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Abstract. Both architects and engineers increasingly use design optimization in 
the early stages, but it is unclear how designers’ disciplinary background may 
influence their optimization strategies. In considering designs with multiple 
conflicting objectives, large datasets of options are often produced, which can be 
difficult to navigate. Architects and engineers may engage with optimization 
tools and their feedback differently based on their background, which can affect 
collaborative efforts and influence design outcomes. In this study, graduate 
architecture and engineering students with experience in optimization responded 
to a design task with both quantitative and qualitative goals. The task required 
participants to establish and explore their own parametric design variables, 
producing large datasets with numerical and visual feedback. Screen recordings 
of the design sessions were analyzed to characterize optimization events initiated 
by the designers, revealing when and how often they ran optimization routines 
and how they reviewed the optimization feedback. The study showed that the 
architecture students tended to use optimization later and iterate less than the 
engineering students, who relied on quantitative data more often to edit their 
design space and justify their decisions. Future efforts to incorporate design 
optimization into graduate education should be cognizant of these differences, 
especially in multi-disciplinary settings that encourage architects and engineers 
to mutually engage with data during collaborative design. 

Keywords: Multi-objective optimization, 3D parametric design, disciplinary 
design strategies, design study. 

1 Introduction 

Although architects and engineers both contribute professional expertise in designing 
our built environment, they often use different tools, which can hinder cross-
disciplinary considerations. However, optimization tools embedded in 3D modeling 
environments allow designers to consider many numeric and geometric objectives 
simultaneously, which can support integrated design decisions [1], [2]. The ability to 
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interactively create, manipulate, and analyze datasets with multi-objective feedback is 
advantageous in navigating visual and performance implications. While considering 
these possible advantages, it should be acknowledged that architects and engineers may 
use these tools in different ways—interdisciplinary environments do not simply merge 
the professions. In their design training, architects and engineers engage with design 
data in different forms, ranging from open-ended analyses to strictly defined problems 
with clear parameters and constraints. Understanding how developing designers make 
decisions in data-rich digital environments, and particularly how architects and 
engineers might show different optimization strategies, is a first step in facilitating 
better collaboration between the disciplines when optimizing. While it has been shown 
that parametric design has distinct design thinking characteristics [3], [4], optimization 
approaches are still being explored in these environments [1], [5]–[7]. This research 
thus asks: How does the disciplinary background of architecture and engineering 
design students relate to their optimization strategies during conceptual design? 

This paper presents an initial study which prompted architecture and engineering 
graduate students with experience in optimization to develop an atrium roof for a 
fictional university in the Southwestern United States. They were asked to account for 
daylight, solar radiation, and/or structural performance, along with the contextual 
appearance of their design. Participants developed a 3D parametric model for geometry 
and used optimization tools to account for the specified objectives. All variables were 
created by the designers, making them responsible for defining the structure of the 
optimization problem within an architectural design prompt. A survey of participants 
focused on educational experience. Screen recordings from the design sessions were 
collected and analyzed to capture significant events, assessing when and how frequently 
the designers navigate between performance feedback and design development. It was 
expected that while there would be recuring and similar behaviors exhibited by the 
designers, the focus of their optimization efforts would align with typical disciplinary 
characteristics, such as greater comfort with numerical feedback for engineers and more 
internalized decisions for the architects.  

2 Background 

2.1 Optimization in Building Design 

Optimization, as a design strategy, enables the consideration of quantitative objectives 
such that designers make more informed decisions [5]. This approach is useful in 
building design as the requirements of our built environment become more numerous 
and complex [8], [9]. Many design goals for buildings are inversely related, such as 
daylight and energy conservation, where the use of more glass will increase daylight, 
but not provide an as efficient U-value compared to an insulated wall for thermal 
performance. Conflicting relationships between objectives can make finding optimal 
design solutions in the objective space challenging, particularly when the design goals 
become more numerous, as in full building design [6], [10].  

