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Abstract

In an information cascade, an agent who observes others chooses the same
action regardless of her own private information signal. Cascades result in
poor information aggregation, inaccurate decisions, and fragility of mass
behaviors. We review the theory of information cascades and social learning,
and discuss important themes, insights and applications of this literature as
it has developed over the last thirty years. We also highlight open questions
and promising directions for further theoretical and empirical exploration.
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1 Introduction

People rely heavily on the information of others in forming their opinions and selecting
actions. An evolutionary explanation for this is that gleaning useful information from
others increased fitness. The updating of beliefs based on observation of the actions of
others, observation of the consequences of these actions, or conversation with others, is

called social learning.

An empirical literature has documented the importance of social learning and
its consequences for social outcomes. A basic implication of social learning is that people

who observe others’ choices often start behaving similarly.

Some examples illustrating this point give a hint of the scope of social learning
effects. In an early experiment, confederates of the experimenter stared up at absolutely
nothing, and drew crowds of observers doing likewise (Milgram, Bickman and Berkowitz
(1969)). In a domain with higher stakes, there is extensive evidence of social influence
in the mating decisions of humans and other animals. In one experiment, seeing a
rival show interest in a member of the opposite sex caused human observers to rate the
individual as more appealing (see Bowers et al. (2012) and the related evidence of Little
et al. (2008)). In another, female guppies switched their choice of mate to match the
choices made by other females (Dugatkin and Godin (1992)). A life-and-death example
is the decision of patients to refuse good kidneys for transplant owing to refusal by

previous patients earlier in the queue (Zhang (2010)).

Social learning also helps shape economic activity. For example, in labor
markets, unemployment leads to a form of stigma, as employers view gaps in a resume
as indicating rejection by other employers (see field experiments by Oberholzer-Gee
(2008) and Kroft, Lange and Notowidigdo (2013)). Financial professionals from the
Chicago Board of Trade also engage in social learning. For example, in a laboratory
experimental setting, professionals from the Chicago Board of trade tend to follow the

incorrect actions of others instead of their own signals (Alevy, Haigh and List (2007)).



In the realm of politics, early primary election wins cause later voters to support
the winner. For instance, primary election victories of John Kerry over Howard Dean in
2004 generated political momentum and later wins for Kerry in the U.S. presidential

primary contest ( ( )).

These examples illustrate two patterns. The first is a tendency for agents to
converge upon the same action—perhaps even a suboptimal one. Behavioral convergence
seems to arise spontaneously, even when there is no opportunity or incentive to punish
deviants, and sometimes despite the opposing force of negative payoff externalities. The
second is that outcomes are often path-dependent, in the sense of being sensitive to the
sequence of information arrival. Examples of path-dependence are the effects of spells of
unemployment, of strings of kidney rejections, and of political momentum. Furthermore,
outcomes are often fragile in the sense of being sensitive to shocks. Examples of fragility
are the rise and fall of surgical fads and quack medical treatments on the part of

physicians who rely on their colleagues’ practices ( ( ), ( ).

The elemental fact of social learning raises several important questions. One
set of questions concerns efficiency. When people make decisions in sequence and have
the opportunity to observe each other’s actions or payoffs, or communicate with each
other, do they eventually make correct choices? In other words, is dispersed information
aggregated effectively? If agents do eventually learn which action is optimal, how

quickly does this occur? And does rationality promote better social outcomes?

Another fundamental set of questions concerns the homogeneity and stability
of outcomes. Will individuals’ actions and their beliefs about the state of the world
eventually be the same? If agents do converge upon the same action, how stable is this
outcome with respect to exogenous shocks? Is the system prone to sudden shifts, or
fads?

There are also important questions about what determines outcomes. For
example, how do the costs and distribution of private information signals affect learning

and behavior? And what are the effects of the network structure of social observation?



Early papers sought to address these questions by means of the concepts of
information cascades and herding (Banerjee (1992), Bikhchandani, Hirshleifer and
Welch (1992), and Welch (1992)).! Information cascades were soon applied in such
fields as anthropology, computer science, economics, law, political science, psychology,
sociology, and zoology. Over time, a theoretical literature examined the robustness of
the conclusions of the basic information cascades setting to varying different model
assumptions. There has also been a flowering of social learning modeling in which the
assumptions used are more distant from the basic cascades settings. More recently,
an empirical literature (including experimental research) has tested both rational and

imperfectly rational social learning models.

In the models of Banerjee (1992) and Bikhchandani, Hirshleifer and Welch
(1992), and Welch (1992) agents observe private information signals and make decisions
in sequence based upon observation of the actions of predecessors. A key implication of
these models is that, under appropriate conditions, there will always be an information
cascade: a situation in which an agent or a sequence of agents act independently of their
private information signals. This happens when the information derived from social
observation overwhelms the given agents’ signals. When in a cascade, an agent’s action
is uninformative to later agents, so that social learning is blocked — at least for a time.
As a result, if agents are ex ante identical, then all later agents face the same decision

problem and make the same choice.

Cascading imposes an adverse information externality upon subsequent agents.
This leads to a surprising result. Even though agents are fully rational and collectively
possess very strong information, their decisions are often incorrect. This contrasts with
the standard conclusion that reasonably good aggregation of the signals of a large

population of informed agents leads to accurate choices. The problem of information

1We define information cascades later. Banerjee’s term, “herding,” has essentially the same meaning as
information cascades in Bikhchandani, Hirshleifer and Welch (1992), but “herding” has several different
meanings in economics, and even within the social learning literature. We therefore use the term
“information cascades” for the concept introduced by these two papers.



externalities is also present in social learning models in which cascades do not occur.

Cascades in the basic setting above are precarious; agents in a cascade are
somewhat close to indifferent between two action alternatives. So in these models
there is a systematic tendency to reach a resting point at which behavior is sensitive to
small shocks. In other words, social outcomes are fragile; the arrival of a small amount
of information, or even the possibility of such an arrival, can dislodge agents from a
long-standing cascade. So the cascades model offers a possible explanation for why
social behaviors are often idiosyncratic and volatile. This is the case even though all
individuals are fully rational, and enough information to make the correct decision is

available to society as a whole.

Models of social learning, including cascades models, can help explain volatile
aggregate behaviors and dysfunctional social outcomes in a range of social and economic
domains. In this survey we provide an overview of this research. Our main focus is on
agents who engage in Bayesian or quasi-Bayesian updating, and are trying to make

good choices (i.e., to optimize).

In § 2 we present what we call the Simple Binary Model. This is the simplest
model of information cascades, which illustrates some basic intuition behind this phe-
nomenon. It also helps isolate the effects of generalizing the assumptions in various
ways. In § 3 and § 4 we explore the robustness of its conclusions to varying assumptions

about the action space and the signal distribution, respectively.

In later sections we consider a number of more fundamental deviations from
the basic cascades setting. For example, allowing agents to choose whether to act
immediately or to delay offers new insight about boom and bust dynamics in investment
and market entry contexts (see § 5). In § 6 we relax the assumption that agents observe

all of their predecessors and that agents do not observe predecessors’ payoffs.

The availability of social information can reduce the incentive to acquire private
information. In a sequential social learning setting, fixed costs of information acquisition

encourages cascading upon the actions of others, because agents can cheaply follow
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predecessors, thereby avoiding the cost of acquiring private signals. This in turn reduces

the information content of actions for later observers. This is explored in § 7.

In § 8 we consider how payoff externalities between the actions of different
agents can either reinforce or oppose the disposition to follow the behavior of prede-
cessors. One important form of payoff interaction occurs when agents participate in
market exchange. § 9 considers how endogenous price determination affects the social

learning process.

In the basic cascades models, preferences are common knowledge. When
people do not know the preferences of others, it becomes harder to deduce predecessors’
signals from their actions. The effects of heterogeneous preferences on social learning

are considered in § 10.

People tend to observe and learn from those that they are socially connected to.
This raises the question of how social outcomes and welfare are shaped by the network
of observation and communication. For example, does the information of some subset
of individuals end up unduly influencing outcomes for society as a whole? To address
such questions, we review research on social learning in networks in § 11. We consider
settings in which people have the opportunity to act and learn from each other either
once or repeatedly. We consider the role of the geometric structure of the network in
determining the social outcome. One key insight, for example, is that networks that are

(in some sense) egalitarian are conducive to better social learning outcomes.

One of the key directions covered here is the study of how limited rationality
affects social learning (see especially § 6.2, § 11.3.2 and § 10). Allowing for limited
rationality is especially important in realistic social networks, in which inference prob-
lems are so complex that perfect rationality is implausible. Our coverage of limited

rationality focuses on quasi-Bayesian decision makers rather than mechanistic agents.

Finally, in § 12 we cover models of information cascades in a variety of applied
domains, including politics, law, product markets, financial markets, and organiza-

tional structure. The social learning approach, by focusing on the role of information



externalities, offers new perspectives about a wide range of human behaviors.

The analysis of social learning uncovers effects that differ in some ways from
most of traditional information economics. Where much of information economics is
strategic, in that the actions of some agents directly affect the payoffs of others, in much
of the social learning literature, externalities are purely informational, with no direct
payoff interactions. Thus, forces of central focus for much of information economics,
such as adverse selection and moral hazard, are not the main drivers of most social

learning models.

The formal modelling of general social influence began primarily in social
sciences other than economics. Interactions via social networks were studied heavily
in sociology, as with the influential DeGroot model (DeGroot (1974)), and cultural
evolution was studied in anthropology and other fields (Boyd and Richerson (1985)).
However, these models typically used mechanistic assumptions about how agents update
their actions, traits, or ‘opinions,” rather than modeling Bayesian or quasi-Bayesian
updating of beliefs and resulting optimal actions. In contrast, the economic approach to
social learning allows for agents who are intelligent in their belief updating and process

of optimization.

In the 1990s, economists started to focus attention upon social learning in
general, rather than just as a by-product of market interactions or game-theoretic
interactions between small numbers of agents.? A newer element in this literature is the
possibility that people observe or talk to others even when the target of observation has
no incentive or intent to influence others. Also integral to this literature is that many
agents act and observe sequentially, so that the learning process iterates, as is often the

case in practice.

2The latter includes models of learning from market price in financial markets (Grossman and Stiglitz
(1976)) and other markets (Akerlof (1976), Spence (1978)). The former includes the “agreeing to
disagree” literature (Aumann (1976), Geanakoplos and Polemarchakis (1982)) and the cheap talk
literature (Crawford and Sobel (1982)).



Even without learning (the focus of this survey), social interaction can cause
behaviors to converge, owing, for example, to payoff externalities or utility interac-
tions (Arthur (1989)), reputation effects (Scharfstein and Stein (1990), Ottaviani and
Sgrensen (2000)) or a preference for conformity (Bernheim (1994)). Some models also
study how social interaction induces dynamics of convergent or divergent behaviors (Kir-
man (1993)). Our focus is on behavioral convergence or divergence that derives from
social learning and information cascades. However, most actual applications involve the
interaction of several possible factors, including information, rewards and punishments,
and payoff externalities. The integration of social learning and cascades with other
considerations has led to a richer palette of theory about the process by which society
chooses technologies, ideas, governments, organizational choices, conventions, legal

precedents, and market outcomes.

The interested reader may also consult other surveys of social learning (e.g.,
Gale (1996), Bikhchandani, Hirshleifer and Welch (1998), Chamley (2004b), Vives
(2010), Acemoglu and Ozdaglar (2011), and Golub and Sadler (2016)). Our review
includes coverage of more recent research and an array of topics, including social net-
works, repeated moves, and psychological bias, while highlighting the role of information
cascades in this rapidly evolving field. Complementing our theoretical focus are several
reviews with a primarily empirical focus, such as Hirshleifer and Teoh (2009), Anderson
and Holt (2008), Sacerdote (2014), and Blume et al. (2011). These surveys cover tests
of cascades theory in the experimental laboratory (Anderson and Holt (2008)), in field
experiments (Duan, Gu and Whinston (2009)), and with archival data (Tucker, Zhang
and Zhu (2013), Amihud, Hauser and Kirsh (2003)).

2 The Simple Binary Model: A Motivating Example

We illustrate several key intuitions in a setting with binary actions, states and signals,
which we call the Simple Binary Model, hereafter, SBM. The SBM is a modified version



of the binary example of ( ), hereafter BHW.?
The SBM illustrates how information cascades can block social learning, and can be
extended to illustrate many further concepts. Nevertheless, some of the conclusions of
the SBM are more robust than others to changes in the model. We recurrently discuss in

this survey when these effects do or do not arise in various other social learning settings.

2.1 Basic Setup: Binary Actions, Signals, and States

Individuals I3, I, I3, ... make choices in sequence. Each agent /,, chooses one of two
actions, High (a,, = H) or Low (a,, = L). The underlying state #, which is not observed,
takes one of two possible values, H or L. The two states are equally likely ex ante. We
will often view the H state as one in which there is high payoff to some activity and
the L state in which there is low payoff to that activity. In such cases we call action H

“Adopt,” and action L “Reject.” Table 1 summarizes the notation used in this survey.

Each agent I, receives a binary symmetric private information signal s,, = h
or s, = {, with probability p := P[s,, = h|0 = H| > 1/2 and P[s,, = h|0 = L] = 1 — p.

Signals are independent conditional on 6.

We refer to p as the signal precision. Let the belief precision of a possible belief
q about the state ¢ be |¢ — 0.5|. The greater the signal precision, the closer the belief is

to 0 or 1, implying more certainty about the state.

By Bayes’ rule, the posterior probability P[0 = H|s, = h] = p,and P[0 = H|s,, = (] =
1 — p. By the symmetry of the SBM, h and ¢ signals have offsetting effects on posterior
beliefs, so P[§ = H|s; = h, s, = ¢] = 1/2, and if an agent sees or infers certain num-
bers of predecessor h and ¢ signals, the updated belief depends only on the difference

between these numbers.

3The simple binary model is the special case of the BHW model with symmetric binary signals. The
model of ( ) differs in several substantive ways, as described in § 3.



Table 1: Notation Guide

Notation Base case assumption

State ¢ 0e{L,H}
Signal s, for agent I,, s, € {{,h}
Action a, for agent I,, a, € {L,H}
1 if0d=a

Utility (60, a) u(f,a) =
0 otherwise

All agents have the same utility function (6, a), which is equal to 1 if a = 6
and to O otherwise. Therefore, each agent chooses the action that is more likely to
match the state given her information. If /,, assigns equal probabilities to both states,
she is indifferent between the two actions, in which case we assume that she follows

her private signal, a,, = s,,.*

We refer to social information in this survey as information derived from ob-
serving others, the social belief at any step in the sequence as the belief that an outside
observer would have based only on the social information of agent /,,, and an agent’s
private belief as the belief implied solely by the agent’s private signal. Each agent’s action
choice is of course based on the agent’s full information set. It is common knowledge

that each [,, knows the decision model and information structure of predecessors.

4The qualitative properties of this model are robust to changes in the tie-breaking rule. For the purpose
of providing minimal examples, we sometimes employ different tie-breaking conventions for the behavior
of indifferent agents. Although pedagogically convenient, such ties could be eliminated, with similar

results, by slightly perturbations of the model parameters.



We contrast two regimes for social observation:

1. The Observable Signals Regime: Each agent observes both the signals and the

actions of all predecessors.”

2. The Only-Actions-Observable Regime: Each agents observes the actions but not

the private signals of all predecessors.

In the Observable Signals Regime, the pool of social information always ex-
pands, and by the law of large numbers the social belief becomes arbitrarily close to
certainty about the correct action—Adopt if § = H, Reject if # = L—and thus eventually
behave alike. An outcome in which all agents behave alike forever is called a herd. We

define herds more formally in § 4.3.5.

In the Only-Actions-Observable Regime, each agent’s action depends on the
publicly observable action history and the agent’s own private signal. In this regime, the
precision of the social belief is weakly increasing with 7, so it is tempting to conjecture
that highly accurate outcomes will again be achieved. But in fact, the precision of the
social belief hits a finite ceiling, as we will discuss. It is easy to show that the choices of a
few early predecessors determine the actions of all later agents. In consequence, agents

still herd — but often upon the wrong action, the choice that yields a lower payoff.

Throughout this review, our default premise will be the Only-Actions-Observable
regime; we only mention assumptions when they deviate from the base set of assump-
tions of the SBM. The SBM, and modest variations thereof, are rich sources of insight

into social learning.

SActions do not convey any additional information as a predecessor’s signal is a sufficient statistic for
her action.
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2.2 Why information stops accumulating: Information cascades

To see why outcomes are inefficient in the Only-Actions-Observable Regime, consider
each agent in sequence. Figure 1 shows the possible chains of events. Agent I, Ann,
adopts if her private signal is h and rejects if it is /. Agent I, Bob, and all successors
can infer Ann’s signal perfectly from her decision. So if Ann adopts, and Bob’s private
signal is h, he also adopts. Bob knows that there were two h signals: he infers one
from Ann’s actions and has observed one privately. If Bob’s signal is /, it exactly offsets
Ann’s h, making him indifferent between adopting and rejecting. By our tie-breaking
convention, Bob follows his own signal and rejects. In this setting, regardless of which
signals Ann and Bob receive, each chooses an action that matches his or her signal, and

thus their actions reveal their signals to later agents.

Agent I3, Carol, now faces one of three possible situations: (1) Ann and Bob
both adopted (their actions were H H), (2) both rejected (LL), or (3) one adopted
and the other rejected (HL or HL). In the H H case, Carol adopts regardless of which
signal she received, since the majority of observed or inferred signals is / even if she
received an /. In other words, Carol’s action is independent of her private information

signal—she is in an information cascade, defined as follows:

Definition 1. An agent is said to be in an information cascade if it is optimal for her to

choose an action which is independent of her private signal.

