English language learner reclas-
sification

Coyne et al. (2018) Reading programs

Figlio et al. (2018) Literacy programs

Figlio and Özek (2023) Test-based remediation

Heissel and Ladd (2018) School turnaround programs

Lee and Soland (2022) English language learner reclas-
sification

McEachin et al. (2020) Algebra courses

Melguizo et al. (2015) Subsidized loan programs

Nomi and Raudenbush (2016) Algebra courses

Schwerdt et al. (2017) Test-based retention

Suk et al. (2022) Testing accommodations

1 For a list of other RD applications in education, refer to Table 5 in 
Lee and Lemieux (2010) and Secti. 4.2 of Villamizar-Villegas et al. 
(2021).
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Notation

We use the Neyman-Rubin potential outcomes framework 
(Neyman, 1923; Rubin, 1974) to define treatment effects. Let 
A

i
∈ {0, 1} be a binary treatment variable where A

i
= 1 indi-

cates that child i was assigned to (or eligible for) the pre-K 
treatment and A

i
= 0 indicates the control condition. In a clas-

sic RD design, treatment assignment is based on a continu-
ous running variable X

i
 and a cutoff score x

c
 such that A

i
= 1 

if X
i
≥ x

c
 and A

i
= 0 if X

i
< x

c
 . Let T

i
∈ {0, 1} denote the 

treatment received where T
i
= 1 if child i actually received the 

pre-K program and T
i
= 0 if the child did not receive the pro-

gram. Note that when full compliance is achieved with respect 
to the assignment/eligibility rule, the assignment status and 
treatment received status are identical, i.e., A

i
= T

i
.

Y
i
(1) represents the potential treatment outcome if 

child i were to receive a pre-K program, and Y
i
(0) repre-

sents the potential control outcome for the same child but 
under the control condition. For every child, the observed 
outcome is linked to the potential outcomes as follows: 
Y

i
= T

i
Y

i
(1) + (1 − T

i
)Y

i
(0) . The equality implies the stable 

unit treatment value assumption (SUTVA; Rubin , 1986), that 
is, (1) a child’s potential outcomes are independent of other 
children’s treatment assignment and (2) there are no different 
versions of the treatment. Finally, let W be a set of observed 
pre-treatment covariates and U be unobserved covariates.

Sharp RD designs

In this subsection, we review the standard, sharp RD design 
with a continuous running variable. Let’s assume that our run-
ning variable is a child’s birth date, which is measured con-
tinuously in days. In this case, children with birthdays after 
or on the cutoff, denoted as X

i
≥ x

c
 , are assigned to the pre-K 

program, but those with birthdays before the cutoff are not 
assigned and must wait another year. When there is full com-
pliance with the assigned pre-K status, this design is called a 
sharp RD design. Under this design, the causal estimand of 
interest is the ATE at the cutoff, which is the average linear 
contrast of potential outcomes between the treated and con-
trol groups at the cutoff value of the running variable and is 
defined as �

SRD
:

In our example, the ATE at the cutoff represents the aver-
age effect of the pre-K program for children scoring at the 
eligibility cutoff. In sharp RD designs, the probability of 
receiving treatment abruptly changes from one to zero when 
the running variable X

i
 crosses the cutoff x

c
 . Since A

i
 is a 

known deterministic function of X
i
 , we achieve conditional 

unconfoundedness, meaning that Y
i
(1), Y

i
(0) ⟂ A

i
|X

i
 . How-

ever, there is no common support between treatment and 

(1)�
SRD

= E[Y
i
(1) − Y

i
(0) ∣ X

i
= x

c
].

control units on X
i
 in the sharp RD design. This means that 

units scoring above or at the cutoff have a probability of 1 
for receiving treatment ( Pr(A

i
= 1|X

i
≥ x

c
) = 1 ), whereas 

those scoring below the cutoff have a probability of 0 
( Pr(A

i
= 1|X

i
< x

c
) = 0 ). Therefore, due to the violation of 

the positivity assumption (i.e., 0 < Pr(A
i
= 1|X

i
) < 1 ), the 

treatment effect for the entire population cannot be non-
parametrically identified. Nevertheless, the treatment effect 
for the subpopulation at the cutoff can still be non-paramet-
rically identified if the potential outcomes satisfy the local 
continuity assumption at the limiting cutoff as follows: 

 (A1) Local Continuity of Potential Outcomes: 

This assumption means that the average potential treat-
ment and control outcomes just below the cutoff are equal 
to the respective average potential outcomes just above the 
cutoff. This assumption allows us to establish valid coun-
terfactuals for children near the cutoff (Hahn et al., 2001; 
Imbens and Lemieux, 2008). Under Assumption [A1], the 
ATE at the cutoff, i.e., �

SRD
 , is identified as follows:

In Fig. 1, we illustrate an RD design with (unknown) poten-
tial treatment and control outcome functions represented 
by red and blue lines, respectively. The figure highlights 
that potential outcomes are continuous at the cutoff, with 
no overlap between treatment and control units in terms 
of the running variable. Solid lines can be estimated using 

lim
x↑x

c

E(Y
i
(1) ∣ X

i
= x) = lim

x↓x
c

E(Y
i
(1) ∣ X

i
= x),

lim
x↑x

c

E(Y
i
(0) ∣ X

i
= x) = lim

x↓x
c

E(Y
i
(0) ∣ X

i
= x).

E[Y
i
(1) − Y

i
(0) ∣ X

i
= x

c
] = lim

x↓x
c

E(Y
i
∣ X

i
= x)

− lim
x↑x

c

E(Y
i
∣ X

i
= x).

Fig. 1  Visual representation of a regression discontinuity (RD) design
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regression smoothers based on observed data, while dashed 
lines cannot be estimated due to the unavailability of data.

Before formally estimating the RD effect, a visual inspec-
tion is essential. Researchers create an RD plot by plotting 
the relationship between the running variable and the out-
come of interest using a scatterplot and smoothing regres-
sion lines. This RD plot is similar to Fig. 1, but it is based on 
observed data and employs empirical regression smoothers 
(see an example in Figs. 4 in Sect. Educational example: 
New Jersey’s pre-K programs). Plotting such RD plots plays 
a crucial role in RD empirical analysis and should precede 
the formal estimation of the RD treatment effect.

