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Machine learning (ML) methods for causal inference have gained popularity

due to their flexibility to predict the outcome model and the propensity score. In

this article, we provide a within-group approach for ML-based causal inference

methods in order to robustly estimate average treatment effects in multilevel

studies when there is cluster-level unmeasured confounding. We focus on one

particular ML-based causal inference method based on the targeted maximum

likelihood estimation (TMLE) with an ensemble learner called SuperLearner.

Through our simulation studies, we observe that training TMLE within groups

of similar clusters helps remove bias from cluster-level unmeasured con-

founders. Also, using within-group propensity scores estimated from fixed

effects logistic regression increases the robustness of the proposed within-group

TMLE method. Even if the propensity scores are partially misspecified, the

within-group TMLE still produces robust ATE estimates due to double

robustness with flexible modeling, unlike parametric-based inverse propensity

weighting methods. We demonstrate our proposed methods and conduct sen-

sitivity analyses against the number of groups and individual-level unmeasured

confounding to evaluate the effect of taking an eighth-grade algebra course on

math achievement in the Early Childhood Longitudinal Study.

Keywords: causal inference; machine learning methods; unmeasured variables; omitted

variable bias; cluster-level unmeasured confounders; fixed effects models; targeted max-

imum likelihood estimation

Over the past decade, there has been a growing interest in using machine

learning (ML) methods to estimate the average treatment effect (ATE) and the

conditional ATE due to their flexible and near-automatic modeling (Athey &

Imbens, 2016; Dorie et al., 2019; Hill, 2011; Imai & Ratkovic, 2013; Künzel

et al., 2019; Su et al., 2009; Suk, Kang, et al., 2021; Wager & Athey, 2018).

Almost all the ML-based causal inference methods have been designed in a

single-level data setting (i.e., independent and identically distributed [i.i.d.] set-

ting) and under the assumption of no unmeasured confounding. But there are

limited works on how to utilize ML methods in multilevel data settings to

Journal of Educational and Behavioral Statistics

2024, Vol. 49, No. 1, pp. 61–91

DOI: 10.3102/10769986231162096

Article reuse guidelines: sagepub.com/journals-permissions

 2023 AERA. https://journals.sagepub.com/home/jeb

61



estimate causal effects (Athey & Wager, 2019; Suk & Kang, 2022a, 2022b; Suk,

Kang, et al., 2021). The use of ML methods in multilevel data poses new chal-

lenges, notably that the data are not i.i.d. and that there is a specific type of

unmeasured confounders called cluster-level unmeasured confounders, which

may bias causal estimates. The overall goal of this article is to design ML-

based causal inference methods that are insensitive to cluster-level unmeasured

confounding while maintaining ML methods’ strengths on flexible and near-

automatic modeling. In this article, we focus on multisite/multilevel observa-

tional data, where the treatment is assigned at the unit level (e.g., students), not at

the cluster level (e.g., schools).

Cluster-level confounders are covariates that (1) are shared by individuals

within a cluster and (2) affect both the treatment and the outcome of interest.

When cluster-level confounders are present and not adjusted for, they distort the

treatment effect by making a spurious association between the treatment and

outcome (Arpino & Mealli, 2011; Li et al., 2013). For example, consider the

kindergarten cohort of the Early Childhood Longitudinal Study (ECLS-K) and

suppose we are interested in studying the causal effect of students taking an

eighth-grade algebra course on their math achievement. Algebra courses are

mathematics courses offered in U.S. school systems, and prior studies have

advocated policies that encourage students to take algebra prior to entering high

school (Rickles, 2013). These studies also found that school-level characteristics

such as school location, school composition, and school processes play a key role

in students’ mathematics course-taking and their performance on achievement

tests (Anderson & Chang, 2011; Cogan et al., 2001; Opdenakker & Van Damme,

2001). Unfortunately, the ECLS-K data did not measure all possible school-level

confounders, such as school’s funding for math education and school principal’s

emphasis on STEM education, and estimating the treatment effect consistently

becomes a challenge.

When we suspect cluster-level unmeasured confounders in multilevel studies,

it is important to eliminate or alleviate their impact on the effect estimates. Suk

and Kang (2022a, 2022b) have started to explore how to make MLmethods more

robust to cluster-level unmeasured confounding. Their strategies include using a

new loss function that is insensitive to cluster-level unmeasured confounding,

injecting propensity scores estimated from fixed effects logistic regression or

random effects logistic regression, and employing cluster dummy variables or

cluster-demeaned variables. But all these strategies seek to train ML methods by

using the entire sample from all the clusters rather than using only a subsample

within each cluster or within each group of similar clusters. That is, previous

works are based on an across-cluster approach rather than a within-cluster

approach or a within-group approach, where groups are constructed by combin-

ing similar clusters.

Different grouping approaches in multilevel data have been frequently com-

pared in particular for propensity score methods (Arpino & Cannas, 2016; Arpino

Within-Group Machine Learning in Multilevel Studies

62



&Mealli, 2011; Kim& Seltzer, 2007; Lee et al., 2021; Leite et al., 2015; Li et al.,

2013; Rickles & Seltzer, 2014; Schuler et al., 2016; Thoemmes & West, 2011).

Briefly, an across-cluster approach uses the entire sample to estimate a propen-

sity score model across clusters; a within-cluster approach uses the subsample

within each cluster to estimate a cluster-specific propensity score model (Kim &

Seltzer, 2007; Leite et al., 2015; Thoemmes & West, 2011); a within-group

approach uses the subsample within each group to estimate a group-specific

propensity score model, where groups consist of multiple clusters (Kim & Stei-

ner, 2015; Lee et al., 2021; Suk & Kim, 2019). Among different approaches, a

within-cluster approach is the most flexible and the most robust to bias from

cluster-level unmeasured confounders, but it becomes unstable when cluster

sizes are small (Kim & Seltzer, 2007; Thoemmes & West, 2011). In contrast,

under small cluster sizes, a within-group approach performs better than a within-

cluster approach by combining similar clusters into groups, and it is more flexible

and more robust to cluster-level unmeasured confounding than an across-cluster

approach (Lee et al., 2021). Although there are advantages and disadvantages of

different grouping approaches for the propensity score, unfortunately, there is

little research on examining comprehensive options to using ML methods for

causal inference in multilevel studies.

The main goal of this article is to investigate a within-group approach to using

ML methods for robustly estimating the ATE in multilevel studies when cluster-

level unmeasured confounders are present. In this article, clusters (e.g., schools)

represent sites where study units (e.g., students) belong, and groups refer to a

collection of clusters. We focus on one particular ML-based causal inference

method based on the targeted maximum likelihood estimation (TMLE) with an

ensemble learning algorithm (Luque-Fernandez et al., 2018; van der Laan &

Rose, 2011), but we believe our main ideas can be easily applied to other ML

methods. At a high level, our proposal constructs groups of similar clusters based

on treatment prevalence and uses “vanilla” TMLE or model-assisted TMLE to

estimate the treatment effects within each group. Specifically, vanilla TMLE

consists of implementing the default TMLE as is, that is, using the propensity

score and the outcome predictions from the default ensemble learning algo-

rithms. Model-assisted TMLE consists of injecting multilevel propensity scores

estimated from fixed effects or random effects logistic regression models that can

account for cluster-level unmeasured confounding. A major strength of our pro-

posal is that it makes an existing TMLE estimator robust to cluster-level unmea-

sured confounding. Additionally, unlike parametric propensity score methods,

our ML-based proposal has the potential to increase robustness under model

misspecification. In short, our proposal simultaneously enjoys robustness from

model misspecification and cluster-level unmeasured confounding. Also, to the

best of our knowledge, this article is the first attempt to use different options

other than an across-cluster approach to design robust ML methods in multilevel

studies, with one possible exception of Suk, Kim, et al. (2021). Suk, Kim, et al.
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(2021) classified clusters into latent classes based on latent class regression

models to estimate latent heterogeneity of treatment effects, but their method

is not robust to bias from unmeasured confounders.

For evaluating the performance of our proposed methods, we conduct simula-

tion studies that vary multiple parameters such as the number of groups, the

working model of the propensity score, and whether there is a cross-level inter-

action between a cluster-level unmeasured confounder and a treatment variable.

