
10

Performance Implication of Tensor Irregularity and

Optimization for Distributed Tensor Decomposition

ZHENG MIAO, Hangzhou Dianzi University, China

JON C. CALHOUN and RONG GE, Clemson University, USA

JIAJIA LI, North Carolina State University, USA

Tensors are used by a wide variety of applications to represent multi-dimensional data; tensor decomposi-

tions are a class of methods for latent data analytics, data compression, and so on. Many of these applications

generate large tensors with irregular dimension sizes and nonzero distribution. CANDECOMP/PARAFAC de-

composition (Cpd) is a popular low-rank tensor decomposition for discovering latent features. The increasing

overhead on memory and execution time of Cpd for large tensors requires distributed memory implementa-

tions as the only feasible solution. The sparsity and irregularity of tensors hinder the improvement of per-

formance and scalability of distributed memory implementations. While previous works have been proved

successful in Cpd for tensors with relatively regular dimension sizes and nonzero distribution, they either

deliver unsatisfactory performance and scalability for irregular tensors or require significant time overhead

in preprocessing. In this work, we focus on medium-grained tensor distribution to address their limitation for

irregular tensors. We first thoroughly investigate through theoretical and experimental analysis. We disclose

that the main cause of poor Cpd performance and scalability is the imbalance of multiple types of computa-

tions and communications and their tradeoffs; and sparsity and irregularity make it challenging to achieve

their balances and tradeoffs. Irregularity of a sparse tensor is categorized based on two aspects: very differ-

ent dimension sizes and a non-uniform nonzero distribution. Typically, focusing on optimizing one type of

load imbalance causes other ones more severe for irregular tensors. To address such challenges, we propose

irregularity-aware distributed Cpd that leverages the sparsity and irregularity information to identify the best

tradeoff between different imbalances with low time overhead. Wematerialize the idea with two optimization

methods: the prediction-based grid configuration and matrix-oriented distribution policy, where the former

forms the global balance among computations and communications, and the latter further adjusts the bal-

ances among computations. The experimental results show that our proposed irregularity-aware distributed

Cpd is more scalable and outperforms the medium- and fine-grained distributed implementations by up to

4.4× and 11.4× on 1,536 processors, respectively. Our optimizations support different sparse tensor formats,

such as compressed sparse fiber (CSF), coordinate (COO), and Hierarchical Coordinate (HiCOO), and gain

good scalability for all of them.

CCS Concepts: • Theory of computation→ Design and analysis of algorithms;

Additional Key Words and Phrases: Sparse tensor, tensor decomposition, CPD, irregularity

This research is partially supported by U.S. National Science Foundation Principles and Practice of Scalable Systems (PPoSS)

program and by U.S. Department of Energy and Pacific Northwest National Laboratory under Contract No. 532181 and the

PNNL Cluster. This research was supported by the U.S. National Science Foundation under Grants SHF-1910197, SHF-

1943114, CCF-155151, and OAC-2204011.

Authors’ addresses: Z. Miao, Hangzhou Dianzi University, China; email: miaozheng@hdu.edu.cn; J. C. Calhoun and R. Ge,

Clemson University; emails: jonccal@clemson.edu.cn, rge@clemson.edu.cn; J. Li, North Carolina State University; email:

jiajia.li@ncsu.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2329-4949/2023/06-ART10 $15.00

https://doi.org/10.1145/3580315

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

https://orcid.org/0000-0001-6084-2793
https://orcid.org/0000-0001-7191-4422
https://orcid.org/0000-0002-2218-3675
https://orcid.org/0000-0003-1270-4147
mailto:permissions@acm.org
https://doi.org/10.1145/3580315
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580315&domain=pdf&date_stamp=2023-06-20

10:2 Z. Miao et al.

ACM Reference format:

Zheng Miao, Jon C. Calhoun, Rong Ge, and Jiajia Li. 2023. Performance Implication of Tensor Irregularity and

Optimization for Distributed Tensor Decomposition.ACMTrans. Parallel Comput. 10, 2, Article 10 (June 2023),

27 pages.

https://doi.org/10.1145/3580315

1 INTRODUCTION

Tensors are multi-dimensional arrays and often sparse that are utilized by applications spanning
a wide range of domain areas, such as quantum chemistry, (healthcare, social network, brain sig-
nal, electrical grid) data analytics, signal processing, machine learning, and recommendation sys-
tems [1, 4, 14, 16, 18, 22, 28–30]. Tensor decompositions are a class of tensor methods for data
analytics, low-rank approximation, data compression, and so on. In this work, we study the CAN-
DECOMP/PARAFAC decomposition (Cpd), one of the most popular tensor decompositions.
Large data generated from these applications requires distributed memory implementations due

to the large amount of memory requirements and the need for fast execution time. For example,
the amazon tensor comprises reviews and contains more than 1 billion nonzeros; the state-of-the-
art Cpd implementation based on CSF format could not analyze it on fewer than eight CPU nodes.
Some studies show impressive performance for sparse distributed Cpd algorithms [13, 20, 35]. The
previous works present medium-grained decomposition that performs an N -dimensional decom-
position of the tensor, where N is the number of modes and one-dimensional decompositions of
the factor matrices [6, 32, 35]. They have achieved good performance and scalability in Cpd for
tensors with relatively regular dimension sizes and nonzero distribution, because both computa-
tion and communication are balanced well. However, the sparsity and irregularity features and
their influence on stages of the Cpd algorithm have not been well investigated, which hinders
further performance improvement and machine scalability. Other recent works use a fine-grained
decomposition of tensors to co-optimize computation and communication [20, 21]. But they re-
quire significant time overhead in hypergraph partitioning. In this work, we focus on analysis and
optimization of medium-grained tensor distribution to address their limitation that does not scale
well for tensors with high sparsity and irregularity.

We categorize the irregularity of a sparse tensor based on two aspects: very different dimension
sizes and a non-uniform nonzero distribution. Analyzing sparse tensors from various data sources,
we observe a tensor could have dimension(s) much longer relative to the others. For example, the
tensor fb-m, a sampled knowledge base dataset, has the first two dimensions around 23 million,
while the last dimension is only 166. This phenomenon is common because of different information
contained in diverse dimensions: Short dimensions could come from a small range of timestamps,
types of relations, and so on, while long dimensions could be users, pages, keywords, papers, and
so on. Sparse tensors from real applications tend to have a non-uniform nonzero distribution; while
different dimension sizes make it worse. The nonzeros could be extremely dense in a couple of
regions, but much sparser in other regions in an irregular tensor. In tensor fb-m, the nonzero
distribution is extremely dense near the diagonal and the corner of the tensor but is very sparse
in other regions.
We take medium-grained, bulk-synchronous distributed Cpd algorithm Splatt [35] as an

example to illustrate the problems in performance and scalability for irregular tensors. Figure 1
shows the normalized time of the three major stages of Cpd using the Splatt library [35] on
192 and 384 processors. We separate the distributed Cpd execution time into three components:
communication (‘COMM’) and two computation components, consisting of the matricized

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

https://doi.org/10.1145/3580315

Performance Implication of Tensor Irregularity and Optimization 10:3

Fig. 1. Execution time breakdown of Splatt Cpd [35] on 192 and 384 processors. Time is normalized to the

192-processor run for each tensor.

tensor times Khatri-Rao product (MTTKRP) and matrix computations (MAT-COMP)

(see Section 3). For the very irregular tensor fb-m (sized 23M × 23M × 166) with both dimension
sizes and non-uniform nonzero distribution irregularities, its time reduction from 192 to 384
processors is only 13%, wherein the time for communication, MTTKRP, and matrix computations
are slightly decreased by 19%, 19%, and 8%, respectively. Splatt does not scale well in fb-m for two
reasons: First, it assumes Mttkrp is the dominant kernel and focuses on optimizing it. Second,
it optimizes each kernel in separate stages, and focusing on reducing Mttkrp usually causes
more overhead on other kernels. Conversely, the time reduction for the regular tensor deli (sized
0.5M × 17M × 2.5M) is 41% (communication 30%, MTTKRP 49%, and matrix computations 47%).
Splatt scales better for deli overall but the communication cost could be further improved. More
irregular tensors tend to yield lower Cpd performance and worse scalability on large distributed
systems. This phenomenon has also been observed in distributed dense matrix multiplication
when matrix dimensions vary significantly [11, 37].

There are three types of load imbalance that play critical roles in what bottlenecks performance
on sparse tensors: tensor nonzero, communication volume, and matrix computation imbalance.
To measure these imbalances, we introduce three ratios as metrics (see Section 3.1.2). The
state-of-the-art works such as medium- [6, 32, 35] and fine-grained [20, 21] distributed Cpds
have made efforts to optimize these three types of imbalance. Medium-grained distributed Cpd
chooses to optimize them separately. However, when it focuses on balancing tensor nonzero, the
other imbalances increase significantly for irregular tensors. Fine-grained distributed Cpd [20, 21]
utilizes hypergraph partitioners to co-optimize these imbalances, but it requires significantly more
time overhead in partitioning than actual Cpd computation for large tensors. To address these
limitations, we present irregularity-aware Cpd that co-optimizes different types of imbalance
with a low overhead during preprocessing. Our solution provides two insights: First, by evalu-
ating SPLATT theoretically and experimentally, we reveal that these two irregularities lead to
unacceptable load imbalance when distributing a sparse tensor among multiple computing nodes.
Furthermore, we outline four findings that influence the performance of existing methods. These
findings demonstrate that two stages in the preprocessing grid configuration and distribution

policy are critical for the overall Cpd performance and scalability. Second, we leverage the
sparsity and irregularity information that reflects in the large imbalance of matrix computation.
Either Mttkrp or matrix computation could be dominant for different types of tensors. The
matrix computation is usually the bottleneck of performance and scalability for most irregular
tensors. Therefore, we identify the dominant imbalance ratio as matrix computation imbalance
for irregular tensors and optimize it with higher priority. However, focusing only on balancing

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:4 Z. Miao et al.