To formally estimate �
SRD

 , researchers can employ vari-
ous approaches, including parametric, semi-parametric, 
or nonparametric methods (e.g., Lee and Lemieux 2010; 
Imbens and Lemieux 2008; Schochet et al. 2010). First, the 
parametric approach fits a regression model that regresses 
the outcome on assignment status A

i
 and centered running 

variable (X
i
− x

c
) , as follows:

Here, the term �
0
 represents the intercept of the control 

group, and �
1
= �

SRD
 represents the ATE at the cutoff; f (⋅) 

represents a functional form of the running variable, and �
i
 

represents the random error. Typically, the regression slopes 
of the running variable differ between the left and right sides 
of the cutoff value by including an interaction term between 
A and X, as: Y

i
= �

0
+ �

1
A

i
+ �

2
(X

i
− x

c
) + �

3
A

i
(X

i
− x

c
)+ 

�
i
 (Lee and Lemieux, 2010). Additional higher-order terms 

(e.g., quadratic, cubic terms) can be incorporated into the 
regression model. The choice of the polynomial functional 
form can be based on the statistical significance of higher-
order terms or model-fit criteria, such as the F-test statistic 
and Akaike Information Criteria (AIC). However, a limita-
tion of using parametric regression is that it provides global 
estimates of the regression function across the entire range 
of X, rather than focusing on the subpopulation at the cutoff 
(Lee and Lemieux, 2010).2

Alternatively, nonparametric approaches, such as local 
polynomial regression, can be utilized and have become 
more widely used for RD estimation. In local polynomial 
regression, researchers need to determine the kernel func-
tion, bandwidth, and the inclusion of higher-order terms 
(Lee and Lemieux, 2010; Imbens and Lemieux, 2008). For 
example, a local linear regression model with a rectangular/
uniform kernel (and different slopes) can be written as:

(2)Yi = �
0
+ �

1
Ai + f (Xi − xc) + �i.

Here, the bandwidth h controls the width of the neighbor-
hood around the cutoff and represents half of the window 
width. The weight w

i
= 1 if observation i lies within the 

window and w
i
= 0 if it is outside the window. This means 

that observations within the window have equal weight and 
observations outside the window are excluded from RD anal-
ysis. While other kernels (e.g., triangular or Epanechnikov) 
can also be used, the choice of kernel function usually has 
minimal impact. However, choosing bandwidth h is crucial 
and involves finding an optimal balance between precision 
and bias. A larger bandwidth produces more precise esti-
mates because more observations are available for estimat-
ing the regression, but it introduces more smoothing bias to 
the local polynomial approximation. Furthermore, the choice 
of bandwidth affects the selection of higher-order terms as 
smaller bandwidths require lower higher-order terms (Lee 
and Lemieux, 2010; Cattaneo et al., 2019b).

Two main procedures are commonly used to select band-
widths. The first procedure involves characterizing the 
optimal bandwidth in terms of the unknown functionals 
(e.g., mean, variance) of the data distribution. These func-
tionals can then be estimated using data-driven methods, 
and plugged into the optimal bandwidth function (Imbens 
and Kalyanaraman, 2012; Calonico et al., 2014, 2019). An 
increasingly popular method in the first procedure is to find 
the value of h by minimizing the mean square error (MSE) 
of the RD effect estimator �̂

SRD
 , given a choice of polyno-

mial order and kernel function (Cattaneo et al., 2019b). 
The second approach to choosing bandwidths is based on a 
cross-validation procedure as demonstrated by Ludwig and 
Miller (2007). This approach determines the optimal band-
width by selecting the value of h that minimizes the MSE 
between the predicted and observed value of Y. Currently, 
the first procedure has become more popular because choos-
ing a bandwidth that is optimal for estimating �

SRD
 is more 

relevant in RD settings (Imbens and Kalyanaraman, 2012; 
Cattaneo et al., 2019b).

Regarding baseline covariates W
i
 , it is not necessary to 

include them in RD analysis to obtain consistent estimates 
of the RD effect. However, the key advantage of incorpo-
rating baseline covariates into regressions is an efficiency 
gain. In other words, it allows us to improve the precision 
of the estimated effect if baseline covariates are correlated 
with the outcome variable. Additionally, when the window 
or bandwidth size is wide and we include observations that 
are farther away from the cutoff in RD analysis, using addi-
tional covariates can potentially help mitigate bias arising 
from these additional observations (Imbens and Lemieux, 

(3)

Y
i
= ��

0
+ ��

1
A

i
+ ��

2
(X

i
− x

c
) + ��

3
A

i
(X

i
− x

c
) + ��

i
,

w
i
=

{
1, if |(X

i
− x

c
)|∕h < 1

0, if |(X
i
− x

c
)|∕h ≥ 1

2 When the functional form of the regression model is uncertain, it is 
recommended to adopt an overfitting strategy by including more pol-
ynomial and interaction terms than strictly necessary (Shadish et al., 
2002).
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2008; Calonico et al., 2019). For more information on the 
estimation and inference in sharp RD designs, refer to Lee 
and Lemieux (2010), Cattaneo et al. (2019b), and Cattaneo 
and Titiunik (2022). Additionally, Sect. Educational exam-
ple: New Jersey’s pre-K programs of this paper provides a 
detailed demonstration.

Fuzzy RD designs

In practice, it is often observed that study administrators 
deviate from the assignment rules, or participants fail to 
comply with their assigned treatment status. For example, 
children who are eligible for a pre-K program based on their 
birth dates may not participate, and ineligible children might 
actually participate due to specific rules or exemptions. 
When such non-compliance occurs, the probability of 
receiving the treatment is less than one but greater than zero, 
i.e., 0 < lim

x↓x
c

Pr(T
i
= 1 ∣ X

i
= x)− lim

x↑x
c

Pr(T
i
= 1 ∣ X

i
= x) < 1 , 

and we have what is known as a fuzzy RD design.
In this design, two causal estimands are of interest: the 

intent-to-treat (ITT) effect and local average treatment effect 
(LATE), both at the cutoff score. The ITT effect at the cutoff 
is defined as Eq. (1). It is identified and estimated using the 
same approach as the ATE in the sharp RD design discussed 
in Sect. Sharp RD designs, where the pre-K assignment/
eligibility status, A

i
 , serves as the “treatment” indicator. To 

define the LATE at the cutoff, we now use potential out-
comes notations for treatment receipt. Let T

i
(1) denote a 

child’s potential pre-K receipt if they were eligible ( A
i
= 1 ), 

and let T
i
(0) denote their potential non-receipt if they were 

ineligible ( A
i
= 0 ). We assume T

i
= A

i
T

i
(1)+ (1 − A

i
)T

i
(0) . 

Because both T
i
(0) and T

i
(1) are binary indicators, there are 

four possible values for the pair of potential responses to 
treatment assignment. The first group, referred to as compli-

ers includes units who always comply with their assignment 
(i.e., T

i
(0) = 0, T

i
(1) = 1 ). In this study, compliers mean stu-

dents who would receive the pre-K program if eligible and 
would not receive it if ineligible. All other units are classified 
as noncompliers, but they can be categorized into three dis-
tinct types: never-takers, always-takers, and defiers. Never-
takers are units who never take the treatment, regardless of 
their assignment (i.e., T

i
(0) = 0, T

i
(1) = 0 ), whereas always-

takers are those who would always take the treatment, 
regardless of their assignment (i.e., T

i
(0) = 1, T

i
(1) = 1 ). 

