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Introduction: The primary objective of this study was to identify variables that 

significantly influence the implementation of math Response to Intervention 

(RTI) at the school level, utilizing the ECLS-K: 2011 dataset.

Methods: Due to missing values in the original dataset, a Random Forest 

algorithm was employed for data imputation, generating a total of 10 imputed 

datasets. Elastic net logistic regression, combined with nested cross-validation, 

was applied to each imputed dataset, potentially resulting in 10 models with 

di�erent variables. Variables for the models derived from the imputed datasets 

were selected using four methods, leading to four candidate models for final 

selection. These models were assessed based on their performance of prediction 

accuracy, culminating in the selection of the final model that outperformed the 

others.

Results and discussion: Method50 and Methodcoef emerged as the most e�ective, 

achieving a balanced accuracy of 0.852. The ultimate model selected relevant 

variables that e�ectively predicted RTI. The predictive accuracy of the final model 

was also demonstrated by the receiver operating characteristic (ROC) plot and 

the corresponding area under the curve (AUC) value, indicating its ability to 

accurately forecast math RTI implementation in schools for the following year.
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Introduction

Despite the well-known recommendations for practice regarding the use of response-to-

intervention (RTI; o�en, but not always, synonymous with multi-tiered systems of support; 

Burns et al., 2016) to prevent and intervene on academic di�culties, there remains surprisingly 

little evidence on what factors help understand schools’ adoption of RTI in math. Although 

there is inconclusive evidence on the e�ectiveness of RTI as a prevention and intervention 

system (particularly in reading, e.g., Balu et al., 2015), RTI (and tiered intervention models in 

general) is well-established in the best practices for making data-based decisions on 

intervention need and preventing school-wide academic di�culties (Lane et  al., 2019; 

McIntosh and Goodman, 2016; Schulte, 2016). �us, it is necessary to better understand the 

conditions that predict schools’ adoption of RTI, especially in math, which has historically 

lagged reading in RTI research. In this study, we investigate the predictors of elementary 

schools’ adoption of math RTI using school-level data and school personnel surveys from a 

large, United States national dataset (Early Childhood Longitudinal Study: Kindergarten 
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Cohort 2010-11; ECLS-K: 2011). Our study uses novel machine 

learning and cross-validation methods to identify the most prominent 

predictors of schools’ RTI adoption.

What is RTI?

Response to intervention is a tiered model of intervention service 

delivery for academic skills. �e prototypical RTI model encompasses 

three tiers of services, where Tier 1 (universal supports) refers to the 

general education curriculum that all students receive, Tier 2 refers to 

supplemental intensi�ed interventions that support Tier 1 learning 

(e.g., small group reading interventions twice a week), and Tier 3 

refers to intensive individualized and frequent (4–5 times a week) 

intervention designed to remediate substantial learning di�culties 

(Mellard et al., 2010). Together, RTI’s approach to implementation, 

prevention, and intervention is heavily rooted in public health 

prevention models (Schulte, 2016). RTI has been frequently contrasted 

with “wait-to-fail” models of service delivery where intensive 

intervention might not be provided until a student is referred for 

special education for a learning disability (though RTI has historically 

demonstrated its own shortcomings; Reynolds and Shaywitz, 2009). 

To this end, in addition to the multiple tiers of RTI providing a 

continuum of supports for all students, RTI also provides a mechanism 

to identify students that do not respond to the general supports 

available, which may open the potential for special education 

evaluation for a speci�c learning disability (Burns et al., 2016). RTI is 

typically applied in reading, math, and writing subject areas, and more 

recent conceptualizations of RTI integrate this approach with tiered 

social–emotional-behavioral supports (Lane et al., 2019; McIntosh 

and Goodman, 2016).

�e nature of RTI warrants a school-wide implementation 

approach to build systems capacity for tiered service provision, 

including data collection (e.g., screening and progress monitoring), 

intervention material development/curation, implementation, and 

sustainment. �us, while speci�c interventions within RTI may 

be implemented for small groups (e.g., Tier 2) or individuals (e.g., Tier 

3), the overall model operates as a school-wide e�ort of data-based 

decision making based on screening and progress monitoring 

(including entry and exit criteria for intervention), intervention 

planning, development, and provision. Moreover, the public health 

approach that emphasizes population-wide “inoculation” mechanisms 

at tier 1 to increase the e�ciency and e�cacy of more intensive 

interventions intends to promote school e�ectiveness and achievement 

on a broad scale to mitigate the incidence of compounding academic 

di�culties (Mellard et al., 2010).

Limitations of current math RTI 
implementation research

Despite the systems-level focus of RTI and the popularity of this 

model as a prevention system in K-12 schools, there is a dearth of 

research on the factors that relate to whether schools use 

RTI. Speci�cally, this is the case with math, as reading has traditionally 

predominated in schools’ RTI practices. Although there are some case 

studies and qualitative inquiry into the implementation of math RTI 

models (Bouck and Cosby, 2019; Donovan and Shepherd, 2013; 

Mason et  al., 2019) as well as limited empirical investigation 

(Schumacher et al., 2017), the empirical research on factors predicting 

the use of RTI is lacking. �is is a signi�cant limitation in 

understanding the systematic factors that may determine whether 

schools choose to adopt an RTI model for prevention and intervention 

in math. �e system capacity to adopt parallel RTI models for math 

may be limited if schools are already devoting substantial resources to 

other programs and initiatives (Mason et al., 2019). However, other 

contextual factors may play a part in the adoption of math RTI, 

including school resources, community contextual factors, and 

personnel factors (e.g., sta� training background; Mason et al., 2019).

Identifying predictors

With seemingly innumerable factors that could possibly relate to 

whether schools use math RTI, a priori selection of speci�c predictive 

factors may induce bias in predictions or unintentionally limit the 

scope of predictive factors. Compounding the identi�cation of 

relevant predictors is the limited research base on school factors 

associated with math RTI implementation, aside from factors that 

would likely be  related to the time and resources schools have 

available to conduct math RTI (e.g., economic conditions, community 

context, and student-related issues that guide service priorities). 

Consequently, narrowing the scope of predictors is an exploratory 

task at this stage.

Due to the large number of predictors and the relatively small 

sample size, elastic net logistic regression with nested cross-validation 

(nested CV) is a viable method to address the issues of predictor 

selection. �is choice was motivated by the potential for over�tting 

when using traditional logistic regression (Hastie et al., 2006). �e 

elastic net logistic regression can e�ectively address this risk by 

imposing penalties on the predictors, e�ectively reducing their 

number. �is strategy not only alleviates concerns related to over�tting 

but also enhances the model’s predictive accuracy (Hans, 2011; Zou 

and Hastie, 2005). �erefore, determining the appropriate penalties is 

crucial when using elastic net regression. �e most commonly used 

method to select these penalties is cross-validation, with K-fold cross-

validation (CV) being particularly popular. However, Vabalas et al. 