matrix computation makes other imbalances worse. It is important to achieve the best tradeoffs
between different imbalances in grid configuration and distribution policy.
Grid configuration. The process grid determines the shape of the decomposition in medium-

grained Cpd [35]. It is critical to the computation and communication costs and requires an intel-
ligent approach over the costly brute-force method. Configuring processes to obtain the optimal
performance for an irregular sparse tensor is challenging and is an open question in many fields.
Splatt proposes an easy-to-use method that assigns more processes to longer tensor modes with-
out consideration of nonzero distribution. However, for irregular tensors, the load balance and
communication volume are only known at runtime and hard to measure with simple parameters.
We propose a prediction-based grid configuration method in virtual data distribution to determine

the optimal process grid at runtime by considering the two irregularities. We observe that those
grids with better performance are more likely to share the same mode-balanced base obtained by
Splatt’s method. Therefore, our method solves the limitations by predicting a process grid with
the smallest nonzero imbalance among all candidates from a mode-balanced base. We optimize
both communication and computation imbalance with a negligible overhead. We build an inter-
mediate grid by optimizing communication imbalance and further find the optimal process grid
by an intelligent prediction.
Distribution policy. A distribution policy determines the partitioning of the nonzero and factor

matrices. It is also important for the overall performance of Cpd because it has an impact on the
imbalance of computation and communication and their tradeoffs. Splatt optimizes nonzero im-
balance in distribution policy and expects their communication imbalance has been optimized in
the grid configuration stage. It does not work well for irregular tensors, because their communica-
tion imbalance increases significantly after distribution policy. From our profiling, we observe that
matrix computational kernels and communication could also dominate the Cpd execution time, es-
pecially for irregular tensors. The Cpd execution time of sparse tensors fb-m and deli in Figure 1
is dominated by matrix computation kernels, rather than Mttkrp. Communication becomes more
dominant when scaling to more processors. The Cpd time of tensor deli is dominated by communi-
cation (57%) on 1,536 processors from our experiments, versus 40% occupied on 768 processors.We

design matrix-oriented distribution policies that begins with the matrix-balancing strategy then ad-

justs according to our two nonzero-balancing strategies.Ourmethod is based on thematrix-balancing
strategy, because we identify the dominant imbalance ratio as matrix computation imbalance for
irregular tensors. We then achieve the best tradeoff between different imbalances by balancing
nonzero of each partition independently or based on the differences between them.
Our main contributions are summarized as follows:
• Our work investigates the common algorithm structure of state-of-the-art distributed imple-
mentations from theoretical and experimental analysis and observes four findings to guide
performance optimization (Section 3).
• We demonstrate that the imbalance of computation and communication, and their tradeoffs,
are critical to the overall Cpd performance and scalability. We identify the dominant imbal-
ance ratio as matrix computation imbalance for irregular tensors. We propose irregularity-
aware Cpd that co-optimizes these imbalances with high priority in matrix computation
imbalance in grid configuration and distribution policy with a low time overhead (Section 4).
• We demonstrate that our method scales well for both regular and irregular tensors when
using up to 1,536 processors and obtains up to 4.4× and 11.4× performance improvement
over the distributed medium- and fine-grained Cpd libraries [20, 35], respectively (Section 5).
• Our optimizations support different sparse tensor formats such as compressed sparse

fiber (CSF) and coordinate (COO), and more new formats likeHierarchical Coordinate

(HiCOO). Our optimizations gain good scalability for all of them (Section 5.6).

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:5

Fig. 2. Cpd for a third-order sparse tensor X ∈ RI1×I2×I3 .

Table 1. Symbols and Notations

Symbols Description

X A sparse tensor
X(n) Matricized tensor X in dimension-n

A,B,C, Ã Dense matrices
ar, br, cr Dense vectors

λ Weight vector

N Tensor order
In Tensor dimension sizes
M #Nonzeros of the input tensor X
R Approximate tensor rank (usually a small value)
Il Layer size
Ip #Local matrix rows
P #MPI processes

rnnz , rvol , rIp Imbalance ratios forM , communication volume, and Ip

2 BACKGROUND

Tensors, representing multi-dimensional arrays, are one fundamental data representation in real-
world HPC applications. We use different fonts for tensors (X ∈ RI×J×K), matrices (A ∈ RI×J),
and vectors (x ∈ RI) in this article, following Reference [22]. A nonzero (i, j,k)-element of tensor
X is xi jk . Figure 2 shows a sparse third-order tensor with dots representing nonzero entries. We

assume an N th-order sparse tensor X ∈ RI1×I2×···×IN with M nonzeros in the subsequent context;
sometimes we use a third-order tensor for simplicity. If a tensor X has one or more dimension(s)
that are very small relative to the other dimensions or the nonzero values are not uniformly dis-
tributed in one or more dimensions, then we call it an irregular tensor. A slice is a two-dimensional
cross-section of a tensor, obtained by fixing all indices but two, e.g., S::k = X(:, :,k). We summarize
the symbols and notations in Table 1.

2.1 Distributed Cpd

CANDECOMP/PARAFAC decomposition (Cpd) factorizes a tensor into a sum of component
rank-one tensors [22]. Figure 2 illustrates a third-order Cpd. In general, Cpd approximates an N th-
order tensor X ∈ RI1×···×IN as

X ≈
R∑
r=1

λr a
(1)
r ◦ · · · ◦ a(N)

r ≡ �λ;A(1), . . . ,A(N)�, (1)

where R is the canonical rank of tensor X, the number of component rank-one tensors [22]. In a
low-rank approximation, R is usually chosen to be a small number less than 100. The outer product

of the vectors a
(1)
r , . . . , a

(N)
r produces R rank-one tensors. A(n) ∈ RIn×R ,n = 1, . . . ,N are the factor

matrices, each formed by taking the corresponding vectors as its columns. The vector lambda can

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:6 Z. Miao et al.

be represented as a superdiagonal lambda tensor. For Tucker decomposition, this core tensor is
usually not superdiagonal [39]. We normalize these vectors to unit magnitude and store the factor

weights in the vector λ = {λ1, . . . , λr }. Typically, the factor matrices A(n) are given initial values
and solved iteratively.
Data decomposition and distribution.

For large tensors, the number of nonzeros M and the resulting factor matrices A(n) are large
and easily exceed the memory capacity of a single node. To meet the needs of large-scale data
processing, distributed Cpd algorithms, such as coarse-grained [13], medium-grained [2, 35], and
fine-grained [20, 21] strategies, have been developed. Medium-grain is one of the most successful
from References [2, 6, 32, 35] and is the baseline for this work (described in Section 2.3). To effi-
ciently store large tensors, we consider one state-of-the-art tensor format, Compressed Sparse

Fiber (CSF) for general unstructured sparse tensors. CSF [35] is a hierarchical and fiber-centric
format that effectively generalizes the Compressed Sparse Row (CSR) sparse matrix format to
tensors.
Distributed algorithm.We focus on the most popular medium-grained, bulk-synchronous dis-

tributed Cpd algorithms [2, 6, 32, 35], adopted in multiple libraries, including Splatt, the Surpris-
ingly ParalleL spArse Tensor Toolkit [36], and ENSIGN [23]. It has shown outstanding performance
and scalability as well as efficient memory usage compared to the counterparts [13, 20], evaluated
in References [2, 6, 32, 35]. Medium-grained tensor distribution, an N -dimensional partitioning
(N as tensor order) on a tensor, corresponds to a 2D stationary algorithm in traditional dense
matrix multiplication [33], which has been proven to be performance-efficient in the SUMMA
algorithm [40] included in ScaLAPACK [12] and PLAPACK [3] libraries.

2.2 Related Work

Distributed CP decompositions. Three major bulk-synchronous distributed Cpd algorithms
have been proposed: coarse-grained [13], medium-grained [2, 6, 35], and fine-grained [20].
References [32, 35] showed that medium-grained Cpd generally obtains the optimal state-of-the-
art performance. Splatt [36] is a popular sparse tensor library that includes medium- and fine-
grained distributed Cpd implementations. ENSIGN [23] uses special sparse tensor data structures
mode-specific sparse (MSS) and mode-generic sparse (MGS) with an optimization that im-
proves data reuse and reduces redundant computations in tensor decompositions [6]. But ENSIGN
requires significantly higher memory usage due to its special data structures. ALTO [15] is pro-
posed as a novel sparse tensor format for high performance of tensor operations. ALTO outper-
forms the state-of-the-art CPD implementation based on CSF format by using a mode-agnostic
tensor representation that improves data locality. Other efforts employed MapReduce/Hadoop
or Spark programming models on cloud platforms, such as GigaTensor [18], HaTen2 [17], and
CSTF [7]. Our work developed upon medium-grained distributed Cpd and through optimizing
grid configuration and distribution policy to improve performance.
Grid configuration. Some distributed work also studied the approach to find the optimal process
grid configuration. However, they only consider tensor dimension sizes without taking tensor
irregularity and sparsity into account [21, 35]. Our work designs irregularity-aware grid configu-
ration based on prediction to generate the most suitable process grid and balances performance
impacting factors.
Partitioning methods. Various partitioning methods are proposed to balance computation
and communication. Lite is proposed for Tucker decomposition as a lightweight distribution
scheme [9]. But due to the difference between Tucker decomposition and Cpd, Lite focusesmore on
balancing computation without explicitly optimizing communication volume [9]. Ballard et al. [5]
have discussed communication lower bounds for Mttkrp, but they did not consider computation

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:7

and communication inmatrix-related kernels. Cartesian partitioning used inmedium-grained algo-
rithm focuses on reducing maximum communication volume [35]. Hypergraph partitioning works
well in balancing Mttkrp and reducing average communication overhead, but has worse commu-
nication balance [2, 20, 35]. CartHP [2] is a novel hypergraph-partitioning model that utilizes spar-
sity for minimizing the total communication volume. It is possible that hypergraph partitioners
can be used to produce similar partition with our method by certain parameters. But it is difficult
to find these parameters in hypergraph partitioners. And hypergraph partitioners require signifi-
cantly more time overhead in partitioning than actual Cpd computation for large tensors. Another
hypergraph-based partitioning method [19] is proposed forNon-negativeMatrix Factorization

(NMF), while it focusesmore on optimizing communication volumewith the sacrifice of other load
imbalances. Our partition optimizations are more matrix-oriented and consider the tradeoff in bal-
ancing Mttkrp, matrix computation, and communication to obtain the optimal Cpd performance.

