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Topological wave phenomena in photonic time quasicrystals
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Time interfaces consist of abrupt and spatially uniform changes in the optical properties of a medium. Their
periodic occurrence forms photonic time crystals, which offer opportunities to tailor classical and quantum light-
matter interactions. Here we explore one-dimensional photonic time quasicrystals, formed when time interfaces
occur in a quasiperiodic fashion featuring long-range order. We unveil the emergence of topological phases
and Hofstadter butterfly spectra in these systems, and demonstrate that their temporal response emulates the
localization of topological edge states, enabling the temporal analog of topological Thouless pumping. Our
findings open avenues for topological photonics leveraging time as a synthetic dimension, with functionalities
that go beyond their spatial counterparts.
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I. INTRODUCTION

Photonic time-interfaces, obtained by abruptly changing
the optical properties of a medium homogenously in space,
have been explored for the past few decades [1–3] for wave
control; yet only recently the experimental observation of
temporal reflections at a time interface has been reported
for electromagnetic waves [4]. Since time is bound to flow
towards the future, time-reflected signals exist in the same
medium as time-transmitted waves, but they propagate in
opposite directions [5]. Another difference between temporal
and spatial reflections is given by the governing conservation
laws. Since temporal switching preserves spatial translational
symmetry but not time translational symmetry, the wave mo-
mentum is conserved, while their energy and frequency are
not. These features, along with the associated temporal de-
grees of freedom, have been exploited to enable inverse prism
phenomena [6], broadband amplification and absorption [7,8],
temporal aiming [9], unitary energy transfer [10] and extreme
energy transformations [11] and temporal Faraday rotation
[12]. Other exciting opportunities are unveiled by combining
multiple time interfaces: when occurring in a periodic fashion
time interfaces form photonic time crystals (PTCs)—the tem-
poral dual of spatial photonic crystals [13–16]. Since energy
is not conserved at time interfaces, PTCs support momentum
bandgaps that amplify temporally evanescent waves. These
phenomena open interesting opportunities for fundamental
science and applications, such as quantum sensors, enhanced
Purcell effects, and quantum amplified emission [17–22].

In a different context, topological photonics has enabled in
recent years exotic optical phenomena [23–25], such as robust
edge modes immune from backscattering, with opportunities
for classical and quantum applications [26–36]. Photonic qua-
sicrystals, aperiodic structures with long-range spatial order,
also support interesting topological features, such as Hofs-
tadter butterfly patterns, topological Thouless pumping, and

topological order attributed to higher dimensions [37–43].
Building on the duality between spatial and temporal inter-
faces, topological phenomena in PTCs have recently started
to emerge. Recent works have unveiled topological aspects
of photonic/phononic time crystals in homogeneous time-
switched media emulating the Su-Schrieffer-Heeger model in
the time domain [44,45], and disordered PTCs supporting the
temporal analog of Anderson localization [46,47].

Despite these advances in PTCs, photonic time quasicrys-
tals (PTQCs), formed by nonperiodic sequences of time
interfaces that retain long-range order, have remained so far
elusive. Spatial photonic quasicrystals possess a fractal spec-
trum and support interesting topological wave phenomena,
hence it is interesting to explore whether these features may
arise in PTQCs. For example, in analogy with topological
photonics is it possible to define a topological invariant for
PTQCs, and introduce a temporal cladding slab (TCS) form-
ing a temporal interface with PTQCs at which topological
edge states emerge? How do we even measure the spectra
of temporal edge states and interpret their dynamic evolution
given the distinct causality constraints that emerge in the time
domain? In this work, we endeavor to resolve these ques-
tions by investigating the topological features of a temporal
structure with a finite number of time slabs approximat-
ing a PTQC. By developing an ad hoc temporal eigenvalue
equation, we unveil the emergence of a Hofstadter butterfly
spectrum of such temporal structure, define a topological in-
variant in synthetic space, and observe topological edge states
localized at temporal boundaries. Moreover, we establish a
closed-form relation between scattering coefficients and the
quasifrequency of the temporal structure’s eigenmodes and,
based on this result, we explore the temporal dispersion of
the topological edge states by recording the transmission at
the interfaces of various temporal slabs, which support the
temporal analog of topological Thouless pumping in synthetic
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FIG. 1. A photonic time quasicrystal (PTQC) obtained by switching the permittivity εm with time steps δtm and phason parameter θ .
Temporal cladding slabs with large permittivity εtcs are added after a PTQC sequence (not to scale). The color of the pillars represents the
magnitude of the wave functions |�p|2 evolving with θ . The inset shows forward and backward waves in each PTQC section. The propagation
phase β is chosen to be equal in each section.