(2019) showed that K-fold CV would in�ate the accuracy of a 

regularized logistic regression with feature selection, especially when 

the sample size was small. Hence, they recommended using nested CV 

which could produce an accurate misclassi�cation rate, even with a 

small sample size.

The current study

In this study, we used data from Grades 1 (2011–2012) and 2 

(2012–2013) of the ECLS-K: 2011 to investigate the school-level 

factors in school year (SY) 2011–2012 that predicted elementary 

schools’ adoption of math RTI based on school administrator reports 

in SY2012-2013. Our primary research question was the following: 

What are the prominent predictors of schools’ math RTI 

implementation in the subsequent year? We hypothesized that factors 

related to school resources, achievement, and school personnel (e.g., 

training) would predominate as math RTI implementation predictors, 

as prior research has suggested that resource (e.g., sta� training) and 

logistical factors (e.g., available time for implementation) are relevant 

to the adoption and implementation of math RTI (Choi et al., 2022; 
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Mason et al., 2019). We used regularized regression techniques with 

nested CV to identify the most robust predictors. Due to missing 

values in this dataset, we initially used the Random Forest algorithm 

to create di�erent imputed datasets. Subsequently, we applied elastic 

net logistic regression with nested CV to build prediction models for 

each imputed dataset. Since the penalties in elastic net logistic 

regression were evaluated separately in each dataset, this resulted in 

di�erent penalties across the datasets, leading to variations in the 

logistic regression models. To address this, we employed four variable 

selection methods to identify the most robust predictors across the 

various elastic net logistic regression models from di�erent imputed 

datasets, forming four candidate models. �en, four candidate models 

were evaluated using an independent dataset. �e candidate model 

that exhibited the best performance among the four was selected as 

the �nal model. �e �ow chart of the data analysis procedure for this 

study is depicted in Figure 1.

FIGURE 1

Data analysis procedure.
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TABLE 1 Covariates domains considered for RTI prediction.

Covariate block Covariate description

School demographic factors School-level sociodemographic factors, including funding mechanisms (Title 1 and 3), poverty, geographic locale (rural, suburban, etc.), 

changes in enrollment/funding/sta�ng/class sizes, school-level race/ethnicity, and language status

Policy or procedural features School policies and procedures for behavioral and academic intervention (e.g., implementation of other tiered systems for behavior and 

writing, sta� procedures for implementing interventions and using data to make decisions, and professional development of sta�)

Sta�ng and administration General school policies related to sta�ng and administrative procedures (e.g., academic standards, resource allocation, sta�ng, school-level 

procedures for teaching such as using achievement groupings)

Areas of concern for school Student problems at school (e.g., reports of whether the school has problems with weapons, the�, classroom disorder, and absenteeism)

Community engagement Community engagement with the school (e.g., before and a�er-school care, having parent teacher conferences, community support)

Methods

Participating schools

�e ECLS-K: 2011 is a multi-stage strati�ed nationally 

representative sample of United States students from kindergarten 

through ��h grade. �e study initially samples base-year students 

in kindergarten, and students are followed through ��h grade with 

procedures to ensure the national representativeness of the student 

samples at each grade level. In addition, kindergarten schools are 

sampled to be nationally representative; all schools in the following 

years are representative of the students in the sample attending 

those schools (rather than being intrinsically nationally 

representative like the base year). We limit our sample of schools to 

public schools present in both the Grades 1 and 2 Spring data 

collection rounds. �ese grades represent the �rst period in the 

dataset in which RTI implementation data is collected from schools, 

so we choose these grades to avoid additional temporal dependency 

in the measurement of RTI in grades 3–5. In addition, given the 

potential increase in the use of RTI over time (or changes in the 

uses of RTI over time), using data from earlier years (2012–2013) 

represents an earlier stage in the uptake of RTI practices and thus 

includes potentially more variability in how/why schools chose to 

use math RTI.

Measures

Outcome

School administrator report of RTI implementation

�e outcome of our study is the school administrator’s report of 

whether their school implemented math RTI in the Spring of 2012–

2013 (the Grade 2 round of data collection at the child level). �is 

data were collected as part of the school administrator survey 

portion of the ECLS-K: 2011. Responses were recorded as “not 

applicable” (e.g., schools in which RTI would not have been 

implemented), “no,” “partially implemented,” or “fully implemented.” 

We collapse partial and full implementation into a single category, 

resulting in a binary 0 (no)/1 (yes) indicator of RTI. It is unclear 

what exactly would di�erentiate “partial” vs. “full” implementation 

in this survey, so we focus on the presence of any math RTI practices 

rather than a gradient of implementation (e.g., di�erent forms of 

partial implementation could exist but there is no way to determine 

this, which reduces the practical value of di�erentiating 

the responses).

Predictors
We selected a thorough set of predictors that represented 

contextual (e.g., economic, community), student (e.g., enrollment, 

reports of safety issues), personnel factors (e.g., teacher training), and 

implementation factors (e.g., previous implementation of behavior and 

writing RTI) to cover the reasonable potential range of reasons schools 

may adopt math RTI. A sample of the predictors is displayed in Table 1. 

All predictors are from the Spring semester of Grade 1 and have been 

aggregated at the school level. �e mean was utilized for continuous 

variables for aggregation purposes, while the mode (we focus on the 

most frequent category within a school) was employed for categorical 

variables. �e mean was chosen for aggregating continuous variables 

because it is the most commonly used measure to describe central 

tendency in continuous data (Clowes and Duke, 2022). �is method is 

also widely utilized in applied research for aggregating such variables 

(e.g., Geronimus and Bound, 1998; Jacob et al., 2014; Moineddin and 

Urquia, 2014). For categorical variables, the mode was selected because 

it is o�en the most appropriate, and sometimes the only, method to 

e�ectively describe the central tendency for nominal variables (Clowes 

and Duke, 2022). �e outliers in our dataset may not pose a problem, 

as most continuous variables we used are at the school level, meaning 

that students within the same school share the same value. However, 

one variable, X4SESL_I, which is the continuous Socioeconomic Status 

(SES) index, may have potential outliers. �erefore, we checked for 

outliers in X4SESL_I using Z-scores for each school with at least 10 

observations. If a Z-score exceeded 3, the observation was identi�ed as 

an outlier. �e results showed that only one school (id = 1,816) had a 

single outlier, while other schools did not have any outliers.

Procedure

Public-use ECLS-K: 2011 data were downloaded from the 

National Center for Education Statistics website. Data cleaning and 

analysis took place in Stata 17 (StataCorp, 2021) and R (R Core Team, 

2021). To be speci�c, elastic net logistic regression with nested CV was 

conducted by using nestcv package in R (Lewis et  al., 2023). In 

addition, missing value imputation carried out with the missForest 

package in R (Stekhoven and Bühlmann, 2012; Stekhoven, 2013).

