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Abstract

The expectation is an example of a descriptive statistic that is monotone with

respect to stochastic dominance, and additive for sums of independent random variables.

We provide a complete characterization of such statistics, and explore a number of

applications to models of individual and group decision-making. These include a

representation of stationary monotone time preferences, extending the work of Fishburn

and Rubinstein (1982) to time lotteries. This extension offers a new perspective on risk

attitudes toward time, as well as on the aggregation of multiple discount factors. We

also offer a novel class of nonexpected utility preferences over gambles which satisfy

invariance to background risk as well as betweenness, but are versatile enough to

capture mixed risk attitudes.

1 Introduction

How should a random quantity be summarized by a single number? In Bayesian statistics,

point estimators capture an entire posterior distribution. In finance, risk measures quantify

the risk of a financial position. And in economics, certainty equivalents characterize an

agent’s preference for uncertain outcomes.

We use the term descriptive statistic, or simply statistic, to refer to a map that assigns

a number to each bounded random variable. We study statistics that are monotone with

respect to first-order stochastic dominance, and additive for sums of independent random

variables. An example of a monotone additive statistic is the expectation. The median is

monotone but not additive, while the variance is additive, but not monotone.
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Monotonicity is a well studied property of statistics (see, e.g., Bickel and Lehmann,

1975a,b), and holds, for example, for certainty equivalents of monotone preferences over

lotteries. Additivity is a stronger assumption. We focus on this property because of its

conceptual simplicity and because it serves as a baseline assumption in many settings.

As we argue, additivity corresponds to stationarity in the context of preferences over

time lotteries (see §3). In the context of choices over monetary gambles it corresponds

to invariance to background risk (§4.1), or to a form of separability across independent

decision problems (§4.6).

Beyond the expectation, an additional example of a monotone additive statistic is the

map Ka that, given a ∈ R, assigns to each random variable X the value

Ka(X) =
1

a
logE

[

eaX
]

. (1)

In the fields of probability and statistics, this function is known as the (normalized) cumulant

generating function evaluated at a. In finance it is called the entropic risk measure. In

economics, it corresponds to the certainty equivalent of an expected utility maximizer

who exhibits constant absolute risk aversion (CARA) over gambles. For bounded random

variables, the essential minimum and maximum provide further examples of such statistics;

as we explain later, they are the limits of Ka as a approaches ±∞. The expectation is

equal to K0, the limit of Ka as a approaches 0.

Our main result establishes that these examples, and their weighted averages, are the

only monotone additive statistics. That is, we show that if a statistic Φ is monotone,

additive and normalized so that it satisfies Φ(c) = c for every constant c, then it is of the

form

Φ(X) =
∫

Ka(X) dµ(a)

for some probability measure µ over the extended real line. This result provides a simple

representation of a natural family of statistics, which one may a priori have expected to be

much richer.

Our first application is to time preferences. The starting point for our analysis is the

work by Fishburn and Rubinstein (1982), who study preferences over dated rewards—a

monetary reward, together with the time at which it will be received. They show that

exponential discounting of time arises from a set of axioms, of which the most substantial,

stationarity, postulates that preferences between two dated rewards are unaffected by the

addition of a common delay.

We extend the analysis of Fishburn and Rubinstein (1982) to time lotteries, which

consist of a monetary reward x and a random time T at which it will be received. In this

setting, we too introduce a stationarity axiom that requires preferences to be invariant with
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respect to random independent delays. As we argue in the main text, this stationarity axiom

captures an assumption of dynamic consistency, together with the idea that preferences do

not depend on calendar time.

We show that a monotone and stationary preference over time lotteries admits a

representation of the form

u(x)e−rΦ(T ),

where Φ is a monotone additive statistic (Theorem 3). Thus, Φ(T ) is the certainty

equivalent of the random time T , i.e. the deterministic time that is as desirable as T . Over

deterministic dated rewards, the above representation coincides with standard discounted

utility. General time lotteries are reduced to deterministic ones through the certainty

equivalent Φ. By our main representation theorem, it takes the form Φ(T ) =
∫

Ka(T ) dµ(a).