space. We further explore the long-time evolution of waves
in our structure and reveal their distinct behavior with and
without introducing temporal interfaces through a TCS.

II. TEMPORAL EIGENVALUE PROBLEM

Consider an electromagnetic field consisting of
two counterpropagating waves in an isotropic loss-
less medium with relative permittivity ε: Ex(z, t ) =
e−i(kzz−ωt )a+ + e−i(kzz+ωt )a− + c.c.; η0Hy(z, t ) =√

ε(e−i(kzz−ωt )a+ − e−i(kzz+ωt )a−) + c.c., where the angular
frequency ω = kzc0/

√
ε, a± are the complex wave

amplitudes, c0 = 1√
μ0ε0

and η0 = √
μ0/ε0 are the speed of

light and characteristic impedance in free space, respectively.
PTQCs are formed by abruptly switching ε(t ) in time
uniformly across the medium, and ε(t ) can be periodic such
that ε(t + Td ) = ε(t )(Td → ∞) and follows a series of step
functions εm (heights of pillars in Fig. 1),

ε(t ) = εm = εm+q, when t �= [tm, tm + δtm] mod Td, (1)

where q is the total number of switching times within one
period, m = 1, 2, . . . , q are the indices of the time slabs, and
tm = ∑m−1

m′=1 δtm′ ,m � 2, t1 = 0 with Td ≡ tq + δtq being the
overall periodicity of the modulation, and δtm (pillar widths in
Fig. 1) is the duration of each time slab. The step functions εm
are varied according to the sinusoidal function

εm = εa + δε sin(2πmᾱ + θ ), (2)

where εa is the average permittivity across PTQCs,
θ ∈ [0, 2π ) is called phason. The irrational number α can be
approximated by the rational number ᾱ = 	α · q
/q, where
q and p = 	α · q
 are integer numbers, thus the temporal
structure becomes periodic in time. Since the aperiodicity
of the exact PTQC is approached in the limit of a large
“temporal supercell”, we choose q to be large enough such
that the eigenspectrum of the periodic structure can include
the fractal features in the eigenspectrum of the quasicrystal up
to small corrections. If q → ∞, the model resumes its

“quasicrystal” variation in time. As
sketched in Fig. 1, we choose a
nonuniform time step δtm

δtm = δt0

√
εm

εa
, (3)

where δt0 is the average time step. This choice ensures that the
propagation phase β = ωmδtm = ckzδtm√

εm
= ckzδt0√

εa
accumulated

in each time slab is independent of the index m, and thus
β has a constant value. After imposing the continuity of the
displacement field Dx = εEx and magnetic field Hy at each
time interface and applying the Floquet’s theorem, we obtain
the temporal eigenvalue equation [48]

M1→q(β )ψ (0+) = e−iϕψ (0+), (4)

where M1→q(β ) is the temporal transfer matrix of our struc-
ture, ϕ = �Td ∈ [0, 2π ) is the Floquet phase, and � is the
quasifrequency. ψ (0+) = [a+

l,1, a
−
l,1]T, is composed of the co-

efficients for forward waves (with positive frequency) and
backward waves (with negative frequency) at initial time t =
0+ corresponding to the left boundary of the initial time slab.
Equation (4) represents the conventional eigenvalue equations
of PTCs, relating the propagation phase β to the Floquet phase
ϕ. However, the topological properties of our temporal struc-
ture approximating the PTQC exist in a momentum bandgap
and lies in the space (ϕ, θ ). To obtain the fractal spectrum and
topological invariants of our temporal supercell, all eigenvalue
solutions and scattering coefficients at various time slabs in
the space (ϕ, θ ) need to be obtained. As a result, it is neither
convenient nor efficient to study the topological properties of
it via Eq. (4) which seeks solutions in the space (β, θ ).