Finally, defiers are those who would act contrary to their 
assignment (i.e., T

i
(0) = 1, T

i
(1) = 0 ) (Imbens and Rubin, 

2015).
Under the fuzzy RD design, the LATE at the cutoff, 

denoted as �
FRD

 , is the ATE at the cutoff for the subpopula-
tion of compliers, which is formally defined as follows:

(4)�
FRD

= E[Y
i
(1) − Y

i
(0) ∣ X

i
= x

c
, T

i
(1) = 1, T

i
(0) = 0]

In our setting, �
FRD

 represents the average effect of receiv-
ing the pre-K program for students who comply with the 
treatment assigned status at the cutoff. To identity the LATE 
at the cutoff, the fuzzy RD design make two additional 
assumptions: 

 (A2) Local Monotonicity:
  

 lim
x↑xc

Pr(T
i
(1) < T

i
(0) ∣ X

i
= x) = lim

x↓xc

Pr(T
i
(1) < T

i
(0) ∣ X

i
= x) = 0

 (A3) Local Exclusion Restriction:
   Pr(Y

i
(1, t) ≠ Y

i
(0, t) ∣ X

i
= x

c
) = 0 for each t = 0, 1 , 

and where the potential outcomes Y
i
(a, t) are now 

functions of both the treatment assigned/eligible sta-
tus (a) and the treatment received status (t).

The local monotonicity assumption ensures the absence of 
defiers at the cutoff, which, in our empirical example, refers 
to children who would receive the pre-K program if ineli-
gible but would not receive it if eligible. The local exclu-
sion restriction assumption states that potential outcomes 
depend solely on treatment receipt ( T

i
 ) and are unaffected 

by treatment assignment ( A
i
 ) at the cutoff; that is, under 

this assumption, i.e., Y
i
(a, t) = Y

i
(t) . Assumptions [A1]-[A3] 

allow us to identify the LATE at the cutoff as follows:

To estimate �
FRD

 in fuzzy RD designs, researchers have the 
option to use either parametric regression with polynomial 
and interaction terms or nonparametric regression (Imbens 
and Lemieux, 2008; Lee and Lemieux, 2010). In the para-
metric approach, instrumental variable regression or two-
stage least squares (TSLS) regression can be employed. 
However, similar to sharp RD designs, a limitation of this 
parametric approach is that it relies on all values of X with-
out exclusively using the subpopulation near the cutoff. On 
the other hand, nonparametric regression focuses on a small 
neighborhood around the cutoff point, where local polyno-
mial regression is commonly used to estimate the numera-
tor and denominator of the ratio in �

FRD
 (Lee and Lemieux, 

2010). Like sharp RD designs, researchers need to select 
the kernel function, bandwidth, and the inclusion of higher-
order terms for both the treatment regression and outcome 
regression. In practical applications, it is desirable to use the 
same bandwidth for both the numerator and denominator 
(assuming the same kernel function and polynomial order). 
This enhances transparency and simplifies computation in 
RD analysis, because researches can clarify which obser-
vations are included in their calculations. Similar to sharp 
RD designs, the bandwidth can be chosen using an optimal 

E[Y
i
(1) − Y

i
(0) ∣ X

i
= x

c
, T

i
(1) = 1, T

i
(0) = 0]

=

lim
x↓x

c

E(Y
i
∣ X

i
= x) − lim

x↑x
c

E(Y
i
∣ X

i
= x)

lim
x↓x

c

E(T
i
∣ X

i
= x) − lim

x↑x
c

E(T
i
∣ X

i
= x)

.
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data-driven approach that aims to minimize the MSE of the 
fuzzy RD effect estimator. Alternatively, researchers can 
determine the optimal bandwidth through a cross-validation 
procedure that minimizes the MSE between the predicted 
and observed outcomes.3 Lastly, incorporating covariates W

i
 

into the analysis can enhance the efficiency of the estimator 
and may help mitigate potential covariate imbalance aris-
ing from the inclusion of observations that are farther away 
from the cutoff within the window. For more information on 
the estimation and inference in fuzzy RD designs, refer to 
Imbens and Lemieux (2008), Lee and Lemieux (2010), and 
Cattaneo et al. (2019a). An example of implementation is 
discussed in Sect. Educational example: New Jersey’s pre-K 
programs.

A graphical perspective on RD designs

Causal graphs, known as directed acyclic graphs (DAGs), 
provide a useful framework to describe the causal relation-
ships between variables and offer a formal yet intuitive dis-
cussion of causal identification in both sharp and fuzzy RD 
designs (Pearl, 2009; Steiner et al., 2017). We use the data-
generating models underlying RD designs as represented by 
causal graphs in Fig. 2. In the figure, the pre-K assignment/
eligibility status (A) is exclusively determined by the run-
ning variable, a child’s birth date (X). In Fig. 2a for the sharp 
RD design, the running variable X affects the eligibility 

status A and the outcome Y, and thus, it confounds the causal 
relationship between A and Y. Observed and unobserved 
covariate sets ( W, U ) affect the running variable X and the 
outcome Y, which introduces confounding in the causal rela-
tionship between A and Y via X. Although conditioning on 
X blocks the confounding backdoor paths between A and 
Y,4 the ATE of A on Y for the overall population remains 
unidentified due to the violation of the positivity assump-
tion, i.e., 0 < Pr(A = 1|X) < 1 . That is, we lack the overlap 
of the running variable, meaning that eligible and ineligi-
ble students are situated in non-overlapping regions of the 
running variable. Thus, we leverage the discontinuity at the 
cutoff, instead of matching methods, to identify the ATE of 
A on Y at the cutoff.

Figure 2b demonstrates the graphical identification for the 
sharp RD design at the limiting cutoff score, X → x

c
 (Steiner 

et al., 2017). In this scenario, the running variable (X) still 
determines pre-K eligibility (A), but it no longer directly 
affects the outcome (Y) nor is it influenced by the measured 
and unmeasured covariates ( W and U ). Consequently, in 
the proximity of the cutoff score, pre-K eligibility becomes 
independent of W and U , allowing for the identification of 
the ATE at the cutoff without any adjustments for covariates. 
Note that incorporating measured covariates W enhances 
the efficiency of the treatment effect by explaining the vari-
ance of Y.

Fig. 2  Causal graphs and causal 
graphical identification for 
evaluating a pre-K program 
based on sharp and fuzzy RD 
designs. X represents the run-
ning variable, which is a child’s 
birth date. A represents the 
pre-K assigned status. T repre-
sents the pre-K received status. 
Y represents the outcome, which 
is vocabulary test scores. W 
represents measured covariates, 
and U represents unmeasured 
covariates

3 Note that in fuzzy RD designs, it is recommended to select the 
bandwidth based on the outcome regression and then use the same 
bandwidth for the treatment regression. This recommendation is 
based on the observation that the treatment regression typically 
requires a wider bandwidth, as it is expected to exhibit a very flat 
relationship.