Crucially, in the H H case, Carol’s action provides no information about her
signal to her successors. Her action has not improved the public pool of information; the
social belief remains unchanged. Hence all later agents face the same decision problem
that she did. Once Carol is in an Adopt cascade, all her successors also adopt, ultimately
based only on the observed actions of Ann and Bob. Similarly, in the second case, two

Rejects (L L) put Carol and all subsequent agents into a Reject cascade.

In the third case, Ann has adopted and Bob has rejected, or vice versa. Carol

infers that Ann and Bob observed opposite signals, so the social belief is that the two
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Figure 1: Event Sequence
This figure shows a sequence of possible early events and optimal choices in the SBM. Possible signals are
h and ¢, which are indicative of states H and L respectively. The main focus is on events after an initial
h signal. Multiple nodes that are in the same information set from the viewpoint of later observers are
surrounded by dashed lines. Action H is correct in state H, and action L is correct in state L. Two circles
for I, are in cyan to indicate that when these nodesZare reached, the next player, I3, will face the same
inference problem as I; following the initial cyan node. Nodes that are in an information cascade are

shaded in peach.



states are equally likely. Her decision problem is therefore identical to that of Ann, so
Carol’s decision is to follow her private signal. In turn, this makes the decision problem of

agent I, Dan, isomorphic to Bob’s—he need only pay attention to his latest predecessor.

More generally, taking agents pairwise starting from (/y, I5), the only way to
avoid an information cascade is for each pair to contain one Adopt and one Reject.
If this occurs through any even number of agents, the next agent can infer that the
number of past h and /¢ signals was equal, so that past actions can be ignored. Following
any such history of paired opposing actions, the next two agents may both receive the
same signal (which occurs with probability p? + (1 — p)?). When the next two agents
observe the same signals, they take the same action, so the next agent is in a cascade.
Once an agent is in a cascade, so are all successors.® It follows that a herd also occurs.
Furthermore, since each pair has a fresh chance to start a cascade, a cascade happens

eventually, almost surely.

Cascades tend to start early—based on a small preponderance of evidence
in the social belief. Even in the least cascade-favorable scenario of very noisy signals
(p ~ 1/2), by the time the 20" agent has to decide, the probability of not being in a
cascade is already under 0.1%, and the expected number of agents who act on private
information before a cascade starts is under four. So the private information of all but a

few agents is lost to the group.

Once a cascade starts, no new information about state becomes public; the
accuracy of the social belief plateaus. An early preponderance of either Adopts or Rejects
causes all subsequent agents to rationally ignore their private signals. These signals
thus never join the public pool of knowledge. Agents disregard their private signals
before the social belief becomes very accurate. Specifically, as soon as the social belief is
more precise than the signal of just a single agent, the next agent falls into a cascade.

We will call this the logic of information cascades.” The logic of information cascades

%In general, however, a cascade can occur for just one agent or can continue for any given number of

agents.
’In a setting with more than two possible signal values, two identical successive actions do not
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implies that cascades are often incorrect—they are idiosyncratic.

The accuracy improvement from social observation in the Only-Actions-Observable
Regime falls far short of the outcome in the Observable Signals Regime, in which even-
tually everyone makes the correct decision. Indeed, when private signals are very noisy
(e.g., p = 1/2 + ¢), the social outcome is almost pure noise. This falls far short of per-
fect information aggregation, wherein decisions for later agents would become almost
perfectly accurate. Specifically, the increase in accuracy that agents obtain from being

able to observe the actions of predecessors is negligible.®

The social outcome in the Only-Actions-Observable Regime depends heavily on
the order in which signals arrive. If signals arrive in the order hh¢( ..., then a cascade
starts and everyone adopts. If, instead, the same set of signals arrives in the order

¢Chh ..., everyone rejects. So cascades and welfare are path dependent.

2.3 Lessons of the Binary Model

The SBM illustrates a number of key concepts that are empirically testable, and which

also obtain in some more general settings.

Conformity: People end up following the behavior of others.

The conclusion that agents conform to the actions of others—even incorrect
actions—holds in a wide array of social learning models. The SBM provides a
useful benchmark for assessing which assumptions are crucial for this conclusion.

In later sections we will see that a similar conclusion can hold with more general

necessarily start a cascade. The general point is that a fairly low-precision social belief can be enough to

trigger a cascade.
8 In the Only-Actions-Observable Regime, the probability of a correct cascade (Adopt if and only if

6 = H) can be shown to be ﬁ For a noisy signal as above, this is approximately 1/2 + 2¢. This is
not much better than an agent could do based solely on private information, which results in a probability
of choosing correctly of p = 1/2 + e.
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action spaces and signal distributions, and under different assumptions about
the timing of moves, observability of others, and the decision of whether to
acquire information. However, some variations of modeling assumptions such
as unbounded private signals, certain psychological biases, and negative payoff
externalities (such as congestion effects) can break this conclusion, even when

information cascades still occur.

Idiosyncrasy and Path Dependence: Despite a wealth of private information, which
in the aggregate would assure the correct action if it could be made fully available
for use, the behavior of most agents often ends up being incorrect—idiosyncrasy.
Later in this survey we examine the robustness of this conclusion. Specifically,
when does society converge to correct behavior? And under what conditions is

there persistent idiosyncrasy?

In particular, the actions of a few early agents tend to be decisive in determining
the actions and success of a large numbers of successors. Social outcomes have low
predictability. In other words, outcomes are path-dependent. This problem raises
the question of whether policy can improve outcomes. As such, there has been

extensive interest in path dependence even in settings without social learning

( ( ) ( ).

Information Externality: Each agent takes an action that is individually optimal, with-
out consideration of the informational benefits to later agents. A greater benefit
could be conferred upon later agents if early agents were instead to act in ways
that reveal their own signals. The wastage of private information blocks efficient

outcomes.

In a range of social learning settings, owing to the information externality, agents
conform surprisingly quickly, blocking information aggregation. In other settings
(e.g, ( ) and ( )), the information externality
does not lead to complete blockage of learning. But even in such settings, learning

is much slower than in the Observable Signals Regime, though not completely
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blocked (see also ( ) and
( ).

Fragility: Fragility is a recurring property in some of the social learning models that
we explore in this survey. In the SBM, cascades start at a social belief that is
not much more precise than a single private signal. Hence, any comparably
informative additional (public or private) signal added to the model could dislodge
the cascade—cascades are fragile.” In other words, society spontaneously wanders
to a position that is highly sensitive to small shocks. Even with more general signal
distributions than the SBM, once the social belief is more informative than the

most informative signal value, a cascade starts, resulting in fragility.

This contrasts with settings in which social outcomes tend to be insensitive to
small shocks (outside particular parameter values that happen to put the system

close to a knife edge; ( )).

The SBM and the cascades model of BHW provide some surprisingly extreme
outcomes: complete blockage of learning along with identical action choices. However,
the broader intuition that information externality limits learning suggests that similar
but milder possibilities can occur in more general settings: that learning becomes very

slow, and that actions become very similar.

Due to its simplicity, the SBM serves as an intuition pump for more complex
scenarios. It illustrates which assumptions are crucial and allows us to isolate the effects
of changes in assumptions. For example, using a different tie-breaking rule, or allowing
for finitely many signal values instead of two qualitatively makes no difference, as shown
by BHW. We will likewise see that allowing for endogenous signal acquisition or for
endogenous timing of decisions only strengthens the key punchlines. Various other

settings also maintain information blockage as in the SBM.

However, there are other modeling variations in which key implications of

"We define fragility formally in § 6.
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the SBM do not hold. Furthermore, varying assumptions produce interesting new
phenomena, such as the endogenous sudden onset of avalanches of activity by many
agents triggered by the action of a single agent, eventual learning, or shattering of
cascades after their formation. Two insights of the SBM, information externality and
herding, are preserved in a very wide spectrum of models, resulting in slow social

learning.'®

These extensions sometimes involve relaxing the SBM’s common knowledge
assumptions, for example by allowing for privately known preferences, observations and
signal precision. In the SBM, agents observe all predecessors and no one else. In more
general models of learning in social networks, different agents may observe different
subsets of predecessors, and agents may not always know what their predecessors have
observed. In models with imperfect rationality, the true economic environment is not
common knowledge as agents may systematically misestimate the information sets
of predecessors. Exploring different directions for generalization, and isolating the
effects of different features of the social learning environment, is a focus of much of the

remainder of this survey.

3 Varying the action space

In the SBM, agents chose from one of two actions, and receive a utility that is one if the
action matches the state, and zero otherwise. More generally, agents choose an action

from some action set, and receive a utility that depends on the action and the state.

The SBM is extreme in having only two actions. At the other extreme, the
set of available actions is continuous and, under reasonable assumptions, even a small

variation in an agent’s belief causes a small shift in action. If so, agents’ actions always

10An exception is the model of ( ), where there is an information externality but no herding.
Since actions are taken in a continuum with full responsiveness to signals, there are no cascades or
herding.
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depend on their private signals, and therefore reveal their private signals. Hence there

is no cascade, and late agents eventually learn the state with near perfection.

Between the binary and continuous extremes, the actions sets that agents
choose from are large but finite. For example, firms may choose some technology to
adopt, and people choose which sports event to attend, whether to marry one person or
another, or how many children to have. Voters must usually choose one from among a
set of candidates. Moreover, continuous choice sets are often truncated. For example,
the alcohol consumable at dinner is bounded below at zero and above by the limits of
human capacity. Furthermore, there is evidence that people sometimes discretize their
choice sets, such as restricting their investment orders (price, quantity, or market value)

to round numbers ( ( ), ( ),

( ), ( ).

When agents have more available choices, they can potentially attune their
actions more finely to their private signals. This can allow later agents to learn more
from their predecessors’ actions. This in turn suggests that the problem of incorrect
cascades may diminish as the action space is enriched. Indeed, one might think that
a sufficiently rich action space will make the problems of social learning completely

vanish. We will see that this is only sometimes true.

As an example of a simple setting in which agents eventually learn the state,
suppose that the two possible states are § = 0 or 1. Agent [,, chooses an action a,, from
the interval [0, 1] and chooses the payoff that minimizes the mean-squared error, i.e.,
the utility function is u(0, a,,) = —(6 — a,)*. In this setting, I,,’s optimal action is strictly
increasing in her beliefs and therefore perfectly reveals her private information. More
generally, ( ) defines a notion called responsiveness, which loosely speaking
means that actions are sensitive even to small differences in beliefs. He shows that
responsiveness is a sufficient condition for eventual learning of the true state, for any
private signal distribution. Intuitively, if /,’s chosen action is always even slightly

responsive to [,,’s private signal, subsequent agents can learn /,,’s private signal. This
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results in eventual convergence of beliefs to the true state.

This reasoning may seem to suggest that a continuous action space always
eliminates cascades, and results in eventual learning of the state. However, even with a
continuous action space, an agent’s optimal actions could be unresponsive to the signal.
This occurs if there is a particular action that is optimal at more than one belief, in
which case it is optimal at an interval of beliefs. For example, this occurs if the action
space is [0, 3/4], and the utility is, as above, u(, a,,) = —(0 — a,)?. In this case a,, = 3/4
is optimal for all beliefs above 3/4. When the interval at which a single action is optimal
is large enough as compared to the informativeness of the signals, no information is
revealed about private signals once this region is entered, and a cascade starts. When
the set of actions is finite this always happens, and so a cascade starts (and never ends)
almost surely (in the spirit of Proposition 1 in BHW). With positive probability, this
cascade is incorrect.

Restricting to mean squared error preferences and binary signals, and allowing
for multiple states, ( ) obtains a necessary and sufficient condition for fully
revealing information cascades. A necessary condition is that the action space not be
finite. With a finite action space, choices cannot be responsive; at least one action has
the property of being optimal for a range of probability beliefs. This makes actions less
informative about agents’ private signals. In consequence, incorrect cascades can arise,

i.e., there is idiosyncrasy.

Models with a continuum of actions usually have continuous utility functions.
An early and prominent exception is the model of ( ), in which incorrect
cascades occur despite a continuous action space. The unknown state ¢ is uniformly
distributed on [0, 1], and agents choose an action a € [0, 1]. Each agent obtains a payoff
of 1 if she chooses action a = # and a payoff of zero if a # 6. Each agent receives either
no signal (and is uninformed) or one signal. An informed agent receives a signal about
¢ that is either fully revealing or is pure noise (in which case it is uniform on [0, 1]). An

informed agent does not know which of these two possibilities is the case.
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In this model, the payoff from matching the state is substantially greater than
from even a slight miss. There is a positive probability that any given predecessor’s
action a* matches #. So when an agent observes that a predecessor chose action a*, the
expected payoff from choosing a = a* is greater than from choosing a = a* + ¢, even
when |¢| > 0 is arbitrarily small. In consequence, the optimal action is not responsive
to small changes in an agent’s signal. Thus, early agents may fix upon an incorrect

action—an incorrect cascade.

A broader question is whether increasing a finite number of action choices
helps prevent incorrect cascades, or at least limits their adverse effects. From a welfare
viewpoint, we are now interested not just in whether cascades are incorrect, but in how

large the expected mistakes are.

As earlier, suppose that the H state of the SBM corresponds to value 6 = 1,
and the L state to value # = 0. As in the SBM, signals are binary, 4 or ¢ with precision p
about §. However, now suppose further that there are M possible action choices that
are evenly spaced between 0 and 1 and always include these two values. (In the SBM,
M = 2.) So the action set is defined to be {0,1/(M —1),...,(M —2)/(M —1),1}. When
M = 3, the possible actions are 0, 1/2 and 1.

Under mean squared error preferences u (6, a,,) = —(6 —a,,)?, each I,, optimally
chooses the action a,, that is closest to her inferred probability that the true state is 1.
(For example, if the agent’s posterior belief about the state is 1/3, and the choices are
[0,1/4,1/2,3/4,1], the agent chooses 1/4.) We continue to assume that when an agent

is indifferent, she chooses the action that corresponds to her private signal.

In this setting, cascades form with probability 1 (for reasoning similar to
the proof of BHW Proposition 1). We measure the social inefficiency as the expected

disutility of the late agents, lim,, ., E,[(6 — a,)?].

The inefficiency is not in general monotonic in the number of actions. In fact,

efficiency can decrease when the action set is increased by adding an action without
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dropping any existing ones. To see this, suppose that the signal strength is p = 0.7.
When M = 2 the set of actions is {0, 1} and I, follows her signal (a; = 1 if s; = h and is
0 otherwise). Thus, I learns I;’s signal. Adding a third action (M = 3) at 1/2 induces
I, to choose 1/2 regardless of signal, as the more extreme actions of 0 or 1 (depending
on whether the signal was ¢ or h) would leave her too exposed to the quadratic disutility
of action error. Since /;’s action is uninformative, all subsequent agents are in a cascade
upon the same choice, a = 1/2.1! More generally, when more actions are introduced,
agents may prefer to cascade upon one of the intermediate choices, to the detriment of
later agents, rather than using their own signals to take more extreme and informative

choices.

Nevertheless, as the number of actions M becomes large the agents cascade
upon an action that is likely to be at or near the correct action, and the inefficiency
converges to 0. Indeed, even a few choices can significantly improve the sensitivity
of action to signal, thereby improving information aggregation ( ( )). For
example, when p = 0.7, moving from M = 3 to M = 5 reduces the inefficiency from 0.25
to less than 0.04. On the other hand, when signals are noisy, there can be significant
inefficiencies even for surprisingly fine action spaces. For example, if the signal strength
p = 0.51, an increase from M = 3 to the much more refined M = 49 does not increase
efficiency. Agents continue to cascade immediately on the middle action of 1/2 (or
an action near it), which results in low accuracy of the cascade. Overall, owing to
information cascades, even a modest degree of nonresponsiveness of actions to signals

(due to the finite number of action choices) can result in substantial social inefficiencies.

In this example, agents have binary signals. However, the same conclusions
apply for any signal distribution, as long as signals are weak enough. There is even
inefficiency with (weak enough) continuous signals. Intuitively, with sufficiently noisy

signals, agents’ actions tend to be pushed toward intermediate actions. This leads to

This is not driven by tie breaking and the choice of 1/2 for the additional action; the same would
occur for any number close enough to 1/2.
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frequent cascading at or near the center wherein all agents follow the first agent. What
matters for the example is that with a sufficiently noisy signal, the induced belief is

never far from 1/2.

Another property of the analysis that is robust to a change in the signal distri-
bution is that as M becomes larger, information aggregation eventually improves and
the disutility of late agents tends to 0. For a given signal distribution, as M becomes
large, eventually /; is willing to venture outside the intermediate actions, as doing so
increases the maximum possible error very little. Information aggregation improves,
and inefficiency declines. Similarly, the conclusion that efficiency is nonmonotonic in

the number of actions M also applies under more general signal distributions.
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4 General Signal Distributions

In the SBM there are only two possible signal values, 4 or ¢, but information is often
finer-grained. For example, a corporate manager might receive a profitability forecast

about a possible investment project that can take one of many possible values.

The natural questions are then: For which signal distributions do information
cascades still arise? When do agents eventually herd upon identical actions? What is
the effect of the private signal distribution on the probability of settling on the correct
action? Understanding these questions requires technical specifics, so this section is

more formal than much of this survey.