We also compare our proposed methods to existing parametric-based methods,

especially propensity score weighting methods. Lastly, we demonstrate the pro-

posed methods in our example above about evaluating the ATE of taking an

eighth-grade algebra course on math achievement, and we conduct sensitivity

analyses about the number of groups and individual-level unmeasured confound-

ing where the latter is based on a recent proposal by Chernozhukov et al. (2021).

Notations, Estimand, and Assumptions

To formalize causal effects, we use the potential outcomes notation (Neyman,

1923; Rubin, 1974). Suppose that we have j ¼ 1, 2, . . . , J clusters, where each

cluster has 1, 2, . . . , nj individuals. We denote Zij 2 f0, 1g as a binary treatment

variable, where Zij ¼ 1 represents that individual i in cluster j received the

treatment and Zij ¼ 0 represents that individual i in cluster j did not receive the

treatment. We denote Yij(1) as the potential treatment outcome if individual ij

were treated (Zij ¼ 1), we denote Yij(0) as the potential control outcome if

individual ij were untreated (Zij ¼ 0), and we denote Yij as individual ij’s

observed outcome. Finally, we denote Xij, Wj, and Uj as individual ij’s

individual-level measured confounders, their cluster-level measured confoun-

ders, and their cluster-level unmeasured confounders, respectively.

The target estimand of interest in this article is the ATE. Under the potential

outcomes framework, it is defined as the average linear contrast between the

potential treatment outcome and the potential control outcome:

t ¼ E½Yijð1Þ � Yijð0Þ�:

For instance, in our empirical ECLS-K data, the ATE measures the overall

average effect of students taking an eighth-grade algebra course on math

achievement. The typical set of working assumptions to identify the ATE from

observational data (Hernan & Robins, 2020; Imbens & Rubin, 2015; Rubin,

1986) is

(A1) Stable Unit Treatment Value Assumption (SUTVA)

Yij ¼ ZijYijð1Þ þ ð1� ZijÞYijð0Þ;

(A2) Conditional Ignorability: Yijð1Þ; Yijð0Þ⊥ ZijjXij;Wj;Uj;
(A3) Positivity: 0 < eij < 1 where eij :¼ PðZij ¼ 1jXij;Wj;UjÞ;
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where Assumptions (A2) and (A3) are jointly referred to as strong ignorability

(Rosenbaum & Rubin, 1983). In words, Assumption (A1) means that individual

ij’s potential outcomes are independent of others’ treatment assignments and

there is only one version of the treatment. Assumption (A2) means that the

treatment status Zij is conditionally independent of the potential outcomes Yij(1)

and Yij(0) given all the confounders Xij,Wj, and Uj. Assumption (A3) means that

the probability of receiving treatment given the confounders, also known as the

propensity score eij, is strictly between zero and one.

The above identification strategy requires all the confounders to be available

in the observed data. However, even if Uj is unmeasured, we can still identify the

ATE from observed data by comparing the outcomes for treated units and those

for control units within each cluster and aggregating the within-cluster ATE

estimates across all clusters. Intuitively, this within-cluster strategy is valid

because cluster-level unmeasured confounders are no longer problematic when

focusing on individuals within each cluster j, and then, the unconfoundness

assumption (i.e., Assumption [A2]) would hold within each cluster (Arkhan-

gelsky & Imbens, 2019; Imai & Kim, 2019).

Existing Estimation Methods for Handling Cluster-Level Unmeasured

Confounding in Multilevel Observational Studies

In this section, we review popular estimators of the ATE in the presence of

cluster-level unmeasured confounding. We first summarize propensity score

weighting methods among various types of propensity score methods, notably

matching, stratification, and weighting (Arpino & Mealli, 2011; Kim & Seltzer,

2007; Leite et al., 2015; Li et al., 2013; Rickles & Seltzer, 2014; Schuler et al.,

2016; Thoemmes &West, 2011).1We then review recent approaches, one by Lee

et al. (2021) based on using treatment prevalence to remove cluster-level unmea-

sured confounding and another by Suk and Kang (2022a, 2022b) based on

designing robust ML methods under cluster-level unmeasured confounding.

Propensity Score Weighting Estimators

Broadly speaking, propensity score weighting estimators consist of two main

steps: first, estimating a propensity score and, second, using the estimated pro-

pensity score as sampling weights to estimate the ATE. For estimating the pro-

pensity score in multilevel observational studies, investigators typically use

either a within-cluster propensity score model or an across-cluster propensity

score model; a within-cluster propensity score model estimates the propensity

score within each cluster, and an across-cluster propensity score model uses a

single propensity score model with fixed effects or random effects for all the

clusters (Arpino & Mealli, 2011; Leite et al., 2015; Li et al., 2013; Schuler et al.,

2016). Within-cluster propensity score models are the most flexible but may not

be appropriate when (1) treatment selection processes are extremely strong (e.g.,
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retention, disability diagnosis), (2) cluster sizes are small, or (3) there are

clusters with only treated units or only control units (Kim & Seltzer, 2007; Leite

et al., 2015; Thoemmes & West, 2011). Across-cluster propensity score models

with cluster-specific fixed effects or random effects remedy these concerns from

within-cluster propensity score models but make additional assumptions about

the propensity score model. See Arpino and Mealli (2011), Li et al. (2013), and

Schuler et al. (2016) for more information on propensity score models with

random effects or fixed effects.

The next step is to estimate the ATE using the estimated propensity scores

above, and one of the most popular estimators is by inverse propensity weighting

(IPW). Specifically, an IPW estimator uses propensity scores as a form of

sampling weights in order to achieve covariate balance between the treatment

group and the control group. There are two main types of IPW estimators: the

marginal IPW estimator and the clustered IPW estimator. A marginal IPW

estimator, denoted as t̂MIPW, produces a weighted difference in the mean overall

outcome between treated units and control units and is formalized as follows

(Li et al., 2013):

t̂MIPW ¼

XJ

j¼1

Xnj

i¼1
ZijwijYij

XJ

j¼1

Xnj

i¼1
Zijwij

�

XJ

j¼1

Xnj

i¼1
ð1� ZijÞwijYij

XJ

j¼1

Xnj

i¼1
ð1� ZijÞwij

;wij ¼
Zij

eij
þ 1� Zij

ð1� eijÞ
: ð1Þ

In contrast, a clustered IPW estimator, denoted as t̂CIPW, produces a weighted

average of cluster-specific ATE estimates (Li et al., 2013):

t̂CIPW ¼

XJ

j¼1
wj t̂j

XJ

j¼1
wj

; t̂j ¼
Xnj

i¼1
ZijwijYij

Xnj

i¼1
Zijwij

�
Xnj

i¼1
ð1� ZijÞwijYij

Xnj

i¼1
ð1� ZijÞwij

;wj ¼
X

nj

i¼1

wij: ð2Þ

The main difference between the marginal IPW estimator and the clustered

IPW estimator is that the clustered IPW estimator with a correctly specified

propensity score model guarantees within-cluster covariate balance, whereas the

marginal IPW estimator does not. But the clustered IPW estimator requires each

cluster to have at least one treatment unit and one control unit, whereas the

marginal IPW estimator does not require such a condition. We provide formulas

for standard errors of IPW-based estimators in Supplemental Appendix A.

Within-Group Propensity Score Weighting Estimator

Recently, Lee et al. (2021) proposed a new approach to estimate the ATE in

the presence of cluster-level unmeasured confounders by grouping clusters with

similar proportions of treated individuals, that is, treatment prevalence. Specif-

ically, for each cluster j ¼ 1, . . . , J, let pj ¼
P

ij

Zij=nj denote the observed pro-

portion of treated individuals in cluster j. Lee et al. (2021) proposed to form J
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clusters into K (� J) groups based on their respective pjs and the partitioning

around medoids (Kaufman & Rousseeuw, 2009). Once clusters are nested under

groups, a propensity score is estimated within each group and a group-specific

ATE (denoted as tg for each group g ¼ 1, . . . , K) is estimated. These group-

specific ATEs are then aggregated to form an estimate of the overall ATE. LetGij

denotes individual ij’s group membership. Formally, the grouped IPW estimator

is written as follows:

t̂GIPW ¼

XK

g¼1
wg t̂g

XK

g¼1
wg

; t̂g ¼

X

ij:Gij¼g
ZijwijYij

X

ij:Gij¼g
Zijwij

�

X

ij:Gij¼g
ð1� ZijÞwijYij

X

ij:Gij¼g
ð1� ZijÞwij

;wg ¼
X

ij:Gij¼g

wij:

ð3Þ

Intuitively, this grouping strategy reduces bias arising from a cluster-level

unmeasured confounderUj because the observed treatment prevalence is affected

by both observed and unobserved covariates; in other words, it contains infor-

mation about the unobserved confounder Uj. Grouping clusters with similar

treatment prevalence likely leads to grouping clusters with similar values of Uj

if the selection models are homogeneous across clusters (or groups of clusters);

see He (2018, p. 13) for a formal result under some modeling assumptions. Also,

Lee et al. (2021) reveal that among the aforementioned IPW estimators, the

grouped IPW estimator is more robust to cluster-level unmeasured confounding

than the marginal IPW estimator and the grouped IPW estimator also performs

better than the clustered IPW estimator in particular when cluster sizes are small.

