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Machine learning (ML) methods for causal inference have gained popularity
due to their flexibility to predict the outcome model and the propensity score. In
this article, we provide a within-group approach for ML-based causal inference
methods in order to robustly estimate average treatment effects in multilevel
studies when there is cluster-level unmeasured confounding. We focus on one
particular ML-based causal inference method based on the targeted maximum
likelihood estimation (TMLE) with an ensemble learner called SuperLearner.
Through our simulation studies, we observe that training TMLE within groups
of similar clusters helps remove bias from cluster-level unmeasured con-
founders. Also, using within-group propensity scores estimated from fixed
effects logistic regression increases the robustness of the proposed within-group
TMLE method. Even if the propensity scores are partially misspecified, the
within-group TMLE still produces robust ATE estimates due to double
robustness with flexible modeling, unlike parametric-based inverse propensity
weighting methods. We demonstrate our proposed methods and conduct sen-
sitivity analyses against the number of groups and individual-level unmeasured
confounding to evaluate the effect of taking an eighth-grade algebra course on
math achievement in the Early Childhood Longitudinal Study.

Keywords: causal inference; machine learning methods; unmeasured variables; omitted
variable bias; cluster-level unmeasured confounders, fixed effects models; targeted max-
imum likelihood estimation

Over the past decade, there has been a growing interest in using machine
learning (ML) methods to estimate the average treatment effect (ATE) and the
conditional ATE due to their flexible and near-automatic modeling (Athey &
Imbens, 2016; Dorie et al., 2019; Hill, 2011; Imai & Ratkovic, 2013; Kiinzel
et al., 2019; Su et al., 2009; Suk, Kang, et al., 2021; Wager & Athey, 2018).
Almost all the ML-based causal inference methods have been designed in a
single-level data setting (i.e., independent and identically distributed [i.i.d.] set-
ting) and under the assumption of no unmeasured confounding. But there are
limited works on how to utilize ML methods in multilevel data settings to
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estimate causal effects (Athey & Wager, 2019; Suk & Kang, 2022a, 2022b; Suk,
Kang, et al., 2021). The use of ML methods in multilevel data poses new chal-
lenges, notably that the data are not i.i.d. and that there is a specific type of
unmeasured confounders called cluster-level unmeasured confounders, which
may bias causal estimates. The overall goal of this article is to design ML-
based causal inference methods that are insensitive to cluster-level unmeasured
confounding while maintaining ML methods’ strengths on flexible and near-
automatic modeling. In this article, we focus on multisite/multilevel observa-
tional data, where the treatment is assigned at the unit level (e.g., students), not at
the cluster level (e.g., schools).

Cluster-level confounders are covariates that (1) are shared by individuals
within a cluster and (2) affect both the treatment and the outcome of interest.
When cluster-level confounders are present and not adjusted for, they distort the
treatment effect by making a spurious association between the treatment and
outcome (Arpino & Mealli, 2011; Li et al., 2013). For example, consider the
kindergarten cohort of the Early Childhood Longitudinal Study (ECLS-K) and
suppose we are interested in studying the causal effect of students taking an
eighth-grade algebra course on their math achievement. Algebra courses are
mathematics courses offered in U.S. school systems, and prior studies have
advocated policies that encourage students to take algebra prior to entering high
school (Rickles, 2013). These studies also found that school-level characteristics
such as school location, school composition, and school processes play a key role
in students’ mathematics course-taking and their performance on achievement
tests (Anderson & Chang, 2011; Cogan et al., 2001; Opdenakker & Van Damme,
2001). Unfortunately, the ECLS-K data did not measure all possible school-level
confounders, such as school’s funding for math education and school principal’s
emphasis on STEM education, and estimating the treatment effect consistently
becomes a challenge.

When we suspect cluster-level unmeasured confounders in multilevel studies,
it is important to eliminate or alleviate their impact on the effect estimates. Suk
and Kang (2022a, 2022b) have started to explore how to make ML methods more
robust to cluster-level unmeasured confounding. Their strategies include using a
new loss function that is insensitive to cluster-level unmeasured confounding,
injecting propensity scores estimated from fixed effects logistic regression or
random effects logistic regression, and employing cluster dummy variables or
cluster-demeaned variables. But all these strategies seek to train ML methods by
using the entire sample from all the clusters rather than using only a subsample
within each cluster or within each group of similar clusters. That is, previous
works are based on an across-cluster approach rather than a within-cluster
approach or a within-group approach, where groups are constructed by combin-
ing similar clusters.

Different grouping approaches in multilevel data have been frequently com-
pared in particular for propensity score methods (Arpino & Cannas, 2016; Arpino
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& Mealli, 2011; Kim & Seltzer, 2007; Lee et al., 2021; Leite et al., 2015; Li et al.,
2013; Rickles & Seltzer, 2014; Schuler et al., 2016; Thoemmes & West, 2011).
Briefly, an across-cluster approach uses the entire sample to estimate a propen-
sity score model across clusters; a within-cluster approach uses the subsample
within each cluster to estimate a cluster-specific propensity score model (Kim &
Seltzer, 2007; Leite et al., 2015; Thoemmes & West, 2011); a within-group
approach uses the subsample within each group to estimate a group-specific
propensity score model, where groups consist of multiple clusters (Kim & Stei-
ner, 2015; Lee et al., 2021; Suk & Kim, 2019). Among different approaches, a
within-cluster approach is the most flexible and the most robust to bias from
cluster-level unmeasured confounders, but it becomes unstable when cluster
sizes are small (Kim & Seltzer, 2007; Thoemmes & West, 2011). In contrast,
under small cluster sizes, a within-group approach performs better than a within-
cluster approach by combining similar clusters into groups, and it is more flexible
and more robust to cluster-level unmeasured confounding than an across-cluster
approach (Lee et al., 2021). Although there are advantages and disadvantages of
different grouping approaches for the propensity score, unfortunately, there is
little research on examining comprehensive options to using ML methods for
causal inference in multilevel studies.

The main goal of this article is to investigate a within-group approach to using
ML methods for robustly estimating the ATE in multilevel studies when cluster-
level unmeasured confounders are present. In this article, clusters (e.g., schools)
represent sites where study units (e.g., students) belong, and groups refer to a
collection of clusters. We focus on one particular ML-based causal inference
method based on the targeted maximum likelihood estimation (TMLE) with an
ensemble learning algorithm (Luque-Fernandez et al., 2018; van der Laan &
Rose, 2011), but we believe our main ideas can be easily applied to other ML
methods. At a high level, our proposal constructs groups of similar clusters based
on treatment prevalence and uses “vanilla” TMLE or model-assisted TMLE to
estimate the treatment effects within each group. Specifically, vanilla TMLE
consists of implementing the default TMLE as is, that is, using the propensity
score and the outcome predictions from the default ensemble learning algo-
rithms. Model-assisted TMLE consists of injecting multilevel propensity scores
estimated from fixed effects or random effects logistic regression models that can
account for cluster-level unmeasured confounding. A major strength of our pro-
posal is that it makes an existing TMLE estimator robust to cluster-level unmea-
sured confounding. Additionally, unlike parametric propensity score methods,
our ML-based proposal has the potential to increase robustness under model
misspecification. In short, our proposal simultaneously enjoys robustness from
model misspecification and cluster-level unmeasured confounding. Also, to the
best of our knowledge, this article is the first attempt to use different options
other than an across-cluster approach to design robust ML methods in multilevel
studies, with one possible exception of Suk, Kim, et al. (2021). Suk, Kim, et al.
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(2021) classified clusters into latent classes based on latent class regression
models to estimate latent heterogeneity of treatment effects, but their method
is not robust to bias from unmeasured confounders.

