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Predicting implementation of
response to intervention in math
using elastic net logistic
regression

Qi Wang, Garret J. Hall*', Qian Zhang*' and Sara Comella

Department of Educational Psychology and Learning Systems, College of Education, Health, and
Human Sciences, Florida State University, Tallahassee, FL, United States

Introduction: The primary objective of this study was to identify variables that
significantly influence the implementation of math Response to Intervention
(RTI) at the school level, utilizing the ECLS-K: 2011 dataset.

Methods: Due to missing values in the original dataset, a Random Forest
algorithm was employed for data imputation, generating a total of 10 imputed
datasets. Elastic net logistic regression, combined with nested cross-validation,
was applied to each imputed dataset, potentially resulting in 10 models with
different variables. Variables for the models derived from the imputed datasets
were selected using four methods, leading to four candidate models for final
selection. These models were assessed based on their performance of prediction
accuracy, culminating in the selection of the final model that outperformed the
others.

Results and discussion: Methods, and Method...c emerged as the most effective,
achieving a balanced accuracy of 0.852. The ultimate model selected relevant
variables that effectively predicted RTI. The predictive accuracy of the final model
was also demonstrated by the receiver operating characteristic (ROC) plot and
the corresponding area under the curve (AUC) value, indicating its ability to
accurately forecast math RTl implementation in schools for the following year.

KEYWORDS

math achievement, response-to-intervention, elastic net logistic regression, multiple
imputation, random forest algorithm, variable selection

Introduction

Despite the well-known recommendations for practice regarding the use of response-to-
intervention (RTT; often, but not always, synonymous with multi-tiered systems of support;
Burns etal., 2016) to prevent and intervene on academic difficulties, there remains surprisingly
little evidence on what factors help understand schools’ adoption of RTT in math. Although
there is inconclusive evidence on the effectiveness of RTT as a prevention and intervention
system (particularly in reading, e.g., Balu et al., 2015), RTI (and tiered intervention models in
general) is well-established in the best practices for making data-based decisions on
intervention need and preventing school-wide academic difficulties (Lane et al., 2019;
Meclntosh and Goodman, 2016; Schulte, 2016). Thus, it is necessary to better understand the
conditions that predict schools’ adoption of RTI, especially in math, which has historically
lagged reading in RTT research. In this study, we investigate the predictors of elementary
schools’ adoption of math RTT using school-level data and school personnel surveys from a
large, United States national dataset (Early Childhood Longitudinal Study: Kindergarten
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Cohort 2010-11; ECLS-K: 2011). Our study uses novel machine
learning and cross-validation methods to identify the most prominent
predictors of schools’ RTT adoption.

What is RTI?

Response to intervention is a tiered model of intervention service
delivery for academic skills. The prototypical RTI model encompasses
three tiers of services, where Tier 1 (universal supports) refers to the
general education curriculum that all students receive, Tier 2 refers to
supplemental intensified interventions that support Tier 1 learning
(e.g., small group reading interventions twice a week), and Tier 3
refers to intensive individualized and frequent (4-5 times a week)
intervention designed to remediate substantial learning difficulties
(Mellard et al., 2010). Together, RTTs approach to implementation,
prevention, and intervention is heavily rooted in public health
prevention models (Schulte, 2016). RTT has been frequently contrasted
with “wait-to-fail” models of service delivery where intensive
intervention might not be provided until a student is referred for
special education for a learning disability (though RTT has historically
demonstrated its own shortcomings; Reynolds and Shaywitz, 2009).
To this end, in addition to the multiple tiers of RTI providing a
continuum of supports for all students, RTT also provides a mechanism
to identify students that do not respond to the general supports
available, which may open the potential for special education
evaluation for a specific learning disability (Burns et al., 2016). RTI is
typically applied in reading, math, and writing subject areas, and more
recent conceptualizations of RTT integrate this approach with tiered
social-emotional-behavioral supports (Lane et al., 2019; Mclntosh
and Goodman, 2016).

The nature of RTI warrants a school-wide implementation
approach to build systems capacity for tiered service provision,
including data collection (e.g., screening and progress monitoring),
intervention material development/curation, implementation, and
sustainment. Thus, while specific interventions within RTI may
be implemented for small groups (e.g., Tier 2) or individuals (e.g., Tier
3), the overall model operates as a school-wide effort of data-based
decision making based on screening and progress monitoring
(including entry and exit criteria for intervention), intervention
planning, development, and provision. Moreover, the public health
approach that emphasizes population-wide “inoculation” mechanisms
at tier 1 to increase the efficiency and efficacy of more intensive
interventions intends to promote school effectiveness and achievement
on a broad scale to mitigate the incidence of compounding academic
difficulties (Mellard et al., 2010).

Limitations of current math RTI
implementation research

Despite the systems-level focus of RTT and the popularity of this
model as a prevention system in K-12 schools, there is a dearth of
research on the factors that relate to whether schools use
RTI. Specifically, this is the case with math, as reading has traditionally
predominated in schools’ RTT practices. Although there are some case
studies and qualitative inquiry into the implementation of math RTT
models (Bouck and Cosby, 2019; Donovan and Shepherd, 2013;

Mason et al, 2019) as well as limited empirical investigation
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(Schumacher et al., 2017), the empirical research on factors predicting
the use of RTI is lacking. This is a significant limitation in
understanding the systematic factors that may determine whether
schools choose to adopt an RTT model for prevention and intervention
in math. The system capacity to adopt parallel RTT models for math
may be limited if schools are already devoting substantial resources to
other programs and initiatives (Mason et al., 2019). However, other
contextual factors may play a part in the adoption of math RTI,
including school resources, community contextual factors, and
personnel factors (e.g., staff training background; Mason et al., 2019).

Identifying predictors

With seemingly innumerable factors that could possibly relate to
whether schools use math RTT, a priori selection of specific predictive
factors may induce bias in predictions or unintentionally limit the
scope of predictive factors. Compounding the identification of
relevant predictors is the limited research base on school factors
associated with math RTT implementation, aside from factors that
would likely be related to the time and resources schools have
available to conduct math RTI (e.g., economic conditions, community
context, and student-related issues that guide service priorities).
Consequently, narrowing the scope of predictors is an exploratory
task at this stage.

Due to the large number of predictors and the relatively small
sample size, elastic net logistic regression with nested cross-validation
(nested CV) is a viable method to address the issues of predictor
selection. This choice was motivated by the potential for overfitting
when using traditional logistic regression (Hastie et al., 2006). The
elastic net logistic regression can effectively address this risk by
imposing penalties on the predictors, effectively reducing their
number. This strategy not only alleviates concerns related to overfitting
but also enhances the model’s predictive accuracy (Hans, 2011; Zou
and Hastie, 2005). Therefore, determining the appropriate penalties is
crucial when using elastic net regression. The most commonly used
method to select these penalties is cross-validation, with K-fold cross-
validation (CV) being particularly popular. However, Vabalas et al.
(2019) showed that K-fold CV would inflate the accuracy of a
regularized logistic regression with feature selection, especially when
the sample size was small. Hence, they recommended using nested CV
which could produce an accurate misclassification rate, even with a
small sample size.