Though formal mathematical optimization seeks a single answer, in practice, multi-
objective design optimization strategies often produce dense datasets in pursuit of 
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finding “better” solutions [11], which can be difficult for designers to sort. Optimization 
tools employ a range of algorithms within specialized interfaces for user interaction, 
such as displaying a 3D model with plots of the design and objective spaces. Figure 1 
shows an example of the relationship between 3D model space, variable design space, 
and optimization objective space. A designer develops the parametric model with 
variables, and the resulting geometry displays in the 3D space. At the same time, 
objective performance values are generated in an objective space. When an 
optimization process is used, the tool will rapidly iterate through the model, changing 
the values of variables to minimize the resulting objectives. In situations with no clear 
winner, a designer will need to edit their original design and rerun the optimization or 
select a design based on priorities or characteristics not captured in the model. Often, 
selecting a final design will rely on qualitative requirements, intuition, or preferences. 
Optimization tools can thus help designers make informed decisions while still 
allowing for design freedom. However, architects and engineers are trained differently, 
and thus may diverge on objectives, as well as how they engage with such tools. 
 

 
Fig 1. Navigating between the geometric and numeric feedback in the 3D modelling, 
optimization design process. 

2.2 Differences in Architecture and Engineering Education 

It has been shown that architects and engineers tend to design differently, with 
architects assuming partially defined problems and engineers pursuing well-defined 
problems [12]. This distinction in design strategy aligns with aspects of their design 
education. In contemporary architecture education, architects are trained to think 
spatially, often using 3D modeling tools in their first or second years of training, while 
there is still a call to improve visualization skills in engineering education [13]. The 
additional years of computer-space design experience can set architects apart from 
engineers as spatial design thinkers. Furthermore, parametric modeling has recently 
been incorporated in architecture education [14], [15] and some researchers have called 
for more parametric modeling in architecture practice [16]. However, research has 
shown that AEC students generally express a larger learning curve in becoming 
acquainted with 3D digital modeling tools than in learning the associated design 
concepts [17]. 

Engineering education characteristically emphasizes design decision making as 
well, though typically centered in the first-year engineering courses and senior design. 
It has been documented that engineering undergraduates typically struggle to negotiate 
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authentic problem- and project-based design tasks without “right” answers, since 
traditional coursework often emphasizes arriving at a correct, tangible solution, 
following established problem-solving methods [18]. Focusing on a final solution is 
imperative in our built world where design decisions have monetary and life-safety 
consequences. However, there has been a shift towards project-based learning in 
engineering education as engineers also need to be adept communicators, team 
members, and lifelong learners [19], [20]. An additional complication is that architects 
and engineers can define the outcome of a “design” differently: in practice, engineering 
design can be represented by algorithms and codes, numerical simulations, spreadsheet 
outputs, and physical prototypes, in addition to spatial computer-aided designs.  

The appropriate scoping of design tasks for education is critical, as design tasks with 
definitive solutions rarely allow for ambiguity of interpretation and can narrow 
thinking. Engineers with a low tolerance for ambiguity also create fewer novel ideas 
[21]. Similarly, solution-focused thinking can be a barrier for navigating optimization 
strategies because of conflicting qualitative and quantitative goals in building design. 
Selecting a “best” solution from optimized datasets relies on both informed 
performance feedback and the intuition of the designer. 

With this background, optimization has been incorporated in the education of 
architects and engineers with initial positive results [22]–[24]. Researchers have looked 
at how designers make decisions in a parametric modelling space, recognizing the 
difference between choices made by the designer’s knowledge versus decisions made 
by algorithms [25], [26]. Because variables are incorporated into a parametric model, 
there is the potential for unexpected designs to emerge. Developing a well-built 
parametric model, with appropriate constraints but freedom of exploration, requires 
effective parametric strategies [27]. Moreover, what might motivate when a designer 
makes decisions based their own intuition or on the suggestion of an algorithm is 
difficult to distinguish, particularly in the application of optimization. Disciplinary 
training likely influences the way that optimization occurs in designerly domains, 
though this relationship is not yet explored. Observing how disciplinary background 
influences optimization strategies can inform how the professions approach 
complicated datasets created during the process. To consider these questions, this 
research used a design study which asked graduate architecture and engineering 
students with experience in optimization to respond to a building design task. Their 
behaviors with the optimization tools were then compared. 

