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A B S T R A C T

Cell migration, a pivotal process in wound healing, immune response, and even cancer metastasis, manifests through intricate interplay between morphology,
speed, and cytoskeletal dynamics. Mathematical modeling emerges as a powerful tool to dissect these complex interactions. This work presents a two-dimensional
immersed boundary model for mammalian cell migration, incorporating both filamentous actin (F-actin) and monomeric actin (G-actin) to explicitly capture
polymerization and depolymerization. This model builds upon our previous one-dimensional efforts, now enabling us to explore the impact of G-actin on not
just cell velocity but also morphology. We compare predictions from both models, revealing that while the one-dimensional model captures core dynamics along
the cell’s axis, the two-dimensional model excels in portraying cell shape evolution and transverse variations in actin concentration and velocity. Our findings
highlight the crucial role of including G-actin in shaping cell morphology. Actin velocity aligned with migration direction elongates the cell, while velocity normal
to the membrane promotes spreading. Importantly, the model establishes a link between these microscopic aspects and macroscopic observables like cell shape,
offering a deeper understanding of cell migration dynamics. This work not only provides a more comprehensive picture of cell migration but also paves the way
for future studies exploring the interplay of actin dynamics, cell morphology, and biophysical parameters in diverse biological contexts.

1. Introduction

Cell migration plays a pivotal role in diverse biological processes
such as wound healing, immune response, and cancer metastasis (van
der Woude et al., 2017; Baeyens and Schwab, 2020; Jorgensen and
Sanders, 2016; Montell et al., 2012). This dynamic phenomenon man-
ifests through multiple observable features, encompassing morphol-
ogy, speed, polarization, and directionality (Pollard and Cooper, 2009;
Keren et al., 2008; Kozlov and Mogilner, 2007). These characteristics
are influenced by a multitude of factors, including extracellular matrix
properties, intracellular actin dynamics, fluid flows within and outside
the cell, and the biochemical molecular environments (Keren et al.,
2009; Inagaki and Katsuno, 2017; Rappel and Edelstein-Keshet, 2017;
Alert and Trepat, 2020; Blackley et al., 2021; Maity et al., 2022; Bera
et al., 2022). Mathematical modeling emerges as a powerful tool ca-
pable of providing unique insights and quantifications into the diverse
features of cell migration.

Physiology-informed, continuum mechanics-based models formu-
lated as partial differential equations are potent due to their ability
to capture cell dynamics with high spatial and temporal resolution.
Such models also face challenges with moving boundaries, a neces-
sary process for studying cell migration. One of the mature moving
boundary techniques is the immersed boundary method (Peskin, 2002),
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a versatile tool in computational fluid dynamics for modeling fluids
interacting with complex, moving objects such as mammalian cell
membranes (Mittal and Iaccarino, 2005; Kim et al., 2012). This method
is particularly powerful in handling fluid flow across the moving bound-
ary. These useful features enable an advanced two-phase cell migration
study where cytosol and actin network are equally treated (Dembo and
Harlow, 1986; Li and Sun, 2018; Li et al., 2019). The main component
of the actin network is the filamentous actin (F-actin). While a single
actin filament behaves like an elastic object, the F-actin network at
large time scale (on the order of minutes or longer) is dynamic and
mobile, lacking a stable reference configuration. Consequently, within
the two-phase framework, the actin network is treated as a fluid-like
material.

In the past, we have developed an immersed boundary-based two-
phase cell migration model, which demonstrated success and promises
in studying the interplay between cytosol and F-actin network (Li et al.,
2019; Yao and Li, 2022). In the model, we strategically transformed the
conservation of mass and momentum equations of the actin network
into one effective diffusion-reaction-advection equation for the actin
phase, allowing the actin network dynamics to be computed through
time evolution processes. In addition, the model featured osmosis and
passive and active solute transport across the cell membrane. The
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interaction between intracellular and extracellular flow fields makes it
possible to quantify cytosol dynamics under the influence of membrane
solute channels and pumps. The coupling of fluid–structure interaction
and osmosis established innovative techniques in the mathematical
modeling of mammalian cell migration.

In this work, moving beyond our previous endeavors (Li et al.,
2019; Yao and Li, 2022), we will incorporate monomeric actin (G-actin)
into the two-dimensional immersed-boundary framework to explicitly
model actin polymerization and depolymerization between F-actin and
G-actin (Pollard and Borisy, 2003; Lomakin et al., 2015). The G-actin
possesses its own diffusion-reaction-advection equation, adding another
layer of biophysics versatility that allows us to capture the crucial
role of G-actin in cell polarization and morphological changes. To
resolve the computational challenges with a two-dimensional model,
we will employ an implicit method for fluid–structure interaction to
enhance stability and accuracy for complex geometries and dynamics.
This enables us to study a broader range of biophysical parameters and
delve deeper into the processes of cell migration as opposed to the
explicit method we used previously.

In our earlier studies, our cell migration models incorporated G-
actin but were constrained to one-dimensional models where all quan-
tities varied solely along the x-direction (Yao and Li, 2022; Yao et al.,
2023; Li and Sun, 2024). Consequently, we were not able to capture cell
morphology and the underlying mechanisms driving it. The adoption of
a two-dimensional model now allows us to explore how G-actin influ-
ences not only cell migration velocity but also the actual morphology
of the cell, providing a more comprehensive understanding of its role
in cell movement. By directly comparing predictions from the one-
dimensional and two-dimensional models, we can dissect the impact
of dimensionality on cell behavior and gain profound insights into how
different actin dynamics influence in vivo cell migration. The primary
objective of this study is to quantify the impact of actin polymerization
and depolymerization in a two-dimensional space and compare the
similarities and differences between the results obtained from the two
models.

This paper is organized as follows. We begin with a description
of the full multi-modular biophysical model that includes cytosol,
extracellular fluid, F-actin, G-actin, and the coupling among these
components, followed by detailed numerical methods for this model.
We then present features of model predictions on cell morphology,
polarization, and velocity under different actin conditions, with in-
sights into the comparison between predictions from a one-dimensional
model versus a two-dimensional one. In contrast to our earlier two-
dimensional models (Yao and Mori, 2017; Li et al., 2019; Yao and
Li, 2022), this study exclusively concentrates on actin-driven cell mi-
gration and therefore omits consideration of a solute module. This
means we do not account for osmosis-induced water flux and water-
driven cell migration. Nevertheless, the cytosol and extracellular fluid
fields remain essential to maintain the integrity of the fluid–structure
interaction inherent in cell motility.

2. The biophysical model

Here we present the complete biophysical model employed in this
study. The two-dimensional cell model is defined within a rectangular
domain 
 ⊂ R

2, partitioned into intracellular space 
I and extracel-
lular space 
E by a closed membrane � (
 = 
I L � L 
E). The
material coordinates for the membrane are denoted by s * [0, 2�). The
membrane’s evolution is described by Ĕ(s, t) * 
, where the contour
traced by Ĕ(s, t) characterizes the shape of the membrane � . F-actin
(concentration �n) and G-actin (concentration �c) are confined within

I, while the water spans the entire domain 
; this treatment allows
water to permeate the cell membrane. Intracellular water represents
the cytosol, whereas extracellular water represents the extracellular
fluid. The water is modeled as a Newtonian, incompressible flow with
viscosity �, with velocity Ĕc and pressure p. The dynamic variables of
interest in the model encompass Ĕ, �n, �c, Ĕc, p, and the F-actin velocity
Ĕn.

2.1. Cytosol

The conservation of momentum for the cytosol phase is

∇ ç �m(Ĕc, p) − � �n(Ĕc − Ĕn) = 0, ∇ ç Ĕc = 0, (1)

where Ĕc and p are the velocity and pressure of the fluid, respectively.
Ĕn and �n are the velocity and concentration of the F-actin network,
respectively. Since the actin network is only defined within the cell
domain, Ĕn and �n are both zero when calculating the extracellular fluid
in 
E. � is the interfacial stress coefficient between the cytosol and the
F-actin network (Li and Sun, 2018; Li et al., 2019). The two velocities,
Ĕc and Ĕn, are the macro-scale average velocities. The interfacial stress,
� �n(Ĕc − Ĕn), arises when the cytosol and the F-actin network have
different velocities, and is proportional to the amount of F-actin that
is present.1 In (1),

�m(Ĕc, p) = �
(
∇Ĕc + (∇Ĕc)T

)
− pą , (2)

is the stress in the cytosol phase due to the combined effect of the
fluid pressure and viscous shear stress. ą is an identity matrix. We
have disregarded forces acting on the cytosol aside from hydrostatic
pressure, viscous shear stress, and interfacial stress.