In this context, each Ka(T ) is the certainty equivalent of T under an expected discounted

preference with discount rate −a. The different certainty equivalents are then averaged

according to the measure µ.

In this representation it is as if the decision maker had in mind not one but multiple

discount factors. Thus, Φ can be interpreted as the certainty equivalent of a decision

maker who is uncertain about the correct discount factor, or as the aggregated certainty

equivalent of a group of agents with different discount factors.

Our representation theorem for monotone and stationary time preferences has implica-

tions for understanding the relation between stationarity and risk attitudes toward time.

How people choose among prospects that involve risk over time has been studied both

theoretically and experimentally (Chesson and Viscusi, 2003; Onay and Öncüler, 2007;

Ebert, 2020; DeJarnette et al., 2020; Ebert, 2021). A basic paradox these papers highlight

is that many subjects display risk aversion over the time dimension, even though the

standard theory of expected discounted utility predicts that people are risk-seeking with

respect to time lotteries.

This raises the question of whether there is a tractable and well-motivated class of

preferences that allows risk-aversion, risk-seeking, or a combination of the two, as well as

stationarity. As pointed out by DeJarnette, Dillenberger, Gottlieb, and Ortoleva (2020),

this is not entirely obvious. The preferences we study in this paper offer a solution to this

problem, as they satisfy a strong notion of stationarity while allowing for a variety of risk

attitudes.

We further apply the characterization of monotone stationary preferences to the problem

of aggregating heterogeneous time preferences. It is well known that when aggregating

expected discounted utility preferences, a utilitarian approach that averages individual

utility functions leads to present bias (see Jackson and Yariv, 2014, 2015). Based on

this observation, the literature concludes that within expected discounted utility, it is
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impossible to aggregate individual preferences into a social preference unless the latter is

dictatorial.

We show that this difficulty is not due to stationarity, but rather to an insistence

on the idea that the social preference should conform to expected discounted utility.

When preferences are allowed to belong to the more general class of monotone stationary

preferences, then a social preference obtained by averaging the certainty equivalents of the

individuals satisfies Pareto efficiency and stationarity (Proposition 3). Moreover, under

some assumptions, every Paretian and stationary social preference is obtained in this way

(Proposition 4).

Monotone additive statistics also find applications to models of choice over monetary

gambles. It is well known that an expected utility agent whose preferences are invariant to

independent background risk must have CARA preferences. This invariance property makes

CARA utility functions useful modeling tools when the analyst does not observe the agents’

wealth level or the additional risks they face (see, e.g., Barseghyan, Molinari, O’Donoghue,

and Teitelbaum, 2018). Beyond expected utility, monotone preferences that are invariant

to background risk have certainty equivalents that are monotone additive statistics. Thus,

by our main theorem, any such preference can be represented by a weighted average of

CARA certainty equivalents, where the mixing measure µ is now over the coefficient of

absolute risk aversion. In this representation, the decision maker entertains multiple utility

functions, each defining a different certainty equivalent. Every lottery is evaluated by

averaging over these certainty equivalents.

An interesting feature of preferences represented by monotone additive statistics is that

they can display behavior that is not uniformly risk-averse nor risk-seeking, such as that of

an agent buying both lottery tickets and insurance (Friedman and Savage, 1948), all while

maintaining invariance to background risk. At the same time, a potential difficulty for this

class of preferences is that their defining parameter, the measure µ over the coefficient of

risk aversion, is infinite-dimensional. To narrow down the parameter space, we focus on

those preferences that also satisfy betweenness, a well-known weakening of the independence

axiom that has been extensively studied in the literature (see Dekel, 1986; Gul, 1991;

Cerreia-Vioglio, Dillenberger, and Ortoleva, 2020). We show that a preference represented

by a monotone additive statistic Φ satisfies betweenness if and only if it is of the form

Φ(X) = βK−aβ(X) + (1 − β)Ka(1−β)(X).