The current study

In this study, we used data from Grades 1 (2011-2012) and 2
(2012-2013) of the ECLS-K: 2011 to investigate the school-level
factors in school year (SY) 2011-2012 that predicted elementary
schools’ adoption of math RTI based on school administrator reports
in SY2012-2013. Our primary research question was the following:
What are the prominent predictors of schools math RTI
implementation in the subsequent year? We hypothesized that factors
related to school resources, achievement, and school personnel (e.g.,
training) would predominate as math RTI implementation predictors,
as prior research has suggested that resource (e.g., staff training) and
logistical factors (e.g., available time for implementation) are relevant
to the adoption and implementation of math RTI (Choi et al., 2022;
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). We used regularized regression techniques with
nested CV to identify the most robust predictors. Due to missing
values in this dataset, we initially used the Random Forest algorithm
to create different imputed datasets. Subsequently, we applied elastic
net logistic regression with nested CV to build prediction models for
each imputed dataset. Since the penalties in elastic net logistic
regression were evaluated separately in each dataset, this resulted in
different penalties across the datasets, leading to variations in the

10.3389/fpsyg.2024.1410396

logistic regression models. To address this, we employed four variable
selection methods to identify the most robust predictors across the
various elastic net logistic regression models from different imputed
datasets, forming four candidate models. Then, four candidate models
were evaluated using an independent dataset. The candidate model
that exhibited the best performance among the four was selected as
the final model. The flow chart of the data analysis procedure for this
study is depicted in

Impute missing values, creating 10 imputed datasets.

For each imputed dataset, aggregate variables to the school
level.

Conduct elastic net logistic regression on each imputed dataset,
resulting in a total of ten elastic net regression models.

Select candidate models from 10 elastic net logistic regression
models using four methods of variable selection, resulting in a
total of four candidate models.

Choose the final model from four candidate models.

FIGURE 1
Data analysis procedure.
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Methods
Participating schools

The ECLS-K: 2011 is a multi-stage stratified nationally
representative sample of United States students from kindergarten
through fifth grade. The study initially samples base-year students
in kindergarten, and students are followed through fifth grade with
procedures to ensure the national representativeness of the student
samples at each grade level. In addition, kindergarten schools are
sampled to be nationally representative; all schools in the following
years are representative of the students in the sample attending
those
representative like the base year). We limit our sample of schools to

schools (rather than being intrinsically nationally
public schools present in both the Grades 1 and 2 Spring data
collection rounds. These grades represent the first period in the
dataset in which RTT implementation data is collected from schools,
so we choose these grades to avoid additional temporal dependency
in the measurement of RTI in grades 3-5. In addition, given the
potential increase in the use of RTI over time (or changes in the
uses of RTI over time), using data from earlier years (2012-2013)
represents an earlier stage in the uptake of RTI practices and thus
includes potentially more variability in how/why schools chose to
use math RTL.

Measures
QOutcome

School administrator report of RTI implementation

The outcome of our study is the school administrator’s report of
whether their school implemented math RTT in the Spring of 2012-
2013 (the Grade 2 round of data collection at the child level). This
data were collected as part of the school administrator survey
portion of the ECLS-K: 2011. Responses were recorded as “not
applicable” (e.g., schools in which RTI would not have been

» «

implemented), “no,” “partially implemented,” or “fully implemented.”
We collapse partial and full implementation into a single category,
resulting in a binary 0 (no)/1 (yes) indicator of RTL. It is unclear
what exactly would differentiate “partial” vs. “full” implementation
in this survey, so we focus on the presence of any math RTT practices
rather than a gradient of implementation (e.g., different forms of
partial implementation could exist but there is no way to determine
this, which reduces the practical value of differentiating

the responses).

TABLE 1 Covariates domains considered for RTI prediction.

10.3389/fpsyg.2024.1410396

Predictors

We selected a thorough set of predictors that represented
contextual (e.g., economic, community), student (e.g., enrollment,
reports of safety issues), personnel factors (e.g., teacher training), and
implementation factors (e.g., previous implementation of behavior and
writing RTI) to cover the reasonable potential range of reasons schools
may adopt math RTI. A sample of the predictors is displayed in Table 1.
All predictors are from the Spring semester of Grade 1 and have been
aggregated at the school level. The mean was utilized for continuous
variables for aggregation purposes, while the mode (we focus on the
most frequent category within a school) was employed for categorical
variables. The mean was chosen for aggregating continuous variables
because it is the most commonly used measure to describe central
tendency in continuous data (Clowes and Duke, 2022). This method is
also widely utilized in applied research for aggregating such variables
(e.g., Geronimus and Bound, 1998; Jacob et al., 2014; Moineddin and
Urquia, 2014). For categorical variables, the mode was selected because
it is often the most appropriate, and sometimes the only, method to
effectively describe the central tendency for nominal variables (Clowes
and Duke, 2022). The outliers in our dataset may not pose a problem,
as most continuous variables we used are at the school level, meaning
that students within the same school share the same value. However,
one variable, X4SESL_I, which is the continuous Socioeconomic Status
(SES) index, may have potential outliers. Therefore, we checked for
outliers in X4SESL_I using Z-scores for each school with at least 10
observations. If a Z-score exceeded 3, the observation was identified as
an outlier. The results showed that only one school (id = 1,816) had a
single outlier, while other schools did not have any outliers.

Procedure

Public-use ECLS-K: 2011 data were downloaded from the
National Center for Education Statistics website. Data cleaning and
analysis took place in Stata 17 (StataCorp, 2021) and R (R Core Team,
2021). To be specific, elastic net logistic regression with nested CV was
conducted by using nestcv package in R (Lewis et al., 2023). In
addition, missing value imputation carried out with the missForest
package in R (Stekhoven and Biithlmann, 2012; Stekhoven, 2013).