2.3 Medium-grained, Bulk-synchronous Distributed Cpd Algorithm

We extract the general medium-grained, bulk-synchronous distributed Cpd algorithm as a tem-
plate in Algorithm 1, named as Mgbs-Cpd, extracted from the state-of-the-art works cited in Ref-
erences [2, 6, 35].
Medium-grained data distribution. The medium-grained decomposition uses a nonzero-

oriented data decomposition strategy. After loading a tensor file into each process’ memory
in a distributed way (Line 1), two performance-critical steps follow: process grid configuration
(Line 2) and distribution policy determination (Line 3). (Refer to Section 3.2 for details of these
two steps.) Based on these two steps, a tensorX is N -dimensional partitioned into subtensors in a

non-overlapping fashion and distributed to processes; each factor matrix A(n) is distributed to the
processes according to the distribution policy on each dimension-n.
Take a P = 2 × 3 × 2 process grid1 in Figure 3 as an example. The tensor X is partitioned to

2×3×2 subtensors, each associated with a process and saved in its memory. Meanwhile, eachA(n)

is partitioned to P submatrices along its dimension with two levels: the layer-level corresponds to

the tensor computation (dashed red lines) and splits each matrix to sub-matrices A
(n)
l

affiliated

to its row dimension (blank boxes on A), and the process-level further evenly splits A
(n)
l

to A
(n)
p

for each process p in the corresponding subgrid (dashed lines on A). Dashed orange lines show

submatrices for the first process in Figure 3. Note that A
(n)
p is the actual local matrix storage per

process, while A
(n)
l

is only stored during tensor-matrix computation (Mttkrp, described below).
Bulk-synchronous parallel algorithm. Computation is accordingly partitioned with the

above data decomposition—i.e., each process only does local tensor/matrix computation and up-

dates its own matrix partition A
(n)
p . Thus, the grid configuration and distribution policy, which

determine the data decomposition, play critical roles in the performance of Cpd algorithm.
Algorithm 1 shows the bulk-synchronous parallel algorithm for an N th-order tensor using a tra-

ditional alternating least square algorithm [22]. The bulk-synchronous parallel algorithm is gen-
eralized from almost all existing distributed Cpd-ALS implementations [2, 6, 7, 13, 20, 21, 32, 35].
This is an iterative implementation. In each iteration, matrices are updated one-by-one; each time,

all but one matrix are fixed to update the matrix Ã
(n)

. The algorithm comprises four main compu-
tation kernels. Mttkrp is the only kernel that computes on the sparse tensor and has been studied
most for optimization in previous work [20, 21, 35]. The other three compute on dense matrices
only. Note that all the four steps except MAT SOLVE have mixed computation and communication.

1Due to our hybrid MPI+OpenMP implementation, the MPI processes count is referred in grid configuration.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:8 Z. Miao et al.

ALGORITHM 1: Medium-grained, bulk-synchronous distributed Cpd-ALS algorithm
(Mgbs-Cpd).

Require: An N th-order sparse tensor X ∈ RI1×I2×···×IN withM nonzeros, P MPI processes;

Ensure: Vector λ and dense matrices A(n) ∈ RIn×R ,n = 1, . . . ,N ;
// Variables
Initialize matrices A(n),n = 1, . . . ,N ;

A
(n)
l

is the layer-distributed matrix, needed by Mttkrp computation on p.

Un ∈ RR×R ,n = 1, . . . ,N is local temporary data.
// Preprocessing

1: Distributedly load X to P MPI processes’ local memory
2: Grid configuration G: Get rank dimensions Pn ,n = 1, . . . ,N decomposed from P and initial-

ize MPI communicator
3: Determine a distribution policy D

� Tensor partitioning,Xp locally owned by process p .

4: Redistribute X according to D
� Matrix partitioning, A

(n)
p locally owned by process p .

5: Distribute all A(n) to A
(n)
l

and A
(n)
p , n = 1, . . . ,N according to D

6: Get Xp after removing empty slices and get index mapping from Xp to X

7: Get the indices in A
(n)
p that need to communicate in AlltoAll(A(n)

p)

8: Randomly initialize A
(n)
l

// Computation

9: A
(n)
l
= AlltoAll(A(n)

p); Un = AllReduce (A(n)T
p A

(n)
p)

10: do

11: for n = 1, . . . ,N do

12: Ã
(n)
l = MTTKRP(Xp , A

(1)
l
, . . . , A

(n−1)
l

, A
(n+1)
l

, . . . , A
(N)
l

) � Mttkrp

13: Ã
(n)
p = AlltoAll(Ã

(n)
l)

14: Ã
(n)
p = Ã

(n)
p (U1 ∗ · · · ∗ UN)

† � MAT SOLVE

15: λ̃ = Normalize (Ã
(n)
p) � MAT NORM

16: Ũn = AllReduce(Ã
(n)T
p Ã

(n)
p) � MAT ATA

17: Ã
(n)
l = AlltoAll(Ã

(n)
p)

18: end for

19: while fit not change or maximum iterations exhausted

• Mttkrp (Line 12): each process computes the Khatri-Rao product of its subtensor with all

but one layer-partitioned A
(1)
l
, . . . , A

(n−1)
l

, A
(n+1)
l

, . . . , A
(N)
l

, which are obtained from remote
memory by communicating with other processes.

• MAT SOLVE (Line 14): each process updates Ã
(n)
p using the Cholesky method2 based on the

temporary results from Mttkrp.

• MAT NORM (Line 15): each process normalizes Ã
(n)
p locally and then performs a parallel

reduction to obtain λ.

2The default matrix solver is Cholesky, because in most cases matrices are small (matrix rank R < 100) and SPD. Both

SPLATT and our implementation use SVD solver in case the matrix is not SPD.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:9

Fig. 3. Tensor and matrix distribution over a 12 = 2 × 3 × 2 process grid. Dotted lines on matrices indicate

local matrix storage in one process. The tensor is partitioned into 2 × 3 × 2 subtensors, each mapped to a

process. Each factor matrix is first partitioned by the layers (dashed red lines) affiliated with tensor partition

and then evenly split among the corresponding process subgrid. Dashed orange lines show submatrices for

the first process.

• MAT ATA (Line 16): each process uses symmetric matrix multiplication locally and then
performs a reduction to form the new Ũn for the next iteration.

• Other COMM (Lines 13,17): Ã
(n)
p is updated by communicating Ã

(n)
l after local Mttkrp com-

putation. Consequently, communications are involved to update Ã
(n)
l from Ã

(n)
p to prepare

the layer-partitioned Ã
(n)
l for the next Mttkrp.

The complexity lies in both communication and local computations influenced by the grid con-
figuration and distribution policy from the preprocessing steps. All communication within CPD
computation (Steps 9 to 19 in Algorithm 1) is for dense matrices, while sparse communication
only exists in preprocessing (Step 4) for sparse tensors. Due to sparsity of the tensor, the commu-
nication volume for dense matrices could be very imbalanced. The computational complexity does
not always reflect time overhead. MAT NORM can be more expensive than MAT ATA and MAT
SOLVE, because the latter two operations are implemented with BLAS functions.

3 LEARNING THE PERFORMANCE OF DISTRIBUTED TENSOR DECOMPOSITIONS

This section illustrates the general medium-grained, bulk-synchronous distributed Cpd algorithm
and its performance problem abstraction and analysis along with our four findings.

3.1 Problem Statement and Analysis

We first present general models to capture the execution time of medium-grained distributed Cpd
in Algorithm 1. Our target is to find the optimal data distribution by designing a grid configuration
and distribution policy, to obtain the best Cpd performance, expressed in Equation (2). The optimal
grid configuration Gopt and distribution policy Dopt have the minimum overall execution time.
The execution time of Cpd is dominated by the iterations (Lines 7–16) in Algorithm 1. We use the
time of one iteration to represent the Cpd execution time, noted by Tcpd , which aligns with our
experiments.

Gopt ,Dopt = arдminG,DTcpd (2)

3.1.1 Execution Time Analysis. Tcpd consists of the aforementioned five steps: Mttkrp, MAT

SOLVE, MAT NORM, MAT ATA, and other COMM. Due to the bulk synchronous feature of

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:10 Z. Miao et al.

Table 2. Time Complexity of the Five Steps in Mgbs-Cpd

Key Steps Comp Comm Vol

MTTKRP (Tmttkrp) O (cN × R ×Mp) /
MAT SOLVE (Tsolve) Θ(R2 × Ip) /
MAT NORM (Tnorm) Θ(R × Ip) R
MAT ATA (Tata) Θ(R2 × Ip) R2

Other COMM (Tocomm) / R (Il − Ip) + RIp

Mgbs-Cpd, Tcpd is expressed in Equation (3).

Tcpd = Tmttkrp (cN ,R,Mp) +Tocomm (P , Il , Ip)

+ (Tsolve (R, Ip) +Tnorm (P ,R, Ip) +Tata (P ,R, Ip))
(3)

The time complexity and communication volume per process of each step are listed in Table 2.
Two collective communications are employed to synchronize and update local data,MPI_Alltoall in
Other COMM andMPI_Allreduce in MAT NORM and MAT ATA. Both SPLATT and our algorithm
implement Alltoall for the communication. We use MPI Communicators for layers and, in each
layer, we useAlltoall across processors in one layer. The communication time is modeled as α+βn,
where α and β are the memory latency and bandwidth, respectively, and n is the number of bytes
to be transferred [38]. We assume the tensor rank R (usually a small value < 100) and cN < N
are constants.3 Tcpd is mainly determined by the number of nonzeros of a local sparse tensor
Mp , layer size Il , and local matrix size Ip , though computation and communication are different
functions of these variables. Mp dominates Tmttkrp ; Ip affects the time complexity of all matrix
steps, Tsolve ,Tnorm ,Tata ; Il and Ip both influence the other communications Tocomm .
Comparing these steps, we see that, in general,Mp is several orders of magnitude larger than Il

and Ip for relatively small or mildly sparse tensors, where Tmttkrp might take a larger percentage
in Tcpd . However, Mp could be in the similar order-of-magnitude as Il and Ip for relatively sparse
tensors or tensors with irregular shapes, where matrix computations and communication might
have non-negligible costs. Besides, we also observe that some configurations of G,D could de-
crease the execution time of one step but increase that of other step(s). (Experiments in Section 3.2
verify this analysis.) Thus, it is non-trivial to infer the optimal settings for G,D to gain the highest
distributed performance only relying on theoretical analysis even with cN , P ,R all fixed, plus the
analysis is closely related to the features of input sparse tensors.