2.2. Actin kinematics

The kinematics of F-actin and G-actin within the cell, 
I, are
coupled through polymerization and depolymerization. The governing
equation for F-actin is
) �n
) t

+ ∇ ç (Ĕn�n) = −
 �n (3)

where 
 is the rate of actin depolymerization. The kinematic boundary
condition for F-actin on the cell membrane, �i, is Li and Sun (2018),
Li et al. (2019)

�n

(
Ĕn −

)Ĕ

) t

)
ç Č = Jact in , (4)

where Č is the outward norm of � . Jact in is the F-actin flux, coming
from actin polymerization that typically happens at the cell boundary.
This boundary condition suggests that the F-actin flux resulting from
polymerization will either create an inward velocity known as actin
retrograde flow, contribute to the movement of the cell membrane, or
both. The rate of actin polymerization depends on the availability of
G-actin. Therefore, we model this flux in the form (Yao et al., 2023)

Jact in = j(s)
�c

�c + �0
, (5)

where j(s) is the strength of the actin flux, in which s is the material
coordinate along the membrane. We assume that j(s) is polarized as a
result of signaling effects that are beyond the scope of this study. �c is
the concentration of G-actin, and �0 is a constant that modulates the
amplitude of the actin flux.

The governing equation for G-actin is
) �c
) t

+ ∇ ç (Ĕc�c) = Dc∇
2�c + 
 �n , (6)

where Dc is the diffusion coefficient of G-actin in the cytosol. The
corresponding kinematic boundary condition is

(Ĕc�c −Dc∇�c) ç Č = �c
)Ĕ

) t
ç Č − Jact in . (7)

This boundary condition suggests that the consumption of G-actin
through actin polymerization is balanced by both the total flux of
G-actin and the movement of the membrane.

1 At the microscale, the no-slip condition applies at the interface. However,
when the average velocities of the actin and cytosol differ, boundary layers and
velocity gradients form near the interface. These gradients create viscous shear
stress, leading to interfacial stress that allows momentum to transfer across the
interface. In our model, we treat this interfacial stress macroscopically, making
it an effective body forces acting on the cytosol and actin network.
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2.3. Actin kinetics

The conservation of momentum for the F-actin network is

−∇� + � �n(Ĕc − Ĕn) − �st�nĔn = 0, (8)

where �st is the strength of focal adhesion (Li and Sun, 2018; Li et al.,
2019). The term �st�nĔn represents the effective body force from the
substrate to the F-actin network. � is the magnitude of the isotropic
stress within the F-actin network. In this model, we use a linear
constitutive relation for this stress

� = k�n�n , (9)

where k�n is the coefficient of F-actin stress. We neglect the viscous
shear stress in the F-actin network because it is less significant com-
pared to the stress from focal adhesion (based on the value of �st and
the effective viscosity of actin network (Stricker et al., 2010)).

Given this constitutive condition, we can express the term �nĔn in
(8) as

�nĔn =
� �nĔc
� + �st

−
k�n

� + �st
∇�n . (10)

With this relation, we can convert (3) to an effective diffusion-advection-
reaction equation for the F-actin network in the form (Li et al., 2019;
Yao et al., 2023)
) �n
) t

+ ∇ ç

(
�Ĕc

� + �st
�n

)
=

k�n

� + �st
∇2�n − 
 �n . (11)

The term k�n∕(� + �st ), which is a ratio of F-actin relaxation to the
actin-matrix interaction (Yao et al., 2023), is the effective diffusion
coefficient of the F-actin network. Eq. (11) has the form that can
be directly implemented into our computational framework (Li et al.,
2019). The boundary condition (4) becomes

�n
�

� + �st
Ĕc ç Č +

k�n

� + �st
∇�n ç Č = �n

)Ĕ

) t
ç Č + Jact in . (12)

2.4. Membrane

A key feature of the immersed boundary model is the force transfer
between the structure, which is the cell membrane in this model, and
the fluid. We use a linear constitutive relation for the cell membrane
in the form (Peskin, 2002)

Ămem =
)

) s
(T Ā), T = km

(|||
)Ĕ

) s
|||
)
, (13)

where Ā is the unit tangent direction along the membrane � , km
is the coefficient of membrane stress, and |)Ĕ∕) s| is the Jacobian
determinant, describing the length change of the membrane. T Ā is the
membrane tension along the tangential direction. Differentiating this
tangential tension along the arc length gives a tension normal to the
membrane, Ămem.

The membrane velocity, )Ĕ∕) t, is determined by both the cytosol
velocity and the water flux, jw, across the membrane (Kim and Peskin,
2006; Li et al., 2017; Li and Sun, 2018; Li et al., 2019; Yao and Li,
2022),
)Ĕ

) t
= Ĕc − jwČ, jw = kw[ ],  = −Č ç (�m(Ĕc, p))Č, (14)

where the square brackets indicate the jump in values on the two sides
of the interface, Č is the outward normal along � , and kw is membrane
water permeability. Eq. (14) is a modified non-slip boundary condition
to account for water flux across the cell membrane.

The difference in the fluid stress on the two sides of the membrane
is balanced by all the other forces acting on the membrane. The force
balance of the cell membrane is given by
[
�m(Ĕc, p)Č

]
= �Č + Ămem

|||
)Ĕ

) s
|||
−1

+ Ă ad , (15)

where Ă ad is the resistance force from the cell membrane (Yao et al.,
2023). This force represents a generic resistance from the attachment

of the cell membrane to the substrate, and is different from the force
of focal adhesion defined throughout the cell (see Eq. (8)). We let this
resistance force be proportional to the membrane velocity in the form

Ă ad = −kad
)Ĕ

) t
, (16)

where kad is the coefficient of the resistance force.

2.5. Fluid–structure interaction

In the standard immersed boundary (IB) form, the fluid momentum
balance in (1) and the interface force balance condition in (15) can be
formulated in the form

Ą (Ė, t) + ∇ ç �m(Ĕc, p) − � �n(Ĕc − Ĕn) = 0,

Ą (Ė, t) = +�
(
(�Č + Ă ad)

||||
)Ĕ

) s
|||| + Ămem

)
�(Ė −Ĕ(s, t))d s , (17)

where � is a two-dimensional Dirac delta function. The incompressible
condition for the cytosol velocity Ĕc remains unchanged in the IB form

∇ ç Ĕc = 0 . (18)

The membrane velocity in (14) can be rewritten by the interface force
balance in (15) as

Ĕc −
)Ĕ

) t
= −kw

[
� +

(
Ă ad + Ămem

||||
)Ĕ

) s
||||
−1)

ç Č

]
Č. (19)

Now our model includes (17), (18), (11), and (6), with boundary
conditions (19), (12), and (7).

3. Numerical algorithm

In this Numerical Algorithm section, a ‘‘cell’’ refers to a rectangular
spatial discretization unit. This term should not be confused with the
mammalian cell occupying the domain 
I. This convention only applies
within this Numerical Algorithm section.

The numerical scheme operates over the computational domain

 = [0, L] × [0, L]. Here, we establish a fixed Cartesian grid with
vertices located at (xi, yj ), where xi = i�x for i = 0,& , N , and
yj = j �y for j = 0,& , N . The centers of the grid cells are denoted
by (xi+1∕2, yj+1∕2). Within each �x × �y cell, the F-actin concentration
(�n), G-actin concentration (�c), and fluid pressure (p) are defined at
cell centers. The fluid velocity Ĕc = (u, v) is assigned to the vertical
and horizontal edges, respectively, based on the MAC (marker and cell)
grid arrangement. Throughout the discussion, we assume ℎ = �y = �y.
Additionally, we adopt a uniform discretization for the membrane, � ,
on the reference interface �r ef . The immersed boundary (IB) points are
represented by Ĕ(si, t), where i = 1,& , N� and si = (i − 1)�s. At
each step, we construct a cubic spline parametric representation of the
immersed boundary.