As in the SBM, we assume a binary state and binary actions, and that 7,, takes
an action a,, after observing I, through I,,_;, with the goal of matching the state. We
also still assume that private signals s,, are i.i.d. conditional on the state ¢, but we now
allow a general signal distribution.'? We still assume that private signals are inconclusive
about the state, i.e., the private belief as defined in § 2, b, = P[0 = H]|s,], is in (0, 1).
Let the social belief be defined as

P, =Pl0 = Hlay,...,a,)],

the belief held by an outsider who can observe the agents’ actions and has no private

information. It is convenient to define the social log-likelihood ratio

P’IL

12This setting is very flexible. For example, it can capture a situation in which agents have private
information about the precision of their own signals. To see this, consider a signal that is comprised of
two parts. The first is a symmetric binary signal taking values of either ¢ or h, as in the SBM. The second
is a value p that is random and independent of the state, and which gives the precision of the binary

signal.
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and the private log-likelihood ratio'>

P =H
r, = log —[Snw ]

P[s,|0 = L]
By Bayes’ rule, agent I,,’s posterior log-likelihood ratio for the two states is R,,_; + 7,:

log P[0 = Hlay, ..., an_1, Sy ~log Play, ..., an-1,500 = H] Pl§ = H]

P Play,...,an1,8,]0 = L] P[0 =1L]
Play,...,a,110 = H] P[0 = H| P[s,|0 = H]
Pla,...,an 1|0 =L] P[0 =L] P[s,|0=L]

0 =Llay,...,a, 1,8,

Since the utility of an action depends only on the state, the agent’s expected utility
of an action, given the agent’s information, is a monotonic function of the posterior
log-likelihood ratio. In consequence, an agent will optimally take action H when this

ratio is positive, and action L otherwise.*

The social belief P, (or, equivalently, the public log-likelihood ratio R,) con-
verges almost surely as the number of agents becomes large, though not necessarily
to the truth. This is a general property of any sequence of beliefs of Bayesian agents
who collect more information over time. This convergence follows from the Martingale
Convergence Theorem (MCT), and the fact that the sequence Py, Ps, ... is a bounded
martingale. More generally, the MCT is a useful tool for analyzing asymptotic out-
comes in social learning settings, as it ensures convergence of beliefs under rather mild

assumptions.

13This definition of the private log-likelihood ratio holds when private signals are discrete. In the case
that the conditional private signal distributions have densities, r,, will equal the logarithm of the ratio of

the densities.
“When R,,_; + r, = 0, the agent is indifferent between the two actions. The tie-breaking convention

is not important for our conclusions in this section.
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4.1 Bounded vs. unbounded private signals

The distribution of private signals, and hence of the private beliefs b,, is key to under-
standing whether cascades occur, and whether agents eventually learn the state. If
agents may receive arbitrarily accurate signals, then it is intuitive that agents will end
up making very good decisions. In contrast, bad outcomes are possible when signals are

not arbitrarily accurate, as in the SBM.

The concept of arbitrarily accurate signals is formalized with the notion of
unboundedness. We say that private signals are bounded if the resulting private belief
b, is not arbitrarily extreme, i.e., there is some £ > 0 such that the belief is supported

between c and 1 — ¢:
b, >cand b, < 1—¢ almost surely.

We say that a private signal is unbounded if, for every ¢ > 0, the probabilities P[b, < ¢]
and P[b, > 1 — ¢ are both non-zero. With an unbounded signal distribution, signal
realization sometimes have arbitrarily high informativeness. Boundedness is a property
of the possible beliefs induced by a signal, rather than the range of the signal values per

Se.

An example of a bounded signal on [0, 1] is one which has density f.(s) = 3/2—s
in state L and fy(s) = 1/2 + s in state H. If, instead, the conditional densities in the

two states are fr(s) = 2 — 2s and fy(s) = 2s, then the signal is unbounded. The

log-likelihood ratio log ]’;L[ ((i)) (and therefore the belief) is bounded in the first case, but

can take any value in the real line in the second case.!®

As shown in ( ), agents eventually learn the state
(in a sense to be made precise later) if and only if signals are unbounded. If the set
of possible signal values is finite, having unbounded signals is equivalent to having

some signal values that reveal the state. We have ruled out signals that reveal the state,

I5A signal can be neither bounded nor unbounded; for example, it could be the case that the private

beliefs can take values arbitrarily close to 1, but are bounded away from 0.
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but in fact the possibility of state-revealing signals implies eventual learning of the
state, as do unbounded signals more generally. Kartik et al. (2022) point out that when
there are three or more states, unbounded signals (appropriately defined for the case of
multiple states) are ruled out if the signal distribution has full support and is monotone.
The authors obtain sufficient conditions on signals and utility functions that guarantee

eventual learning of state.

4.2 Evolution of the Social Belief

We next describe how agents’ actions, and thereby the social belief, evolves over time.
From the viewpoint of an outsider, the agents’ actions form a simple stochastic process
with an elegant stationarity feature: An agent’s action depends on history only through
the social log-likelihood ratio, which captures all the information contained in past
actions about the probability of the H state. So following Smith and Sgrensen (2000),
we denote by

pla, R, 0") =Pla, = a|R,_1 = R',0 = 0] (D

the probability that agent /,, takes action a when the social log-likelihood ratio is R’ and
the state is # = ¢'. The stationarity property is manifested in the fact that the function

p does not depend on n.

Using p, we can define a deterministic function v that gives the social belief
at time n, given the social belief at time n — 1 and the action at time n, so that R,, =
¥(R,_1,a,). Since an observer of social information updates her LLR based on the

information contained in the latest action, the updated belief satisfies

ny Bon—1, H
¢(Rn—17 an) = Rn—l + 1Og p(a ! )

p(anaRn—laL) ' (2)

This derives from applying Bayes rule to calculate the updated social belief P, from

P, and a,,.
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4.3 Asymptotic Learning, Cascades, and Limit Cascades

Under cascades, agents sometimes make incorrect decisions even in the long run. To
put this in a broader perspective, we now define asymptotic learning—a situation in
which the social belief becomes arbitrarily accurate. We then consider the conditions
under which asymptotic learning occurs. We also define limit cascades, which are a

variant of cascades.

4.3.1 Asymptotic learning

We say that there is asymptotic learning if the social belief P, almost surely tends to 1
with n when the state is H, and to O when the state is L. Two other possible definitions

for asymptotic learning are the following:

1. The sequence of actions a4, as, . . . converges almost surely to 0, i.e., all agents from

some I,, on take the action that matches the state.

2. The probability that agent /,, takes an action that matches the state tends to one

with n.

In this setting both of these are equivalent to asymptotic learning. Intuitively, if beliefs
are almost perfectly accurate, so are actions. And for actions to be almost always accurate
under the infinite range of possible signal realization sequences, beliefs must also almost
always be highly accurate. When asymptotic learning fails, there is idiosyncrasy, as

defined informally in § 2.

4.3.2 Information Cascades

Our definition of information cascade in § 2, that the agent takes the same action
regardless of her private signal, can be rephrased as follows. An information cascade

occurs when, for some agent I, the social log-likelihood ratio R, _; is either so high or

27



so low that no private signal can influence the action, i.e., cause [,,’s action to depend

on [,’s private signal. This occurs if and only if
Q/J(Rnth) = w(Rnth) = Rnfla (3)

i.e., whenever the social belief remains unchanged after observing the action.

4.3.3 Limit Cascades

A limit cascade occurs if the agents’ actions converge, the limiting action is sometimes
incorrect, and each agent chooses either action with positive probability. As with asymp-
totic learning, the probability that an agent chooses differently from her predecessor
decreases quickly enough that, with probability one, from some point on, all agents
choose the same action. As with cascades, this action is often incorrect, i.e., the social
outcome is idiosyncratic. More formally, in a limit cascade the social log-likelihood ratio
R, tends to a limit that is not +o0o or —oo, but (unlike cascades proper) does not reach
that limit in finite time ( ( )); ( ) provides an example
of essentially the same phenomenon. Thus, the outside observer’s belief converges to

an interior point in [0, 1].1°

If the latest k agents all take the same action, then as & increases, the next agent
follows the latest action under a wider range of private signal values. This causes the
actions of successive conforming agents to become less and less informative. But since
each agent’s action always depends on her private signal, actions are never completely
uninformative. This contrasts with information cascades, in which actions become
completely uninformative. In limit cascades, social learning becomes arbitrarily slow

without ever stopping.

Moreover, the informativeness of conforming agents’ action drops so quickly

that agents do not, in the limit, learn the state. Empirically, the implication is essentially

16The limit cascades concept differs from cascades, since a cascade occurs at a point in time, whereas a

system is identified as being in a limit cascade only at time infinity.
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identical to that of information cascades: society may fix upon an incorrect action

forever,

4.3.4 Conditions for the Three Possible Social Learning Outcomes

There are three possibilities for the asymptotic outcome of the process: (i) an information
cascade, (ii) a limit cascade, and (iii) neither of the two. These three cases can be
equivalently characterized by the limiting behavior of the social log-likelihood ratio R,
which must converge by the Martingale Convergence Theorem. In case (i) R, converges
in finite time to a finite R.,. In case (ii) it again converges to a finite R, but not in
finite time. And in case (iii) it converges to some R, € {—o0,00}. It follows that in
this latter case there is asymptotic learning. ( ) describe the

relation between signal structures and these three possible outcomes.

In the SBM, the only possible outcome is an information cascade. As shown by
BHW, this holds more generally when the set of possible signal values is finite. When
signals are bounded but not finite, either cascades or limit cascades can occur. For
example, there are always limit cascades when private signals are distributed uniformly
on [0,1] in state L and have density f(s) = 1/2 + s on [0,1] in state H (

( ).

When signals are unbounded, there is always asymptotic learning. In other
words, almost surely R,, converges to +oco or —oo and the social belief converges to either
1 or O, respectively. Asymptotic learning fails when cascades or limit cascades occur
with positive probability. In this case, the social belief converges to some P, € (0, 1),

and the probability that agent I,, chooses correctly tends to max{ Py, 1 — Py} < 1.7

Why do bounded signals block asymptotic learning? Signals are bounded if

17For example, when a cascade starts, the social belief reaches P... If P,, > 0.5, the agent adopts,
and this is correct with probability P.,. Similarly, if P, < 0.5, the agent rejects, and this is correct with
probability 1 — P...
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and only if there is some finite M such that the private log-likelihood ratio r, induced
by I,’s private signal is contained in [/, M]. Thus, whenever the social log-likelihood
ratio R, ; exceeds M in absolute value, the agent disregards her own signal, since
R,,_1 + r, must have the same sign as R,,_;. It follows that if |R,,_;| > M, (3) would

hold, and a cascade would ensue. Thus it is impossible that lim,, R,, = +o0.

Unbounded signals imply that information cascades and limit cascades are
impossible, and asymptotic learning is obtained. To see why, suppose that R, the limit
of R,, is finite, so that a limit cascade or a cascade occurs. Let ¢, be the probability
that 7,, chooses H conditioned only on social information. This probability depends
only on R, and is strictly between 0 and 1 for any R, since signals are unbounded. In
the long run since R, converges to some finite R, ¢, will approach some probability
0 < g < 1. So an observer who sees the action sequence is essentially receiving an
infinite stream of binary signals of approximately constant precision. This observer’s
beliefs become perfectly accurate, which contradicts the premise that the social log

likelihood ratio is bounded.

To sum up, in this setting, there is asymptotic learning if and only if signals are
unbounded. When signals are unbounded, no matter how long past agents have been
following a mistaken action, there will eventually be an agent with a strong enough
signal who will overturn that action. Conversely, when signals are bounded, then the
social belief cannot become too accurate, since a cascade would be triggered, blocking

further information aggregation.

When there is a cascade, resulting in poor information aggregation, an ad-
ditional exogenous shock can easily dislodge cascading on the action that was most
popular before the shock. So, as in the SBM, outcomes in the setting with general

bounded signal distributions can be fragile, a concept developed explicitly in § 6.

A largely unexplored question is the extent to which unbounded signals still
succeed in bringing about asymptotic learning when agents are not expected utility

maximizers. An exception is ( ), in which agents know the precisions of their
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own private signals but not of other agents’ signals, and are ambiguity averse with
respect to this parameter. This can deter agents from breaking a cascade, as agents may
fear the worst-case scenario (from the perspective of deviating from the cascade) that
predecessors in the cascade are very well-informed. In contrast, when contemplating
following one’s own signal, an agent is not very fearful of joining the cascade, as the
worst that happens is that the agent loses the benefit of the agent’s noisy signal. In
consequence, even when signals are unbounded, there can be information cascades and

no asymptotic learning.

4.3.5 Herds and Speed of Convergence

A herd is a realization in which all agents behave alike from some point on. Formally,
a herd starts from agent [, if all later agents take the same action, that is, if a,, = a,
for all m > n. BHW show that when private signals are finitely supported, herding
occurs with probability one. ( ) further show that a herd occurs
with probability one more generally for any bounded or unbounded signal structure. It
follows that when signals are unbounded, with probability one agents eventually take
the correct action. This is somewhat surprising; it happens despite the fact that each
agent in the herd has a positive probability of taking either action, i.e., there is herding
without cascades. What is even more surprising, as we will see in § 8, is that in other

social learning settings there can also be cascades without herding.

So a natural question is: under asymptotic learning, how long does it take
for a correct herd to form, and how does the speed of learning depend on the signal

distribution?

Asymptotic learning may be much slower than the social optimal rate that
would be achieved if private signals were disclosed publicly. In this sense asymptotic
learning may be very inefficient. The information externality remains; each agent takes
the action that is best for her without regard to the information that her action conveys

to others.
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Smith and Sgrensen ask in particular whether the expected time until a correct
herd forms (i.e., until the last time the wrong action is taken) is always infinite. Hann-
Caruthers, Martynov and Tamuz (2018) show that this expectation can be either finite

or infinite, depending on the tail of the distribution of the private beliefs.

Rosenberg and Vieille (2019) also study how quickly agents converge to the
correct action when signals are unbounded. They focus on the expectation of the first
time that a correct action is taken; this is (perhaps not obviously) very closely related
to the time at which a correct herd starts. Their very elegant main result is that this
is finite conditioned on a given state if and only if [ 1_—}m(q)dq is finite, where F' is the
cumulative distribution function of the private belief in that state. Thus, when private
beliefs have very thin tails on the “correct” end—i.e., very low probabilities of extremely

informative correct-direction signals—the expected time can be long.

Even with continuous action spaces and unbounded signals, the learning
process may still be very slow, as shown by Vives (1993; 1997). In these models, agents
only observe a noisy signal about the average actions of predecessors, which relaxes
the assumption that the actions of others is common knowledge. Similarly, Chamley
(2004a), Acemoglu et al. (2011) and Dasaratha and He (2019) provide models with
slow convergence. The review of Gale (1996) points out that very slow asymptotic
learning, as occurs in several models, may be observationally indistinguishable from

complete learning stoppages as in settings with incorrect cascades.

4.3.6 Modeling Considerations

It is largely a matter of convenience whether to model signals as unbounded, so that
incorrect cascades never occur, or bounded, so that either cascades or limit cascades
occur. There is no way to empirically distinguish a signal distribution that includes
values that are extremely rare and highly informative, versus one where such values
do not exist at all. So for applications, either modeling approach is equally acceptable.
(For a similar perspective, see Gale (1996) and Chamley (2004b).)
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In many applied contexts, the signal space is in fact finite.'® In such contexts,

we expect to see cascades rather than limit cascades.

Regardless of whether the setting implies cascades or limit cascades, if the
setting is modified so that acquiring private signals is even a little costly, then, as
discussed in § 7, agents eventually stop acquiring private information. So information

aggregation is completely blocked regardless of whether signals are unbounded.

4.4 Heterogeneous Precision and Influencers

Social psychologists report that people imitate the actions of experts. When a sports
star uses a particular brand of equipment, it is an expert product endorsement likely
to sway observers, as with Roger Federer’s endorsement of Wilson tennis rackets and
gear. Of course, sports gear often has a non-utilitarian “fashion” element. However, it is
plausible that a tennis star knows how to choose an effective racket. Such endorsements
may be less compelling for products that are unrelated to the endorser’s primary domain
of expertise. However, even outside this domain, observers may still view the decisions
of an exceptionally successful individual as reflecting knowledge about what choices are

most effective.

As the tennis example illustrates, some agents may have systematically more
accurate signals than others. This raises the questions of whether small differences in
accuracy can make big differences for social outcomes, whether increasing the accuracy

of some agents necessarily improves social outcomes, and whether agents with higher

18For example, people often obtain information signals through casual conversation with limited nuance.
(“Is that movie worth seeing?” “Yeah.”) There is evidence from psychology that there are minimum
distinguishable gradations in sensory cues. People often obtain information from experiments with a
small number of possible outcomes, such as learning whether a job applicant is or is not a high school
graduate. Course grades are discrete (such as A through F), as is learning whether a new acquaintance is
married or unmarried, how many children the individual has, or who the individual voted for in the last

election.
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accuracy should be placed earlier or later in the decision queue (

( ) study the latter question in a reputational learning setting).

Consider a variation of the SBM in which some agents, whom we call influencers,
have more precise private signals than other agents. Depending on their location in the
decision queue, influencers can trigger immediate cascades. So even a small advantage
in signal precision can have a large effect. For example, if we alter the SBM so that Ann
has a signal precision p’ > p, then even if p’ is close to p, Bob will defer to her, as will
all later agents. The resulting cascade has precision p’. In contrast, if p’ = p, a cascade
occurs only after two identical actions, which makes use of at least two signals, and

therefore is more accurate.

The outcome depends crucially on the order of moves. If the high-precision
agent, Ann, were second instead of first, there would be no immediate cascade. Placing
an influencer later allows the actions of early agents to remain informative, which
improves the accuracy of the cascade that ultimately ensues (see also § 12.1). These
effects of influencers apply also in settings with with more general signal distributions,

even though an influencer may not immediately trigger a cascade.