3.1.2 Load Imbalance Ratios. Thus far, we considerMp , Il , and Ip as the average values on each
process, which is the ideally balanced data distribution. However, in reality, especially for irregular
sparse tensors, the data distribution could be very skewed. We present three imbalance ratios as
metrics to measure this effect.
We use a more accurate imbalance ratio r , adapted from the one used in Reference [35],4 to

represent the imbalance of sparse tensor computation, matrix computation, and communication.
From Table 2, sparse tensor computation, Mttkrp, is influenced by Mp . Nonzero imbalance ratio
rnnz = (max {Mp } −min{Mp })/max {Mp } represents the gap between the maximal and minimal
number of nonzeros assigned to a process among P processes. Our imbalance ratio r , always less
than 1.0, better evaluates long and short jobs per process. A ratio close to 0.0 means an ideal,
even nonzero distribution; while a ratio close to 1.0 means extreme imbalance indicating that the

3cN is a constant for a given tensor in an Mttkrp algorithm [25, 35].
4The nonzero imbalance in Reference [35] represents the gap between the maximal and average number of nonzeros

assigned to a process, which cannot measure the imbalance from the short tasks well.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:11

Fig. 4. Computation and communication percentage of Cpd.

gap between the longest and shortest Mttkrp execution time is huge. Analogously, rIp represents
the imbalance ratio of Ip , thus for matrix computation, rvol is the imbalance ratio of communica-
tion volume. We use the imbalance ratio for communication volume rather than Il , because the
communication volume is influenced by both Il and Ip ; therefore, rvol better represents the com-
munication. The three imbalance metrics help determine the Gopt ,Dopt by reflecting features of
real sparse tensors from three distribution-related perspectives.

3.2 Findings

Based on our theoretical analysis and the proposed imbalance ratios, we discuss performance find-
ings on Mgbs-Cpd. The tests are run on the open-source Splatt MPI library [36], representing a
fast state-of-the-art Mgbs implementation from References [2, 6, 32, 35].
Finding 1: Both computation and communication have non-negligible costs, and the dominance

varies with tensors. We compare actual computation and communication time in results and use
Tmttkrp and Tocomm to give a rough theoretical analysis. Comparing the dominant parameters:
Mp and Il , either one could be larger for different sparse tensors. For example, tensor choa has
a maximum Mp = 400K , Il = 15K , while tensor deli has Mp = 2M , Il = 4M on 768 processors.
Thus, either computation or communication could be dominant among different tensors. We fur-
ther study the overall performance of the Splatt Cpd implementation running on 768 processors.
Figure 4 depicts the percentage of the execution time taken by computation and all types of com-
munication operations in Algorithm 1, respectively, on nine sparse tensors from real applications
(refer to Section 5 for tensor descriptions). Computation takes 35%–81%, while communication
takes 19%–65% of the total execution time. Computation largely dominates the Cpd execution on
two tensors: choa and darpa; communication largely dominates on tensors nell1 and deli. This
matches theMp and Il examples given above. The computation is mainly impacted byMp and the
communication is mainly impacted by Il . Therefore, computation is dominant for tensors whose
Mp > Il (such as choa and darpa), while communication is dominant for tensors whose Mp < Il
(such as nell1 and deli). On the rest of five tensors, computation and communication take a similar
amount of time with a percentage difference less than 10%. The shifting of dominance between
computation and communication among tensors raises the difficulty of performance optimization.
Taking tensor dimension sizes into consideration, fb-m, fb-s, choa, and patents are more irregu-
lar tensors in Table 3 and tend to be computation-dominated, while the other tensors are more
communication-dominated or without significant dominance.
Finding 2: Computation cost is not always dominated by sparse tensor computation, but also dense

matrix computations.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:12 Z. Miao et al.

Table 3. Description of Sparse Tensors

Tensors Dimensions #Nonzeros Density

choa 712K × 10K × 767 27M 5.0 × 10−6
darpa 22K × 22K × 24M 28M 2.4 × 10−9
nell2 12K × 9K × 29K 77M 2.4 × 10−5

random 100K × 100K × 100 100M 1.0 × 10−4
fb-m 23M × 23M × 166 100M 1.1 × 10−9
fb-s 39M × 39M × 532 140M 1.7 × 10−10
deli 533K × 17M × 2.5M 140M 6.1 × 10−12
nell1 2.9M × 2.1M × 25M 144M 9.1 × 10−13

amazon 4.8M × 1.8M × 1.8M 1,742M 1.1 × 10−10
patents 46 × 239K × 239K 3,597M 1.4 × 10−3

Fig. 5. Time percentage of computational kernels of Cpd.

Compare the computation complexity of matrix operations, MAT SOLVE, NORM, ATA, versus
theMttkrp complexity in Table 2 shows Ip < cN ×Mp is generally true if there are notmany empty
slices in dimension-n. However, R× Ip < cN ×Mp is not necessarily true and depends on the values
of R, the constant cN (R > cN usually), the distribution policy that determines the sparsity pattern
of the local tensorXp and influence value Ip in the next process-distribution for matrices. This is es-
pecially prudent for irregular tensors with I = Θ(M) on one dimension. IfR×Ip > cN ×Mp , then the

complexity of MATATA and SOLVE steps could take more time than Mttkrp. While these matrix
operations are all dense and generally performmore efficiently than the sparse Mttkrp, dense ma-
trix computation can influence computational performance. We conclude Finding 2 that Mttkrp
is not always the dominant computational kernel in Cpd, the matrix computation kernels are also
expensive as tensor rank grows and for tensors with preferable sparse patterns (e.g., irregular ten-
sors). Therefore, the state-of-the-art work [2, 13, 35] that focuses on minimizing the computational
cost of Mttkrp may not gain much performance improvement for all types of tensors.
Figure 5 shows the time percentage of the four computational steps on four representative ten-

sors: fb-m, fb-s, nell1, and amazon, verifying our theoretical analysis above. For the four tensors,
Mttkrp, MAT NORM, MAT ATA, and MAT SOLVE take 2%–47%, 23%–61%, 6%–33%, and 4%–27%
of the Cpd computation time, respectively. The other three computations easily take more execu-
tion time thanMttkrp, which needs to be optimized as well for better performance. These insights
about dominating costs of Findings 1 and 2 could guide our following optimization for distribution
policy.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:13

Fig. 6. Load imbalance ratios (rnnz , rvol , and rIp) for sparse tensors.

Finding 3: Different load imbalance factors influence computation and communication overhead.

Figure 6 shows these three ratios rnnz , rvol , and rIp for sparse tensors as the increasing order of
rnnz , where rnnz and rIp reflect computation imbalance and rvol reflects communication imbalance.
The nonzero imbalance is less than 0.2 for the left six tensors, while tensors patents (46 × 239K ×
239K), fb-m (23M×23M×166), and fb-s (39M×39M×532) have a much higher nonzero imbalance,
all of which are very irregular in dimension sizes. All the tensors have much higher volume and Ip
imbalance ratios than nonzero imbalance ratios. Different from the dominance perspectives in Find-
ings 1 and 2, the imbalance ratios expose the load imbalance issues that influence the overhead of all
the five steps in Table 2 correspondingly. Almost all tensors have at least one imbalance ratio with
the value higher than 0.8, which indicates the difficulty to do a good tradeoff among the three im-
balance ratios. The state-of-the-art work puts efforts on optimizing the nonzero imbalance [10, 35],
which only influences sparse tensor computation. Therefore, they only target minimizing the ten-
sor computation imbalance, not communication or the other matrix computation imbalances.
Finding 4: The grid calculated from only tensor dimensions is usually not the optimal. And different

grid configurations could lead to very different distributed Cpd performance.

For a given tensor, the process grid on which the tensor is mapped determines the computa-
tion and communication costs from the first sight, even before the distribution policy takes effect.
Figure 3 shows the tensor and matrix decomposition on 12 processes as a 2 × 3 × 2 grid. Given
12 processes, there are 18 unique configurations on which the tensor can be mapped to the pro-
cesses. Configurations 12 × 1 × 1, 1 × 12 × 1, and 1 × 1 × 12 are considered as different ones due
to partitioning the first, second, and third dimensions correspondingly. A cluster with hundreds
of nodes will have thousands of configurations or more. Figure 7 shows all grid configurations
for 16 MPI processes, with the execution time varying up to 3.5×. The traditional method for grid
configuration computes 4× 2× 2 based on amazon’s tensor dimension sizes (4.8M × 1.8M × 1.8M).
But the optimal grid is 16 × 1 × 1 due to the tensor’s sparsity. Thus, finding the optimal process
grid is critical to choosing the distribution policy and overall performance, which also requires an
intelligent approach over the costly brute-force method.

4 IRREGULARITY-AWARE CPD

The four findings above motivate our optimizations in considering different tensor irregularity
and finding the optimal grid configuration G and distribution policies D to improve runtime per-
formance. This section presents our proposed irregularity-aware CPD. We propose new methods

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:14 Z. Miao et al.

Fig. 7. Normalized time of all possible grid configurations compared to the slowest one for tensor amazon

on 16 MPI processes.

for grid configuration and distribution policy, and the implementations of them are detailed in
Algorithms 2 and 3.

ALGORITHM 2: Prediction-based grid configuration with npr = 2.