Lastly, Lee et al. (2021) numerically examined the impact of using four different

approaches to grouping: (1) random grouping, (2) grouping based on treatment

prevalence, (3) grouping based on measured covariates only, and (4) grouping

based on treatment prevalence and measured covariates. Through a simulation

study, they found that grouping clusters with similar treatment prevalence pro-

duces the smallest average bias of the ATE. See Lee et al. (2021) for details,

notably a theoretical justification of the grouped IPW estimator and simulation

results about different choices of grouping.

Robust ML Methods Under Cluster-Level Unmeasured Confounding

Recently, Suk and Kang (2022a, 2022b) studied how to design robust ML

methods under cluster-level unmeasured confounding. Briefly, Suk and Kang

(2022a) provide three ML-based estimators to estimate the ATE and the condi-

tional ATE in the presence of cluster-level unmeasured confounders. The three

proposed estimators—the proxy regression estimator, the double demeaning

estimator, and the double demeaning estimator with proxy regression—require

writing a new loss function that is insensitive to cluster-level unmeasured con-

founders and solving for the minimum of the loss function. Also, they are

designed based on an ensemble supervised learning algorithm like SuperLearner
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(van der Laan et al., 2007). While these proposed estimators hold promise for

eliminating the impact of cluster-level unmeasured confounding, their proposal

cannot be directly applied to retune or refit the existing ML methods to enhance

ML’s robustness.

In contrast, Suk and Kang (2022b) studied five modifications of causal forests

(Athey et al., 2019; Wager & Athey, 2018) to make it robust to cluster-level

unmeasured confounding. For brevity, their proposed modifications consist of

injecting propensity scores estimated from random effects or fixed effects logis-

tic regression, adding cluster dummy variables, and using cluster-demeaned

variables (without or with including cluster-demeaned propensity scores). Nota-

bly, they found that the modifications based on using multilevel propensity

scores estimated from fixed effects logistic regression or using cluster-

demeaned variables along with demeaned propensity scores display the most

promise for eliminating bias from cluster-level unmeasured confounders.

While these prior works provide effective tools to robustify ML methods for

causal inference, all their proposals are designed based only on an across-cluster

approach, which uses the entire sample from all the clusters to estimate the

propensity score (or the outcome model) across clusters. Examining different

options to designing robust ML methods rather than an across-cluster approach

has not been explored yet.

Our Proposal: Within-Group TMLE

In this section, we focus on one popular ML-based causal inference method,

TMLE generally combined with an ensemble of supervised learning algorithms.

We present a brief summary of TMLE and ensemble learning. We then present

our proposed modifications to TMLE to be robust to cluster-level unmeasured

confounding.

Vanilla TMLE

We briefly review the TMLE estimator. TMLE is a general framework for

constructing efficient and double-robust substitution estimators and is commonly

implemented with an ensemble learning algorithm (Balzer et al., 2019; Luque-

Fernandez et al., 2018; van der Laan & Rose, 2011). The estimator first requires

an initial estimator of the outcome regression, denoted as �Q
0ðZij;Xij;WjÞ ¼

EðYij jZij;Xij;WjÞ. Then, TMLE updates this initial outcome regression estimator

by incorporating a clever covariate, which has the form Hð1;Xij;WjÞ ¼ Zij
êðXij;WjÞ

and Hð0;Xij;WjÞ ¼ 1�Zij
1�êðXij;WjÞ, where eðx;wÞ ¼ P½Zij ¼ 1jXij ¼ x;Wj ¼ w� is

the propensity score. The “clever” form allows an efficient influence curve to

be solved, leading to consistent, asymptotically normal, doubly robust, and

(under some assumptions) efficient estimates of the treatment effect (Balzer
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et al., 2019; Luque-Fernandez et al., 2018). That is, TMLE is a double robust

estimator that produces a consistent estimate if either the outcome regression or

the propensity score is estimated consistently, but not necessarily both. In par-

ticular, TMLE leads to the most efficient estimator of the ATE if both the

outcome regression and propensity score are estimated consistently at reasonable

rates (Luque-Fernandez et al., 2018). Lastly, the updated outcome regression is

used to estimate the ATE, and the general formula for ATE is written as (Luque-

Fernandez et al., 2018):

t̂TMLE ¼ 1

N

X

ij

�

�Q
1ð1;Xij;WjÞ � �Q

1ð0;Xij;WjÞ
�

;

where N represents the total sample size, that is, N ¼ PJ
j¼1nj.

Importantly, TMLE can incorporate ML methods to estimate �Q
0ðZij;Xij;WjÞ

and eðx;wÞ (Porter et al., 2011; van der Laan et al., 2007). The aim of using ML

methods in TMLE is to avoid bias from model misspecification (van der Laan &

Rose, 2011). To do this, TMLE commonly uses an ensemble supervised learning

algorithm, called SuperLearner, that combines multiple ML algorithms (Polley

et al., 2021). That is, instead of choosing one particular algorithm, the Super-

Learner combines predictions from multiple ML methods, say parametric regres-

sion models, shrinkage models, and regression trees.2 Prior works by Porter et al.

(2011) and van der Laan et al. (2007) have shown that the weighted combination

will perform at least as well as the best individual ML algorithm in terms of the

cross-validated error.

Our Modifications for TMLE

We propose three modifications to make TMLE robust to cluster-level unmea-

sured confounding. The proposed modifications require constructing groups of

similar clusters based on treatment prevalence and using vanilla TMLE or

model-assisted TMLE to estimate the treatment effects within each group.

Vanilla TMLE comprises implementing the default TMLE as is, and model-

assisted TMLE comprises injecting multilevel propensity scores estimated from

fixed effects or random effects logistic regression models (see Table 1 for a

summary).

Our first proposed modification, denoted as GroupedTMLE, is to form groups

of similar clusters based on treatment prevalence and then implement TMLE

within each group g (g ¼ 1, 2, . . . , K). To create groups of clusters, we use K-

means clustering (Hartigan & Wong, 1979; MacQueen et al., 1967), one of the

most popular grouping/clustering methods in education and psychology. Briefly,

K-means clustering is an iterative algorithm that categorizes the data into K

distinct nonoverlapping groups. Its goal is to make the intragroup observations
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as similar as possible, and it does this by minimizing the following total group

variance (Hastie et al., 2009):

min
G;mg

X

K

g¼1

Ng

X

ij:Gij¼g

ðpij � mgÞ2;

where pij indicates individual ij’s treatment prevalence; mg indicates the mean of

group g (g ¼ 1, . . . , K); Ng indicates the sample size in group g. In our setting,

because our group assignment variable is cluster-specific (i.e., pij ¼ pi’j ¼ pj),

individuals in the same cluster will belong to the same group. Also, for each

group g¼ 1, . . . , K, we let Gg � 1; . . . ; Jf g denote the clusters that are in group
g; note that 1; . . . ; Jf g ¼ [K

g¼1Gg and Gg \ Gg0 ¼: for every g 6¼ g0. After

groups are determined, we implement TMLE within each group to estimate

group-specific ATEs and then estimate the ATE by aggregating them with the

weights of the group size Ng. Formally, the ATE obtained from within-group

TMLE is written as

t̂GTMLE ¼
X

K

g¼1

Ng

N
� t̂g; TMLE; t̂g; TMLE ¼ 1

Ng

X

ij:Gij¼g

�

�Q
1

gð1;Xij;WjÞ � �Q
1

gð0;Xij;WjÞ
�

:

ð4Þ

Our second modification, denoted as GroupedTMLEþRePS, is an extension

of the first modification using the within-group approach but additionally forces

TMLE to use random effects propensity scores within each group; this can be

implemented by using the parameter g1W in the tmle package. Specifically, we

fit the following within-group, random effects propensity score models as

logitðeijÞ ¼ mj þ ½Xij;Wj�T�g; mj*Nðm0g;s
2
gÞ; j 2 Gg: ð5Þ

TABLE 1.