Therefore, it is highly desirable to develop an alternative
eigenvalue approach for large temporal systems in which the
roles of momentum and frequency are reversed compared to
Eq. (4). Herein, we aim to derive a frequency-momentum
eigenvalue equation, exploiting the condition that the phase
β is conserved at each time slab. As the inset of Fig. 1 shows,
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forward and backward waves before and after the temporal
interface between time slabs m and m + 1 are connected by
the matching matrix as(

a+
l,m+1
a−
l,m+1

)
=

(
τm,m+1 ρm,m+1

ρm,m+1 τm,m+1

) (
a+
r,m
a−
r,m

)
, (5)

where a±
l (r),m are the magnitudes of forward and backward

waves at the left(right) boundary of time slab m (refer to the
inset of Fig. 1). The relations between waves are rearranged
into

Sm

(
a+
r,m

a−
l,m+1

)
=

(
a−
r,m

a+
l,m+1

)
, (6)

where Sm is referred to as the scattering matrix,

Sm =
[−ρm,m+1 1
−τm,m+1 0

]−1[
τm,m+1 0
ρm,m+1 −1

]
, m = 1, 2, . . . , q.

(7)

The constant phase β allows us to rewrite the propagation
matrix for each time slab as follows:(

a+
l,m
a−
r,m

)
= e−iβσ1

(
a−
l,m

a+
r,m

)
, (8)

where σ1 = [0 1
1 0]. Combining Eqs. (6) and (8) and Floquet

boundary condition ψ (T+
d ) = e−iϕψ (0+), we obtain com-

pacted linear equations⎡
⎢⎢⎣
S1

S2
. . .

Sq

⎤
⎥⎥⎦ |un〉

= e−iβ

⎡
⎢⎢⎢⎢⎣

eiϕ

σ1
. . .

σ1

e−iϕ

⎤
⎥⎥⎥⎥⎦ |un〉, (9)

where eigenstates |un(ϕ, θ )〉 = [a+
r,1, a

−
l,2, a

+
r,2, a

−
l,3, . . . , a

+
r,q,

a−
l,q+1] consist of forward waves at the end times and back-

ward waves at the initial times of various time slabs. The
Floquet phase factors e±iϕ appear in the off-diagonal matrix
stemming from Floquet boundary conditions at the initial and
end sites. We define operator U as

U =

⎡
⎢⎢⎢⎢⎣

eiϕ

σ1
. . .

σ1

e−iϕ

⎤
⎥⎥⎥⎥⎦

−1⎡
⎢⎢⎣
S1

S2
. . .

Sq

⎤
⎥⎥⎦.

(10)

Thus, we treat ϕ as the input variable and evaluate β

by reformulating Eq. (4) into 2q × 2q closed-form matrix
expression

U (ϕ, θ )|un(ϕ, θ )〉 = e−iβn |un(ϕ, θ )〉, (11)

FIG. 2. Hofstadter butterfly spectrum in our temporal supercells.
(a) Variation of permittivity in the time domain for different configu-
rations of temporal supercells controlled by α = p/q. (b) Hofstadter
butterfly eigenvalue spectrum obtained from Eq. (11) with Floquet
phase set as ϕ = π/2. Other parameters are taken as θ = 0, q =
61, p = 0, 1, . . . , q−1. εa = 3.4, δε = 3. These parameters are the
same throughout the manuscript otherwise specified.

whereU (ϕ, θ ) is unitary and represents the evolution operator
of waves in a single time slab, and n = 1, 2, . . . , 2q indi-
cate the eigenstate indices according to their phase βn(ϕ, θ ).
The eigenvalue Eq. (11) provides an ideal approach to de-
fine and evaluate a topological invariant, since its eigenstates
|un(ϕ, θ )〉 are expressed in the space (ϕ, θ ).