Data analysis

Multiple imputation for missing data
In this study, the percentage of missing values is 16.4%. Little and
Rubin (2019) described three missing data mechanisms: Missing

Covariate block Covariate description

School demographic factors

School-level sociodemographic factors, including funding mechanisms (Title 1 and 3), poverty, geographic locale (rural, suburban, etc.),

changes in enrollment/funding/staffing/class sizes, school-level race/ethnicity, and language status

Policy or procedural features

School policies and procedures for behavioral and academic intervention (e.g., implementation of other tiered systems for behavior and

writing, staff procedures for implementing interventions and using data to make decisions, and professional development of staff)

Staffing and administration

General school policies related to staffing and administrative procedures (e.g., academic standards, resource allocation, staffing, school-level

procedures for teaching such as using achievement groupings)

Areas of concern for school

Student problems at school (e.g., reports of whether the school has problems with weapons, theft, classroom disorder, and absenteeism)

Community engagement

Community engagement with the school (e.g., before and after-school care, having parent teacher conferences, community support)
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Completely at Random (MCAR), Missing at Random (MAR), and
Missing Not at Random (MNAR). MCAR situations are characterized
by missing values that do not correlate with either observed or
unobserved variables. MAR, on the other hand, describes instances
where missing values are linked to observed variables but not to
unobserved ones. MNAR pertains to cases where missing values are
related to unobserved variables. We assume that the missingness
present among school-level variables in this dataset is MCAR or
MAR given that much of the data comes from administrative
information about schools or information that is aggregated to the
school level. We would not expect missing data to be related to
endogenous, unobserved factors about the schools themselves
(MNAR). Rather, we expect that missing responses would be due to
random survey nonresponse or non-response related to other
systematic factors for which we have information (e.g., other school
and teacher characteristics).

Given MAR data, it was necessary to employ an imputation
method to address these missing values (Little and Rubin, 2019).
We employed the Random Forest (RF) algorithm for multiple
imputation. This choice was made because the RF algorithm (1) is well-
suited for data missing at random, (2) can effectively handle both
continuous and categorical variables, and most importantly, (3) does
not require parametric forms and can effectively account for any
non-linear relationships, complex interactions, and high dimensionality
in the imputation model (Stekhoven and Biithlmann, 2012).

The last advantage of RF is theoretically shared by other
nonparametric machine-learning methods. We selected RF based on
existing comparisons of RF against other parametric and
nonparametric machine-learning imputation methods. Pantanowitz
and Marwala (2009) conducted an analysis using empirical data to
compare five imputation methods: RF, Autoassociative Neural
Network, Autoassociative Adaptive Neuro-Fuzzy Inference System, a
hybrid of Random Forest and Autoassociative Neural Network, and a
hybrid of Autoassociative Neural Network and Random Forest. Their
findings revealed that Random Forest outperforms the other methods
in terms of both accuracy and computational efficiency. Similarly,
Stekhoven and Bithlmann (2012) explored four different imputation
techniques: RF, k-Nearest Neighbors algorithm, Missingness Pattern
Alternating Imputation and /;-penalty algorithm, and Multivariate
Imputation by Chained Equations, across various empirical datasets.
Their findings also revealed that RF had better performance than the
other methods generally, particularly in datasets containing both
continuous and categorical variables. Tang and Ishwaran (2017)
conducted a simulation study to evaluate the performance of various
Random Forest (RF) algorithms under three missing data
mechanisms. Their findings revealed that RF algorithms generally
performed well when data were MCAR or MAR, and the proportion
of missing data was low to moderate.

Furthermore, RF managed to maintain acceptable performance in
MNAR conditions when the variables were highly correlated (Tang
and Ishwaran, 2017). To maximize the information contained in the
datasets and to capture possible relationships between missing values
and other variables, all variables were used for imputation. This
further makes the imputation model robust to account for variables
responsible for missingness. Additionally, an independent complete
dataset was utilized to evaluate the generalizability of the models,
which also served as a sensitivity analysis for missing data imputation.

The RF imputation process was carried out 10 times, resulting in
a total of 10 datasets (Musoro et al., 2014; Rubin, 1987; Musoro et al.,
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2014; Zahid et al.,, 2020). Generally, the RF imputation employed in
this study involves modeling each variable with missing values as a
function of all other available variables, with the missing values being
predicted using a fitted random forest model. Specifically, an initial
guess for the missing values, such as the mean, is made. Variables are
then sorted by their percentage of missing values, and the one with the
fewest missing values is imputed first. This imputed variable is treated
as the response variable, with the others serving as predictors. An RF
model is constructed to predict the missing values of this variable, and
these missing values are updated by the RF-model-based predicted
values. Then, the variable having the next fewest missing data is
imputed based on the already imputed variable and others, following
the same procedure until the stopping criteria are met. The stopping
criteria involve observing an increase in the difference between the
newly imputed values and the previously imputed values across
observations for the first time, at which point the RF algorithm is
stopped. Importantly, this increase should be observed across all types
of variables. This non-parametric method, detailed by Stekhoven and
Biihlmann (2012), is effective regardless of whether the missing values
occur in independent or outcome variables.

When conducting the RF imputation, missing values in the two
variables “W4C4P_4TSTR” and “W4C4P_4TPSU” were not imputed,
as they represent the strata and primary sampling units (PSU) from
the complex survey design. Due to their nature, these variables were
not suitable for imputation using the RF algorithm like the other
variables. To address missing values of these two variables while
retaining as many observations as possible, a value of 0 was assigned
to indicate “not specified” for both variables. Although
“W4C4P_4TSTR” and “W4C4P_4TPSU” cannot be directly imputed
by the RF algorithm, they were included in the RF imputation process
to facilitate the imputation of other variables. We chose to include
these sampling variables in the RF algorithm because including them
in the model allows for control over the sampling design for the
ECLS-K dataset (Stapleton and Kang, 2018).

Elastic net logistic regression with nested
cross-validation under four methods of variable
selection

After completing the imputation phase, we conducted elastic net
logistic regression analyses using nested CV with 5-fold on each
imputed dataset. The elastic net regression was proposed by Zou and
Hastie (2005), which is expressed as:

2

1-
«2| 52 +alal|

N )4
!
arg min %z yi— ﬂ0+z,6'jxij

i=1 j=I

2

2
i . In our case,

p
where "ﬁ"l = Zlﬂj | and "ﬂllz =

oy A
yi=log 1-¢ ) the logarithm of the odds ratio of RTI

implementation to no RTT implementation (or the logit).

Here, "ﬂ "1 is the sum of absolute values of the coefficients for the
predictors, which is also called /; penalty, and "ﬂ"z is the sum of
squared coefficients for the predictors, which is also called /; penalty.
In addition, A controls the overall strength of regularization, while a
balances between LASSO and Ridge regression penalties. When a=1,
elastic net regression transforms to LASSO regression, and when o=0,
it becomes Ridge regression. The factor 1/2 before the [, penalty is
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included for mathematical optimization convenience and does not
alter the fundamental behavior of elastic net regression. Both LASSO
and Ridge regressions have limitations with highly correlated
predictors: Ridge regression tends to retain both variables but
produces similar coefficient estimates for these predictors, whereas
LASSO typically selects one predictor and discards the other. However,
elastic net regression strikes a balance between LASSO and Ridge.
This allows elastic net regression not only to retain both correlated
predictors but also to generate stable coefficient estimates. Therefore,
elastic net regression is chosen because it combines the advantages of
both LASSO and Ridge regressions (Zou and Hastie, 2005).

