L)

Check for
updates

Performance Implication of Tensor Irregularity and
Optimization for Distributed Tensor Decomposition

ZHENG MIAQO, Hangzhou Dianzi University, China
JON C. CALHOUN and RONG GE, Clemson University, USA
JIAJIA LI, North Carolina State University, USA

Tensors are used by a wide variety of applications to represent multi-dimensional data; tensor decomposi-
tions are a class of methods for latent data analytics, data compression, and so on. Many of these applications
generate large tensors with irregular dimension sizes and nonzero distribution. CANDECOMP/PARAFAC de-
composition (Cpp) is a popular low-rank tensor decomposition for discovering latent features. The increasing
overhead on memory and execution time of CpD for large tensors requires distributed memory implementa-
tions as the only feasible solution. The sparsity and irregularity of tensors hinder the improvement of per-
formance and scalability of distributed memory implementations. While previous works have been proved
successful in CpD for tensors with relatively regular dimension sizes and nonzero distribution, they either
deliver unsatisfactory performance and scalability for irregular tensors or require significant time overhead
in preprocessing. In this work, we focus on medium-grained tensor distribution to address their limitation for
irregular tensors. We first thoroughly investigate through theoretical and experimental analysis. We disclose
that the main cause of poor Cpp performance and scalability is the imbalance of multiple types of computa-
tions and communications and their tradeoffs; and sparsity and irregularity make it challenging to achieve
their balances and tradeoffs. Irregularity of a sparse tensor is categorized based on two aspects: very differ-
ent dimension sizes and a non-uniform nonzero distribution. Typically, focusing on optimizing one type of
load imbalance causes other ones more severe for irregular tensors. To address such challenges, we propose
irregularity-aware distributed Cpp that leverages the sparsity and irregularity information to identify the best
tradeoff between different imbalances with low time overhead. We materialize the idea with two optimization
methods: the prediction-based grid configuration and matrix-oriented distribution policy, where the former
forms the global balance among computations and communications, and the latter further adjusts the bal-
ances among computations. The experimental results show that our proposed irregularity-aware distributed
Cpp is more scalable and outperforms the medium- and fine-grained distributed implementations by up to
4.4x and 11.4X on 1,536 processors, respectively. Our optimizations support different sparse tensor formats,
such as compressed sparse fiber (CSF), coordinate (COO), and Hierarchical Coordinate (HiCOO), and gain
good scalability for all of them.

CCS Concepts: « Theory of computation — Design and analysis of algorithms;

Additional Key Words and Phrases: Sparse tensor, tensor decomposition, CPD, irregularity

This research is partially supported by U.S. National Science Foundation Principles and Practice of Scalable Systems (PPoSS)
program and by U.S. Department of Energy and Pacific Northwest National Laboratory under Contract No. 532181 and the
PNNL Cluster. This research was supported by the U.S. National Science Foundation under Grants SHF-1910197, SHF-
1943114, CCF-155151, and OAC-2204011.

Authors’ addresses: Z. Miao, Hangzhou Dianzi University, China; email: miaozheng@hdu.edu.cn; J. C. Calhoun and R. Ge,
Clemson University; emails: jonccal@clemson.edu.cn, rge@clemson.edu.cn; J. Li, North Carolina State University; email:
jiajia.li@ncsu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2329-4949/2023/06-ART10 $15.00

https://doi.org/10.1145/3580315

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

https://orcid.org/0000-0001-6084-2793
https://orcid.org/0000-0001-7191-4422
https://orcid.org/0000-0002-2218-3675
https://orcid.org/0000-0003-1270-4147
mailto:permissions@acm.org
https://doi.org/10.1145/3580315
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580315&domain=pdf&date_stamp=2023-06-20

10:2 Z. Miao et al.

ACM Reference format:

Zheng Miao, Jon C. Calhoun, Rong Ge, and Jiajia Li. 2023. Performance Implication of Tensor Irregularity and
Optimization for Distributed Tensor Decomposition. ACM Trans. Parallel Comput. 10, 2, Article 10 (June 2023),
27 pages.

https://doi.org/10.1145/3580315

1 INTRODUCTION

Tensors are multi-dimensional arrays and often sparse that are utilized by applications spanning
a wide range of domain areas, such as quantum chemistry, (healthcare, social network, brain sig-
nal, electrical grid) data analytics, signal processing, machine learning, and recommendation sys-
tems [1, 4, 14, 16, 18, 22, 28-30]. Tensor decompositions are a class of tensor methods for data
analytics, low-rank approximation, data compression, and so on. In this work, we study the CAN-
DECOMP/PARAFAC decomposition (CPp), one of the most popular tensor decompositions.

Large data generated from these applications requires distributed memory implementations due
to the large amount of memory requirements and the need for fast execution time. For example,
the amazon tensor comprises reviews and contains more than 1 billion nonzeros; the state-of-the-
art CpD implementation based on CSF format could not analyze it on fewer than eight CPU nodes.
Some studies show impressive performance for sparse distributed Cpp algorithms [13, 20, 35]. The
previous works present medium-grained decomposition that performs an N-dimensional decom-
position of the tensor, where N is the number of modes and one-dimensional decompositions of
the factor matrices [6, 32, 35]. They have achieved good performance and scalability in Cpp for
tensors with relatively regular dimension sizes and nonzero distribution, because both computa-
tion and communication are balanced well. However, the sparsity and irregularity features and
their influence on stages of the Cpp algorithm have not been well investigated, which hinders
further performance improvement and machine scalability. Other recent works use a fine-grained
decomposition of tensors to co-optimize computation and communication [20, 21]. But they re-
quire significant time overhead in hypergraph partitioning. In this work, we focus on analysis and
optimization of medium-grained tensor distribution to address their limitation that does not scale
well for tensors with high sparsity and irregularity.

We categorize the irregularity of a sparse tensor based on two aspects: very different dimension
sizes and a non-uniform nonzero distribution. Analyzing sparse tensors from various data sources,
we observe a tensor could have dimension(s) much longer relative to the others. For example, the
tensor fb-m, a sampled knowledge base dataset, has the first two dimensions around 23 million,
while the last dimension is only 166. This phenomenon is common because of different information
contained in diverse dimensions: Short dimensions could come from a small range of timestamps,
types of relations, and so on, while long dimensions could be users, pages, keywords, papers, and
so on. Sparse tensors from real applications tend to have a non-uniform nonzero distribution; while
different dimension sizes make it worse. The nonzeros could be extremely dense in a couple of
regions, but much sparser in other regions in an irregular tensor. In tensor fb-m, the nonzero
distribution is extremely dense near the diagonal and the corner of the tensor but is very sparse
in other regions.

We take medium-grained, bulk-synchronous distributed Cpp algorithm SpraTT [35] as an
example to illustrate the problems in performance and scalability for irregular tensors. Figure 1
shows the normalized time of the three major stages of Cpp using the SpratrT library [35] on
192 and 384 processors. We separate the distributed CPD execution time into three components:
communication (‘COMM’) and two computation components, consisting of the matricized

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

https://doi.org/10.1145/3580315

Performance Implication of Tensor Irregularity and Optimization 10:3

COMM =
MAT-COMP O
g 0.8 —] 0.8 — MTTKRP EX
=
- 06 — 0.6 — —
@
N
© - — - —
£ 0.4 0.4
o
Zz 02 — 0.2 — —
0 ~ < 0 \'\
192 384 192 384
fo-m deli

Fig. 1. Execution time breakdown of SPLATT CpD [35] on 192 and 384 processors. Time is normalized to the
192-processor run for each tensor.

tensor times Khatri-Rao product (MTTKRP) and matrix computations (MAT-COMP)
(see Section 3). For the very irregular tensor fb-m (sized 23M X 23M X 166) with both dimension
sizes and non-uniform nonzero distribution irregularities, its time reduction from 192 to 384
processors is only 13%, wherein the time for communication, MTTKRP, and matrix computations
are slightly decreased by 19%, 19%, and 8%, respectively. SPLATT does not scale well in fb-m for two
reasons: First, it assumes MTTKRP is the dominant kernel and focuses on optimizing it. Second,
it optimizes each kernel in separate stages, and focusing on reducing MTTKRP usually causes
more overhead on other kernels. Conversely, the time reduction for the regular tensor deli (sized
0.5M X 17M X 2.5M) is 41% (communication 30%, MTTKRP 49%, and matrix computations 47%).
SpLATT scales better for deli overall but the communication cost could be further improved. More
irregular tensors tend to yield lower Cpp performance and worse scalability on large distributed
systems. This phenomenon has also been observed in distributed dense matrix multiplication
when matrix dimensions vary significantly [11, 37].

There are three types of load imbalance that play critical roles in what bottlenecks performance
on sparse tensors: tensor nonzero, communication volume, and matrix computation imbalance.
To measure these imbalances, we introduce three ratios as metrics (see Section 3.1.2). The
state-of-the-art works such as medium- [6, 32, 35] and fine-grained [20, 21] distributed CppDs
have made efforts to optimize these three types of imbalance. Medium-grained distributed Cpp
chooses to optimize them separately. However, when it focuses on balancing tensor nonzero, the
other imbalances increase significantly for irregular tensors. Fine-grained distributed Cpp [20, 21]
utilizes hypergraph partitioners to co-optimize these imbalances, but it requires significantly more
time overhead in partitioning than actual Cpp computation for large tensors. To address these
limitations, we present irregularity-aware Cpp that co-optimizes different types of imbalance
with a low overhead during preprocessing. Our solution provides two insights: First, by evalu-
ating SPLATT theoretically and experimentally, we reveal that these two irregularities lead to
unacceptable load imbalance when distributing a sparse tensor among multiple computing nodes.
Furthermore, we outline four findings that influence the performance of existing methods. These
findings demonstrate that two stages in the preprocessing grid configuration and distribution
policy are critical for the overall Cpp performance and scalability. Second, we leverage the
sparsity and irregularity information that reflects in the large imbalance of matrix computation.
Either MTTKRP or matrix computation could be dominant for different types of tensors. The
matrix computation is usually the bottleneck of performance and scalability for most irregular
tensors. Therefore, we identify the dominant imbalance ratio as matrix computation imbalance
for irregular tensors and optimize it with higher priority. However, focusing only on balancing

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:4 Z. Miao et al.

matrix computation makes other imbalances worse. It is important to achieve the best tradeoffs
between different imbalances in grid configuration and distribution policy.