The drawback of leading off with the better-informed has not been lost on
designers of judicial institutions. According to the Talmud, judges in the Sanhedrin (the
ancient Hebrew high court) voted on cases in inverse order of seniority. Similar voting
orders continue in some of today’s courts (e.g., those in the U.S. Navy). Such strategic

ordering can reduce the undue influence of older (and presumably wiser) judges.

4.5 Partial Cascades

The logic of information cascades is that with a coarse action space, an agent may choose
an action independently of her private signal. In consequence, her action does not add
to the pool of social information, and asymptotic learning fails. Furthermore, even in

settings where there is asymptotic learning, the improvement of social information tends
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to be delayed.

This logic is a special case of a more general point: that a coarse action space
reduces the informativeness of an agent’s action. This effect is in part mechanical.
For example, if there were just one possible action, taking that action would convey
no information. However, information loss is exacerbated by information externality;

self-interested agents have no incentive to convey information to later agents.'®

To capture this more general point, ( ) defines a weaker notion of
information cascade. A partial cascade is a situation where an agent takes the same
action for multiple signal values. (This terminology is due to ( );
Lee uses the term “cascades” for this concept.) An information cascade proper is the
special case in which an agent takes one action for all the possible signal values. Partial
cascades occur trivially when there are more possible signal values than actions. But

even when the action space is rich, partial cascades (and cascades proper) can occur.

Lee applies this notion to a model of information blockage and stock market
crashes (as discussed in § 12). In the model of ( ), partial
cascades result in either excessive maintenance of early actions (‘inertia”) or excessive
action shifts (“impulsiveness”). Overall, there is a wide array of settings in which partial

cascades hinder information aggregation.

5 Endogenous timing of actions

When faced with an irreversible decision, people often have an option to either act
immediately, or to defer their decision to a time in which more information will be at
their disposal. Examples include purchasing versus deferring a product, or undertaking

versus deferring an investment project.

19We mainly focus on coarseness in conjunction with information externalities. Coarseness is much less
of a problem with altruistic agents, as they could choose their actions strategically to convey their private
information to others (see ( )).
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Consider a modification of the SBM in which, at any given date, any agent is
free to choose among three options: adopt, reject, or delay. Adopting or rejecting is

irrevocable. In this setting, there is no exogenous sequencing in the order of moves.

The benefit to delay is that an agent can glean information by observing the
actions of others. Thus, delay generates option value. The cost of delay could take the
form of deferral of project net benefits, or of ongoing expenditures needed to maintain
the option to adopt. Since acting early confers a positive information externality upon

other agents, in equilibrium there can be excessive delay.

This equilibrium outcome when agents have an incentive to delay is seen
mostly simply when agents have heterogeneous signal precision. We consider this in
the next subsection. This setting provides insight into a wider set of models considered

in the remainder of this section.

5.1 Delay with Heterogeneous Signal Precision

Suppose that agents differ in the precisions of their binary private signals (extending the
SBM to agent-specific values of p that are either commonly or privately known). At a
given point in time, an agent can act by choosing project H or project L; or alternatively,
can delay. As in the SBM, project H is optimal in state H, and L is optimal in state L.
As discussed in BHW (p. 1002), high-precision agents have less to gain from waiting to
see the actions of others—in the extreme, a perfectly-informed /; (p; = 1) has nothing
to gain from waiting. So we focus on equilibria in which, among agents with A signals,

those with higher precision adopt earlier than those with lower precision.?

200ur focus on equilibria in which agents choose different timing implicitly requires that time periods
be short relative to differences in possible precision. This ensures that an agent with lower precision
would prefer to wait one period and learn from a higher-precision agent rather than act simultaneously.
To avoid technicalities, we suppose that agents have precisions drawn without replacement from a discrete
distribution, such that no two agents have the same precision. This ensures that, if time periods are short

enough, different agents act at different time periods.
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Suppose first that each agent’s signal accuracy is known to all. The binary
signal of the agent with the highest precision dominates the signals of all other agents, as
in the influencers example discussed in § 4.4. Once the agent with highest precision has
acted (H or L), all remaining agents are in a cascade on the selected action. Intuitively,
the agent with second-highest precision (the one with the next least gain from delay) acts
immediately rather than waiting to learn from others. Since this action is uninformative,

for similar reasons, so do all others.

Now suppose instead that precisions are only privately known. In equilibrium,
agents can infer the signal accuracy of other agents from time elapsed without action. In
the continuous-time model of ( ), this results in an equilibrium in which delay
fully reveals precision. Each agent has a critical maximum delay period, after which, if
there are no actions by others, she becomes the first to act. The higher the precision,
the shorter the critical interval. Again, all agents wait until the highest-precision agent

acts. At that point, all other agents immediately act in an investment cascade.?!

In this model, cascades are explosive in the sense that there is an initial time
period during which all agents delay, and then, once the highest-precision agent acts,
others immediately follow. Furthermore, since the cascade is based solely on one agent’s

signal, actions are also highly idiosyncratic.

In the real options model of ( ), the underlying asset value
evolves as a geometric Brownian motion with an unknown parameter. Investors differ
in the accuracy of their private signals about the value of the unknown parameter.
If two high-accuracy investors with positive signals invest, all other agents are in an
information cascade, and also invest. Thus the broad insight from ( ) holds
in Grenadier’s setting as well—that agents with more accurate signals have a stronger

incentive to act first, and that once this occurs, low precision agents have an incentive

21The insight that the incentive to free ride on the information of others by delaying also holds in
a setting with continuous signals and actions, and where information acquisition may be endogenous

( ).
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to mimic, triggering a flurry of activity.

The fact that less accurate agents have a greater benefit to delay suggests that
when decisions are observable to others, there can be a strategic advantage to acquiring
less information. Consistent with this, even if information acquisition is costless, agents
may choose to remain imperfectly informed, as this encourages other agents to act
earlier ( ). Moreover, even in nonstrategic settings, agents may acquire

too little information, since there are externalities in information acquisition (§ 7).

5.2 Adopt versus Delay as an Indicator of Degree of Optimism

In the setting we have discussed, delay is informative about agents’ precisions, but not
about whether their signals favor project H or L. However, suppose now that there is
only a single project, and that the decision each period is whether to adopt it or to delay.
As before, adopting the project is irrevocable. Then delay can be an indicator that the

project is unattractive.

The consequences of this are seen most simply in a two-period model in which
agents have identical precisions. Typically, the incentive to delay in such a setting rules
out symmetric pure strategy equilibria. To see why, suppose that there were such an
equilibrium in which all agents with / signals adopted immediately. Then their actions
would accurately reveal the state. The value of defecting by waiting one period for more
social information would be very high, breaking the equilibrium. Consider instead a
proposed equilibrium in which all agents with h signals delay one period. Since delay is
costly, it would pay to defect from the equilibrium by acting immediately rather than

acting one period later, since no information is obtained by waiting.

( ) focuses on asymmetric pure strategy equilibria in which agents
with identical precisions delay different amounts of time. When agents are patient
enough, the initial prescription of the equilibrium strategies is that in each period a

designated agent invests if her signal is high and delays if her signal is low, and all
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other agents delay. This prescription for the active agents endogenously generates
sequential choice that is similar to having an exogenous order of moves as in the SBM.
Once sufficient social information accumulates, all agents who have not yet invested
cascade, meaning they either invest forever or delay forever. So even when timing is

endogenous, in equilibrium action choices are very similar to those in the SBM.

Turning to mixed strategy equilibria, ( ) derive random-
ization in delay in a setting in which a subset of agents randomly receives the option
to invest—an option that can be exercised at any time. In practice firms sometimes do
not immediately have the resources or technology available to undertake an investment
project, so that delay results from capacity rather than choice. In the model, more
agents receive the option to invest in better states, so receiving the option is a favorable
indicator about state. This is the only signal that agents receive. If many agents receive
positive signals, their decisions to invest can suddenly encourage others to follow. So
there can be sudden investment booms. However, by the same token, delay by many
agents conveys adverse information to others, resulting in an investment bust. In the
unique symmetric equilibrium, agents with favorable signals (implicit in receiving the
option) delay with positive probability in order to gain information by seeing how
many others invest.?? The information implicit in prolonged delay by many agents can
cause additional investment to cease. Also, owing to the externality that agents benefit
from waiting to observe what other agents do, there tends to be excessive deferral of

investment.

In contrast, if all agents have the option to invest, and each agent receives a
direct private signal about the state, there is no bias towards underinvestment relative
to full information aggregation, as shown by ( ). At any date, the number

of agents who have already invested is a positive indicator about the state. There are

22The idea that information externalities result in stochastic delay is in the spirit of
( ), who examine an experimentation setting in which two firms with private information
decide how soon to drill for oil, where drilling causes the arrival of public information about the payoff
outcome.
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multiple equilibria with different thresholds for the belief about the state above which
agents invest. In an equilibrium with a higher threshold, the information conveyed by
the decision to invest is stronger. Thus, when the threshold signal value is higher, the
marginal agent has a higher informational benefit of waiting, which compensates for

the higher cost of delaying longer. This supports the equilibrium.

Overall, these models of timing decision reveal that there can be either ineffi-
cient delay, or a rush to invest even in unprofitable projects. This suggests that social
learning may generate shifts in investment activity that are reminiscent of observed
industry-wide booms and busts, or macroeconomic fluctuations.?> Such shifts occur
within equilibria in the Wang (2017) and Chamley and Gale (1994) models, and might

be viewed as occurring occasionally across multiple equilibria in Chamley (2004a).

In practice, sometimes firms can repeatedly adopt and terminate projects.
Caplin and Leahy (1994) analyze information cascades in project decisions when firms
can receive multiple private signals over time and can see the actions previously taken
by other firms. After an uneventful period of delay, there can be sudden crashes in
which many firms terminate their projects at about the same time. Towards the end,
with enough signals, firms essentially know the value, and take the correct action. Thus,

incorrect cascades do not occut.

As we have discussed, two interesting features that can arise in settings with
endogenous timing (Chamley and Gale (1994) and Zhang (1997)) are that (i) agents
take similar actions, as in models of information cascades, and (ii) actions tend to be
clustered in time. Gul and Lundholm (1995) provide a setting in which social learning
and the option to delay can result in time clustering. There are continuous actions
and signals, making actions responsive to signals, so that cascades on action choice do
not occur. In their setting there is time clustering of the last two agents in a sequence,

because once one of them acts, the other does not gain any further information from

Z3Models of delay in which agents can observe the payoffs of predecessors (Caplin and Leahy (1993),
Wagner (2018), Aghamolla and Guttman (2021)) have also been applied to such phenomena.
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delay. However, their setting does not explain time clustering by large numbers of

agents.

6 Observability Assumptions

What an agent learns from others, and whether the agent subsequently falls into a
cascade, depends on what the agent can observe about past history. And what can be
observed about history is, in practice, highly context-dependent. Greater observability
can take the form of observation of payoffs, or even private signals, not just actions.
Observations can also be noisy or limited, as with observation of only a specified
subset of agents, a random sample, or a count of adoptions or other aggregate statistic.
Observability can be asymmetric (as with greater observation of adoptions or of higher
payoffs). Furthermore, there can be meta-uncertainty, wherein agents are not certain

whom their predecessors have observed.

Some key questions, under alternative observability regimes, are whether
incorrect cascades must eventually be dislodged, whether there is asymptotic learning,
and whether social outcomes are fragile with respect to the arrival of new public
information. Another key question is whether greater observability increases welfare.
We first discuss these issues in the context of rational settings, and then turn to imperfect

rationality.

6.1 Rational Models

There are many different combinations of observability assumptions in the literature.
Rather than systematically discussing the proliferation of different possible assumptions,
we focus on some general themes. We organize the discussion in terms of these themes

rather than by model assumption.
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Recall that in § 4 we defined a herd as starting at agent /; when all later agents

do the same thing as agent I;.

Theme 1. When there is sufficient observation of past actions (and possibly ad-
ditional social information, such as past payoffs), the probability that a herd

eventually starts is 1 in many models.

As a benchmark, if there is no social observation, agents act based on their
own private signals, and there is no herd. However, with enough social observation of
actions and perhaps payoffs, more and more information is revealed, at least until agents
eventually tilt toward one action. This intuition requires reasonably good observation of
past actions. For example, insufficient social observation precludes herding in

( ) (which we discuss again in § 11), where each agent observes the
action of the immediate predecessor only. There are many models with sufficient social
observation, including those of ( ), BHW, ( ),

( ), ( ), and models with costly
information acquisition discussed in § 7. In some of these models the probability that a

herd eventually forms is less than one.

We discuss the next two themes together.

Theme 2. When there is sufficient observation of past actions or payoffs (and
possibly other social information), herds can be incorrect. Specifically, incorrect in-
formation cascades can occur, and can last forever with strictly positive probability.

So in general, asymptotic learning may not occur.

Theme 3. If there are private signals, and the payoffs to predecessors’ actions are
observable, information cascades can cause insufficient exploration as well as poor

information aggregation.

A fundamental trade-off in an individual decision-making setting is between

taking actions that generate new information that is relevant for an agent’s future
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actions, versus taking the myopically best action based on current beliefs. This is known
as the exploration/exploitation trade-off. In a social learning setting, even if each agent
takes only one action, from a social welfare perspective there is still a tension between
the individual benefit of exploiting existing information versus exploring in the sense of

generating new information that is helpful for later agents.

Consider now a deviation from the SBM in which previous payoffs are ob-
servable but are stochastic given the state. In such a setting, actions may differ in the
usefulness of the payoff information that they generate. In consequence, there are two
types of information externalities. The first, just as in the SBM, is that in choosing an
action, an agent does not take into account that her choice of action conveys information
about her private signal to later agents. This externality affects the aggregation of private

signals.

The second type of information externality is in the generation of new infor-
mation. Agents do not take into account the benefit to later agents of observing the

payoffs derived from the chosen action. This is an externality in exploration (see, e.g.,

( )). Owing to this externality, in a social multi-arm bandit settings with no
private information, asymptotic learning fails ( ( )). An analysis
with quasi-Bayesian agents is provided by ( ).

In principle, with many agents, there are enough private signals for information
aggregation alone to induce asymptotic learning. Similarly, exploration alone could
generate enough payoff information to pin down the realized state perfectly. These
facts raise the hope that when agents can socially acquire both types of information
there would be asymptotic learning. After all, observation of predecessors’ payoffs can
sometimes dislodge an incorrect cascade, thereby potentially resulting in new trials and

payoff observations of both choice options.

Nevertheless, it turns out that even when payoffs are observed, there can be
a strictly positive probability that an incorrect cascade forms and lasts forever, i.e.,

outcomes are idiosyncratic. As in the SBM, once a sufficient predominance of evidence
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from past actions and payoffs favors one action, agents start to take that action even
when their own private signals oppose it. The basic logic of cascades still applies;
additional private information is no longer impounded in actions. So this cascade may
be incorrect. In contrast with the SBM, such a cascade may be broken by the arrival of

payoff information. But asymptotic learning is not assured.

To see this, consider a setting in which all past payoffs as well as actions are
observable ( ( )). Suppose that the payoffs to action a are
either 1 or —1, and to action b are either 2 or —2. There are four equally likely states:
uu, ud, du and dd, where the first entry indicates a high (u) or low (d) payoff to action «

and the second entry indicates a high or low payoff to action b.

Once an action is taken, its payoff is known to all, an assumption that is
highly favorable to effective social learning. Nevertheless, a problem of inadequate
experimentation remains. If private signals and payoff information about action a are
initially favorable, whereas the prior beliefs about b are not very favorable, society can
lock into «a, for an expected payoff close to 1 under the belief that ud is likely, without
ever trying b, whose payoff in state uu of 2 is even higher. So the ability to socially
acquire both types of information (about private signals and about payoffs) does not

solve the information externality problem.

More generally, if payoffs are stochastic even conditional upon the state (or
observation of payoffs is noisy), there is still a strictly positively probability that a given
agent will cascade upon an incorrect action. Furthermore, agents sometimes lock into
an incorrect action forever even after having tried both alternatives any finite number

of times.

A possible interpretation of the payoff signal is that it is an online review posted
by an agent who has adopted. In this application, ( )
show that the probability of an incorrect cascade can increase with the precision of
the review. A more accurate review that is favorable to one option can prematurely

deter useful exploration of the other option. Likewise, in a model of social learning
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from online reviews (in which agents have no private information about the state),

( ) find that providing more information does not always lead to
better outcomes. When customer heterogeneity is sufficiently high, ( )
find that there is asymptotic learning, as there is always a chance of purchase strictly

between zero and one, regardless of the social belief.

Alternatively, the additional social information that agents obtain may be about
the private signals of predecessors through conversation. If all past private signals were
observed, then trivially agents would converge to the correct action. In reality people
do sometimes discuss reasons for their actions, but they often do not pass on the full set
of reasons that they have acquired from others. It is not hard to provide an example
with limited communication of private signals in which incorrect cascades form and,
with positive probability, last forever. In the Online Appendix, § A.1.3, we provide an
extension of the SBM where for all n > 1, I,, observes the private signal of /,,_;, and

incorrect cascades still occur and last forever (see ( )).%4

Intuitively, seeing the predecessor’s private signal is much like directly observ-
ing an extra private signal oneself, which in turn is much like seeing a more precise
signal. In the SBM, a more precise private signal tends to make decisions more accurate,
but the probability that the long-run cascade is incorrect is still strictly positive. So there

is reason to expect the same when the predecessor’s signal is observed.