Summary of Modifications in Targeted Maximum Likelihood Estimation (TMLE)

Modification Description

Parameter to

Modify in tmle

GroupedTMLE

þ Default

Implement vanilla TMLE within groups of similar

clusters

GroupedTMLE

þ RePS

Implement TMLE within groups of similar clusters

and add within-group propensity scores from

random effects logistic regression

g1W

GroupedTMLE

þ FePS

Implement TMLE within groups of similar clusters

and add within-group propensity scores from

fixed effects logistic regression

g1W

Note. tmle is an R package to implement the TMLE estimator.
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In Equation 5, the cluster-specific main effect mj requires two assumptions: (1)

mj is normally distributed with mean m0g and common variance s2
g and (2) mj is

independent of measured covariates Xij, Wj. The term �g indicates the effects

of measured individual-level covariates and measured cluster-level covariates

on the treatment in group g. Similarly, our third modification, denoted as

GroupedTMLEþFePS, is another extension of the first modification, where

we force TMLE to use fixed effects propensity scores within each group; this

can also be implemented by using the parameter g1W in the tmle package.

More specifically, within-group, fixed effects propensity score models are

written as

logitðeijÞ ¼ mj þ X
T

ij�g; j 2 Gg: ð6Þ

In Equation 6, the term mj is the cluster-level main effect term. The term �g

indicates the effects of measured individual-level covariates on the treatment in

group g.

The second and third modifications are motivated from (i) the study by Suk

and Kang (2022b) and (ii) the doubly robust property of the TMLE estimator.

Among five modifications by Suk and Kang (2022b), we use modifications

using random effects propensity scores and fixed effects propensity scores

because they are easy to implement. If we correctly specify fixed effects

or random effects propensity score models within each group and inject

them inside TMLE, it becomes robust to bias from cluster-level unmeasured

confounders and will yield a consistent estimator of the ATE. Also, as we can

see from the simulations in the following, even if we use partially misspecified

propensity scores inside TMLE within each group, the proposed within-

group TMLE still produces robust ATE estimates compared to their IPW

counterparts due to the double robustness and the flexible modeling of the out-

come regression Q.

We make some remarks about the proposed modifications. First, when the

number of groups is equal to one, it is equivalent to an across-cluster approach

where all the clusters are used at once to fit the propensity score model or the

outcome model. To reduce confusion in this article, when the number of groups is

larger than or equal to 2, we call the approach the within-group approach. Sec-

ond, other existing grouping/clustering methods can be used to classify J clusters

into K groups based on each cluster’s treatment prevalence such as partitioning

around medoids (Kaufman & Rousseeuw, 2009) or finite mixture models (Clogg,

1995; McLachlan & Peel, 2000). Third, the elbow method, the gap statistics

method (Tibshirani et al., 2001), and/or the covariate balance check within each

group would be used for choosing the number of groups in our context; see

Supplemental Appendix B for an illustration of the elbow method with our

simulation designs.
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Simulation Study

We conducted simulation studies to assess the performance of our purposed,

within-group TMLE methods and to compare our proposal with non-ML, IPW

methods. Table 2 summarizes the methods for estimating propensity scores and

the ATE in simulation studies. As for propensity scores, we use both across-

cluster propensity scores (K ¼ 1) and within-group propensity scores (K � 2),

and we estimate propensity scores with different estimation models: random

effects models, fixed effects models, and if applicable, default ensemble learning

algorithms. Also, we use four different ATE estimators: the marginal IPW esti-

mator in Equation 1, the clustered IPW estimator in Equation 2, the grouped IPW

estimator in Equation 3, and the grouped TMLE estimator in Equation 4.

Specifically, our simulation studies are categorized into three designs. Design

1 assumes no cross-level interaction between a cluster-level unmeasured con-

founder and the treatment variable (i.e., b1 ¼ 0 below). Design 2 assumes that

there exists a cross-level interaction between the two (i.e., b1 ¼ 2 below). Design

3 is based on Design 2 but uses a misspecified propensity score model by

excluding one threshold term. In particular, Design 3 considers a more realistic

scenario, in which a meticulous researcher, despite their efforts, was successful

in correctly specifying some parts of the propensity score model. For each

design, we used 15 different group numbers ranging from 1 to 15, and using

only one group is equivalent to using an across-cluster, ungrouped approach. As

mentioned above, to reduce confusion, when the number of groups is larger than

or equal to 2, the approach is referred to as a within-group approach.

For all the designs, we examined the performance of the proposed methods

in each design by repeating the simulation 500 times, and we evaluated the

TABLE 2.

Summary of Methods for Estimating Propensity Scores (PS) and the Average Treatment

Effect (ATE) in Simulation Studies

PS model Grouping

Across-cluster (K ¼ 1), within-group (K � 2)

Model type

Random effects logistic regression (Equation 5)

Fixed effects logistic regression (Equation 6)

Default ensemble learning algorithms a

ATE estimator Marginal inverse propensity weighting (IPW) estimator (Equation 1)

Clustered IPW estimator (Equation 2)

Grouped IPW estimator (Equation 3)

Grouped targeted maximum likelihood estimation (TMLE) estimator

(Equation 4)

aIs only used for the grouped TMLE estimator.
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performance of each estimator by measuring the absolute bias (|Bias|), standard

deviation (SD), and root mean squared error (RMSE) defined as follows:

jBiasj ¼ j 1

500

X

500

m¼1

ðt̂m � tÞj;

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

500� 1

X

500

m¼1

ðt̂m � t̂Þ2
v

u

u

t ;

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

500

X

500

m¼1

ðt̂m � tÞ2
v

u

u

t :

Here, t̂m, m ¼ 1, . . . , 500 is the mth estimate of the ATE from each replicate,

and t̂ is the sample mean of t̂m across 500 replicates. We only provide results

with the absolute bias in this article and include results with SD and RMSE in

Supplemental Appendixes C, D, and E.

Design 1: No Cross-Level Interaction

The data generating models are stated in the following and are based on

those from Lee et al. (2021), Li et al. (2013), Suk and Kang (2022b), and our

empirical data.

1. For each cluster j ¼ 1, 2, . . . , 170, generate the total number of individuals in each

cluster nj by drawing a number from a normal distribution with mean 15 and small

SD and rounding it to the nearest integer. We remark that this sample size condition

is comparable to that of our empirical ECLS-K data.

2. For each individual i ¼ 1, . . . , nj in cluster j, generate individual-level confoun-

ders, Xij ¼ (X1ij, X2ij), a cluster-level measured confounder Wj, and a cluster-level

unmeasured confounder Uj as follows:

X1ij*Uniformð�1; 1Þ; X2ij*Uniformð0; 1Þ;

Wj*Uniformð�1; 1Þ; Uj*Uniformð�2; 2Þ:

Note that we also use the data generating models, where all the covariates

have the same scale and follow the same distribution: Uniform (�1, 1). The

simulation results are provided in Supplemental Appendix F, and the result

patterns generally agree with those from the above data generating models.

3. Generate individual treatment status Zij from the logistic propensity score model as

follows:

logitðeijÞ ¼ �0:6 þ 0:3X1ijþ 0:3X2ijþ 0:3Wjþ 0:4IðX2ij< 0:3Þ þ 0:3Uj ;

Zij*BernoulliðeijÞ:
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The propensity score model contains a nonlinear, threshold term (i.e.,

I(X2ij < 0.3)).

4. Generate the potential outcomes Yij(1), Yij(0), and observed outcome Yij from the

regression model as follows:

YijðzÞ ¼ 70 þ 2X1ij þ 2X2ij þ 2Wj þ 2IðX2ij < 0:3Þ þ 2Uj þ
zð2 þ 2X2ij þ 2Wj þ b1Uj

3Þ þ rij;

Yij ¼ ZijYijð1Þ þ ð1� ZijÞYijð0Þ; rij*Nð0; 1Þ:

Here, rij is the random error for individual i in cluster j. The term b1 is a cross-

level interaction effect between Uj
3 and the treatment variable. The population

ATE, t, is E(2 þ 2X3ij þ 2Wj þ b1Uj
3) ¼ 3. In this design, we used b1 ¼ 0 to

reflect the absence of the cross-level interaction between the cluster-level unmea-

sured confounder and the treatment variable.