Grid configuration. The process grid determines the shape of the decomposition in medium-
grained CpD [35]. It is critical to the computation and communication costs and requires an intel-
ligent approach over the costly brute-force method. Configuring processes to obtain the optimal
performance for an irregular sparse tensor is challenging and is an open question in many fields.
SPLATT proposes an easy-to-use method that assigns more processes to longer tensor modes with-
out consideration of nonzero distribution. However, for irregular tensors, the load balance and
communication volume are only known at runtime and hard to measure with simple parameters.
We propose a prediction-based grid configuration method in virtual data distribution to determine
the optimal process grid at runtime by considering the two irregularities. We observe that those
grids with better performance are more likely to share the same mode-balanced base obtained by
SpLATT’s method. Therefore, our method solves the limitations by predicting a process grid with
the smallest nonzero imbalance among all candidates from a mode-balanced base. We optimize
both communication and computation imbalance with a negligible overhead. We build an inter-
mediate grid by optimizing communication imbalance and further find the optimal process grid
by an intelligent prediction.

Distribution policy. A distribution policy determines the partitioning of the nonzero and factor
matrices. It is also important for the overall performance of Cpp because it has an impact on the
imbalance of computation and communication and their tradeoffs. SPLATT optimizes nonzero im-
balance in distribution policy and expects their communication imbalance has been optimized in
the grid configuration stage. It does not work well for irregular tensors, because their communica-
tion imbalance increases significantly after distribution policy. From our profiling, we observe that
matrix computational kernels and communication could also dominate the Cpp execution time, es-
pecially for irregular tensors. The CpD execution time of sparse tensors fb-m and deli in Figure 1
is dominated by matrix computation kernels, rather than MTTKRP. Communication becomes more
dominant when scaling to more processors. The Cpp time of tensor deli is dominated by communi-
cation (57%) on 1,536 processors from our experiments, versus 40% occupied on 768 processors. We
design matrix-oriented distribution policies that begins with the matrix-balancing strategy then ad-
Justs according to our two nonzero-balancing strategies. Our method is based on the matrix-balancing
strategy, because we identify the dominant imbalance ratio as matrix computation imbalance for
irregular tensors. We then achieve the best tradeoff between different imbalances by balancing
nonzero of each partition independently or based on the differences between them.

Our main contributions are summarized as follows:

e Our work investigates the common algorithm structure of state-of-the-art distributed imple-
mentations from theoretical and experimental analysis and observes four findings to guide
performance optimization (Section 3).

e We demonstrate that the imbalance of computation and communication, and their tradeoffs,
are critical to the overall Cpp performance and scalability. We identify the dominant imbal-
ance ratio as matrix computation imbalance for irregular tensors. We propose irregularity-
aware CpD that co-optimizes these imbalances with high priority in matrix computation
imbalance in grid configuration and distribution policy with a low time overhead (Section 4).

e We demonstrate that our method scales well for both regular and irregular tensors when
using up to 1,536 processors and obtains up to 4.4X and 11.4X performance improvement
over the distributed medium- and fine-grained Cpp libraries [20, 35], respectively (Section 5).

e Our optimizations support different sparse tensor formats such as compressed sparse
fiber (CSF) and coordinate (COO), and more new formats like Hierarchical Coordinate
(HiCOO). Our optimizations gain good scalability for all of them (Section 5.6).

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:5
C
[
— S S Y 4
.o ~ I—_|_..._|_ I— - I
A I
A B

Fig. 2. Cpp for a third-order sparse tensor X € RI*<EX5,

)
—

Table 1. Symbols and Notations

Symbols | Description

X | A sparse tensor
X(n) | Matricized tensor X in dimension-n
A, B, C, A | Dense matrices

ar, by, ¢, | Dense vectors
A | Weight vector
N | Tensor order
I, | Tensor dimension sizes
M | #Nonzeros of the input tensor X
R | Approximate tensor rank (usually a small value)
I; | Layer size
I, | #Local matrix rows
P | #MPI processes

Tnnzs Tvols T, Imbalance ratios for M, communication volume, and I,,

2 BACKGROUND

Tensors, representing multi-dimensional arrays, are one fundamental data representation in real-
world HPC applications. We use different fonts for tensors (X € RP*/*K) matrices (A € R),
and vectors (x € R') in this article, following Reference [22]. A nonzero (i, j, k)-element of tensor
X is x;ji. Figure 2 shows a sparse third-order tensor with dots representing nonzero entries. We
assume an Nth-order sparse tensor X € RI*EXXIN with M nonzeros in the subsequent context;
sometimes we use a third-order tensor for simplicity. If a tensor X has one or more dimension(s)
that are very small relative to the other dimensions or the nonzero values are not uniformly dis-
tributed in one or more dimensions, then we call it an irregular tensor. A slice is a two-dimensional
cross-section of a tensor, obtained by fixing all indices but two, e.g., S.x = X(:, :, k). We summarize
the symbols and notations in Table 1.

2.1 Distributed Cpp
CANDECOMP/PARAFAC decomposition (CpD) factorizes a tensor into a sum of component

rank-one tensors [22]. Figure 2 illustrates a third-order Cpp. In general, Cpp approximates an Nth-
order tensor X € RI* "IN a5

R
X ~ 2,1,35” o--0a®™ = AW, .. AN, (1)
r=1

where R is the canonical rank of tensor X, the number of component rank-one tensors [22]. In a
low-rank approximation, R is usually chosen to be a small number less than 100. The outer product
of the vectors a(rl), Cl, agN) produces R rank-one tensors. A e RIXR =1 . N are the factor

matrices, each formed by taking the corresponding vectors as its columns. The vector lambda can

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:6 Z. Miao et al.

be represented as a superdiagonal lambda tensor. For Tucker decomposition, this core tensor is
usually not superdiagonal [39]. We normalize these vectors to unit magnitude and store the factor
weights in the vector A = {A,...,A,}. Typically, the factor matrices A(™ are given initial values
and solved iteratively.

Data decomposition and distribution.

For large tensors, the number of nonzeros M and the resulting factor matrices A" are large
and easily exceed the memory capacity of a single node. To meet the needs of large-scale data
processing, distributed Cpp algorithms, such as coarse-grained [13], medium-grained [2, 35], and
fine-grained [20, 21] strategies, have been developed. Medium-grain is one of the most successful
from References [2, 6, 32, 35] and is the baseline for this work (described in Section 2.3). To effi-
ciently store large tensors, we consider one state-of-the-art tensor format, Compressed Sparse
Fiber (CSF) for general unstructured sparse tensors. CSF [35] is a hierarchical and fiber-centric
format that effectively generalizes the Compressed Sparse Row (CSR) sparse matrix format to
tensors.

Distributed algorithm. We focus on the most popular medium-grained, bulk-synchronous dis-
tributed Cpp algorithms [2, 6, 32, 35], adopted in multiple libraries, including SpLATT, the Surpris-
ingly ParalleL spArse Tensor Toolkit [36], and ENSIGN [23]. It has shown outstanding performance
and scalability as well as efficient memory usage compared to the counterparts [13, 20], evaluated
in References [2, 6, 32, 35]. Medium-grained tensor distribution, an N-dimensional partitioning
(N as tensor order) on a tensor, corresponds to a 2D stationary algorithm in traditional dense
matrix multiplication [33], which has been proven to be performance-efficient in the SUMMA
algorithm [40] included in ScaLAPACK [12] and PLAPACK [3] libraries.

2.2 Related Work

Distributed CP decompositions. Three major bulk-synchronous distributed Cpp algorithms
have been proposed: coarse-grained [13], medium-grained [2, 6, 35], and fine-grained [20].
References [32, 35] showed that medium-grained CpD generally obtains the optimal state-of-the-
art performance. SPLATT [36] is a popular sparse tensor library that includes medium- and fine-
grained distributed CpD implementations. ENSIGN [23] uses special sparse tensor data structures
mode-specific sparse (MSS) and mode-generic sparse (MGS) with an optimization that im-
proves data reuse and reduces redundant computations in tensor decompositions [6]. But ENSIGN
requires significantly higher memory usage due to its special data structures. ALTO [15] is pro-
posed as a novel sparse tensor format for high performance of tensor operations. ALTO outper-
forms the state-of-the-art CPD implementation based on CSF format by using a mode-agnostic
tensor representation that improves data locality. Other efforts employed MapReduce/Hadoop
or Spark programming models on cloud platforms, such as GigaTensor [18], HaTen2 [17], and
CSTF [7]. Our work developed upon medium-grained distributed Cpp and through optimizing
grid configuration and distribution policy to improve performance.

Grid configuration. Some distributed work also studied the approach to find the optimal process
grid configuration. However, they only consider tensor dimension sizes without taking tensor
irregularity and sparsity into account [21, 35]. Our work designs irregularity-aware grid configu-
ration based on prediction to generate the most suitable process grid and balances performance
impacting factors.

Partitioning methods. Various partitioning methods are proposed to balance computation
and communication. Lite is proposed for Tucker decomposition as a lightweight distribution
scheme [9]. But due to the difference between Tucker decomposition and Cpp, Lite focuses more on
balancing computation without explicitly optimizing communication volume [9]. Ballard et al. [5]
have discussed communication lower bounds for MTTKRP, but they did not consider computation

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:7

and communication in matrix-related kernels. Cartesian partitioning used in medium-grained algo-
rithm focuses on reducing maximum communication volume [35]. Hypergraph partitioning works
well in balancing MTTKRP and reducing average communication overhead, but has worse commu-
nication balance [2, 20, 35]. CartHP [2] is a novel hypergraph-partitioning model that utilizes spar-
sity for minimizing the total communication volume. It is possible that hypergraph partitioners
can be used to produce similar partition with our method by certain parameters. But it is difficult
to find these parameters in hypergraph partitioners. And hypergraph partitioners require signifi-
cantly more time overhead in partitioning than actual Cpp computation for large tensors. Another
hypergraph-based partitioning method [19] is proposed for Non-negative Matrix Factorization
(NMF), while it focuses more on optimizing communication volume with the sacrifice of other load
imbalances. Our partition optimizations are more matrix-oriented and consider the tradeoff in bal-
ancing MTTKRP, matrix computation, and communication to obtain the optimal CpD performance.

2.3 Medium-grained, Bulk-synchronous Distributed Cpp Algorithm

We extract the general medium-grained, bulk-synchronous distributed Cpp algorithm as a tem-
plate in Algorithm 1, named as MGBs-CPD, extracted from the state-of-the-art works cited in Ref-
erences [2, 6, 35].