The cell centers can be classified based on their positional rela-
tionship with the IB. Regular grid centers do not have neighboring cell
centers on the opposite side of the membrane, � ; for example, points p5
and p7 in Fig. 1(A). Irregular grid centers have at least one neighboring
cell center situated on the other side of � , such as points A and B in
Fig. 1(A). Discretization of the F-actin and G-actin Eqs. (6) and (11)
depends on whether the cell center is regular or irregular. To enforce
the actin boundary condition at � , we introduce auxiliary variables
for �n and �c. These variables are defined at grid crossings, the points
where the immersed boundary � intersects the grid lines connecting
cell centers. At each of these grid crossings, two auxiliary variables, �b

n

and �b
c
, are defined, representing the values of the actin at the 
I face

of the membrane. These �b
n
and �b

c
variables are employed to discretize

the boundary conditions (4) and (7), along with Eqs. (6) and (11) at
irregular centers.

The overall algorithm follows this outline: for each time step, we
alternate between the fluid–structure interaction (FSI) substep and the
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Fig. 1. Schematics of numerical strategies. (A) Extrapolation scheme for actin concentration. (B) Treatment of freshly cleared grid.

actin substep, which is further divided into F-actin and G-actin compo-
nents. At a given time step, we have the values un, vn, pn,Ĕn, �n

n
, �n

c
, �b,nn ,

�
b,n
c , where the superscript n represents the values of the grid variables
at time t = n�t with n = 0, 1,&, and �t is the time step.

Substep 1 With un, vn, pn, and Ĕn as inputs, we employ an implicit
IB method (Mori et al., 2008) to calculate un+1, vn+1, pn+1, and
Ĕn+1 based on Eqs. (17) and (18), subject to the condition (19).
The determination of F-actin at IB locations, denoted as �IB,nn , is
crucial for Eqs. (17) and (19). This quantity is derived through
interpolation from the concentration values �b,nn defined at grid
crossings.

Substep 2 Given the updated IB point locations Ĕn+1 and the fluid ve-
locity (un+1, vn+1), solve the moving boundary advection-diffusion
problem for G-actin concentration (�n+1

c
and �b,n+1) and F-actin

problem concentration (�n+1
n

and �
b,n+1
n ). Special attention is

required in the discretization of Eqs. (6) and (11) at irregular
grid centers. This is particularly crucial for freshly cleared centers,
referring to computational cell centers that were situated in

E in the previous time step but are now within 
I. The
enforcement of boundary conditions (7) and (11) is facilitated at
grid crossings through the utilization of auxiliary concentration
variables defined at those points.

3.1. Implicit IB method for fluid velocity and IB locations

Given the values of Ĕn
c
, pn, Ĕn, and �b,nn , the initial step of the update

scheme involves the simultaneous solution of (17), (18), and (19).
For the computation of the membrane force Ămem in (13), we

introduce differencing operators acting on functions W defined on
the IB grid (k = 1,& , N� ): ò±

sWk = ±(Wk±1 −Wk)∕�s. Using these
operators, we discretize (13) in the form

Ă n
mem,k

= kmò+
s

(
−
|||ò−

s Ĕ
n
k

|||
−1 ò−

s Ĕ
n
k

)
, (20)

where the differencing operators above act component-wise.
The fully time-implicit IB treatment (sn̄� = |)Ĕ̄n

∕) s|) of the FSI is
given by

0 = Gℎ ç Ĕ̄c , (21)

0 = −Gℎp̄ + � LℎĔ̄c + � �n(Ĕnn − Ĕn
c
) + Sℎ̄

(
(�nČ + Ă n+1

ad
)sn̄� + Ă̄mem

)
, (22)

and

Ĕn+1 −Ĕn

�t
= S∗

ℎ̄
Ĕ̄c + kw

(
�n + Ă n+1

ad
ç Č +

1

sn̄�
Ă̄memČ

)
Č. (23)

In this IB formulation, Gℎ, Gℎç, and Lℎ correspond to suitable discretiza-
tion of the gradient, divergence, and Laplacian operators, respectively.
�n is the F-actin network stress from previous step (�n = k�n�

n
n
). The

midpoint values are Ĕ̄c = (Ĕn+1c
+Ĕn

c
)∕2, Ĕ̄ = (Ĕn+1+Ĕn)∕2, and Ă̄mem =

Ămem(Ĕ̄). Additionally, Ă n+1
ad

= kad(Ĕ
n+1 − Ĕn)∕�t. The operators Sℎ̄

and S∗

ℎ̄
indicate that spreading and interpolation are performed on Ĕ̄.

The spreading operator Sℎ in (22) is utilized for the discretization
of the Eulerian function Ą in (17), which is defined on the MAC grid.
For instance, if we intend to spread Ă n

mem = (F nx , F
n
y ) at all IB point

positions Ĕn = (Xn, Y n) to Ą n = (f n, gn), the following two conditions
need to be met.

f n
i,j+

1
2

=

N�1
k=1

F n
x,k
�ℎ(xi −X

n
k
)�ℎ(yj+ 1

2

− Y n
k
)�s ,

gn
i+

1
2
,j
=

N�1
k=1

F n
y,k
�ℎ(xi+ 1

2

−Xn
k
)�ℎ(yj − Y

n
k
)�s ,

(24)

where �ℎ(r) is a regularized discrete delta function. In this work, we use
the discrete delta function in the form (Peskin, 2002)

�ℎ(r) =
1

ℎ
�
(
r

ℎ

)
,

�(r) =
⎧
⎪⎨⎪⎩

1

8
(3 − 2 |r| +√

1 + 4 |r| − 4r2) |r| d 1,
1

8
(5 − 2 |r| −√

−7 + 12 |r| − 4r2) 1 < |r| d 2,

0 2 < |r| .

(25)

Similarly, if we need to interpolate Ĕn
c
= (un, vn) on the MAC grid to the

kth IB point velocity đ n
k
= (Un

k
, V n

k
) using interpolation operator S∗

ℎ
, as

in (23), we need
Un
k
=
1
i,j

un
i,j+

1
2

�ℎ(xi −X
n
k
)�ℎ(yj+ 1

2

− Y n
k
)ℎ2 ,

V n
k
=
1
i,j

vn
i+

1
2
,j
�ℎ(xi+ 1

2

−Xn
k
)�ℎ(yj − Y

n
k
)ℎ2 .

(26)

An iterative scheme is needed to compute (21)–(22). We use su-
perscript k to indicate the kth iteration, and the iterative variables are
Ĕ
n̄,k
c = (Ĕn

c
+ Ĕ

n,k
c )∕2, and (Ĕn +Ĕn,k)∕2 = Ĕ n̄,k. Therefore, we have

Gℎ ç Ĕ
n̄,k+1
c

= 0 , (27)

0 = − Gℎp̄n,k+1 + � LℎĔn̄,k+1c
+ � �n(Ĕnn − Ĕn̄,k

c
)

+ Sn̄,k

(
�nsn̄,k

�
Č − kads

n̄,k
�
ČČ

T Ĕ
n,k+1 −Ĕn

�t
+ Ă n̄,k

mem + Jn̄,k(Ĕ
n̄,k+1 −Ĕ n̄,k)

)
,

(28)

where sn̄,k� = |)Ĕ n̄,k∕) s| and Jn̄,k = )Ămem∕)Ĕ
n̄,k. The last two terms in

(28) is the linearization of the force Ă̄mem in (22). The update of Ĕ in
iterations, from (23), is

(kwkadČČ
T + I)

Ĕn,k+1 −Ĕn

�t

= S∗
n̄,k

Ĕn̄,k+1
c

+ kw

(
�n +

1

s
n̄,k
�

[
Ă n̄,k
mem + Jn̄,k(Ĕ

n̄,k+1 −Ĕ n̄,k)
]
ç Č

)
Č . (29)

The normal vector in the iterations will be computed using Ĕ n̄,k. This
fully implicit method and iteration scheme draw inspiration from the
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second-order implicit IB scheme designed for a boundary mass problem
with Navier–Stokes equations (Mori and Peskin, 2008).