For evaluating the performance of our proposed methods, we conduct simula-
tion studies that vary multiple parameters such as the number of groups, the
working model of the propensity score, and whether there is a cross-level inter-
action between a cluster-level unmeasured confounder and a treatment variable.
We also compare our proposed methods to existing parametric-based methods,
especially propensity score weighting methods. Lastly, we demonstrate the pro-
posed methods in our example above about evaluating the ATE of taking an
eighth-grade algebra course on math achievement, and we conduct sensitivity
analyses about the number of groups and individual-level unmeasured confound-
ing where the latter is based on a recent proposal by Chernozhukov et al. (2021).

Notations, Estimand, and Assumptions

To formalize causal effects, we use the potential outcomes notation (Neyman,
1923; Rubin, 1974). Suppose that we have j = 1, 2, ..., J clusters, where each
cluster has 1, 2, ..., n; individuals. We denote Z; € {0, 1} as a binary treatment
variable, where Z; = 1 represents that individual 7 in cluster j received the
treatment and Z;; = 0 represents that individual i in cluster j did not receive the
treatment. We denote Y;(1) as the potential treatment outcome if individual #j
were treated (Z; = 1), we denote Y;(0) as the potential control outcome if
individual ij were untreated (Z; = 0), and we denote Y;; as individual ij’s
observed outcome. Finally, we denote X;;, W, and U; as individual ij’s
individual-level measured confounders, their cluster-level measured confoun-
ders, and their cluster-level unmeasured confounders, respectively.

The target estimand of interest in this article is the ATE. Under the potential
outcomes framework, it is defined as the average linear contrast between the
potential treatment outcome and the potential control outcome:

v = E[¥(1) — Y4(0)].

For instance, in our empirical ECLS-K data, the ATE measures the overall
average effect of students taking an eighth-grade algebra course on math
achievement. The typical set of working assumptions to identify the ATE from
observational data (Hernan & Robins, 2020; Imbens & Rubin, 2015; Rubin,
1986) is

(A1) Stable Unit Treatment Value Assumption (SUTVA)

Yy =Z;Yy(1) + (1— Z)Yy(0),

(A2) Conditional Ignorability: Y;(1), Y;(0) L Z;|X, W;, Uj,
(A3) POSitiVity: 0< el-j <1 Where e,-j = P(Zl] = I\X,,,W,. Uj),
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where Assumptions (A2) and (A3) are jointly referred to as strong ignorability
(Rosenbaum & Rubin, 1983). In words, Assumption (A1) means that individual
ij’s potential outcomes are independent of others’ treatment assignments and
there is only one version of the treatment. Assumption (A2) means that the
treatment status Z;; is conditionally independent of the potential outcomes Y;(1)
and Y;;(0) given all the confounders X;;, W), and U;,. Assumption (A3) means that
the probability of receiving treatment given the confounders, also known as the
propensity score e, is strictly between zero and one.

The above identification strategy requires all the confounders to be available
in the observed data. However, even if U; is unmeasured, we can still identify the
ATE from observed data by comparing the outcomes for treated units and those
for control units within each cluster and aggregating the within-cluster ATE
estimates across all clusters. Intuitively, this within-cluster strategy is valid
because cluster-level unmeasured confounders are no longer problematic when
focusing on individuals within each cluster j, and then, the unconfoundness
assumption (i.e., Assumption [A2]) would hold within each cluster (Arkhan-
gelsky & Imbens, 2019; Imai & Kim, 2019).

Existing Estimation Methods for Handling Cluster-Level Unmeasured
Confounding in Multilevel Observational Studies

In this section, we review popular estimators of the ATE in the presence of
cluster-level unmeasured confounding. We first summarize propensity score
weighting methods among various types of propensity score methods, notably
matching, stratification, and weighting (Arpino & Mealli, 2011; Kim & Seltzer,
2007; Leite et al., 2015; Li et al., 2013; Rickles & Seltzer, 2014; Schuler et al.,
2016; Thoemmes & West, 2011).! We then review recent approaches, one by Lee
et al. (2021) based on using treatment prevalence to remove cluster-level unmea-
sured confounding and another by Suk and Kang (2022a, 2022b) based on
designing robust ML methods under cluster-level unmeasured confounding.

Propensity Score Weighting Estimators

Broadly speaking, propensity score weighting estimators consist of two main
steps: first, estimating a propensity score and, second, using the estimated pro-
pensity score as sampling weights to estimate the ATE. For estimating the pro-
pensity score in multilevel observational studies, investigators typically use
either a within-cluster propensity score model or an across-cluster propensity
score model; a within-cluster propensity score model estimates the propensity
score within each cluster, and an across-cluster propensity score model uses a
single propensity score model with fixed effects or random effects for all the
clusters (Arpino & Mealli, 2011; Leite et al., 2015; Li et al., 2013; Schuler et al.,
2016). Within-cluster propensity score models are the most flexible but may not
be appropriate when (1) treatment selection processes are extremely strong (e.g.,
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retention, disability diagnosis), (2) cluster sizes are small, or (3) there are
clusters with only treated units or only control units (Kim & Seltzer, 2007; Leite
et al., 2015; Thoemmes & West, 2011). Across-cluster propensity score models
with cluster-specific fixed effects or random effects remedy these concerns from
within-cluster propensity score models but make additional assumptions about
the propensity score model. See Arpino and Mealli (2011), Li et al. (2013), and
Schuler et al. (2016) for more information on propensity score models with
random effects or fixed effects.

The next step is to estimate the ATE using the estimated propensity scores
above, and one of the most popular estimators is by inverse propensity weighting
(IPW). Specifically, an IPW estimator uses propensity scores as a form of
sampling weights in order to achieve covariate balance between the treatment
group and the control group. There are two main types of IPW estimators: the
marginal IPW estimator and the clustered IPW estimator. A marginal IPW
estimator, denoted as Ty pw, produces a weighted difference in the mean overall
outcome between treated units and control units and is formalized as follows
(Li et al., 2013):

A Z] 12”1 ZiwiYy 2—12 Zij)wyi Yy Zy  1—-2

TMIPW = ,w,-j:—‘—l—(l . (D)

W _ e — e
Zj:lZi:]ZUWU Zj 12 Zj WU v lj)

In contrast, a clustered IPW estimator, denoted as 7¢pw, produces a weighted
average of cluster-specific ATE estimates (Li et al., 2013):

J ~ n
N 7
. Z/:lwﬂf . E : ZiwiY, i E 1 (L= Zy)wy Y -

Terpw = 7 T = n, 7 -7 aWjZE wi. (2)
wj E =12V E g (1= Zy)wy i=1

The main difference between the marginal [IPW estimator and the clustered
IPW estimator is that the clustered IPW estimator with a correctly specified
propensity score model guarantees within-cluster covariate balance, whereas the
marginal [PW estimator does not. But the clustered IPW estimator requires each
cluster to have at least one treatment unit and one control unit, whereas the
marginal [PW estimator does not require such a condition. We provide formulas
for standard errors of IPW-based estimators in Supplemental Appendix A.