Medium-grained data distribution. The medium-grained decomposition uses a nonzero-
oriented data decomposition strategy. After loading a tensor file into each process’ memory
in a distributed way (Line 1), two performance-critical steps follow: process grid configuration
(Line 2) and distribution policy determination (Line 3). (Refer to Section 3.2 for details of these
two steps.) Based on these two steps, a tensor X is N-dimensional partitioned into subtensors in a
non-overlapping fashion and distributed to processes; each factor matrix A is distributed to the
processes according to the distribution policy on each dimension-n.

Take a P = 2 X 3 x 2 process grid! in Figure 3 as an example. The tensor X is partitioned to
2% 3 2 subtensors, each associated with a process and saved in its memory. Meanwhile, each A(™)
is partitioned to P submatrices along its dimension with two levels: the layer-level corresponds to
the tensor computation (dashed red lines) and splits each matrix to sub-matrices A;") affiliated

to its row dimension (blank boxes on A), and the process-level further evenly splits Ag") to A;,")
for each process p in the corresponding subgrid (dashed lines on A). Dashed orange lines show
submatrices for the first process in Figure 3. Note that Ai,n) is the actual local matrix storage per

process, while AE") is only stored during tensor-matrix computation (MTTKRP, described below).
Bulk-synchronous parallel algorithm. Computation is accordingly partitioned with the
above data decomposition—i.e., each process only does local tensor/matrix computation and up-
dates its own matrix partition AI()n). Thus, the grid configuration and distribution policy, which
determine the data decomposition, play critical roles in the performance of Cpp algorithm.
Algorithm 1 shows the bulk-synchronous parallel algorithm for an Nth-order tensor using a tra-
ditional alternating least square algorithm [22]. The bulk-synchronous parallel algorithm is gen-
eralized from almost all existing distributed Cpp-ALS implementations [2, 6, 7, 13, 20, 21, 32, 35].
This is an iterative implementation. In each iteration, matrices are updated one-by-one; each time,
all but one matrix are fixed to update the matrix A" The algorithm comprises four main compu-
tation kernels. MTTKRP is the only kernel that computes on the sparse tensor and has been studied
most for optimization in previous work [20, 21, 35]. The other three compute on dense matrices
only. Note that all the four steps except MAT SOLVE have mixed computation and communication.

'Due to our hybrid MPI+OpenMP implementation, the MPI processes count is referred in grid configuration.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:8 Z. Miao et al.

ALGORITHM 1: Medium-grained, bulk-synchronous distributed Cpp-ALS algorithm
(McBs-CrD).

Require: An Nth-order sparse tensor X € RI*2XXIN with M nonzeros, P MPI processes;

Ensure: Vector A and dense matrices A™ € RI"*R n =1,... N:
// Variables
Initialize matrices A™,n=1,...,N;
A;") is the layer-distributed matrix, needed by MTTKRP computation on p.
U, e RFPR p=1,... Nislocal temporary data.

// Preprocessing
1: Distributedly load X to P MPI processes’ local memory
2: Grid configuration G: Get rank dimensions P,,n = 1, ..., N decomposed from P and initial-
ize MPI communicator
3: Determine a distribution policy D
> Tensor partitioning, X, locally owned by process p.
4: Redistribute X according to D
> Matrix partitioning, A;,") locally owned by process p.
5. Distribute all A™ to A;") and A;,n), n=1,...,N according to D
6: Get X, after removing empty slices and get index mapping from X, to X
7: Get the indices in A;,") that need to communicate in AlltoAll(A;,"))
8: Randomly initialize Ag")
// Computation
o: A" = AlltoAll(A)); U, = AllReduce (A)"TA}Y)

10: do

11: forn=1,...,Ndo

12 A = MTTKRP(X,, AL, ..., A0 A ANy > Mrrae
13 Al = AlltoAll(A{")

14: Ai)n) = Aj(,n) (Up % -+ Up)T > MAT SOLVE
15: A = Normalize (A;,")) > MAT NORM
16: U, = AllReduce(A;n)TA;n)) > MATATA
17 A" = AlltoAll(A}”)

18: end for

19: while fit not change or maximum iterations exhausted

e MTTKRP (Line 12): each process computes the Khatri-Rao product of its subtensor with all
but one layer-partitioned A(I), e Agnfl), Agnﬂ), o AgN), which are obtained from remote
memory by communicating with other processes.

e MAT SOLVE (Line 14): each process updates A;,n) using the Cholesky method? based on the
temporary results from MTTKRP.

e MAT NORM (Line 15): each process normalizes Afon) locally and then performs a parallel
reduction to obtain A.

2The default matrix solver is Cholesky, because in most cases matrices are small (matrix rank R < 100) and SPD. Both
SPLATT and our implementation use SVD solver in case the matrix is not SPD.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:9

X
|3/_. S e S e
(A [I i.
o L/ ° i
Ip :|, I| °® . .. P) ',é'/
| ¢ |
C

1 w2l e
B

Fig. 3. Tensor and matrix distribution over a 12 = 2 X 3 X 2 process grid. Dotted lines on matrices indicate
local matrix storage in one process. The tensor is partitioned into 2 X 3 X 2 subtensors, each mapped to a
process. Each factor matrix is first partitioned by the layers (dashed red lines) affiliated with tensor partition
and then evenly split among the corresponding process subgrid. Dashed orange lines show submatrices for
the first process.

e MAT ATA (Line 16): each process uses symmetric matrix multiplication locally and then
performs a reduction to form the new U,, for the next iteration.

e Other COMM (Lines 13,17): A;,n) is updated by communicating Aﬁn) after local MTTKRP com-
putation. Consequently, communications are involved to update A;n) from Afon) to prepare
the layer-partitioned A;n) for the next MTTKRP.

The complexity lies in both communication and local computations influenced by the grid con-
figuration and distribution policy from the preprocessing steps. All communication within CPD
computation (Steps 9 to 19 in Algorithm 1) is for dense matrices, while sparse communication
only exists in preprocessing (Step 4) for sparse tensors. Due to sparsity of the tensor, the commu-
nication volume for dense matrices could be very imbalanced. The computational complexity does
not always reflect time overhead. MAT NORM can be more expensive than MAT AT A and MAT
SOLVE, because the latter two operations are implemented with BLAS functions.

3 LEARNING THE PERFORMANCE OF DISTRIBUTED TENSOR DECOMPOSITIONS

This section illustrates the general medium-grained, bulk-synchronous distributed Cpp algorithm
and its performance problem abstraction and analysis along with our four findings.

3.1 Problem Statement and Analysis

We first present general models to capture the execution time of medium-grained distributed CpD
in Algorithm 1. Our target is to find the optimal data distribution by designing a grid configuration
and distribution policy, to obtain the best CpD performance, expressed in Equation (2). The optimal
grid configuration G,,; and distribution policy D,,; have the minimum overall execution time.
The execution time of CpD is dominated by the iterations (Lines 7-16) in Algorithm 1. We use the
time of one iteration to represent the CpD execution time, noted by Tepas which aligns with our
experiments.

Gopts Dopr = argming, pTepa (2)
3.1.1 Execution Time Analysis. T.,q consists of the aforementioned five steps: MTTKRP, MAT

SOLVE, MAT NORM, MAT ATA, and other COMM. Due to the bulk synchronous feature of

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:10 Z. Miao et al.

Table 2. Time Complexity of the Five Steps in MGBs-CpD

Key Steps Comp Comm Vol
MTTKRP (Tt tkrp) O(cN X RX M) | /

MAT SOLVE (Tso10e) O(R* X I) /

MAT NORM (Torm) | O(R X I,)) R

MAT ATA (Tu10) O(R? x I,) R?

Other COMM (Tocomm) | / R(I; - 1,) + RI,

MaBs-Cpp, T4 is expressed in Equation (3).

Tcpd = Tmttkrp(cN7 R, Mp) + Tocomm(Pa I, Ip)

3
+ (Tsotve (R, Ip) + Trorm(P, R, 1) + Tara(P, R, I))) ©®)

The time complexity and communication volume per process of each step are listed in Table 2.
Two collective communications are employed to synchronize and update local data, MPI_Alltoall in
Other COMM and MPI_Allreduce in MAT NORM and MAT AT A. Both SPLATT and our algorithm
implement Alltoall for the communication. We use MPI Communicators for layers and, in each
layer, we use Alltoall across processors in one layer. The communication time is modeled as a + ffn,
where « and f are the memory latency and bandwidth, respectively, and n is the number of bytes
to be transferred [38]. We assume the tensor rank R (usually a small value < 100) and cy < N
are constants.” T;,q is mainly determined by the number of nonzeros of a local sparse tensor
M,, layer size Ij, and local matrix size I, though computation and communication are different
functions of these variables. M;, dominates Ty,ssrp; Ip affects the time complexity of all matrix
steps, Tsolves Tnorm» Tara; I; and I, both influence the other communications Tocomm-

Comparing these steps, we see that, in general, M, is several orders of magnitude larger than I,
and I, for relatively small or mildly sparse tensors, where T,,;+£,p might take a larger percentage
in T¢pq. However, M, could be in the similar order-of-magnitude as I; and I, for relatively sparse
tensors or tensors with irregular shapes, where matrix computations and communication might
have non-negligible costs. Besides, we also observe that some configurations of G, D could de-
crease the execution time of one step but increase that of other step(s). (Experiments in Section 3.2
verify this analysis.) Thus, it is non-trivial to infer the optimal settings for G, D to gain the highest
distributed performance only relying on theoretical analysis even with cy, P, R all fixed, plus the
analysis is closely related to the features of input sparse tensors.

3.1.2 Load Imbalance Ratios. Thus far, we consider M,, I;, and I,, as the average values on each
process, which is the ideally balanced data distribution. However, in reality, especially for irregular
sparse tensors, the data distribution could be very skewed. We present three imbalance ratios as
metrics to measure this effect.

We use a more accurate imbalance ratio r, adapted from the one used in Reference [35],% to
represent the imbalance of sparse tensor computation, matrix computation, and communication.
From Table 2, sparse tensor computation, MTTKRP, is influenced by M, Nonzero imbalance ratio
Tnnz = (max{M,} — min{M,})/max{M,} represents the gap between the maximal and minimal
number of nonzeros assigned to a process among P processes. Our imbalance ratio r, always less
than 1.0, better evaluates long and short jobs per process. A ratio close to 0.0 means an ideal,
even nonzero distribution; while a ratio close to 1.0 means extreme imbalance indicating that the

3¢ is a constant for a given tensor in an MTTKRP algorithm [25, 35].
“The nonzero imbalance in Reference [35] represents the gap between the maximal and average number of nonzeros
assigned to a process, which cannot measure the imbalance from the short tasks well.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:11

100%

o | [,
L AKAD AP

40% -

Time Percentage

20% [.y

%
COMM ZZ2 G @& % %, S 2
Comp == %y %y Lo 8 T Y %

Fig. 4. Computation and communication percentage of Cpp.

gap between the longest and shortest MTTKRP execution time is huge. Analogously, 77, represents
the imbalance ratio of I,, thus for matrix computation, r,,o; is the imbalance ratio of communica-
tion volume. We use the imbalance ratio for communication volume rather than I;, because the
communication volume is influenced by both I; and I,,; therefore, r,,,; better represents the com-
munication. The three imbalance metrics help determine the Go,;, Dop by reflecting features of
real sparse tensors from three distribution-related perspectives.

