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Breather gas fission from elliptic potentials in self-focusing media
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We present an analytical model of integrable turbulence in the focusing nonlinear Schrodinger (fNLS)
equation, generated by a one-parameter family of finite-band elliptic potentials in the semiclassical limit. We
show that the spectrum of these potentials exhibits a thermodynamic band/gap scaling compatible with that
of soliton and breather gases depending on the value of the elliptic parameter m of the potential. We then
demonstrate that, upon augmenting the potential by a small random noise (which is inevitably present in real
physical systems), the solution of the fNLS equation evolves into a fully randomized, spatially homogeneous
breather gas, a phenomenon we call breather gas fission. We show that the statistical properties of the breather
gas at large times are determined by the spectral density of states generated by the unperturbed initial potential.
We analytically compute the kurtosis of the breather gas as a function of the elliptic parameter m, and we show
that it is greater than 2 for all nonzero m, implying non-Gaussian statistics. Finally, we verify the theoretical
predictions by comparison with direct numerical simulations of the fNLS equation. These results establish a
link between semiclassical limits of integrable systems and the statistical characterization of their soliton and

breather gases.
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I. INTRODUCTION

The focusing nonlinear Schrodinger (fNLS) equation is
a ubiquitous model describing nonlinear wave propagation
arising in a variety of physical settings, including deep water
waves [1], optics [2], plasmas [3], and Bose-Einstein conden-
sates (BECs) [4]. The fNLS equation is also a completely
integrable infinite-dimensional Hamiltonian system [5-10],
endowed with a deep mathematical structure, including the
existence of infinite families of exact solutions with both zero
and nonzero background describing the elastic interactions
of N solitons. In addition, its initial value problem can in
some cases be solved by the inverse scattering transform
(IST) [11-19]. The formulation of the IST is based on the
representation of the nonlinear evolution equation as the com-
patibility condition of two linear equations called a Lax pair.
The first half of the Lax pair of the fNLS equation, namely
the Zakharov-Shabat (ZS) scattering problem, is equivalent to
an eigenvalue problem for a non-self-adjoint one-dimensional
Dirac operator.

While the classical theory and applications of the fNLS
equation are mostly concerned with the description of regular,
deterministic wave structures, the inherent statistical nature
of some physical wave phenomena in focusing media (e.g.,
rogue wave emergence) calls for the study of stochastic fNLS
solutions, characterized in terms of the probability density
function, correlation function, etc. Establishing a connection
between the IST spectra of random fNLS solutions and their
statistical properties in physical space represents a challenging
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problem, which has recently been formulated in the context of
integrable turbulence [20,21]—the general theoretical frame-
work for the description of a broad spectrum of stochastic
wave phenomena in physical systems modeled by integrable
equations. A particular type of integrable turbulence, termed
soliton gas (SG), has recently attracted considerable atten-
tion [22,23] due to its appearance in many physical systems
including water waves [24-27], nonlinear optics [28-30],
and BECs [31,32]. Notably, SG dynamics has been shown
to underpin some fundamental physical phenomena such as
spontaneous modulational instability [33] and the rogue wave
emergence [34] in focusing media.

The concept of a SG was introduced in Ref. [35] as an
infinite collection of randomly distributed solitons with small
spatial density and with a certain amplitude distribution. Soli-
ton interactions, accompanied by well-defined phase shifts,
result in a modification of the effective velocity of a “tracer”
soliton in a gas over large propagation distances, enabling an
approximate description of the emergent, large-scale hydro-
dynamics or kinetics of a weakly nonuniform/nonequilibrium
SG. The kinetic description of a SG was generalized in Ref.
[36] to a dense SG using finite-gap theory, and a general
phenomenological construction of SG kinetic equation for a
broad class of integrable systems was proposed in Ref. [37].
A systematic spectral theory of fNLS SGs was developed in
Ref. [38], where it was also extended to the case of a SG on
a nonzero background, i.e., a breather gas (BG). For recent
advances on the spectral theory of soliton and breather gases
and its relation to the generalized hydrodynamics of integrable

©2025 American Physical Society
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FIG. 1. Density plots of the time evolution of the potential in Eq. (4) according to fNLS equation (1) with € = 1/20, m = 0.7, and
(a) without noise, (b) with zero-mean white Gaussian noise with standard deviation & = 1072, In both cases, the spatial window was taken to

be the period of the IC.

many-body classical and quantum systems, see Ref. [23].
For further rigorous analysis of SGs and BGs of the fNLS
equation, including periodic SGs and BGs, see Ref. [39].

While BGs represent a natural generalization of SGs, pos-
sible mechanisms for their generation have remained largely
unexplored. In this work we present an analytically tractable
model of BG generation via fission, based on the semiclassi-
cal limit of the fNLS equation with initial data in the form
of a periodic elliptic “dn” potential with elliptic parameter
m € [0, 1], augmented by a small random noise. It was shown
in Ref. [40] that the ZS spectrum of such elliptic potentials can
be characterized analytically. It was also shown in Ref. [39]
that, in the semiclassical limits, one hump, nonnegative, peri-
odic potentials [including the Jacobi elliptic “dn” potential]
are compatible with the so-called thermodynamic spectral
scaling [38] and give rise to bound-state SGs or BGs. The
addition of a small noise to the initial condition (IC) facilitates
the “phase mixing” of the finite-gap semiclasical dn potential,
giving rise, in the long-time limit, to a spatially uniform and
statistically stationary integrable turbulence, associated with a
BG (cf. Fig. 1).