We can first symbolically solve for the variable Ĕn̄,k+1c from (27) and
(28) to get

Ĕn̄,k+1
c

=
1

�
L−1
ℎ
P

{
−∇p̄ − bĔn̄,k

c
+ � �n(Ĕnn − Ĕn̄,k

c
) + Sn̄,k(�nsn̄,k� Č

−kads
n̄,k
� ČČ

TĔ
n,k+1 −Ĕn

�t
+ Ă n̄,k

mem + Jn̄,k(Ĕ
n̄,k+1 −Ĕ n̄,k))

}
.

(30)

The operator L−1P involves solving the Stokes equation with appropri-
ate projection and spreading terms (where the projection operator P
ensures the continuity condition for all terms). Substituting (30) into
(28), we observe the update for Ĕ n̄,k+1 in the form of a linear system

û(Ĕn,k+1 −Ĕn,k) = �tĘ − (kwkadČČT + I)(Ĕn,k −Ĕn) (31)

with

û = (kwkadČČT + I) −
�t

2

[
S∗
n̄,k

(
1

�
L−1
ℎ
P

)
Sn̄,k

(
Jn̄,k −

2kad

�t
sn̄,k
�
ČČ

T

)
+
kw

sn̄,k�
ČČ

TJn̄,k

]

(32)

and

Ę =S∗
n̄,k

[
1

�
L−1
ℎ
P

{
−Gℎp̄ + � �nn (Ĕnn − Ĕn̄,k

c
) + Sn̄,k(�nsn̄,k� Č − kads

n̄,k
�
ČČ

T Ĕ
n,k −Ĕn

�t

+Ă n̄,k
mem)

}
+kw

(
�n +

1

sn̄,k�
Ă n̄,k
mem ç Č

)
Č

]
.

(33)

We employ an iterative method that minimizes the residual (Saad
and Schultz, 1986) to solve the linear system (31). When we have
‖�tĘ − (kwkadČČT + I)(Ĕn,k −Ĕn)‖ < �‖Ĕn‖ (� = 10−7 in this work),
we will set Ĕn+1 = Ĕn,k+1, and Ĕn+1

c
will be obtained from the final

update of (30).

3.2. Sub-step for actins

Both F-actin, �n, and G-actin, �c, concentrations are defined at cell
centers, and their Eqs. (6) and (11) are characterized as advection-
diffusion types within a dynamic domain. We employ a methodology
used in our prior work (Yao and Mori, 2017) to handle the challenges
posed by irregular cell centers and a mobile boundary. The inclusion
of technical details in this section serves to provide a comprehensive
understanding of our approach.

We first define the differencing operators applicable to any grid
function w in the form

ò±
xw� ,� = ±

w�±1,� −w� ,�
ℎ

, ò±
yw� ,� = ±

w� ,�±1 −w� ,�
ℎ

,

úw� ,� = ò+
xò−

xw� ,� +ò+
yò−

yw� ,�

=
w�+1,� +w� ,�+1 +w�−1,� +w� ,�−1 − 4w� ,�

ℎ2
,

(34)

where wn
� ,� denotes the value of w at (x, y) = (� ℎ, � ℎ) at time t = n�t.

3.3. Regular Cartesian grid centers

At any regular Cartesian cell center, we use a standard implicit Euler
discretization of (6) in the form

ò−
t �c

n+1

i+
1
2
,j+

1
2

+ò−
x

(
un+1
i+1,j+

1
2
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x �c
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2
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1
2

)
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y

(
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1
2
,j+1

ï+
y �c

n+1

i+
1
2
,j+

1
2

)

= Dcú�cn+1
i+

1
2
,j+

1
2

+ 
 �n
n
,

(35)

where, for any quantity w on the Cartesian grid, we have

ï+
xw� ,� =

1

2

(
w�+1,� +w� ,�

)
, ï+

yw� ,� =
1

2

(
w� ,�+1 +w� ,�

)
. (36)

For the F-actin Eq. (11), the discretization at regular Cartesian cell
centers are given by

ò−
t �n
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2
,j+

1
2

+
1

� + �st
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x

(
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� + �st
ú�nn+1

i+
1
2
,j+

1
2
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 �n+1
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,

(37)

3.4. Irregular Cartesian grid centers

At the irregular point A in Fig. 1(A), we employ a discretization
method for �c and �n to extrapolate to the point p1. For instance, the
extrapolation for �c is (Macklin and Lowengrub, 2008)

�cp1
=

2(1 − �)
2 + �

�cp6
−

3(1 − �)
1 + �

�cp5
+

6

(1 + �)(2 + �)
�c

b, (38)

where � is the ratio of distance from the grid crossing (xb
1
, yb

1
) to A

and distance from p1 to A (grid spacing in the y direction), �cp6 and

�cp5
are the G-actin concentration at p6 and p5, respectively, and �cb is

the auxiliary G-actin concentration defined at the grid crossing (xb
1
, yb

1
).

A similar procedure can be performed in the x direction to obtain an
extrapolation formula at point p3.

3.5. Treatment of freshly cleared grids

Consider the point F in Fig. 1(B). It is a freshly cleared point that
was in 
E at time t = n�t but is in 
I at t = (n+ 1)�t. When evaluating
the time differencing terms, such as in (35) and (37), at this point,
�c
n
F
and �n

n
F
must be available. Here, we employ a stable scheme for

discretizing the time derivative (Yao and Mori, 2017). The following
steps use �cnF as an example, but the same procedure applies to �nnF as
well.

First, we identify the point pF = (x∗
F
, y∗
F
) on the curve �n that is

closest to the given point F = (xF , yF ). The G-actin concentration at this
point pF at time t = n�t (represented as �b

c

n
) can be determined through

interpolation of the G-actin concentration values at all grid crossings at
the same time t = n�t. If we approximate the partial time derivative at
point F as

�c
n+1
F

− �b
c

n

�t
, (39)

it is not a pure temporal discretization because it contains an advective
component due to the movement of the boundary. The velocity of this
advection is given by

(ũF , ̃vF ) =
(
xF − x∗

F

�t
,
yF − y∗

F

�t

)
. (40)

Therefore, (39) must be corrected to remove the advective compo-
nent resulting from the above velocity. The following is a modified
discretization of the time derivative of concentration �cF at point F :
) �cF
) t

||||t=n�t H
�c
n+1
F

− �b
c

n

�t
− ũFò0

x�c
n+1
F

− ṽFò0
y�c

n+1
F

, (41)

where the operator ò0
x,y is defined by

ò0
x,y =

1

2

(ò+
x,y +ò−

x,y

)
. (42)

At freshly cleared points, we substitute expression (41) for the ò−
t �c

term in (35). This modification is based on our earlier work (Yao
and Mori, 2017), where further details can be found. The spatial
differencing in these instances often involves ghost cell locations. In
such scenarios, we employ the extrapolation formulas detailed in Sec-
tion 3.4.
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3.6. Enforcing boundary conditions at grid crossings

By introducing auxiliary variables �b
c
and �b

n
, we enforce boundary

conditions for both F-actin (12) and G-actin (7) at the grid crossings,
illustrated by the point (xb

1
, yb

1
) in Fig. 1(A). Particular attention is given

to the directional derivative. Further details can be found in our early
work (Yao and Mori, 2017).

The unit normal direction Č along � can be resolved into two
components: along the grid line Ĕa (from point A to p1) and off the
grid line Ĕo (from boundary point (xb

1
, yb

1
) through grid point B and

stopping on the grid line between C and p7). Therefore, we express Č
as Č = aoĔo+aaĔa. Utilizing these two directions, the normal derivative
∇�b

c
ç Č (and ∇�b

n
ç Č) can be decomposed as a linear combination of

directional derivatives along the Ĕo and Ĕa directions in the forms

∇�b
c
çČ = ao∇�

b
c
çĔo+aa∇�

b
c
çĔa = ao‖Ĕo‖

) �b
c

)(Ĕo∕‖Ĕo‖) +aa‖Ĕa‖
) �b

c

)(Ĕa∕‖Ĕa‖) .