Data analysis

Multiple imputation for missing data
In this study, the percentage of missing values is 16.4%. Little and 

Rubin (2019) described three missing data mechanisms: Missing 



Wang et al. 10.3389/fpsyg.2024.1410396

Frontiers in Psychology 05 frontiersin.org

Completely at Random (MCAR), Missing at Random (MAR), and 

Missing Not at Random (MNAR). MCAR situations are characterized 

by missing values that do not correlate with either observed or 

unobserved variables. MAR, on the other hand, describes instances 

where missing values are linked to observed variables but not to 

unobserved ones. MNAR pertains to cases where missing values are 

related to unobserved variables. We assume that the missingness 

present among school-level variables in this dataset is MCAR or 

MAR given that much of the data comes from administrative 

information about schools or information that is aggregated to the 

school level. We  would not expect missing data to be  related to 

endogenous, unobserved factors about the schools themselves 

(MNAR). Rather, we expect that missing responses would be due to 

random survey nonresponse or non-response related to other 

systematic factors for which we have information (e.g., other school 

and teacher characteristics).

Given MAR data, it was necessary to employ an imputation 

method to address these missing values (Little and Rubin, 2019). 

We  employed the Random Forest (RF) algorithm for multiple 

imputation. �is choice was made because the RF algorithm (1) is well-

suited for data missing at random, (2) can e�ectively handle both 

continuous and categorical variables, and most importantly, (3) does 

not require parametric forms and can e�ectively account for any 

non-linear relationships, complex interactions, and high dimensionality 

in the imputation model (Stekhoven and Bühlmann, 2012).

�e last advantage of RF is theoretically shared by other 

nonparametric machine-learning methods. We selected RF based on 

existing comparisons of RF against other parametric and 

nonparametric machine-learning imputation methods. Pantanowitz 

and Marwala (2009) conducted an analysis using empirical data to 

compare �ve imputation methods: RF, Autoassociative Neural 

Network, Autoassociative Adaptive Neuro-Fuzzy Inference System, a 

hybrid of Random Forest and Autoassociative Neural Network, and a 

hybrid of Autoassociative Neural Network and Random Forest. �eir 

�ndings revealed that Random Forest outperforms the other methods 

in terms of both accuracy and computational e�ciency. Similarly, 

Stekhoven and Bühlmann (2012) explored four di�erent imputation 

techniques: RF, k-Nearest Neighbors algorithm, Missingness Pattern 

Alternating Imputation and l1-penalty algorithm, and Multivariate 

Imputation by Chained Equations, across various empirical datasets. 

�eir �ndings also revealed that RF had better performance than the 

other methods generally, particularly in datasets containing both 

continuous and categorical variables. Tang and Ishwaran (2017) 

conducted a simulation study to evaluate the performance of various 

Random Forest (RF) algorithms under three missing data 

mechanisms. �eir �ndings revealed that RF algorithms generally 

performed well when data were MCAR or MAR, and the proportion 

of missing data was low to moderate.

Furthermore, RF managed to maintain acceptable performance in 

MNAR conditions when the variables were highly correlated (Tang 

and Ishwaran, 2017). To maximize the information contained in the 

datasets and to capture possible relationships between missing values 

and other variables, all variables were used for imputation. �is 

further makes the imputation model robust to account for variables 

responsible for missingness. Additionally, an independent complete 

dataset was utilized to evaluate the generalizability of the models, 

which also served as a sensitivity analysis for missing data imputation.

�e RF imputation process was carried out 10 times, resulting in 

a total of 10 datasets (Musoro et al., 2014; Rubin, 1987; Musoro et al., 

2014; Zahid et al., 2020). Generally, the RF imputation employed in 

this study involves modeling each variable with missing values as a 

function of all other available variables, with the missing values being 

predicted using a �tted random forest model. Speci�cally, an initial 

guess for the missing values, such as the mean, is made. Variables are 

then sorted by their percentage of missing values, and the one with the 

fewest missing values is imputed �rst. �is imputed variable is treated 

as the response variable, with the others serving as predictors. An RF 

model is constructed to predict the missing values of this variable, and 

these missing values are updated by the RF-model-based predicted 

values. �en, the variable having the next fewest missing data is 

imputed based on the already imputed variable and others, following 

the same procedure until the stopping criteria are met. �e stopping 

criteria involve observing an increase in the di�erence between the 

newly imputed values and the previously imputed values across 

observations for the �rst time, at which point the RF algorithm is 

stopped. Importantly, this increase should be observed across all types 

of variables. �is non-parametric method, detailed by Stekhoven and 

Bühlmann (2012), is e�ective regardless of whether the missing values 

occur in independent or outcome variables.

When conducting the RF imputation, missing values in the two 

variables “W4C4P_4TSTR” and “W4C4P_4TPSU” were not imputed, 

as they represent the strata and primary sampling units (PSU) from 

the complex survey design. Due to their nature, these variables were 

not suitable for imputation using the RF algorithm like the other 

variables. To address missing values of these two variables while 

retaining as many observations as possible, a value of 0 was assigned 

to indicate “not speci�ed” for both variables. Although 

“W4C4P_4TSTR” and “W4C4P_4TPSU” cannot be directly imputed 

by the RF algorithm, they were included in the RF imputation process 

to facilitate the imputation of other variables. We chose to include 

these sampling variables in the RF algorithm because including them 

in the model allows for control over the sampling design for the 

ECLS-K dataset (Stapleton and Kang, 2018).

Elastic net logistic regression with nested 
cross-validation under four methods of variable 
selection

A�er completing the imputation phase, we conducted elastic net 

logistic regression analyses using nested CV with 5-fold on each 

imputed dataset. �e elastic net regression was proposed by Zou and 

Hastie (2005), which is expressed as:

 

αβ β λ β α β
= =

       − + + +          

−∑ ∑

where β β
=

=∑  and β β
=

= ∑ . In our case, 

φ
φ

 
=  −  , the logarithm of the odds ratio of RTI 

implementation to no RTI implementation (or the logit).

Here, β  is the sum of absolute values of the coe�cients for the 

predictors, which is also called penalty, and β  is the sum of 

squared coe�cients for the predictors, which is also called  penalty. 

In addition, λ controls the overall strength of regularization, while α 

balances between LASSO and Ridge regression penalties. When α=1, 

elastic net regression transforms to LASSO regression, and when α=0, 

it becomes Ridge regression. �e factor 1/2 before the l2 penalty is 
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included for mathematical optimization convenience and does not 

alter the fundamental behavior of elastic net regression. Both LASSO 

and Ridge regressions have limitations with highly correlated 

predictors: Ridge regression tends to retain both variables but 

produces similar coe�cient estimates for these predictors, whereas 

LASSO typically selects one predictor and discards the other. However, 

elastic net regression strikes a balance between LASSO and Ridge. 

�is allows elastic net regression not only to retain both correlated 

predictors but also to generate stable coe�cient estimates. �erefore, 

elastic net regression is chosen because it combines the advantages of 

both LASSO and Ridge regressions (Zou and Hastie, 2005).