The fundamental property of long-time effective “thermal-
ization,” or relaxation to a statistically stationary state, in an
integrable system was established numerically in several sce-
narios of the evolution of random waves in the fNLS equation
[41-43]. Here we extend this result to the qualitatively new
framework of the BG fission, which encompasses a broad
range of scenarios of transition to stationary integrable turbu-
lence depending on the value of m in the semiclassical elliptic
potential: from the nonlinear development of the spontaneous
modulational instability for m — O to the rarefied soliton gas
fission for m — 1. When the noise is sufficiently small, the
ZS spectrum remains essentially unchanged from that of the
semiclassical elliptic potential. The isospectrality of the BG
fission enables one to take advantage of the results of Ref. [21]
and evaluate statistical measures of the BG, such as the mean
intensity and kurtosis, in terms of the spectral density of states
of the initial elliptic potential. In Ref. [21], it was predicted
that the kurtosis doubles in the long-time fNLS fission of the
so-called partially coherent waves into a SG. Here we show
analytically that this result generalizes to the BG fission from

semiclassical elliptic potentials, and we confirm our results
by comparison with direct numerical simulations of the time
evolution of the noise-augmented potential.

An important ingredient of our construction is the inter-
pretation of a BG as a “composite SG” comprising of two
spectrally distinct components: a regular SG and a soliton
condensate, defined as a critically dense SG [38] and de-
scribing the modulationally unstable background in a BG.
This composite SG provides a natural extension of the “pure”
fNLS soliton condensate framework used in Refs. [33,44] to
model the development of spontaneous (noise-induced) mod-
ulational instability of fNLS plane wave and genus one elliptic
solutions.

II. NLS WITH DN POTENTIAL

The cubic NLS equation is, in normalized and dimension-
less form and in the semiclassical scaling,

i€q + €2qu +21qI*q = 0, (1

where subscripts x and ¢ denote partial differentiation, g(x, t)
describes a complex-valued envelope of oscillations, and the
physical meaning of the variables x and ¢ varies depending on
the physical context. (For example, in nonlinear fiber optics, x
is a retarded time and ¢ is the propagation distance through the
medium.) Equation (1) is the compatibility condition v,; = v,
of its Lax pair, namely the overdetermined linear system

€vy = (—izo3 +Q)Vv, €V, =Py, 2)

for v(x,t,z) = (v, v)!, with P = —2iz%03 +i(|q|> +
0,)o3 —2zQ, where o3 = diag(l, —1) is the third Pauli

matrix, and
0 ¢
g 0), 3

the asterisk denoting complex conjugate. The first half of
Eq. (2) is the ZS scattering problem, and g and z are referred
to respectively as the potential and the scattering parameter,
or eigenvalue, since the first half of Eq. (2) can be rewritten as
the eigenvalue problem £v = zv, where £ := io3(€d, — Q) is
a one-dimensional Dirac operator.

Q(x,t):(
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FIG. 2. Left: The spectrum of the dn potential (4) in the complex z plane with m = 0.7 for ¢ = 1/7. Right: Periodic (red) and antiperiodic
(blue) eigenvalues (vertical axis) as a function of the elliptic parameter m in (0, 1) (horizontal axis) for ¢ = 1/7. For every fixed value of m, as
€ — 0, the number of bands grows like 1/¢. The yellow line separates the range I', = (0, igpi,) (in white) from the range I'y = (igmin, igmax)
(in gray). The dashed line shows the value m = 0.7 corresponding to the spectrum in the left panel. For each fixed value of m, inside z € T',
the band widths decrease exponentially in €, giving rise to point spectrum in the limit ¢ — 0. Conversely, inside I', the band widths decrease

only algebraically, giving rise to a continuous band in the limit € — 0.

In Ref. [40] we characterized the Lax spectrum X(L) of
the above ZS problem with the potential

q(x,0) =dn(x;m), xeR, 4)

where dn(x;m) is a Jacobi elliptic function [45,46] and m €
(0, 1) is the elliptic parameter. (Recall that the Lax spectrum
2 (L) is defined as the set of values z € C such that the fo-
cusing ZS scattering problem admits solutions v(x, z) that are
bounded for all x € R.) Note the spatial period is 2L = 2K,,,,
where K,, = K(m) is the complete elliptic integral of first
kind.

Two distinguished limiting cases are m = 0, 1. The case
m = 0 reduces to the constant potential g(x, 0) = 1, which
is solved trivially, and for which X(£) = R U [—i, i]. Con-
versely, as m — 1, g(x,0) — sech x and K,, — oo. This
problem was studied in Ref. [47], where it was shown that
¥ (L) comprises the real z axis plus a set of purely imagi-
nary discrete eigenvalues uniformly distributed in the interval
(—1, i). Moreover, it was shown that sech x is a reflectionless
potential (giving rise to pure soliton solutions) if and only if
€ = 1/N, with N € N. This work connects these two limiting
cases by characterizing the class of periodic potentials (4) for
all 0 < m < 1. Figure 1 shows for € = 1/20 and m = 0.7 the
time evolution of the dn potential according to fNLS without
noise (left), and with Gaussian noise (right).

The structure of the Lax spectrum can be studied via
Bloch-Floquet theory using the monodromy matrix M(z) =
d~(x, 2)®(x + 2L, 7), where ®(x, z) is a fundamental matrix
solution of the scattering problem, and 2L is the minimal
period of the potential. [Since X(L) is invariant when the
potential g(x, ¢) evolves in time according to the fNLS Eq. (1),
we will often omit the time dependence from all quantities
below.] In turn, the Floquet discriminant is defined by A(z) =
tr M(z)/2. Bounded solutions of the scattering problem then
exist for z € C such that In A(z) =0 and —1 < Re A(z) <
1. Importantly, A(z) is an entire function of z that is also
Schwarz-symmetric: A(z*) = A*(z). As a result, it is suf-
ficient to consider the upper half plane, Imz > 0. Since £
is non-self-adjoint, (L) is not confined to the real z axis.