3 Methods 

3.1 Study Setup 

This study asked participants to respond to a conceptual design task with clear design 
goals using optimization techniques. The design interface provided numeric and visual 
feedback, while the optimization tool produced datasets with a range of possible 
solutions. In observing how the participants interacted with the tool and responded to 
feedback data, this study established patterns of behavior in relation to the disciplinary 
background and experience of participants. 
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Participant Recruitment, Background, and Selection. Participants were recruited 
from the graduate programs of the architecture and architectural engineering 
departments at a large university in the Northeastern United States. After expressing 
interest, potential participants completed an intake survey which collected data about 
educational background, previous professional work experience, parametric modeling 
skills, and their understanding of optimization. To qualify for inclusion, participants 
were required to have completed coursework in multidisciplinary building design and 
have at least 6 months of experience with parametric modeling and optimization. These 
prerequisites established their ability to adequately respond to the study task. However, 
the participants were graduate students and not yet experts in their field, which was 
taken into consideration when developing complexity in the design task and managing 
for design fatigue. The study was approved by the Institutional Review Board and 
participants were financially compensated for their time after completing their design 
session. 

Ten total participants (five from architecture and five from architectural engineering) 
were included in the study. Although this number does not establish statistical 
significance, the goal is to identify behavioral differences as an initial investigation into 
optimization techniques. Each participant represents a dense collection of data with 3+ 
hours of recorded files per person. This work follows methods evident in qualitative 
research to establish a framework for studies with more participants in the future.  

Design Session. To begin, participants watched a video brief which explained the 
design task and introduced the provided base file with site context. The video ensured 
that participants received a standard level of detail along with illustrations to 
demonstrate context. Participants were allowed to take notes or sketch while watching 
the video. They could return to their paper and pencil tools at any point in the session.  

Next, participants were situated in front of a workstation that was pre-loaded with 
unobtrusive eye-tracking software and hardware (i.e., no headgear), which was then 
calibrated to each participant. The researcher sat to the side and observed a mirrored 
computer screen to not intrude on the participants’ space. The researcher collected 
memos during this time, making notes about design choices, behaviors, and sketching. 
Although the researcher answered participant questions about the study’s instructions, 
the researcher did not provide feedback on the designs or optimization strategies. Once 
the participants were satisfied with a design, they wrote a design statement justifying 
their final solution and submitted 3-5 screenshots of their design to the researcher. 
Figure 2 shows the study events and data that was collected to compare behaviors based 
on disciplinary background experiences. 
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Fig 2. The study sequence, including a background survey, design session, and data collection. 

Design Task and Tools. Participants were asked to develop an atrium roof for a 
fictional university in the hot climate of Arizona. The site was chosen for its generally 
known sunny conditions, which can also be readily found online. The participants were 
shown site context and instructed to address two of three optional performance criteria: 
maximizing daylight, minimizing solar radiation, and maximizing structural 
performance. Their designs also had to consider contextual appearance. 

Participants used Grasshopper, a 3D parametric tool, to develop the geometry of 
their design in Rhinoceros, a 3D digital environment. Optimization was conducted 
using plugins built for Grasshopper. These tools are established environments for 
design optimization, being used in past research [28]. Although participants could use 
any available optimization tool, the participants chose Galapagos [29], Design Space 
Exploration [30], or Octopus [31]. They were provided a file with existing site context 
and a script with pre-built quick calculations for the objectives, as opposed to more 
detailed simulations. Daylight and solar radiation calculations accounted for area, 
materials, and geometry of the surface panels. Structural performance was measured by 
reducing elastic energy using the structural analysis plugin Karamba 3D [32]. Figure 3 
shows a sample of the environment interface with the provided site context and 
parametric canvas with the objective generators. 