Elastic net regression selects variables by imposing two penalties 

on variable coe�cients; therefore, choosing the appropriate values for 

λ  and α is crucial. In this study, these penalty parameters were 

chosen via nested CV because Vabalas et al. (2019) have demonstrated 

that nested CV is an e�ective cross-validation method, especially 

when the sample size is small. �e procedure for nested CV is 

presented in Figure 2. A 5-fold nested CV is used in this study as an 

example. �e standard nested CV is conducted in six steps:

 1. �e entire dataset is divided into several folds; for example, into 

5-fold. �ese serve as the outer folds of the nested CV. Each 

outer fold is further split into an outer testing set and an outer 

training set.

 2. Each outer training set is further divided into several inner 

folds. �ese inner folds consist of their own training and testing 

sets, referred to as the inner training fold and inner testing fold, 

respectively. �ese are used for feature selection, 

hyperparameter tuning, and model building. �e best model 

for each inner fold is selected based on the smallest discrepancy 

in performance between the inner training and testing sets, 

indicating minimal over�tting.

 3. �e best model from an inner fold (for example, the model 

from the third inner fold, highlighted in yellow) is then tested 

using the corresponding outer testing set (in this case, outer 

test fold 1, also highlighted in yellow).

 4. Steps 2 and 3 are repeated for each outer fold, with each outer 

fold producing a model.

 5. �e best features and tuning parameters are chosen from the 

model associated with the outer fold that shows the least 

over�tting. �ese are then used to train a model on the entire 

dataset to create the �nal model.

 6. �e �nal model is applied to an independent dataset to validate 

its generalizability.

All predictors were standardized before conducting elastic net 

logistic regression. While elastic net logistic regression o�ers bene�ts, 

it can potentially yield 10 distinct models corresponding to the 10 

imputation datasets. �is diversity presents a challenge in 

synthesizing an overarching model from the 10 distinct versions. 

Consequently, upon obtaining these 10 models, we employed four 

distinct methods to select the �nal candidate models, resulting in 

four separate candidate models. Each method yields its own model 

for consideration in the �nal selection process. Four methods of 

selecting the candidate models were comprehensively described in 

the next section. To determine the �nal model, the candidate models 

were subsequently assessed in an independent dataset to evaluate 

their generalizability. All candidate models used predictors from the 

independent dataset to generate predictions for math 

RTI. Subsequently, the balanced accuracy between these predicted 

math RTI values and the observed math RTI from the independent 

dataset was calculated. �e balanced accuracy is calculated as 

( )+ , where in our case sensitivity is the rate 

of correctly labeling schools as implementing RTI and speci�city is 

FIGURE 2

An illustration of nested CV.
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the rate of correctly labeling schools as not implementing RTI 

(Chicco et al., 2021; García et al., 2009).

Because the predicted math RTI from the model is expressed as a 

percentage, we  utilized the optimal threshold to categorize the 

predicted math RTI into two distinct categories. �e optimal threshold 

applied in this study is widely recognized in research for maximizing 

both sensitivity and speci�city (Co�n and Sukhatme, 1997; Perkins 

and Schisterman, 2006; Unal, 2017). �is approach is also called the 

“closest-top-le�-corner” method. �is method utilizes the receiver 

operating characteristic (ROC) plot, a graphical representation that 

maps the True Positive Rate (Sensitivity) against the False Positive Rate 

(1—Speci�city) for various threshold values. Typically, the x-axis 

denotes 1-Speci�city, while the y-axis corresponds to Sensitivity. 

Ideally, the best classi�er would achieve 100% Sensitivity and 0% False 

Positive Rate, which would be represented by the point (0, 1) on the 

ROC plot, situated at the top-le� corner of the graph. However, 

attaining this perfect point is nearly impossible in practical scenarios. 

�erefore, the “closest-top-le�-corner” method selects the point on 

the ROC curve that is nearest to (0, 1) as the optimal threshold, 

representing the most e�ective balance between Sensitivity and 

Speci�city based on the available data. Beyond determining the 

optimal threshold, the ROC plot is also utilized to calculate the Area 

Under the Curve (AUC), which quanti�es the area beneath the ROC 

curve. An AUC of 1 indicates that the elastic net logistic regression 

model is an ideal classi�er, perfectly distinguishing schools by their 

math RTI status. Conversely, an AUC of 0.5 suggests that the model 

lacks discriminative ability (Fan et al., 2006; Obuchowski and Bullen, 

2018). �e �nal model which exhibited the best performance was 

chosen.1

Considering the necessity for an independent dataset to assess 

generalizability, we divided the dataset into two parts: one for model 

building, which includes training and validating the model, and 

another to serve as an independent dataset for conducting the 

generalizability check of the model. In addition, to ensure the validity 

of the generalizability assessment, we employed complete cases from 

the original dataset, which were free from missing values, to serve as 

the independent dataset. �is independent dataset consisted of 127 

schools. �e rest of the cases were used for training and validating the 

elastic net logistic regression model.

Given the prevalence of Likert scale items in our data, we faced 

the challenge of potentially expanding the number of predictors 

signi�cantly if each were to be treated categorically. To address this 

and streamline the modeling process, we  adopted the guidance 

provided by Harpe (2015), treating ordinal variables with �ve or 

more categories as continuous, while those with four or fewer 

categories were handled as categorical variables. �is decision was 

made to balance the granularity of the Likert-scale responses with 

the practical considerations of model complexity 

and interpretability.

�e second consideration is related to the sampling design. Again, 

we applied the same strategy to control for the sampling design as 

we  did in the missing value imputation stage. We  included 

1 The final model was selected based on having the highest balanced 

accuracy. In cases where two candidate models exhibit identical balanced 

accuracy, the model with the larger Area Under the Curve (AUC) was chosen.

“W4C4P_4TSTR” and “W4C4P_4TPSU,” representing strata and PSU, 

to account for the sampling design. Consequently, these two variables 

were included in the elastic net logistic regression analysis without 

undergoing variable selection. �e variables “W4C4P_4TSTR” and 

“W4C4P_4TPSU” are inherently categorical and would typically 

necessitate the creation of dummy variables. Upon thorough 

examination of the cross-tabulations between “W4C4P_4TSTR” and 

the response variable “math RTI,” as well as “W4C4P_4TPSU” and 

“math RTI,” we  identi�ed many cells with zero observations. �e 

details of these cross-tabulations are presented in Tables 2, 3. Such a 

distribution poses a risk of the complete separation or quasi-complete 

separation problem in logistic regression (Devika et al., 2016). To 

mitigate this issue, we strategically combined certain categories within 

“W4C4P_4TSTR” and “W4C4P_4TPSU.” �is not only resolved the 

separation problem but also curbed the risk of over�tting in the 

�nal model.

Based on these two cross-tabulations, the re-categorization of 

“W4C4P_4TSTR” and “W4C4P_4TPSU” is primarily determined by 

the category of the response variable where math RTI equals 0, given 

the majority of zero observations occur when math RTI is 0. 