Within-Group Propensity Score Weighting Estimator

Recently, Lee et al. (2021) proposed a new approach to estimate the ATE in
the presence of cluster-level unmeasured confounders by grouping clusters with
similar proportions of treated individuals, that is, treatment prevalence. Specif-
ically, for each cluster j = 1,..., J, let p; = > Z;/n; denote the observed pro-

ij

portion of treated individuals in cluster j. Lee et al. (2021) proposed to form J
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clusters into K (< J) groups based on their respective p;s and the partitioning
around medoids (Kaufman & Rousseeuw, 2009). Once clusters are nested under
groups, a propensity score is estimated within each group and a group-specific
ATE (denoted as t, for each group g = 1,..., K) is estimated. These group-
specific ATEs are then aggregated to form an estimate of the overall ATE. Let G;;
denotes individual ij’s group membership. Formally, the grouped IPW estimator
is written as follows:

K A
) > oete Do LYy Do (1= ZywiYy

TGPw = X y lg = Z 7 (1-2) s Wg = E Wij.
Z Wi E — 7w et
We ij:Gy=g yry ij:Gj=g gy ij:Gy=g

3)

Intuitively, this grouping strategy reduces bias arising from a cluster-level
unmeasured confounder U; because the observed treatment prevalence is affected
by both observed and unobserved covariates; in other words, it contains infor-
mation about the unobserved confounder U;. Grouping clusters with similar
treatment prevalence likely leads to grouping clusters with similar values of U;
if the selection models are homogeneous across clusters (or groups of clusters);
see He (2018, p. 13) for a formal result under some modeling assumptions. Also,
Lee et al. (2021) reveal that among the aforementioned IPW estimators, the
grouped IPW estimator is more robust to cluster-level unmeasured confounding
than the marginal IPW estimator and the grouped IPW estimator also performs
better than the clustered IPW estimator in particular when cluster sizes are small.
Lastly, Lee et al. (2021) numerically examined the impact of using four different
approaches to grouping: (1) random grouping, (2) grouping based on treatment
prevalence, (3) grouping based on measured covariates only, and (4) grouping
based on treatment prevalence and measured covariates. Through a simulation
study, they found that grouping clusters with similar treatment prevalence pro-
duces the smallest average bias of the ATE. See Lee et al. (2021) for details,
notably a theoretical justification of the grouped IPW estimator and simulation
results about different choices of grouping.

Robust ML Methods Under Cluster-Level Unmeasured Confounding

Recently, Suk and Kang (2022a, 2022b) studied how to design robust ML
methods under cluster-level unmeasured confounding. Briefly, Suk and Kang
(2022a) provide three ML-based estimators to estimate the ATE and the condi-
tional ATE in the presence of cluster-level unmeasured confounders. The three
proposed estimators—the proxy regression estimator, the double demeaning
estimator, and the double demeaning estimator with proxy regression—require
writing a new loss function that is insensitive to cluster-level unmeasured con-
founders and solving for the minimum of the loss function. Also, they are
designed based on an ensemble supervised learning algorithm like SuperLearner
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(van der Laan et al., 2007). While these proposed estimators hold promise for
eliminating the impact of cluster-level unmeasured confounding, their proposal
cannot be directly applied to retune or refit the existing ML methods to enhance
ML’s robustness.

In contrast, Suk and Kang (2022b) studied five modifications of causal forests
(Athey et al., 2019; Wager & Athey, 2018) to make it robust to cluster-level
unmeasured confounding. For brevity, their proposed modifications consist of
injecting propensity scores estimated from random effects or fixed effects logis-
tic regression, adding cluster dummy variables, and using cluster-demeaned
variables (without or with including cluster-demeaned propensity scores). Nota-
bly, they found that the modifications based on using multilevel propensity
scores estimated from fixed effects logistic regression or using cluster-
demeaned variables along with demeaned propensity scores display the most
promise for eliminating bias from cluster-level unmeasured confounders.

While these prior works provide effective tools to robustify ML methods for
causal inference, all their proposals are designed based only on an across-cluster
approach, which uses the entire sample from all the clusters to estimate the
propensity score (or the outcome model) across clusters. Examining different
options to designing robust ML methods rather than an across-cluster approach
has not been explored yet.

Our Proposal: Within-Group TMLE

In this section, we focus on one popular ML-based causal inference method,
TMLE generally combined with an ensemble of supervised learning algorithms.
We present a brief summary of TMLE and ensemble learning. We then present
our proposed modifications to TMLE to be robust to cluster-level unmeasured
confounding.

Vanilla TMLE

We briefly review the TMLE estimator. TMLE is a general framework for
constructing efficient and double-robust substitution estimators and is commonly
implemented with an ensemble learning algorithm (Balzer et al., 2019; Luque-
Fernandez et al., 2018; van der Laan & Rose, 2011). The estimator first requires

an initial estimator of the outcome regression, denoted as Q" (Zy, X, W)) =

E(Y;|Z;j, X7, W;). Then, TMLE updates this initial outcome regression estimator

by incorporating a clever covariate, which has the form H(1,X;;, W;) = (x%,,w)
and H(0,X;;,W;) = % where e(x,w) = P[Z; = 1|X;; = x, W, = W] is

the propensity score. The “clever” form allows an efficient influence curve to
be solved, leading to consistent, asymptotically normal, doubly robust, and
(under some assumptions) efficient estimates of the treatment effect (Balzer
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et al., 2019; Luque-Fernandez et al., 2018). That is, TMLE is a double robust
estimator that produces a consistent estimate if either the outcome regression or
the propensity score is estimated consistently, but not necessarily both. In par-
ticular, TMLE leads to the most efficient estimator of the ATE if both the
outcome regression and propensity score are estimated consistently at reasonable
rates (Luque-Fernandez et al., 2018). Lastly, the updated outcome regression is
used to estimate the ATE, and the general formula for ATE is written as (Luque-
Fernandez et al., 2018):

FrMLE = — Z( (1,X;, W;) — 0'(0, x,,,W))

where N represents the total sample size, that is, N = Z{Zlnj

Importantly, TMLE can incorporate ML methods to estimate Q (Zy, Xii, W)
and e(x, w) (Porter et al., 2011; van der Laan et al., 2007). The aim of using ML
methods in TMLE is to avoid bias from model misspecification (van der Laan &
Rose, 2011). To do this, TMLE commonly uses an ensemble supervised learning
algorithm, called SuperLearner, that combines multiple ML algorithms (Polley
et al., 2021). That is, instead of choosing one particular algorithm, the Super-
Learner combines predictions from multiple ML methods, say parametric regres-
sion models, shrinkage models, and regression trees.” Prior works by Porter et al.
(2011) and van der Laan et al. (2007) have shown that the weighted combination
will perform at least as well as the best individual ML algorithm in terms of the
cross-validated error.

Our Modifications for TMLE

We propose three modifications to make TMLE robust to cluster-level unmea-
sured confounding. The proposed modifications require constructing groups of
similar clusters based on treatment prevalence and using vanilla TMLE or
model-assisted TMLE to estimate the treatment effects within each group.
Vanilla TMLE comprises implementing the default TMLE as is, and model-
assisted TMLE comprises injecting multilevel propensity scores estimated from
fixed effects or random effects logistic regression models (see Table 1 for a
summary).