Comparison of different estimators. Figure 1 summarizes the absolute bias of the

ATE estimates across different numbers of groups in propensity score models,

where each panel shows the absolute bias from one of the four ATE estimators

FIGURE 1. Performance of average treatment effect estimates in Design 1. Propensity

scores (PS) used in estimators are within-group propensity scores from random effects

logistic regression (RePS), within-group propensity scores from fixed effects logistic

regression (FePS), or if applicable, within-group propensity scores from default ensemble

learning algorithms (Default). MarginalIPW¼ the marginal inverse propensity weighting

estimator; ClusteredIPW ¼ the clustered inverse propensity weighting estimator; Group-

edIPW ¼ the grouped inverse propensity weighting estimator; GroupedTMLE ¼ the

grouped targeted maximum likelihood estimation estimator.
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investigated; see numerical results in Supplemental Appendix C. Also,

parametric-based IPW estimators use either within-group propensity scores from

random effects logistic regression (denoted as RePS) or within-group propensity

scores from fixed effects logistic regression (denoted as FePS). The ML-based

TMLE estimator uses RePS, FePS, and within-group propensity scores from the

default ensemble learning algorithm (denoted as Default).

Among non-ML methods, we observe that the marginal IPW estimator with

within-group, fixed effects propensity scores (MarginalIPWþFePS) produces

little bias and performs better than the marginal IPW estimator with within-

group, random effects propensity scores (MarginalIPWþRePS). But as the

number of groups increases, MarginalIPWþRePS’s performance greatly

improves and is similar to that of MarginalIPWþFePS. We also observe that

the absolute bias from the marginal IPW estimators is somewhat increased as the

number of groups increases from 10 to 15. This may be because students coming

from K � 10 different groups but with the identical propensity scores may have

different covariates and using them together inside the marginal IPW estimator

might not yield covariate balance, either in the entire sample or within each

cluster.

In contrast, the performance of the clustered IPW estimators (ClusteredIPWþ
RePS and ClusteredIPWþFePS) is insensitive to propensity score estimation

methods and the number of groups, and the clustered estimators yield little bias.

This is expected given that the clustered IPW estimators aggregate cluster-

specific ATE estimates that are robust to cluster-level unmeasured confounding.

Regarding the grouped IPW estimators, the grouped estimators with two differ-

ent types of propensity scores (GroupedIPWþRePS and GroupedIPWþFePS)

perform no worse than the corresponding marginal estimators (MarginalIPWþ
RePS and MarginalIPWþFePS). In particular, the grouped IPW estimators

produce almost zero bias in the ATE estimates when we use more than 10 groups,

compared to the marginal IPW estimators. This implies that when using within-

group propensity scores, it is desirable to estimate the ATE by aggregating

group-specific ATEs, not directly estimating the ATE across clusters.

Among ML methods, the grouped TMLE estimator with default ensemble

learning algorithms (GroupedTMLEþDefault) shows improved performance as

the number of groups increases. This obviously implies that using the within-

group approach makes the TMLE estimator more robust to cluster-level unmea-

sured confounding. When we use the grouped TMLE with our additional

modifications using either random effects propensity scores or fixed effects

propensity scores (GroupedTMLEþRePS and GroupedTMLEþFePS), we also

observe that similar to non-ML methods, GroupedTMLEþFePS performs

better than GroupedTMLEþRePS, but both modified TMLE estimators show

enhanced performance compared to that using default ensemble learning algo-

rithms, that is, GroupedTMLEþDefault. Moreover, additional benefits from

using multilevel propensity scores inside TMLE are larger when the number
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of groups K is small, and in particular, using TMLE with fixed effects propen-

sity scores under K ¼ 1 shows the largest bias reduction compared to TMLE

with default ensemble learning algorithms. When we use a larger number of

groups, there are minor or subtle benefits from injecting fixed effects propen-

sity scores or random effects propensity scores. These results indicate that

using the proposed within-group approach is a primary contributing factor that

minimizes bias in ATE estimates from cluster-level unmeasured confounding

and using the additional modification with fixed effects propensity scores on

top of that is a safer way to eliminate the bias. We remark that we observe

similar performance patterns in terms of RMSE; see Supplemental Appendix C

for details.

Comparison of different grouping options. In this section, we used different

grouping options, where we changed our inputs inside K-means clustering for

within-group TMLE methods. We used grouping based on treatment prevalence

as our baseline, and we considered three additional options: (1) random grouping,

(2) grouping based on measured cluster-level covariates, and (3) grouping based

on treatment prevalence and measured cluster-level covariates. Here, measured

cluster-level covariates contain not only measured covariates naturally shared

among individuals (i.e.,Wj) but also cluster-level means of measured individual-

level covariates (i.e., �Xj). Figure 2 summarizes the absolute bias of the ATE

estimates from the proposed grouped TMLE estimator with different grouping

FIGURE 2. Performance of average treatment effect estimates from the grouped targeted

maximum likelihood estimation estimator in Design 1 with different grouping options.

Propensity scores (PS) used in the estimator are within-group propensity scores from

random effects logistic regression (RePS), within-group propensity scores from fixed

effects logistic regression (FePS), and within-group propensity scores from default

ensemble learning algorithms (Default).
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options, and the results of our baseline are obtained from the far right of Figure 1.

As discussed in “Within-Group Propensity Score Weighting Estimator” section,

prior work by Lee et al. (2021) has shown that grouping on treatment prevalence

is no worse than other grouping approaches. Our numerical experiments confirm

that grouping based on treatment prevalence performs better than three other

grouping options, and thus, we will use the grouping approach for the rest of the

simulation study. We remark that the performance of grouping based on mea-

sured covariates is close to that of random grouping, and this unsuccessful

performance is explained by the fact that the covariate distributions are the same

between the treatment units and control units under our data generating models.

Design 2: Cross-Level Interaction

Design 2 used the same data generating models as Design 1 except that we

used b1 ¼ 2, where we assume the presence of a cross-level interaction between

the cluster-level unmeasured confounder and the treatment variable. We sum-

marize the absolute bias of the ATE estimates in Figure 3. To have the same

range as Figure 1, Figure 3 only shows the absolute bias ranging from 0 to 0.62

and Supplemental Appendix D contains the numerical results. As expected, the

absolute bias is amplified in general compared to Design 1, and yet, we observe

FIGURE 3. Performance of average treatment effect estimates in Design 2. Propensity

scores (PS) used in estimators are within-group propensity scores from random effects

logistic regression (RePS), within-group propensity scores from fixed effects logistic

regression (FePS), or if applicable, within-group propensity scores from default ensemble

learning algorithms (Default). All conditions for which absolute bias exceeded 0.62 were

omitted to compare the performance with that from Design 1. MarginalIPW ¼ the mar-

ginal inverse propensity weighting estimator; ClusteredIPW ¼ the clustered inverse

propensity weighting estimator; GroupedIPW ¼ the grouped inverse propensity weight-

ing estimator; GroupedTMLE ¼ the grouped targeted maximum likelihood estimation

estimator.
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the common patterns of the estimators investigated between the two designs.

Similar to Design 1, the performance of the estimators using fixed effects pro-

pensity scores is better than that of the corresponding estimators using random

effects propensity scores. When the number of groups K is relatively larger (say,

more than 10), the marginal IPW estimators yield increasing bias in the ATE

estimates, similar to Design 1. In contrast, the other three estimators—clustered

IPW, grouped IPW, and grouped TMLE—produce more robust estimates by

forming multiple groups of similar clusters and using within-group propensity

scores. In particular, a monotonic decrease in bias from the grouped TMLE

estimators is observed with an increase in the number of groups. But unlike

Design 1, the clustered IPW estimators (ClusteredIPWþRePS and Clustered

IPWþFePS) no longer have flat patterns and we see relative performance dif-

ferences across propensity score methods and/or the number of groups; we

observe relatively larger bias from ClusteredIPWþRePS when the ATE esti-

mates are aggregated by using propensity scores with K ¼ 1 or K ¼ 2. This

indicates that in the presence of the cross-level interaction, the clustered estima-

tor with random effects propensity scores is no longer robust when coupled with

the propensity score model that is ungrouped (K ¼ 1) or grouped with a few

numbers of groups (e.g., K ¼ 2). This observation is partly because the clustered

estimator itself is not robust to bias from cross-level interaction. It may also result

from the fact that impact of using random effects models that are inherently

misspecified under our data generating models (Uj * Uniform(�2, 2)) is the

largest with K ¼ 1 or K ¼ 2.