Elastic net regression selects variables by imposing two penalties
on variable coefficients; therefore, choosing the appropriate values for
A and « is crucial. In this study, these penalty parameters were
chosen via nested CV because Vabalas et al. (2019) have demonstrated
that nested CV is an effective cross-validation method, especially
when the sample size is small. The procedure for nested CV is
presented in Figure 2. A 5-fold nested CV is used in this study as an
example. The standard nested CV is conducted in six steps:

1. The entire dataset is divided into several folds; for example, into
5-fold. These serve as the outer folds of the nested CV. Each
outer fold is further split into an outer testing set and an outer
training set.

2. Each outer training set is further divided into several inner
folds. These inner folds consist of their own training and testing
sets, referred to as the inner training fold and inner testing fold,
respectively. These are used for feature selection,

hyperparameter tuning, and model building. The best model

for each inner fold is selected based on the smallest discrepancy
in performance between the inner training and testing sets,

indicating minimal overfitting.

10.3389/fpsyg.2024.1410396

3. The best model from an inner fold (for example, the model
from the third inner fold, highlighted in yellow) is then tested
using the corresponding outer testing set (in this case, outer
test fold 1, also highlighted in yellow).

4. Steps 2 and 3 are repeated for each outer fold, with each outer
fold producing a model.

5. The best features and tuning parameters are chosen from the
model associated with the outer fold that shows the least
overfitting. These are then used to train a model on the entire
dataset to create the final model.

6. The final model is applied to an independent dataset to validate
its generalizability.

All predictors were standardized before conducting elastic net
logistic regression. While elastic net logistic regression offers benefits,
it can potentially yield 10 distinct models corresponding to the 10
imputation datasets. This diversity presents a challenge in
synthesizing an overarching model from the 10 distinct versions.
Consequently, upon obtaining these 10 models, we employed four
distinct methods to select the final candidate models, resulting in
four separate candidate models. Each method yields its own model
for consideration in the final selection process. Four methods of
selecting the candidate models were comprehensively described in
the next section. To determine the final model, the candidate models
were subsequently assessed in an independent dataset to evaluate
their generalizability. All candidate models used predictors from the
math
RTI. Subsequently, the balanced accuracy between these predicted
math RTI values and the observed math RTT from the independent
dataset was calculated. The balanced accuracy is calculated as

independent dataset to generate predictions for

(sensitivity + speciﬁcity) /2, where in our case sensitivity is the rate
of correctly labeling schools as implementing RTT and specificity is

=md Outer Test Fold 1

Outer Test Fold 2

Outer Training Fold 4

Outer Training Fold 5

Inner Test
Fold 1

—

3 inner model

FIGURE 2
An illustration of nested CV.

Quter Test Fold 3

Inner Test

Fold 2
o ]

Inner Training Fold 4
e —

Inner Training Fold 5

Outer Training Fold 2
Outer Training Fold 3
Outer Test Fold 4

Outer Test Fold 5

Inner Training Fold 1

Inner Training Fold 2

Inner Test
Fold 3

Inner Training Fold 3

Inner Test
Fold 4
Inner Test
Fold 5
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the rate of correctly labeling schools as not implementing RTI
(Chicco et al., 2021; Garcia et al., 2009).

Because the predicted math RTI from the model is expressed as a
percentage, we utilized the optimal threshold to categorize the
predicted math RTT into two distinct categories. The optimal threshold
applied in this study is widely recognized in research for maximizing
both sensitivity and specificity (Coffin and Sukhatme, 1997; Perkins
and Schisterman, 2006; Unal, 2017). This approach is also called the
“closest-top-left-corner” method. This method utilizes the receiver
operating characteristic (ROC) plot, a graphical representation that
maps the True Positive Rate (Sensitivity) against the False Positive Rate
(1—Specificity) for various threshold values. Typically, the x-axis
denotes 1-Specificity, while the y-axis corresponds to Sensitivity.
Ideally, the best classifier would achieve 100% Sensitivity and 0% False
Positive Rate, which would be represented by the point (0, 1) on the
ROC plot, situated at the top-left corner of the graph. However,
attaining this perfect point is nearly impossible in practical scenarios.
Therefore, the “closest-top-left-corner” method selects the point on
the ROC curve that is nearest to (0, 1) as the optimal threshold,
representing the most effective balance between Sensitivity and
Specificity based on the available data. Beyond determining the
optimal threshold, the ROC plot is also utilized to calculate the Area
Under the Curve (AUC), which quantifies the area beneath the ROC
curve. An AUC of 1 indicates that the elastic net logistic regression
model is an ideal classifier, perfectly distinguishing schools by their
math RTI status. Conversely, an AUC of 0.5 suggests that the model
lacks discriminative ability (Fan et al., 2006; Obuchowski and Bullen,
2018). The final model which exhibited the best performance was
chosen.!

Considering the necessity for an independent dataset to assess
generalizability, we divided the dataset into two parts: one for model
building, which includes training and validating the model, and
another to serve as an independent dataset for conducting the
generalizability check of the model. In addition, to ensure the validity
of the generalizability assessment, we employed complete cases from
the original dataset, which were free from missing values, to serve as
the independent dataset. This independent dataset consisted of 127
schools. The rest of the cases were used for training and validating the
elastic net logistic regression model.

Given the prevalence of Likert scale items in our data, we faced
the challenge of potentially expanding the number of predictors
significantly if each were to be treated categorically. To address this
and streamline the modeling process, we adopted the guidance
provided by Harpe (2015), treating ordinal variables with five or
more categories as continuous, while those with four or fewer
categories were handled as categorical variables. This decision was
made to balance the granularity of the Likert-scale responses with
the practical considerations of model complexity
and interpretability.

The second consideration is related to the sampling design. Again,
we applied the same strategy to control for the sampling design as
we did in the missing value imputation stage. We included

1 The final model was selected based on having the highest balanced
accuracy. In cases where two candidate models exhibit identical balanced

accuracy, the model with the larger Area Under the Curve (AUC) was chosen.
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“W4C4P_4TSTR” and “W4C4P_4TPSU, representing strata and PSU,
to account for the sampling design. Consequently, these two variables
were included in the elastic net logistic regression analysis without
undergoing variable selection. The variables “W4C4P_4TSTR” and
“W4C4P_4TPSU” are inherently categorical and would typically
necessitate the creation of dummy variables. Upon thorough
examination of the cross-tabulations between “W4C4P_4TSTR” and
the response variable “math RTI, as well as “W4C4P_4TPSU” and
“math RTIL we identified many cells with zero observations. The

-

details of these cross-tabulations are presented in Tables 2, 3. Such a
distribution poses a risk of the complete separation or quasi-complete
separation problem in logistic regression (Devika et al., 2016). To
mitigate this issue, we strategically combined certain categories within
“W4C4P_4TSTR” and “W4C4P_4TPSU” This not only resolved the
separation problem but also curbed the risk of overfitting in the
final model.