Our first proposed modification, denoted as GroupedTMLE, is to form groups
of similar clusters based on treatment prevalence and then implement TMLE
within each group g (g = 1, 2, ..., K). To create groups of clusters, we use K-
means clustering (Hartigan & Wong, 1979; MacQueen et al., 1967), one of the
most popular grouping/clustering methods in education and psychology. Briefly,
K-means clustering is an iterative algorithm that categorizes the data into K
distinct nonoverlapping groups. Its goal is to make the intragroup observations
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TABLE 1.
Summary of Modifications in Targeted Maximum Likelihood Estimation (TMLE)

Parameter to
Modification Description Modify in tmle

GroupedTMLE Implement vanilla TMLE within groups of similar
+ Default clusters

GroupedTMLE Implement TMLE within groups of similar clusters glW
+ RePS and add within-group propensity scores from
random effects logistic regression
GroupedTMLE Implement TMLE within groups of similar clusters glW
+ FePS and add within-group propensity scores from

fixed effects logistic regression

Note. tmle is an R package to implement the TMLE estimator.

as similar as possible, and it does this by minimizing the following total group
variance (Hastie et al., 2009):

K
: 2
glrlnlgl Z Ng ij:GZ/:g (piy —mg)”,
where p;; indicates individual ij’s treatment prevalence; m, indicates the mean of
group g (g = 1, ..., K); N, indicates the sample size in group g. In our setting,
because our group assignment variable is cluster-specific (i.e., p; = p;; = p)),
individuals in the same cluster will belong to the same group. Also, for each
groupg=1,..., K, weletG, C {1, ..., J} denote the clusters that are in group
g; note that {1, ..., J} = nglgg and G, NGy = @ for every g # g'. After
groups are determined, we implement TMLE within each group to estimate
group-specific ATEs and then estimate the ATE by aggregating them with the
weights of the group size N,. Formally, the ATE obtained from within-group
TMLE is written as

K

. Ng . . 1 =1 =1

TGTMLE = Zﬁg “Te. e, Tg TMLE = > (Qg(lvxijij) - Qg(07Xu7Wj)>-
g=1 * ij:Gy=g

(4)

Our second modification, denoted as GroupedTMLE+RePS, is an extension
of the first modification using the within-group approach but additionally forces
TMLE to use random effects propensity scores within each group; this can be

implemented by using the parameter gl W in the tmle package. Specifically, we
fit the following within-group, random effects propensity score models as

logit(e;) = by + Xy W @, 1~N (1o 02, j € G- (s)
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In Equation 5, the cluster-specific main effect p, requires two assumptions: (1)
K, is normally distributed with mean L, and common variance Gﬁ, and (2) ; is

independent of measured covariates X;;, W,. The term «, indicates the effects
of measured individual-level covariates and measured cluster-level covariates
on the treatment in group g. Similarly, our third modification, denoted as
GroupedTMLE+FePS, is another extension of the first modification, where
we force TMLE to use fixed effects propensity scores within each group; this
can also be implemented by using the parameter gl W in the tmle package.
More specifically, within-group, fixed effects propensity score models are
written as

logit(e;) = W + XYy, J € G- (6)

In Equation 6, the term |, is the cluster-level main effect term. The term vy,
indicates the effects of measured individual-level covariates on the treatment in
group g.

The second and third modifications are motivated from (i) the study by Suk
and Kang (2022b) and (ii) the doubly robust property of the TMLE estimator.
Among five modifications by Suk and Kang (2022b), we use modifications
using random effects propensity scores and fixed effects propensity scores
because they are easy to implement. If we correctly specify fixed effects
or random effects propensity score models within each group and inject
them inside TMLE, it becomes robust to bias from cluster-level unmeasured
confounders and will yield a consistent estimator of the ATE. Also, as we can
see from the simulations in the following, even if we use partially misspecified
propensity scores inside TMLE within each group, the proposed within-
group TMLE still produces robust ATE estimates compared to their [PW
counterparts due to the double robustness and the flexible modeling of the out-
come regression Q.

We make some remarks about the proposed modifications. First, when the
number of groups is equal to one, it is equivalent to an across-cluster approach
where all the clusters are used at once to fit the propensity score model or the
outcome model. To reduce confusion in this article, when the number of groups is
larger than or equal to 2, we call the approach the within-group approach. Sec-
ond, other existing grouping/clustering methods can be used to classify J clusters
into K groups based on each cluster’s treatment prevalence such as partitioning
around medoids (Kaufman & Rousseeuw, 2009) or finite mixture models (Clogg,
1995; McLachlan & Peel, 2000). Third, the elbow method, the gap statistics
method (Tibshirani et al., 2001), and/or the covariate balance check within each
group would be used for choosing the number of groups in our context; see
Supplemental Appendix B for an illustration of the elbow method with our
simulation designs.
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TABLE 2.
Summary of Methods for Estimating Propensity Scores (PS) and the Average Treatment
Effect (ATE) in Simulation Studies

PS model Grouping
Across-cluster (K = 1), within-group (K > 2)
Model type
Random effects logistic regression (Equation 5)
Fixed effects logistic regression (Equation 6)
Default ensemble learning algorithms *
ATE estimator Marginal inverse propensity weighting (IPW) estimator (Equation 1)
Clustered IPW estimator (Equation 2)
Grouped IPW estimator (Equation 3)
Grouped targeted maximum likelihood estimation (TMLE) estimator
(Equation 4)

#1s only used for the grouped TMLE estimator.

Simulation Study

We conducted simulation studies to assess the performance of our purposed,
within-group TMLE methods and to compare our proposal with non-ML, IPW
methods. Table 2 summarizes the methods for estimating propensity scores and
the ATE in simulation studies. As for propensity scores, we use both across-
cluster propensity scores (K = 1) and within-group propensity scores (K > 2),
and we estimate propensity scores with different estimation models: random
effects models, fixed effects models, and if applicable, default ensemble learning
algorithms. Also, we use four different ATE estimators: the marginal IPW esti-
mator in Equation 1, the clustered IPW estimator in Equation 2, the grouped IPW
estimator in Equation 3, and the grouped TMLE estimator in Equation 4.

Specifically, our simulation studies are categorized into three designs. Design
1 assumes no cross-level interaction between a cluster-level unmeasured con-
founder and the treatment variable (i.e., §; = 0 below). Design 2 assumes that
there exists a cross-level interaction between the two (i.e., f; = 2 below). Design
3 is based on Design 2 but uses a misspecified propensity score model by
excluding one threshold term. In particular, Design 3 considers a more realistic
scenario, in which a meticulous researcher, despite their efforts, was successful
in correctly specifying some parts of the propensity score model. For each
design, we used 15 different group numbers ranging from 1 to 15, and using
only one group is equivalent to using an across-cluster, ungrouped approach. As
mentioned above, to reduce confusion, when the number of groups is larger than
or equal to 2, the approach is referred to as a within-group approach.

For all the designs, we examined the performance of the proposed methods
in each design by repeating the simulation 500 times, and we evaluated the
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performance of each estimator by measuring the absolute bias (|Bias|), standard
deviation (SD), and root mean squared error (RMSE) defined as follows:
500

. 1 A
|Bias| = |%Z(Tm ol

m=1

Here, 1,,, m = 1, ..., 500 is the mth estimate of the ATE from each replicate,
and 7 is the sample mean of 1,, across 500 replicates. We only provide results
with the absolute bias in this article and include results with SD and RMSE in
Supplemental Appendixes C, D, and E.

Design 1: No Cross-Level Interaction

The data generating models are stated in the following and are based on
those from Lee et al. (2021), Li et al. (2013), Suk and Kang (2022b), and our
empirical data.

1. Foreachclusterj =1, 2, ..., 170, generate the total number of individuals in each
cluster n; by drawing a number from a normal distribution with mean 15 and small
SD and rounding it to the nearest integer. We remark that this sample size condition
is comparable to that of our empirical ECLS-K data.