Design 3: Cross-Level Interaction and Partially Misspecified Propensity

Score Models

In this design, we used the same design as Design 2, but we omitted a thresh-

old term when fitting a multilevel propensity score model with either random

effects or fixed effects. As mentioned above, we included partially misspecified

multilevel propensity scores inside our modified TMLE. This design considers a

realistic situation, in which a meticulous researcher, despite their best efforts,

may not be able to specify the perfectly correct propensity score model. Figure 4

summarizes the absolute bias of the ATE estimates. Similar to Figure 3, Figure 4

only shows the absolute bias ranging from 0 to 0.62, and Supplemental Appendix

E includes the numerical results. As predicted, all the non-ML methods—the

marginal IPW, the clustered IPW, and the grouped IPW estimators—yield more

biased estimates than those from the corresponding estimators in Design 2; the

resulting ATE estimates have nonnegligible bias arising from using partially

misspecified propensity scores, regardless of the number of groups formed.

In contrast, injecting partially misspecified propensity scores into our ML-

based methods, the grouped TMLE estimators, is unlikely to seriously weaken

their effectiveness with respect to the absolute bias, compared to the performance
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of the corresponding grouped TMLE estimators in Design 2. Most importantly,

the grouped TMLE estimators are much more robust than all non-ML methods

with the same degree of misspecification. That is, TMLE’s flexible modeling and

double robustness potentially alleviate the impact of misspecifying propensity

scores in TMLE. We remark that the overall patterns of RMSE lines are similar

to those of the bias lines, though we see more fluctuation with respect to RMSE;

see Supplemental Appendix E for details.

Overall, across different simulation designs, the proposed within-group

TMLE method with fixed effects propensity scores is effective in reducing bias

from cluster-level unmeasured confounders and this bias reduction is most pro-

nounced when there are eight or more groups. We summarize takeaways from the

simulation results in the following:

1. Based on the performance of GroupedTMLEþDefault, creating groups of clusters

based on treatment prevalence shows great promise in training TMLE to produce

more robust estimates to cluster-level unmeasured confounding.

2. Adding fixed effects propensity scores to the grouped TMLE estimator (i.e.,

GroupedTMLEþFePS) performs better than adding random effects propensity

scores (i.e., GroupedTMLEþRePS).

FIGURE 4. Performance of average treatment effect estimates in Design 3. Propensity

scores (PS) used in estimators are within-group propensity scores from random effects

logistic regression (RePS), within-group propensity scores from fixed effects logistic

regression (FePS). All conditions for which absolute bias exceeded 0.62 were omitted

to compare the performance with that from Design 1. MarginalIPW ¼ the marginal

inverse propensity weighting estimator; ClusteredIPW ¼ the clustered inverse propensity

weighting estimator; GroupedIPW¼ the grouped inverse propensity weighting estimator;

GroupedTMLE ¼ the grouped targeted maximum likelihood estimation estimator.
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3. The bias reduction from injecting multilevel propensity scores is larger when only

a few numbers of groups are constructed. With more than six groups, the addi-

tional benefit declines.

4. Even if multilevel propensity scores are partially misspecified, training TMLE

with them may potentially alleviate bias from cluster-level unmeasured confound-

ing, in particular compared to non-ML IPW estimators with the same degree of

misspecification.

Real Data Study

Data and Variables

We demonstrate our proposed within-group ML methods by studying the

effects of taking an eighth-grade algebra course with the ECLS-K data. ECLS-

K is a national longitudinal study to investigate the school achievement and

student experiences from kindergarten to middle school. It is sponsored by the

National Center for Education Statistics. ECLS-K collected a nationally repre-

sentative sample of kindergarteners in the fall of 1998 from a dual-frame multi-

stage sampling design and followed them from the fall of 1998 to the spring

of 2007 when most were in eighth grade (Walston & McCarroll, 2010). For

more information about the ECLS-K study and data, see the ECLS-K website:

http://nces.ed.gov/ecls/kindergarten.asp. Following the data analysis procedure

used in Suk and Kang (2022b), we used both the fifth-grade assessment data in

the spring of 2004 and the eighth-grade assessment data in the spring of 2007.

The 2004 data were used to obtain pretreatment covariates (e.g., prior achieve-

ment scores, gender) that affect the treatment mechanism and the outcome pro-

cess based on prior works about algebra courses in middle school (Rickles, 2013;

Rickles & Seltzer, 2014; Suk & Kang, 2022b; Walston & McCarroll, 2010). We

used the 2007 data to obtain the treatment and outcome variables.

Our data analysis used a binary treatment variable, a continuous outcome

variable, and 11 pretreatment covariates. Specifically, the treatment variable

represents whether a student took an eighth-grade algebra course in the spring

of 2007, and it was binary where 1 denotes that they took an algebra or higher

level course and 0 denotes that they took a lower level math course. The outcome

variable was students’ math achievement scores in the spring of 2007. We

assume that math achievement scores for eighth graders in the spring of 2007

are a posttreatment variable for the following two reasons; first, ECLS-K data

collection in the spring of 2007 was conducted at least two months after the

beginning of the Spring semester (Tourangeau et al., 2009), and second, the

eighth grade algebra course is usually a yearlong course, beginning in the Fall

semester. As for pretreatment covariates, eight of these 11 covariates were at the

student level and contain prior math achievement scores, parents’ expectation of

their child’s highest level of education, gender, race, socioeconomic status, pov-

erty level, mother’s educational level, and family type (i.e., living with one
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parent or two parents). The rest of the covariates were at the school level and

contain school type (i.e., public vs. private), school location (i.e., urban, suburb,

small town), and region (i.e., West, Northeast, South, Midwest). We made the

outcome and all continuous covariates standardized with a mean of 0 and an SD

of 1. In total, the analytic sample consisted of 2,581 students from 170 schools

with a mean school size of 15.8. The mean and the SD of the unstandardized,

observed math scores are 145.78 and 19.67, respectively.

We ran the proposed within-group TMLE methods to estimate the ATE of

students taking an eighth algebra course on math achievement. As a comparison,

we used the marginal IPW, clustered IPW, and grouped IPW estimators, all with

within-group propensity scores. The eight groups (i.e., K ¼ 8) were chosen

because of the simulation results above and nonviolation of the positivity

assumption. Table 3 provides the descriptive statistics of the eight groups. The

smallest group mean of the treatment prevalence is 0.22, whereas the largest

group mean is 0.78. Each group has at least 10 schools (i.e., clusters) and more

than 140 students (i.e., units).

Finally, we conducted sensitivity analyses with respect to the number of

groups and individual-level unmeasured confounding. First, we checked the

sensitivity of our conclusions by changing the number of groups, in particular

to K ¼ 1 and K ¼ 7. We chose K ¼ 1 because it would lead to the largest

difference if the cluster-level unmeasured confounders were present, and we

chose K ¼ 7 because it is the second largest number that satisfies the positivity

assumption. Second, we conducted a sensitivity analysis to assess whether our

conclusions about the ATE would be altered when an individual-level unmea-

sured confounder is assumed to be present. For the sensitivity analysis, we used a

nonparametric approach based on partial R2 (Pearson’s correlation ratio) from

Chernozhukov et al. (2021), where the bounds on the size of the bias are deter-

mined by the residualized outcome, residualized treatment, and plausible partial

TABLE 3.

Descriptive Statistics of the Groups

Treatment Prevalence Group Size

Group Mean Min Max # Students # Schools

1 .22 .16 .25 231 14

2 .30 .26 .33 488 31

3 .38 .35 .41 293 18

4 .44 .42 .47 445 28

5 .53 .50 .57 382 27

6 .62 .58 .65 343 24

7 .70 .67 .73 148 12

8 .78 .75 .82 251 16
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R2 of the unobserved confounder with the outcome and the treatment. Using the

estimated standard errors (or confidence intervals) of the original estimates, we

report the confidence intervals of the adjusted estimates in the presence of such

an individual-level unmeasured confounder.