(43)

When approximating partial derivatives along Ĕo and Ĕa, we employ
interior actin values. A first-order approximation is expressed as

∇�b
c
ç Č H ao(�cB − �b

c
) + aa(�cp5 − �

b
c
), (44)

where �cB represents the G-actin concentration at point B, and �b
c
is

the auxiliary G-actin concentration at the grid crossing (xb
1
, yb

1
). The

direction vectors are given by

Ĕo = (xB − xb
1
, yB − yb

1
), Ĕa = (xp5 − x

b
1
, yp5 − y

b
1
). (45)

We employ higher-order approximations when additional cell cen-
ters are accessible. For instance, instead of solely relying on point B for
the off-grid line direction, we may incorporate points B, C, and p7 to
enhance the accuracy of our approximation, in the form

) �b
c

)(Ĕo∕‖Ĕo‖) H − 3

2‖Ĕo‖ �
b
c
+

2

‖Ĕo‖ �cB −
1

2‖Ĕo‖
[
(1 − �)�cC + ��cp7

]
, (46)

and if the grid crossing, point p5 and p6 are used, we have
) �b

c

)(Ĕa∕‖Ĕa‖) H − 1 + �
(2 + �)�y

�cp6
+

2 + �
(1 + �)�y

�cp5
−

3 + 2�
(1 + �)(2 + �)�y

�b
c
. (47)

The symbol � appearing in both (46) and (47) is identical to the one
defined in (38).

3.7. Time splitting

Equipped with the foundations laid out in Sections 3.4, 3.5, and 3.6,
we are poised to progress with the evolution of the actin components.
Following our time-splitting approach, we initially update (7) and (35),
utilizing the newly computed Ĕn+1 and Ĕn+1

c
from the preceding substep

dedicated to fluid–structure interaction. Subsequently, we proceed to
update (12) and (37), leveraging the just-updated �n+1

c
. Once �n+1

n
is

determined, we circle back to reinitiate the first substep, advancing the
fluid–structure interaction to sustain the ongoing time evolution.

4. Results and discussion

4.1. Parameters

The actin polymerization flux at the cell membrane is given by (5).
In actin-driven cell migration, the overall impact of actin polymeriza-
tion is predominantly localized at the leading edge of the cell (Craig
et al., 2012). To depict this profile, we employ a smoothed step function
in the form

j(s) = j0

(
t anh

(
s6

dw

)
+ t anh

(
(2� − s)6

dw

)
− 2

)
, s * [0, 2�) , (48)

where j0 and dw are constants that control the strength and width of
the flux, respectively. This profile as a function of material coordinate

s is maintained at all times as cells migrate. A larger dw leads to a
wider distribution of the region of actin polymerization (two sample
profiles of j(s) on a circular cell of two different dw values are provided
in Fig. 4). In the model, we let j0 = 100 nm/s and dw = 1 by default.
The parameter j0 governs the actin velocity, allowing it to span a broad
range as observed in experiments (Babich et al., 2012). We will vary dw
to quantify the impact of the distribution of actin flux. The �0 in (5) is
0.1 mM (Pollard et al., 2000).

In addition to actin polymerization, the rate of actin depolymeriza-
tion, 
, is also an essential parameter that affects cell migration and
morphology. We set the default value of 
 to be 4 × 10−2 s−1, which
is considered an intermediate rate based on our knowledge of the one-
dimensional model (Yao et al., 2023). At the same time, we will vary 

as an essential part of our studies. 
 and dw are the two key parameters
that we will investigate in this work.

The rest of the parameters used in the model are specified as follows.
The viscosity of cytosol and the extracellular fluid is taken from that of
water, � = 1 × 10−3 Pa s. The membrane water permeability is kw =

1 × 10−12 m/(Pa s) (Li et al., 2019). Considering that the cell membrane
is highly flexible lipid molecules, which do not behave like a standard
elastic material nor bear significant stress, we let the effective stress
coefficient of the membrane be a small number, km = 10−6 kg/m/s2,
while preserving the numerical stability of the immersed boundary
fluid–structure interaction scheme. The initial concentrations for F-
actin and G-actin are chosen at 0.1 mM for each, a typical concentration
for actin molecules (Pollard et al., 2000; Yao et al., 2023).

The diffusion coefficient of G-actin is taken as Dc = 10−11 m2/s
(Kiuchi et al., 2011; Yao and Li, 2022; Yao et al., 2023). The ratio of
the coefficient of the F-actin network stress, k�n , and the coefficient
of the strength of focal adhesion, �st , i.e., k�n∕�st , approximates the
effective diffusion coefficient of F-actin. Since the F-actin network is
less diffusive than the G-actin monomers in the cytosol, this ratio
should be less than Dc . On the other hand, the ratio must not be too
small to ensure the numerical stability of the system. Therefore, we let
k�n = 10−3 kg m2/s2/mol and �st = 2 × 108 kg/s/mol. The coefficient
of interfacial stress between cytosol and the actin-network, �, is several
orders of magnitude smaller than the coefficient of the strength of focal
adhesion (Li and Sun, 2018; Li et al., 2019; Yao and Li, 2022; Yao et al.,
2023). So, in this model, we let � = 104 kg/s/mol.

The resistant coefficient, kad, depends on the cell type and the
properties of the substrate that cells reside on. Therefore, it becomes a
free parameter for modeling purpose and controls the overall velocity
of cell migration, which also depends on cell types. A reasonable range
of cell velocity is on the order of 10 nm/s to 30 nm/s (Kiuchi et al.,
2007; Gardel et al., 2008; Vitriol et al., 2015). Hence, in this model,
we let kad = 103 kg/m2/s.

The computational parameters are listed as follows. Time step: �t =
0.005 s. Spatial resolution: 256 grids along each of the x and y direction;
320 grids on the cell membrane (the material points). At the boundary
of the computational domain, ) 
, we use the conditions that have been
used in our prior models (Li et al., 2019; Yao and Li, 2022): Periodic
boundary conditions are enforced at x = 0 and x = L to mimic an
infinite domain length along the migration direction, whereas rigid-
wall conditions are applied at y = 0 and y = L to represent a finite
domain width along the transverse direction. While the domain width
choice impacts the hydraulic resistance on the cell (Maity et al., 2019;
Li et al., 2019), it does not alter the conclusion of this study, which
centers on actin-driven cell migration.

4.2. Model captures the cell migration and morphology

Our computational model initiates with a circular cell, having a
diameter of 40 ½m within the computational domain, a size consistent
with a typical mammalian cell when attached to a substrate. The
cell undergoes evolution and migration based on specified biophysical
processes outlined in the model. Without loss of generality, we let the
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Fig. 2. Cell shape and velocity evolution for different rates of actin depolymerization, 
. (A) Cell shapes for a low rate of actin depolymerization. 
 = 6.4 × 10−4 s−1. (B) Cell
shapes for a high rate of actin depolymerization. 
 = 0.32 s−1. The initial positions of the cells are at x = 35 ½m and y = 50 ½m. (C) The x−displacement of the center of cells as
a function of time for different rates of actin depolymerization. (D) The velocity of the center of cells as a function of time for different rates of actin depolymerization. (E) Cell
velocities as a function of the rate of actin depolymerization, 
. The velocities were extracted from the velocity curve at t = 18 min for all 
 values in (D). Star: velocity data from
this two-dimensional model. Dotted line: the shape of the biphasic velocity curve from our one-dimensional model in Yao et al. (2023) (Fig. 2C, k�n = 3 × 104 Pa/mM). The aspect
ratio and position of the original curve were adjusted by V2D(log 
) = c1V1D(c2 log 
 − c3), where c1 = 0.97, c2 = 1.27, and c3 = 0.35.

cell migrates along the x-direction from left to right. This is achieved
by locating the actin flux (48) to the right-side of the cell. The initial
conditions set the intracellular F-actin and G-actin concentrations to be
spatially uniform, while the cytosol and F-actin velocities commence at
zero. The implementation of G-actin in the model, coupled with implicit
cytosol treatment, is able to achieve numerical stability across a broad
range of parameters. In the subsequent sections, we will utilize repre-
sentative model predictions to elucidate key biophysical mechanisms
underpinning the influences of actin dynamics in cell dynamics.