4 The backdoor criterion in causal graphs (Pearl, 1995) involves 
identifying and adjusting for variables that lie on “backdoor paths” 
between the treatment and outcome variables. By conditioning on 
these variables, non-causal paths are blocked, and this blocking 
allows for unbiased estimation of causal effects in observational stud-
ies.
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On the other hand, in Fig. 2c for a fuzzy RD design, the 
pre-K eligibility status (A) differs from the pre-K receipt 
status (T), which depends on the eligibility status (A) and 
covariates ( W, U ). Administrators may offer the pre-K pro-
gram to ineligible children or withhold them from eligible 
children based on the values of W and U . Measured covari-
ates W may include child background variables like gender, 
race/ethnicity, or free lunch status. Unmeasured covari-
ates U may include a child’s developmental immaturity or 
prior academic performance. In the fuzzy RD design, as the 
covariate sets W and U influence T and Y, they introduce 
confounding in both the ATE of A on Y and the ATE of T on 
Y for the overall population. Consequently, without covariate 
adjustments, these two ATEs remain unidentified. However, 
the presence of unmeasured covariates U renders matching 
methods infeasible. Instead, we leverage the discontinuity 
at the cutoff.

Figure 2d illustrates the graphical identification for the 
fuzzy RD design at the limiting cutoff score, X → x

c
 . Simi-

lar to the sharp RD design, the running variable (X) solely 
determines pre-K eligibility (A) at the cutoff without any 
relationship with covariates W and U . Thus, the ITT at the 
cutoff, representing the effect transmitted along A → Y  , can 
be identified by limiting X → x

c
 , without covariate adjust-

ments for W and U . Moreover, using A as an instrument 
for pre-K receipt (T) enables the identification of LATE at 
the cutoff, i.e., the effect of T → Y  . It should be also noted 
that incorporating measured covariates W improves the effi-
ciency of the treatment effect by accounting for the variance 
in T and Y.

Threats to validity of RD designs

This section discusses potential threats to the validity of RD 
designs, focusing on four main issues: manipulation or sort-
ing around the cutoff, discreteness of the running variable, 
statistical power, and generalizability.

Manipulation or sorting around the cutoff

RD designs are appropriate and considered as good as ran-
domized experiments when individuals cannot manipulate 
the running variable to precisely sort around the cutoff value. 
Manipulation refers to the systematic changes of values of 
the running variable for some units to influence treatment 
assignment (Schochet et al., 2010). Manipulation of the run-
ning variable can occur when the treatment has significant 
benefits or harms. For example, if the running variable for 
assigning a beneficial program is self-reported age with a 
publicly known cutoff value, one might see relatively more 
individuals with a reported age just below (or just above) 
the cutoff to participate (or not participate) in the program. 

This manipulation undermines the validity of the RD design 
and hinders the identification of the RD treatment effect, 
because units just below are no longer comparable to those 
just above. To assess whether the underlying assumption of 
individuals’ inability to precisely manipulate the assignment 
variable is unwarranted, two types of tests are available; one 
examines the density continuity of the running variable, and 
the other examines the continuity of covariate distributions, 
both at the cutoff. One advantage of the former test is that it 
can be always conducted in an RD setting, while the latter 
test depends on the availability of data on these covariates. If 
either test yields significant results, it challenges the validity 
of the continuity assumption.

A direct and straightforward test is on examining whether 
the density of the running variable is continuous at the cut-
off. Such tests include the McCrary’s test based on a density 
function (McCrary, 2008), an empirical likelihood testing 
procedure (Otsu et al., 2013), and a local polynomial density 
estimator (Cattaneo et al., 2018, 2020). While a continuous 
density of the running variable at the cutoff is not by itself 
sufficient to confirm the validity of an RD design, a discon-
tinuous density indicates endogenous sorting of units around 
the cutoff and should raise serious doubts about the appro-
priateness of the RD design (Cattaneo and Titiunik, 2022).

Another way to test the validity of the RD design is to 
examine whether baseline covariates are locally balanced or 
continuous on either side of the cutoff. If individuals can-
not precisely manipulate the assignment variable in the RD 
design, the treatment assignment is locally randomized at the 
cutoff, and individuals in close proximity to the cutoff are 
expected to be comparable in terms of baseline covariates. 
That is, the baseline covariates are locally balanced on either 
side of the cutoff. Therefore, the distributions of observed 
baseline covariates should not change discontinuously at the 
cutoff (Imbens and Lemieux, 2008; Schochet et al., 2010; 
Lee and Lemieux, 2010). If the distribution of each covari-
ate (conditional on the running variable) is discontinuous, it 
suggests non-random sorting of units into groups based on 
the given covariate. To test for non-random sorting based on 
baseline covariates, researchers can use estimation methods, 
such as local polynomial regression discussed in Sect. Sharp 
RD designs, with the response being each measured covari-
ate instead of the outcome variable. However, it is not pos-
sible to test whether unmeasured covariates are continuously 
associated with the running variable at the cutoff. We pro-
vide an illustration of these falsification tests in Sect. Fal-
sification tests.

Discreteness of the running variable

In practice, the running variable is often measured on a dis-
crete scale, represented by X ∈ {x1, x2,… , x

c−1, x
c
,… x

K
} 

with K discrete values. For example, the running variable of 
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a child’s birth date would be measured based on intervals of 
5 days rather than on a daily basis. Despite this discretization 
of the running variable, when certain conditions are met, 
researchers can still utilize the identification and estimation 
strategies discussed in Sect. Basics of RD designs. These 
conditions include (a) the accurate and precious (implicit) 
extrapolation from X

i
= x

c−1
 to X

i
= x

c
 and (b) a large num-

ber of unique values K (Cattaneo and Titiunik, 2022).
However, when the running variable has only a few dis-

tinct values, such as a child’s birth date measured in months, 
the aforementioned identification and estimation strategies 
are not valid for analyzing RD designs. In such a case, Lee 
and Card (2008) propose using regressions to estimate the 
conditional expectation of the outcome variable at the cutoff 
point through extrapolation. This approach assumes that the 
parametric functional form on both sides of the cutoff score 
is correctly specified, which enables accurate extrapolation 
to the cutoff score. Additionally, the statistical uncertainty 
arising from the discreteness of the running variable should 
be considered by estimating cluster standard errors (Lee 
and Card, 2008). There are alternative approaches for RD 
designs with a discrete running variable, including one pro-
posed by Dong (2014) that specifically addresses rounding 
errors in the running variable.