In particular, the logic of information cascades applies; a point is reached when
the information implicit in past actions overwhelms the bundle of the agent’s own signal
and the predecessor’s signal. Such a preponderance of evidence can still be far from

conclusive.

Theme 4. Social outcomes are often fragile with respect to the arrival of modest

24An agent might communicate a sufficient statistic (such as the agent’s belief) instead of one or a few
private signals. In practice, this sometimes occurs, but people also sometimes seem to convey one or two

specific reasons rather than conveying an overall degree of belief.

45



new public information.

The occurrence of small shocks, such as the arrival of even modest public
information, can easily dislodge a cascade. Each agent knows that any cascade is based
upon information that is only slightly more accurate than the agent’s own private signal.
Thus, as emphasized by BHW, a key prediction is that even long-standing cascades are

fragile with respect to small shocks.

Definition 2. A cascade is fragile if a hypothetical one-time public disclosure of a signal
with a distribution that is identical to that of the private signal possessed by a single agent
would, with positive probability, break the cascade, i.e., causes the next agent’s action to

depend on that agent’s signal.

For example, in the SBM, once a cascade starts, it remains fragile for all

remaining agents.

Fragility is a general concept that could be defined in terms of different kinds
of shocks to the system. For example, instead of the arrival of a public signal, the
shock could be the arrival of a better-informed agent, or the arrival of an agent whose
preferences are known to differ from predecessors. In each of these cases, a long-standing

cascade can easily be dislodged.

Owing to information cascades, there is a systematic, spontaneous tendency
for the system to move to a position of precarious stability. This is much like the way the
hero’s car in an action movie chase scene always ends up teetering at the edge of a cliff.
In contrast, equilibrium is much more stable in models in which there are sanctions

upon deviants or disutility from nonconformity ( ( )).

For the next observation, consider a setting with a general private signal
distribution, two states and two actions, and simple sequential observation wherein
each agent observes all predecessors. We allow here for a wide range of other model

features, such as costly acquisition of private signals and endogenous order of moves.
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Theme 5. The Two-Signal Principle: The contribution of private signals to the
social belief has information content of at most two reinforcing occurrences of the

most informative private signal value.

Recall from § 2.1 that when the state is binary, the precision of a possible belief
r about the state ¢ is defined as |r — 0.5].

To understand the two-signal principle, consider first a setting in which the
prior belief is symmetric, and in which there is no arrival of public information signals.
With no public signals, the conclusion is simpler: the phrase “contribution of private

signals to the social belief” in Theme 5 can be replaced with ”the social belief.”

To see why, observe that there is no way for an agent /,,’s action to reflect
more than two maximally informative private signal realizations unless at least one
earlier agent’s action reflects more than one such realization. Consider any point in
the sequence in which more than one maximally informative private signal realizations
is incorporated into the social belief as observed by I,,. Then I,, will follow the action
implied by the social belief regardless of I,’s private signal, i.e., I,, is in a cascade. It
follows that I,,’s action is not informative, which means that it does not increase the
precision of the social belief. So I,,.; and all later agents are also in a cascade, and
also do not increase the precision of the social belief. In other words, the zone of social

beliefs that incorporate between one and two private signals is impassable.

The premise of this argument excludes a common feature of many social
learning models: observation of payoff outcomes. Nor does it allow for the arrival of
other kinds of public signals. However, with only slight modification, the reasoning
above can address the possibility of asymmetric priors and/or the arrival of additional

public information. Let us now allow for these.

Just as in the reasoning above, there could be a social belief faced by I,, being
q # 1/2. If this social belief does not start a cascade, then as reasoned above we can get
at most only two maximally informative signals in the same direction before starting a

cascade. The only other possibility is that public information disclosures have generated
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a social belief that has high enough precision to start a cascade. If so, we are trivially in
the impassable zone, and no private information ever again contributes to the social
belief.

The social belief could potentially be very precise. But the above reasoning
makes clear that such a possibility would derive directly from publicly arriving informa-
tion, not from aggregation of private information. It is still the case that less than two

private signals are aggregated into the social belief.

Theme 6. The Principle of Countervailing Adjustment: Seemingly favorable shifts

in information availability do not necessarily improve average decisions or welfare.

The direct positive effect of more information tends to be opposed by the
tendency of agents to disregard their private signals sooner, to the detriment of later
agents. We call this the principle of countervailing adjustment. An example is the presence
of an agent with slightly better private information (an “influencer”). As discussed in
§ 4.4, increasing the precision of one agent can reduce average welfare by causing later
agents to fall more readily into a incorrect cascade. ( ) applies the principle to

the formation of cascades in two decision queues.

One consequence of the principle of countervailing adjustment is that disclosure
can reduce average welfare. This contrasts with settings with no social interaction,

wherein an extra signal always makes an agent weakly better off.

In the influencer model discussed in § 4.4, I; has a slightly more accurate
signal than later agents, leading to reduced average welfare. Suppose instead that all
private signals have identical precisions, and that the slightly more accurate signal is
a public disclosure made at date 0. Now agent [; is the first in the cascade, and all
agents have lower expected utility than in the basic setting, as all now effectively act
based upon just a single signal (the public disclosure). Of course, a sufficiently accurate
early signal or public disclosure can improve the social outcome. For example, if /; has

perfect information, the cascade is always correct.
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More generally, a shift in information regime that might seem to make agents
better informed (such as higher signal precision of early agents, greater observability
of others, or greater publicly available information) can reduce the average decision
accuracy in the long run and can reduce average welfare. An example of this is the
possible deleterious effect of increasing the precision of publicly posted information
discussed by ( ) above. Intuitively, some variation in
the setting directly that makes early agents better informed promotes cascading by

observers, to the possible detriment of even later agents.?

Theme 7. When each agent observes only a random sample of past actions, incor-
rect information cascades can occur, and may last forever. So asymptotic learning

does not necessarily occur.

The conditions for this theme are potentially compatible with those of Themes

1 and 2 on herding, so there are settings where the conclusions of both hold, i.e., there

can be incorrect cascades that last forever; which is compatible with, and indeed implies,

herding. To understand this theme, consider a sequential setting with random sampling
of past actions and with no information about the order of past actions (see

( )). With bounded signals, information aggregation tends to be

self-limiting, because more informative actions tend to encourage cascading upon the

preponderance of actions in the agent’s observation sample. Whenever such cascading

occurs, the agent’s signal is not incorporated into the action history.

Suppose, for example, that past agents’ actions were to become so accurate
that even a single sampled H action would be sufficient to overwhelm the most extreme

possible opposing private signal value. Then an observer will sometimes be in a cascade

2>However, in general a shift in model structure can have different types of effects on the quality of
information aggregation. For example, a shift in model structure in some cases affects the critical value for
a cascade to occur, which can either increase or decrease the ultimate amount of information impounded
in the action history. Furthermore, even within the SBM, if each agent’s private signal became more
precise, cascades will tend to be more informative.
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upon the predominant action in the agent’s sample (e.g., in a sample of size k£ in which

all observations in the sample are of the same action).

This reasoning suggests that owing to the possibility of information cascades,
learning with random sampling may be quite slow. Indeed, a stronger claim is true: so
long as all agents observe a sample size of at least 1, asymptotic learning fails (Smith
and Sgrensen (2020)).

To see why, consider the case of a sample size of N = 1, where private signals
are symmetric and binary. The departure from the SBM is that each agent observes the
action of one randomly selected predecessor instead of all predecessors. Suppose that a
point is reached where for some agent /,, this random observation is more informative
than a single private signal. (If this never happens, of course asymptotic learning fails.)
Then agent I,, would be in an information cascade, so I,,’s action would be exactly as
informative as a sample of one action from among /,,’s predecessors. In consequence,
the sample observed by I, is also more informative than 7,,,’s signal, so I,,,; would
also be in a cascade. A similar argument holds for all later agents, so information
stops accumulating. Consequently, asymptotic learning does not occur. This failure is
similar to the fashion leader version of the SBM in Subsection 4.4, in which information
stops accumulating once an action is observed with precision greater than an agent’s
private signal. A similar intuition also applies to the random sampling model of Banerjee
and Fudenberg (2004), in which it is possible that past payoffs as well as actions are

observed.2¢

A further interesting implication of the sequential sampling setting of (Smith
and Sgrensen (2020)) is that assuming each agent does not observe too many predeces-
sors, once different agents take different actions, agents never herd. This is because

there is always a chance that an agent observes a set of predecessors who did not

26)Monzén and Rapp (2014) consider a sampling setting in which agents also do not know their own
positions in the decision queue. In this setting, under a stationarity assumption on sampling rules,
incorrect cascades can last forever.
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follow the currently-predominant action ( ( )). The chance of
observing such a deviant action does not decline rapidly enough with n to bring about
herding. Similarly, if payoff information is also observed and if an early agent adopted a
popular action and experienced low payoffs from doing so, there is always a chance that

this agent is later observed, causing a later agent to deviate from the popular action.

If agents observe samples of payoff outcomes but not the past actions that
led to these outcomes, it is again possible that agents do not converge to the same
action. The need to simultaneously draw inferences about what actions predecessors
have taken and the performance of those actions can confound inferences.

( ) considers a setting with two actions: action R(isky) has a probability of success
that depends on state, and action S(afe) has a fixed probability of success that is state
independent. If action R potentially generates a higher state-contingent probability of
success than action S, then outcomes become close to efficient if the size of samples
becomes arbitrarily large. However, when action R always has lower probability of
success (but has lower cost) than action S, then even for very large samples, there is

not asymptotic learning.

Theme 8. Reject cascades can occur even when agents observe the aggregate

number of adopts, but do not observe rejects.

When only aggregate adoption counts are observed, sequencing information
is lost. In general this induces loss of two types of information. First, an agent does
not know the order in which past actions were taken. Second, an agent does not know
how many predecessors have acted—i.e., agents do not know their own positions in the
queue. This occurs when an agent does not observe all past actions, one example being
when an agent observes only adopts, not rejects. For example, it is not hard to obtain
information about how many Teslas have been sold, but we do not observe how many

people considered Teslas but opted not to buy.

In the setting of ( ), observation is asym-

metric (we will refer to this as only observing past adopts, not rejects), there is a finite
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number of agents, agents cannot see the order of predecessors’ actions, and they have
no direct information about their own positions in the queue (though they can draw
inferences about this from their observations of past adopts). Since all that an agent
observes is how many predecessors adopted, there is no way for a cascade on reject
to get started. (If it could, then even I; would reject, since I; does not see any past
adopts nor does /; know that no agent preceded her. In consequence, all agents would
always reject, which is not consistent with equilibrium.) So the possibility of cascading
is limited to just one action, and indeed, with a large (finite) population, such a cascade

occurs with a probability that approaches one regardless of state.

In sharp contrast, when agents do have some idea about their own positions
in the queue (based, for example, on observation of own-arrival-time), cascades on
either action can occur. This is because an agent who is probably late in the queue and

who observes few adopts infers that others probably arrived earlier and chose to reject

( ( ).

Theme 9. Contrarian actions can reveal that an agent has high precision.

Consider a setting like the influencer model of § 4.4 except that agents have
private information about the precisions of their signals. Then the decision of an agent to
deviate from a cascade indicates that the agent has high precision. This can potentially

cause subsequent agents to follow contrarians.

In this setting an observer knows that the minority choice was made in opposi-
tion to predecessors, which is indicative of strong private information. What is more
surprising, as shown by ( ), is that agents who only observe
a count of past adopts and rejects sometimes act in opposition to the majority of the

actions they observe.

To see this, consider the SBM, except that /3 has a conclusive signal, whereas
I, and I, have very noisy signals. We can think of /3 as a “local” who knows whether a

restaurant is good. Even if I; and I, (low precision “tourists”) adopt, if I3 rejects, and
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I, understands this structure, clearly I, will imitate /5.

Furthermore, even if I, is uncertain about whether I is a local, I, can infer
this from the fact that /5 rejected after two adopts. The very fact that /3 came late and

was in the minority (is a “contrarian”) is an indicator of his high precision.

What if I, does not know the order of moves, only that one predecessor was
in the minority (two adopts and one reject) and that (for simplicity) there was exactly
one local? If I; were local, then the two tourists, I, and I3, would have imitated /; in
the hope that she is local, which would have generated a unanimous choice. So this
possibility is ruled out. If I, is the local, there is a 50% chance that I3, a tourist who
observed one adopt and one reject, chose an action that matched that of I;, so that the
local is in a minority. If, instead, /5 is local, then I5, being a tourist, would have imitated
I1; thus, the two adopts are by I; and I, and the reject by I3, the local. So overall, the
preponderance of evidence that two adopts and one reject conveys to I, is that the local
rejected. Being a contrarian can be an indicator of being well-informed, so if I, is a

tourist, I, optimally follows the minority.

6.2 Models with Imperfect Rationality

In models of individual decision making, irrationality makes an agent worse off. In
contrast, in a social learning setting, irrationality can make most agents better off,
because mistaken actions are sometimes more informative than correct ones to later
observers. So psychological bias can help remedy information externalities, resulting
in more accurate social beliefs. This is an example of the general phenomenon that

irrationality can make interacting agents better off ( ( ).

Within a rational setting, BHW and ( ) point out that there is
a benefit to quarantining early agents so that some make decisions without observing
others. We call such agents sacrificial lambs. The advantage of having nonsocial agents is

that their actions depend on their own signals. This makes their actions more informative
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to later observers. Similarly, psychological biases can cause agents to use their own

signals instead of imitating others, thereby improving learning and welfare.

6.2.1 Overconfidence

Even if an agent is not in an information quarantine, the agent may follow her own
private information because she is overconfident about its precision. Such overconfident
agents can break incorrect cascades, improving long-run learning. In

( ), occasional overconfident “entrepreneurs” overestimate the precisions of
their own signals. This can cause them to make greater use of their own signals instead
of following the actions of predecessors in an information cascade. So overconfidence

can improve learning and outcomes for later agents.

Suppose, for example, that everyone’s private signal has the same precision,
known to all, except that I; to I, each substantially overestimates their own precision.
Then each acts based solely upon the agent’s own signal, so the first 10 signals are
revealed through their actions. In consequence the expected welfare of all later agents

is improved.

A possible direction for future research is understanding the conditions under
which, in contrast with ( ), excessive overconfidence harms
social learning instead of helping. For example, in an extreme case, if overconfidence
were growing rapidly with later agents, all agents would act based only on their private

signals, and there would be no information aggregation.

6.2.2 Neglect of Social Observation by Predecessors

Various other psychological biases can also influence social learning. An important one
is that agents may neglect the fact that others are making social observations. This
induces correlation neglect (also known as persuasion bias), the phenomenon that people

sometimes treat information they derive from others as independent even if there is
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commonality in the sources of this information—a type of double-counting (Enke and
Zimmermann (2019)). Such neglect is a natural consequence of limited attention and

cognitive processing power.

Since inferences about observation of others can require extensive computation,
it is plausible that agents update beliefs heuristically. To update rationally, an agent
needs to adjust for the fact that the information in an observed action depends on whom
the actor in turn is able to observe (see, e.g., Acemoglu et al. (2011)). In reality people

typically do not adjust appropriately.

As with overconfidence, correlation neglect can cause agents to make greater
use of their own private signals instead of cascading, thereby improving welfare. To
see why, consider an agent who observes just one predecessor, and who mistakenly
believe that this predecessor is not observing others. Owing to this mistake, the agent
underestimates the informativeness of the predecessor’s action. This makes the agent
more inclined to rely on her own signal, which makes her own action more informative

to later agents.

However, correlation neglect can also make agents more prone to cascading.
To see why, consider an agent who observes multiple predecessors who happen to
choose the same action, and mistakenly believes that all these predecessors have acted
independently. Some of these predecessors may be in a cascade, making their actions
uninformative. The mistaken belief that these actions are all informative can cause the
agent to imitate predecessors and join a cascade instead of following the agent’s own
signal. This can happen even if the agent has higher private signal precision than do

predecessors, so that if the agent were rational the agent would not be in a cascade.

In a social network, heavily connected agents provide correlated information
to many observers, who are in turn observed by others. These others may neglect the
induced correlation in what they observe. In consequence, correlation neglect increases
the influence of agents who are more heavily connected in the social network (see
DeMarzo, Vayanos and Zwiebel (2003) and the review of Golub and Sadler (2016)).
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Correlation neglect is captured in a sequential quasi-Bayesian setting in
( ). In Bohren’s model, states are equiprobable, signals are bounded, and there is
a given probability that each agent is social (observes the actions of predecessors) or
nonsocial (does not observe any predecessor actions). Whether an agent is social is un-
known to others. Agents may either underestimate this probability (a form of correlation

neglect) or overestimate it (which could be called correlation overestimation).2”

In the case of rational agents, this is a model of fragility in cascades and social
learning. When enough agents take the same action, a cascade forms, in the sense
that a social agent follows the preponderant action of predecessors. However, when a
nonsocial agent arrives, this agent may provide a social information shock by taking an
action in opposition to the cascade. This is informative to later social agents, so that
the initial cascade may be broken. In the rational case, eventually those agents who
do observe predecessors make correct decisions, since the information implicit in the

actions of an infinite stream of nonsocial agents is conclusive.

To understand outcomes in the imperfectly rational cases in Bohren’s setting,
let ¢ be the probability that any agent observes the actions of predecessors, and let § be
agents’ perception of that probability. If the possible values of ¢ are in an intermediate
interval (an interval which includes ¢), then Bohren shows that, just as in the rational

case, with probability one the social agents eventually make correct choices.