A key characteristic of cell migration is the cell’s spatial transloca-
tion, often accompanied by potential changes in morphology over time.
A successful model should adeptly capture these details, facilitated by
a clear visualization tool. Our model demonstrates robustness in mod-
eling cell migration, showcasing the ability to predict diverse cell mor-
phologies under different parameter settings. For instance, the shape
of the cell evolves distinctively for varying rates of actin depolymer-
ization, 
, while keeping other parameters constant (Fig. 2A, B). This
model prediction underscores the significant influence of intracellular
actin dynamics on cell morphology.

The cell’s displacement over time can be tracked by utilizing its
geometrical center. As anticipated, cells with different rates of actin
depolymerization exhibit distinct time trajectories (Fig. 2C), allowing
the calculation of cell velocity at each time point. The cell velocity
displays an initial peak before reaching a plateau (Fig. 2D). Notably, the
cell velocity varies with increasing rates of actin depolymerization. For
low values of 
, the initial peak is narrow and short, while for higher
values of 
, the duration and width of the initial peak proportionally
increase. This initial peak is attributed to the initial cell deformation
deviating from a circle, in addition to the migration velocity, given that
the velocity is calculated from the geometrical center of the cell. As
the impact from the initial cell deformation diminishes over time, the
calculated velocity of the cell from its geometrical center aligns with
the overall translational cell migration velocity.

In our previous one-dimensional model, we identified a biphasic
pattern in cell velocity as a function of the rate of actin depoly-
merization: excessively high or low rates were suboptimal for cell
migration (Yao et al., 2023). This is because low rates of actin depoly-
merization correspond to low rates of actin retrograde flow (Eq. (4)),
slowing down cell migration, whereas high rates of actin depolymer-
ization lead to reduced F-actin concentration (Eq. (3)), providing less
structure to support driving forces from focal adhesion (Eq. (8)) (Yao
et al., 2023). Remarkably, our two-dimensional model also predicts a
biphasic trend in cell velocity as a function of 
 (Fig. 2E). Moreover,
when we superimpose the one-dimensional biphasic velocity curve
(Yao et al. (2023), Fig. 2C, with an adjustment of the aspect ratio
while keeping the curve’s shape intact) onto the predicted cell velocity
from this two-dimensional model, we observe a remarkable match. The
consistency between the one-dimensional and two-dimensional model
predictions not only underscores the successful implementation of the
two-dimensional model and numerical algorithm but also confirms
the robust biophysical implication of the biphasic dependence of cell
velocity on the rate of actin depolymerization. Here, we emphasize that
the match does not pertain to the absolute velocities between the two
models, but rather to the scaling of cell velocities relative to the rate of
actin depolymerization. The absolute velocities are contingent upon the
parameters within each model. Nevertheless, we can adjust the aspect
ratios of these curves to attain a satisfactory alignment between them.

4.3. Low rates of actin depolymerization leads to negligible transverse
variations

Our one-dimensional model revealed that the spatial distribution of
F-actin depends on the rate of actin depolymerization, 
 (Yao et al.,
2023). Specifically, high rate of actin depolymerization leads to highly
polarized F-actin to the cell front. The two-dimensional model shows
a consistent trend of actin distribution on the rate of actin depolymer-
ization. For a small 
, the F-actin concentration decreases slowly from
the leading edge to the trailing edge, with an almost consistent slope
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Fig. 3. Actin profiles for different rates of actin depolymerization, 
. The two snapshots are taken at t = 2620 s, corresponding to the last trajectories in Fig. 2A, B. (A)

 = 6.4 × 10−4 s−1, representing a low rate of actin depolymerization. (B) 
 = 0.32 s−1, representing a high rate of actin depolymerization. �n: concentration of F-actin. �c : concentration
of G-actin. vn: velocity of F-actin. The unit of the color bar is 0.1 mM. The line plots display normalized values extracted from the center line of each two-dimensional profile.

throughout the cell (Fig. 3A, �n). On the other hand, for a large 
,
most of the F-actin concentrated at the cell leading edge and decreases
sharply away from the edge (Fig. 3B, �n). This arises because, according
to (11), the distribution of F-actin approximates an exponential form
(when cytosol velocity is minimal, which is the case in this work),
characterized by a length scale LF < (Dn∕
)

1∕2, where Dn represents
the effective diffusion coefficient of the F-actin network. LF indicates
the distance over which F-actin can redistribute (i.e., Dn) when it
undergoes consumption (i.e., 
). As 
 increases, LF decreases, thereby
enhancing the exponential decay of F-actin away from the leading edge.

The spatial gradient of G-actin concentration shows the opposite
sign, such that the concentrations at the trailing edge is higher than
that at the leading edge (Fig. 3A, B, �c). However, except for every
small values of 
 as illustrated in Fig. 3(A), the spatial gradient of G-
actin is much smaller compared to that of F-actin. The larger the 
, the
smaller the gradient of G-actin, leading to an almost constant G-actin
concentration in the cell (Fig. 3B). The relation on G-actin gradient
and 
 can also be analyzed by scaling laws. With negligible cytosol
velocity, Eq. (6) suggests that the length scale of G-actin variation is
LG < (Dc∕
)

1∕2(�c∕�n). The ratio �c∕�n is on the order of 
 L∕j0 (Yao
et al., 2023), where L is the length scale of the cell. Therefore, we have
LG < (Dc
)

1∕2(L∕j0), which increases as 
 increases. All these results
depicting the distribution of F-actin and G-actin with respect to 
 align
well with the one-dimensional model prediction (Yao et al., 2023).

The limitation of a one-dimensional model is that we have to con-
sider scenarios where cells are confined to a one-dimensional space or
when to assume that intracellular quantities predominantly vary along
the longitudinal direction (parallel to cell migration), with minimal
transverse variations (Li et al., 2019; Yao et al., 2023). While this
one-dimensional model has proven successful in modeling confined
cell migration (Zhang et al., 2022; Bera et al., 2022), the extent and
conditions under which it is applicable to two-dimensional, open-
space cell migration scenarios remain uncertain. If a two-dimensional
cell migration mimics a one-dimensional case, the spatial variation of
intracellular fields, such as actin concentration and velocity, should

primarily occur along one direction while remaining relatively constant
in the orthogonal direction. Our two-dimensional model predicts that,
for low rates of actin depolymerization, the cell behaves similarly to
a one-dimensional object, with F-actin concentration (�n), G-actin con-
centration (�c), and F-actin velocity (vn) predominantly varying along
the direction of migration (x) but maintaining nearly constant pro-
files along the transverse direction (y) (Fig. 3A). The two-dimensional
model provide insights into non-confined in vivo cell migration: For
cells migrating in scenarios with low actin depolymerization rates,
the one-dimensional approximation might be a reasonable first-order
approach.

4.4. High rates of actin depolymerization spreads the cell leading edge

As the actin depolymerization rate increases, we have seen that
the cell evolves into distinct morphology compared to the low rate
of actin polymerization (Fig. 2A,B). In this case, the spatial profiles
of the F-actin concentration (�n), G-actin concentration (�c), and F-
actin velocity (vn) exhibit noticeable spatial gradients along both the
migration direction (x) and the transverse direction (y) (Fig. 3B). This
suggests that at higher depolymerization rates, two-dimensional effects
cannot be ignored, and models accounting for full spatial complexity
are necessary to accurately capture the dynamics of cell migration.