3.2 Findings

Based on our theoretical analysis and the proposed imbalance ratios, we discuss performance find-
ings on MGBs-Cpp. The tests are run on the open-source SPLATT MPI library [36], representing a
fast state-of-the-art MGBs implementation from References [2, 6, 32, 35].

Finding 1: Both computation and communication have non-negligible costs, and the dominance
varies with tensors. We compare actual computation and communication time in results and use
Trmttkrp a0d Tocomm to give a rough theoretical analysis. Comparing the dominant parameters:
M, and Ij, either one could be larger for different sparse tensors. For example, tensor choa has
a maximum M, = 400K, I; = 15K, while tensor deli has M, = 2M, I; = 4M on 768 processors.
Thus, either computation or communication could be dominant among different tensors. We fur-
ther study the overall performance of the SpLaTT CPD implementation running on 768 processors.
Figure 4 depicts the percentage of the execution time taken by computation and all types of com-
munication operations in Algorithm 1, respectively, on nine sparse tensors from real applications
(refer to Section 5 for tensor descriptions). Computation takes 35%—-81%, while communication
takes 19%-65% of the total execution time. Computation largely dominates the Cpp execution on
two tensors: choa and darpa; communication largely dominates on tensors nelll and deli. This
matches the M, and I; examples given above. The computation is mainly impacted by M,, and the
communication is mainly impacted by I;. Therefore, computation is dominant for tensors whose
M, > I; (such as choa and darpa), while communication is dominant for tensors whose M, < I;
(such as nell1 and deli). On the rest of five tensors, computation and communication take a similar
amount of time with a percentage difference less than 10%. The shifting of dominance between
computation and communication among tensors raises the difficulty of performance optimization.
Taking tensor dimension sizes into consideration, fb-m, fb-s, choa, and patents are more irregu-
lar tensors in Table 3 and tend to be computation-dominated, while the other tensors are more
communication-dominated or without significant dominance.

Finding 2: Computation cost is not always dominated by sparse tensor computation, but also dense
matrix computations.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:12 Z. Miao et al.

Table 3. Description of Sparse Tensors

Tensors Dimensions #Nonzeros Density
choa 712K X 10K X 767 27M 50X 10°°
darpa 22K x 22K x 24M 28M 2.4x107°
nell2 12K X 9K x 29K 77M 2.4x107°
random 100K x 100K X 100 100M 1.0x 107
fb-m 23M X 23M X 166 100M 1.1x 1077
fb-s 39M X 39M X 532 140M 1.7x 10710

deli 533K X 17M x 2.5M 140M 6.1x 10712
nelll 2.9M x 2.1M x 25M 144M 9.1x 10713
amazon 4.8Mx1.8Mx1.8M 1,742M 1.1x1071°
patents 46 x 239K X 239K 3,597M 1.4%x1073

0,
100% T T MAT-SOLVE =3
MAT-ATA T—2
o 80% F - MAT-NORM B3
% MTTKRP ===
S 60% 7
3
g
o L / i
L 40%
£
= 20% [7
0% £ N

fb-m fb-s nelll amazon

Fig. 5. Time percentage of computational kernels of Cpb.

Compare the computation complexity of matrix operations, MAT SOLVE, NORM, ATA, versus
the MTTKRP complexity in Table 2 shows I;, < ¢y XM, is generally true if there are not many empty
slices in dimension-n. However, RX I, < ¢y X M,, is not necessarily true and depends on the values
of R, the constant cy (R > cn usually), the distribution policy that determines the sparsity pattern
of the local tensor X, and influence value I, in the next process-distribution for matrices. This is es-
pecially prudent for irregular tensors with I = ®(M) on one dimension. If RXI, > ¢y XM, then the
complexity of MAT AT A and SOLVE steps could take more time than MTTKRP. While these matrix
operations are all dense and generally perform more efficiently than the sparse MTTKRP, dense ma-
trix computation can influence computational performance. We conclude Finding 2 that MTTKRP
is not always the dominant computational kernel in Cpp, the matrix computation kernels are also
expensive as tensor rank grows and for tensors with preferable sparse patterns (e.g., irregular ten-
sors). Therefore, the state-of-the-art work [2, 13, 35] that focuses on minimizing the computational
cost of MTTKRP may not gain much performance improvement for all types of tensors.

Figure 5 shows the time percentage of the four computational steps on four representative ten-
sors: fb-m, fb-s, nelll, and amazon, verifying our theoretical analysis above. For the four tensors,
MTTKRP, MAT NORM, MAT AT A, and MAT SOLVE take 2%-47%, 23%-61%, 6%—33%, and 4%—27%
of the Cpp computation time, respectively. The other three computations easily take more execu-
tion time than MTTKRP, which needs to be optimized as well for better performance. These insights
about dominating costs of Findings 1 and 2 could guide our following optimization for distribution
policy.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:13

1+
r(nnz) .3 1 |
] r(vol) & [
9 0.8 p gy rip) = N =AY AT AT
=
0.6 [P " 3 u
[0
[&]
= N —
< 04y e I
Qo
E
0.2 F P AT i
O 1
&% 2 2 o) 2, % 3
@,bs @//7 ®/<3 éo@ @/@Of s,)) e
&

Fig. 6. Load imbalance ratios (rnnz, r'vo1, and ryp) for sparse tensors.

Finding 3: Different load imbalance factors influence computation and communication overhead.

Figure 6 shows these three ratios 7,2, r'vo1, and ry, for sparse tensors as the increasing order of
Tnnz> Where 1, and ryp reflect computation imbalance and r,o; reflects communication imbalance.
The nonzero imbalance is less than 0.2 for the left six tensors, while tensors patents (46 X 239K X
239K), fb-m (23M x 23M X 166), and fb-s (39M X 39M x 532) have a much higher nonzero imbalance,
all of which are very irregular in dimension sizes. All the tensors have much higher volume and I,
imbalance ratios than nonzero imbalance ratios. Different from the dominance perspectives in Find-
ings 1 and 2, the imbalance ratios expose the load imbalance issues that influence the overhead of all
the five steps in Table 2 correspondingly. Almost all tensors have at least one imbalance ratio with
the value higher than 0.8, which indicates the difficulty to do a good tradeoff among the three im-
balance ratios. The state-of-the-art work puts efforts on optimizing the nonzero imbalance [10, 35],
which only influences sparse tensor computation. Therefore, they only target minimizing the ten-
sor computation imbalance, not communication or the other matrix computation imbalances.

Finding 4: The grid calculated from only tensor dimensions is usually not the optimal. And different
grid configurations could lead to very different distributed CpD performance.

For a given tensor, the process grid on which the tensor is mapped determines the computa-
tion and communication costs from the first sight, even before the distribution policy takes effect.
Figure 3 shows the tensor and matrix decomposition on 12 processes as a 2 X 3 X 2 grid. Given
12 processes, there are 18 unique configurations on which the tensor can be mapped to the pro-
cesses. Configurations 12 X 1 X 1,1 X 12 X 1, and 1 X 1 X 12 are considered as different ones due
to partitioning the first, second, and third dimensions correspondingly. A cluster with hundreds
of nodes will have thousands of configurations or more. Figure 7 shows all grid configurations
for 16 MPI processes, with the execution time varying up to 3.5X. The traditional method for grid
configuration computes 4 X 2 X 2 based on amazon’s tensor dimension sizes (4.8M x 1.8M X 1.8M).
But the optimal grid is 16 X 1 X 1 due to the tensor’s sparsity. Thus, finding the optimal process
grid is critical to choosing the distribution policy and overall performance, which also requires an
intelligent approach over the costly brute-force method.

4 IRREGULARITY-AWARE CPD

The four findings above motivate our optimizations in considering different tensor irregularity
and finding the optimal grid configuration G and distribution policies O to improve runtime per-
formance. This section presents our proposed irregularity-aware CPD. We propose new methods

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:14 Z. Miao et al.

4
35 Normalized-Time |
5 N
"E’ 3F N N |
F 25+t N i
e]
N 2r |
©
e 15+ | N |
z 1 § \
05 [\ \]
0
R RA R RN LA
+7+ ;ZF\:’ 4§€ﬁ7 Z'LCP Z"Vﬁ&‘?"y 7‘"7 Zf;ocel;_') 7+; CS—)"— > 76_",_7

Fig. 7. Normalized time of all possible grid configurations compared to the slowest one for tensor amazon
on 16 MPI processes.

for grid configuration and distribution policy, and the implementations of them are detailed in
Algorithms 2 and 3.

ALGORITHM 2: Prediction-based grid configuration with n;,, = 2.

Require: Number of processes P, tensor X € RIxxIs,
Ensure: Grid configuration Gopr = {P1, P2, P3}, Py X P, X P3 = P;
1: Initialize intermediate grid Gin; = {1, 1, 1}
Step 1: intermediate grid generation

2: prso = getPrimes(P); > Ordered from large to small
3: Iavg = (Il + I + 13)/3

4: for prin prso[1:—1] do

5: Gint[n]x = pr,s.t. I, = max{l, L, I3}

6: In—=laug

7: end for

// Step 2: sparsity-aware grid trimming

8: Initialize six grid candidates G1, . . ., G6 = Gint

9: Gix = (prso[—2] = prso[—1]), i = {1,2,3,4,5,6} > Assign two smallest primes to six candidates
10: Compute rgyer_nnz to predict rpnz of Gi, . . ., Ge with virtual data distribution

11: Gopt = Gi, s-.t.ming,, {G1, ..., Ge}
12: Return Gop:;

4.1 Prediction-based Grid Configuration

It is important to find the optimal process grid, because the performance varies a lot between
different grid configurations based on our Finding 4 in Section 3. Figure 8 compares two example
grid configurations: 2x3x 2 and 2 x 2 X 3. In Conf. 1, tensor X is split to two pieces in mode-I and
three pieces in mode-J; Conf. 2 is the opposite. Distribution on mode-K is the same. Assume J > K,
ostensibly, Conf. 1 should be more reasonable than Conf. 2 by splitting the larger dimension. For
a dense tensor X, this is true. The different matrix distribution on A and B could lead to uneven
matrix communications, thus influencing overall Cpb performance. We prove this using a dense,
cubical third-order tensor X € R™™! along with three matrices A e RIXR 1 = 1,2 3, distributed

on P = P; X P, X P5. From Algorithm 1, the data to be communicated is dominated by Agn) - A;,")

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:15

ALGORITHM 3: Matrix-oriented distribution policy generation in tensor dimension n.