 
Fig 3. Sample interface with the model space, parametric space, and objective calculations. 
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3.2 Data Collection and Evaluation 

The following three data streams were collected to answer the research question:  

Background Survey and Analysis. The survey collected data about participants’ 
educational background and experience with the study tools, which is used to compare 
participant experience and training to designerly behavior when engaging with 
optimization. A summary of background characteristics is given in the results.  

Screen Recordings and Analysis of Observational Screen Capture Data Analysis 
Methods. Screens were recorded using screen capture software from Eyetracking, Inc. 
The screen capture hardware and software were non-intrusive, meaning they are not 
wearable and do not interfere with a participant’s natural behavioral tendencies and 
processes. To analyze the recorded screen capture data from the N = 10 participants, 
methods consistent with observational qualitative analysis using content analysis 
methods [33] were employed, relying on a modification of an a priori framework of 
design behaviors informed from the FBS literature [34]. This was then honed to 
describe the significant observable design events that are captured via screen recording. 
The coding schema was discussed with the broader research team and validated in early 
rounds of analysis to ensure that it was comprehensive to define and verify behaviors 
in the parametric space, such as the placement of the first component in the parametric 
model space and interaction with the optimization tools. The coding scheme and 
definitions are presented below:  

(1) Activate Objective Feedback: Plugging geometry into the objective generators 
indicated a shift from focusing on visual model development to model performance. 
The importance of defining numerical objectives and appropriately incorporating them 
into design decisions has been established in previous assessments of optimization [35]. 

(2) Preparing Optimizer: Opening the optimization tool and beginning to adjust its 
settings signified a shift in participants attention from their own design decisions to 
engaging feedback from the optimization tool. All participants performed this act.  

(3) Run Optimizer: Running an automated optimization process showed that the 
participant began generating data for observation. Early and numerous optimization 
runs indicated an integrated, iterative process compared to plugging a model into the 
objective generators and running fewer automated processes later in the design session.  

(4) Review Results: Viewing either a data visualization in the tool or cycling through 
designs it produced indicated the beginning of this action. While some participants only 
glanced at the results, others considered the options for an extended period of time. 

To analyze the data, the researcher watched the recordings while qualitatively 
“coding” the design behaviors occurring over time through descriptive content analysis 
methods using a post-positivist paradigm [33]. The occurrences of significant events 
were plotted on session timelines like the one shown in Fig 4. 
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Fig 4. A sample session timeline labeling the key events identified in each session.  

Design statements. The participants also submitted a 150-250 word design statement, 
written to the fictional client, that presented the suggested solution. There were no 
explicit requirements of the design statement, and thus they varied in content. Thematic 
analysis methods were employed to characterize the dominant themes in the written 
design prompts, using an emergent coding scheme to understand the patterns, again 
relying on conventional qualitative content analysis methods, this time employing an 
emergent coding approach [33]. Four primary topics were noted in the statements: (1) 
the potential users, such as students; (2) the participant’s design vision, which could be 
as explicit as “I wanted the roof to look like a tree” or abstract as in wanting the space 
to be well shaded; (3) stating which of the three objectives were considered; and (4) 
referring to optimization or improving design performance. Comprehensively, the 
characteristics of the design statement were compared to the design behaviors and 
educational background of the participants to draw initial observations about the 
difference between architecture and engineering students when optimizing. 