Based on these two cross-tabulations, the re-categorization of
“W4C4P_4TSTR” and “W4C4P_4TPSU” is primarily determined by
the category of the response variable where math RTT equals 0, given
the majority of zero observations occur when math RTT is 0.
Additionally, the recategorization was implemented to balance the
sample sizes between the math RTI=0 group and the math RTI=1
group. This recategorization of “W4C4P_4TSTR® and
“W4C4P_4TPSU” was conducted at the school level. For
“W4C4P_4TSTR;” excluding those with missing values (NAs), schools
were categorized based on the math RTT sample size. Schools with
math RTT cell values of 14 or fewer were grouped together into the first
category and assigned a code of 1. Schools with math RTT cell values
in the range [15, 20) were grouped into the second category and coded
as 2, and those with math RTT cell values are equal to or greater than
20 were grouped into the third category and coded as 3. In addition,
those who have NAs were coded as 0. Regarding “W4C4P_4TPSU,
except for those who have NAs, the original categories 1 and 2 were
retained due to the substantial number of values present in the math
RTI cell, as they provided a sufficient sample size for both the math
RTI=0 group and the math RTI=1 group. The rest of the categories
were combined together and coded as 3. Also, those who have NAs
were coded as 0.

It is important to note that this category consolidation was
uniquely applied to “W4C4P_4TSTR” and “W4C4P_4TPSU” The
rationale behind this selective approach is twofold: First, other
categorical variables were subjected to the selection process of the
elastic net logistic regression, which inherently manages the separation
problem (Friedman et al, 2010; Miinch et al, 2021). Second,
“W4C4P_4TSTR” (49 categories) and “W4C4P_4TPSU” (12
categories) contain too many categories. After dummy coding these
variables, the number of predictors increases dramatically, potentially
leading to overfitting in the final model. This issue arises because
“W4C4P_4TSTR” and “W4C4P_4TPSU” are integral to accounting
for the sampling design and were retained without penalties.
Moreover, these two variables were not the central focus of our study,
further justifying their fixed inclusion in the model without the
application of elastic net penalties.

Four methods of aggregating results from
multiple imputation

As previously discussed, the process could yield 10 distinct
models, each corresponding to one of the 10 imputation datasets.

frontiersin.org



10.3389/fpsyg.2024.1410396

TABLE 2 Cross-tabulation between “"W4C4P_4TSTR" and “math RTI" based on school level.

WA4C4P_4TSTR

0 1 2 3 4 5 6 7 8 9 10 11 12
0 34 0 0 0 1 0 1 0 3 4 1 0 0
Math RTI
1 185 7 1 3 1 7 11 14 15 4 6 8 2
W4C4P_4TSTR
14 15 16 19 20 21 22 23 24 26 28 29 33
0 1 0 0 0 0 0 0 0 0 0 0 0 0
Math RTI
1 8 4 2 1 3 1 1 2 2 2 1 1 2
W4C4P_4TSTR
35 36 37 38 39 40 41 42 43 44 45 46 47
0 2 1 7 0 0 1 0 0 4 1 5 2 2
Math RTI
1 10 15 9 15 14 6 16 10 16 8 16 10 13
W4C4P_4TSTR
48 49 50 51 52 53 54 55 56 57 58 59 60
0 2 0 1 2 0 2 1 1 1 2 0 1 2
Math RTI
1 17 19 18 30 19 21 14 24 8 12 10 13 7
W4C4P_4TSTR
61 62 63 64 65 66 67 68 69
0 0 0 1 6 0 0 0 0 1
Math RTI
1 6 20 7 14 9 8 16 14 21

‘W4C4P_4TSTR: sampling strata; Math RTI: whether math RTT is implemented.

TABLE 3 Cross-tabulation between “W4C4P_4TPSU” and “math RTI"
based on school level.

WA4C4P_4TPSU

0 1 2 3 4 5 6 7 8
Math 0 34 24 24 3 0 1 2 2 10
RTI 1 185 221 262 60 12 6 11 6 4
W4C4P_4TPSU
9 10 15 18 19
Math 0 2 0 1 0 0
RTI 1 5 4 0 1 2

‘W4C4P_4TPSU: sampling PSU; Math RTI: whether math RTT is implemented.

Consequently, the crucial challenge lies in determining the candidate
models for the final selection, especially considering that these models
may contain feature-varying variables. Some studies have discussed
the variable selection of regularized linear regression (Musoro et al.,
2014; Gunn et al., 2023; Zahid et al., 2020). Although the studies by
Gunn et al. (2023), Zahid et al. (2020), and Musoro et al. (2014)
primarily utilized LASSO regression, the methodologies they explored
can be adaptable to elastic net regression. Consequently, we extended
their approaches to our elastic net framework, corresponding to
Methods,, Method.., and Method,y, respectively. Furthermore,
we proposed a new method to select the candidate model from 10
distinct models based on the generalizability (Method).

Methods,
Methods, initially performs elastic net logistic regression
separately on each imputed dataset, retaining variables selected in
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more than 50% of the cases. The variables “W4C4P_4TSTR” and
“W4C4P_4TPSU” were not selected because they were consistently
retained in the model. Average the coefficients of the selected
variables across the 10 models derived from imputed data to
construct the final candidate model. Then, the final candidate
model was fitted to independent data to evaluate its
generalizability. This method was selected based on empirical
evidence from Gunn et al. (2023), which demonstrated its superior
performance compared to two other variable selection methods.
The first alternative method involves using stacked datasets,
where training and testing datasets from multiple imputed
datasets are combined into a single stacked training dataset and a
corresponding stacked testing dataset. A regularized regression
model is then developed using the stacked training dataset and
validated using the stacked testing dataset. The second method
employs a group penalty approach,” where the group penalty
parameter is calculated jointly across the training datasets for each
imputed dataset. This approach ensures that models derived from
multiple imputed datasets incorporate consistent variables, with
each model’s performance evaluated against its respective testing
dataset before aggregating the final performance metrics across
all models.