Low statistical power

In general, RD designs exhibit lower statistical power com-
pared to randomized experiments with equal sample sizes 
due to greater sampling variance. Consequently, RD designs 
typically require much larger sample sizes to achieve the 
same level of statistical power (Goldberger, 1972; Shadish 
et al., 2002; Schochet, 2009). Statistical power depends on 
factors such as the significance level, effect size, sample 
size, and is also influenced by measurement error. Specifi-
cally, research by Goldberger (1972) revealed that for non-
clustered designs, an RD design typically requires a sample 
size 2.75 times larger than a corresponding experiment to 
achieve the same level of statistical precision. For clustered 
designs, Schochet (2009) found that three to four times 
larger samples are usually required in RD designs compared 
to experimental clustered designs to attain the same level of 
precision. The reduced precision in RD designs arises due to 

the inherent correlation between treatment assignment and 
running variables included in the regression models, but this 
correlation is absent in randomized experiments (Schochet, 
2009). However, when working with large-scale educational 
datasets, sample sizes are generally more than adequate to 
ensure sufficient power. Therefore, this potential limitation 
of RDD is often less problematic in practice compared to the 
other challenges we discuss.

Measurement error in data can also reduce statistical 
power in RD settings as in randomized experiments or other 
quasi-experimental designs. When the measurement error 
is not properly accounted for, it leads to an overestimation 
of power. Specifically, while the measurement error in the 
outcome is unlikely to introduce bias in the RD treatment 
effect, it increases the uncertainty of the effect estimate, 
making it more challenging to distinguish true effects from 
random variation or measurement error (Shadish et al., 
2002). Therefore, in the presence of measurement outcome 
error, the minimum detectable effect (i.e., the smallest true 
effect size that can be detected) will increase, and thus, a 
larger sample size is typically required to achieve the same 
level of precision.

To account for potential power issues, researchers plan-
ning new experiments or surveys in RD designs can conduct 
power calculations and determine the required sample size 
at the design stage. Cattaneo et al. (2019) discuss power 
calculations and optimal sample size selection using local 
polynomial estimation and inference methods in RD designs, 
and Schochet (2009) and Bulus (2021) discuss power issues 
using parametric regression specifications for clustered RD 
designs.

Limited generalizability

As mentioned earlier, the RD treatment effect applies spe-
cifically to the subpopulation of individuals at or around the 
cutoff value, as there is no overlap of the running variable. 
While this allows for the identification of the treatment effect 
within this subpopulation, it does not provide information 
about the effect in other subpopulations or the entire popula-
tion. Without strong assumptions justifying extrapolation to 
other subpopulations (such as homogeneity of the treatment 
effect or parametric modeling assumptions on the treatment 
effect), it is not possible to estimate treatment effects away 
from the cutoff or the overall ATE (Imbens and Lemieux, 
2008).

To address the extrapolation or generalizability in RD 
designs, several approaches have been proposed. These 
include using external pre-treatment measures and paramet-
ric imputation methods (Mealli and Rampichini, 2012; Wing 
and Cook, 2013), incorporating pre-treatment covariates 
under local conditional ignorability (Angrist and Rokkanen, 

Fig. 3  Extensions in regression discontinuity (RD) designs. Dashed 
lines indicate the cutoff points. Red and blue colors are associated 
with observed treatment and control units, respectively. a RD design 
with multiple running variables, denoted as X

1
 and X

2
 . b RD design 

with an ordinal running variable, such as the final letter grade for 
academic performance. c  Multisite RD design, involving multiple 
sites (e.g., schools, hospitals). d  Regression kink design, targeting 
the slope difference at the cutoff. e RD design combined with a rand-
omized experiment. f Comparative RD design with a pretest or non-
equivalent comparison group

◂
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2015), employing a local extrapolation method via marginal 
treatment effects (Dong and Lewbel, 2015), utilizing mul-
tiple measures of the running score with a factor model 
(Rokkanen, 2015), and employing multiple cutoffs under 
the constant bias assumption (Cattaneo et al., 2020).

Extensions

This section explores methodological advancements and 
extensions in RD designs that are particularly relevant in 
education settings. These extensions involve incorporating 
multiple running variables, utilizing an ordinal running 
variable, analyzing multisite/multilevel data, and intro-
ducing a novel parameter of interest from regression kink 
designs. We also briefly discuss variations that combine 
RD designs with other existing causal inference methods. 
Figure 3 visually illustrates each extension, and we pro-
vide a concise overview of their key features below.

RD designs with multiple running variables

Multiple running variables are commonly employed for 
assigning units to treatment conditions, especially when 
additional exclusion or inclusion criteria are present. Sup-
pose students are assigned to a gifted program based on 
their scores in two tests, denoted as X

1i
 and X

2i
 , where 

the first test measures reading ability and the second test 
measures math ability, as depicted in Fig. 3a. If a stu-
dent’s scores in both reading and mathematics are at 
or above the specified cutoff scores x

c
1

 and x
c

2

 , respec-
tively, they are assigned to the gifted program, i.e., 
T

i
= I(X

1i
≥ x

c
1

)I(X
2i
≥ x

c
2

) , where I(⋅) is the indicator 
function. When using multiple running variables, there is 
an infinite collection of cutoff points where the treatment 
assignment sharply changes from zero to one, as shown in 
Fig. 3a. This motivates the use of a treatment effect curve, 
which incorporates infinitely many cutoff points, rather 
than focusing on a single-point treatment effect. Various 
approaches exist for conducting RD designs with multiple 
running variables, such as response surface RD analysis, 
which utilizes the multidimensional response surface, and 
frontier RD analysis, which estimates pairwise treatment 
effects using a subset of the data. For more details on mul-
tiple running variables, refer to Reardon and Robinson 
(2012) and Wong et al. (2013).

A special case of RD designs with multiple running 
variables is a geographic RD design, where latitude and 
longitude in coordinate systems serve as the running vari-
ables. In this design, units receive treatment if they are 
located within a specific geographic area, whereas they do 
not receive it in adjacent areas. Geographic RD designs are 

particularly useful for evaluating programs or policies that 
operate differently in cities or states located near borders. 
Standard RD estimation methods that include two running 
variables can be applied to geographic RD designs with 
minor adjustments. For further information on geographic 
RD, refer to Keele and Titiunik (2015).

RD designs with an ordinal running variable

In practice, the running variable in RD designs can often be 
measured on an ordinal scale. Examples of ordinal running 
variables include the final letter grade for academic perfor-
mance (e.g., A+

, A, A
−

, B
+

,… , F , as illustrated in Fig. 3b) 
and English proficiency levels of English language learners 
(Suk et al., 2022), bond ratings (Li et al., 2021), and inmate 
classification scores (Hjalmarsson, 2009). Using an ordinal 
running variable presents challenges due to the lack of a 
meaningful scale of distance. They also have limited obser-
vations in a small neighborhood below (or above) the cutoff, 
which requires extrapolation as depicted with a dashed line 
in Fig. 3b.