Nonetheless, the zero-level curves of Im A(z) define a count-
able set of analytic arcs I',,. Along each arc, the requirement
—1 < Re A(z) < 1 then defines a spectral band. With these
definitions, one can talk about bands as in a self-adjoint prob-
lem, the difference being that in the non-self-adjoint case the
bands are not restricted to lie along the real z axis, but lie
instead along the I',.

The endpoints of the bands are periodic and antiperiodic
eigenvalues of £, namely, the values z for which A(z) = %1,
which give rise to periodic and antiperiodic eigenfunctions,
respectively. Moreover, the real z axis is an infinitely long
band, and any band that intersects the real z axis transversally
is called a “spine.” Any potential whose spectrum is com-
prised of a finite number of bands is called a “finite-band”
potential [8,9,48]. These special potentials correspond to the
finite-genus solutions of all equations in the Ablowitz-Kaup-
Newell-Segur (AKNS) hierarchy.

In Ref. [40] it was proved that for the dn potential (4)
and € = 1/N, N € N, the Lax spectrum of the ZS scattering
problem comprises 2N Schwarz-symmetric bands along the
interval (—i, i), and produces a genus 2N — 1 solution of the
fNLS equation (see Ref. [40] and the Appendix for details).

III. SEMICLASSICAL LIMIT AND BREATHER GAS

The spectrum of the dn potential (4) in the complex z
plane for for m = 0.7 and € = 1/7. is shown in Fig. 2(left).
Figure 2(right) shows, as a function of the elliptic pa-
rameter m (horizontal axis), the location of the periodic
eigenvalues (red curves) and antiperiodic eigenvalues (blue
curves) along the imaginary z axis (vertical axis), together
with the value of gpin = minye—x, x,19(x, 0) = g(Ky, 0) =
/1 —m (yellow curve) for m € (0, 1). For the potential (4),
Gmax = MaXye[—k, k,19(*, 0) = g(0, 0) = 1. The periodic and
antiperiodic eigenvalues of £ along the imaginary z axis were
computed using finite truncations of Eqgs. (A10) (see Ref.
[40] and the Appendix for details). Notice all gaps are closed
when m = 0 and they open as m > 0 and remain open for
all m € (0, 1). In the singular limit m — 1, the band widths
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tend to zero, and the periodic and antiperiodic eigenvalues
“collide” to form the point spectrum of £ on the line.

Even though £ is not self-adjoint, its spectrum in the limit
€ — 0 can be effectively characterized using WKB methods
[49,50], which allows one to obtain precise asymptotic esti-
mates for the location of band edges, band widths, and gap
widths (see Appendix). The results of the WKB analysis show
that all bands lie along the finite segment I' = (—i¢max, {gmax)
in the complex z-plane. As € — 0, however, the behavior of
bands and gaps in the range I', = (0, igmin) differs from those
in I'y = (igmin, igmax). These two portions of the spectrum
are those respectively located below (in white) and above (in
gray) the yellow curve in Fig. 2(right) for each value of m.
Inside I'y, the band widths decay exponentially in €, while
the gap widths decay algebraically. Hence, the ratio of band
width to gap width tends to zero, and the bands accumulate
according to some limiting density ¢(z) found in Ref. [39]
(see the Appendix for details). Conversely, inside T, it is
the relative band gaps that tend to zero [cf. Eq. (A13) in the
Appendix], giving rise to a continuous band in the limit. Thus,
in the semiclassical limit, the spectrum of the elliptic potential
(4) is compatible with the thermodynamic spectral scaling of
a SG or a BG [38,39]. As m — 1, the range I',, tends to zero,
and one gets a pure SG spectrum. Conversely, as m — 0, it is
the range I, that tends to zero, and one obtains the spectrum of
the soliton condensate. For 0 < m < 1 we get the spectrum of
a BG, which can be interpreted as a “composite,” or partially
condensed, SG. Next we characterize in detail the statistical
properties of this gas.

We can derive the two key quantities in the spectral theory
of soliton and breather gases, namely, the density of bands,
and the normalized logarithmic band width. In particular, the
density of bands ¢(z) is (see the Appendix for details)

2z| (@ 2 29—1/2
p(z)= 7[ [dn(x; m) — |z]]7 7/~ dx, &)
0

where x,(z) =K, for z € (0,igmn) and x,(z) >0 is a
simple turning point [at which dn(x;m) = |z|] for z e
(iqmin, 1). (Note that fOK’” dn(x;m)dx = 7 /2, which ensures

that fol ¢(z)d|z] = 1. Note also that for z € I'y, the above
expressions follow directly from the analysis of Ref. [39].)

Following Ref. [39], we can obtain the density of
states (DOS) f(z) (see the Appendix for details) f(z) =
©(2)/(2K,,). (Note that, strictly speaking, f(z) is a “reduced”
DOS. The “full” DOS for the bound-state potential is given
by f(z) = f(n)8(£), where € = Rez, n =Imz, and 8(x) is
the Dirac § function; see Ref. [21].)

As m — 0, T’y collapses, and f(7) tends to the Weyl dis-
tribution of a soliton condensate—a critically dense SG (see
the Appendix for details). Conversely, asm — 1, L — oo, I',
collapses, and f(n) tends to zero, as appropriate for a rarified
SG. Thus, as we already mentioned, the BG interpolating be-
tween these two extremes, when O < m < 1, can be viewed as
a composite SG. The interpretation of a BG as a composite SG
is also supported by the results of Ref. [51], where basic fNLS
breathers were generated numerically with high accuracy by
appropriately configuring N-soliton fNLS solutions with large
N.