III. HOFSTADTER BUTTERFLY SPECTRUM

The implementation of Aubry-Andrè model with one-
dimensional (1D) quasiperiodic platforms opens new ways to
study the associated topological phenomena, like the emer-
gence of a fractal energy spectrum encoding self-similarities,
and topological pumping [52,53]. Having defined the topo-
logical features of our temporal supercell, we may expect
distinct features and advantages in this domain over the spatial
counterpart. For example, PTQCs avoid complex fabrication
requirements of aperiodic structure and enables swift recon-
figuration of various topological models on the same platform.
In this section, we study whether the essential features of 1D
quasiperiodic crystals in the spatial domain can be similarly
exhibited in PTQCs. We first explore a model of temporal
supercell realized by temporally varying the permittivity of
the spatially homogeneous medium according to Eqs. (1)–(3).
α = p

q varies from 0 to 1, which controls the varying pat-
terns of permittivity in time and the temporal periods of our
temporal supercell, as shown by the schematic in Fig. 2(a).
To resolve the fractal structure of the butterfly spectrum and
approximating the properties of PTQCs more accurately, the
degrees of freedom of our temporal supercell represented by
the parameter q needs to be large. Here, we take a specific
value q = 61 which provides sufficient resolution to observe
the major fractal features in the eigenvalue spectrum. To vi-
sualize the eigenvalue spectrum and judge whether temporal
supercell supports Hofstadter butterfly spectrum, we sweep
the parameter p from 0 to q−1 and collect all eigenvalues
of temporal supercell via Eq. (11) as a function of p in the
same plot, see Fig. 2(b). The numerical spectrum reveals the
fractal features like the recurrent appearance of the tempo-
ral bandgaps, signifying the implicit connection between our
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model and the Aubry-Andrè model [48]. Note the spectrum
exhibits a period of β0 = π since in the modulation scheme
q is odd and ϕ = π/2 which guarantees a period of β0 = π

[48].

IV. TEMPORAL TOPOLOGICAL PUMPING

In this section, we explore whether PTQCs can support
topological edge states at their temporal boundaries and emu-
late adiabatic pumping in synthetic dimension. To this end, we
consider a temporal supercell in which the permittivity step
functions are described by Eq. (2) with fixed ᾱ = p

q satisfying
the rationality condition and with θ , a phason acting as a
variable in synthetic Brillouin zone, varying between 0 and
2π . The eigenstates entailed by the effective Hamiltonian can
be defined as

Heff (ϕ, θ )|un(ϕ, θ )〉 = βn(ϕ, θ )|un(ϕ, θ )〉, (12)

where Heff (ϕ, θ ) = i
Td

log[U (ϕ, θ )]. The Brillouin zone in the
phase variables (ϕ, θ ) forms an S1 × S1 torus, which supports
a Chern number cn = i

2π

∫∫
BZ dSFn(ϕ, θ ) for the nth temporal

band, where the Berry curvature is expressed as Fn(ϕ, θ ) =
∇ × 〈un(ϕ, θ )|∇un(ϕ, θ )〉. Thus, the Chern number of the ith

temporal bandgap can be evaluated asCi = ∑Ni
n=1 cn, where Ni

is the number of bands below the temporal bandgap. Interest-
ingly, the two main bandgaps in our temporal supercell have
integer quantized Chern number ±1. For spatial quasicrystals,
localized topological edge states are expected to emerge at
any boundary, according to the bulk-edge correspondence.
To test whether the bulk-edge correspondence also applies to
our temporal structure, we introduce spatially homogenous
slabs with large permittivity εclad � εm, playing the role of
TCSs, right after the periodic structure sequence by switching
the permittivity from εq to εclad after Ttqc, i.e., analogous to
a spatial trivial medium surrounding a topological photonic
crystal. To preserve phase conservation, the time step for
TCSs is chosen to be Ttcs = δt0