There are some approaches for conducting RD designs 
with ordinal running variables, notably discussed in Suk 
et al. (2022) and Li et al. (2021). Suk et al. (2022) employ 
a scale function to map the ordinal running variable onto a 
numeric scale and incorporate parametric modeling assump-
tions on the outcome (and treatment) for causal identifica-
tion in RD settings. They also present sensitivity analyses 
to check the conclusions’ robustness to different design fac-
tors, such as the choice of the scaling function, the choice of 
the cutoff value, and unobserved confounding due to model 
misspecification. On the other hand, Li et al. (2021) utilize 
propensity scores as a surrogate continuous running vari-
able, and unlike Suk et al. (2022), this approach is under 
the local randomization framework; see Li et al. (2021) for 
more details.

Multisite RD designs

Multisite RD designs are often employed in education set-
tings where the treatment or intervention is implemented 
within sites (e.g., schools). These designs introduce several 
additional considerations not encountered in non-clustered 
data, including the heterogeneity of the treatment effect 
across sites, the use of different cutoff values or running var-
iables across sites, and the endogeneity of the study design, 
which is typically influenced by site sizes and the propor-
tions of treated units. Figure 3c provides an illustration of 
multisite RD designs with the same running variable and 
the same cutoff across sites. The figure demonstrates that 
the RD treatment effects vary depending on the sites, with 
Site 1 showing the largest effect, and that the proportions of 
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treated units are not constant across sites, with Site 2 having 
the highest proportion.

When using multisite RD designs, researchers typically 
estimate site-specific RD effects and then combine these 
estimates to obtain a single, pooled RD treatment effect 
through meta-analysis, similar to multisite randomized trials. 
Multisite RD designs often aim to target cross-site heteroge-
neity of treatment and estimate the cross-site treatment effect 
variance using random effects models or fixed intercepts ran-
dom coefficient models (Nomi and Raudenbush, 2016; Lee 
and Soland, 2022; Brunner et al., 2023; McEachin et al., 
2020). However, methodological advancements for multisite 
RD designs have been progressing slowly, and to the best of 
our knowledge, practical guidelines for implementing mul-
tisite RD designs are not yet available.

Regression kink designs

Regression kink designs, originally introduced by Nielsen 
et al. (2010), are employed when a treatment is determined 
by a known assignment rule that alters the slope between the 
treatment and the running variable at a specific cutoff point 
(referred to as the kink point) (Card et al., 2015, 2017). As 
depicted in Fig. 3d, in the kink design, the expectation is that 
the outcome regression function will be continuous at all 
values of the running variable, but its slope will exhibit dis-
continuity at the cutoff point. Therefore, instead of focusing 
on a vertical gap at the cutoff as in conventional RD designs, 
the kink design examines whether the slope of the relation-
ship between the outcome and the running variable shows 
a kink or discontinuity at the cutoff point. Any observed 
kink in the outcome, given the comparability of individu-
als on either side of the kink point, can be attributed to the 
treatment effect (Card et al., 2015). Estimation methods for 
kink treatment effects can be adapted from RD estimation 
methods, such as employing (local) polynomial regressions. 
However, the focus is on estimating the first derivatives of 
the regression functions rather than estimating a shift in the 
intercept. For more details of regression kink designs, refer 
to Card et al. (2017).

Other variations

There are several other research designs that combine RD 
designs with existing causal inference methods. On one 
hand, RD designs can be combined with randomized experi-
ments by utilizing a cutoff interval between two cutoff val-
ues, as shown in Fig. 3e. Within this interval, units are ran-
domly assigned to treatment conditions, whereas units above 
or below the interval are assigned to a single condition. This 
combination increases the statistical power for testing treat-
ment effects and enhances external validity (Shadish et al., 
2002).

On the other hand, RD designs can be combined with 
other quasi-experimental designs, such as matching or 
propensity score designs (e.g., Linden and Adams 2012), 
difference-in-differences (e.g., Grembi et al. 2016) (often 
referred to as difference-in-discontinuities designs), inter-
rupted time series (e.g., Hausman and Rapson 2018) (often 
referred to as regression-discontinuity-in-time designs), and 
multiple control groups (Suk and Kim, 2023). Moreover, 
RD designs can incorporate an additional untreated out-
come comparison function, like a pretest or a comparison 
group’s posttest, as illustrated in Fig. 3f. Integrating this 
untreated comparison data to RD designs is often referred 
to as comparative RD designs (Wing and Cook, 2013a; Tang 
et al., 2017). These combined designs enhance RD designs 
in various ways, serving as sensitivity analyses, highlighting 
focused developments in specific settings (e.g., time-series 
data), or improving efficiency. The integration of regression 
discontinuity with other quasi-experimental designs is an 
emerging field, and there are many opportunities for further 
exploration.

Educational example: New Jersey’s pre‑K 
programs

Data and methods

State pre-K programs are educational initiatives that receive 
funding or oversight from the state and are often adminis-
trated by local school districts (Wong et al., 2007). They 
can produce short-term effects, such as improved academic 
performance during early school years, and may also have 
long-term effects like higher high school graduation rates 
(Campbell and Ramey, 1994; Wong et al., 2007). Wong et al. 
(2007) used RD designs to evaluate the effects of five-state 
pre-K programs on children’s vocabulary, math, and print 
awareness skills, using a child’s birth date as the running 
variable. The data collection focused on pre-K programs 
for 4-year-olds. In this paper, we used the data from one 
state, New Jersey, and evaluated the effect of New Jersey’s 
Abbott Preschool Program, one of three state-funded pre-K 
initiatives in the state. The data in New Jersey were obtained 
through stratified random sampling, with stratification based 
on factors such as district enrollment, geographic location, 
and urban versus rural area.

For our data analysis, we used vocabulary test scores 
as the outcome variable Y

i
 . As mentioned earlier, pre-K 

eligibility A
i
 is a binary variable, where A

i
= 1 denotes that 

a child was eligible for the state pre-K program, and A
i
= 0 

denotes that a child was ineligible for the program. The 
eligibility status was determined based on a child’s birth 
date, our running variable X

i
 , with the cutoff date being 

October 1st. However, the assignment status A
i
 is not the 
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same as the receipt status T
i
 due to non-compliance. Spe-

cifically, the data exhibit two-sided non-compliance; some 
eligible students did not receive the pre-K program ( A

i
= 1 

but T
i
= 0 ), while some ineligible students received it 

( A
i
= 0 but T

i
= 1 ). In our analysis, we used a set of pre-

treatment covariates W
i
 , including gender, race/ethnic-

ity, free lunch status, and test language type (English or 
Spanish), in the outcome and treatment regressions. We 
constrained our target sample to ±365 days from the cutoff 
date and excluded 9 cases with missing values in the out-
come variable. As a result, our analytic sample consisted 
of 1,993 children, which accounted for 96.2% of the origi-
nal sample in New Jersey.