IV. KURTOSIS AND NUMERICAL VALIDATION

Kurtosis is an important characteristic of a random wave
field, indicating its deviation from Gaussianity. With a slight
abuse of conventional terminology here we will use the def-
inition of kurtosis « as the fourth normalized moment of the
probability distribution for the wave amplitude |g|. With this
definition the Gaussian wave field will have « = 2; see, e.g.,
Ref. [52]. The spectral DOS allows one to evaluate the kurto-
sis of the SG wave field. In Ref. [21], the following general
expression for the kurtosis of spatially uniform bound-state
SG was obtained:

gty 2

(g 3
where the angle brackets denote ensemble average, n = Im z,
and the overbar, denote average over the DOS,

Q)

_ L
nk = / n* f(n)dn = CL—" / ¢ (x, 0) dx, 7
y 0

i.e., the moments of the DOS f(n), where y is the spec-
tral support of the SG and where the last equality follows
from Ref. [39], with ¢; = % and c3 = 1—36 Thus,

Kk = 2k, (8a)

where k) is the normalized fourth moment of the IC, namely,

L 4
¢ = o gt Ot dx )

(JE1q0x, 02 dx)*

This result is consistent with the kurtosis doubling obtained
in Ref. [21] for the SG fission from partially coherent waves,
with a crucial difference: here, ko is computed from a purely de-
terministic IC. A calculation of the kurtosis for a periodic BG
based on the results of Ref. [39] leads to the same expressions
(8a) and (8b). Moreover, and importantly, a straightforward
analysis of the above expression using Jensen’s inequality (see
the Appendix for details) allows one to conclude that any
periodic SG or BG of the fNLS equation (1) generated by a
deterministic real and even single-lobe potential g(x, 0) has
kurtosis k > 2. Moroever, k = 2 if and only if q(x, 0) is con-
stant. Recall that x > 2 implies heavy-tailed non-Gaussian
statistics, which is an indication of the possible presence of
rogue waves [53-55].

In particular, for the potential (4), a straightforward calcu-
lation allows us to obtain the following explicit expression for
Ko-

ko = Kul2(2 = m)E,, — (1 — m)K,,)/(3E2), (9

where E,, is the complete elliptic integral of the second kind
[45].

Next we discuss the numerically computed time evolution
of the NLS solutions produced by the potential (4).

Figure 1 demonstrates how the addition of a small amount
of zero-mean white Gaussian noise (with standard deviation
o = 1072) to the IC effectively randomizes the solution. Fig-
ure 3 (left) shows the temporal evolution of the normalized
fourth moment |g|*/(|g|?)* of the resulting fNLS solutions
with € = 1/20 and the same amount of white Gaussian noise
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FIG. 3. Left: The averaged temporal evolution of the kurtosis from an ensemble of noise realizations (red line). The gray region shows
the envelope of the normalized fourth moment of the solution from all individual noise realizations. Right: The kurtosis of a fully randomized
gas as a function of the elliptic parameter m. Blue curve: theoretical prediction from Eqgs. (8a) and (9). Dashed black curve: k, from Eq. (9).
Red squares: Numerically computed asymptotic value of kurtosis. Yellow stars: Ensemble average of the numerically evaluated integral from

Eq. (8b) for ICs consisting of the dn potential plus noise.

as before, as well as their ensemble average (i.e., the kurto-
sis), clearly demonstrating the establishment of a statistically
stationary integrable turbulence state. Finally, Fig. 3 (right)
shows how the dependence of the kurtosis on the elliptic
parameter m matches the theoretical prediction from Egs. (6)—
(9), providing a strong validation of the analytical predictions.

V. CONCLUDING REMARKS

In summary, we have presented an analytically tractable
model describing a mechanism for the formation of integrable
turbulence via BG fission of a semiclassical elliptic potential
augmented by weak noise. Our analysis introduces a natural
interpretation of a BG as a “composite SG,” consisting of two
distinct components: a regular SG plus a soliton condensate.
The analytical model comprises a one-parameter family of
such BGs, which interpolates between a pure soliton con-
densate (as m — 0) and a rarified SG (as m — 1) [56-59].
Intermediate values of m give rise to a mixed regime that
interpolates between the above two extremes. We validated
the theoretical results with direct numerical simulations of
the BG fission and demonstrated the establishment, at large
t of a statistically stationary integrable turbulence field char-
acterised by the kurtosis value which is shown analytically
and confirmed numerically to be twice as large as the fourth
normalized moment of the initial elliptic potential, implying,
in particular, the presence of rogue waves for all nonzero
values of m.

We expect that similar results will hold for arbitrary real
single-lobe periodic potentials. Our results also open up a
number of interesting avenues for further research. Since the
ZS problem is common to all equations of the AKNS hier-
archy, the results of this work will generate SGs/BGs for all
such equations, which although spectrally equivalent, exhibit
qualitatively different dynamics. The study of their resulting
SGs/BGs is threfore an interesting open question. For exam-
ple, despite some recent work [60,61], the spectral theory of
SGs for the focusing modified Korteweg-de Vries (mKdV)
equation is still open, and we expect that the mKdV soliton
gas phenomenology will be different than that of both the KdV

and focusing NLS gases, potentially involving solitons of both
polarities in the same gas.
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APPENDIX

In this Appendix we provide some additional details on
various results presented in the main text.

Jacobi dn potential and the Lax spectrum. In Ref. [40] we
studied the focusing NLS equation

igr + qux +21g17q = 0, (Al)

where the initial condition (IC) is a multiple Jacobi “dn”
elliptic function [45]:

q(x,0) =Adn(x;m), AeR. (A2)

As m goes from O to 1 the fNLS dynamics corresponding
to N dn(x;m) initial data interpolates between plane-wave
background (m = 0), to genus 2N — 1 finite-gap solution (0 <
m < 1), to pure N-soliton (m = 1).