2 The calculation of group penalty parameter, 4, as jointly determined using

all training datasets (Chen and Wang, 2013) is
2
M N p M 2 where M is the
min z Z Ymi =| Bm0 + Zﬂmjxmij +lz Zﬁm]
m=li=1 Jj=1 Jj=1\m=1

number of imputed datasets, N is the sample size, P is the number of
predictors.
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Method ¢

Method,.; proposed by Zahid et al. (2020), begins by
independently conducting elastic net logistic regression on each
imputed dataset. It retains variables that meet specific criteria of 1/ p,
where p is the number of predictors. Notably, the variables
“W4C4P_4TSTR” and “W4C4P_4TPSU” were excluded because they
were consistently retained in the model. To be more specific, the

criteria for choosing variables are:

1. For continuous variable X j associated with a parameter S >
indicating the jth (j=1,..
m=1,....M
variable is as follows:

.,p) predictor within the mth
) imputed dataset. The criterion for retaining the

izf:1|/%j,m|

1
P
ol

2. For a categorical variable X ; with K +1 categories, K dummy

variables are required. Each dummy variable is associated with
L....K;)
L,..., p) predictor within the

a parameter Sji ., which represents the kth (k =
dummy variable for the jth (j =
mth(m=1,....M
the variable is as follows:

) imputed dataset. The criterion for retaining

1 K, ~M |
VK, 2ka Lol P

>

SEE

m=1 |ﬂjk,m I

Zj:lM.Kj

Then, average the coefficients of the selected variables across the
10 models derived from imputed data, and fit the final candidate
model to independent data to evaluate its generalizability.
(2020)
predictors (40,80,200,500) and proportions of missingness
(0.05,0.1,0.2,0.3) on Method,, with a small sample size (100). The
results revealed that Method,, can relatively balance the trade-off

Zahid et al. explored the influence of the number of

between selecting relevant and irrelevant variables. Typically, selecting
more relevant variables tends to also increase the selection of irrelevant
variables. In addition, Method...; can be used when the number of
predictors exceeds the sample size, a scenario where the method using
group penalty fails to select variables.

Method.,

Method,, proposed by Musoro et al. (2014), differs from previous
methods. While the earlier methods ﬁnahze the model through
variable selection, this method does not engage in selecting variables.
Instead, its aim is to adjust the parameter estimates of the final model.
The procedure for Method,; is outlined as follows:

1. Run elastic net logistic regression independently for each
imputed dataset.

2. Disregard the variable distinctions among each model and
compute the average coefficients for all parameters across the
10 models, Y fin = o+ ﬂ X, where f3; ;s the coefficient for
the predictor ]( ,p)
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3. Use bootstrapping to obtain the calibration parameters for the
parameter adjustment of the final model. Here is the procedure
of bootstrapping:

a. For a bootstrap run, the same observations were selected
10) to

Lk
mp;

across 10 imputed datasets (imp;, where i =1,...,
obtain corresponding bootstrapping datasets,
(i=1,...,10).

b. Rebuild the elastic net logistic regression model based on
the bootstrapping datasets, imp;.

c. Repeat a and b 100 times.

4. Aggregate each variable in the imputed datasets into a long-
stacked dataset, so that the size of the stacked dataset is 10
times that of the original dataset. For each bootstrap run, the
predicted response variable is calculated using the coefficients
derived from the elastic net regression model built on the
bootstrap sample. Specifically, the predicted response variable
is computed by multiplying the elastic net regression
coefficients with the predictors in the stacked dataset. For
predictors not selected by the elastic net regression, their
coefficients are set to zero. Subsequently, calibration parameters
are computed by regressing the response variable in the stacked
dataset against the predicted response variable. The predicted
response variable from bootstrapping is calculated using the
final model from step 3 and predictors from the stacked

This

symbolized as Yiyp = @aqj + Bad Y imp" -

dataset. relationship is
5. Then, compute the average of a4q; and SBuq; over these 100
bootstrap iterations to obtain @,y and fByg;. Finally, adjust the
final model for intercepts and all coefficients from the
imputed datasets by

using the
equation Gady +Badj a+ ﬂj ij .

6. Fit the final model to the independent data to assess
the generalizability.

Methodge

The final method, Method,.,, is a novel approach introduced by
this study. Method,, initially conducts elastic net logistic regression
independently on each imputed dataset. Each model is then fitted to
independent data, with the final candidate model being selected based
on achieving the highest balanced accuracy.

Evaluation criteria for the model performance
Given that the response variable math RTI is binary, accuracy
serves as a suitable metric to assess the model performance.
However, the response Variable, math RTI, in this study is
imbalanced. Sun et al. (2009) claimed that standard classifiers,
such as the logistic regression and decision tree, tended to ignore
the rare cases, potentially compromising the accuracy of the
model’s predictions. Given the presence of an imbalanced
response variable in the dataset, weights were computed for each
observation. These weights were then applied to the regularized
logistic regression to ensure a balanced 50:50 weight ratio across
the two categories. Also, as we focus on the prediction accuracy
for both implementing and not implementing RTI, balanced
accuracy is a more precise metric as compared to regular
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accuracy. Furthermore, we also used the receiver operating
characteristic (ROC) plot and the corresponding area under the
curve (AUC) to delineate the performance of the elastic net
logistic regression.

Results
Descriptive statistics

The total sample size at the individual level was 6,647. After
aggregating variables to the school level, the sample size was reduced
to 1,130. Since math RTI was investigated at the school level, the
final sample size should be 1,130. Within the selected data, there
were 37 continuous predictors and 54 categorical ones. Upon
creating dummy variables for categorical variables, the analysis
included a total of 160 predictors. Across the 10 imputed datasets,
the count of cases where math RTI was not implemented ranged
from 94 to 97. Conversely, for cases where math RTI was
implemented, the count lied between 1,033 and 1,036. This data
suggest that the majority of schools have adopted math
RTI. However, due to the large number of predictors, descriptive
statistics of predictors were omitted.

Four methods of variable selection and the
final model

Table 4 displays the candidate models derived from four
methods. Except for variables of the sampling design,
W4C4P_4TSTR and W4C4P_4TPSU, we found Method,.,
Methods,, and Method.,. selected the same variables. Method,q; does
not select variables from the 10 models derived from imputed data.
Instead, it retains all variables from these 10 models and adjusts
their coefficients. As a result, Method,y; includes all variables
produced by the imputed data, resulting in a slightly larger
variable count.

Table 5 presents the balanced accuracy and AUC values associated
with the four methods. Methods, and Method,,.r achieved the highest
balanced accuracy, both equal to 0.852, and also demonstrated the
highest AUC values. In contrast, Method,, also showed commendable
balanced accuracy at 0.829, while Method, recorded the lowest
balanced accuracy of 0.491 among the four methods. Given the
superior performance of Methods, and Method,..;, the final model is
based on these methods, as they produced identical results. Therefore,
the final model is defined by the following logistic regression model:

P(Y=1
log[%] =.186—.038x W4C4P_4TPSU.1+.166 x W4C4P_4TPSU .2

—310xW4CP_4TPSU.3+.799xWA4C4P_ATSTR.1+.112xW4C4P_4TSTR.2
—.102xW4C4P_4TSTR.3-1.072x SARTLMTH 2.

Figure 3 is the ROC plot for the final model derived from Methods,
and Method,,.r. Based on the balanced accuracy and the ROC plot, it
is concluded that the final model effectively classifies math RTI.
Table 6 presents the tuning parameters for the 10 imputed
datasets.
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TABLE 4 Candidate models from four methods.