Since there was non-compliance, we employed a fuzzy 
RD design and estimated the ITT and LATE of the state 
pre-K program at the cutoff. To estimate the ITT effect at 
the cutoff, we used local linear regression with a triangular 
kernel. The local linear regression model for the ITT at the 
cutoff with different slopes is written as follows:

Here, the term �
1
= �

SRD
 represents the ITT at the cutoff. The 

triangular kernel weight w
i
= 1 − |(X

i
− x

c
)|∕h if observa-

tion i lies within the window and w
i
= 0 if it is outside the 

window. This means that observations closer to the cutoff 
receives larger weights, while observations with w

i
= 0 are 

excluded from RD analysis. We chose the optimal data-
driven bandwidth that minimizes the MSE of the RD effect 
estimator �̂

SRD
 given our empirical data. Note again that the 

choice of kernel typically has little impact in practice when 
both the bandwidth and the polynomial order are fixed. We 

(5)

Y
i
= �0 + �1A

i
+ �2(Xi

− x
c
) + �3A

i
(X

i
− x

c
) + �

i
,

A
i
=

{
1, if X

i
≥ x

c

0, if X
i
< x

c
,

,

w
i
=

{
1 − |(X

i
− x

c
)|∕h, if |(X

i
− x

c
)|∕h < 1

0, if |(X
i
− x

c
)|∕h ≥ 1

computed conventional confidence intervals based ordi-
nary least squares (OLS) and robust (bias-corrected) con-
fidence intervals. The robust confidence interval eliminates 
misspecification bias in the asymptotic approximation and 
adjusts the standard error to reflect extra variability from 
bias estimation. Unlike conventional intervals, this robust 
version is based on a valid standard normal distributional 
approximation (Calonico et al., 2014). We also used addi-
tional adjustment for measured covariates W potentially to 
improve efficiency.

To estimate the LATE at the cutoff, we employed local 
linear regression with kernel weights for both the treatment 
and the outcome. In this approach, we treated the model for 
T

i
 as the first-stage regression and the model for Y

i
 as the 

second-stage regression. This TSLS model for T
i
 and Y

i
 with 

triangular kernel weights can be written as follows:

In the first-stage regression (6), �
1
 captures the discontinuity 

in the treatment probabilities between eligible and ineligible 
children at the cutoff. In the second-stage regression (7), we 
use the predicted value T̂

i
 as a regressor instead of A

i
 . This 

enables us to estimate �
1
= �

FRD
 , representing the LATE at 

the cutoff value. Similar to the ITT estimation, we chose a 
MSE-optimal data-driven bandwidth, and we computed con-
ventional confidence intervals and robust confidence inter-
vals. We also did additional adjustments that include meas-
ured covariates in Eqs. (6) and (7) to improve efficiency.

Finally, we conducted falsification tests, as discussed 
in Sect. Manipulation or sorting around the cutoff, specifi-
cally focusing on manipulation or non-random sorting near 
the cutoff. For software, we used the R package rdrobust 
(Calonico et al., 2023) to conduct RD analysis, and we also 
used the R package rddensity (Cattaneo et al., 2023) to per-
form a manipulation test based on density discontinuity. R 
codes for our data analysis can be found at the first author’s 
GitHub repository (https:// github. com/ youmi suk/ RDDre 
view).

Results

ITT at the cutoff

Figure 4 presents a visual representation of the RD design 
for the ITT at the cutoff, i.e., the ATE at the cutoff, where the 

(6)T
i
= �0 + �1A

i
+ �2(Xi

− x
c
) + �3A

i
(X

i
− x

c
) + �

t

i
,

(7)

Yi = �0 + �1T̂i + �2(Xi − xc) + �3Ai(Xi − xc) + �
y

i
,

Ai =

{
1, if Xi ≥ xc

0, if Xi < xc,
,

wi =

{
1 − |(Xi − xc)|∕h, if |(Xi − xc)|∕h < 1

0, if |(Xi − xc)|∕h ≥ 1

Fig. 4  Regression discontinuity plot for evaluating the average treat-
ment effect of New Jersey’s pre-K program in the vocabulary test

https://github.com/youmisuk/RDDreview
https://github.com/youmisuk/RDDreview
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x-axis represents the centered running variable with the cut-
off set to zero. The figure includes a local linear regression 
line (red solid line) with an optimal, data-driven bandwidth 
of 97.5 days. Clearly, there is a discontinuity at the cutoff, 
and this potentially indicates the presence of a positive ATE 
at the cutoff.

Table 2 provides a summary of the ITT results for with 
and without additional covariate adjustment as well as differ-
ent bandwidth choices. We report the effect size estimates by 
dividing the ITT estimates by the sample standard deviation 
of the outcome (19.83 points), and also report conventional 
OLS confidence intervals and robust (bias-corrected) con-
fidence intervals. The ITT estimate using the MSE-optimal 
bandwidth of 97.5 days was 6.26 points, but it was not sta-
tistically significant with respect to the robust confidence 
interval. The corresponding effect size was 0.32, indicating 
a small effect based on Cohen’s criterion.

We conducted sensitivity checks with the inclusion of 
covariates or the bandwidth size. Including covariates in RD 
analysis can enhance efficiency and potentially adjust covari-
ate imbalance in the subsample within the window. Conse-
quently, the effect estimate was 4.19, and it was somewhat 
reduced with narrower CIs. The effect size also decreased 
to 0.21. When using the half-size bandwidth, it resulted in 
a minor variation in the ITT estimate, with effect size dif-
ferences of about 0.02. None of sensivity analysis results 
reached statistical significance with respect to the conven-
tional or robust confidence intervals. Overall, there is insuf-
ficient evidence to support a positive effect of students being 
assigned to the state’s pre-K program at the cutoff.

LATE at the cutoff

Table 3 presents the compliance rates for New Jersey’s pre-K 
program based on the eligibility and receipt statuses of chil-
dren. In our study sample, approximately 56.3% of the stu-
dents (1,122 students) were eligible for the pre-K program. 
Among those who were eligible, around 98.1% actually 
received the program, while 97.8% of the ineligible students 
did not receive it. This yields a non-compliance rate of about 
2%, which is very small. When focusing on observations 
near cutoff, such as within an optimal bandwidth of 69.4 
days, the compliance rate is further reduced to about 1%.

Furthermore, Fig. 5 displays a visual plot of the RD 
design for the treatment probability at the cutoff using local 
linear regression. The figure reveals an evident discontinuity 
at the cutoff, although it is less than 1 due to noncompliance 
cases.