To connect the above problem to the semiclassical setting,
it is sufficient to rescale ¢ and ¢ to make the initial data
independent of A, by letting g(x, t) — Aq(x, At), which yields
Eq. (1) with € = 1/A and g(x, 0) given by Eq. (4). Hence,
studying the semiclassical limit (¢ — 0) of Eq. (1) with IC
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FIG. 4. Left: dn(x; m) (vertical axis) as a function of x (horizontal axis) for various values of the elliptic parameter m. From top to bottom:
m = 0 (constant), 0.6 (gray), 0.9 (black), 0.99 (gray) and 0.999 (red). Right: Diagram illustrating the curves Im A(z) = 0 (black) and the Lax
spectrum X(L) (blue) in the complex z plane for the potential (4) with generic (noninteger) value of €.

(4) is equivalent to studying the large-A limit of Egs. (A1) and
(A2).

Figure 4(left) depicts the potential (4) for various values of
the elliptic parameter m € (0, 1). Recall that the real period
of the dn potential is 2K,,,, where K,, = K(m) is the complete
elliptic integral of the first kind [45]. Figure 4(right) shows the
contours {z : Im A(z) = 0} (thin black curves) together with
the Lax spectrum (thick blue curves) for a generic (noninte-
ger) value of the semiclassical parameter €. Figure 5 shows
the noise-augmented initial conditions (ICs) for two different
values of m and Fig. 6 compares the Lax spectrum with and
without noise, demonstrating that the noise does not affect
it appreciably. In particular, the number and locations of the
solitonic excitations remains unchanged.

In Ref. [40] we proved that the Lax spectrum of the
focusing ZS scattering problem associated with Eq. (Al)
and dnoidal potential (A2) and A € Z is comprised of 2A
Schwarz-symmetric bands along the imaginary axis of the
spectral variable. As a result, the corresponding solutions
of focusing NLS are special “finite-gap” solutions of genus
2A — 1. Next, we provide some details on how the spectrum
can be efficiently computed numerically.

PT-symmetric periodic Schrodinger potentials with real
spectrum. When the potential is real-valued as with Eq. (4),
A(z) also possesses an additional symmetry: A(—z*) =

08

q(x,0)
(=]
o

0.4

0.2 | — dn(x;0.05) + iid(0,0.01)
— dn(x;0.05)

L L L L n n s
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

A(z), and thus the eigenvalues come in quartets, i.e.,
{z, 2%, —z, —z"}. Moreover, the transformation w = Av,
where w(x, 1) = (w4, w_)T and

R
2\ =)
maps the ZS problem into the time-independent Schrédinger

equation with a complex periodic potential, namely,

A =22

A= (A3)

Hiwi = )Lwi, (A4a)

where
Vi(x) = Fieq, —q*.  (Adb)

Recall that the Schrodinger equation with a periodic po-
tential is referred to as Hill’s equation [62]. If g is real and
even, then the potentials are PT-symmetric: Vi (—x) = V}(x).
In particular, for the elliptic potential Eq. (4), Hy is

Hy = —€*3? — dn’(x) & iem sn(x) cn(x).

He = —€*3? + Vi(x),

(AS5)

Since X(H,) = X(H_) it is enough to consider only H_.
Below we discuss that, even though H. are not Hermitian,
all of their eigenvalues are real.

A further simplification is obtained via the change of
variable y = 2 am(x; m) [where am is the Jacobi amplitude],
which maps Eq. (AS5) into a complex perturbation of Ince’s

0.2 | — dn(x;0.9) +iid(0,0.01)
— dn(x;0.9)

n n L
-2 -1 0 1 2
X

FIG. 5. Red curve: Initial condition (4). Black curve: Same augmented by Gaussian noise with mean p = 0 and standard deviation o =

1072 Left: m = 0.05. Right: m = 0.9.
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FIG. 6. Left: Numerically computed spectrum of the scattering problem for the dn potential with m = 0.9 via the Fourier-Hill method [63].
Right: Same but with noise added to the potential with # = 0 and o = 1072,

equation [62]:

4€*[1 — msin®(y/2)] wy, — €*(msiny) w,
+ |:A + (1 — msin’(y/2)) + ie% siny:| w=0. (A6)

Bloch-Floquet theory implies that any bounded solutions of
Eq. (A6) can be written as w(y) = €™ p(y), where v € R is
the Floquet exponent and p(y + 27) = p(y), and can there-
fore be expanded in Fourier series, with Fourier coefficients
given by a three-term recurrence relation. The eigenvalues of
the ZS problem are then related to the (real or) complex values
of A for which the above ODE admits bounded solutions.
Integer and half-integer values of v yield respectively periodic
and antiperiodic eigenfunctions.

Three-term recurrence relation. Any solution of Eq. (A6)
that is bounded for all y € R can be represented by a Fourier
series as

wy; ) = ey e, e,

neZ

(AT)

with v € R. The coefficients {c,},cz are given by the three-
term recurrence relation

nCn—1 + (Bn — A)Cn + YuCn+1 =0, (A3)

where, foralln € Z,
ap=-m[3—emn+v—D][3+e(n+v—1)]. (A9)
Br = (1 —m/2)[€*2n+2v)" — 1], (A9b)
yo=-m[s —em+v+D][3+e(n+v+1)]. (A%)

Elliptic finite-band potentials. When € = 1/N, some of the
coefficents in Eqs. (A9) vanish, and as a result it is possible
to decompose the doubly-infinite recurrence relation into two
semi-infinite ones. Specifically, let

Bi i

B =21 Bjri Vin , (A10a)
B-j a-j

BE = |v-j-1 B-j-1 . (A10b)

with v =N/2 and j = 0 for the minus sign and v = (1 —
N)/2 and j = 1 for the plus sign. The periodic and antiperi-
odic spectrum of H_ is the union of the spectra of B and
BZ. Specifically: when N is even, B, and B_) yield the
periodic eigenvalues and B and B} the antiperiodic ones,
and viceversa when N is odd. In Ref. [40] we proved that
the eigenvalues of all four of these half-infinite matrices are
real. This is the key to prove that, for any m € (0, 1), the
potential g in Eq. (4) for the focusing ZS scattering problem
is finite-band if and only if € = 1/N with N € N. (The result
is easily extended to N € Z by phase invariance.) Moreover,
if e = 1/N, then ¢ is a 2N-band potential, and

N
X(L)=RU (U[—inzn, —in2u—1] U [in2a—1, in2a1 |,

n=1

(A11)
where 0 < n; < < --- < nay < 1. This implies that the
spectral curve and the flow induced by each member of the
Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy has finite
genus 2N — 1. Importantly, the finite truncations of the ma-
trices (A10) provide an efficient way to numerically compute
the spectrum.