2. For each individual i = 1, ... , n; in cluster j, generate individual-level confoun-
ders, X;; = (X1, X2, a cluster-level measured confounder ¥}, and a cluster-level
unmeasured confounder U; as follows:

Xi;~Uniform(—1, 1), Xa; ~ Uniform(0, 1),
W; ~ Uniform(—1, 1), U;~ Uniform(—2,2).

Note that we also use the data generating models, where all the covariates
have the same scale and follow the same distribution: Uniform (—1, 1). The
simulation results are provided in Supplemental Appendix F, and the result
patterns generally agree with those from the above data generating models.

3. Generate individual treatment status Z;; from the logistic propensity score model as
follows:

logit(e;) = —0.6 4+ 0.3X;4 0.3X;;4 0.3+ 0.4](X5;< 0.3) + 0.3U;,

Z,/ ~ Bernoulli(e,-/-) .
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FIGURE 1. Performance of average treatment effect estimates in Design 1. Propensity
scores (PS) used in estimators are within-group propensity scores from random effects
logistic regression (RePS), within-group propensity scores from fixed effects logistic
regression (FePS), or if applicable, within-group propensity scores from default ensemble
learning algorithms (Default). MarginalIPW = the marginal inverse propensity weighting
estimator; ClusteredIPW = the clustered inverse propensity weighting estimator; Group-
edIPW = the grouped inverse propensity weighting estimator; GroupedTMLE = the
grouped targeted maximum likelihood estimation estimator.

The propensity score model contains a nonlinear, threshold term (i.e.,
I(X5; < 0.3)).

4. Generate the potential outcomes Y;(1), ¥;(0), and observed outcome Y;; from the
regression model as follows:

Yi(z) = 70 + 2Xi; 4+ 2Xo5+ 20+ 20(Xay < 0.3) + 2U; +
2(2 + 2Xo5 + 20+ B UP) +ry,
Yy =Z;Yy(1) + (1= Z;)Yy(0), rij~N(0, 1).

Here, r;; is the random error for individual 7 in cluster j. The term f3; is a cross-
level interaction effect between U_,»3 and the treatment variable. The population
ATE, 7, is EQ + 2X3; + 2W; + /31Uj3) = 3. In this design, we used f; = 0 to
reflect the absence of the cross-level interaction between the cluster-level unmea-
sured confounder and the treatment variable.

Comparison of different estimators. Figure 1 summarizes the absolute bias of the
ATE estimates across different numbers of groups in propensity score models,
where each panel shows the absolute bias from one of the four ATE estimators
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investigated; see numerical results in Supplemental Appendix C. Also,
parametric-based IPW estimators use either within-group propensity scores from
random effects logistic regression (denoted as RePS) or within-group propensity
scores from fixed effects logistic regression (denoted as FePS). The ML-based
TMLE estimator uses RePS, FePS, and within-group propensity scores from the
default ensemble learning algorithm (denoted as Default).

Among non-ML methods, we observe that the marginal [PW estimator with
within-group, fixed effects propensity scores (Marginal[PW+FePS) produces
little bias and performs better than the marginal IPW estimator with within-
group, random effects propensity scores (Marginal[PW+RePS). But as the
number of groups increases, Marginal[PW+RePS’s performance greatly
improves and is similar to that of Marginal[PW+FePS. We also observe that
the absolute bias from the marginal [IPW estimators is somewhat increased as the
number of groups increases from 10 to 15. This may be because students coming
from K > 10 different groups but with the identical propensity scores may have
different covariates and using them together inside the marginal IPW estimator
might not yield covariate balance, either in the entire sample or within each
cluster.

In contrast, the performance of the clustered IPW estimators (ClusteredIPW+
RePS and ClusteredIPW+FePS) is insensitive to propensity score estimation
methods and the number of groups, and the clustered estimators yield little bias.
This is expected given that the clustered IPW estimators aggregate cluster-
specific ATE estimates that are robust to cluster-level unmeasured confounding.
Regarding the grouped IPW estimators, the grouped estimators with two differ-
ent types of propensity scores (GroupedIPW+RePS and GroupedIPW+FePS)
perform no worse than the corresponding marginal estimators (MarginallPW+
RePS and MarginallPW+FePS). In particular, the grouped IPW estimators
produce almost zero bias in the ATE estimates when we use more than 10 groups,
compared to the marginal IPW estimators. This implies that when using within-
group propensity scores, it is desirable to estimate the ATE by aggregating
group-specific ATEs, not directly estimating the ATE across clusters.

Among ML methods, the grouped TMLE estimator with default ensemble
learning algorithms (GroupedTMLE+Default) shows improved performance as
the number of groups increases. This obviously implies that using the within-
group approach makes the TMLE estimator more robust to cluster-level unmea-
sured confounding. When we use the grouped TMLE with our additional
modifications using either random effects propensity scores or fixed effects
propensity scores (GroupedTMLE+RePS and GroupedTMLE+FePS), we also
observe that similar to non-ML methods, GroupedTMLE+FePS performs
better than GroupedTMLE+RePS, but both modified TMLE estimators show
enhanced performance compared to that using default ensemble learning algo-
rithms, that is, Grouped TMLE-+Default. Moreover, additional benefits from
using multilevel propensity scores inside TMLE are larger when the number
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FIGURE 2. Performance of average treatment effect estimates from the grouped targeted
maximum likelihood estimation estimator in Design 1 with different grouping options.
Propensity scores (PS) used in the estimator are within-group propensity scores from
random effects logistic regression (RePS), within-group propensity scores from fixed
effects logistic regression (FePS), and within-group propensity scores from default
ensemble learning algorithms (Default).

of groups K is small, and in particular, using TMLE with fixed effects propen-
sity scores under K = 1 shows the largest bias reduction compared to TMLE
with default ensemble learning algorithms. When we use a larger number of
groups, there are minor or subtle benefits from injecting fixed effects propen-
sity scores or random effects propensity scores. These results indicate that
using the proposed within-group approach is a primary contributing factor that
minimizes bias in ATE estimates from cluster-level unmeasured confounding
and using the additional modification with fixed effects propensity scores on
top of that is a safer way to eliminate the bias. We remark that we observe
similar performance patterns in terms of RMSE; see Supplemental Appendix C
for details.

Comparison of different grouping options. In this section, we used different
grouping options, where we changed our inputs inside K-means clustering for
within-group TMLE methods. We used grouping based on treatment prevalence
as our baseline, and we considered three additional options: (1) random grouping,
(2) grouping based on measured cluster-level covariates, and (3) grouping based
on treatment prevalence and measured cluster-level covariates. Here, measured
cluster-level covariates contain not only measured covariates naturally shared
among individuals (i.e., W;) but also cluster-level means of measured individual-
level covariates (i.e., X;). Figure 2 summarizes the absolute bias of the ATE
estimates from the proposed grouped TMLE estimator with different grouping

76



Suk

[ Marginal PW ] ClusterediPW GroupedIPW [ Grouped TMLE

.= 2SS 5S
Ly . ' ! L . v T

10 15 1 5 10 15 1 5 10 15
Number of Groups for PS Grouping

PS Model Defaull = RePS = FePS

FIGURE 3. Performance of average treatment effect estimates in Design 2. Propensity
scores (PS) used in estimators are within-group propensity scores from random effects
logistic regression (RePS), within-group propensity scores from fixed effects logistic
regression (FePS), or if applicable, within-group propensity scores from default ensemble
learning algorithms (Default). All conditions for which absolute bias exceeded 0.62 were
omitted to compare the performance with that from Design 1. Marginal[PW = the mar-
ginal inverse propensity weighting estimator; ClusteredIPW = the clustered inverse
propensity weighting estimator, GroupedIPW = the grouped inverse propensity weight-
ing estimator;, GroupedTMLE = the grouped targeted maximum likelihood estimation
estimator.

options, and the results of our baseline are obtained from the far right of Figure 1.
As discussed in “Within-Group Propensity Score Weighting Estimator” section,
prior work by Lee et al. (2021) has shown that grouping on treatment prevalence
is no worse than other grouping approaches. Our numerical experiments confirm
that grouping based on treatment prevalence performs better than three other
grouping options, and thus, we will use the grouping approach for the rest of the
simulation study. We remark that the performance of grouping based on mea-
sured covariates is close to that of random grouping, and this unsuccessful
performance is explained by the fact that the covariate distributions are the same
between the treatment units and control units under our data generating models.