Require: Number of processes P , tensor X ∈ RI1×I2×I3 ;
Ensure: Grid configuration Gopt = {P1, P2, P3 }, P1 × P2 × P3 = P ;
1: Initialize intermediate grid Gint = {1, 1, 1}

// Step 1: intermediate grid generation

2: prso = getPrimes(P); � Ordered from large to small

3: Iavд = (I1 + I2 + I3)/3
4: for pr in prso [1 : −1] do
5: Gint [n]∗ = pr, s .t .In =max {I1, I2, I3 }
6: In− = Iavд
7: end for

// Step 2: sparsity-aware grid trimming

8: Initialize six grid candidates G1, . . . , G6 = Gint
9: Gi ∗ = (prso [−2] ∗ prso [−1]), i = {1, 2, 3, 4, 5, 6} � Assign two smallest primes to six candidates

10: Compute rlayer _nnz to predict rnnz of G1, . . . , G6 with virtual data distribution

11: Gopt = Gi , s .t .minrnnz {G1, . . . , G6 }
12: Return Gopt ;

4.1 Prediction-based Grid Configuration

It is important to find the optimal process grid, because the performance varies a lot between
different grid configurations based on our Finding 4 in Section 3. Figure 8 compares two example
grid configurations: 2× 3× 2 and 2× 2× 3. In Conf. 1, tensorX is split to two pieces in mode-I and
three pieces in mode-J ; Conf. 2 is the opposite. Distribution on mode-K is the same. Assume J > K ,
ostensibly, Conf. 1 should be more reasonable than Conf. 2 by splitting the larger dimension. For
a dense tensor X, this is true. The different matrix distribution on A and B could lead to uneven
matrix communications, thus influencing overall Cpd performance. We prove this using a dense,

cubical third-order tensorX ∈ RI×I×I alongwith threematricesA(n) ∈ RI×R ,n = 1, 2, 3, distributed

on P = P1 × P2 × P3. From Algorithm 1, the data to be communicated is dominated by Ã
(n)
l − Ã

(n)
p

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:15

ALGORITHM 3:Matrix-oriented distribution policy generation in tensor dimension n.

Require: Sparse tensor X ∈ RI1×I2×I3 , number of processes Pn in dimension-n;
Ensure: Distribution policy D (a.k.a. layer configuration {IL });
1: // Matrix-balancing strategy: set
2: for i in Pn do

3: ILi = In/Pn ; � Initial layer size
4: end for

5: if Ordered adjustment then
6: // Ordered adjustment strategy: ordered-c
7: for i in Pn do

8: mi = #nonzeros in layer Li � c is a user-given parameter
9: ILi -= (mi −M/Pn)/(c � SLi)
10: end for

11: else if Max-to-min adjustment then
12: // Max-min adjustment strategy: max-min

13: I ′L : Sorted {ILi , i = 1, . . . , Pn } by #nonzeros in a descending order
14: for i in Pn/2 do
15: I ′L[i]− = (I ′L[i] − I

′
L[Pn − i])/Sn

16: I ′L[Pn − i]+ = (I ′L[i] − I
′
L[Pn − i])/Sn

17: end for

18: I ′L = IL
19: end if

20: Return D = {IL };

and Ã
(n)
p to communicate in its own layer. For each inside loop, its communication volume in the

first dimension is P2P3 (
I
P
+ (I

P1
− I

P
)) = P I

P 2
1

. Thus, the total volume of Cpd in all dimensions is

VOLcomm = I × P ×
(
1

P2
1

+
1

P2
2

+
1

P2
3

)
. (4)

According to Cauchy-Schwarz inequality, the minimum of the total volume is obtained when P1 =
P2 = P3. For a cubical dense tensor, equally splitting the dimension sizes obtains the minimum
communication cost. For a tensor with irregular shape, we proportionally assign more processes to
a longer dimension to maintain the minimum communication. The state-of-the-art work [21, 35]
developed an easy-to-use prediction algorithm based on the above idea. It assigns the number
of processes based on the tensor dimension sizes. However, for irregular sparse tensors with a
non-uniform nonzero distribution, their method leads to severe imbalance for computation and
communication.
To solve their problem, we propose a new online prediction algorithm that simultaneously con-

siders communication volume and nonzero balance when deciding the process grid. Our key idea
is to find a process grid with the smallest nonzero imbalance from a mode-balanced foundation.
We have two steps to achieve the above goal. First, we build an intermediate process grid that leads
to balanced communication and matrix computations based on the existing work [21, 35]. This in-
termediate grid uses most but not all of the processes. Second, we construct the grid candidates by
adjusting the intermediate grid with the remaining process(es) and predict the optimal grid among
them. Prediction is leveraged to make a balance among the imbalance ratios in Section 3.1.2.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:16 Z. Miao et al.

Fig. 8. Two example grid configurations for 12 processes.

Fig. 9. Six grid candidates on 16 (=2 × 2 × 2 × 2) processes for tensor amazon with npr = 2. We assign two

smallest primes (2 × 2) to Gint and obtain six grid candidates.

Algorithm 2 illustrates our method. Our goal in the first step is to form an intermediate grid
as a base of all candidates. The brute-force results indicate those grids with better performance
are more likely to share the same base. For example, 4 of top 5 grids have the base of 4 × 1 × 1
in Figure 7. Therefore, we need to build this balanced base first. To form this intermediate grid,
we first find all the prime factors of the total process count and sort them in descending order in
prso . Using all but the last npr factors, we form an intermediate grid Gint (Line 8). For example,
npr = 1 indicates the smallest prime factor is unused in the intermediate grid. npr = 2 means that
we will generate 6 candidates, as Figure 9 shows. We choose npr = 2, because we observe that
for most cases the best grid is in 6 candidates and the overhead of computing imbalance ratios for
6 candidates is negligible. Specifically, it repeatedly assigns the largest prime factor to the current
longest tensor dimension, which dynamically changes after each loop iteration. After the loop ends,
the intermediate grid Gint has a best effort in balancing communication and matrix computations.
We assign the remaining npr primes to form a complete process grid in the following step:

The key idea in the second step is to build all possible candidates and identify the optimal grid
among them by predicting their nonzero imbalance. We form six grid candidates from G1 to G6
with Gint by assigning two smallest primes to each dimension. Figure 9 displays how we form all
candidates from Gint for tensor amazon with 16 MPI processes (Lines 8–11 in Algorithm 2). The
prime factors are {2,2,2,2}. The first step builds Gint as 4×1×1 by the first two prime factors based
on amazon’s dimension size as 4.8M × 1.8M × 1.8M . We build six candidates after assigning the
remaining npr primes 2× 2. These six candidates are considered to have an equal chance to obtain
the optimal performance from the first stepwith tensor dimension size and implied communication
information. To identify the optimal grid among them, we need to predict the nonzero imbalance
ratio rnnz for each candidate. We do not actually distribute data to processes in different nodes for
each candidate grid. If we want to compute the actual rnnz with the nonzeros of each process (Mp)
as stated in Section 3.1.2, then we need to take the tensor slice information to determine the index
range of each process. However, the above computation of rnnz has a complexity of O (cN ×P×Mp)

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:17

for each candidate. This is expensive for tensors with large amounts of nonzeros. We present a new
metric rlayer_nnz as the imbalance ratio of nonzeros among different layers to predict rnnz . Figure 3
displays the layers affiliated with the tensor partition. In mode I2 there are three layers each with
4 subtensors. Particularly, we take the tensor slice information to compute the nonzeros of each
layer Lnp in each mode. In mode In , rlayer_nnz (n) = (max {Lnp } −min{Lnp })/max {Lnp }. We then
compute rlayer_nnz as the average rlayer_nnz (n) for all modes. The total complexity is O(cN × In).
rlayer_nnz = rnnz = 0 in a dense tensor or a sparse tensor with an even nonzero distribution.
In a sparse tensor with an imbalanced nonzero distribution, rlayer_nnz is able to predict rnnz by
considering several subtensors as a group. Therefore, compared to rnnz , rlayer_nnz can capture the
imbalance of nonzero distribution by a low-cost estimation. Finally, we select the grid candidates
with the best nonzero balance as the optimal grid Gopt . Figure 9 shows that Algorithm 2 predicts
the optimal grid as 16 × 1 × 1 as with smallest rlayer_nnz for tensor amazon on 16 MPI processes.
And Figure 7 indicates that our Gopt has a better performance than Gsplatt built from Splatt’s
grid configuration. The selected grid configuration is used for the following distribution policy
and Cpd computation.

4.2 Matrix-oriented Distribution Policy

Once we decide on a process grid, the next challenge is to choose a distribution policy that leads to
an optimal partitioning of the tensor and matrices and balanced computation and communication
and their tradeoffs among the processes. Thus, three parameters Mp , Ip , and Il in Table 2 are
influenced by a distribution policy D. The optimal strategies effectively eliminate performance
bottlenecks, resulting in balanced computation and communication and their tradeoffs.
The state-of-the-art work [35] takes a strategy that balances nonzero computation by evenly

partitioning tensor nonzeros among the processes, shown in Figure 10(a). It only considers Mp

and targets to minimize rnnz . Thus, it is advantageous for Cpd dominated by the sparse tensor
computation kernel Mttkrp. In general, such tensors have moderate sparsity and uniform
nonzero distributions along the dimensions. Nevertheless, this strategy may not be beneficial for
irregular tensors. For example, tensor fb-m has one dimension size multiple orders-of-magnitude
smaller than the others, and its nonzeros mainly reside along a diagonal with increasing density,
while most nonzeros concentrate at a bottom corner. Applying the nonzero balancing strategy to
such tensors results in severe imbalances in all aspects, including nonzero computation, matrix
computations, and communication (see Figure 13). Furthermore, Cpd on some tensors under
study do not benefit from balanced nonzero computation, as the execution is dominated by com-
munication or matrix computations in Figures 5 and 4. We leverage the sparsity and irregularity
information that reflects in matrix computation imbalance. We identify the dominant imbalance
ratio as matrix computation imbalance for irregular tensors. Therefore, all our strategies are
based on balancing matrix computations and then achieve the best tradeoffs between different
imbalances.
To balance matrix computations, we first propose an easy-to-use set strategy that balances Ip

by evenly partitioning matrices among the processes in every dimension, shown as Figure 10(b).
This results in minimal rIp and balanced matrix computation but could exacerbate the imbalance
for nonzero computation. Set strategy is advantageous for Cpd dominated by matrix computa-
tions, typically very sparse tensors with a uniformed distribution of nonzeros, and could tolerate
irregular tensor dimension sizes. However, applying the matrix balancing strategy improves the
balance for matrix computations and communication but exacerbates the imbalance for nonzero
computation. Yet, neither of these two strategies works well for irregular sparse tensors like fb-m,
because they target to minimize only one imbalance ratio, either rnnz or rIp , without considering
the tradeoffs among the three ratios counting rvol for communication.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:18 Z. Miao et al.