Semiclassical WKB analysis of the ZS problem. Next we
consider the semiclassical limit of the spectrum, namely the
limiting behavior of bands and gaps as € — 0. It is useful
to briefly recall the asymptotic analysis of the focusing ZS
scattering problem via WKB methods from Ref. [49]. We em-
phasize that the results of this and the next few sections apply
to a broad class of potentials, not just dn.

Suppose that g(x) is the 2L-periodic extension of a real,
even, nonnegative single-lobe potential. Thus, g has one max-
imum and one minimum in (—L, L], which without loss of
generality can be taken to be respectively at x = 0 and x = L.
To avoid trivial cases, assume that ¢ is not constant. Let

Gmax = 6](0), qmin = q(L), (Alza)
and
s(x,z) = / Vg (u) + 72| du, (A12b)
—Xo(2)

where z € R U /R, and x,(z) is a simple (real) turning point.
Without loss of generality we can limit ourselves to consider-
ing Im z > O thanks to the Schwarz symmetry of the spectrum.
Then, as € — 0 (see Refs. [49,50]):
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.A..ﬂr

—40 |

log1o(Ne)
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18} M -—- WKB

16+ A

141 S

12+ N
10 A

0.8} ~
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0.4

0.6 0.8

Im(z)
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=
l0g10(€)

-16 -14

FIG. 7. Left: the numerically computed Floquet discriminant (in blue) for the potential (4) with m = 0.96 and € = 1/20, using fourth-order
Runge-Kutta versus the WKB approximation (in red). The black solid horizontal lines show A = =£1. The black dashed vertical lines show
Im(z) = gmin and Im(z) = gmax. Note that, to show the exponentially growing oscillations, the function F(z) =t for |7| < 1 and F(7) =
sgn(t)(1 +log, |]) for |z| > 1 is plotted. Right: The number of spectral bands for z € I', as predicted by WKB (red curve) versus the

numerically computed values (blue triangles) as a function of €.

(i) Forz € T, UR, where I', = (0, igpin ), one has g>(x) +
72 > 0 forx € (=L, L). There are no turning points, and

A(z; €) ~ cos(si(z)/€),

where s;(z) = f_LL\/qz(x) + z2dx. Therefore, in the WKB
approximation, this range constitutes a single, continuous
spectral band. This range corresponds to the region in white
in Fig. 2.

(ii) For z € I',, where I'y = (igmin, igmax), there are two
real symmetric turning points =+x,, i.e., values at which
q*(£x,) + z*> = 0. In this region (see Fig. 7),

A(z;€) ~ cos(s1(z)/€) cosh(sy ¢ (2)/€),

(A13)

(Al4)

where s1(z) = s(x,, ) and s, (z) = € In2 — 25(—L, 7). This
range corresponds to the region in gray in Fig. 2.

(iii) For z € (igmax,i00) one has g*(x) +z> < 0 for x €
(—L, L). There are no turning points and

A(z;€) ~ cosh(sii(z)/€), (AL5)

where s;;(z) = f_LL —q2(x) — z2dx.

Figure 7 shows a comparison between the predicted behav-
ior of A(z, €) and the numerically computed value.

Semiclassical limit of bands and gaps in T',. When z €
(iqmin, i9max ), Eq. (A14) implies that the bands are approx-
imately centered at the roots {z,} of the equation s(z,) =
(n— %)7‘[6. Thus, the asymptotic number of bands for z €
(igmin» igmax) 18

J
NE o ~ {—gj € >0, (A162)
TTE
where
L
Jo = $1(igmin) = / V@ x) — g2 dx, (Al6b)
-L

and |-] is the floor function.

Next, consider the limit ¢ — 0 and n — oo satisfying
0 < ne < J,/m and n is the band index. Denote the nth band
width as w¢ = |z — z, |, where A(zF) = £1, respectively.
Similarly, denote the nth gap width as g, = |zniJr1 — zF|. Using

A(z;—L) = +1 together with Eq. (A14), one gets

€ 4e e 52 (@)/€

wE ~
" ls @l

Moreover, since g ~ |z,+1 — 2x| and s1(z,41) — 51(z,) = WeE
it follows that

, €—0. (A17)

e
|53 (&I

where Im(z,+1) < Im(§,) < Im(z,). Finally, the band-to-gap
ratio wy, /g5 — 0 as € — 0 exponentially fast in this region.

Effective solitons in the fNLS equation. Recall that, for
localized potentials (i.e., g(x,?) — 0 rapidly as |x| — o0),
solitons are parameterized by the discrete eigenvalues of the
ZS scattering problem. In the periodic problem, nonlinear
excitations are considered to be “effective solitons” if the rel-
ative band width is less than some small threshold parameter
[49,64,65], i.e.,if W, < k, where 0 < ¥k < 1 and

0, (A18)

€
gil ~

€

T (A19)
wy + &,
Thus, rewriting the relative band width as
¢ 1

we="n (—) (A20)

g \1+w;/g,

one can show that
4

W~ — e 2e@le ¢ 0, (A21)

T

Note that for z € (igmin, igmax) the relative band width W, is
monotonic decreasing. Thus, the effective solitons are con-
fined to the interval

Z € (Zs» igmax) C (iGmin> {gmax)» (A22)

where z; is the unique solution to W, =«. For z e
(igmin, igmax) let $2(z) = —s(—=L,z) = 0 (see Eq. (Al2b)),
then to leading order z; is given implicitly by

52(z0) = gln (i)

K

(A23)
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and the number of effective solitons is given by

Te 21

Expanding s,(z) about z = igmi, and evaluating at z,, for any
k > 0 it follows that z; — igmin as € — 0. Thus, in the semi-
classical limit the entire interval (igmin, igmax) 1S comprised of
an infinite ensemble of effective solitons.