4 Results and Discussion 

This study’s primary research question asked, how do the disciplinary background 
of architecture and engineering design students relate to their optimization 
strategies during conceptual design? To create an authentic design challenge, the 
study’s design task allowed the participants to develop their own geometries with 
variables that they defined. This unrestricted parametric space prompted solutions of 
different quality and parametric range. Although evaluation of the final designs falls 
outside the scope of this research, the range of design spaces developed by four of the 
participants are presented in Figure 5. While some participants built models with 
greater geometric variation, others focused on controlling smaller changes in the design 
space. The emphasis of this work, however, responds to the research question and 
considers differences of the designers’ design strategies, not their final designs. 
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Fig 5 Sample of two engineers’ and two architects’ designs, showing their final design and two 
of the variations of their parametric model. 
 
From the results of all participants, three influential dimensions of data emerge: 1) years 
of experience and confidence in the study’s tools, 2) patterns in the participants’ design 
sessions, and 3) characteristics of the designers’ final design statements. Collectively, 
these data suggest disciplinary strategies that increase or limit the inclusion of 
optimization feedback in design, which, when utilized effectively, can positively 
influence overall design performance. As a result, introducing design students to both 
qualitative and quantitative design goals throughout their education may equip them to 
more wholistically incorporate dataset feedback and optimization suggestions in their 
design decisions. 

4.1 Participant Background 

The participants’ background information is summarized in Figure 6. The Grasshopper 
self-proficiency is illustrated by a scale of 0 to 5. The architects had considerably more 
experience with Rhino, and some more experience with Grasshopper, but all reported 
experience levels were considered adequate to authentically respond to the design task. 
The architects also had greater professional experience, with participant A1 reporting 
the greatest number of years. The distinction between participants’ years with  
optimization were closer. This aligns with expectations from disciplinary backgrounds 
since architects are trained early in their education to use 3D modeling tools. Their 
expressed confidence with Grasshopper also reflects a comfort with the design tool, 
perhaps as a result of their design training. To consider the influence of these 
experiences, the background differences were included in the context of the design 
session behaviors. 
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Fig 6 Background information on the graduate student participants 

4.2 Session Sequences 

The design sessions were plotted to detail important events in the sequence. The results 
from the engineering graduate participants are presented in Figure 7 and the architecture 
graduate participants in Figure 8. The timeline labels when the participants plugged 
their model into the objective calculators (measured as a percentage of the session), 
when they started to prepare the optimization tool, and how long the session lasted. It 
also shows when the designer ran an optimization tool (indicated in yellow-green) and 
for how long they reviewed the results, if at all (indicated in brown). E2 and A2 did not 
review the datasets. Along the right side of the figure, the participants number of 
optimization runs, years of experience with the 3D modeling tool, and self-provided 
proficiency with Grasshopper are provided.  

Disciplinary differences in design sessions. The architecture students seemed to 
engage less significantly with the feedback data from optimization compared to the 
engineers and from the session plots, they ran the optimization tool a fewer number of 
times than the engineers. The architects also tended to wait until later in the design 
session to engage with the numeric feedback of the optimization tool, with the 
exception of Participant A1, who plugged their model into the objective algorithms 
earlier than all of the other participants. This designer also spent the longest amount of 
time considering the results of the optimization tool compared to the other participants. 
A primary difference between this participant compared to the others is years of 
professional experience, as was presented in Figure 8, where Participant A1 worked at 
least 4 more years in their disciplinary professional setting than the other participants. 
Although the architecture students tended to include optimization later in their process 
compared to the engineering students, years of work experience and maturity of a 
designer can influence optimization strategy, incorporating algorithmic thinking early 
in an optimization, conceptual design task. Additional research should be conducted to 
better determine the relationship between professional experience and optimization 
strategies. 
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Fig 7. Session plots for the engineering participants, showing key events in their design process. 

 

Fig 8. Session plots for the architecture participants, showing key events in their design process. 
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4.3 Design Statements 

Figure 9 summarizes the mentions of design topics within the participants’ statements, 
emphasizing when the topics were mentioned most with a yellow-green box.  

 
Fig 9. The mentions of design topics within the participants final design statements. 