Fig. 10. Distribution policy on 12(=2 × 3 × 2) processes. Layer boundaries in red are adjusted in the 2nd

dimension; boundaries in gray are fixed and in the 1st and 3rd dimensions.

The challenge for irregular sparse tensors is extremely high imbalance in both computation and
communication, as our Finding 3 in Section 3 shows. Focusing only on optimizing one of imbalance
ratios might lead to higher imbalance ratios for the other two. To support irregular sparse tensors,
we propose new distribution policies to achieve better tradeoffs between these imbalance ratios.
Our proposed distribution policies begin with the matrix-balancing strategy but adjust according to

the nonzero-balancing strategy, illustrated in Figure 10(c) where red lines are shifted based on (b)
but not as skewed as (a). Algorithm 3 shows the three strategies of distribution policies: set, ordered-
c, and max-min. From Figure 10, a distribution policy is a layer configuration and represented by
{IL }, an array of dimension sizes distributed to each process that sum up to the dimension size in
dimension-n. Assume the processor grid is P = P1 × P2 × · · · × PN . We first employ set strategy by
partitioning In/Pn consecutive slices ofX to each process in dimensionn, yielding balanced matrix
computations but potentially skewed nonzeros among processes. We then adjust layer boundaries
to mitigate nonzero imbalance using either ordered-c or max-min strategies.

The key idea of the ordered-c strategy is to reduce nonzero imbalance of each partition indepen-
dently. It adjusts layer boundaries along with the index in each tensor dimension. To achieve this,
we first calculateM/Pn as the target nonzero size of each partition in dimension-n and add/remove
slices if the nonzeros in a partition are greater/less than the target size. Second, we need to move
layer boundaries to make nonzeros in each partition closer to the target nonzero size M/Pn . As-
sume the current number of nonzeros in the ith partition ismi and the average number of nonze-
ros for one slice in this partition is SLi , then the number of slices to be adjusted is given by
(mi − M/Pn)/(c � SLi), where c is a user-given integer. The larger the c value, the finer the ad-
justment granularity. Partitioning with c = 1 is the same as Splatt for dense tensors or sparse
tensors with uniformed nonzero distribution. With larger c, our partitioning keeps more balanced
Ip rather than nonzeros for irregular sparse tensor. When c is extremely large, the ordered-c strat-
egy has little difference with the set strategy, as it has little adjustment. Therefore, we set c as 1
or 2 to achieve better tradeoffs between nonzero and Ip imbalance and distinguish with the set

strategy.
Instead of adjusting each partition independently, the key idea of the Max-min method is to

balance nonzeros in partitions based on the differences between them. There is no target nonzero
size in this strategy. It moves slices from partitions with the maximal nonzeros to the ones with
the minimal nonzeros. We first sort the layer configuration IL in a descending order and save it
as I ′L . By looping the first half of I ′L , the max-min pair is I ′L[i], I

′
L[Pn − i], respectively. Second, we

adjust layer boundaries of each max-min pair. Let Sn be the average number of nonzeros per slice
for all partitions of dimension-n. The number of slices to be adjusted is (I ′L[i] − I ′L[Pn − i])/Sn .
Max-min adjusts only the maximal and minimal nonzero partitions, but might be less accurate in
partitioning nonzeros by considering the global slice information with Sn among partitions rather
than the local SLi within a partition. As each partition must contain continuous slices, this method

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:19

might involve adjusting boundaries of all partitions. Therefore, we expect lower performance than
the first method, but it still outperforms the nonzero-balancing strategy for irregular tensors.
Our proposed prediction-based grid configuration and matrix-oriented distribution policy are

directly applied to medium-grained, bulk-synchronous distributed Cpd (Algorithm 1) as Lines 2
and 3 separately to gain performance improvement and better scalability.

5 EXPERIMENTAL RESULTS

Platform. We perform experiments on the Constance cluster at the Pacific Northwest National
Laboratory; each node has 2 × 12-core Intel Xeon CPU E5-2670 v3 CPUs. The Constance system
has 520 2 × 12-core nodes (totaling 12,480 cores), 64 GB DDR4 memory per node on a 56 Gb/s
FDR Infiniband interconnect. We use up to a total number of 1,536 cores, with 128 nodes and
12 cores/node, gcc 7.3.0 and OpenMPI 4.0.1 as compilers. Our experiments consume 25% of the
whole system. The default BLAS and LAPACK libraries v3.2.1 on Linux are used for the dense
matrix routines.
Dataset. We evaluate sparse tensors from real-world applications and a randomly permuted ten-
sor in Table 3, ordered by increasing number of nonzeros. Most of these tensors are from the For-
midable Repository of Open Sparse Tensors and Tools (FROSTT) [34]. The darpa (source
IP-destination IP-time triples), fb-m, and fb-s (entity-entity-relation triples) are from HaTen2 [17],
and choa (patient-visit-time triples) is built from electronic health records (EHRs) [31]. The
random is a randomly permuted tensor.
Baseline. We use Splatt as our baseline, representing a medium-grained, bulk-synchronous dis-
tributed Cpd [35],5 which is generally considered faster thanMapReduce implementations [17, 18].
We also compare to the fine-grained distributed Cpd algorithm (represented as FGBS) from Hyper-
Tensor [20].6 Both medium- and fine-grained Cpd are hybrid MPI+OpenMP parallelized. We use
12 threads (referred to as processors uniformly) for each CPU for all experiments and set R = 32,
as using a different R has no impact on our evaluation. All experiments use single-precision float-
ing point values, and the average execution time of five iterations is reported. Due to the Cpd
execution time variance on different tensors, we normalize the time of other implementations to
medium-grained Splatt.

5.1 Overall Performance

Figure 11(a) shows the speedup of our distributed Cpd (Mgbs-opt) compared to medium-grained
(Splatt) and fine-grained (FGBS) Cpd when using 1,536 processors. The speedup over Splatt
ranges from 1.2× to 4.4× for all nine tensors. The two irregular tensors, fb-m and fb-s, benefit the
most from our methods, because they suffer severe rnnz , rvol , and rIp imbalance in prior implemen-
tations (see Figure 13). Relatively small sparse tensors like choa, darpa, and nell2 have a speedup
from 1.5× to 1.7×. Other tensors such as deli and amazon gain a speedup from 1.2× to 1.4× from our
methods, even though they have decent balances with Splatt. The randomly permuted tensor ran-
dom has a relatively regular tensor nonzero distribution, because it is difficult to generate an irregu-
lar tensor like those tensors from real-world applications. The tensor random has a speedup as 2.2×.
Compared to fine-grained distributed Cpd (FGBS) with hypergraph partitioning generated by

Zoltan [8], Mgbs-opt always performs better by 3.1–11.4×. The missing bars on large and/or irreg-
ular tensors, amazon, patents, fb-m, and fb-s are due to failures of generating hypergraph partitions
by Zoltan on 1,536 processors. We observe that Splatt achieves higher performance than FGBS
on all cases, aligned with Reference [35].

5ENSIGN [23] is a closed-sourced, commercial library, and CarHP [2] is not open-sourced.
6Implemented in Splatt as its open-source version.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:20 Z. Miao et al.

Fig. 11. Overall performance comparison and scalability.

Figure 11(a) also presents the performance effect of our prediction-based grid configuration (Al-
gorithm 2) as Mgbs-GC. By comparing Splatt, Mgbs-GC, and Mgbs-opt, we see the incremental
performance from our optimizations. The prediction-based grid configuration andmatrix-oriented
distribution policy increase the performance by 0%–296% and 7%–91% separately. The labels on top
of Splatt and Mgbs-GC bars show their chosen process grids. Mgbs-GC and Splatt obtain the
same grid and thus lead to the same performance on choa and darpa. Our prediction-based grid
configuration accelerates performance for 8 out of 10 tensors. It is expensive to find the optimal
partition in a large system size. For 128 nodes, it has 36 different grids with 5 partitioning strategies,
totally 120 different partitions. Our idea is to find the best overall balanced partition with negli-
gible time overhead. Tensor fb-m gets the highest gain at 2.96× with a better grid configuration.
These results verify that irregularity-aware grid configuration is critical to Cpd performance.

Figure 11(b) demonstrates that Mgbs-opt obtains better strong scalability than Splatt on three
large tensors from 96 to 1,536 processors. Mgbs-opt shows significantly better scalability than
Splatt on irregular yet sparse tensor fb-s. This is because rIp that impacts matrix computation
and communication time reduces significantly in Mgbs-opt. Detailed profiling shows that both
communication and computation time are closed to be halved as the number of processors

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:21

Fig. 12. The effect of different distribution policies: matrix-balancing (set), two ordered adjustments (ordered-

1 and ordered-2), and max-to-min adjustment (max-min). The Cpd running time in seconds for Splatt and

our best strategy are shown.

doubles in Mgbs-opt. Mgbs-opt scales slightly better for matrix computation and communication
on tensors amazon and patents, where Mttkrp occupies a larger time percentage. For other
tensors: fb-m shows similar scalability to fb-s; deli and nell1 are similar to patents; both Splatt
and Mgbs-opt show good scalability on small tensors choa, darpa, and nell2.