Semiclassical limit of bands and gaps in T',. Recall that,
when ¢ = dn(x;m) withm € (0, 1) and e = 1/N with N € N
there are precisely N bands for z € (0, igmax). Hence, not
all bands become effective solitons in the limit € — 0 (see
Fig. 2). For z € I',, following similar arguments as for z € I,
the WKB approach of Ref. [49] implies

51(25) n IJ

Niolitons = L (A24)

w, =0(), €—0.

(A25)

Thus, at z, = igmin = i dn(K,,; m), which is the boundary be-
tween the intervals I'y = (igmin, igmax) and I'; = (0, igmin),
there is a transition from exponentially decaying band widths
(giving rise to a soliton gas), to algebraically decaying band
widths (giving rise to a soliton condensate). Thus, we have the
physically realistic scenario of a generalized breather gas—
namely, a soliton gas on a soliton condensate background,
which can equivalently be interpreted as a composite, or par-
tially condensed, SG.

The number of bands with support in I', can be com-
puted by noting that Eq. (A13) holds with exponentially
small corrections at A(z) = £1. Thus, bands in this region
are approximately centered at the roots z, of the equation
si(zy) = (n — %)ne. (The existence of a small gap for each
z, € I', was proven in Ref. [40].) The asymptotic number of
bands for z € (0, igmin) iS

Jo

NEL o ~ L—J €0, (A26a)
T
where
Jo = 5i(0) — 51(igmin), (A26b)
L
5i(0) :/ q(x)dx. (A26¢)
)

Periodic soliton and breather fNLS gases. The semiclassical
WKB asymptotics of the periodic ZS problem from Ref. [49]
was utilized in Ref. [39] to introduce periodic fNLS SGs and
BGs. They could be viewed as the semiclassical limit of pe-
riodic fNLS solutions after a sufficiently long time evolution.
Under the assumption of an even, nonnegative, continuous,
one-hump 2L-periodic initial potential g(x) with the maxi-
mum value located at x = 0, the density of band centers ¢(z)
and the scaled logarithmic band width v(z) for a periodic
fNLS BG/SG were calculated as

|Z|fq '(lzl) dx

A/ tiz(x)-&-z2

() =
f \/ Z(X) - qmm
Syt V14 @) + 2l

2 fOL \/ q (‘x) qmm ’

EL3
v(z) =

(A27)

where ¢min > 0 is the minimum of g(x) attained at x = L,
i.e., ¢(L) = gmin- The case of gnin > 0 corresponds to a BG,
whereas the case gmin = 0 corresponds to a SG. In both SG
and BG cases the DOS f(z) was calculated to be f(z) =

re(z), where
1 L
r= —/ VP X) = gy, dx
L 0

The interpretation of a BG as a composite SG can be
derived from the results of Ref. [39], where one can observe
that the DOS f(z) of a periodic BG (¢min > 0) in the region
I', coincides in I', with the DOS of SG obtained by replacing
q(x) with a modified potential §(x) by means of making an
infinitesimally narrow cut at x = L that replaces the minimum
value of g(L) = gmin by (L) = 0. In the region I',,, the DOS
corresponding to §(x) is still given by the expression for r¢(z)
in Eq. (A28), but where now one has to take gy, = 0.

The average conserved quantities ,,, m=1,2,..., for
such gases were rigorously obtained in Ref. [39]. In particular,
I, = 0 for any even k € N, while, for any odd k € N,

(A28)

~1)% kd, [*
o= CD K f ¢+ (x)dx, (A29)
L 0
where, for any odd value of m, d,, is defined as
1 "
dm = - “ . (ASO)
m(m+ 1!

Spectral characteristics of the composite soliton gas. Recall
that the density of bands ¢(z) and scaled logarithmic band
width v(z) are two key quantities in the spectral theory of
soliton gases. Following Eq. (A27), we have that, for z € T,
and the dn potential (4)

(A31a)

20z] o kD dx
e
J Vidn?(x;m) + 22
(@) = / " JldelGem) + 21dx,  (A31D)
dn~'(lz])

with J is a suitable normalization constant, determined below.
Thus we can easily express the spectral scaling function as

2v(z)

D=1

(A32)

TABLE I. Numerical simulation parameters and results, where
Nrousier 18 the number of Fourier modes used, M is the number of
simulations (each of which corresponds to an independent noise
realization), and T, is the numerically observed approximate ther-
malization time.

m Ko Koo Too M NFourier
0.05 1.007 1.92 4 500 1024
0.3 1.016 1.96 4.5 400 1024
0.5 1.059 2.07 4 400 2048
0.7 1.17 2.37 2.5 200 4096
0.8 1.29 2.66 2.5 200 4096
0.9 1.53 3.022 3.0 400 4096
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FIG. 8. Time evolution of the kurtosis with € = 1/20 and o = 1072. Gray regions: Envelope of 100 ensemble realizations. Red curves:
Ensemble average of M realizations. Top left: m = 0.05 (N = 500). Top right: m = 0.3 (N = 400). Middle left: m = 0.5 (N = 400). Middle
right: m = 0.7 (N = 200). Bottom left: m = 0.8 (N = 200). Bottom right: m = 0.9 (N = 400).