Disciplinary differences in design statements. As was expected from the hypothesis, 
the architecture participants consistently referred to a design vision, stating what they 
imagined for the design, while the engineers all stated their quantitative objective goals. 
However, not all participants mentioned the users of the atrium space or referred to 
optimization in their statements. Despite the engineers incorporating optimization 
feedback earlier in their design sessions compared to the architects, they were not as 
explicit in mentioning optimization. Meanwhile, the architects, who engaged with 
optimization feedback later in their design sessions, mentioned the study’s focus of 
optimization more consistently. From their disciplinary education in design studios, 
they may be more practiced at reflecting a design task’s requirements, despite the 
spread of project-based learning in engineering [18]. Alternatively, architects may be 
less formal in their use of the term “optimize.” While engineers may view optimization 
and dataset processing as an inherent aspect of design and not important to mention to 
the client, the architects may have viewed optimization and dataset parsing as an 
influence on their design process, despite incorporating it less. 

4.4 Implications for Disciplinary Education and Approaches to 
Optimization Feedback  

Disciplinary background clearly related to different patterns in optimization behavior, 
but professional years of experience or greater comfort with the tools may have also 
played a role. During the design sessions, the more professionally experienced 
architects spent more time designing without optimization feedback for a greater 
percentage of time, rather than on optimization feedback. Alternatively, the engineers 
incorporated optimization feedback data into their design process more often. However, 
when writing about their final design, the architects mentioned optimization more 
consistently than the engineers. Other details of the design statements supported 
expected characteristics of the profession, such as the engineers stating their chosen 
objectives while the architects described their design visions. 

With these results, it may be that participants’ disciplinary training influenced their 
preparedness to navigate large datasets produced by optimization, but not recognize the 
role of optimization on their final design. While the engineers relied on optimization 
feedback iteratively to develop their design, they did not all include it in their statement. 
In contrast, the architects consider optimization later, often after large geometric 
decisions were already set, yet they mention optimization more readily. Although 
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architecture pedagogies tend to approach design decisions conceptually, rather than 
requiring numerical feedback, there may be advantages to incorporating quantitative 
approaches to design in the context of optimization. As quantitative metrics can 
increasingly be simulated and optimized, preparing architecture designers to navigate 
dataset feedback as a part of their education may be valuable. Figure 10 shows a 
summary of these relationships. 

 
Fig 10. Summary of the results, emphasizing the different characteristics of the disciplinary 
backgrounds, design sessions, and design statements. 

4.5 Study Limitations 

To elicit authentic design behavior from the participants, the design task tried to provide 
an approachable scenario with challenging goals and accessible expectations. However, 
limiting the design space to the framework of the computer programs may have affected 
the designers’ natural design process. Working within the constraints of cognitive 
fatigue was also central to the quality of data collection for this study. As has been 
noted previously, studying design behavior inherently impacts dimensions of the 
process, but this alone does not discredit the research, as the data must be considered 
within its context [36]. Additionally, this study did not assess the overall quality of the 
final designs and leaves the dimension of design efficacy for future investigations. 
Based on the participant background qualifications to participate in the study, it was 
established that the designers could develop an adequately performing solution in 
response to the design task. Future work intends to investigate design efficacy, but it is 
valuable to first establish differences in optimization behavior. 

5 Conclusion 

This study considered the optimization strategies of architecture and engineering 
graduate student designers compared to their disciplinary background when responding 
to a conceptual building design task that produced large datasets of solutions. Although 
the architecture students incorporated optimization and dataset feedback later in their 
design process and with less frequency compared to the engineering students, this was 
not true for one architecture student who had more at least 4 more years of professional 
work experience compared to the other participants. It may be that both disciplinary 
background and experience influence optimization behaviors. These initial findings 
may help instructors approach optimization curriculum with attention to the students’ 
disciplinary processes. It lays a groundwork for understanding design behavior when 
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students construct and use different performance feedback tools in combination with 
optimization tools. This work also establishes methods for investigation large datasets 
produced by optimization that can be applied to future investigations of optimization 
efficacy of both design students and design professionals. 
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