Additionally, the recategorization was implemented to balance the 

sample sizes between the math RTI = 0 group and the math RTI = 1 

group. �is recategorization of “W4C4P_4TSTR” and 

“W4C4P_4TPSU” was conducted at the school level. For 

“W4C4P_4TSTR,” excluding those with missing values (NAs), schools 

were categorized based on the math RTI sample size. Schools with 

math RTI cell values of 14 or fewer were grouped together into the �rst 

category and assigned a code of 1. Schools with math RTI cell values 

in the range [15, 20) were grouped into the second category and coded 

as 2, and those with math RTI cell values are equal to or greater than 

20 were grouped into the third category and coded as 3. In addition, 

those who have NAs were coded as 0. Regarding “W4C4P_4TPSU,” 

except for those who have NAs, the original categories 1 and 2 were 

retained due to the substantial number of values present in the math 

RTI cell, as they provided a su�cient sample size for both the math 

RTI = 0 group and the math RTI = 1 group. �e rest of the categories 

were combined together and coded as 3. Also, those who have NAs 

were coded as 0.

It is important to note that this category consolidation was 

uniquely applied to “W4C4P_4TSTR” and “W4C4P_4TPSU.” �e 

rationale behind this selective approach is twofold: First, other 

categorical variables were subjected to the selection process of the 

elastic net logistic regression, which inherently manages the separation 

problem (Friedman et  al., 2010; Münch et  al., 2021). Second, 

“W4C4P_4TSTR” (49 categories) and “W4C4P_4TPSU” (12 

categories) contain too many categories. A�er dummy coding these 

variables, the number of predictors increases dramatically, potentially 

leading to over�tting in the �nal model. �is issue arises because 

“W4C4P_4TSTR” and “W4C4P_4TPSU” are integral to accounting 

for the sampling design and were retained without penalties. 

Moreover, these two variables were not the central focus of our study, 

further justifying their �xed inclusion in the model without the 

application of elastic net penalties.

Four methods of aggregating results from 
multiple imputation

As previously discussed, the process could yield 10 distinct 

models, each corresponding to one of the 10 imputation datasets. 
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Consequently, the crucial challenge lies in determining the candidate 

models for the �nal selection, especially considering that these models 

may contain feature-varying variables. Some studies have discussed 

the variable selection of regularized linear regression (Musoro et al., 

2014; Gunn et al., 2023; Zahid et al., 2020). Although the studies by 

Gunn et  al. (2023), Zahid et  al. (2020), and Musoro et  al. (2014) 

primarily utilized LASSO regression, the methodologies they explored 

can be adaptable to elastic net regression. Consequently, we extended 

their approaches to our elastic net framework, corresponding to 

Method50, Methodcoef, and Methodadj, respectively. Furthermore, 

we proposed a new method to select the candidate model from 10 

distinct models based on the generalizability (Methodgen).

Method50

Method50 initially performs elastic net logistic regression 

separately on each imputed dataset, retaining variables selected in 

more than 50% of the cases. The variables “W4C4P_4TSTR” and 

“W4C4P_4TPSU” were not selected because they were consistently 

retained in the model. Average the coefficients of the selected 

variables across the 10 models derived from imputed data to 

construct the final candidate model. Then, the final candidate 

model was fitted to independent data to evaluate its 

generalizability. This method was selected based on empirical 

evidence from Gunn et al. (2023), which demonstrated its superior 

performance compared to two other variable selection methods. 

The first alternative method involves using stacked datasets, 

where training and testing datasets from multiple imputed 

datasets are combined into a single stacked training dataset and a 

corresponding stacked testing dataset. A regularized regression 

model is then developed using the stacked training dataset and 

validated using the stacked testing dataset. The second method 

employs a group penalty approach,2 where the group penalty 

parameter is calculated jointly across the training datasets for each 

imputed dataset. This approach ensures that models derived from 

multiple imputed datasets incorporate consistent variables, with 

each model’s performance evaluated against its respective testing 

dataset before aggregating the final performance metrics across 

all models.

2 The calculation of group penalty parameter, λ , as jointly determined using 

all training datasets (Chen and Wang, 2013) is

β β λ β
= = = = =

  
  − + +     

∑ ∑ ∑ ∑ ∑
  where  is the 

number of imputed datasets,  is the sample size,   is the number of 

predictors.

TABLE 2 Cross-tabulation between “W4C4P_4TSTR” and “math RTI” based on school level.

W4C4P_4TSTR

0 1 2 3 4 5 6 7 8 9 10 11 12

Math RTI
0 34 0 0 0 1 0 1 0 3 4 1 0 0

1 185 7 1 3 1 7 11 14 15 4 6 8 2

W4C4P_4TSTR

14 15 16 19 20 21 22 23 24 26 28 29 33

Math RTI
0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 8 4 2 1 3 1 1 2 2 2 1 1 2

W4C4P_4TSTR

35 36 37 38 39 40 41 42 43 44 45 46 47

Math RTI
0 2 1 7 0 0 1 0 0 4 1 5 2 2

1 10 15 9 15 14 6 16 10 16 8 16 10 13

W4C4P_4TSTR

48 49 50 51 52 53 54 55 56 57 58 59 60

Math RTI
0 2 0 1 2 0 2 1 1 1 2 0 1 2

1 17 19 18 30 19 21 14 24 8 12 10 13 7

W4C4P_4TSTR

61 62 63 64 65 66 67 68 69

Math RTI
0 0 0 1 6 0 0 0 0 1

1 6 20 7 14 9 8 16 14 21

W4C4P_4TSTR: sampling strata; Math RTI: whether math RTI is implemented.

TABLE 3 Cross-tabulation between “W4C4P_4TPSU” and “math RTI” 

based on school level.

W4C4P_4TPSU

0 1 2 3 4 5 6 7 8

Math 

RTI

0 34 24 24 3 0 1 2 2 0

1 185 221 262 60 12 6 11 6 4

W4C4P_4TPSU

9 10 15 18 19

Math 

RTI

0 2 0 1 0 0

1 5 4 0 1 2

W4C4P_4TPSU: sampling PSU; Math RTI: whether math RTI is implemented.
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Methodcoef

Methodcoef, proposed by Zahid et  al. (2020), begins by 

independently conducting elastic net logistic regression on each 

imputed dataset. It retains variables that meet speci�c criteria of , 

where  is the number of predictors. Notably, the variables 

“W4C4P_4TSTR” and “W4C4P_4TPSU” were excluded because they 

were consistently retained in the model. To be  more speci�c, the 

criteria for choosing variables are:

 1. For continuous variable  associated with a parameter β , 

indicating the jth ( = … ) predictor within the mth 

( = … ) imputed dataset. �e criterion for retaining the 

variable is as follows:

 

β

β

=

= =

≥
∑

∑ ∑





 2. For a categorical variable  with +  categories,  dummy 

variables are required. Each dummy variable is associated with 

a parameter β , which represents the kth ( = … ) 

dummy variable for the jth ( = … ) predictor within the 

mth ( = … ) imputed dataset. �e criterion for retaining 

the variable is as follows:

 

β

β

= =

= = =

⋅
≥

⋅

∑ ∑

∑ ∑ ∑





�en, average the coe�cients of the selected variables across the 

10 models derived from imputed data, and �t the �nal candidate 

model to independent data to evaluate its generalizability.