5.2 Balanced Distribution Policy Analysis

Figure 12 shows the speedup of Cpd from our four matrix-oriented distribution policies against
Splatt on 1,536 processors. Set, ordered-1, ordered-2, and max-min represent the strategies of
matrix-balancing, two types of ordered adjustment, andmax-min adjustment separately.Ordered-1
and ordered-2 incline the adjustment to nonzero and Ip balance, respectively. Overall, our strategies
obtain speedup on all tensors. The set strategy performs the best on four, ordered-1 on one, ordered-
2 on three, and max-min on one tensor, respectively. All the four strategies achieve significant
speedups on the two most-irregular tensors fb-m and fb-s, with ordered-2 the most advantageous.
An interesting observation is that simple strategies (set and max-min) could perform the best.
These results verify our findings that balancing only nonzeros results in suboptimal performance,
and tradeoffs are required among nonzero, matrix computation, and communication volume.
To further understand why some tensors benefit more from our strategies than others, we look

into how their imbalance ratios change.We explore two representative tensors in Figure 13 to show
our optimization for load imbalance on irregular and regular tensors. The overall performance is
comprehensively impacted by rnnz , rvol , and rIP . Two general observations are obtained: First, no
strategy simultaneously obtains the lowest imbalance ratios from all the three aspects: nonzero,
matrix computation, and communication. Second, all strategies trade higher rnnz for lower rvol
and rIP to gain performance improvement. The irregular tensor fb-m suffers very high imbalance
ratios for all strategies in all three aspects. Splatt has the smallest rnnz balance, set has nearly per-
fect rIp balance (around 0, invisible in bars), while ordered-1 gets the best rvol balance. However,
ordered-2 obtains the best performance in Figure 12, since none of Splatt, set, and ordered-1 obtains
a good tradeoff among the three ratios. For f b −m, rIp plays a more important role in overall per-
formance, so a small reduction in rIp has crucial impact on performance speedup. Different from
irregular tensors, regular tensors like nell1 have much lower imbalance ratios in each category.
For nell1 rnnz plays a more important role, so our optimization for rvol and rIp does not translate

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:22 Z. Miao et al.

Fig. 13. Load imbalance ratios (rnnz , rvol , and rIp).

to significant performance improvement. Its rnnz imbalance ratio is actually under control at 1%
with Splatt. Set, which gets the highest performance gain, has the worst rnnz imbalance but the
best rIp and rvol balance. Regular tensors tend to be easier to get balanced in all categories and
the differences among them are small. These results demonstrate that the tradeoff among different
load balances is complex and the optimal solution is determined by tensor properties, i.e., spar-
sity, shape, and distribution of nonzeros among the modes. We identify the dominant imbalance
ratio as rIp for irregular tensors because of its impact on matrix computation. However, the best
performance of Cpd is usually not achieved by the optimal rIp , because other imbalance ratios are
also important. It is still very difficult or impossible to obtain the optimal balance simultaneously
among all categories, thus a careful tradeoff is required for the best performance.
Guideline for choosing strategies. We provide general guidelines for users to easily pick

from the strategies for their own tensors. Our strategies try to find the best tradeoff among three
imbalance ratios, though it is difficult to match each strategy for one certain type of tensors. If
rIp is the dominant imbalance factor in Cpd and we need to control it as small as possible, the
ascending order of rIp in our strategies is set < ordered-2 < ordered-1. Generally, users could safely
choose set if lacking statistical information on a sparse tensor, because it always performs better
than Splatt on a large cluster, as Figure 12 shows. Our recommendations are as follows: (1) Use set
for relatively small or regular tensors, as it obtains the smallest rIp while the other two imbalance
ratios have little increase in those tensors such as choa and nell2; (2) Use ordered-2 for relatively
large and irregular tensors, as it optimizes both rvol and rIP well on tensors such as fb-m and fb-s.

5.3 Bottleneck Shifting

We show howMgbs-opt influences the performance bottleneck of major computation and commu-
nication kernels of Cpd for tensors choa and fb-m in Figure 14. For choa, Mgbs-opt shifts the per-
formance bottleneck from communication in Splatt toMAT-SOLVE as a result of communication
time reduction, while also decreasing the time ofMATNORM. For fb-m, theMgbs-opt performance
is still dominated by COMM as in Splatt, but largely reduced. Since Splatt focuses on optimiz-
ing the nonzero imbalance for Mttkrp, which only accounts for a negligible portion (invisible in
Figure 14), Mgbs-opt correctly identifies bottlenecks and significantly improves their execution.

5.4 Partitioning Strategies Comparison

Several previous works have compared Mgbs with coarse-grained Cpd [13]. It has been proved
that Splatt is 41× to 76× faster than DFacTo on 1,024 cores [35]. Therefore, we no longer compare

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:23

Fig. 14. Time percentage of main kernels.

Fig. 15. Time percentage of main kernels for f b-m and f b-s on 768 processors.

Mgbs-opt with coarse-grained Cpd in this work. We examine the fine-grained distribution with
hypergraph partitioning of each tensor generated by Zoltan [8]. Large tensors such as amazon

and patents are unable to compute a hypergraph partitioning due to their memory requirements.
Figure 11(a) already shows FGBS achieves lower performance than both Splatt and Mgbs-opt
for 5 tensors on 1,536 processors. The hypergraph partitions of fb-m and fb-s can be generated
on 768 processors. Splatt achieves higher performance than fine-grained distribution in 5 out
of 7 tensors on 768 processors except for fb-m and fb-s. Figure 15 displays the normalized time of
major computation and communication kernels in FGBS, Splatt, and Mgbs-opt on 768 processors.
We first disclose that FGBS performs faster than Splatt on tensors fb-m and fb-s by 3.2× and
1.3×, but only achieves 70% and 30% of the performance of Mgbs-opt, which further strengthens
our motivation of study on irregular tensors. Compared to Splatt, both FGBS and Mgbs-opt
significantly improve the performance of matrix-related computations on fb-m and achieve similar
speedups; while on fb-s, FGBS only gains a small improvement over Splatt. This demonstrates
the performance improvement of Mgbs-opt is more stable than FGBS on different irregular
tensors.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

10:24 Z. Miao et al.

Fig. 16. Time overhead of our method (Algorithms 2 and 3). The time of our method is normalized to Cpd

time.

5.5 Time Overhead of Irregularity-aware Method

We evaluate time overhead of our irregularity-aware method and compare it with Cpd time. Our
proposed prediction-based grid configuration incurs trivial time cost in the virtual distribution,
as it needs to compute the nonzero imbalance ratio rlayer_nnz for each candidate. The cost of
our matrix-oriented distribution policy is negligible, because its complexity is O(P). The time
cost of irregularity-aware method is mainly determined by the total dimension sizes of the ten-
sor cN in the complexity of O(cN × In) in computation of rlayer_nnz . Our method does not in-
cur expensive data redistribution, because we only do data distribution once as Splatt. The
number of Cpd iterations is determined comprehensively by the size, nonzero distribution, and
sparsity of a tensor. We set 10 and 50 as the minimum and maximum iterations, because we
observe tensors in our dataset converge for Cpd in this range of iterations. Figure 16 displays
the average, maximum and minimum time overhead of irregularity-aware method normalized
to 10 and 50 Cpd iterations for all tensors in our dataset. As the system size increases, the nor-
malized time overhead increases for both cases. This is because our proposed irregularity-aware
method is sequential with relatively stable time on different system sizes. The average overhead
is 4.5% to 10 Cpd iterations and 0.9% to 50 iterations on 1,536 processors. Overall, the time cost of
irregularity-aware method is low and acceptable compared to Cpd time. And its time overhead is
negligible compared to hypergraph partitioning in both fine-grained [20, 21] and medium-grained
Cpd [2].

5.6 Application to Other Formats

We extend Mgbs-opt to support other sparse tensor formats such as the coordinate (COO) and
Hierarchical Coordinate (HiCOO) [25] by extending the ParTI library [24]. COO, the simplest
yet arguably most popular format by far, stores each nonzero value along with all of its position
indices. HiCOO [25] format improves upon COO by compressing the indices in units of sparse
tensor blocks. Figure 17 plots strong scalability of Mgbs-opt applied to COO and HiCOO formats
for three tensors on 48 to 1,536 processors. Mgbs-opt obtains near-linear scalability for HiCOO on
these tensors. With COO format darpa on 96 to 192 and deli on 48 to 96, processors show super-
linear speedup. Detailed profiling shows that computation time for matrix-related kernels reduces
by more than half in both cases because of much better matrix-balance. Mgbs-opt is flexible to
support other variant formats in CSF or COO families [26, 27].

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

Performance Implication of Tensor Irregularity and Optimization 10:25

Fig. 17. Scalability of Mgbs-opt applied on ParTI for COO and HiCOO formats.

6 CONCLUSION

Although distributed CANDECOMP/PARAFAC decomposition is well-studied due to the increas-
ing needs of processing large-scale data, the performance implication of tensor irregularity is not
well understood. This work presents an irregularity-aware tensor decomposition on a distributed
memory system.We thoroughly investigate the performance behavior of an abstract of the state-of-
the-art distributed Cpd implementations through theoretical analysis and experimental profiling.
From the study, we propose three imbalance ratio metrics and conclude four findings to guide our
optimizations: prediction-based grid configuration and matrix-oriented distribution policy. Our
optimization-enhanced distributed Cpd achieves up to 4.4× and 11.4× on 1,536 processors against
the state-of-the-art medium- and fine-grained distributed implementations. Our optimizations
support different sparse tensor formats such as CSF, COO, andHiCOO and gain good scalability for
all of them. For future work, we intend to apply our optimizations to other tensor decompositions
and adopt shared-memory optimizations like dimension-tree [21] to further improve performance.

REFERENCES

[1] MartínAbadi et al. 2015. TensorFlow: Large-ScaleMachine Learning onHeterogeneous Systems. (2015), arXiv preprint

arXiv:1603.04467.

[2] Seher Acer, Tugba Torun, and Cevdet Aykanat. 2018. Improving medium-grain partitioning for scalable sparse tensor

decomposition. IEEE Trans. Parallel Distrib. Syst. 29, 12 (2018), 2814–2825.

[3] Phillip Alpatov, Greg Baker, H. Carter Edwards, John Gunnels, Greg Morrow, James Overfelt, and Robert van de

Geijn. 1997. PLAPACK Parallel linear algebra package design overview. In Proceedings of the ACM/IEEE Conference on

Supercomputing. IEEE, 29–29.