Design 2: Cross-Level Interaction

Design 2 used the same data generating models as Design 1 except that we
used f; = 2, where we assume the presence of a cross-level interaction between
the cluster-level unmeasured confounder and the treatment variable. We sum-
marize the absolute bias of the ATE estimates in Figure 3. To have the same
range as Figure 1, Figure 3 only shows the absolute bias ranging from 0 to 0.62
and Supplemental Appendix D contains the numerical results. As expected, the
absolute bias is amplified in general compared to Design 1, and yet, we observe
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the common patterns of the estimators investigated between the two designs.
Similar to Design 1, the performance of the estimators using fixed effects pro-
pensity scores is better than that of the corresponding estimators using random
effects propensity scores. When the number of groups K is relatively larger (say,
more than 10), the marginal IPW estimators yield increasing bias in the ATE
estimates, similar to Design 1. In contrast, the other three estimators—clustered
IPW, grouped IPW, and grouped TMLE—produce more robust estimates by
forming multiple groups of similar clusters and using within-group propensity
scores. In particular, a monotonic decrease in bias from the grouped TMLE
estimators is observed with an increase in the number of groups. But unlike
Design 1, the clustered IPW estimators (ClusteredIPW+RePS and Clustered
IPW+FePS) no longer have flat patterns and we see relative performance dif-
ferences across propensity score methods and/or the number of groups; we
observe relatively larger bias from ClusteredIPW+RePS when the ATE esti-
mates are aggregated by using propensity scores with K = 1 or K = 2. This
indicates that in the presence of the cross-level interaction, the clustered estima-
tor with random effects propensity scores is no longer robust when coupled with
the propensity score model that is ungrouped (K = 1) or grouped with a few
numbers of groups (e.g., K = 2). This observation is partly because the clustered
estimator itself is not robust to bias from cross-level interaction. It may also result
from the fact that impact of using random effects models that are inherently
misspecified under our data generating models (U; ~ Uniform(—2, 2)) is the
largest with K = 1 or K = 2.

Design 3: Cross-Level Interaction and Partially Misspecified Propensity
Score Models

In this design, we used the same design as Design 2, but we omitted a thresh-
old term when fitting a multilevel propensity score model with either random
effects or fixed effects. As mentioned above, we included partially misspecified
multilevel propensity scores inside our modified TMLE. This design considers a
realistic situation, in which a meticulous researcher, despite their best efforts,
may not be able to specify the perfectly correct propensity score model. Figure 4
summarizes the absolute bias of the ATE estimates. Similar to Figure 3, Figure 4
only shows the absolute bias ranging from 0 to 0.62, and Supplemental Appendix
E includes the numerical results. As predicted, all the non-ML methods—the
marginal IPW, the clustered IPW, and the grouped IPW estimators—yield more
biased estimates than those from the corresponding estimators in Design 2; the
resulting ATE estimates have nonnegligible bias arising from using partially
misspecified propensity scores, regardless of the number of groups formed.

In contrast, injecting partially misspecified propensity scores into our ML-
based methods, the grouped TMLE estimators, is unlikely to seriously weaken
their effectiveness with respect to the absolute bias, compared to the performance
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FIGURE 4. Performance of average treatment effect estimates in Design 3. Propensity
scores (PS) used in estimators are within-group propensity scores from random effects
logistic regression (RePS), within-group propensity scores from fixed effects logistic
regression (FePS). All conditions for which absolute bias exceeded 0.62 were omitted
to compare the performance with that from Design 1. MarginallPW = the marginal
inverse propensity weighting estimator, ClusteredIPW = the clustered inverse propensity
weighting estimator; GroupedIPW = the grouped inverse propensity weighting estimator;
GroupedTMLE = the grouped targeted maximum likelihood estimation estimator.

of the corresponding grouped TMLE estimators in Design 2. Most importantly,
the grouped TMLE estimators are much more robust than all non-ML methods
with the same degree of misspecification. That is, TMLE’s flexible modeling and
double robustness potentially alleviate the impact of misspecifying propensity
scores in TMLE. We remark that the overall patterns of RMSE lines are similar
to those of the bias lines, though we see more fluctuation with respect to RMSE;
see Supplemental Appendix E for details.

Overall, across different simulation designs, the proposed within-group
TMLE method with fixed effects propensity scores is effective in reducing bias
from cluster-level unmeasured confounders and this bias reduction is most pro-
nounced when there are eight or more groups. We summarize takeaways from the
simulation results in the following:

1. Based on the performance of Grouped TMLE+Default, creating groups of clusters
based on treatment prevalence shows great promise in training TMLE to produce
more robust estimates to cluster-level unmeasured confounding.

2. Adding fixed effects propensity scores to the grouped TMLE estimator (i.e.,
GroupedTMLE+FePS) performs better than adding random effects propensity
scores (i.e., GroupedTMLE+RePS).
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3. The bias reduction from injecting multilevel propensity scores is larger when only
a few numbers of groups are constructed. With more than six groups, the addi-
tional benefit declines.

4. Even if multilevel propensity scores are partially misspecified, training TMLE
with them may potentially alleviate bias from cluster-level unmeasured confound-
ing, in particular compared to non-ML IPW estimators with the same degree of
misspecification.

Real Data Study
Data and Variables

We demonstrate our proposed within-group ML methods by studying the
effects of taking an eighth-grade algebra course with the ECLS-K data. ECLS-
K is a national longitudinal study to investigate the school achievement and
student experiences from kindergarten to middle school. It is sponsored by the
National Center for Education Statistics. ECLS-K collected a nationally repre-
sentative sample of kindergarteners in the fall of 1998 from a dual-frame multi-
stage sampling design and followed them from the fall of 1998 to the spring
of 2007 when most were in eighth grade (Walston & McCarroll, 2010). For
more information about the ECLS-K study and data, see the ECLS-K website:
http://nces.ed.gov/ecls/kindergarten.asp. Following the data analysis procedure
used in Suk and Kang (2022b), we used both the fifth-grade assessment data in
the spring of 2004 and the eighth-grade assessment data in the spring of 2007.
The 2004 data were used to obtain pretreatment covariates (e.g., prior achieve-
ment scores, gender) that affect the treatment mechanism and the outcome pro-
cess based on prior works about algebra courses in middle school (Rickles, 2013;
Rickles & Seltzer, 2014; Suk & Kang, 2022b; Walston & McCarroll, 2010). We
used the 2007 data to obtain the treatment and outcome variables.