Zahid et  al. (2020) explored the in�uence of the number of 

predictors ( ) and proportions of missingness 

( ) on Methodcoef with a small sample size ( ). �e 

results revealed that Methodcoef can relatively balance the trade-o� 

between selecting relevant and irrelevant variables. Typically, selecting 

more relevant variables tends to also increase the selection of irrelevant 

variables. In addition, Methodcoef can be used when the number of 

predictors exceeds the sample size, a scenario where the method using 

group penalty fails to select variables.

Methodadj

Methodadj, proposed by Musoro et al. (2014), di�ers from previous 

methods. While the earlier methods �nalize the model through 

variable selection, this method does not engage in selecting variables. 

Instead, its aim is to adjust the parameter estimates of the �nal model. 

�e procedure for Methodadj is outlined as follows:

 1. Run elastic net logistic regression independently for each 

imputed dataset.

 2. Disregard the variable distinctions among each model and 

compute the average coe�cients for all parameters across the 

10 models, α β= +  
, where β  is the coe�cient for 

the predictor ( )= … .

 3. Use bootstrapping to obtain the calibration parameters for the 

parameter adjustment of the �nal model. Here is the procedure 

of bootstrapping:

 a.  For a bootstrap run, the same observations were selected 

across 10 imputed datasets ( , where = … ) to 

obtain corresponding bootstrapping datasets, ∗  

( = … ).

 b.  Rebuild the elastic net logistic regression model based on 

the bootstrapping datasets, ∗.

 c. Repeat a and b 100 times.

 4. Aggregate each variable in the imputed datasets into a long-

stacked dataset, so that the size of the stacked dataset is 10 

times that of the original dataset. For each bootstrap run, the 

predicted response variable is calculated using the coe�cients 

derived from the elastic net regression model built on the 

bootstrap sample. Speci�cally, the predicted response variable 

is computed by multiplying the elastic net regression 

coe�cients with the predictors in the stacked dataset. For 

predictors not selected by the elastic net regression, their 

coe�cients are set to zero. Subsequently, calibration parameters 

are computed by regressing the response variable in the stacked 

dataset against the predicted response variable. �e predicted 

response variable from bootstrapping is calculated using the 

�nal model from step  3 and predictors from the stacked 

dataset. �is relationship is 

symbolized as α β ∗= + 
.

 5. �en, compute the average of α  and β  over these 100 

bootstrap iterations to obtain α  and β . Finally, adjust the 

�nal model for intercepts and all coe�cients from the 

imputed datasets by using the 

equation α β α β
 

+ + 
 

 .

 6. Fit the �nal model to the independent data to assess 

the generalizability.

Methodgen

�e �nal method, Methodgen, is a novel approach introduced by 

this study. Methodgen initially conducts elastic net logistic regression 

independently on each imputed dataset. Each model is then �tted to 

independent data, with the �nal candidate model being selected based 

on achieving the highest balanced accuracy.

Evaluation criteria for the model performance
Given that the response variable math RTI is binary, accuracy 

serves as a suitable metric to assess the model performance. 

However, the response variable, math RTI, in this study is 

imbalanced. Sun et al. (2009) claimed that standard classifiers, 

such as the logistic regression and decision tree, tended to ignore 

the rare cases, potentially compromising the accuracy of the 

model’s predictions. Given the presence of an imbalanced 

response variable in the dataset, weights were computed for each 

observation. These weights were then applied to the regularized 

logistic regression to ensure a balanced 50:50 weight ratio across 

the two categories. Also, as we focus on the prediction accuracy 

for both implementing and not implementing RTI, balanced 

accuracy is a more precise metric as compared to regular 
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accuracy. Furthermore, we  also used the receiver operating 

characteristic (ROC) plot and the corresponding area under the 

curve (AUC) to delineate the performance of the elastic net 

logistic regression.

Results

Descriptive statistics

�e total sample size at the individual level was 6,647. A�er 

aggregating variables to the school level, the sample size was reduced 

to 1,130. Since math RTI was investigated at the school level, the 

�nal sample size should be 1,130. Within the selected data, there 

were 37 continuous predictors and 54 categorical ones. Upon 

creating dummy variables for categorical variables, the analysis 

included a total of 160 predictors. Across the 10 imputed datasets, 

the count of cases where math RTI was not implemented ranged 

from 94 to 97. Conversely, for cases where math RTI was 

implemented, the count lied between 1,033 and 1,036. �is data 

suggest that the majority of schools have adopted math 

RTI. However, due to the large number of predictors, descriptive 

statistics of predictors were omitted.

Four methods of variable selection and the 
final model

Table  4 displays the candidate models derived from four 

methods. Except for variables of the sampling design, 

W4C4P_4TSTR and W4C4P_4TPSU, we  found Methodgen, 

Method50, and Methodcoef selected the same variables. Methodadj does 

not select variables from the 10 models derived from imputed data. 

Instead, it retains all variables from these 10 models and adjusts 

their coe�cients. As a result, Methodadj includes all variables 

produced by the imputed data, resulting in a slightly larger 

variable count.

Table 5 presents the balanced accuracy and AUC values associated 

with the four methods. Method50 and Methodcoef achieved the highest 

balanced accuracy, both equal to 0.852, and also demonstrated the 

highest AUC values. In contrast, Methodgen also showed commendable 

balanced accuracy at 0.829, while Methodadj recorded the lowest 

balanced accuracy of 0.491 among the four methods. Given the 

superior performance of Method50 and Methodcoef, the �nal model is 

based on these methods, as they produced identical results. �erefore, 

the �nal model is de�ned by the following logistic regression model: 

( )
( )

 =
= − × _ + × _  − = 

− × _ + × _ + × _

− × _ − ×

 

Figure 3 is the ROC plot for the �nal model derived from Method50 

and Methodcoef. Based on the balanced accuracy and the ROC plot, it 

is concluded that the �nal model e�ectively classi�es math RTI.  

Table  6 presents the tuning parameters for the 10 imputed  

datasets.

Discussion

Response to intervention has been prominent in research for 

several decades, and since the early 2000s, it has become much more 

prominent in practice both through individual districts’ uptake of the 

practice as well as through recommendations in federal and state 

policies (Jimerson et al., 2016). �e overall process, typically involving 

a three-tiered system to classify the intensity of students’ academic 

needs, involves many moving components, including implementation 

of assessment practices like screening and progress monitoring, 

managing data-based decisions based on screening and monitoring 

data, and selecting appropriate curricula and interventions to 

implement at each tier. Each component of RTI requires substantial 

human, material, and �nancial resources, and there is substantial 

between-school variability in the capacity to allocate resources and 

sustain implementation. However, little is known about the factors 

that relate to schools’ decisions to use and sustain RTI, though it is 

reasonable to assume economic and human resources would be a 

primary driver.