Methods Variables

W4C4P_4TSTR.1, W4C4P_4TSTR.2, W4C4P_4TSTR.3,
W4C4P_4TPSU.1, W4C4P_4TPSU.2, W4C4P_4TPSU.3,
S4RTLMTH.2

Method,,

W4C4P_4TSTR.1, W4C4P_4TSTR.2, W4C4P_4TSTR.3,
W4C4P_4TPSU.1, W4C4P_4TPSU.2, W4C4P_4TPSU.3,
S4RTLMTH.2

Methods,

‘W4C4P_4TSTR.1, W4C4P_4TSTR.2, W4C4P_4TSTR.3,
‘W4C4P_4TPSU.1, W4C4P_4TPSU.2, W4C4P_4TPSU.3,
S4RTLMTH.2

Method.,«¢

W4C4P_4TSTR.1, W4C4P_4TSTR.2, W4C4P_4TSTR.3,
W4C4P_4TPSU.1, W4C4P_4TPSU.2, W4C4P_4TPSU.3,
S4RTLMTH.2, S4RTLSOC.2

Method,;

Variables beginning with S4 are administrator-reported; variables beginning with A4 are
teacher-reported; variables beginning with X4 are data collected by/reported to the ECLS-K.
‘W4C4P_4TSTR: sampling strata, W4C4P_4TPSU: sampling PSU, S4RTLMTH: whether
math RTI is implemented in Grade 1, S4RTLSOC: whether behavior/social RTT is
implemented in Grade 1. Variables with numbers indicate those are dummy variables for
corresponding categorical variables. For dummy variables with “RTL” (which indicates the
variable measuring administrator-reported RTI implementation), the baseline represents full
implementation. A value of “2” denotes no implementation, while “1” is partial
implementation.

TABLE 5 Generalizability of candidate models from four methods using
the independent dataset.

Balanced accuracy AUC

Method,., 0.829 0.855

Methods, 0.852 0.883

Method..¢ 0.852 0.883

Method,g; 0.491 0.329
Discussion

Response to intervention has been prominent in research for
several decades, and since the early 2000s, it has become much more
prominent in practice both through individual districts’ uptake of the
practice as well as through recommendations in federal and state
policies (Jimerson et al., 2016). The overall process, typically involving
a three-tiered system to classify the intensity of students’ academic
needs, involves many moving components, including implementation
of assessment practices like screening and progress monitoring,
managing data-based decisions based on screening and monitoring
data, and selecting appropriate curricula and interventions to
implement at each tier. Each component of RTI requires substantial
human, material, and financial resources, and there is substantial
between-school variability in the capacity to allocate resources and
sustain implementation. However, little is known about the factors
that relate to schools’ decisions to use and sustain RTT, though it is
reasonable to assume economic and human resources would be a
primary driver.

In this study, we investigated the predictors of schools’
implementation of math RTT in Grade 2 using predictors from the
prior year. There is a dearth of research examining the factors that
relate to schools’ decision to use RTT in math. Historically, large-scale
studies of reading RTT and its implementation have predominated the
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ROC Plot for the Final Model
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FIGURE 3
The ROC plot for the final model.
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TABLE 6 Tuning parameters of 10 elastic net logistic regression models.

Imputed dataset 1 0.235 0.500
Imputed dataset 2 0.102 0.800
Imputed dataset 3 0.136 1.00
Imputed dataset 4 0.160 1.00
Imputed dataset 5 0.109 0.600
Imputed dataset 6 0.133 1.00
Imputed dataset 7 0.131 1.00
Imputed dataset 8 0.133 1.00
Imputed dataset 9 0.137 0.600
Imputed dataset 10 0.135 0.800

literature (e.g., Balu et al., 2015), and the decisions to implement math
RTT in addition to other initiatives in place (Mason et al., 2019) may
be unique relative to decisions guiding implementation of other
prevention and intervention systems. Thus, it is important to establish
an empirical basis for the factors that relate to schools’ uptake of an
initiative like math RTI, which is both complex in terms of the school
system dynamics needed to sustain its implementation and resource-
demanding (Choi et al., 2022; Mason et al., 2019).

Results of our analyses indicate that three of the four methods
evaluated for selecting predictors were equivalent in model balanced
accuracy. Of these three methods, Methods, and Method,,.c equally
demonstrated the strongest performance based on the AUC and
balanced accuracy. All models demonstrated that previous math RTT
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implementation was a predictor of future math RTI implementation.
Additionally, RTT implementation for social/behavioral skills in Grade
1 emerged as a potential predictor for math RTI implementation, as it
was included in several elastic net regression models. This finding is
further supported by the correlation analysis, which showed that RTT
implementation for math and social/behavioral skills in Grade 1 were
the top two variables most strongly correlated with math RTI
implementation in Grade 2. Specifically, the correlation for math RTT
implementation in Grade 1 was 0.602, while the correlation for RTI
implementation for social/behavioral skills in Grade 1 was 0.224.
Notably, RTT implementation for math in Grade 1 exhibited a
significantly higher correlation with math RTI implementation in
Grade 2 compared to other variables. This could suggest that
concurrent RTI infrastructure may be a determinant of math RTI
implementation, though this may not be as robust of a predictor given
the inconsistency of its selection into the models. Given that this is the
first study to employ these methods for predicting RTI
implementation, it is essential to conduct additional research
examining the school-level and contextual factors relating to schools’
math RTT implementation decisions. Qualitative reports of math RTT
implementation indicate student economic conditions, teacher
professional development, and other implementation priorities are
relevant factors in the math RTI implementation process (Mason
etal., 2019).

Different methods of variable selection
In this paper, we used four methods, Method,.,, Methods,

Method..., and Method,;, to select candidate models from 10 distinct
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models derived from 10 imputed datasets. Then, four candidate
models were evaluated in the independent dataset and the final model
was determined based on the best performance. From Tables 4, 5,
we could observe that Methods,, and Method,,. selected the same
variables and exhibited identical balanced accuracy and AUC in the
independent dataset. This consistency is due to the robustness of the
RF imputation method used in our study against multiple
imputations. To further confirm this robustness, we generated an
additional 30 imputed datasets, bringing the total to 40. Among these,
only two yielded elastic net regressions with different variables, while
the remainder produced identical elastic net regressions, albeit with
varying parameter estimates. This consistency ensures that both
Methods, and Method,,. select the same variables across multiple
imputations. Moreover, the variable S4RTLMTH.2, which is included
in the final model, consistently appears in all elastic net models.
Consequently, the average coefficient for S4RTLMTH.2 was
calculated across the multiple imputed datasets, resulting in the same
final model being produced by both Methods, and Method.,.