When g is below this intermediate interval, agents view past actions as often
being taken independently, and therefore severely overestimate how informative these
actions are about private signals. When, by chance, a strong enough preponderance
of agents favors one of the available actions, agents fall into a cascade. So the pre-
ponderance of one action tends to grow over time. Since agents think this growing
preponderance is coming largely from independent private signals, social agents grow

increasingly confident in the correctness of the latest cascade. In the limit agents become

27 ( ) offer an alternative approach to modeling imperfect understanding by

agents of the relation between others’ private information and their actions.
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sure of either the wrong state or the correct one.

This possibility of strongly held faith in the wrong state provides an interesting
contrast with the BHW cascades setting, in which there is failure of asymptotic learning
but cascades are fragile. It also contrasts with a rational benchmark with continual
arrival of nonsocial agents, in which asymptotically the beliefs of the social agents

become arbitrarily strong, but always converge to the correct state.

When ¢ is large (i.e., to the right of the abovementioned interval), beliefs
fluctuate forever, so again there is not asymptotic learning. Even if, at some date, there
were a very strong preponderance of action H, for example, agents would believe that
this derives almost entirely from cascading by predecessors. This makes the system
extremely fragile. When by chance (as must eventually happen) even a few nonsocial
agents take the opposite action, the next social agent will no longer be in a cascade, and

will sometimes choose L.

As Bohren points out, thinking that § < ¢ can cause agents to have excessive
faith in a sequence of identical actions relative to expert scientific opinion. In the social
learning model of ( ), correlation neglect takes a more extreme
form—observers think that each predecessor decided independently based only upon
that agent’s private information signal.?® In their model, state and actions are continuous.
Beliefs about others are analogous to ¢ = 1 and ¢ = 0 in the ( ) model. In
consequence, the views of early agents are very heavily overweighted by late agents,
convergence to the correct belief is blocked (even with sharing of continuous beliefs or

actions), and agents become highly confident about their mistaken beliefs.

One lesson that comes from analyses of imperfect rationality and social learning
is that biases that cause agents to be more aggressive in using their own signals, such as
overconfidence, or such as overestimation of how heavily others have observed their

predecessors, tend to promote the use of private signals. Under appropriate conditions,

28 ( ) and ( ) apply such neglect of the signal-

dependent behavior of others to financial markets.
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this can in turn improve social information aggregation. In contrast, persuasion bias

tends to have an opposite effect, causing agents to defer too much to history.

6.2.3 Other heuristics and psychological biases

So far in this section we have discussed models that explicitly analyze the effects of
psychological biases such as correlation neglect and overconfidence on social learning.
Such models fully endogenize beliefs and behaviors. Another general approach is to
make exogenous assumptions about the agent’s mapping from observed actions and
payoffs into the agent’s actions. Ellison and Fudenberg (1993, 1995) provide pioneering
analyses using this heuristic agent approach (see the Online Appendix, § A.1 for details).
In recent years, behavioral economics has moved toward basing assumptions on evidence
from human psychology, and endogenizing biased belief formation as part of decisions
(e.g., Daniel, Hirshleifer and Subrahmanyam (1998), Rabin and Schrag (1999)). The
model of overconfident information processing in social learning of Bernardo and Welch

(2001) is an example of this.

Bohren and Hauser (2019) examine a setting that allows for a variety of types
of possible psychological biases in social learning, including correlation neglect. In
this model, signals are continuous (and may be unbounded). They focus on settings
in which enough information arrives so that if agents were rational there would be
asymptotic learning (via the arrival of either public signals or nonsocial agents). However,
owing to psychological bias, asymptotic learning can fail, which can take the form of
convergence to a mistaken action, permanent disagreement over action, or infinite
cycling. For example, when agents overreact to private signals, and where there is a
positive probability of nonsocial types, there can be infinite cycling between actions.
When agents underreact, there can be fixation upon a mistaken action. Furthermore,
when incorrect herds last forever, beliefs converge almost surely to the incorrect state.
So consistent with Bohren (2016), and in contrast with the BHW model, longer herds

become increasingly stable.
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7 Costly information acquisition

People often have a choice of whether or not to acquire information. We next examine
the effects on social learning of costly acquisition of either direct private information

signals about the state (Section 7.1) or about predecessors’ actions (Section 7.2).

In a scenario with exogenous private signals and information cascades, such as
the SBM, the signals of late agents do not contribute to social knowledge, because once
a cascade forms, such signals do not affect actions. When agents can acquire private
signals, it is unprofitable to do so if the signal will not (or is unlikely to) affect the agent’s
action. So in such settings there is often a similar conclusion, that late agents mimic

their predecessors.

If private signals are costless, then asymptotic learning occurs when private
signals are unbounded (as noted in § 4), and may occur when the action space is
continuous (as described in § 3). Relative to this scenario, a positive cost of observing
private signals degrades learning. A uniform conclusion of several papers to be discussed
is that even in settings with unbounded private signals or continuous action spaces,
asymptotic learning does not occur if there is even a small positive cost of investigating.
In practice, costs of gathering or processing information are likely to be positive. So

these results suggest that asymptotic learning will not be achieved.

On the other hand, if private signals are costless, introducing a cost of observing
predecessor’s actions can improve social learning. In such a setting, an agent with a
very informative signal realization may choose not to observe others’ actions. Thus, her

action conveys greater incremental information, which benefits later agents.

7.1 Costly acquisition of direct private signals about state

Costs of acquiring private information introduce another information externality of

social learning. In deciding whether to buy a signal, agents do not take into account
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the indirect benefit that accurate decisions confer upon later observers.

This externality is illustrated by modifying the SBM of § 2 so that agents have
a choice in acquiring private signals about the state. Each agent can pay some cost ¢ > 0
and observe a binary signal with given precision p, or can pay nothing and observe no
signal. In this setting, agents /,,, n > 1 will not acquire a signal, no matter how small
the cost. To see this, suppose that the cost is sufficiently small that it pays for /; to
acquire a signal. Then I5’s social belief is either p or 1 — p, depending on whether I,
chose H or L. Even if I, were to acquire a private signal, imitating /,’s action remains a
weakly optimal action for I,, regardless of the signal realization. Thus, the signal has
value zero, so I; will not purchase it, and instead imitates /;. Agent /3 understands
this, so by the same reasoning, it is not optimal for /5 nor for any subsequent agent to
acquire information, and all agents imitate /;. So the social outcome impounds even

less information than in the SBM.

In more general settings as well, when there are at least small costs of acquiring
a private signal about the state, agents stop acquiring private signals, resulting in
complete blockage in the growth of social information. So only a few individuals end
up acquiring private signals. This is a version of the “Law of the Few” (see

(2010)).

As several authors have shown, under appropriate assumptions, asymptotic
learning occurs if and only if infinitely many agents have access to unbounded signals
at an arbitrarily small cost. If agents incur even a small cost of acquiring information,
incorrect cascades can arise and therefore the social outcome can be fragile.?® We

discuss such models of costly information acquisition below.

The main ideas of an early contribution on costly signal acquisition by
( ) can be seen in a simplified model with unbounded signals and con-

tinuous actions and states. Other things equal, an agent prefers an action as close as

29This assertion refers to a slightly generalized definition of cascades: acting irrespective of the value of

a potential private signal owing to the fact that the agent chooses not to acquire the private signal.
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possible to the value of a continuous state ¢, as with Mean Squared Error preferences.
Each agent’s objective is to minimize the sum of the cost of the signal and the negative

mean squared €rror.

The common initial prior on # is a normal distribution with mean p, and
precision py. Agent I, takes action a,, after observing the actions of predecessors and
a conditionally independent signal s,, which is normally distributed with mean 6 and
precision r,. Suppressing the agent subscript, each agent chooses the precision r > 0 of

her private signal at cost ¢(r), where ¢(r) is convex and increasing.

An agent’s unique optimal level of precision is easily inferred by her successors.
Given this, and as actions are continuous, each agent’s action perfectly reveals the
agent’s private signal. So the social information available to I, is the realization of the
n — 1 conditionally independent normal signals of I,,’s predecessors. Consequently, the
social belief of I, is summarized as a normal random variable 6,,_; with mean pu,_;
and precision p,,_;. Owing to normality, p,,_; is equal to sum of the initial p, and the

precisions of signals of predecessors.

Burguet and Vives observe that asymptotic learning is equivalent to the re-
quirement that social precision p,,_; increases without bound of as n increases. But as
pn_1 increases without bound, 7,,’s marginal benefit of acquiring additional precision
goes to zero. Consequently, asymptotic learning occurs if and only if ¢(0) = 0, i.e.,
the marginal cost of additional precision is zero at » = 0. For instance, if the smallest
available precision is ry > 0 at cost ¢o > 0, so that ¢/(0) is infinite, then learning is
incomplete. Essentially, public belief becomes exceedingly accurate due to information
acquisition by a large number of predecessors. So later individuals find it unprofitable to
pay ¢y (or more) to acquire a private signal. Thus, in a setting with unbounded private
signals and a continuous set of actions, asymptotic learning occurs if and only if agents

can acquire signals, no matter how noisy, at a cost arbitrarily close to zero.

In ( ), agents acquire information about finite

samples of predecessors’ actions and payoffs, and act in sequence accordingly. Agents
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differ in the realizations of their costs of sampling, and in their sample outcomes, both
of which are private information. Asymptotic learning occurs (i.e., probability of taking
the best action goes to 1) if and only if sampling costs are not bounded away from zero

in the sense that costs can be arbitrarily close to zero for an unlimited number of agents.

As discussed in § 3, ( ) introduces a notion of responsiveness which,
loosely speaking, requires that any change in an agent’s beliefs changes the optimal
action. Ali shows that even with responsiveness, there may not be asymptotic learning if
information is costly to acquire, since the benefit of greater accuracy may not outweigh
the cost of information. Responsiveness implies asymptotic learning if and only if the
minimum across agents of the costs of gathering information are arbitrarily close to

Z€ro.

The consistent message from ( ),

( ), and ( ) is that asymptotic learning is not robust to introducing
costs of acquiring (or processing) private information. Instead of costs of acquiring
private information, we can consider costs of acquiring information from predecessors.
Suppose that we modify the SBM so that for a small fixed cost an agent can talk to a
predecessor to find out the rationale behind her action choice. In other words, the agent
can learn the predecessor’s belief (which may reflect information that she has acquired
in conversations with her predecessors). Nevertheless, as long as there is even a small
cost of such conversations, incorrect cascades occur with positive probability. Intuitively,
as beliefs become increasingly informative, at some point it pays for an agent to simply
follow the action of the agent’s immediate predecessor rather than paying to learn the

predecessor’s belief. So there is not asymptotic learning.

7.2 Costly or noisy observation of past actions

It is often costly to observe the actions of others. For instance, in evaluating the decision

to invest in a startup firm, a venture capitalist can devote time and effort to gathering
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information about the decisions of earlier potential investors.

Consider a setting in which, for a fixed cost, an agent can observe all predeces-
sors’ actions. If the cost is high enough, early agents will not incur it, and therefore will
act solely on the basis of their own private signals. However, for this very reason, at some
point the action history may become so informative that an agent finds it worthwhile
to learn the choices of predecessors. Once this point is reached, all subsequent agents
will also find observation worthwhile. So observation costs can turn early agents into

sacrificial lambs, as defined in § 6.2, to the benefit of many later decision makers.

Based on this, from the viewpoint of improving the accuracy of decisions (and
perhaps welfare as well), typically the observation cost should be positive but not too
large. With a zero cost, as in the SBM, cascades tend to be very inaccurate. With too
high a cost of observing predecessors, no agent will ever incur it, so that social learning
is blocked.

This insight is developed in the model of ( ). Each agent I, first
observes a costless private signal and then decides whether to pay a cost ¢ in order to
observe the actions of up to K(n) < n — 1 predecessors (see also
( )). This generalizes the scenario just described by allowing for selective observation
of predecessors. Individual decisions about which predecessors to observe build a
(directed) social network of observation links. However, agents do not know the full
structure of the network, as each agent’s decision about which predecessors to observe

is private information.

Consistent with the intuition above, social learning may improve as ¢ increases.
To see why, suppose that K (n) = n — 1, so that each agent can observe all predecessors
after paying cost c. If ¢ = 0, it is optimal to observe all predecessors and results from
the standard model apply: with bounded private signals, there is a chance of incorrect
cascades. But if private signals are unbounded and the observation capacity is unlimited

(i.e., lim K (n) = co), then asymptotic learning always occurs.>°
n—oo

30The endogenous social network has expanding observations in the sense of ( );
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For sufficiently large ¢, agents who receive strong signal realizations will
choose not to observe any predecessor. As in the papers summarized in § 7.1, there is
no asymptotic learning for such ¢, because such agents decide without observing others.
On the other hand, such agents increase the pool of social information, so agents who
do acquire information (who will exist if ¢ is not prohibitively large) decide correctly

with probability that tends to one.

7.3 Costly Information Acquisition, Limited Observation and Group-
think

Can social observation lead to decisions that are even worse than the decisions that
agents would make under informational autarky? This might seem impossible, since
any information gleaned by an agent via social observation is incremental to her own
private information. However, psychologists have emphasized ( ( )
and ( )) that “groupthink” in group deliberations causes disastrous decision
failures, as if interaction with others were harming instead of improving decisions. There
is also evidence suggesting that observation of others sometimes result in degradation in

decision quality (a zoological example is provided by

( ).

Analytically, when there are investigation costs and noisy observation of past
action, agents in groups can come to decisions that are on average worse than if there
were no social observation. Owing to free-riding in investigation by agents who are

potentially knowledgeable, social observation can actually reduce decision quality.

To see this, first suppose that, as in the SBM, that others are observed without
noise, but that there is a small cost of acquiring private signals. As discussed at the start
of § 7.1, starting with [, all agents follow I, so the social belief reflects only a single

signal. This is no more accurate than if agents decided independently (though welfare

see § 11.2.
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is higher as agents save on investigation costs).

Suppose instead that observation of predecessors is noisy, where each agent
observes binary signals about the actions of all predecessors. Suppose further that all

agents observe the same binary noisy signal about the action of any given predecessor.

If the noise is sufficiently small relative to the cost of the signal, the net
gain to [, of investigating is still negative, so she still does not investigate. But now,
owing to observation noise, her action is less accurate than if she were to decide on
her own. So observation of others reduces decision quality relative to informational
autarky. (Nevertheless, I5’s welfare is higher than under autarky, as observation of

others economizes on observation costs.)

What about later agents? Agent /3 also just follows I3’s signal about I;’s
action.®! The same applies to all later agents, so everyone’s action is less accurate than
if they had decided independently. In a related setting, suppose that agents observe
only the latest predecessor. In this case noise can compound repeatedly until a point is
reached at which an agent again pays to acquire a private signal (

( ).

An important empirical question in social learning settings is who makes better
decisions on average, the agents who follow the predominant action, or those who
deviate. In the SBM (and in the general BHW cascades model), in any realization, it
is the later agents who are in a cascade, and those in a cascade have observed more
predecessors than those who precede the cascade. If there are many agents, then
such cascading agents predominate. So in expectation, those agents who take the
predominant action are better informed than deviants. This can distinguish the cascades

model from other models of social influence.

31Agent I3 ignores her signal about I,’s action, because she knows that I, imitated I; based on the
same signal realization about [;’s action that I3 observes. So if I3’s signal about I5’s action differs from
I3’s signal about I;’s action, I3 knows that this discrepancy must be caused by error in observation of I5’s
action.
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Notably, this prediction is reversed in the above example when there is modest
observation noise and costly investigation. Now deviants are more accurate, because
they acquire a signal directly, whereas cascading agents copy a garbled version of past
actions. This garbles the information content of the single past action that was needed

to trigger the cascade.

8 Payoff Externalities

The SBM focuses on information externalities, under which an agent’s action indirectly
affects others by providing them with information. Often, however, there are also payoff
externalities, wherein an agent’s action directly affects the payoff of another agent. We
next consider the interaction between direct payoff externalities and social learning.

This topic is discussed extensively in ( ).32

We distinguish between an externality that is (i) backward looking only, or
(ii) both backward and forward looking. In an externality of type (i), an agent’s payoff
depends only on predecessors’ actions. An example is an agent’s decision to join one of
two queues, where the cost of waiting is increasing with the length of the queue. In
such a situation, agents have no incentive to influence the inferences of later agents.

Our primary focus here is on such settings.

In an externality of type (ii), an agent’s payoff depends on the actions of both
earlier and later agents. An example is the decision of individuals arriving in sequence to
line up to get into a restaurant, if there is disutility from dining in a crowded restaurant.
This can result in strategic incentives to influence subsequent agents. A literature on
sequential games with learning encompasses strategic issues (see, e.g.,

( ), and ( )). Type (ii) externalities also

arise in sequential voting settings in which voters who care about election outcomes are

32In § 9.2 we discuss pecuniary externalities, i.e., changes in the price of adoption due to predecessors’

actions.
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affected by the votes of their successors as well as their predecessors. We discuss this
literature in §12.4.

Payoff externalities, such as network externalities or congestion, can be cap-
tured by modifying the utility function of the SBM. Let H,, be the number of agents
who chose action H before agent /,,, and define L,, analogously. Consider the following

utility function for 7,,:

u(@, H) = 19:H + €Hn
w(@, L) =1g— + €L,. “4)

When ¢ > 0, there is complementarity between the actions of different agents. This
tends to reinforce cascades and herding. Recall that in the SBM, if I, sees a private
signal contrary to [;’s action, [, is indifferent between the two actions and breaks the
tie by choosing the action in accord with her signal. In contrast, in the setting here, and
when e > 0, I, strictly prefers to imitate /; regardless of her private signal realization.

Thus, all agents follow the action of ;.