In this study, we  investigated the predictors of schools’ 

implementation of math RTI in Grade 2 using predictors from the 

prior year. �ere is a dearth of research examining the factors that 

relate to schools’ decision to use RTI in math. Historically, large-scale 

studies of reading RTI and its implementation have predominated the 

TABLE 4 Candidate models from four methods.

Methods Variables

Methodgen

W4C4P_4TSTR.1, W4C4P_4TSTR.2, W4C4P_4TSTR.3, 

W4C4P_4TPSU.1, W4C4P_4TPSU.2, W4C4P_4TPSU.3, 

S4RTLMTH.2

Method50

W4C4P_4TSTR.1, W4C4P_4TSTR.2, W4C4P_4TSTR.3, 

W4C4P_4TPSU.1, W4C4P_4TPSU.2, W4C4P_4TPSU.3, 

S4RTLMTH.2

Methodcoef

W4C4P_4TSTR.1, W4C4P_4TSTR.2, W4C4P_4TSTR.3, 

W4C4P_4TPSU.1, W4C4P_4TPSU.2, W4C4P_4TPSU.3, 

S4RTLMTH.2

Methodadj

W4C4P_4TSTR.1, W4C4P_4TSTR.2, W4C4P_4TSTR.3, 

W4C4P_4TPSU.1, W4C4P_4TPSU.2, W4C4P_4TPSU.3, 

S4RTLMTH.2, S4RTLSOC.2

Variables beginning with S4 are administrator-reported; variables beginning with A4 are 

teacher-reported; variables beginning with X4 are data collected by/reported to the ECLS-K. 

W4C4P_4TSTR: sampling strata, W4C4P_4TPSU: sampling PSU, S4RTLMTH: whether 

math RTI is implemented in Grade 1, S4RTLSOC: whether behavior/social RTI is 

implemented in Grade 1. Variables with numbers indicate those are dummy variables for 

corresponding categorical variables. For dummy variables with “RTL” (which indicates the 

variable measuring administrator-reported RTI implementation), the baseline represents full 

implementation. A value of “2” denotes no implementation, while “1” is partial 

implementation.

TABLE 5 Generalizability of candidate models from four methods using 

the independent dataset.

Balanced accuracy AUC

Methodgen 0.829 0.855

Method50 0.852 0.883

Methodcoef 0.852 0.883

Methodadj 0.491 0.329
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literature (e.g., Balu et al., 2015), and the decisions to implement math 

RTI in addition to other initiatives in place (Mason et al., 2019) may 

be  unique relative to decisions guiding implementation of other 

prevention and intervention systems. �us, it is important to establish 

an empirical basis for the factors that relate to schools’ uptake of an 

initiative like math RTI, which is both complex in terms of the school 

system dynamics needed to sustain its implementation and resource-

demanding (Choi et al., 2022; Mason et al., 2019).

Results of our analyses indicate that three of the four methods 

evaluated for selecting predictors were equivalent in model balanced 

accuracy. Of these three methods, Method50 and Methodcoef equally 

demonstrated the strongest performance based on the AUC and 

balanced accuracy. All models demonstrated that previous math RTI 

implementation was a predictor of future math RTI implementation. 

Additionally, RTI implementation for social/behavioral skills in Grade 

1 emerged as a potential predictor for math RTI implementation, as it 

was included in several elastic net regression models. �is �nding is 

further supported by the correlation analysis, which showed that RTI 

implementation for math and social/behavioral skills in Grade 1 were 

the top two variables most strongly correlated with math RTI 

implementation in Grade 2. Speci�cally, the correlation for math RTI 

implementation in Grade 1 was 0.602, while the correlation for RTI 

implementation for social/behavioral skills in Grade 1 was 0.224. 

Notably, RTI implementation for math in Grade 1 exhibited a 

signi�cantly higher correlation with math RTI implementation in 

Grade 2 compared to other variables. �is could suggest that 

concurrent RTI infrastructure may be a determinant of math RTI 

implementation, though this may not be as robust of a predictor given 

the inconsistency of its selection into the models. Given that this is the 

�rst study to employ these methods for predicting RTI 

implementation, it is essential to conduct additional research 

examining the school-level and contextual factors relating to schools’ 

math RTI implementation decisions. Qualitative reports of math RTI 

implementation indicate student economic conditions, teacher 

professional development, and other implementation priorities are 

relevant factors in the math RTI implementation process (Mason 

et al., 2019).

Di�erent methods of variable selection

In this paper, we  used four methods, Methodgen, Method50, 

Methodcoef, and Methodadj, to select candidate models from 10 distinct 

FIGURE 3

The ROC plot for the final model.

TABLE 6 Tuning parameters of 10 elastic net logistic regression models.

λ α

Imputed dataset 1 0.235 0.500

Imputed dataset 2 0.102 0.800

Imputed dataset 3 0.136 1.00

Imputed dataset 4 0.160 1.00

Imputed dataset 5 0.109 0.600

Imputed dataset 6 0.133 1.00

Imputed dataset 7 0.131 1.00

Imputed dataset 8 0.133 1.00

Imputed dataset 9 0.137 0.600

Imputed dataset 10 0.135 0.800
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models derived from 10 imputed datasets. �en, four candidate 

models were evaluated in the independent dataset and the �nal model 

was determined based on the best performance. From Tables 4, 5, 

we could observe that Method50, and Methodcoef selected the same 

variables and exhibited identical balanced accuracy and AUC in the 

independent dataset. �is consistency is due to the robustness of the 

RF imputation method used in our study against multiple 

imputations. To further con�rm this robustness, we generated an 

additional 30 imputed datasets, bringing the total to 40. Among these, 

only two yielded elastic net regressions with di�erent variables, while 

the remainder produced identical elastic net regressions, albeit with 

varying parameter estimates. �is consistency ensures that both 

Method50 and Methodcoef select the same variables across multiple 

imputations. Moreover, the variable S4RTLMTH.2, which is included 

in the �nal model, consistently appears in all elastic net models. 

Consequently, the average coe�cient for S4RTLMTH.2 was 

calculated across the multiple imputed datasets, resulting in the same 

�nal model being produced by both Method50 and Methodcoef.

In contrast, although Methodgen selected the same variables as 

Method50 and Methodcoef, it achieved di�erent balanced accuracy and 

AUC on independent data. �is variation arises because Methodgen 

selects only one model from the candidate models based solely on 

AUC, without averaging the coe�cients of the selected variables 

across these models. Consequently, the parameter estimates in the 

�nal model of Methodgen di�er from those in Method50 and Methodcoef. 

In scenarios where the outcome is imbalanced, the AUC can provide 

an overly optimistic view of a model’s performance, particularly 

favoring the majority class. �erefore, when the outcome is 

imbalanced, balanced accuracy is a more appropriate index than AUC, 

because balanced accuracy takes this imbalance into consideration. 