√
εclad/εa, thus the total period

of our temporal structure becomes T ′
d = Ttqc + Ttcs. We vary

the phason θ cycling from 0 to 2π , and the corresponding
variation of permittivity as a function of θ in the time domain
is shown in Fig. 3(a). We then calculate the band structure of
temporal structure using Eq. (11) without TCS and with TCS,
as shown in Figs. 3(b) and 3(c). Since phase ϕ does not change
the topological properties of our temporal structure, without
loss of genericity, we choose ϕ = π/2 in the eigenvalue calcu-
lation. Gapless edge bands are absent in momentum bandgaps
of temporal bands in Fig. 3(b) while emerge in those of
Fig. 3(c), as shown by the orange and blue colored curves,
confirming the bulk-edge correspondence works in our tempo-
ral structure. To demonstrate topological pumping of temporal
edge states, θ is adiabatically changed and the variation of the
eigenstates is plotted over the time domain (denoted by |�p|2)
following the curve indicated by arrows in Fig. 3(c). As shown
in Fig. 3(d), the wave is localized at the left temporal boundary
when θ is small. As θ increases, the edge state merges with
bulk states, and then the distribution of wave function shifts
to the other temporal boundary. The evolution of edge states
tuned by the phason θ clearly emulates the temporal analogue
of adiabatic topological pumping.

FIG. 3. Adiabatic topological pumping in our temporal struc-
tures. (a) Temporal variation of permittivity representing a temporal
structure with a temporal cladding slab (TCS) formed by a trivial
homogenous slab as a function of θ . The TCS has a width with time
step Ttcs = δt0

√
εclad/εa to preserve the phase β. Other parameters are

p = 20, q = 60. (b), (c) Temporal bandstructures of (b) temporal su-
percells, (c) temporal structures containing TCS. Chern numbers for
the two bandgaps are given. (d) Evolution of wave function profiles
|�p|2 calculated with Eq. (11) as a function of θ . The indices are
components of the eigenstates representing their field distributions
in time. The permittivity for TCS is εclad = 100, which is the same
throughout the manuscript otherwise specified.

V. TEMPORAL EDGE BANDS

So far, we have unveiled the topological features of our
temporal structure using the eigenvalue Eq. (11). In a practical
setup, the scattering coefficients disclose the temporal struc-
ture’s topological features. Hence, it is important to study the
dynamics of excited waves in our temporal structure by col-
lecting their scattering coefficients under the proposed driving
protocol. Due to causality, the wave cannot be influenced by
the TCS until the TCS is applied. Therefore, the dynamics
of the excited waves during the first driving period (t < T ′

d )
cannot be expected to produce temporal edge states. Instead,
if we record the real component of the transmission rate
Re(γ ) obtained after the first period (t > T ′

d ) and right before
the permittivity is switched to ε2 (t < T ′

d + δt1), the waves
will experience a complete period of our temporal structure.
The transmission rate can be inferred from transfer matrix
γ = M11 = M∗

22, where Mi j are the elements of M1→q. Due
to temporal reciprocity [11], Re(γ ) and the corresponding
Floquet phase ϕ satisfies the relation [48]

Re(γ (βeig)) = cos(ϕ), (13)