If e < 0, there are negative payoff externalities, such as congestion costs.
Now the interplay between social learning and negative payoff externalities is more
interesting. Under social learning with negative backward-looking externalities, and
if the externalities (¢ above) are not too large in absolute value, then agents, at least
for a time, imitate predecessors. ( ) model congestion as
the cost of waiting in a queue with random service times. The queue length conveys
favorable information about the value of the service provided. As long as the waiting
cost is small relative to the difference in the length of the two queues, agents ignore their
private information and join the longer queue in a cascade. But when the difference is
sufficiently large, the extra waiting time from a longer queue can outweigh the favorable
inference.

( ) describe how backward-looking negative externalities

prevent the convergence of agents to one action and improve social learning despite the
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continued occurrence of incorrect information cascades. We illustrate with a variation
on the SBM. As before, there is a payoff component of +1 deriving from taking the
correct action (e« = # when the state is 0 = L or H). In addition, there is a negative
payoff component deriving from congestion costs. The authors use a generalization of
the utility function in (4). So the utility of agent /,, from taking action « at history of

actions F,,_ is

u(@, H) = lo—p — CH(-anl)
U(H, L) = 19=L - CL(«Fn—l) (5)

where ¢,(F,_1) is the congestion cost of taking action « at history F,,_;. We focus on
the case where ¢ is small, which provides insight into the robustness of the SBM to the

introduction of small negative externalities.

Consider two illustrative cases:

(i) Absolute congestion costs: cy(F,_1) := €H,, where H, is the number of prede-
cessors who have taken action H at history F,_;. Similarly, ¢, (F,_1) = €L,.
Absolute congestion costs increase without bound. This is the case considered in
eq. (4).

(ii) Proportional congestion costs: cy(F,—1) := €H,/(n — 1) < 1, where H,, is the
fraction of predecessors who have taken that action H at history F,,_;. Proportional
congestion costs are bounded above.

Under absolute but not under proportional congestion costs, costs can grow
arbitrarily large. Loosely speaking, proportional congestion costs describe applications
in which queues are gradually processed rather than being allowed to grow arbitrarily
long. When there are proportional congestion costs of modest magnitude, on the whole
the main conclusions of the SBM about incorrect cascades and herding carry through,
because with e small, the informational incentive to imitate outweighs opposing payoff

interaction effect.

Let d, = H,, — L,, be the difference between the number of past actions H and

L. For the case of absolute congestion costs, as in the SBM, an H cascade starts the first
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time that d,, = 2. (A similar analysis applies starting with an L cascade if d,, = —2 is
reached first.) However, this cascade is temporary, as the congestion cost of action H
increases over time. Eventually, an agent is reached who finds it optimal to switch to
L if and only if the agent sees the signal ¢. This agent’s action reveals her signal, and
an interlude of informative actions continues until another cascade starts, this time at
some threshold |d,,| > 2.

Ultimately, permanent cascading, meaning a situation in which all agents
starting from agent /,, make choices independently of their private signals, must start.
Remarkably, at this point agents alternate between actions! The intuition rests upon two
observations. First, as the social belief approaches 0 or 1, an agent’s belief about the true
state becomes less sensitive to the agent’s private signal. Second, even though agents
become almost certain about a state, they do not herd upon the action corresponding to
that state.

To see the second point, suppose that ¢ = 0.1 in item (i) above. Then even if [,
is almost certain that H is the true state, she prefers action L if d,, > 10, prefers action
H if d,, < 10, and is indifferent between the two actions if d,, = 10. It follows that if the
social belief of I, is that the state is very likely H, I,, prefers H even after seeing signal
¢if d, <9, and prefers L even after seeing signal h if d, > 10. So agents cascade in
alternation between actions H and L as d,, alternates between 10 and 9 forever. Such

cascading starts with probability one, so there is never herding upon a single action.

Also, for any given e there is no asymptotic learning, as in the SBM. It follows
that actions are potentially fragile, i.e., sensitive to the introduction of small informational
shocks. However, ( ) show that when absolute congestion costs ¢
approaches zero, the system becomes arbitrarily close to achieving asymptotic learning.

Of course, in applied settings the magnitude of congestion costs are often non-negligible.

What can we conclude about how congestion externalities affect social learning
and information cascades? With bounded congestion costs (as in the case of proportional

costs discussed above), the insights of the SBM carry through. The informational pressure
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to imitate eventually outweighs congestion costs, resulting in cascades and idiosyncratic
behavior. In contrast, in the case of unbounded congestion costs, as occur in the case of
congestion costs that are proportional to the number of adopters of an action, learning
outcomes differs qualitatively from the SBM. While cascades (sometimes incorrect)
occur with probability one, herding does not. Instead, agents alternate between the
two actions owing to congestion costs. Once cascades start all learning ceases, so there

is no asymptotic learning.

9 Social Learning in Markets

In a market for a product or financial asset of uncertain value, the decision to buy
depends on the price, the agent’s (buyer’s) private information signal, and the decisions
of predecessors that the agent has observed. This raises several questions. Does the price
setting process promote or prevent cascades, including incorrect ones? How should
a seller manage the social learning process? How does social learning affect market
efficiency? What are the welfare consequences of social learning and cascades? We first
discuss the case of monopoly pricing, in which the seller chooses prices to maximize

expected profits, and then turn to competitive price-setting.

9.1 Monopoly

A monopolist may have an incentive to set price low enough to induce a cascade of
buying. The dynamics of prices and buying depend on whether the monopolist must
commit to a single price or can adjust prices in response to observation of the purchase
decisions of early potential buyers. We first discuss the fixed price case, which can
also apply to products with menu costs (costs of changing prices;

( )). It also applies to the sale of equity shares of a firm in an Initial Public Offering

(IPO), since a fixed price per share is mandated by U.S. law. Much of this literature
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focuses on the case of an uninformed seller, i.e., a seller who has no private information

about the state. In § 9.2 we consider informed traders in competitive markets.

9.1.1 Fixed Price Case

As in ( ), consider an uninformed risk-neutral monopolist who offers to sell
one unit of a product to each agent in a sequence at a fixed price for all buyers until
the monopolist’s supply of the product, n units, is exhausted. The monopolist’s cost of
production is normalized to zero. As in the SBM, each agent receives a binary private
signal about the state ¢ € {0, 1}, which is the unknown value of the product, and can
observe the choices of all predecessors. The net gain to adopting (buying the product)
is the difference between the state and the price. This contrasts with the SBM, in which

the net value of adoption is exogenous.

The monopolist is risk neutral and does not discount the future. As in the SBM,
each agent receives a binary private signal about the state, which is the unknown value

or quality 6 of the product, and can observe the choices of all predecessors.

We assume that when indifferent the customer buys. If the price is sufficiently
low, all agents buy independent of their private signals, which is is an information
cascade of buying. At a somewhat higher product price, an agent’s choice depends on
her private signal, in which case her choice reveals her private information to subsequent
agents. If the price is high enough, a non-buying cascade occurs, but such a price is

never optimal for the seller.

Consider three possible prices (P = P,, Py, and P,,), where:

* P, =E[f|¢] = 1—p. The first agent starts a buying cascade, yielding the monopolist

a per-buyer expected net revenue of P, for the first n buyers (and zero thereafter).

* Py =E[f] = ;. Abuying cascade ensues when and if the difference between the

number of buys and the number of sells reaches 1. A non-buying cascade ensues
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when and if this difference reaches —2.

* P, = E[f|h] = p. A buying cascade starts if and when the buy/sell difference

reaches +2. A non-buying cascade ensues when and if the difference reaches —1.

From the monopolist’s perspective, demand is fragile. Just a few early agents with
negative signals would cause buying to collapse. For a sufficiently low signal precision

p, the profit-maximizing price is P, so that all agents buy.

Intuitively, with low precision, P, = 1—p is only slightly below 0.5, so it is not
worth risking collapse of demand for slightly higher prices P, or P,. Since P, < Elf],
the seller underprices the product. This implication is consistent with the empirical
finding of underpricing in IPO markets (Ritter and Welch (2002)). For higher precision

p, raising the price from P, to P, is worth the risk, so that there is not underpricing.

In a setting with a uniform prior on #, Welch (1992) shows that when the
seller also has a private signal, a seller whose private signal indicates higher quality
(a high-quality seller, for short) sets a higher price (with higher failure probability) to
separate from a lower-quality seller type. Welch (1992) focused on cascades in the IPO
market. Empirically, Amihud, Hauser and Kirsh (2003) find that IPO opportunities for
investors tend to be either heavily oversubscribed or undersubscribed, with almost no
IPOs in between. This is consistent with information cascades, in which there is positive

feedback from early investor decisions to later ones.

9.1.2 Flexible Price Case

A monopolist may be able to change prices after observing each agent’s buying decision.
In Bose et al. (2008), the seller is risk neutral, uninformed, and can modify the price

after observing each buyer’s decision.?® The relevant prices for the seller to consider

31In a related paper, Caminal and Vives (1996) and Caminal and Vives (1999) study social learning
about product quality via market share in a duopoly. Newberry (2016) studies empirically how fixed

versus flexible pricing regimes affects buyer social learning and seller profits.
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(in the SBM as modified above) are a low price that leads to an immediate sale and a
higher price that results in a sale only for a high signal. For each buyer, the values of

the low price and the high price depend on the actions of preceding buyers.

Bose et al. show that the seller starts with a price that induces the first buyer to
reveal her private signal. Once enough information is revealed, the value of additional
information revelation to the seller is low. Eventually, the seller fixes a low price that
induces a buying cascade. As the seller’s discount factor increases, the value discovery
phase becomes longer, and more information is revealed. In the limit, if the seller has
no time discount, there is complete value discovery, and the seller earns E[] per buyer.
This is the best conceivable asymptotic outcome for the seller, as rational buyers will

never, on average, pay more than their ex ante expected valuation.

9.2 Competitive Markets

In contrast with the monopolistic case, it is not immediately clear whether cascades
will occur under competitive price setting in product or securities markets. In securities
markets, when an agent buys or sells based on her private information, market prices
should change to reflect at least some of the agent’s private information. This makes it
less attractive for an observer to imitate the trade, which opposes the formation of a

trading cascade.

To see the consequences of this effect, consider a setting in which each trader
receives a signal about an object with value § = 0 or 1. The trader can buy one unit at
the market makers’ ask price A, sell one unit to the market makers at bid price B < A,
or not trade. If market makers are uninformed, it must set A and B such that no trade
occurs, as otherwise the market maker would lose money in expectation. This follows
from standard no-trade results for securities markets with no noise traders (

( )). Thus, trivially, there is a no trading cascade.

However, in settings with noise traders ( ( )), mar-
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ket makers can profit at the expense of noise traders, and bid-ask spreads are set to
accommodate trading. The adjustment of the competitive market price to reflect private
information discourages the occurrence of buy or sell cascades by making it optimal for
traders to use their private information. To understand why, consider a hypothetical
ask price that causes a cascade in which the informed agent buys even if she had an
adverse signal. This cascading would cause market makers on average to lose money,

inconsistent with equilibrium.>*

( ) illustrate this point in a simple setting with noise
traders:

* Each trader (agent) I, trades only once, at date n, taking one of three actions:

buy one share, sell one share, or hold (do not trade).

* Traders buy from or sell to perfectly competitive risk-neutral market makers.

Consequently, bid and ask prices are set so that market makers break even.

The value of the asset is § € {0,1}. With probability 1 — u, trader I, has private
information (with signal realizations s,, = ¢ or h, as in the SBM) about the value of the
asset and with probability u, I, is a noise trade, where a noise trader is a mechanistic
agent who buys, sells, or holds with probability 1/3 each. Thus there are two types of
traders, noise traders and informed traders. Traders’ types are independently distributed

and privately known.

There are two prices in each period n: an ask price A,, at which 7,, may buy
the stock, and a bid price B,, at which I,, may sell the stock. An informed I,,’s utility

34Market makers lose money because in such a cascade an informed agent always buys, making trades
uninformative. A competitive market maker sets the bid equal to the ask, since the market maker is
compelled to set the price equal to the conditional expected value of the fundamental given the order.
With no spread, the market maker makes no money trading with noise traders. Furthermore, the market
maker on average loses money to the informed agent. (The informed agent with an adverse signal must
break even when buying, so an informed agent with a favorable signal will strictly profit from buying.) It

follows that the market maker would not participate.
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from buying is § — A,,, and from selling is B, — 0. Let F,, be the publicly observed
history of trades by agents I, I, ..., I,_1. An informed I, sells if E[0|.F,,, s,] < B,, buys
if E[0|F,,s,] > A, and holds otherwise. Perfect competition among market makers
implies that the bid and ask prices satisfy

B, = E[0|F,,a, = Sell] < E[0|F,] < A, =E[0|F,,a, =Buy|, (6)

where a,, is [,,’s action.

In an information cascade, the action of an informed trader is uninformative
as it does not depend on her private information. A noise trader’s action is always
uninformative. Thus, if an information cascade were to start, a competitive market
maker would not be able to charge a higher ask price than the bid price. Le., (6) would
be satisfied with equality, A,, = B,, = E[f|F,,]. But then informed traders would sell if

s, = ¢ and buy if s,, = h because
EQF,,l < B, = E[0|F,] = A, <E[0]F,, b,

which is a contradiction. Hence, information cascades do not form. Since there is
no cascade and /,’s action has information content, the inequalities in (6) are strict.
Moreover, an informed I,, buys if s, = h and sells if s,, = ¢ regardless of the public
history F,,. Over time, bid and ask prices converge to the true value of the stock and

volatility of the stock price decreases.

We have seen that as prices adjust based on social information, there are no
cascades in this setting. Nevertheless, there is a sense in which informed investors may
act in opposition to their own signals: for n > 1, I, may take a different action than
she would have taken if she had moved first and had not seen any social information.
Formally, Avery and Zemsky define a concept which they call “herds” that is adapted to
financial markets. An informed trader is in what we call a momentum herd if the trader’s
optimal action is contrary to the optimal action the trader would have taken had she
moved first, i.e., if she had the same private signal realization, no social information,

and faced the initial bid and ask prices. Momentum herd behavior differs from an
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information cascade in that the action depends on the signal realization. Thus, an

informed I, is in a buy momentum herd if:

(i) 1, would sell in period 1:  E[d|s,| < B; = El[f|a; = Sell]
(ii) I,, buys in period n: A, = E[0|F,,a, =Buy] < E[0]|F,, s,

Momentum herds require going beyond our modified SBM setting. In that
setting, condition (i) implies that s,, = ¢ while condition (ii) implies that s,, = h. Thus,
a buy momentum herd is impossible in this example. A similar argument rules out a

sell momentum herd in this modified SBM.

Nevertheless, momentum herds are possible in slightly generalized settings.

Avery and Zemsky present an example with three states in which momentum herds are
possible. In their example the signals are not monotone.>> In a more general treatment,
( ) provide necessary and sufficient conditions for momentum

herds, and show that momentum herds are possible with monotone signals.

( ) provide and test a model of momentum herds
using stock market data. They modify the Avery-Zemsky model by dividing time into
days, where each day consists of a finite number of trading periods. There is an
asset whose fundamental value remains fixed during the trading day, and receives an
independent shock at the end of each day. Agents are exogenously ordered and act once.
They observe the history of prices and actions, and in addition each receives a private
signal regarding the value on the day at which they trade.

As in Avery and Zemsky, information cascades do not occur (as prices adjust to
reflect prior trades) and momentum herds do occur. In Cipriani and Guarino’s setting
we can assess the prevalence of momentum herds when the state evolves stochastically
through time. They calibrate their model to NYSE stock market data and estimate that

inefficiencies deriving from incorrect momentum herds constitute 4% of asset value.

35In this example, the posterior distribution of state conditional upon signal is not ordered by first-order

stochastic dominance.
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Recall that in Avery and Zemsky’s setting, there are competitive market makers
with noise traders, trading occurs, but there are no cascades. In contrast, if transactions
costs are incurred by either the market maker or traders in a setting with competitive
markets and noise traders, there can be cascades of no-trade (see ( ) and

( )). Information asymmetry about the asset value decreases
as successive traders buy or sell. Ultimately, a no-trade cascade starts when the value of
an informed trader’s private information is less than the cost of trading induced by the

transaction cost.

( ) considers a model in which each trader incurs a one-time transac-
tion cost that enables her to trade repeatedly based upon a single private signal. This
can be viewed as a setup cost, perhaps cognitive, of learning how to trade. Temporary
information blockage is possible even without exogenous public information arrival.
Each agent [,, enters in period n, and after entering, can buy or sell any amount of a
risky asset. Owing to the transaction cost, private information can be sidelined during
several periods with no trading. This quiescent interval is shattered if a later agent
trades upon observing a sufficiently extreme signal. Since multiple signal values can
result in the same action the equilibrium at a given date is an example of a partial
cascade as discussed in § 4. When agents suddenly start to trade, there is a sudden drop

or jump in price. Lee calls this phenomenon an information avalanche.

In contrast with the preceding papers, in settings in which agents have private
fundamental values of assets, information cascades of buying or selling by informed
traders do occur. Even though bid and ask prices adjust to reflect previous trades,
informed traders with sufficiently low private value components sell and those with
sufficiently high value components buy regardless of their respective signal realizations.
Private values are common for illiquid assets, such as real estate and private equity.
Even for liquid assets, owing to risk aversion, an agent that is endowed with substantial
holdings in a firm places less marginal value on a share than an agent with no holdings.

Furthermore, even under risk-neutrality, investors who value control rights can place
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different values on the shares of a firm.