Regarding software, we used the built-in R function kmeans for grouping the

treatment prevalence, the tmle package (Gruber & van der Laan, 2012) for the

TMLE estimator, and the lme4 package (Bates et al., 2015) for random effects

logistic regression. Data and R codes are available in Supplementary Materials

and the first author’s GitHub repository (https://github.com/youmisuk/

groupedTMLE).

Results

Table 4 provides the ATE estimates of taking an eighth-grade algebra course

using the proposed within-group TMLE methods as well as non-ML-based IPW

methods. The unadjusted mean difference in math scores between students

who took algebra and those who did not, often referred to as the prima facie

effect, is 0.676 (not shown in Table 4). After applying different estimators with

within-group propensity scores, the adjusted estimates are smaller than the unad-

justed estimate, but most of them are still significantly positive. See Supplemen-

tal Appendix G for covariate balance, and we achieved acceptable covariate

balance between the treatment group and control group under each type of

propensity scores.

Among non-ML methods (i.e., MarginalIPW, ClusteredIPW, and Grouped

IPW), we observe that ATE estimates based on within-group, random effects

TABLE 4.

Average Treatment Effect (ATE) Estimates of Taking an Eighth-Grade Algebra Course on

Math Achievement

ATE Estimator
MarginalIPW ClusteredIPW GroupedIPW GroupedTMLE

PS model RePS FePS RePS FePS RePS FePS Default RePS FePS

Estimate .107 .064 .223 .098 .103 .073 .099 .096 .092

(Standard error) (.050) (.066) (.046) (.054) (.054) (.070) (.032) (.036) (.038)

Note. Propensity scores (PS) used in estimators are within-group propensity scores from random

effects logistic regression (RePS), within-group propensity scores from fixed effects logistic

regression (FePS), or if applicable, within-group propensity scores from default ensemble learning

algorithms (Default). SEs for GroupedTMLE were estimated using cluster bootstrap sampling, where

we resample the schools with 6,000 replicates. MarginalIPW ¼ the marginal inverse propensity

weighting estimator; ClusteredIPW ¼ the clustered inverse propensity weighting estimator;

GroupedIPW ¼ the grouped inverse propensity weighting estimator; GroupedTMLE ¼ the grouped

targeted maximum likelihood estimation estimator.
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propensity scores were larger than the corresponding estimates based on within-

group, fixed effects propensity scores. The grouped IPWestimator produced similar

estimates to those from the marginal estimator in the ECLS-K data. As shown in

simulations above,ATEestimates fromnon-ML IPWestimatorsmaynot be reliable

if the propensity score model is misspecified. In contrast, the ML-based TMLE

estimator (i.e., GroupedTMLE) potentially produces more robust ATE estimates

when we suspect model misspecification, and we see that there were very small

variations in ATE estimates from the proposed grouped TMLE estimator across

different types of propensity scores. Regarding standard errors, the estimates from

fixed effects propensity scores have slightly larger standard errors than those from

random effects propensity scores. This is expected because the fixed effects models

yield larger variability mainly due to the small cluster size. Based on our simulation

results and “Our Modifications for TMLE” section, we assume that ATE estimates

from the grouped TMLE estimator with within-group propensity scores are more

reliable, robust estimates to bias from cluster-level unmeasured confounding and

modelmisspecification.Overall, we conclude that there is a positive effect of taking

an eighth-grade algebra course on students’ math achievement scores.

Next, we conducted a sensitivity analysis regarding different numbers of

groups when we used the most extreme Ks (here, K ¼ 1 and K ¼ 7), and we

provide the results in Table 5. Under ungrouped propensity scores (i.e., K ¼ 1),

all the ATE estimates were slightly larger than the respective estimates in Table 4,

though the differences are not large enough to be statistically significant. Note

that under K ¼ 1, the marginal IPW and grouped IPW estimators produce iden-

tical results. When we formed seven groups (K ¼ 7), the estimates from IPW-

based estimators with random effects propensity scores and grouped TMLE

estimators were very similar to those in Table 4. The estimates from IPW-

based estimators with fixed effects propensity scores were somewhat different

from those in Table 4, and these differences may be due to the remaining imbal-

ance in the covariates with fixed effects propensity scores under K ¼ 7; see

Supplemental Appendix H for details. Overall, our conclusions about the ATE

have not been altered by forming seven groups.

Finally, we examined whether our conclusions about the ATE would be

changed by biases from the individual-level unmeasured confounder Uij. For the

sensitivity analysis, we focus on ATE estimates from within-group TMLE meth-

ods that produce more robust ATE estimates from cluster-level unmeasured

confounding and model misspecification. Following Chernozhukov et al.

(2021), we determined bounds on the target parameter ty:

t
y
+ :¼ t+

ffiffiffiffiffiffi

B2
p

; B2 ¼ S2 h
2
1h

2
2

1� h
2
2

� �

; S2
:¼ E ~Y

2

E ~Z
2
;

where ~Y ij :¼ Yij � E½Yij jZij;Xij;Wj� is the residualized outcome using the

treatment and observed covariates, and ~Z ij :¼ Zij � E½ZijjXij;Wj� is the

Suk

83



T
A
B
L
E
5
.

R
es
u
lt
s
o
f
th
e
S
en
si
ti
vi
ty

A
n
a
ly
si
s
R
eg
a
rd
in
g
th
e
N
u
m
b
er

o
f
G
ro
u
p
s

A
T
E
E
st
im

at
o
r

M
ar
g
in
al
IP
W

C
lu
st
er
ed
IP
W

G
ro
u
p
ed
IP
W

G
ro
u
p
ed
T
M
L
E

P
S
M
o
d
el

R
eP
S

F
eP
S

R
eP
S

F
eP
S

R
eP
S

F
eP
S

D
ef
au
lt

R
eP
S

F
eP
S

K
¼

1

E
st
im

at
e

0
.1
3
0

0
.0
6
9

0
.2
2
7

0
.1
1
3

0
.1
3
0

0
.0
6
9

0
.1
1
3

0
.1
1
1

0
.1
0
8

(S
ta
n
d
ar
d
er
ro
r)

(0
.0
4
4
)

(0
.0
5
3
)

(0
.0
4
4
)

(0
.0
4
9
)

(0
.0
4
4
)

(0
.0
5
3
)

(0
.0
3
0
)

(0
.0
3
1
)

(0
.0
3
6
)

K
¼

7

E
st
im

at
e

0
.1
1
0

0
.0
1
6

0
.2
2
1

0
.0
6
4

0
.1
0
6

0
.0
3
5

0
.1
1
1

0
.1
0
5

0
.1
1
2

(S
ta
n
d
ar
d
er
ro
r)

(0
.0
5
2
)

(0
.0
9
3
)

(0
.0
4
7
)

(0
.0
6
7
)

(0
.0
5
6
)

(0
.0
9
2
)

(0
.0
3
2
)

(0
.0
3
6
)

(0
.0
3
8
)

N
o
te
.
P
ro
p
en
si
ty

sc
o
re
s
(P
S
)
u
se
d
in

es
ti
m
at
o
rs

ar
e
w
it
h
in
-g
ro
u
p
p
ro
p
en
si
ty

sc
o
re
s
fr
o
m

ra
n
d
o
m

ef
fe
ct
s
lo
g
is
ti
c
re
g
re
ss
io
n
(R
eP
S
),
w
it
h
in
-g
ro
u
p
p
ro
p
en
si
ty

sc
o
re
s
fr
o
m

fi
x
ed

ef
fe
ct
s
lo
g
is
ti
c
re
g
re
ss
io
n
(F
eP
S
),
o
r
if
ap
p
li
ca
b
le
,
w
it
h
in
-g
ro
u
p
p
ro
p
en
si
ty

sc
o
re
s
fr
o
m

d
ef
au
lt
en
se
m
b
le

le
ar
n
in
g
al
g
o
ri
th
m
s
(D

ef
au
lt
).