Our data analysis used a binary treatment variable, a continuous outcome
variable, and 11 pretreatment covariates. Specifically, the treatment variable
represents whether a student took an eighth-grade algebra course in the spring
of 2007, and it was binary where 1 denotes that they took an algebra or higher
level course and 0 denotes that they took a lower level math course. The outcome
variable was students’ math achievement scores in the spring of 2007. We
assume that math achievement scores for eighth graders in the spring of 2007
are a posttreatment variable for the following two reasons; first, ECLS-K data
collection in the spring of 2007 was conducted at least two months after the
beginning of the Spring semester (Tourangeau et al., 2009), and second, the
eighth grade algebra course is usually a yearlong course, beginning in the Fall
semester. As for pretreatment covariates, eight of these 11 covariates were at the
student level and contain prior math achievement scores, parents’ expectation of
their child’s highest level of education, gender, race, socioeconomic status, pov-
erty level, mother’s educational level, and family type (i.e., living with one
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TABLE 3.
Descriptive Statistics of the Groups

Treatment Prevalence Group Size
Group Mean Min Max # Students # Schools
1 22 .16 25 231 14
2 .30 .26 33 488 31
3 .38 35 41 293 18
4 44 42 A7 445 28
5 .53 .50 .57 382 27
6 .62 .58 .65 343 24
7 .70 .67 73 148 12
8 78 5 .82 251 16

parent or two parents). The rest of the covariates were at the school level and
contain school type (i.e., public vs. private), school location (i.e., urban, suburb,
small town), and region (i.e., West, Northeast, South, Midwest). We made the
outcome and all continuous covariates standardized with a mean of 0 and an SD
of 1. In total, the analytic sample consisted of 2,581 students from 170 schools
with a mean school size of 15.8. The mean and the SD of the unstandardized,
observed math scores are 145.78 and 19.67, respectively.

We ran the proposed within-group TMLE methods to estimate the ATE of
students taking an eighth algebra course on math achievement. As a comparison,
we used the marginal IPW, clustered IPW, and grouped IPW estimators, all with
within-group propensity scores. The eight groups (i.e., K = 8) were chosen
because of the simulation results above and nonviolation of the positivity
assumption. Table 3 provides the descriptive statistics of the eight groups. The
smallest group mean of the treatment prevalence is 0.22, whereas the largest
group mean is 0.78. Each group has at least 10 schools (i.e., clusters) and more
than 140 students (i.e., units).

Finally, we conducted sensitivity analyses with respect to the number of
groups and individual-level unmeasured confounding. First, we checked the
sensitivity of our conclusions by changing the number of groups, in particular
to K =1 and K = 7. We chose K = 1 because it would lead to the largest
difference if the cluster-level unmeasured confounders were present, and we
chose K = 7 because it is the second largest number that satisfies the positivity
assumption. Second, we conducted a sensitivity analysis to assess whether our
conclusions about the ATE would be altered when an individual-level unmea-
sured confounder is assumed to be present. For the sensitivity analysis, we used a
nonparametric approach based on partial R* (Pearson’s correlation ratio) from
Chernozhukov et al. (2021), where the bounds on the size of the bias are deter-
mined by the residualized outcome, residualized treatment, and plausible partial
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TABLE 4.
Average Treatment Effect (ATE) Estimates of Taking an Eighth-Grade Algebra Course on
Math Achievement

MarginallPW ClusteredIPW  GroupedIPW GroupedTMLE
ATE Estimator

PS model RePS FePS RePS FePS RePS FePS Default RePS FePS

Estimate 107 064 223 098 .103 .073  .099  .096 .092
(Standard error) (.050) (.066) (.046) (.054) (.054) (.070) (.032) (.036) (.038)

Note. Propensity scores (PS) used in estimators are within-group propensity scores from random
effects logistic regression (RePS), within-group propensity scores from fixed effects logistic
regression (FePS), or if applicable, within-group propensity scores from default ensemble learning
algorithms (Default). SE's for GroupedTMLE were estimated using cluster bootstrap sampling, where
we resample the schools with 6,000 replicates. MarginalIPW = the marginal inverse propensity
weighting estimator; Clustered[PW = the clustered inverse propensity weighting estimator;
GroupedIPW = the grouped inverse propensity weighting estimator; GroupedTMLE = the grouped
targeted maximum likelihood estimation estimator.

R? of the unobserved confounder with the outcome and the treatment. Using the
estimated standard errors (or confidence intervals) of the original estimates, we
report the confidence intervals of the adjusted estimates in the presence of such
an individual-level unmeasured confounder.

Regarding software, we used the built-in R function kmeans for grouping the
treatment prevalence, the tmle package (Gruber & van der Laan, 2012) for the
TMLE estimator, and the Ime4 package (Bates et al., 2015) for random effects
logistic regression. Data and R codes are available in Supplementary Materials
and the first author’s GitHub repository (https://github.com/youmisuk/
groupedTMLE).

Results

Table 4 provides the ATE estimates of taking an eighth-grade algebra course
using the proposed within-group TMLE methods as well as non-ML-based IPW
methods. The unadjusted mean difference in math scores between students
who took algebra and those who did not, often referred to as the prima facie
effect, is 0.676 (not shown in Table 4). After applying different estimators with
within-group propensity scores, the adjusted estimates are smaller than the unad-
justed estimate, but most of them are still significantly positive. See Supplemen-
tal Appendix G for covariate balance, and we achieved acceptable covariate
balance between the treatment group and control group under each type of
propensity scores.

Among non-ML methods (i.e., MarginallPW, ClusteredIPW, and Grouped
IPW), we observe that ATE estimates based on within-group, random effects
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propensity scores were larger than the corresponding estimates based on within-
group, fixed effects propensity scores. The grouped IPW estimator produced similar
estimates to those from the marginal estimator in the ECLS-K data. As shown in
simulations above, ATE estimates from non-ML IPW estimators may not be reliable
if the propensity score model is misspecified. In contrast, the ML-based TMLE
estimator (i.e., GroupedTMLE) potentially produces more robust ATE estimates
when we suspect model misspecification, and we see that there were very small
variations in ATE estimates from the proposed grouped TMLE estimator across
different types of propensity scores. Regarding standard errors, the estimates from
fixed effects propensity scores have slightly larger standard errors than those from
random effects propensity scores. This is expected because the fixed effects models
yield larger variability mainly due to the small cluster size. Based on our simulation
results and “Our Modifications for TMLE” section, we assume that ATE estimates
from the grouped TMLE estimator with within-group propensity scores are more
reliable, robust estimates to bias from cluster-level unmeasured confounding and
model misspecification. Overall, we conclude that there is a positive effect of taking
an eighth-grade algebra course on students’ math achievement scores.

Next, we conducted a sensitivity analysis regarding different numbers of
groups when we used the most extreme Ks (here, K = 1 and K = 7), and we
provide the results in Table 5. Under ungrouped propensity scores (i.e., K = 1),
all the ATE estimates were slightly larger than the respective estimates in Table 4,
though the differences are not large enough to be statistically significant. Note
that under K = 1, the marginal IPW and grouped IPW estimators produce iden-
tical results. When we formed seven groups (K = 7), the estimates from IPW-
based estimators with random effects propensity scores and grouped TMLE
estimators were very similar to those in Table 4. The estimates from [PW-
based estimators with fixed effects propensity scores were somewhat different
from those in Table 4, and these differences may be due to the remaining imbal-
ance in the covariates with fixed effects propensity scores under K = 7; see
Supplemental Appendix H for details. Overall, our conclusions about the ATE
have not been altered by forming seven groups.