Require: Sparse tensor X € Ri*EX5 number of processes P, in dimension-n;
Ensure: Distribution policy D (a.k.a. layer configuration {I });
1: // Matrix-balancing strategy: set

2: foriin P, do

3: I, = I,/Pp; > Initial layer size
4: end for

5: if Ordered adjustment then

6: // Ordered adjustment strategy: ordered-c

7: for iin P, do

8: m; = #nonzeros in layer L; > ¢ is a user-given parameter
5 I, = (ms — M/P,)/(c . 51,)

10: end for

11: else if Max-to-min adjustment then

12: // Max-min adjustment strategy: max-min

13: Ij: Sorted {Ir,,i = 1,..., Py} by #nonzeros in a descending order

14: foriinP,/2 do

15 L1~ = @[- [P ~ iD)/S,

16: I [Pp = il+ = (I[[i] = I[[Py — i])/Sn

17: end for

18: Ii = IL

19: end if

20: Return O = {I; };

and A;n) to communicate in its own layer. For each inside loop, its communication volume in the

first dimension is Png(ﬁ + (Pi1 - %)) = P#. Thus, the total volume of Cpp in all dimensions is
1

VOL —IxPx(1+1+1) (4)
comm — .
P2 PP

According to Cauchy-Schwarz inequality, the minimum of the total volume is obtained when P; =
P, = Ps. For a cubical dense tensor, equally splitting the dimension sizes obtains the minimum
communication cost. For a tensor with irregular shape, we proportionally assign more processes to
a longer dimension to maintain the minimum communication. The state-of-the-art work [21, 35]
developed an easy-to-use prediction algorithm based on the above idea. It assigns the number
of processes based on the tensor dimension sizes. However, for irregular sparse tensors with a
non-uniform nonzero distribution, their method leads to severe imbalance for computation and
communication.

To solve their problem, we propose a new online prediction algorithm that simultaneously con-
siders communication volume and nonzero balance when deciding the process grid. Our key idea
is to find a process grid with the smallest nonzero imbalance from a mode-balanced foundation.
We have two steps to achieve the above goal. First, we build an intermediate process grid that leads
to balanced communication and matrix computations based on the existing work [21, 35]. This in-
termediate grid uses most but not all of the processes. Second, we construct the grid candidates by
adjusting the intermediate grid with the remaining process(es) and predict the optimal grid among
them. Prediction is leveraged to make a balance among the imbalance ratios in Section 3.1.2.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:16 Z. Miao et al.

N,
SRS NV,
.
s,

o]
N
___\:__.,.‘:___
(o]

Conf. 1 Conf. 2

Fig. 8. Two example grid configurations for 12 processes.

Gint 14X 1x1 (prsy:2x2)

T

8x1x1 4x2 x 1 4x1 x 2

[6x1 x1 8x2x1 4x4x1 4x2x2 4x1x4 8x1x?2

| | | | | |
G Gopt) G Gs G1 (Guptarr) Gs Je

Fig. 9. Six grid candidates on 16 (=2 X 2 X 2 X 2) processes for tensor amazon with np, = 2. We assign two
smallest primes (2 X 2) to Gins and obtain six grid candidates.

Algorithm 2 illustrates our method. Our goal in the first step is to form an intermediate grid
as a base of all candidates. The brute-force results indicate those grids with better performance
are more likely to share the same base. For example, 4 of top 5 grids have the base of 4 X 1 X 1
in Figure 7. Therefore, we need to build this balanced base first. To form this intermediate grid,
we first find all the prime factors of the total process count and sort them in descending order in
prso. Using all but the last n,, factors, we form an intermediate grid G;; (Line 8). For example,
ny, = 1indicates the smallest prime factor is unused in the intermediate grid. n,,, = 2 means that
we will generate 6 candidates, as Figure 9 shows. We choose n,, = 2, because we observe that
for most cases the best grid is in 6 candidates and the overhead of computing imbalance ratios for
6 candidates is negligible. Specifically, it repeatedly assigns the largest prime factor to the current
longest tensor dimension, which dynamically changes after each loop iteration. After the loop ends,
the intermediate grid G;,; has a best effort in balancing communication and matrix computations.
We assign the remaining n,, primes to form a complete process grid in the following step:

The key idea in the second step is to build all possible candidates and identify the optimal grid
among them by predicting their nonzero imbalance. We form six grid candidates from G to Gs
with Gin: by assigning two smallest primes to each dimension. Figure 9 displays how we form all
candidates from G;,; for tensor amazon with 16 MPI processes (Lines 8—11 in Algorithm 2). The
prime factors are {2,2,2,2}. The first step builds G;,,; as 4 X 1 X 1 by the first two prime factors based
on amazon’s dimension size as 4.8M X 1.8M X 1.8M. We build six candidates after assigning the
remaining n,, primes 2 X 2. These six candidates are considered to have an equal chance to obtain
the optimal performance from the first step with tensor dimension size and implied communication
information. To identify the optimal grid among them, we need to predict the nonzero imbalance
ratio r,,. for each candidate. We do not actually distribute data to processes in different nodes for
each candidate grid. If we want to compute the actual r,,,, with the nonzeros of each process (M,,)
as stated in Section 3.1.2, then we need to take the tensor slice information to determine the index
range of each process. However, the above computation of r,,,; has a complexity of O(cy X PXM,)

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:17

for each candidate. This is expensive for tensors with large amounts of nonzeros. We present a new
metric 7jqyer nnz as the imbalance ratio of nonzeros among different layers to predict ;. Figure 3
displays the layers affiliated with the tensor partition. In mode I, there are three layers each with
4 subtensors. Particularly, we take the tensor slice information to compute the nonzeros of each
layer Ln, in each mode. In mode I, rjayer_nnz(n) = (max{Ln,} — min{Ln,})/max{Ln,}. We then
compute rgyer nnz as the average rigyer nnz(n) for all modes. The total complexity is O(cy X I,).
Tlayer nnz = Tnnz = 0 in a dense tensor or a sparse tensor with an even nonzero distribution.
In a sparse tensor with an imbalanced nonzero distribution, r1gyer nn: is able to predict r,,, by
considering several subtensors as a group. Therefore, compared to 7'nnz, '1ayer_nnz can capture the
imbalance of nonzero distribution by a low-cost estimation. Finally, we select the grid candidates
with the best nonzero balance as the optimal grid G,,;. Figure 9 shows that Algorithm 2 predicts
the optimal grid as 16 x 1 X 1 as with smallest rj4yer nn- for tensor amazon on 16 MPI processes.
And Figure 7 indicates that our G,,; has a better performance than G;pq4s¢ built from SprATT’s
grid configuration. The selected grid configuration is used for the following distribution policy
and Cpp computation.

4.2 Matrix-oriented Distribution Policy

Once we decide on a process grid, the next challenge is to choose a distribution policy that leads to
an optimal partitioning of the tensor and matrices and balanced computation and communication
and their tradeoffs among the processes. Thus, three parameters M,, I,, and I; in Table 2 are
influenced by a distribution policy D. The optimal strategies effectively eliminate performance
bottlenecks, resulting in balanced computation and communication and their tradeoffs.

The state-of-the-art work [35] takes a strategy that balances nonzero computation by evenly
partitioning tensor nonzeros among the processes, shown in Figure 10(a). It only considers M,
and targets to minimize ry,,. Thus, it is advantageous for Cpp dominated by the sparse tensor
computation kernel MTTKRp. In general, such tensors have moderate sparsity and uniform
nonzero distributions along the dimensions. Nevertheless, this strategy may not be beneficial for
irregular tensors. For example, tensor fb-m has one dimension size multiple orders-of-magnitude
smaller than the others, and its nonzeros mainly reside along a diagonal with increasing density,
while most nonzeros concentrate at a bottom corner. Applying the nonzero balancing strategy to
such tensors results in severe imbalances in all aspects, including nonzero computation, matrix
computations, and communication (see Figure 13). Furthermore, CPD on some tensors under
study do not benefit from balanced nonzero computation, as the execution is dominated by com-
munication or matrix computations in Figures 5 and 4. We leverage the sparsity and irregularity
information that reflects in matrix computation imbalance. We identify the dominant imbalance
ratio as matrix computation imbalance for irregular tensors. Therefore, all our strategies are
based on balancing matrix computations and then achieve the best tradeoffs between different
imbalances.

To balance matrix computations, we first propose an easy-to-use set strategy that balances I,
by evenly partitioning matrices among the processes in every dimension, shown as Figure 10(b).
This results in minimal r;, and balanced matrix computation but could exacerbate the imbalance
for nonzero computation. Set strategy is advantageous for Cpp dominated by matrix computa-
tions, typically very sparse tensors with a uniformed distribution of nonzeros, and could tolerate
irregular tensor dimension sizes. However, applying the matrix balancing strategy improves the
balance for matrix computations and communication but exacerbates the imbalance for nonzero
computation. Yet, neither of these two strategies works well for irregular sparse tensors like fb-m,
because they target to minimize only one imbalance ratio, either ry, or ry,, without considering
the tradeoffs among the three ratios counting r,,,; for communication.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:18 Z. Miao et al.

7 7 7 7 d 7

'l, ,I’ 'l, '/, 'I, '/,

1 1 1 1 1
®eie0 1 o ®e oi o ®e o o
o.oi. .'i «i. .i * o 10 i. *

T
i oo . * e | o ® lo o i .

P 1 e | eof o b

(a) Nonzero Balanced (b) Matrix Balanced (c) Adjustment

Fig. 10. Distribution policy on 12(=2 X 3 X 2) processes. Layer boundaries in red are adjusted in the 2nd
dimension; boundaries in gray are fixed and in the 1st and 3rd dimensions.