The cell exhibits a distinctive fan-like spreading leading edge and
a narrow rod-like trailing edge, reminiscent of migrating fish kerato-
cytes (Keren et al., 2008, 2009). This unique morphology is intimately
linked to the F-actin velocity profile at the leading edge. Closer exam-
ination reveals that at high depolymerization rates, actin retrograde
flow is always perpendicular to the membrane (Fig. 3B, �n). This
perpendicular flow profile, driven by interactions with focal adhesion
reactive forces (Li and Sun, 2018; Gardel et al., 2008), acts as the key
driver of the spreading morphology. This type of spreading morphology
is often seen in cells immersed in high-viscosity media (Gonzalez-
Molina et al., 2018; Maity et al., 2022; Bera et al., 2022). However, at
low rates of actin depolymerization, this distinctive feature disappears,
with the flow reverting to a direction parallel to migration (Fig. 3A,
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Fig. 4. Cell shape and velocity evolution for different widths of actin polymerization, dw. In this set of simulations, 
 = 4 × 10−2 s−1, a moderate rate. (A) Cell shapes for a narrow
distribution of actin polymerization. dw = 0.125. (B) Cell shapes for a wide distribution of actin polymerization. dw = 4. The initial positions of the cells are at x = 22 ½m and
y = 50 ½m. The distribution of actin polymerization, j(s), is calculated from Eq. (48) with the corresponding dw values. (C) The velocity of the center of cells as a function of
time for different widths of actin polymerization. (D) The length of cells as a function of time for different widths of actin polymerization. The cell length is calculated from the
distance between the cell front (the right-most x-position) and the cell back (the left-most x-position).

�n). This finding suggests that actin retrograde flow directionality may
be crucial for shaping cell migration morphology.

The direction of actin retrograde flow not only shapes cell mor-
phology but also profoundly impacts cell velocity. When actin flow
is unidirectional, the entire driving force points forward, preventing
momentum from scattering in different directions. This allows cells
to maintain a steady-state forward velocity in low depolymerization
rates where cell velocities reaches a plateau after the initial transient
period (Fig. 2D). However, when the flow becomes perpendicular to
the membrane, momentum in the transverse direction (perpendicular
to migration) also arises, reducing the energy available for longitudinal
movement. This explains why in high depolymerization rates, cell
velocity gradually decreases over time (Fig. 2D). Thus, understanding
the interplay between actin flow direction and depolymerization rate
provides key insights into the diverse migratory behaviors observed in
different cellular contexts.

As anticipated, the transition from one-dimensional to two-dimen
sional spatial variation lacks a definitive boundary. Building on our
analysis of actin distribution using a one-dimensional model (Yao et al.,
2023), the shift to a two-dimensional pattern becomes increasingly
prominent as actin depolymerization rates begin to decrease cell ve-
locity (the second phase of the biphasic curve).

4.5. Narrow distribution of actin polymerization elongates cells

The intricate interplay of actin polymerization and depolymeriza-
tion shapes cell dynamics. We previously investigated the impact of
depolymerization rates on cell migration. Next, we leverage our model
to quantify how the distribution of actin polymerization influences
these dynamics.

Our model predicts that a narrow distribution of actin polymeriza-
tion, such as when dw = 0.125, functions akin to a focused thrust. This
actin flux drives the cell predominantly in a single direction, leading to
elongation along the migration axis and resulting in a shape reminis-
cent of a measuring spoon (Fig. 4A). In contrast, a wide distribution,

exemplified by dw = 4, encourages a more extensive leading edge that
spreads moderately with minimal elongation. This broader polymeriza-
tion footprint shapes the cell into a form resembling a scallop shell
(Fig. 4B). This aligns with our intuition: the extent of leading edge
spreading directly correlates with the width of the actin polymerization
zone. Nevertheless, the spreading morphology observed in this case
differs from that under high rates of actin depolymerization (Fig. 2B),
where the actin concentration gradient is distinctly pronounced close
to the cell boundary.

The cell velocity is also influenced by the width of the distribution
of actin polymerization (Eq. (48), Fig. 4C). Under narrow distributions
of actin polymerization, the velocities do not experience a significant
decrease beyond the initial peak. In contrast, for wide distributions of
actin polymerization, the cell velocity steadily drops after the initial
peak. This behavior is notable when cells undergo spreading at the
leading edge, as discussed in Section 4.4. The distinct velocity patterns
observed under different actin polymerization widths emphasize the
impact of polymerization distribution on cell motility.

Moreover, the model establishes a connection between the width of
the actin polymerization zone and cell morphology. Narrow distribu-
tions of actin polymerization drive cell elongation (Fig. 4D), where the
narrower the distribution, the longer the cell stretches. This discovery
directly correlates with observed filopodia in living cells – slender,
finger-like protrusions rich in actin bundles formed through continuous
polymerization at their tips (Faix and Rottner, 2006; Medalia et al.,
2007; Le Clainche and Carlier, 2008; Mattila and Lappalainen, 2008).
The strength of our model lies in its ability to translate microscopic
actin dynamics into macroscopic cellular behavior. Despite operating
at the whole-cell level, it effectively represents local membrane protru-
sions like filopodia, which illustrates that localized actin polymeriza-
tion leads to cell tip extension. In actual cells, actin dynamics rarely
exhibit uniformity or a steady state. The dynamic adjustment of the
actin profile in vivo contributes to shaping the protrusion morphology
of filopodia, often rendering it more pointed than our model predicts.
Remarkably, our model’s predictions closely mirror the dynamic and
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Fig. 5. Actin profiles for different widths of actin polymerization, dw, extracted from the simulations presented in Fig. 4. The two snapshots are taken at t = 1500 s, corresponding
to the last trajectories in Fig. 4A,B (A) dw = 0.125, representing a narrow distribution of actin polymerization. (B) dw = 4, representing a wide distribution of actin polymerization.
�n: concentration of F-actin. �c : concentration of G-actin. vn: velocity of F-actin. The unit of the color bar is 0.1 mM. The line plots display normalized values extracted from the
center line of each two-dimensional profile.

irregular morphology observed in mammalian cells, underscoring its
potential to capture the intricate interplay of forces shaping cellular
form.

4.6. Wide distribution of actin polymerization extends the effective region
of intracellular F-actin

While the rate of actin depolymerization, 
, demonstrates a pow-
erful influence on intracellular F-actin and G-actin distribution, we
hypothesize that the boundary condition of actin polymerization also
plays a significant role. Our model predicts that for narrow actin
polymerization profiles, F-actin concentration undergoes a dramatic
shift, forming a pronounced gradient in the head region that transitions
to an almost plateau-like state in the remaining cell body (Fig. 5A, �n).
Most of the F-actin is distributed towards the frontal boundary of the
cell, making the effective region of F-actin limited. The concentration
of G-actin (�c) shows the same trend in terms of gradient but with
an opposite sign and negligible magnitude. Interestingly, actin velocity
presents a contrasting picture. The magnitude of the velocity remains
almost remains across the cell, except for a gentle fade at the rear
tip where flow ceases (Fig. 5A, vn). This uniform magnitude stands in
stark contrast to the steep F-actin gradient, highlighting the complex
interplay between concentration and flow dynamics. Away from the
centerline, the velocity gradually develops a component perpendicular
to the direction of migration. This component helps to shape the head
region of the cell. This predicted persistence of F-actin velocity within
the elongated cell resonates with experimental observations of strong
actin retrograde flow in filopodia (Aratyn et al., 2007; Bornschlögl,
2013). Our model thus bridges the gap between molecular-level dy-
namics and observable cellular behavior, offering a deeper insight of
cell migration and its diverse morphologies.

In contrast, wide distributions of actin polymerization show a vastly
different picture of intracellular dynamics. As the leading edge broad-
ens, the head region encompasses a significantly larger portion of the
cell (Fig. 5B). This expansion translates into a large effective region
of F-actin distribution, stretching the non-zero concentration regime

across the entire cell body (Fig. 5B, �n). This smooth gradient coincides
with a nearly uniform actin flow, as predicted by our model (Fig. 5B,
�n). The well-developed, distributed flow stands very differently from
the localized actin flow observed under high depolymerization rates
(Fig. 3B, vn), even though both cases have spreading cell leading edge.
Our model demonstrates that actin dynamics emerge from a multifac-
torial interplay, not simply a one-perspective interpretation based on
leading edge morphology.