Finally, we examined whether our conclusions about the ATE would be
changed by biases from the individual-level unmeasured confounder Uj;. For the
sensitivity analysis, we focus on ATE estimates from within-group TMLE meth-
ods that produce more robust ATE estimates from cluster-level unmeasured
confounding and model misspecification. Following Chernozhukov et al.
(2021), we determined bounds on the target parameter t':

2.2
tt_r =1+ VB2, BzzSZ(—nlnz)7 §% .= EY”

1-n3 EZ
where Y,-]- = Y; — E[Y;|Z;,X;;, W,] is the residualized outcome using the
treatment and observed covariates, and Z; := Z; — E[Z;|X;, W)] is the
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residualized treatment using only the observed covariates. The term n? indicates
the explanatory power that the unmeasured confounder Uj; has in explaining the
outcome given the treatment and observed covariates, and the term 13 indicates
the explanatory power that the unmeasured confounder Uj; has in explaining the
treatment given the observed covariates. We assume that the unobserved con-
founder Uj; can explain at most 5% of the variation of the treatment and of the
outcome, after controlling for the observed covariates and/or the treatment. This
implies 1? = .05 and m3 = .05, and the corresponding squared bias is: B =5
% = 5% x 0.0026. After estimating S* for each method, we obtained the
following estimates of B: 0.076 for Grouped TMLE+Default, 0.074 for Grouped
TMLE+RePS, and 0.076 for Grouped TMLE+FePS.

Using the above sensitivity analysis, our adjusted 95% confidence intervals
for the ATE with the positive bias (i.e., +B) are: [0.165, 0.290] for Grouped
TMLE+Default, [0.124, 0.265] for GroupedTMLE+RePS, and [0.128,
0.274] for Grouped TMLE+FePS.> All the confidence intervals did not contain
0, and thus, we did not alter our conclusions about the effect estimates. We also
computed the adjusted 95% confidence intervals with the negative bias (i.e., —B),
and they are: [0.014, 0.138] for GroupedTMLE+Default [—0.024, 0.118] for
GroupedTMLE+RePS, and [—0.024, 0.123] for GroupedTMLE+FePS.
Confidence intervals with TMLE using multilevel propensity scores contained
0, and thus, we would alter our conclusions about the effect estimates if the
negative bias were present. From the results of the sensitivity analysis, we con-
clude that the ATE estimates from the grouped TMLE estimator with multilevel
propensity scores would not be robust if an individual-level unmeasured con-
founder exhibited negative bias.

Conclusions

The goal of this article was to provide a within-group approach to enhance the
performance of ensemble ML methods for causal inference, particularly, TMLE,
in multilevel observational data under cluster-level unmeasured confounding.
We proposed three different modifications for TMLE, so that it can be more
robust to cluster-level unmeasured confounding, and we compared the perfor-
mance of each modified TMLE method with that of the marginal IPW estimator,
the clustered IPW estimator, and the grouped IPW estimator. Through our simu-
lation studies, we find evidence to support the effectiveness of our proposal.
Training vanilla TMLE based on a within-group approach (i.e., GroupedTMLE
+Defaulf) makes TMLE robust to cluster-level unmeasured confounding, and in
particular, when the number of groups is more than or equal to 8, most of the bias
is eliminated. Using model-assisted TMLE using within group, multilevel pro-
pensity scores also helps remove bias, and the modification using fixed effects
logistic regression (i.e., Grouped TMLE+FePS) has the best potential for

85



Within-Group Machine Learning in Multilevel Studies

reducing bias from cluster-level unmeasured confounders. Additionally, unlike
parametric propensity score methods, our ML-based proposal has the potential
to increase robustness under model misspecification. Lastly, we demonstrated
the use of our proposed ML methods on the ECLS-K data, and we find that
there is a positive effect of taking an eighth-grade algebra course on math
achievement scores and our ATE estimates from within-group TMLE methods
with multilevel propensity scores may be sensitive to individual-level unmea-
sured confounding.

There are some limitations of this article. First, we did not explore how to
determine the appropriate number of groups for the within-group TMLE method.
Researchers can use methods such as the Elbow method or gap statistics method,
as well as examining within-group covariate balance to determine the optimal
number of groups. While we recommend using eight or more groups based on our
setting, the ideal number of groups will depend on various design factors such as
the number of clusters and the impact of unmeasured cluster-level confounders
on the outcome model. As this article primarily focuses on introducing within-
group ML methods, further investigation into this issue will be explored in future
research. Second, our additional modifications were based on using a simple
input tuning parameter inside TMLE (i.e., glW), and we did not utilize other
tuning parameters that may affect the performance of TMLE in clustered set-
tings, such as a different set of ensemble learning algorithms and the use of an
optional subject identifier. Third, we did not consider comprehensive simulation
parameters that characterize multilevel observational data, such as the sample
size and different clustering structure. We only used a fixed total sample size of
about 2,550 (170 clusters with a mean cluster size of 15) in the simulations,
which was comparable to the sample size of our ECLS-K data. We also did not
examine more complex cluster structure beyond two level data, such as three-
level data and cross-classified data. Fourth, we assumed SUTVA in multilevel
data, where the treatment is hypothesized to not have spillover/peer effects
through interference within clusters.

Despite these limitations, we believe that our modifications of within-group
TMLE can enhance the performance of original TMLE in multilevel observa-
tional studies faced with cluster-level unmeasured confounding and our main
ideas can be easily applied to other ML-based casual inference methods.
Although no amount of statistical methodology can remove all the omitted vari-
able bias, we believe developing robust methods helps practitioners narrow down
the sources of the omitted variable bias and have a more focused set of questions
about evaluating whether their effect estimates are plausibly causal or not. We
hope that the findings of this article can serve as useful guidelines for researchers
who like to fine-tune ML-based causal inference methods or apply the robust
machinery to multilevel observational data in order to assess causal effects of
programs or policies in education and the social sciences.
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Notes

1. Propensity score matching is one of the most frequently applied class
of propensity score methods. It creates matched sets of treated and control
units with similar values of the propensity scores, and it is commonly used
to estimate the average treatment effect (ATE) on the treated (ATT):
E[Y;(1) — Y;(0) |Z; = 1]. Two popular methods for creating matched sets
are greedy matching and optimal matching. In contrast, propensity score
stratification partitions the sample into nonoverlapping strata based on the
quantiles of the estimated propensity scores and estimates the ATE or ATT by
aggregating the stratum-specific treatment effects with some weights (Chang
& Stuart, 2022). See Chang and Stuart (2022) and Steiner and Cook (2013) for
more information on different types of propensity score methods.

2. The default implementation of targeted maximum likelihood estimation
(TMLE) in the R package tmle Version 1.5.0.2 uses three SuperLearner
(SL) algorithms for fitting the outcome regression and propensity score,
respectively. The default algorithms for the outcome regression are “SL.glm”
(generalized linear regression using Z, X, and W as predictors), “tmle.SL
.dbarts2” (discrete Bayesian additive regression trees with the number of prior
standard deviations (SDs) of 2), and “SL.glmnet” (elastic net regression,
including lasso and ridge). The default algorithms for the propensity score
are “SL.glm”(logistic regression using Z, X, and W as predictors), “tmle.SL
.dbarts.k.5” (discrete Bayesian additive regression trees with the number of
prior SDs of 0.5), and “SL.gam” (generalized additive models).

3. For within-group TMLE methods, the original 95% confidence intervals of
ATE from cluster bootstrap sampling are: [0.090, 0.214] for GroupedTMLE+
Default, [0.050, 0.192] for GroupedTMLE+RePS, and [0.052, 0.198] for
GroupedTMLE+FePS. We added the corresponding bias estimate to the con-
fidence interval for each TMLE method.
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