Therefore, we can tell that eigenmodes are excited when
|Re(γ (β ))| � 1, and determine the phase ϕ from Eq. (13). If
the parameters of the launched waves are selected such that
eigenmodes are not supported, |Re(γ (β ))| > 1, and Eq. (13)
no longer holds. To verify these predictions, we simulate
the model described by Eqs. (1)–(3) with p = 3, q = 9, and
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FIG. 4. Temporal edge bands in our temporal structures. (a)
Schematic of collecting scattering parameters at the TCS after a
period of supercell Ttqc and (b) the corresponding spectrum whose
value log10|Re(γ )|2 is encoded in the color of the spectrum as a
function of θ and β. (c) Schematic of collecting scattering parameters
in the initial time slab of our temporal structure after a full period
of temporal supercell and TCS T ′

d and (d) corresponding spectrum
log10|Re(γ )|2 as a function of θ and β. Here p = 3, q = 9. The
value log10|Re(γ )|2 is produced from the recursive relation in Eq. (4)
[or Eq. (S1)] and the band structures shown by black dotted lines are
obtained from the eigenvalue Eq. (11).

θ ∈ [0, 2π ), which capture the same topological features as
the model in Fig. 3, but with a shorter period to facilitate
full-wave simulations. We select a forward wave ψi = (1, 0)T

in the medium at t = 0 as the initial wave, then we eval-
uate the scattering coefficients associated with the complex
temporal transmitted and reflected waves via the recursive
relation in Eq. (4) at the temporal boundaries from temporal
supercell to TCS and from TCS back to temporal supercell,
respectively.

If we record Re(γ ) during the time interval between Ttqc

and T ′
d , as shown in Fig. 4(a), the spectrum whose color

encodes the variation of log10|Re(γ )|2 as a function of pa-
rameters (θ, β ) reveals bulk modes [Fig. 4(b)], but no gapless
edge mode can be observed in the momentum bandgap. In
the second scenario [Fig. 4(c)], we study the scattering co-
efficients at the time interval between T ′

d and T ′
d + δt1. The

spectrum, shown in Fig. 4(d), now reveals the emergence of
topological edge modes crossing the momentum bandgaps,
and the minima of |Re(γ )| are precisely the bands obtained
by Eq. (11) computed for ϕ = π/2 and indicated by black
dots in Fig. 4(d). According to Eq. (13), the minima in spectra
of Figs. 4(b) and 4(d) correspond to the eigenvalues computed
for both cases and demonstrate similar temporal bulk bands,
as expected, but only the latter reveals temporal edge modes
crossing the momentum bandgap. To further confirm these
results, we perform homemade finite-difference-time-domain
(FDTD) simulations for this system. By sweeping the param-
eter θ and evaluating Re(γ ) = |γ |cos(φγ ) for each temporal

FIG. 5. Temporal evolution of edge modes in our temporal struc-
ture across multiple periods. (a) Evolution of edge modes localized
at the left temporal interface. (b) Evolution of bulk modes in the
temporal structure. (c) Evolution of edge modes localized at the
right temporal interface. Parameters normalized to 2π are adopted
for these examples as (a) (θl, βl ) = (0.2412, 0.3189), (b) (θb, βb) =
(0.4221, 0.2661) and (c) (θr, βr ) = (0.593, 0.3191), and their posi-
tions are denoted by blue stars in Fig. 4(d). The other parameters are
the same as in Fig. 4.

configuration, where φγ is the phase of the transmission rate
[48], we obtain the spectra log10|Re(γ )|2 as a function of
(θ, β ) measured right after Ttqc [Fig. S2(c)] and measured
right after T ′

d [Fig. S2(d)]. (See Supplemental Material [48]).
The retrieved spectra match remarkably well the theoretical
results in Figs. 4(b) and 4(d).

VI. LONG RANGE TEMPORAL DYNAMICS

Although our simulation scheme enables efficient mapping
of the temporal edge bands (before t < T ′

d + δt1), it is also in-
teresting to observe the temporal dynamics of edge modes and
how to distinguish them from bulk modes in a practical mea-
surement. In order to visualize the temporal localization of
topological edge modes, we let the waves evolve for multiple
repetitions of the temporal structure, and capture the scattering
parameters at the beginning of every switching interval. In a
first example, we implement the simulation of the temporal
structure with parameters (θl, βl ) provided by the eigenvalue
calculation such that we expect topological edge modes to
be localized at the left temporal boundary of the temporal
structure. The transmittance |γ |2, with and without TCS next
to the temporal supercell, are evaluated and shown in Fig. 5(a).
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For the temporal structure with TCS, the period of the whole
system is T