Table 4 summarizes the LATE results for different band-
width choices, with and without additional covariate adjust-
ment. Similar to ITT estimates, effect size estimates are also 
provided. The LATE estimates were larger than the corre-
sponding ITT estimates. Note that the LATE is always larger 
than the ITT effect on an absolute scale because the LATE 
estimate is calculated as the ITT estimate divided by the 
estimated difference in the probability of receiving treat-
ment between either side of the cutoff. Specifically, using 
an optimal bandwidth of 69.4 days, the LATE estimate 

Table 2  Intent-to-treat (ITT) 
effect of New Jersey’s pre-K 
program at the cutoff

Effect sizes are calculated using the empirical sample standard deviation of the outcome

CI represents the confidence interval, BW represents the bandwidth, and Covs represents covariate adjust-
ment

Bandwidth Estimate Effect Size 95% CI 95% Robust CI

ITT (Optimal BW) 97.50 6.26 0.32 [0.47, 12.06] [− 0.04, 13.66]

Optimal BW w/ Covs 97.50 4.19 0.21 [− 1.28, 9.65] [− 7.03, 9.52]

Half-BW 48.75 5.97 0.30 [− 1.98, 13.93] [− 7.06, 14.64]

Table 3  Compliance for New Jersey’s pre-K program by pre-K eligi-
ble status

Eligibility Non-Received Received Total

Ineligible 852 19 871

Eligible 21 1,101 1122

Total 873 1,120 1993

Fig. 5  Discontinuity in the treatment probability at the cutoff
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was 9.57 points, but it was not statistically significant. The 
effect size associated with this estimate was 0.48, indicating 
a small to medium effect. Incorporating additional covari-
ate adjustments improved efficiency of the LATE estimate, 
but reduced the LATE estimate to 4.34 with an effect size 
of 0.22, which is about half of the original effect size esti-
mate. The differences in LATE estimates without and with 
covariates may be due to potential attribution or selection 
bias between either side of the cutoff within the window. 
This observation is further discussed in the next subsection 
below. When using a different bandwidth, reducing it by 
half only resulted in a decrease of less-than one point in the 
LATE estimate, with effect size differences of about 0.04. 
Overall, there is insufficient evidence to support a positive 
effect of receiving the state’s pre-K program among compli-
ers at the cutoff, although the point estimates and effect sizes 
are larger compared to those of the ITT effect.

Falsification tests

We conducted a set of falsification tests to (i) detect whether 
the running variable is manipulated at the cutoff (i.e., 

whether the density of the running variable is discontinuous 
at the cutoff) and (ii) evaluate whether units from different 
sides of the cutoff have differences in measured covariates at 
the cutoff (i.e., whether the measured covariates are discon-
tinuous at the cutoff). Figure 6a visualizes the results of the 
manipulation test using the local polynomial density estima-
tor proposed by Cattaneo et al. (2020), an improved version 
of McCrary’s (2008) test. The figure suggests that the level 
to the left of the cutoff (i.e., the control condition) is lower 
than that to the right (i.e., the treatment condition), which 
could indicate potential differential attrition issues between 
the two sides of the cutoff. However, the confidence bands 
overlap at the cutoff, and this indicates that the observed 
discontinuity at this point is not statistically significant. Fur-
thermore, the numerical results from the manipulation test 
using the estimator proposed by Cattaneo et al. (2020) show 
insignificance (test statistic = 0.3177, p-value = 0.7507), in 
contrast to the significant result obtained from the McCrary 
(2008) test (test statistic = 2.1137, p-value = 0.0345). While 
we may rely on the former test due to its improved develop-
ment, we should still exercise caution when interpreting RD 
results, given the visual inspection results that potentially 

Table 4  Local average 
treatment effect (LATE) of New 
Jersey’s pre-K program at the 
cutoff

Effect sizes are calculated using the empirical sample standard deviation of the outcome

CI represents the confidence interval, BW represents the bandwidth, and Covs represents covariate adjust-
ment

Bandwidth Estimate Effect Size 95% CI 95% Robust CI

LATE (Optimal BW) 69.4 9.57 0.48 [− 1.31, 20.45] [− 2.09, 22.42]

Optimal BW w/ Covs 69.4 4.34 0.22 [− 6.50, 15.17] [− 14.35, 17.88]

Half-BW 34.7 8.64 0.44 [− 7.04, 24.33] [− 16.77, 24.05]

Fig. 6  Results of falsification tests
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indicate differential attrition or sample selection around the 
cutoff.

To examine the discontinuity of measured covariates at 
the cutoff, we analyzed the relationship between the running 
variable and each covariate in the data. Figure 6b presents 
the result for the gender variable (female = 1, male = 0). The 
plot includes a local linear regression line with confidence 
intervals, and there is no clear evidence of a discontinuity 
in the gender proportion at the cutoff. We performed simi-
lar analyses for other covariates and found no indications 
of discontinuity at the cutoff. As a result, we are not con-
cerned about non-random sorting near the cutoff from meas-
ured covariates. However, it is important to note that there 
remains a possibility of non-random sorting with respect to 
unmeasured covariates (e.g., pre-test).

Conclusions

In this paper, we have provided a comprehensive review of 
traditional RD designs and recent developments, particu-
larly those that are more related to educational contexts. Our 
empirical analysis in Sect. Educational example: New Jer-
sey’s pre-K programs demonstrates specific instructions on 
the RD designs. To conclude, we offer practical guidelines 
for utilizing RD designs: 

1. Plot the data using scatterplots and summary smoothing 
lines to visualize the relationship between the running 
variable and the outcome (see Fig. 4). Adjust the regres-
sion lines with appropriate bandwidths and degrees of 
polynomial to assess local discontinuity at the cutoff.

2. Estimate the treatment effect using nonparametric or 
parametric regression. For nonparametric regression, 
determine an optimal bandwidth that minimizes the 
MSE of the RD effect estimator and use robust standard 
errors or confidence intervals (see Table 2). For para-
metric regression, assess the appropriate degrees of 
polynomials based on F-tests or the AIC.

3. Conduct the sensitivity of the RD treatment effects by 
varying the bandwidths (for nonparametric regression) 
and including measured covariates in the regression 
models (see Table 2).

4. Assess threats to validity regarding manipulation or sort-
ing near the cutoff (see Sect. Falsification tests). Con-
duct visual inspections and perform formal statistical 
tests (e.g., the manipulation test using Cattaneo et al. 
(2020)).

  For the fuzzy RD design with imperfect compliance, 
we adhere to the above guidelines for examining the ITT 
at the cutoff. To assess the LATE at the cutoff, we pro-
vide additional guidelines:

5. Summarize the compliance rates (see Table 3) and plot 
the relationship between the running variable and treat-
ment (see Fig. 5), in addition to the RD plot with out-
come.

6. Estimate the treatment effect using parametric TSLS 
regression or nonparametric approaches (see Table 4). 
Use the same bandwidth and order of polynomials for 
both the treatment regression and outcome regression.

Overall, although this review paper does not cover every 
aspect of RD designs due to space limitations, we hope 
that our review and practical guidelines will be valuable for 
researchers who are interested in applying RD designs to 
evaluate education policies or programs.
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