The challenge for irregular sparse tensors is extremely high imbalance in both computation and
communication, as our Finding 3 in Section 3 shows. Focusing only on optimizing one of imbalance
ratios might lead to higher imbalance ratios for the other two. To support irregular sparse tensors,
we propose new distribution policies to achieve better tradeoffs between these imbalance ratios.
Our proposed distribution policies begin with the matrix-balancing strategy but adjust according to
the nonzero-balancing strategy, illustrated in Figure 10(c) where red lines are shifted based on (b)
but not as skewed as (a). Algorithm 3 shows the three strategies of distribution policies: set, ordered-
¢, and max-min. From Figure 10, a distribution policy is a layer configuration and represented by
{IL}, an array of dimension sizes distributed to each process that sum up to the dimension size in
dimension-n. Assume the processor grid is P = P; X P, X - - - X Py. We first employ set strategy by
partitioning I, /P, consecutive slices of X to each process in dimension n, yielding balanced matrix
computations but potentially skewed nonzeros among processes. We then adjust layer boundaries
to mitigate nonzero imbalance using either ordered-c or max-min strategies.

The key idea of the ordered-c strategy is to reduce nonzero imbalance of each partition indepen-
dently. It adjusts layer boundaries along with the index in each tensor dimension. To achieve this,
we first calculate M/P, as the target nonzero size of each partition in dimension-n and add/remove
slices if the nonzeros in a partition are greater/less than the target size. Second, we need to move
layer boundaries to make nonzeros in each partition closer to the target nonzero size M/P,. As-
sume the current number of nonzeros in the ith partition is m; and the average number of nonze-
ros for one slice in this partition is Sr,, then the number of slices to be adjusted is given by
(mi; — M/Py)/(c . St,), where ¢ is a user-given integer. The larger the c value, the finer the ad-
justment granularity. Partitioning with ¢ = 1 is the same as SPLATT for dense tensors or sparse
tensors with uniformed nonzero distribution. With larger c, our partitioning keeps more balanced
I, rather than nonzeros for irregular sparse tensor. When c is extremely large, the ordered-c strat-
egy has little difference with the set strategy, as it has little adjustment. Therefore, we set ¢ as 1
or 2 to achieve better tradeoffs between nonzero and I, imbalance and distinguish with the set
strategy.

Instead of adjusting each partition independently, the key idea of the Max-min method is to
balance nonzeros in partitions based on the differences between them. There is no target nonzero
size in this strategy. It moves slices from partitions with the maximal nonzeros to the ones with
the minimal nonzeros. We first sort the layer configuration I; in a descending order and save it
as I]. By looping the first half of I}, the max-min pair is I] [i], I [P, — i], respectively. Second, we
adjust layer boundaries of each max-min pair. Let S,, be the average number of nonzeros per slice
for all partitions of dimension-n. The number of slices to be adjusted is (I] [i] — I} [Py — i])/Sn.
Max-min adjusts only the maximal and minimal nonzero partitions, but might be less accurate in
partitioning nonzeros by considering the global slice information with S,, among partitions rather
than the local Sy, within a partition. As each partition must contain continuous slices, this method

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:19

might involve adjusting boundaries of all partitions. Therefore, we expect lower performance than
the first method, but it still outperforms the nonzero-balancing strategy for irregular tensors.

Our proposed prediction-based grid configuration and matrix-oriented distribution policy are
directly applied to medium-grained, bulk-synchronous distributed Cpp (Algorithm 1) as Lines 2
and 3 separately to gain performance improvement and better scalability.

5 EXPERIMENTAL RESULTS

Platform. We perform experiments on the Constance cluster at the Pacific Northwest National
Laboratory; each node has 2 X 12-core Intel Xeon CPU E5-2670 v3 CPUs. The Constance system
has 520 2 X 12-core nodes (totaling 12,480 cores), 64 GB DDR4 memory per node on a 56 Gb/s
FDR Infiniband interconnect. We use up to a total number of 1,536 cores, with 128 nodes and
12 cores/node, gce 7.3.0 and OpenMPI 4.0.1 as compilers. Our experiments consume 25% of the
whole system. The default BLAS and LAPACK libraries v3.2.1 on Linux are used for the dense
matrix routines.

Dataset. We evaluate sparse tensors from real-world applications and a randomly permuted ten-
sor in Table 3, ordered by increasing number of nonzeros. Most of these tensors are from the For-
midable Repository of Open Sparse Tensors and Tools (FROSTT) [34]. The darpa (source
IP-destination IP-time triples), fb-m, and fb-s (entity-entity-relation triples) are from HaTen2 [17],
and choa (patient-visit-time triples) is built from electronic health records (EHRs) [31]. The
random is a randomly permuted tensor.

Baseline. We use SPLATT as our baseline, representing a medium-grained, bulk-synchronous dis-
tributed Cpp [35],° which is generally considered faster than MapReduce implementations [17, 18].
We also compare to the fine-grained distributed Cpp algorithm (represented as FGBS) from Hyper-
Tensor [20].° Both medium- and fine-grained Cpp are hybrid MPI+OpenMP parallelized. We use
12 threads (referred to as processors uniformly) for each CPU for all experiments and set R = 32,
as using a different R has no impact on our evaluation. All experiments use single-precision float-
ing point values, and the average execution time of five iterations is reported. Due to the CpD
execution time variance on different tensors, we normalize the time of other implementations to
medium-grained SPLATT.

5.1 Overall Performance

Figure 11(a) shows the speedup of our distributed Cpp (MaBs-opt) compared to medium-grained
(SprarT) and fine-grained (FGBS) Cpp when using 1,536 processors. The speedup over SPLATT
ranges from 1.2X to 4.4X for all nine tensors. The two irregular tensors, fb-m and fb-s, benefit the
most from our methods, because they suffer severe r,p, 101, and r7, imbalance in prior implemen-
tations (see Figure 13). Relatively small sparse tensors like choa, darpa, and nell2 have a speedup
from 1.5% to 1.7x. Other tensors such as deli and amazon gain a speedup from 1.2X to 1.4X from our
methods, even though they have decent balances with SpLATT. The randomly permuted tensor ran-
dom has a relatively regular tensor nonzero distribution, because it is difficult to generate an irregu-
lar tensor like those tensors from real-world applications. The tensor random has a speedup as 2.2X.

Compared to fine-grained distributed Cpp (FGBS) with hypergraph partitioning generated by
Zoltan [8], MgBs-opt always performs better by 3.1-11.4X. The missing bars on large and/or irreg-
ular tensors, amazon, patents, fb-m, and fb-s are due to failures of generating hypergraph partitions
by Zoltan on 1,536 processors. We observe that SPLATT achieves higher performance than FGBS
on all cases, aligned with Reference [35].

SENSIGN [23] is a closed-sourced, commercial library, and CarHP [2] is not open-sourced.
*Tmplemented in SPLATT as its open-source version.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:20 Z. Miao et al.

4 b K FGBS @ |
X splatt =3
8 MGBS-GC I
3l gl MGBS-opt L3 |
o &
> N
ks x
O 2 ki S [] e o QY Np “
Q - -
@ Bl gl & &£ 2 &
~ ~ o X N X < =%
X x X<t XN X X
1L N N o s Bl SO B
0 B B o 2 S
S \ Q. S
% s Y, Ry %y,
% &
(a) Overall performance speedup for CpD on 1536 processors.
splatt +
MGBS-opt
120 6 o
B0 e N 3N -
o
~ 30 = 0 0 0 S o=
2 - N CUREEE .
= 15 = v v N]
0.75 = v v UL
TE e
| | | | | | | | |
96 192 384 768 1536 96 192 384 768 1536 96 192 384 768 1536
fb-s amazon patents

(b) Strong scalability from 96 to 1536 processors.

Fig. 11. Overall performance comparison and scalability.

Figure 11(a) also presents the performance effect of our prediction-based grid configuration (Al-
gorithm 2) as MGBs-GC. By comparing SPLATT, MGBs-GC, and MGBs-opt, we see the incremental
performance from our optimizations. The prediction-based grid configuration and matrix-oriented
distribution policy increase the performance by 0%-296% and 7%-91% separately. The labels on top
of SpLATT and MGBs-GC bars show their chosen process grids. MGBs-GC and SPLATT obtain the
same grid and thus lead to the same performance on choa and darpa. Our prediction-based grid
configuration accelerates performance for 8 out of 10 tensors. It is expensive to find the optimal
partition in a large system size. For 128 nodes, it has 36 different grids with 5 partitioning strategies,
totally 120 different partitions. Our idea is to find the best overall balanced partition with negli-
gible time overhead. Tensor fb-m gets the highest gain at 2.96x with a better grid configuration.
These results verify that irregularity-aware grid configuration is critical to Cpp performance.

Figure 11(b) demonstrates that MGBs-opt obtains better strong scalability than SPLATT on three
large tensors from 96 to 1,536 processors. MGBs-opt shows significantly better scalability than
SPLATT on irregular yet sparse tensor fb-s. This is because r7, that impacts matrix computation
and communication time reduces significantly in MaBs-opt. Detailed profiling shows that both
communication and computation time are closed to be halved as the number of processors

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:21

L o o splatt =3 |
4 - 5‘_, set [
- ordered-1 3
3 b IE T - ordered-2 = |
= M max-min [J
3
n
S 2 g @i A o
N 2 » @ 5
pSi | » » [te] 3
| Il %ﬂéﬁﬂ
0 o) 3 3 [o7 2 >
%, A, Y) ()
e % > ¢ 7 7y /)’@e
2 %

Fig. 12. The effect of different distribution policies: matrix-balancing (set), two ordered adjustments (ordered-
1 and ordered-2), and max-to-min adjustment (max-min). The CpD running time in seconds for SPLATT and
our best strategy are shown.

doubles in MGBs-opt. MGBs-opt scales slightly better for matrix computation and communication
on tensors amazon and patents, where MTTKRP occupies a larger time percentage. For other
tensors: fb-m shows similar scalability to fb-s; deli and nelll are similar to patents; both SPLATT
and MacBs-opt show good scalability on small tensors choa, darpa, and nell2.

5.2 Balanced Distribution Policy Analysis

Figure 12 shows the speedup of Cpp from our four matrix-oriented distribution policies against
SPLATT on 1,536 processors. Set, ordered-1, ordered-2, and max-min represent the strategies of
matrix-balancing, two types of ordered adjustment, and max-min adjustment separately. Ordered-1
and ordered-2 incline the adjustment to nonzero and I, balance, respectively. Overall, our strategies
obtain speedup on all tensors. The set strategy performs the best on four, ordered-1on one, ordered-
2 on three, and max-min on one tensor, respectively. All the four strategies achieve significant
speedups on the two most-irregular tensors fb-m and fb-s, with ordered-2 the most advantageous.
An interesting observation is that simple strategies (set and max-min) could perform the best.
These results verify our findings that balancing only nonzeros results in suboptimal performance,
and tradeoffs are required among nonzero, matrix computation, and communication volume.