Further examination into the differences between narrow and wide
actin polymerization profiles, under identical depolymerization rates,
reveals additional observations. First, cells with narrow profiles behave
like one-dimensional systems. Their key variables, including F-actin
and G-actin concentrations and actin flow, primarily vary along the
migration axis, showing minimal differences across the cell width
(Fig. 5A). Conversely, cells with wide profiles exhibit a true two-
dimensional character. Here, all spatial variables display non-negligible
transverse gradients, hinting at a more complex, multi-directional inter-
play of forces within the cell (Fig. 5B). Second, cells with wider actin
polymerization profiles maintain higher average F-actin concentrations
compared to their narrower counterparts (Fig. 5A, B, �n). This suggests
that, beyond the influence of depolymerization rate, the distribution of
actin polymerization impacts the total F-actin content within the cell.
This finding has important implications, potentially indicating that a
wider distribution helps maintain a more balanced intracellular actin
dynamic.

5. Discussion and conclusions

In this study, we have developed a two-dimensional immersed
boundary model to investigate cell migration influenced by actin poly-
merization and depolymerization. The crucial addition of a G-actin
phase, absent in our previous models, enhances the depth of our
analysis.

Our two-dimensional model effectively elucidates the impact of
actin dynamics on shaping cell morphology and motility. Under con-
ditions of low rates of actin depolymerization or narrow distributions
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of actin polymerization, cells exhibit characteristics resembling a one-
dimensional system, with spatial variables primarily varying along
the direction of cell migration. Conversely, under high rates of actin
depolymerization or wide distributions of actin polymerization, cells
display two-dimensional features, including spreading in the transverse
direction and transverse variation of actin concentration and veloc-
ities. Therefore, the two-dimensional cell migration model excels in
portraying morphology and spatial variables.

While the one-dimensional model falls short in capturing cell mor-
phology, especially under high rates of actin depolymerization, the
consistency of actin dynamics along the cell’s center line and cell veloc-
ity remains notable between our one-dimensional and two-dimensional
models. In both models, high rates of actin depolymerization reduce
the region of actin retrograde flow, decrease the total content of F-
actin, and increase the total content of G-actin (Yao et al., 2023).
Moreover, cell velocities are predicted to be biphasic as a function of
the rate of actin depolymerization; the remarkable agreement of the
biphasic curve (upon re-scaling) between the one-dimensional and two-
dimensional models demonstrates the accuracy of the two-dimensional
computational scheme. These compelling findings suggest that the
intrinsic scales of cell velocity and actin distribution as functions of the
rate of actin depolymerization are well-preserved in the two models.

The two-dimensional model provides unique insights beyond mor-
phology, extending the understanding beyond what a one-dimensional
model can offer. Specifically, the model establishes a connection be-
tween the microscopic aspects, such as the direction and amplitude of
actin velocity (referred to as the actin retrograde flow), and macro-
scopic observables, such as cell morphology. Actin velocity aligned
with the direction of cell migration tends to elongate the cell in that
direction, facilitating migration. Conversely, velocity normal to the
cell membrane tends to spread the cell at corresponding membrane
locations. In many instances, actin velocity comprises both components
along the direction of migration and normal to the cell membrane, rep-
resenting simultaneous cell migration and spreading. Such phenomena
are frequently observed in two-dimensional mammalian cell migration
on a substrate.

To contextualize our discussion, we turn to experimental insights
from the literature illustrating the influence of actin dynamics on cell
morphology. Actin behavior is regulated by various physical and bio-
chemical factors, including extracellular viscosity. High extracellular
viscosity has been observed to modulate cell morphology, shifting
cells from a blebbing-based phenotype to a protrusion-based pheno-
type (Gonzalez-Molina et al., 2018; Maity et al., 2022; Bera et al.,
2022). For instance, in Extended Data Fig. 8(d) of Bera et al. (2022),
cells were observed to initiate spreading when exposed to high-viscosity
media, a process facilitated by actin network branching. This finding
highlights that cell spreading entails both longitudinal and transverse
actin dynamics, as evidenced by branching occurring in all direc-
tions within the two-dimensional space. This experimental observation
aligns with our model’s prediction that cell spreading corresponds to
actin flow in multiple directions. This preliminary comparison between
our model and experimental results lays the foundation for future
comprehensive investigations.

In our study, we employed the immersed boundary method as a
computational tool to investigate cell morphology and motility. There
are other versatile moving boundary methods capable of achieving
similar goals, such as the phase-field method (Shao et al., 2012) and
the level-set method (Wolgemuth and Zajac, 2010). All three methods
have been employed to study cell migration and significant cell de-
formations, such as those occurring during cytokinesis (Rejniak, 2007;
Anderson et al., 2009; Li et al., 2017; Moure and Gomez, 2021).
Each method possesses its unique strengths. For instance, both the
phase-field and the level-set methods use a scalar variable to trace the
cell boundary without explicitly model the fluid–structure interaction.
This type of method brings computational efficiency. The immersed

boundary method, on the other hand, relies on explicit modeling of
the mechanics of the membrane and its mechanical interaction with
the surrounding fluid. This scheme brings complicity of the numer-
ical algorithm, but on the other hand enables detailed treatment of
membrane mechanics. Although the membrane mechanics is not the
focus of this work, we anticipate future development that elaborates
on the membrane mechanics, thermal fluctuation, and membrane-actin
interaction.

The two-dimensional model, capable of calculating the cell mor-
phology, comes with high computational costs. For instance, given the
current domain and grid sizes, a single simulation, such as the one
depicted in Fig. 4(A), requires several days on a cluster. Increasing the
domain size, reducing the grid size, or extending the simulation time
would further escalate these computational demands. In this study, we
opt to simulate cell migration over a thirty-minute period for two spe-
cific reasons: first, this duration allows us to observe the transformation
of cell morphology from an initial circular form to a shape dictated
by model parameters; second, this timeframe remains computationally
manageable. Within this half-hour window, cell dynamics achieve a
steady state for certain parameter sets, while for others, they remain
transient.

The computational cost of a two-dimensional model can seem
formidable, necessitating careful consideration of when it should be
utilized. A two-dimensional model becomes indispensable when cells
exhibit significant spatial variations in multiple directions or when
changes in morphology are critical. Experimental observations on tra-
ditional two-dimensional dishes, such as those showing migrating cells
undergoing simultaneous changes in direction and morphology (Wei
et al., 2009), accompanied by actin repolarization in a two-dimensional
space, exemplify this need. Additionally, cell spreading in viscous
media (Maity et al., 2022; Bera et al., 2022) underscores situations
where a two-dimensional model is beneficial. However, merely having
a two-dimensional shape without significant multi-dimensional spatial
variations in actin (as illustrated in Fig. 2A) does not justify using a two-
dimensional model. Conversely, in vivo scenarios frequently confine
cells tightly during migration, leading to elongated morphologies (Wolf
et al., 2009; Petrie et al., 2014; Paul et al., 2017). In such cases, a
one-dimensional model proves more suitable.

A neat alternative approach to investigating cell morphology, with-
out relying on a two-dimensional framework, is to model cell dynamics
along the membrane (Lomakin et al., 2015; Copos and Mogilner, 2020).
This method enables the study of interactions among F-actin structures
and G-actin along the cell periphery, thereby drawing implications
for cell polarization. In addition to their application in confined cell
migration or cell mechanics along membranes, one-dimensional models
have also been utilized in other scenarios. For instance, when two-
dimensional cells display circular symmetry, one-dimensional models
can be developed along the radial direction to describe the conservation
laws governing the flows of F-actin and G-actin (Appalabhotla et al.,
2023). These models are valuable for studying actin protrusions along
the cell membrane.

This study provides a robust foundation for investigating cell mi-
gration dynamics and their implications for various cellular processes,
offering promising directions for future research. First, the model can
be refined to enhance biophysical significance by incorporating ad-
ditional factors such as myosin to better represent actin dynamics.
Accounting for cell-substrate interactions and adapting the model to
complex geometries can provide insights into cell migration in intricate
biological contexts. Second, efforts can focus on bridging scales and
linking the model to experiments by integrating live-cell imaging data
and upscaling to multicellular systems. The model may also serve as a
computational tool for drug discovery, screening potential drugs target-
ing actin dynamics and influencing cell migration. Delving into these
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avenues positions the two-dimensional cell migration model as a pow-
erful tool for understanding and manipulating cellular behavior across
various fields, from fundamental biology to biophysical applications.
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