Given the similar performance observed with Methodgen, Method50, 

and Methodcoef, researchers are encouraged to employ all these 

approaches in future studies. Doing so can allow these methods to 

complement one another, providing a more comprehensive 

understanding of the study. However, Methodadj is not recommended 

as it underperformed compared to the other three methods and 

potentially includes too many variables, which may lead to over�tting.

Methodadj is di�erent from the other three methods because it 

retains all variables from 10 distinct models derived from 10 imputed 

datasets and adjusted model coe�cients rather than selecting 

variables. �is retention of all variables can result in an overly complex 

�nal model, prone to over�tting. �e relatively poor performance of 

Methodadj may be  attributed to its approach of calculating the 

calibration parameters based on the stacked dataset of these 10 

imputed datasets. �e 10 imputed datasets were used both for 

constructing the elastic net logistic regression model and for 

computing the calibration parameters. �is repeated use of the same 

datasets may cause model over�tting, which could degrade 

performance and compromise generalizability. Another potential 

reason for Methodadj’s poor performance might be  that the 

bootstrapping datasets do not accurately represent the original dataset, 

due to the nature of bootstrapping involving repeated sampling from 

the original dataset with replacement. Given the signi�cant imbalance 

in the outcome, the class distributions in the bootstrapping data could 

di�er markedly. Moreover, since the RF imputation produced 

relatively stable imputed datasets, and Methodadj consistently selected 

the same observations across these imputed datasets for calibration in 

each run, this approach could cause all bootstrapping datasets in each 

run to di�er signi�cantly in outcome categories from the original 

dataset, potentially biasing the calibration parameters.

When selecting variables for regularized models with multiple 

imputations, there are generally two approaches to variable selection. 

�e �rst involves �tting regularized models separately for each 

imputed dataset, which may result in distinct models, and then 

applying thresholds to select variables. �e second approach aims to 

create a uni�ed set of variables across all regularized models. Method50 

and Methodcoef adhere to the �rst approach. Initially, each method �ts 

a regularized model separately for each imputed dataset. Variables are 

then selected based on speci�c thresholds: for Method50, variables 

with non-zero coe�cients must appear in more than 50% of the cases, 

whereas for Methodcoef, the magnitude of the coe�cients must 

be equal to or greater than . �e second approach can be achieved 

either by using a stacked dataset or by applying a group penalty, as 

described by Gunn et al. (2023) in their second and third methods. 

As previously mentioned, the stacked method combines multiple 

imputed datasets into a single stacked dataset, then applies regularized 

regression to this uni�ed dataset. �is approach can select uni�ed 

variables because it ultimately chooses variables from one dataset. On 

the other hand, the method using a group penalty applies the group 

penalty across all imputed datasets, assuming that if a variable is 

important, it should be selected in all imputed datasets. �is method 

produces uni�ed variables by jointly �tting the group penalty to all 

imputed datasets. By adopting these two methods, researchers can 

bypass the need to select a threshold when formulating the 

�nal model.

No single variable selection method consistently outperforms 

others. Previous studies, such as Wood et al. (2008), have shown that 

the performance of methods using thresholds and stacked datasets is 

comparable. Du et  al. (2022) favored the method using a stacked 

dataset over the group penalty method for achieving better coe�cient 

estimates and reduced computation time. Conversely, Gunn et al. 

(2023) observed that the stacked dataset method underperformed 

compared to methods using thresholds and the group penalty in an 

empirical dataset. Zahid et al. (2020) noted that while the method 

using the group penalty can correctly identify relevant variables, it also 

tends to select more non-informative variables. Moreover, this method 

fails to select variables when the number of predictors exceeds the 

sample size. Additionally, the e�cacy of the method using the group 

penalty is highly dependent on the number of imputations. Du et al. 

(2022) made similar observations regarding the dependency on the 

number of imputations for the group penalty method, noting a more 

signi�cant improvement with this approach compared to the stacked 

dataset method as the number of imputations increased. Previous 

studies have not reached a consensus on which method is de�nitively 

superior. �erefore, researchers are encouraged to employ multiple 

variable selection methods to assess the robustness of the 

selected variables.

Practical implications

�e current results con�rm practical assumptions that existing 

initiatives (previous social/behavioral RTI implementation) relate to 

RTI implementation. Although the �rst study to empirically 

demonstrate these relations, these �ndings are likely unsurprising to 

applied researchers and school personnel. �e capacity and motives 
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to initiate math RTI implementation will be constrained by other 

existing priorities and competing resources for an added initiative 

(Mason et al., 2019). However, it is important to note that our results 

suggest that previous math RTI implementation is consistently 

selected as a predictor, suggesting strong stability in schools’ decisions 

to use math RTI over these two school years. In the absence of 

contextual and human resources predictors, it may be that initial 

uptake of RTI is a more idiosyncratic process rather than 

systematically attributable to speci�c, quanti�able factors. As a result, 

research and practice would bene�t from additional mixed methods 

work to understand the experiential processes involved in RTI 

implementation and whether this relates to other systematic factors 

at the school level.

Limitations and future directions

One limitation of this study is the small size of the independent 

dataset. �e limited sample size means that some categories of 

categorical variables cannot be validated in the independent dataset, as 

it lacks representation of those categories. For example, there were 

three categories of W4C4P_4TPSU when constructing the elastic net 

logistic regression model. However, in the independent dataset, only 

one category of W4C4P_4TPSU was present. �erefore, limited sample 

size of the independent dataset compromises the generalizability of the 

�nal model to some degree. �e second limitation of this study lies in 

our comparison of four methods using empirical data. While the 

empirical results o�er valuable insights, a thorough simulation study is 

necessary to comprehensively evaluate the four variable selection 

methods. Moreover, the �nding of robustness of the RF imputation is 

also based on empirical data. A simulation study is needed to fully 

investigate the relationship between the RF imputation method and the 

number of imputations. Last, the reports of math RTI implementation 

in Grade 2, which we further collapsed into 0 = no implementation or 

1 = partial/full implementation are highly limited and may not 

accurately represent the presence of core components of math RTI 

implementation (Lembke et al., 2012). As a result, the nature of these 

schools implementing math RTI is unclear. More accurate criteria for 

di�erentiating math RTI implementation is essential in future studies 

to accurately capture the factors that go into schools’ uptake and 

implementation sustainment. Moreover, the use of school-level data in 

this case may not accurately represent actual school-level factors: 

teachers reports are not representative of all teachers within each 

school, nor are aggregated student-level data representative of all 

students in that grade and school. Finally, the current study cannot 

di�erentiate how “partial” and “full” RTI would have been interpreted. 

Future research should examine the predictors of di�erent degrees of 

implementation in addition to the speci�c processes that 

are implemented.

Conclusion

Given the increasing uptake of tiered intervention systems in 

schools (Choi et al., 2022), such as RTI, there is a pressing need to 

identify the factors relating to schools’ implementation decisions. Our 

current study revealed that existing RTI systems were primary 

predictors of schools’ implementation. �is is a �rst step in developing 

an empirical basis for predictors of school-wide math 

RTI implementation.
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