Similarly, for z € T',, as it was discussed above, we have

2lz| [Kn dx
L [
J Jo dAnP(xem) + 22

o(z) =0.

(A33a)

(A33b)

(In T, the spectral scaling function o (z) is zero as required

for a condensate.)

Finally, ensuring that the integral of the density of bands
¢(z) over the whole support (0, i) is one, one can then show

that

014204-10
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" dn(e:m)dx = 7.

—K,,

(A34)

Limits m — 0 and m — 1. Next we discuss the density of
bands formulas in the limits m — 0T, and m — 1.

Recall that dn(x;0) = 1 and K(0) = 7 /2. Thus, gmin — 1
as m — 0% and Eq. (A33a) has support z € (0, i). Moreover,
J, — wasm — 0. Thus,

o) =

|z|

= m— 0T,

(A35)
14z
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FIG. 9. Numerical solution of the fNLS equation with dn IC, with and without noise, and € = 1/20. Column 1: ¢ = 0 (without noise);
Column 2: o = 1072 (with noise); Row 1: Density plot, m = 0.05; Row 2: Solution at ¢ = 0.05 and ¢ = 4 for m = 0.05. (The randomness
in the noiseless simulations is produced by roundoff error accumulation induced by the modulational instability of the fNLS equation, which

becomes more and more severe as € — 0).

which corresponds to Weyl’s distribution as expected (see
Refs. [33,38]).

Next, recall that dn(x; 1) = sech(x) and K(m) — oo as
m— 17. Thus, gmn — 0 as m — 17 and Eq. (A3la)
has support z € (0, 7). Moreover, J, — 7 as m — 17, and
dn~'(|z|) — arcsech(|z|) as m — 1~. Thus, in this limit we
get a uniform distribution:

@) —>1, m—17, (A36)
which matches well known results of semiclassical distribu-
tion of discrete spectrum for the sech potential [57,59].

Nonlinear dispersion relations. Together with the set I =
I'; UT,, the spectral scaling function o(z) determines the
integral equation (the first nonlinear dispersion relation, NDR)
for the DOS f(z) for fNLS SGs:

/ log
r,

(Note that in the portion of the spectrum corresponding to a
soliton condensate, i.e., I',, one has o(z) = 0.) The second
NDR involves the spectral flux density, but this quantity is
zero in our case since all the nonlinear excitations have zero
velocity. It was proven in Ref. [39] that, for periodic SGs and
BGs, f(z) = re(z) solves the first NDR for soliton/breather

{—z"

¢ —z

(A37)

f©)digl+0(@)f(z) =Imz.

gases respectively. In the case of the dn potential (4),

T
"T oL T 2K,

As aresult, expressions (A31a) and (A33a) also yield the DOS
f(2) for the dn potential (4).

Kurtosis and Jensen’s inequality. In the main text we have
shown that the kurtosis « of a fully developed SG generated
by a deterministic real and even periodic single-lobe initial
condition g(x, 0) is given by k¥ = 2k, where

(A38)

_ Ly lg 0l dx
(fy lgCx. 02 dx)*

By employing the rescaling ¥ = x/L and §(%, 0) = q(LX, 0),
we can rewrite kg as

(A39)

[ -

Jo 14, 0)|* dx
0= N2

(o 1g(x, 02 dx)
Then Jensen’s inequality [45] implies that ko > 1, with the

equality holding only if g(x, 0) is constant.

Numerical methods. We performed several numerical ex-
periments related to the kurtosis of randomly generated

solutions to the fNLS equation. In particular, we studied the
time evolution of fNLS in the semiclassical limit with elliptic

(A40)
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IC plus a complex perturbation of independent and identically
distributed normal random variables with mean p = 0 and
standard deviation o = 1072,

Due to modulational instability of the fNLS equation, the
numerical computation of solutions is a delicate topic, espe-
cially in the semiclassical limit. To this end, all the numerical
simulations of the fNLS equation (1) presented in this work
were performed using an eighth-order split-step method [66].
The spatial and temporal discretization parameters were cho-
sen to be small enough that none of the results presented
are affected by numerical errors. Moreover, to ensure numer-
ical accuracy the isospectral property of the scattering data
was confirmed at several data points as the simulated solu-
tion evolved in time. The Lax spectrum was computed using
the Floquet-Fourier-Hill method [63]. Finally, to reduce the
number of simulations needed a double-averaging technique
was used to compute the kurtosis. That is, at each time the
spatial average of |q|2", n=1,2 was computed, and then
the ensemble average was computed.

Further simulation results. For consistency, the numerical
experiments presented in this work related to the kurtosis have
€ =1/20, and o = 1072 fixed for all values of m € (0, 1)
considered. Table I provides key parameters used in the sim-
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9, but for m = 0.7.

ulations as well as some of the key quantities related to the
kurtosis experiments.

Figure 8 illustrates the time evolution of the fourth normal-
ized moment (i.e., kurtosis) of the solution for m = 0.05, 0.3,
0.5, 0.7, 0.8, and 0.9. The gray region is the envelope of 100
ensemble realizations. The red curves are ensemble averages
of M realizations. Notice for each m the ensemble average of
the kurtosis settles at large times (see Table I for approximate
thermalization times).

Finally, to further illustrate the effective thermalization
of the SG at large times, Figs. 9-11 show the numerically
computed solution of fNLS in the semiclassical limit are
provided. In each case, the left column depicts the time
evolution of the dn potential (4) while the right column
depicts the time evolution of the dn potential (4) with a
small complex-valued random perturbation. Further, the top
row depicts a density plot while the bottom row depicts
the solution at a particular time. In Fig. 9 we have m =
0.05 which is a small sinusoidal perturbation of the con-
stant background studied in Ref. [34]. In Fig. 10 m = 0.7,
and in Fig. 11 m = 0.9. Notice the numerically computed
solutions with noise are spatially homogeneous at large
times.
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