[4] Animashree Anandkumar, Rong Ge, Daniel Hsu, ShamM. Kakade, and Matus Telgarsky. 2014. Tensor decompositions

for learning latent variable models. J. Mach. Learn. Res. 15, 1 (Jan. 2014), 2773–2832.

[5] Grey Ballard and Kathryn Rouse. 2020. General memory-independent lower bound for MTTKRP. In Proceedings of the

SIAM Conference on Parallel Processing for Scientific Computing. SIAM, 1–11.

[6] Muthu Baskaran, Thomas Henretty, and James Ezick. 2019. Fast and scalable distributed tensor decompositions. In

Proceedings of the IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1–7.

[7] Zachary Blanco, Bangtian Liu, and Maryam Mehri Dehnavi. 2018. CSTF: Large-scale sparse tensor factorizations on

distributed platforms. In Proceedings of the 47th International Conference on Parallel Processing (ICPP’18). ACM, New

York, NY. DOI:https://doi.org/10.1145/3225058.3225133
[8] E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine. 2012. The Zoltan and Isorropia parallel toolkits for

combinatorial scientific computing: Partitioning, ordering, and coloring. Scient. Program. 20, 2 (2012), 129–150.

[9] Venkatesan T. Chakaravarthy, Jee W. Choi, Douglas J. Joseph, Prakash Murali, Shivmaran S. Pandian, Yogish Sabhar-

wal, and Dheeraj Sreedhar. 2018. On optimizing distributed Tucker decomposition for sparse tensors. In Proceedings

of the 32nd ACM International Conference on Supercomputing (ICS’18). 374–384.

[10] M. Ozan Karsavuran, M. Ozan, Seher Acer, and Cevdet Aykanat. 2020. Partitioning models for general medium-grain

parallel sparse tensor decomposition. IEEE Transactions on Parallel and Distributed Systems 32, 1 (2020), 147–159.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

https://doi.org/10.1145/3225058.3225133

10:26 Z. Miao et al.

[11] Jieyang Chen, Nan Xiong, Xin Liang, Dingwen Tao, Sihuan Li, Kaiming Ouyang, Kai Zhao, Nathan DeBardeleben,

Qiang Guan, and Zizhong Chen. 2019. TSM2: Optimizing tall-and-skinny matrix-matrix multiplication on GPUs. In

Proceedings of the ACM International Conference on Supercomputing. 106–116.

[12] Jaeyoung Choi, James Demmel, Inderjiit Dhillon, Jack Dongarra, Susan Ostrouchov, Antoine Petitet, Ken Stanley,

David Walker, and R. Clinton Whaley. 1996. ScaLAPACK: A portable linear algebra library for distributed memory

computers–Design issues and performance. Comput. Phys. Commun. 97, 1-2 (1996), 1–15.

[13] Joon Hee Choi and S. Vishwanathan. 2014. DFacTo: Distributed factorization of tensors. In Advances in Neural Infor-

mation Processing Systems 27. Curran Associates, Inc., 1296–1304.

[14] Andrzej Cichocki. 2014. Era of big data processing: A new approach via tensor networks and tensor decompositions.

CoRR abs/1403.2048 (2014).

[15] Ahmed E. Helal, Jan Laukemann, Fabio Checconi, Jesmin Jahan Tithi, Teresa Ranadive, Fabrizio Petrini, and Jeewhan

Choi. 2021. ALTO: Adaptive linearized storage of sparse tensors. In Proceedings of the ACM International Conference

on Supercomputing. 404–416.

[16] Joyce C. Ho, Joydeep Ghosh, and Jimeng Sun. 2014. Marble: High-throughput phenotyping from electronic health

records via sparse nonnegative tensor factorization. In Proceedings of the 20th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining (KDD’14). ACM, New York, NY, 115–124. DOI:https://doi.org/10.1145/
2623330.2623658.

[17] Inah Jeon, Evangelos E. Papalexakis, U. Kang, and Christos Faloutsos. 2015. HaTen2: Billion-scale tensor decomposi-

tions. In Proceedings of the IEEE International Conference on Data Engineering (ICDE).

[18] U. Kang, Evangelos Papalexakis, Abhay Harpale, and Christos Faloutsos. 2012. GigaTensor: Scaling tensor analysis

up by 100 times—Algorithms and discoveries. In Proceedings of the 18th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD’12). ACM, New York, NY, 316–324. DOI:https://doi.org/10.1145/2339530.
2339583.

[19] Oguz Kaya, Ramakrishnan Kannan, and Grey Ballard. 2018. Partitioning and communication strategies for sparse

non-negative matrix factorization. In Proceedings of the 47th International Conference on Parallel Processing. 1–10.

[20] Oguz Kaya and Bora Uçar. 2015. Scalable sparse tensor decompositions in distributed memory systems. In Proceedings

of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC’15). ACM, New

York, NY. DOI:https://doi.org/10.1145/2807591.2807624
[21] O. Kaya and B. Uçar. 2018. Parallel Candecomp/Parafac decomposition of sparse tensors using dimension trees. SIAM

J. Scient. Comput. 40, 1 (2018), C99–C130. DOI:https://doi.org/10.1137/16M1102744

[22] T. Kolda and B. Bader. 2009. Tensor decompositions and applications. SIAM Rev. 51, 3 (2009), 455–500. DOI:https://
doi.org/10.1137/07070111X

[23] Reservoir Labs. 2016. ENSIGN: Multi-Domain Analytics. (2016). Retrieved from https://reservoir-ensign.github.io/

usecases/ENSIGN.html.

[24] Jiajia Li, Yuchen Ma, and Richard Vuduc. 2018. ParTI!: A Parallel Tensor Infrastructure for multicore CPUs and GPUs

(Version 1.0.0). (Oct. Retrieved from: https://github.com/hpcgarage/ParTI.

[25] Jiajia Li, Jimeng Sun, and Richard Vuduc. 2018. HiCOO: Hierarchical storage of sparse tensors. In Proceedings of the

ACM/IEEE International Conference on High Performance Computing, Networking, Storage and Analysis (SC).

[26] B. Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi. 2017. A unified optimization approach for sparse tensor operations

on GPUs. In Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER). 47–57. DOI:https://
doi.org/10.1109/CLUSTER.2017.75

[27] Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Prasant Singh Rawat, Sriram Krishnamoorthy, and Ponnuswamy

Sadayappan. 2019. An efficient mixed-mode representation of sparse tensors. In Proceedings of the International Con-

ference for High Performance Computing, Networking, Storage and Analysis. 1–25.

[28] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov. 2015. Tensorizing neural networks. CoRR

abs/1509.06569 (2015).

[29] Evangelos E. Papalexakis, Christos Faloutsos, andNicholas D. Sidiropoulos. 2012. ParCube: Sparse parallelizable tensor

decompositions. In Proceedings of the 2012 European Conference on Machine Learning and Knowledge Discovery in

Databases - Volume Part I (ECML PKDD’12). Springer-Verlag, Berlin, 521–536. DOI:https://doi.org/10.1007/978-3-642-
33460-3_39

[30] Ioakeim Perros, Robert Chen, Richard Vuduc, and Jimeng Sun. 2015. Sparse hierarchical Tucker factorization and

its application to healthcare. In Proceedings of the IEEE International Conference on Data Mining (ICDM’15). IEEE

Computer Society, Washington, DC, 943–948. DOI:https://doi.org/10.1109/ICDM.2015.29

[31] Ioakeim Perros, Evangelos E. Papalexakis, FeiWang, Richard Vuduc, Elizabeth Searles, Michael Thompson, and Jimeng

Sun. 2017. SPARTan: Scalable PARAFAC2 for large & sparse data. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD’17). ACM, New York, NY, 375–384. DOI:https://doi.org/
10.1145/3097983.3098014

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

https://doi.org/10.1145/2623330.2623658
https://doi.org/10.1145/2339530.2339583
https://doi.org/10.1145/2807591.2807624
https://doi.org/10.1137/16M1102744
https://doi.org/10.1137/07070111X
https://reservoir-ensign.github.io/usecases/ENSIGN.html
https://github.com/hpcgarage/ParTI
https://doi.org/10.1109/CLUSTER.2017.75
https://doi.org/10.1007/978-3-642-33460-3_39
https://doi.org/10.1109/ICDM.2015.29
https://doi.org/10.1145/3097983.3098014

Performance Implication of Tensor Irregularity and Optimization 10:27

[32] Thomas B. Rolinger, Tyler A. Simon, and Christopher D. Krieger. 2019. Performance considerations for scalable parallel

tensor decomposition. J. Parallel and Distrib. Comput. 129 (2019), 83–98.

[33] Martin D. Schatz, Robert A. van de Geijn, and Jack Poulson. 2016. Parallel matrix multiplication: A systematic journey.

SIAM J. Scient. Comput. 38, 6 (2016), C748–C781.

[34] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and George Karypis. 2017. FROSTT: The

Formidable Repository of Open Sparse Tensors and Tools. Retrieved from: http://frostt.io/.

[35] Shaden Smith and George Karypis. 2016. A medium-grained algorithm for distributed sparse tensor factorization. In

Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE.

[36] Shaden Smith, Niranjay Ravindran, Nicholas Sidiropoulos, and George Karypis. 2016. SPLATT: The Surprisingly Par-

alleL spArse Tensor Toolkit (Version 1.1.1). Retrieved from: https://github.com/ShadenSmith/splatt.

[37] Edgar Solomonik and James Demmel. 2011. Communication-optimal parallel 2.5 D matrix multiplication and LU

factorization algorithms. In Proceedings of the European Conference on Parallel Processing. Springer, 90–109.

[38] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of collective communication operations in

MPICH. Int. J. High Perform. Comput. Applic. 19, 1 (2005), 49–66.

[39] L. R. Tucker. 1966. Some mathematical notes on three-mode factor analysis. Psychometrika 31 (1966), 279–311.

[40] Robert A. van De Geijn and Jerrell Watts. 1997. SUMMA: Scalable universal matrix multiplication algorithm. Concurr.:

Pract. Exper. 9, 4 (1997), 255–274.

Received 14 September 2021; accepted 11 January 2023

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 10. Publication date: June 2023.

http://frostt.io/
https://github.com/ShadenSmith/splatt