′
d = Ttqc + Ttcs, and m = q + 1 corresponds to the

left boundary of TCS (marked by green line in Fig. 5). For
the temporal structure without TCS, the period remains as
Td = Ttqc, so m = q corresponds to the left boundary of the
last temporal slab [marked by cyan line in Fig. 5(b)]. During
the first instance of our temporal structure, as expected both
transmitted waves |γ |2 display the same patterns, until the
switching event from temporal supercell to TCS occurs. After
t > Ttqc, the waves in the first scenario propagate in the TCS
with magnitude significantly reduced, because the permittiv-
ity εclad is much larger than that in the temporal supercell.
Interestingly, after the first temporal structure repetition, the
waves demonstrate a drastically different response with or
without TCS. After experiencing the TCS, the waves grow
in amplitude during the first three switching intervals, and
subsequently decay in a damped oscillatory pattern before the
medium switches back to the temporal structure [red curve
from theory and purple curve from FDTD in Fig. 5(a)]. This
phenomenon verifies the appearance of the temporal edge
modes during the second PTQC, consistent with the eigen-
value study in Fig. 3. By contrast, in the absence of TCS
the wave grows exponentially in time after the first period
of the temporal supercell, implying that no eigenstate exists
in the momentum bandgap [blue curve from theory and cyan
curve from FDTD in Fig. 5(a)].

In our second example, we choose the parameters (θb, βb)
corresponding to the temporal structure’s bulk modes. Both
scenarios with and without TCS show limited intensity, and
display an oscillatory behavior in the time domain, confirming
that bulk modes exist in both cases, as shown in Fig. 5(b).
Next, we use the parameters (θr, βr ) corresponding to edge
modes localized at the right temporal boundary. Similar to the
first case, the temporal evolution of |γ |2 with and without TCS
is the same, and their dynamics become significantly different
during the second period, see Fig. 5(c). For the temporal
structure with TCS, the transmitted wave grows right after the
switching event from temporal supercell to TCS. It then drops
exponentially in the last three temporal slabs of the second
temporal supercell, confirming the excitation of edge modes at
the right boundary of the temporal structure. For the temporal
structure without TCS, the excited wave constantly grows
exponentially and behaves differently in the second period
from the wave with TCS, which indicates the presence of

momentum bandgap. Since ϕ = π/2, the period of the excited
waves in these scenarios is equal to four times the driving
period, thus the wave magnitude exhibits an oscillatory pattern
double of the driving period, as shown in Fig. 5.

VII. CONCLUSIONS

In this work, we have demonstrated the emergence of a
Hofstadter butterfly spectrum and of a topologically nontriv-
ial phase in temporal structures approximating PTQCs, and
the occurrence of the temporal analog of topological edge
states. We have also shown the transition dynamics of excited
waves in synthetic space, establishing the temporal analog
of topological pumping. Our work shows that temporally
periodic and quasiperiodic structures like PTCs and PTQCs
possess intriguing features not available in their spatial coun-
terparts and offer opportunities for applications in various
platforms, such as photonics, acoustics, and even in quantum
systems of condensed matters [21]. Moreover, the numerical
technique introduced in our work which efficiently solves
the eigenvalue problems for photonic time (quasi)crystal and
their topological properties, as well as closed-form relation
between scattering coefficients and quasifrequency of the tem-
poral structure, may give hints to the active research of a
time (quasi)crystal. In particular, we note the extreme energy
confinement of temporally evanescent waves occurring in the
momentum bandgap of PTCs and PTQCs, which may be com-
bined with nonlinear and non-Hermitian phenomena for other
exotic wave phenomena. PTQCs may be realized both at radio
frequencies with transmission-line metamaterials and in the
optical regime exploiting all-optical pumping in polaritonic
media [22,54–56].
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