In contrast, although Method,, selected the same variables as
Methods, and Method,,.s it achieved different balanced accuracy and
AUC on independent data. This variation arises because Method,,
selects only one model from the candidate models based solely on
AUC, without averaging the coefficients of the selected variables
across these models. Consequently, the parameter estimates in the
final model of Method,, differ from those in Methods, and Method..
In scenarios where the outcome is imbalanced, the AUC can provide
an overly optimistic view of a model’s performance, particularly
favoring the majority class. Therefore, when the outcome is
imbalanced, balanced accuracy is a more appropriate index than AUC,
because balanced accuracy takes this imbalance into consideration.
Given the similar performance observed with Method,.,, Methods,
and Method,.; researchers are encouraged to employ all these
approaches in future studies. Doing so can allow these methods to
complement one another, providing a more comprehensive
understanding of the study. However, Method,; is not recommended
as it underperformed compared to the other three methods and
potentially includes too many variables, which may lead to overfitting.

Method,; is different from the other three methods because it
retains all variables from 10 distinct models derived from 10 imputed
datasets and adjusted model coefficients rather than selecting
variables. This retention of all variables can result in an overly complex
final model, prone to overfitting. The relatively poor performance of
Method,y; may be attributed to its approach of calculating the
calibration parameters based on the stacked dataset of these 10
imputed datasets. The 10 imputed datasets were used both for
constructing the elastic net logistic regression model and for
computing the calibration parameters. This repeated use of the same
datasets may cause model overfitting, which could degrade
performance and compromise generalizability. Another potential
reason for Method,y’s poor performance might be that the
bootstrapping datasets do not accurately represent the original dataset,
due to the nature of bootstrapping involving repeated sampling from
the original dataset with replacement. Given the significant imbalance
in the outcome, the class distributions in the bootstrapping data could
differ markedly. Moreover, since the RF imputation produced
relatively stable imputed datasets, and Method, consistently selected
the same observations across these imputed datasets for calibration in
each run, this approach could cause all bootstrapping datasets in each
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run to differ significantly in outcome categories from the original
dataset, potentially biasing the calibration parameters.

When selecting variables for regularized models with multiple
imputations, there are generally two approaches to variable selection.
The first involves fitting regularized models separately for each
imputed dataset, which may result in distinct models, and then
applying thresholds to select variables. The second approach aims to
create a unified set of variables across all regularized models. Methods,
and Method,,.r adhere to the first approach. Initially, each method fits
aregularized model separately for each imputed dataset. Variables are
then selected based on specific thresholds: for Methods, variables
with non-zero coeficients must appear in more than 50% of the cases,
whereas for Method,.;, the magnitude of the coeflicients must
be equal to or greater than 1/ p. The second approach can be achieved
either by using a stacked dataset or by applying a group penalty, as
described by Gunn et al. (2023) in their second and third methods.
As previously mentioned, the stacked method combines multiple
imputed datasets into a single stacked dataset, then applies regularized
regression to this unified dataset. This approach can select unified
variables because it ultimately chooses variables from one dataset. On
the other hand, the method using a group penalty applies the group
penalty across all imputed datasets, assuming that if a variable is
important, it should be selected in all imputed datasets. This method
produces unified variables by jointly fitting the group penalty to all
imputed datasets. By adopting these two methods, researchers can
bypass the need to select a threshold when formulating the
final model.

No single variable selection method consistently outperforms
others. Previous studies, such as Wood et al. (2008), have shown that
the performance of methods using thresholds and stacked datasets is
comparable. Du et al. (2022) favored the method using a stacked
dataset over the group penalty method for achieving better coefficient
estimates and reduced computation time. Conversely, Gunn et al.
(2023) observed that the stacked dataset method underperformed
compared to methods using thresholds and the group penalty in an
empirical dataset. Zahid et al. (2020) noted that while the method
using the group penalty can correctly identify relevant variables, it also
tends to select more non-informative variables. Moreover, this method
fails to select variables when the number of predictors exceeds the
sample size. Additionally, the efficacy of the method using the group
penalty is highly dependent on the number of imputations. Du et al.
(2022) made similar observations regarding the dependency on the
number of imputations for the group penalty method, noting a more
significant improvement with this approach compared to the stacked
dataset method as the number of imputations increased. Previous
studies have not reached a consensus on which method is definitively
superior. Therefore, researchers are encouraged to employ multiple
variable selection methods to assess the robustness of the
selected variables.

Practical implications

The current results confirm practical assumptions that existing
initiatives (previous social/behavioral RTT implementation) relate to
RTI implementation. Although the first study to empirically
demonstrate these relations, these findings are likely unsurprising to
applied researchers and school personnel. The capacity and motives
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to initiate math RTT implementation will be constrained by other
existing priorities and competing resources for an added initiative
(Mason etal., 2019). However, it is important to note that our results
suggest that previous math RTI implementation is consistently
selected as a predictor, suggesting strong stability in schools” decisions
to use math RTI over these two school years. In the absence of
contextual and human resources predictors, it may be that initial
uptake of RTI is a more idiosyncratic process rather than
systematically attributable to specific, quantifiable factors. As a result,
research and practice would benefit from additional mixed methods
work to understand the experiential processes involved in RTI
implementation and whether this relates to other systematic factors
at the school level.

Limitations and future directions

One limitation of this study is the small size of the independent
dataset. The limited sample size means that some categories of
categorical variables cannot be validated in the independent dataset, as
it lacks representation of those categories. For example, there were
three categories of W4C4P_4TPSU when constructing the elastic net
logistic regression model. However, in the independent dataset, only
one category of W4C4P_4TPSU was present. Therefore, limited sample
size of the independent dataset compromises the generalizability of the
final model to some degree. The second limitation of this study lies in
our comparison of four methods using empirical data. While the
empirical results offer valuable insights, a thorough simulation study is
necessary to comprehensively evaluate the four variable selection
methods. Moreover, the finding of robustness of the RF imputation is
also based on empirical data. A simulation study is needed to fully
investigate the relationship between the RF imputation method and the
number of imputations. Last, the reports of math RTT implementation
in Grade 2, which we further collapsed into 0=no implementation or
1 =partial/full implementation are highly limited and may not
accurately represent the presence of core components of math RTI
implementation (Lembke et al., 2012). As a result, the nature of these
schools implementing math RTI is unclear. More accurate criteria for
differentiating math RTT implementation is essential in future studies
to accurately capture the factors that go into schools’ uptake and
implementation sustainment. Moreover, the use of school-level data in
this case may not accurately represent actual school-level factors:
teachers reports are not representative of all teachers within each
school, nor are aggregated student-level data representative of all
students in that grade and school. Finally, the current study cannot
differentiate how “partial” and “full” RTI would have been interpreted.
Future research should examine the predictors of different degrees of
implementation in addition to the specific processes that
are implemented.

Conclusion

Given the increasing uptake of tiered intervention systems in
schools (Choi et al., 2022), such as RTT, there is a pressing need to
identify the factors relating to schools’ implementation decisions. Our
current study revealed that existing RTI systems were primary
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predictors of schools’ implementation. This is a first step in developing

an empirical basis for predictors of school-wide math

RTT implementation.
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