To further understand why some tensors benefit more from our strategies than others, we look
into how their imbalance ratios change. We explore two representative tensors in Figure 13 to show
our optimization for load imbalance on irregular and regular tensors. The overall performance is
comprehensively impacted by 7,5z, 7,01, and ry,. Two general observations are obtained: First, no
strategy simultaneously obtains the lowest imbalance ratios from all the three aspects: nonzero,
matrix computation, and communication. Second, all strategies trade higher r,,, for lower r,;
and ry, to gain performance improvement. The irregular tensor fb-m suffers very high imbalance
ratios for all strategies in all three aspects. SPLATT has the smallest r,,,,, balance, set has nearly per-
fect r, balance (around 0, invisible in bars), while ordered-1 gets the best r,,; balance. However,
ordered-2 obtains the best performance in Figure 12, since none of SPLATT, set, and ordered-1 obtains
a good tradeoff among the three ratios. For fb —m, r;, plays a more important role in overall per-
formance, so a small reduction in ry, has crucial impact on performance speedup. Different from
irregular tensors, regular tensors like nelll have much lower imbalance ratios in each category.
For nelll ryn, plays a more important role, so our optimization for r,,; and ry, does not translate

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:22 Z. Miao et al.

splatt EX]
1 T — = J. — 05 set £
11 N1/ N N ordered-1 1
& O8I NI M 04 e — ordered-2 1
5 max-min 3
X 06 H o = H T 03 N C]
)
2
o 04 H H 0.2 [y -~
3
E o02H o EREE NEm 0.1 _waﬂ—ﬂ --------- H_|_|—
0 - 0 I '
r(nnz) r(vol) r(Ip) r(nnz) r(vol) r(Ip)
fb-m nell1

Fig. 13. Load imbalance ratios (rnnz, ryor, and TIp)-

to significant performance improvement. Its r,,, imbalance ratio is actually under control at 1%
with SPLATT. Set, which gets the highest performance gain, has the worst r,,, imbalance but the
best r;, and ;o balance. Regular tensors tend to be easier to get balanced in all categories and
the differences among them are small. These results demonstrate that the tradeoff among different
load balances is complex and the optimal solution is determined by tensor properties, i.e., spar-
sity, shape, and distribution of nonzeros among the modes. We identify the dominant imbalance
ratio as ry, for irregular tensors because of its impact on matrix computation. However, the best
performance of Cpp is usually not achieved by the optimal r;,, because other imbalance ratios are
also important. It is still very difficult or impossible to obtain the optimal balance simultaneously
among all categories, thus a careful tradeoft is required for the best performance.

Guideline for choosing strategies. We provide general guidelines for users to easily pick
from the strategies for their own tensors. Our strategies try to find the best tradeoff among three
imbalance ratios, though it is difficult to match each strategy for one certain type of tensors. If
r, is the dominant imbalance factor in Cpp and we need to control it as small as possible, the
ascending order of ry, in our strategies is set < ordered-2 < ordered-1. Generally, users could safely
choose set if lacking statistical information on a sparse tensor, because it always performs better
than SPLATT on a large cluster, as Figure 12 shows. Our recommendations are as follows: (1) Use set
for relatively small or regular tensors, as it obtains the smallest r;, while the other two imbalance
ratios have little increase in those tensors such as choa and nell2; (2) Use ordered-2 for relatively
large and irregular tensors, as it optimizes both r,,,; and r7, well on tensors such as fb-m and fb-s.

5.3 Bottleneck Shifting

We show how MaBs-opt influences the performance bottleneck of major computation and commu-
nication kernels of Cpp for tensors choa and fb-m in Figure 14. For choa, MGBs-opt shifts the per-
formance bottleneck from communication in SPLATT to MAT-SOLVE as a result of communication
time reduction, while also decreasing the time of MAT NORM. For fb-m, the MGBs-opt performance
is still dominated by COMM as in SPLATT, but largely reduced. Since SpLATT focuses on optimiz-
ing the nonzero imbalance for MTTKRP, which only accounts for a negligible portion (invisible in
Figure 14), MGBs-opt correctly identifies bottlenecks and significantly improves their execution.

5.4 Partitioning Strategies Comparison

Several previous works have compared MGBs with coarse-grained Cpp [13]. It has been proved
that SPLATT is 41X to 76X faster than DFacTo on 1,024 cores [35]. Therefore, we no longer compare

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:23

1 1 OtherCOMM ==
MAT-SOLVE =2
2 08 4 08 T ATA comp]
= MAT-NORM-comm E3
= MAT-NORM-comp 1
3 0.6 - n 0.6 - MTTKRP E3|
N
2 02f - 0.2 |- e
. .
0 AN = 0 / :
splatt MGBS-opt splatt MGBS-opt
choa fb-m
Fig. 14. Time percentage of main kernels.
1 T T 1
COMM
MAT-SOLVE]
o 08 MATATA 0.8 - —
ES MAT-NORM [
[MTTKRP
- 06 - 0.6 ' ' T
Q
N
© |] L . . R
£ 04 0.4 N
o
Z 02| — 0.2 -
O | /] O / \I/
FGBS splatt MGBS-opt FGBS splatt MGBS-opt
fb-m fb-s

Fig. 15. Time percentage of main kernels for fb-m and fb-s on 768 processors.

MgBs-opt with coarse-grained Cpp in this work. We examine the fine-grained distribution with
hypergraph partitioning of each tensor generated by Zoltan [8]. Large tensors such as amazon
and patents are unable to compute a hypergraph partitioning due to their memory requirements.
Figure 11(a) already shows FGBS achieves lower performance than both SpLATT and MaBs-opt
for 5 tensors on 1,536 processors. The hypergraph partitions of fb-m and fb-s can be generated
on 768 processors. SPLATT achieves higher performance than fine-grained distribution in 5 out
of 7 tensors on 768 processors except for fb-m and fb-s. Figure 15 displays the normalized time of
major computation and communication kernels in FGBS, SpLATT, and MGBs-opt on 768 processors.
We first disclose that FGBS performs faster than SPLATT on tensors fb-m and fb-s by 3.2x and
1.3%, but only achieves 70% and 30% of the performance of MGBs-opt, which further strengthens
our motivation of study on irregular tensors. Compared to SpLATT, both FGBS and MaBs-opt
significantly improve the performance of matrix-related computations on fb-m and achieve similar
speedups; while on fb-s, FGBS only gains a small improvement over SPLATT. This demonstrates
the performance improvement of McBs-opt is more stable than FGBS on different irregular
tensors.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:24 Z. Miao et al.

T T
8% [~ overhead on 10-iters CPD =& ="]
overhead on 50-iters CPD &+
B [e 1
2% [R R AR AN -1
1%

0.5%

0.25%

0.125%

Normalized time overhead of our method

192 384 768 1536
Number of Processors

Fig. 16. Time overhead of our method (Algorithms 2 and 3). The time of our method is normalized to Cpb
time.

5.5 Time Overhead of Irregularity-aware Method

We evaluate time overhead of our irregularity-aware method and compare it with Cpp time. Our
proposed prediction-based grid configuration incurs trivial time cost in the virtual distribution,
as it needs to compute the nonzero imbalance ratio rj4yer nn- for each candidate. The cost of
our matrix-oriented distribution policy is negligible, because its complexity is O(P). The time
cost of irregularity-aware method is mainly determined by the total dimension sizes of the ten-
sor ¢y in the complexity of O(cy X I,) in computation of r;4yer pnnz. Our method does not in-
cur expensive data redistribution, because we only do data distribution once as SpraTT. The
number of Cpp iterations is determined comprehensively by the size, nonzero distribution, and
sparsity of a tensor. We set 10 and 50 as the minimum and maximum iterations, because we
observe tensors in our dataset converge for Cpp in this range of iterations. Figure 16 displays
the average, maximum and minimum time overhead of irregularity-aware method normalized
to 10 and 50 Cpp iterations for all tensors in our dataset. As the system size increases, the nor-
malized time overhead increases for both cases. This is because our proposed irregularity-aware
method is sequential with relatively stable time on different system sizes. The average overhead
is 4.5% to 10 Cpp iterations and 0.9% to 50 iterations on 1,536 processors. Overall, the time cost of
irregularity-aware method is low and acceptable compared to CpD time. And its time overhead is
negligible compared to hypergraph partitioning in both fine-grained [20, 21] and medium-grained
Crp [2].

5.6 Application to Other Formats

We extend MGBs-opt to support other sparse tensor formats such as the coordinate (COO) and
Hierarchical Coordinate (HICOO) [25] by extending the ParTI library [24]. COO, the simplest
yet arguably most popular format by far, stores each nonzero value along with all of its position
indices. HICOO [25] format improves upon COO by compressing the indices in units of sparse
tensor blocks. Figure 17 plots strong scalability of MBs-opt applied to COO and HiCOO formats
for three tensors on 48 to 1,536 processors. MGBs-opt obtains near-linear scalability for HICOO on
these tensors. With COO format darpa on 96 to 192 and deli on 48 to 96, processors show super-
linear speedup. Detailed profiling shows that computation time for matrix-related kernels reduces
by more than half in both cases because of much better matrix-balance. MGBs-opt is flexible to
support other variant formats in CSF or COO families [26, 27].

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:25

Ccoo
0.64 247 24 f i
032 . 12 12 Ny T
B 046 [R - 6 B BN]
(0]
3 = o NG —
E ooosf o RRG - 3
15 R
0.04 = v BN) 15
075 v D
| | | | D | | | |
48 96 192 384 768 1536 48 96 192 384 768 1536 48 96 192 384 768 1536
choa darpa deli

Fig. 17. Scalability of McBs-opt applied on ParTl for COO and HiCOO formats.

6 CONCLUSION

Although distributed CANDECOMP/PARAFAC decomposition is well-studied due to the increas-
ing needs of processing large-scale data, the performance implication of tensor irregularity is not
well understood. This work presents an irregularity-aware tensor decomposition on a distributed
memory system. We thoroughly investigate the performance behavior of an abstract of the state-of-
the-art distributed Cpp implementations through theoretical analysis and experimental profiling.
From the study, we propose three imbalance ratio metrics and conclude four findings to guide our
optimizations: prediction-based grid configuration and matrix-oriented distribution policy. Our
optimization-enhanced distributed Cpp achieves up to 4.4X and 11.4x on 1,536 processors against
the state-of-the-art medium- and fine-grained distributed implementations. Our optimizations
support different sparse tensor formats such as CSF, COO, and HiCOO and gain good scalability for
all of them. For future work, we intend to apply our optimizations to other tensor decompositions
and adopt shared-memory optimizations like dimension-tree [21] to further improve performance.