S
ta
n
d
ar
d
er
ro
rs
fo
r
G
ro
u
p
ed
T
M
L
E
w
er
e
es
ti
m
at
ed

u
si
n
g
cl
u
st
er

b
o
o
ts
tr
ap

sa
m
p
li
n
g
,
w
h
er
e
w
e
re
sa
m
p
le
th
e
sc
h
o
o
ls
w
it
h
6
,0
0
0
re
p
li
ca
te
s.
M
ar
g
in
al
IP
W

¼
th
e

m
ar
g
in
al

in
v
er
se

p
ro
p
en
si
ty

w
ei
g
h
ti
n
g
es
ti
m
at
o
r;
C
lu
st
er
ed
IP
W

¼
th
e
cl
u
st
er
ed

in
v
er
se

p
ro
p
en
si
ty

w
ei
g
h
ti
n
g
es
ti
m
at
o
r;
G
ro
u
p
ed
IP
W

¼
th
e
g
ro
u
p
ed

in
v
er
se

p
ro
p
en
si
ty

w
ei
g
h
ti
n
g
es
ti
m
at
o
r;
G
ro
u
p
ed
T
M
L
E
¼

th
e
g
ro
u
p
ed

ta
rg
et
ed

m
ax
im

u
m

li
k
el
ih
o
o
d
es
ti
m
at
io
n
es
ti
m
at
o
r.

84



residualized treatment using only the observed covariates. The term h
2
1 indicates

the explanatory power that the unmeasured confounder Uij has in explaining the

outcome given the treatment and observed covariates, and the term h
2
2 indicates

the explanatory power that the unmeasured confounder Uij has in explaining the

treatment given the observed covariates. We assume that the unobserved con-

founder Uij can explain at most 5% of the variation of the treatment and of the

outcome, after controlling for the observed covariates and/or the treatment. This

implies h2
1 ¼ .05 and h2

2 ¼ .05, and the corresponding squared bias is: B2 ¼ S2

ð:05Þð:05Þ
1�:05 ¼ S2 � 0.0026. After estimating S2 for each method, we obtained the

following estimates of B: 0.076 for GroupedTMLEþDefault, 0.074 for Grouped

TMLEþRePS, and 0.076 for GroupedTMLEþFePS.

Using the above sensitivity analysis, our adjusted 95% confidence intervals

for the ATE with the positive bias (i.e., þB) are: [0.165, 0.290] for Grouped

TMLEþDefault, [0.124, 0.265] for GroupedTMLEþRePS, and [0.128,

0.274] for GroupedTMLEþFePS.3 All the confidence intervals did not contain

0, and thus, we did not alter our conclusions about the effect estimates. We also

computed the adjusted 95% confidence intervals with the negative bias (i.e.,�B),

and they are: [0.014, 0.138] for GroupedTMLEþDefault [�0.024, 0.118] for

GroupedTMLEþRePS, and [�0.024, 0.123] for GroupedTMLEþFePS.

Confidence intervals with TMLE using multilevel propensity scores contained

0, and thus, we would alter our conclusions about the effect estimates if the

negative bias were present. From the results of the sensitivity analysis, we con-

clude that the ATE estimates from the grouped TMLE estimator with multilevel

propensity scores would not be robust if an individual-level unmeasured con-

founder exhibited negative bias.

Conclusions

The goal of this article was to provide a within-group approach to enhance the

performance of ensemble ML methods for causal inference, particularly, TMLE,

in multilevel observational data under cluster-level unmeasured confounding.

We proposed three different modifications for TMLE, so that it can be more

robust to cluster-level unmeasured confounding, and we compared the perfor-

mance of each modified TMLE method with that of the marginal IPW estimator,

the clustered IPW estimator, and the grouped IPW estimator. Through our simu-

lation studies, we find evidence to support the effectiveness of our proposal.

Training vanilla TMLE based on a within-group approach (i.e., GroupedTMLE

þDefault) makes TMLE robust to cluster-level unmeasured confounding, and in

particular, when the number of groups is more than or equal to 8, most of the bias

is eliminated. Using model-assisted TMLE using within group, multilevel pro-

pensity scores also helps remove bias, and the modification using fixed effects

logistic regression (i.e., GroupedTMLEþFePS) has the best potential for
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reducing bias from cluster-level unmeasured confounders. Additionally, unlike

parametric propensity score methods, our ML-based proposal has the potential

to increase robustness under model misspecification. Lastly, we demonstrated

the use of our proposed ML methods on the ECLS-K data, and we find that

there is a positive effect of taking an eighth-grade algebra course on math

achievement scores and our ATE estimates from within-group TMLE methods

with multilevel propensity scores may be sensitive to individual-level unmea-

sured confounding.

There are some limitations of this article. First, we did not explore how to

determine the appropriate number of groups for the within-group TMLE method.

Researchers can use methods such as the Elbow method or gap statistics method,

as well as examining within-group covariate balance to determine the optimal

number of groups. While we recommend using eight or more groups based on our

setting, the ideal number of groups will depend on various design factors such as

the number of clusters and the impact of unmeasured cluster-level confounders

on the outcome model. As this article primarily focuses on introducing within-

group ML methods, further investigation into this issue will be explored in future

research. Second, our additional modifications were based on using a simple

input tuning parameter inside TMLE (i.e., g1W), and we did not utilize other

tuning parameters that may affect the performance of TMLE in clustered set-

tings, such as a different set of ensemble learning algorithms and the use of an

optional subject identifier. Third, we did not consider comprehensive simulation

parameters that characterize multilevel observational data, such as the sample

size and different clustering structure. We only used a fixed total sample size of

about 2,550 (170 clusters with a mean cluster size of 15) in the simulations,

which was comparable to the sample size of our ECLS-K data. We also did not

examine more complex cluster structure beyond two level data, such as three-

level data and cross-classified data. Fourth, we assumed SUTVA in multilevel

data, where the treatment is hypothesized to not have spillover/peer effects

through interference within clusters.

Despite these limitations, we believe that our modifications of within-group

TMLE can enhance the performance of original TMLE in multilevel observa-

tional studies faced with cluster-level unmeasured confounding and our main

ideas can be easily applied to other ML-based casual inference methods.

Although no amount of statistical methodology can remove all the omitted vari-

able bias, we believe developing robust methods helps practitioners narrow down

the sources of the omitted variable bias and have a more focused set of questions

about evaluating whether their effect estimates are plausibly causal or not. We

hope that the findings of this article can serve as useful guidelines for researchers

who like to fine-tune ML-based causal inference methods or apply the robust

machinery to multilevel observational data in order to assess causal effects of

programs or policies in education and the social sciences.
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Notes

1. Propensity score matching is one of the most frequently applied class

of propensity score methods. It creates matched sets of treated and control

units with similar values of the propensity scores, and it is commonly used

to estimate the average treatment effect (ATE) on the treated ðATTÞ:
E½Yijð1Þ � Yijð0Þ jZij ¼ 1�. Two popular methods for creating matched sets

are greedy matching and optimal matching. In contrast, propensity score

stratification partitions the sample into nonoverlapping strata based on the

quantiles of the estimated propensity scores and estimates the ATE or ATT by

aggregating the stratum-specific treatment effects with some weights (Chang

& Stuart, 2022). See Chang and Stuart (2022) and Steiner and Cook (2013) for

more information on different types of propensity score methods.

2. The default implementation of targeted maximum likelihood estimation

(TMLE) in the R package tmle Version 1.5.0.2 uses three SuperLearner

(SL) algorithms for fitting the outcome regression and propensity score,

respectively. The default algorithms for the outcome regression are “SL.glm”

(generalized linear regression using Z, X, and W as predictors), “tmle.SL

.dbarts2” (discrete Bayesian additive regression trees with the number of prior

standard deviations (SDs) of 2), and “SL.glmnet” (elastic net regression,

including lasso and ridge). The default algorithms for the propensity score

are “SL.glm”(logistic regression using Z, X, and W as predictors), “tmle.SL

.dbarts.k.5” (discrete Bayesian additive regression trees with the number of

prior SDs of 0.5), and “SL.gam” (generalized additive models).

3. For within-group TMLE methods, the original 95% confidence intervals of

ATE from cluster bootstrap sampling are: [0.090, 0.214] for GroupedTMLEþ
Default, [0.050, 0.192] for GroupedTMLEþRePS, and [0.052, 0.198] for

GroupedTMLEþFePS. We added the corresponding bias estimate to the con-

fidence interval for each TMLE method.
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