There are several models in which private values induce cascades in asset
market trading. In the model of ( ), assets have a private
value component. The authors show that information cascades, both incorrect and
correct, may occur, with no asymptotic learning. A similar result is obtained by

( ), who consider trader heterogeneity in the value of an asset deriving

from differences in risk aversion and initial endowments.

Also in contrast with the no-cascades result in Avery and Zemsky’s setting,
( ) find that if agents own investment projects and have a choice

as to when to trade them, then information cascades can occur. In
( ), agents decide when to buy or sell one unit of a risky project. An agent has the
option to wait, but once an agent buys or sells, she leaves the market (becomes inactive).
In each period, one randomly-selected active agent receives a private signal about the
value of the project. All active agents, including those who have not yet received a
private signal, may buy or sell in any period in a market with bid and ask prices set
competitively by market makers. Agents observe the history of buy and sell decisions,
as well as prices. There is a discounting cost of waiting, but early on, uninformed and
informed agents may prefer to wait to exploit the arrival of new information. As public
information accumulates, the value of further information decreases with time, so a
point is reached when all active but uninformed agents take a decision (either all buy
from or all sell to market makers), thereby generating a possibly-incorrect cascade of

buying or selling among the uninformed.®

10 Heterogeneous preferences

The information that a vegetarian chose a restaurant has a different meaning from the

information that a meat-lover chose it. One might expect heterogeneous preferences to

36This is a cascade in the sense of models with a cost of acquiring information as discussed in § 7.
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aid asymptotic learning by preserving action diversity. On the other hand, heteroge-
neous preferences can make it harder for observers to infer signals from the actions of

predecessors.

If the preference types of past decision makers are common knowledge, then
it is straightforward to draw an inference from a predecessor’s action about her infor-
mation signal. If, instead, agents have private information about their preference types,
observers need to disentangle past private signals from preferences. We focus on the
case of ignorance of others’ preferences, under the assumption that preference types are

independently distributed.

In this setting, even when signals are unbounded, there is no guarantee of
asymptotic learning. Indeed, there may be no social learning at all, as is seen in the
following example. There are two equally likely states, two equally likely preference
types, and two actions. An action either matches or mismatches the state. The first type
wants to match the state, and the second type wants to mismatch it. Each agent draws
a conditionally independent signal, possibly unbounded, from the same distribution.
For each signal realization, the two types take opposite actions as their preferences are

opposed.

As the two preference types are equally likely, conditional upon either state, I;
has an equal probability of choosing either action. So /;’s action is uninformative. It
follows that I,, and by similar reasoning all later agents, also have equal probability of

taking the two actions, and there is no social learning.

In a model of social learning with heterogeneous preferences,
( ) show that if agents have a finite number of preference types and
signals are bounded, then asymptotic learning does not occur. This failure can take the
form of information cascades, limit cascades, or confounded learning as in the example

above.

In contrast, ( ) find that if there is a continuum

of preferences types, then asymptotic learning is possible. An agent’s payoff from taking
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an action is the sum of a common value, which is imperfectly known, and her private
value. Agents receive private signals about the common value. When the range of
possible private values is greater than the range of possible common values, an agent’s

action is always informative, i.e., cascades do not occur, and asymptotic learning obtains.

( ) compare a simple version of the heterogeneous
preferences model of Goeree et al. (two actions, two states, and uniformly distributed
private values) with the SBM (homogeneous preferences). For sufficiently large n, I,
has a higher probability of making a correct inference about the state under heteroge-
neous preferences than under homogeneous preferences. Zhang et al. argue that the
homogeneous preferences case may fit applications such as a social media network of
friends, whereas the heterogeneous preference case applies to social observation among
strangers. Consequently, Zhang et al. suggest that sellers of low quality products may
prefer to advertise on social media networks of friends while sellers of high quality

products may prefer to advertise on social media networks of strangers.

So far, we have considered settings in which the true distribution of preference
types is common knowledge. More generally, ( ) find that
misestimation of this distribution (psychological bias) severely hinders social learning.
In their model, a large population of agents chooses binary actions repeatedly in each
discrete period. Action payoffs depend on the continuous state and on the agent’s type.
Initially, each agent observes a single private signal, which may be unbounded. In each
subsequent period, agents are randomly selected to meet in pairs, with each observing

the action that was taken by one other agent in the preceding period.

As a benchmark case for this setting, if agents correctly understand the type
distribution, then there is asymptotic learning. In the spirit of
( ), random heterogeneous preferences preserve action diversity. This allows the

information content of agent private signals to be revealed over time.

However, even arbitrarily small amounts of misperception break asymptotic

learning. In the long run, agents approach full confidence in one state, regardless of
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the actual state. Intuitively, when the action space is continuous, small misperceptions
can repeatedly compound with successive random drawings and observations, so that
misperceptions ultimately induce extreme beliefs. This contrasts with Bohren and
Hauser (2019) (discussed in § 6.2.2), who find failures of asymptotic learning only
when psychological bias is sufficiently strong. It will be useful for future research to
delineate more fully the circumstances under which small bias iterates to eventually

generate very large effects on social outcomes.

As discussed in § 7, in models with homogeneous preferences, even with re-
sponsiveness (as defined in § 3), asymptotic learning occurs only if costs of gathering
information are arbitrarily close to zero across agents. One might think that when pref-
erences are heterogeneous, incorrect cascades would tend to be occasionally dislodged
by the arrival of an agent with deviant tastes. This suggests that even without respon-
siveness, if information costs are small, there may be asymptotic learning. However, this
need not be the case. In a model with heterogeneous preferences and a cost of acquiring
private information, Hendricks, Sorensen and Wiseman (2012) find that learning can
be incomplete.®” In Bobkova and Mass (2020), each agent can acquire two pieces of
costly information: (i) about a common value and (ii) about the agent’s private value.
Her payoff is the sum of the two values. Once the precision of the social information
about the common value exceeds a threshold (due to information acquisition by earlier
agents), later agents invest only in the acquisition of information about their private

values. This precludes complete learning about the common value.

11 Cascades on social networks

Social networks—from word of mouth networks in iron-age villages to modern online

social media websites—play an important role in the spread and aggregation of infor-

37Hendricks et al. test the predictions of their model with online music market data generated by
Salganik, Dodds and Watts (2006).
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mation in human society. In general, what an agent learns by observing others depends
on the agent’s position in the social observation network. And the overall structure of
the network affects aggregate social outcomes, such as whether there is asymptotic
learning. So network structure is a source of empirical implications for behavior and

outcomes. Accordingly, a large recent literature models social learning in networks.

Networks increase the complexity of the inferences that agents need to make.
In particular, when agents do not observe the whole action history, they potentially
learn about the actions of those that they do not observe from the actions of those that
they do observe. Thus, calculating expected utilities may require taking into account
the structure of the entire social network (Mossel, Sly and Tamuz (2015)). As this
places heavy computational demands on agents, the rationality assumption becomes

less plausible.

So, for tractability network economists often make strong assumptions about
the geometry of the network, and for both tractability and realism, often focus on non-
Bayesian agents. Nevertheless, models with rational agents provide valuable benchmarks

for evaluating the effects of different heuristic behaviors or beliefs.

A key question is how the geometry of the social network affects learning
outcomes. As we will discuss, a general lesson from both rational and boundedly-
rational models is that egalitarian networks—Iloosely speaking, networks in which no
agent is much more important than others in the geometry of the network—tend to
facilitate social learning (Bala and Goyal (1998), Golub and Jackson (2010), Acemoglu
et al. (2011), and Mossel, Sly and Tamuz (2015)).

We next discuss the spectrum of models of social learning on networks. In
§ 11.2 we consider network models of rational social learning with sequential actions.
In § 11.3 we study models with repeated actions, featuring rational agents in § 11.3.1

and heuristic agents in § 11.3.2.
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11.1 Model Spectrum

Models of social learning on networks vary across several dimensions. We outline here
the model spectrum, and in later subsections discuss the insights provided by these

models.

11.1.1 Rationality

Substantial literatures examine settings with either Bayesian (i.e., rational) agents,
quasi-Bayesian agents, and agents who use (non-Bayesian) heuristics.>® We say that
agents are quasi-Bayesian if they use Bayes’ rule to update beliefs, perhaps with incorrect
inputs. For example, agents may ignore some of their signals as in Bala and Goyal
(1998)).

Heuristic agents are those whose action choices are far from following any
expected utility maximizing decision process or whose beliefs are not broadly compatible
with Bayes’ rule. For example, in the early and influential model of DeGroot (1974),
agents repeatedly update their beliefs to equal the average of their social network

neighbors’ previous period beliefs.

In settings with repeated moves, forward-looking agents may wish to take
actions that in the short run yield lower utility, in order to influence their peers to reveal
more information in the future (see, e.g., Mossel, Sly and Tamuz (2015)). Alternatively,
there are models with myopic agents, who maximize expected utility in each period,
but completely discount future utility. In consequence, they do not take into account

the effects that their actions have on the actions of others.

The myopia assumption is often made for tractability, to facilitate the study

of otherwise-rational agents. Moreover, the complexity of forward-looking inference is

38Bayesian: Parikh and Krasucki (1990), Acemoglu et al. (2011), Mossel, Sly and Tamuz (2015) and
Arieli and Mueller-Frank (2019). Quasi-Bayesian: Bala and Goyal (1998), Molavi, Tahbaz-Salehi and
Jadbabaie (2018). Heuristic: Golub and Jackson (2010).
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a reason for why in practice agents may actually behave myopically. In some papers,
agents are effectively made myopic by assuming that an agent’s action has no effect on

the behavior of others.3?

11.1.2 Sequential Single Actions vs. Repeated Actions

Early social learning models assumed that each agent acts only once in an exogenously
determined order (Banerjee (1992) and BHW). Most of the network literature follows
suit (notably Acemoglu et al. (2011)); other models consider agents who act repeatedly.
A pioneering example of a quasi-Bayesian network model with repeated actions is that
of Bala and Goyal (1998). An early repeated action model with rational myopic agents
on a social network is that of Parikh and Krasucki (1990), who generalize the two agent
model of Geanakoplos and Polemarchakis (1982) to a network setting. Later repeated
action myopic models include Rosenberg, Solan and Vieille (2009) and Mossel, Sly
and Tamuz (2014). Forward-looking agents acting repeatedly on social networks were
studied by Mossel, Sly and Tamuz (2015).

11.1.3 Signal Structure, Action Space, and State Space

We next consider other assumptions about signal structure, the action space, and the
state space. Some models allow for unbounded signals or non-atomic signals, as in
Smith and Sgrensen (2000). Unless otherwise mentioned, the results we discuss in this
section apply to general signals, under the assumptions of a binary state and binary

actions as in the SBM.

39Papers based on the myopia assumption include Parikh and Krasucki (1990), Mossel, Sly and Tamuz
(2014), and Harel et al. (2021). In Gale and Kariv (2003a), agents act myopically because there is a
continuum of agents in each node of the network.
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11.1.4 Information about Whom Others Observe

In the basics cascades setting and many other social learning models, there is common
knowledge that everyone observes the full action history. Even in settings where agents
do not observe the full action history, it is often assumed that each agent knows exactly
who her predecessors have observed. More generally, an agent’s neighborhood of obser-
vation can be private information of that agent. In the model of ( ),
agents know the distribution from which the neighborhoods of other agents are drawn,
but not the realizations. In the imperfectly rational model of ( ) discussed
in § 6.2, there is a chance that any agent has an empty neighborhood. Misestimation of

this probability by others leads to failures of asymptotic learning.

11.2 Sequential Actions

In this section, we consider models of rational social learning with sequential actions on
networks. ( ) and BHW assume that every agent observes the actions of
all predecessors in the queue. This is a simple network structure wherein agents can be
identified in order of moves with the positive integers, and each agent /,, observes the

actions of all of her predecessors I,,,, where m < n.

A subsequent literature retains the exogenous ordering of actions, but relaxes
the complete observation structure, so that each agent observes only a subset of her

predecessors. We discussed some models with this feature in § 6.

To further consider such settings, let I,,’s neighborhood, N,,, be the set of agents
whose actions agent [,, observes before acting. ( ) study a model
in which N,, = {I,,_,}: each agent observes her immediate predecessor. In their model,
the state is equal to the sum of the agents’ private signals, rather than being binary
as in the SBM. With this state and network structure, neither herding nor information
cascades arises, but the probability that later agents mimic their immediate predecessors

tends to one.
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Acemoglu et al. (2011) introduce a general network structure: the neighbor-
hood N, of agent I,, can be any subset of {11, ..., I, 1}, and, moreover, can be chosen
at random, exogenously and independently. They study asymptotic learning (as defined
in § 4.3): under what conditions does the probability that agent 7, takes the correct
action tend to 1 as n becomes large? Part of the answer is that asymptotic learning
never occurs when agents can observe all predecessors and have bounded signals (BHW,
Smith and Serensen (2000)), owing to incorrect information cascades (or limit cascades).
Nevertheless, Acemoglu et al. (2011) show that asymptotic learning is possible even

with bounded signals in some networks with incomplete observation structures.

For example, the presence of sacrificial lambs as defined in § 7—agents who
are unable to observe others—can induce asymptotic learning. To see this, suppose
that N, = {} with probability 1/n, and that N,, = {3, ..., [, 1} with the remaining
probability (n — 1)/n. Sacrificial lambs act according to their private signals only. The
rest observe all their predecessors. The sacrificial lambs choose the wrong action with
a constant probability that does not tend to zero with n. But these mistaken actions
become exceedingly rare, as the frequency of sacrificial lambs tends to zero. Furthermore,
their actions reveal independent pieces of information to their successors. Because the
probability of arrival of a lamb decays slowly enough, there are infinitely many sacrificial
lambs, and the rest eventually choose correctly with probability one.*® Acemoglu et al.
(2011) provide a more general condition that ensures asymptotic learning. As in the
sacrificial lambs example, this condition applies to stochastic networks only; indeed,
deterministically placed sacrificial lambs cannot produce asymptotic learning, since

asymptotic learning requires that all late players choose correctly with high probability.

Acemoglu et al. also show, conversely, that asymptotic learning cannot hold
when some agents play too important a role in the topology of the network. This

happens when there is a set of important agents {/, ..., I/} that constitute the only

40The beneficial effect of sacrificial lambs is similar to an effect in Bernardo and Welch (2001) and
Bohren (2016) as discussed in § 6.2.3, wherein imperfectly rational agents act based on their private

signals instead of cascading.

86



social information for an infinite group of agents. When their signals happen to indicate
the wrong action—which occurs with some positive probability—infinitely many agents
follow suit. Along these lines, Acemoglu et al. say that a network has non-expanding
observations if there is some M and ¢ > 0 such that, for infinitely many agents /,,, the
probability that N, is contained in {I;,..., I/} is at least . In this case, asymptotic
learning does not occur. The lesson that important agents impede the aggregation of
information is one that—as we shall see—recurs frequently across a wide spectrum of
models.

Turning to short-term dynamics, Acemoglu et al. (2011) show that social
learning can sometimes induce beliefs that are contrarian with respect to a subset of
predecessors, and anti-imitation (see also Eyster and Rabin (2014) discussed in § 6.2).
Intuitively, suppose that both /5 and I, observe I; only, and that I, observes I;, I, and
I5. Then I, should place positive weight on /3 and /5, and negative weight on /; to
offset double-counting. So, within a broad stream of imitation, there can be eddies of

contrarian behavior.*!

Overall, these papers show that sometimes smart observers do not just follow
the herd. Sometimes, smart agents may put much greater weight on the actions of fewer
agents (resulting in following the minority, as in Callander and Horner (2009), discussed
in § 6.1), or even put negative weight on some (as in Acemoglu et al.). Although such
effects are far from universal properties of social learning models, such findings provide
a useful caveat to the intuitive notion that agents put positive and similar weights on
the actions of predecessors.

Until now we have considered network models in which the neighborhoods N,
are either deterministic, or drawn independently. Less is known about the case in which

neighborhoods /,, are not independent (as analyzed by L.obel and Sadler (2015)). For

“IFor a formal example, see “Nonmonotonicity of Social Beliefs” in Acemoglu et al. (2011, Appendix
B). Such contrarian behavior does not occur in networks in which each agent can only observe one
predecessor (a tree network).
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example, a given agent may have a chance of being observed by either everyone or by

no one.

In Arieli and Mueller-Frank (2019), agents are placed on a two (or higher)
dimensional grid, and the timing of their actions is given by their distance from the
origin. The observation structure is chosen at random according to a parameter p; each
agent is independently, with probability p, connected to each of her grid neighbors who
are closer to the origin. An agent /,, observes an agent I,, if there is a path of connected
agents starting from /,, and ending in I,,. This is a special case of L.obel and Sadler
(2015), but not of the Acemoglu et al. (2011) setting, since the realized neighborhoods
are not independent. Specifically, if /,, is not observed by any neighbor, then she would

not be observed by any other agent, and so these events cannot be independent.

After the observation structure is realized, the agents take actions sequentially,
according to their distance from the origin. Arieli and Mueller-Frank (2019) study
what they call a-proportional learning, meaning roughly that at least an « fraction of
the (infinitely many) agents choose the correct action. More accurately, this obtains
whenever an a-fraction or more of the agents in the ball of radius r choose the correct

action with probability that tends to one as r tends to infinity.

Fixing o < 1, Arieli and Mueller-Frank (2019) ask for which values of p is
a-proportional learning obtained. When p = 1, each agent observes all agents who
lie between that agent and the origin. In this case cascades form as in the SBM, so
a-proportional learning does not hold. Their main result is that, nevertheless, for all

sufficiently large p < 1, a-proportional learning does hold.

As in Acemoglu et al. (2011), this conclusion is based upon sacrificial lambs.
For any p < 1 there is a constant fraction of agents