REFERENCES

[1] Martin Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. (2015), arXiv preprint
arXiv:1603.04467.

[2] Seher Acer, Tugba Torun, and Cevdet Aykanat. 2018. Improving medium-grain partitioning for scalable sparse tensor
decomposition. IEEE Trans. Parallel Distrib. Syst. 29, 12 (2018), 2814-2825.

[3] Phillip Alpatov, Greg Baker, H. Carter Edwards, John Gunnels, Greg Morrow, James Overfelt, and Robert van de
Geijn. 1997. PLAPACK Parallel linear algebra package design overview. In Proceedings of the ACM/IEEE Conference on
Supercomputing. IEEE, 29-29.

[4] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky. 2014. Tensor decompositions
for learning latent variable models. J. Mach. Learn. Res. 15, 1 (Jan. 2014), 2773-2832.

[5] Grey Ballard and Kathryn Rouse. 2020. General memory-independent lower bound for MTTKRP. In Proceedings of the
SIAM Conference on Parallel Processing for Scientific Computing. SIAM, 1-11.

[6] Muthu Baskaran, Thomas Henretty, and James Ezick. 2019. Fast and scalable distributed tensor decompositions. In
Proceedings of the IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1-7.

[7] Zachary Blanco, Bangtian Liu, and Maryam Mehri Dehnavi. 2018. CSTF: Large-scale sparse tensor factorizations on
distributed platforms. In Proceedings of the 47th International Conference on Parallel Processing (ICPP’18). ACM, New
York, NY. DOI:https://doi.org/10.1145/3225058.3225133

[8] E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine. 2012. The Zoltan and Isorropia parallel toolkits for
combinatorial scientific computing: Partitioning, ordering, and coloring. Scient. Program. 20, 2 (2012), 129-150.

[9] Venkatesan T. Chakaravarthy, Jee W. Choi, Douglas J. Joseph, Prakash Murali, Shivmaran S. Pandian, Yogish Sabhar-
wal, and Dheeraj Sreedhar. 2018. On optimizing distributed Tucker decomposition for sparse tensors. In Proceedings
of the 32nd ACM International Conference on Supercomputing (ICS’18). 374-384.

[10] M. Ozan Karsavuran, M. Ozan, Seher Acer, and Cevdet Aykanat. 2020. Partitioning models for general medium-grain
parallel sparse tensor decomposition. IEEE Transactions on Parallel and Distributed Systems 32, 1 (2020), 147-159.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

https://doi.org/10.1145/3225058.3225133

10:26 Z. Miao et al.

[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]
[23]
[24]
[25]

[26]

[27]

(28]

[29]

(30]

(31]

Jieyang Chen, Nan Xiong, Xin Liang, Dingwen Tao, Sihuan Li, Kaiming Ouyang, Kai Zhao, Nathan DeBardeleben,
Qiang Guan, and Zizhong Chen. 2019. TSM2: Optimizing tall-and-skinny matrix-matrix multiplication on GPUs. In
Proceedings of the ACM International Conference on Supercomputing. 106—116.

Jaeyoung Choi, James Demmel, Inderjiit Dhillon, Jack Dongarra, Susan Ostrouchov, Antoine Petitet, Ken Stanley,
David Walker, and R. Clinton Whaley. 1996. ScaLAPACK: A portable linear algebra library for distributed memory
computers—Design issues and performance. Comput. Phys. Commun. 97, 1-2 (1996), 1-15.

Joon Hee Choi and S. Vishwanathan. 2014. DFacTo: Distributed factorization of tensors. In Advances in Neural Infor-
mation Processing Systems 27. Curran Associates, Inc., 1296-1304.

Andrzej Cichocki. 2014. Era of big data processing: A new approach via tensor networks and tensor decompositions.
CoRR abs/1403.2048 (2014).

Ahmed E. Helal, Jan Laukemann, Fabio Checconi, Jesmin Jahan Tithi, Teresa Ranadive, Fabrizio Petrini, and Jeewhan
Choi. 2021. ALTO: Adaptive linearized storage of sparse tensors. In Proceedings of the ACM International Conference
on Supercomputing. 404-416.

Joyce C. Ho, Joydeep Ghosh, and Jimeng Sun. 2014. Marble: High-throughput phenotyping from electronic health
records via sparse nonnegative tensor factorization. In Proceedings of the 20th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD’14). ACM, New York, NY, 115-124. DOI:https://doi.org/10.1145/
2623330.2623658.

Inah Jeon, Evangelos E. Papalexakis, U. Kang, and Christos Faloutsos. 2015. HaTen2: Billion-scale tensor decomposi-
tions. In Proceedings of the IEEE International Conference on Data Engineering (ICDE).

U. Kang, Evangelos Papalexakis, Abhay Harpale, and Christos Faloutsos. 2012. GigaTensor: Scaling tensor analysis
up by 100 times—Algorithms and discoveries. In Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’12). ACM, New York, NY, 316-324. DOI: https://doi.org/10.1145/2339530.
2339583.

Oguz Kaya, Ramakrishnan Kannan, and Grey Ballard. 2018. Partitioning and communication strategies for sparse
non-negative matrix factorization. In Proceedings of the 47th International Conference on Parallel Processing. 1-10.
Oguz Kaya and Bora Ugar. 2015. Scalable sparse tensor decompositions in distributed memory systems. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC’15). ACM, New
York, NY. DOI:https://doi.org/10.1145/2807591.2807624

0. Kaya and B. Ugar. 2018. Parallel Candecomp/Parafac decomposition of sparse tensors using dimension trees. STAM
J. Scient. Comput. 40, 1 (2018), C99-C130. DOI:https://doi.org/10.1137/16M1102744

T. Kolda and B. Bader. 2009. Tensor decompositions and applications. SIAM Rev. 51, 3 (2009), 455-500. DOI:https://
doi.org/10.1137/07070111X

Reservoir Labs. 2016. ENSIGN: Multi-Domain Analytics. (2016). Retrieved from https://reservoir-ensign.github.io/
usecases/ENSIGN.html.

Jiajia Li, Yuchen Ma, and Richard Vuduc. 2018. ParTI!: A Parallel Tensor Infrastructure for multicore CPUs and GPUs
(Version 1.0.0). (Oct. Retrieved from: https://github.com/hpcgarage/ParTI.

Jiajia Li, Jimeng Sun, and Richard Vuduc. 2018. HiCOO: Hierarchical storage of sparse tensors. In Proceedings of the
ACM/IEEE International Conference on High Performance Computing, Networking, Storage and Analysis (SC).

B. Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi. 2017. A unified optimization approach for sparse tensor operations
on GPUs. In Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER). 47-57. DOI:https://
doi.org/10.1109/CLUSTER.2017.75

Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Prasant Singh Rawat, Sriram Krishnamoorthy, and Ponnuswamy
Sadayappan. 2019. An efficient mixed-mode representation of sparse tensors. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis. 1-25.

Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov. 2015. Tensorizing neural networks. CoRR
abs/1509.06569 (2015).

Evangelos E. Papalexakis, Christos Faloutsos, and Nicholas D. Sidiropoulos. 2012. ParCube: Sparse parallelizable tensor
decompositions. In Proceedings of the 2012 European Conference on Machine Learning and Knowledge Discovery in
Databases - Volume Part I (ECML PKDD’12). Springer-Verlag, Berlin, 521-536. DOI:https://doi.org/10.1007/978-3-642-
33460-3_39

Toakeim Perros, Robert Chen, Richard Vuduc, and Jimeng Sun. 2015. Sparse hierarchical Tucker factorization and
its application to healthcare. In Proceedings of the IEEE International Conference on Data Mining (ICDM’15). IEEE
Computer Society, Washington, DC, 943-948. DOI:https://doi.org/10.1109/ICDM.2015.29

Toakeim Perros, Evangelos E. Papalexakis, Fei Wang, Richard Vuduc, Elizabeth Searles, Michael Thompson, and Jimeng
Sun. 2017. SPARTan: Scalable PARAFAC? for large & sparse data. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’17). ACM, New York, NY, 375-384. DOI:https://doi.org/
10.1145/3097983.3098014

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

https://doi.org/10.1145/2623330.2623658
https://doi.org/10.1145/2339530.2339583
https://doi.org/10.1145/2807591.2807624
https://doi.org/10.1137/16M1102744
https://doi.org/10.1137/07070111X
https://reservoir-ensign.github.io/usecases/ENSIGN.html
https://github.com/hpcgarage/ParTI
https://doi.org/10.1109/CLUSTER.2017.75
https://doi.org/10.1007/978-3-642-33460-3_39
https://doi.org/10.1109/ICDM.2015.29
https://doi.org/10.1145/3097983.3098014

Performance Implication of Tensor Irregularity and Optimization 10:27

[32] Thomas B. Rolinger, Tyler A. Simon, and Christopher D. Krieger. 2019. Performance considerations for scalable parallel
tensor decomposition. J. Parallel and Distrib. Comput. 129 (2019), 83-98.

[33] Martin D. Schatz, Robert A. van de Geijn, and Jack Poulson. 2016. Parallel matrix multiplication: A systematic journey.

SIAM 7. Scient. Comput. 38, 6 (2016), C748-C781.

Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and George Karypis. 2017. FROSTT: The

Formidable Repository of Open Sparse Tensors and Tools. Retrieved from: http://frostt.io/.

[35] Shaden Smith and George Karypis. 2016. A medium-grained algorithm for distributed sparse tensor factorization. In
Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE.

[36] Shaden Smith, Niranjay Ravindran, Nicholas Sidiropoulos, and George Karypis. 2016. SPLATT: The Surprisingly Par-
alleL spArse Tensor Toolkit (Version 1.1.1). Retrieved from: https://github.com/ShadenSmith/splatt.

[37] Edgar Solomonik and James Demmel. 2011. Communication-optimal parallel 2.5 D matrix multiplication and LU
factorization algorithms. In Proceedings of the European Conference on Parallel Processing. Springer, 90-109.

[38] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of collective communication operations in
MPICH. Int. J. High Perform. Comput. Applic. 19, 1 (2005), 49-66.

[39] L.R. Tucker. 1966. Some mathematical notes on three-mode factor analysis. Psychometrika 31 (1966), 279-311.

[40] Robert A. van De Geijn and Jerrell Watts. 1997. SUMMA: Scalable universal matrix multiplication algorithm. Concurr.:
Pract. Exper. 9, 4 (1997), 255-274.

(34

flan)

—

Received 14 September 2021; accepted 11 January 2023

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

http://frostt.io/
https://github.com/ShadenSmith/splatt