The parameter β ∈ [0, 1] controls the the relative weights of the risk-averse and risk-seeking

components, with increased β making the decision maker more risk-averse. The parameter

a is a scale parameter. This is a simple two-parameter family, but it is rich enough to

accommodate preferences that are neither risk-averse nor risk-seeking, while maintaining

invariance to background risk.
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Our final application concerns group decision-making under risk. We consider an

organization that employs multiple agents, each of whom makes decisions following an indi-

vidual preference relation, which can be seen as a decision rule prescribed by the firm. We

show that in order for the agents’ independent choices to not violate stochastic dominance

when combined, it is sufficient and necessary that their preferences are represented by the

same monotone additive statistic. Thus, these are the only preferences with the property

that decentralized decisions cannot result in stochastically dominated outcomes for the

organization.

1.1 Related Literature

A large literature in statistics studies descriptive statistics of probability distributions. A

representative example is the work of Bickel and Lehmann (1975a,b), who study location

statistics using an axiomatic, non-parametric approach that is similar to ours. This

literature has however focused on different properties, and, to the best of our knowledge,

does not contain a similar characterization of additivity and monotonicity. The mathematics

literature has studied additive statistics as homomorphisms from the convolution semigroup

to the real numbers (see Ruzsa and Székely, 1988; Mattner, 1999, 2004), but without

imposing monotonicity.

In finance and actuarial sciences, −Ka(X) is also known as an entropic risk measure,

and is used to assess the riskiness of a financial position X. It is a canonical example of a

coherent risk measure (see Föllmer and Schied, 2002, 2011; Föllmer and Knispel, 2011). In

this literature, Goovaerts, Kaas, Laeven, and Tang (2004) study additive statistics that

are monotone with respect to all entropic risk measures, i.e. those with the property that

Ka(X) ≥ Ka(Y ) for all a ∈ R implies Φ(X) ≥ Φ(Y ), and show that they must be weighted

averages of entropic risk measures, as in our main representation theorem. In contrast, we

do not assume this property of Φ, but instead show that it is implied by monotonicity and

additivity of Φ.

In an earlier paper, Pomatto, Strack, and Tamuz (2020) show that on the domain

of random variables that have all moments, the only monotone additive statistic is the

expectation.1 This is because the larger domain includes fat-tailed random variables, which

rule out all other monotone additive statistics. In contrast, in this paper we primarily

study the domain of bounded random variables, which allows for much richer preferences

with a variety of risk attitudes.

Monotone additive statistics also relate to what we called additive divergences in Mu,

1The same phenomenon is studied more in depth in Fritz, Mu, and Tamuz (2020). It is shown there that

the expectation remains the unique monotone additive statistic on the domain Lp, for any p ≥ 1, while

there are no monotone additive statistics on Lp with p < 1, or on the domain of all random variables.
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Pomatto, Strack, and Tamuz (2021). An additive divergence is a map defined over Blackwell

experiments that satisfies monotonicity with respect to the Blackwell order and additivity

for product experiments. While some of the techniques used in the two papers are similar,

the main mathematical argument is fundamentally different. The last step of the proof of

Theorem 1 is an application of the Riesz Representation Theorem and is similar to the

argument used in the previous paper. However, because the Blackwell order has different

properties from first-order stochastic dominance, the remainder of the proof is different,

with the previous paper having no analogue of Theorem 6, which is the main technical step

in the proof of Theorem 1. This new technique is also needed for the proof of Theorem 2,

which characterizes monotone additive statistics beyond bounded random variables.

DeJarnette, Dillenberger, Gottlieb, and Ortoleva (2020) study preferences over time

lotteries that display risk aversion. One class of preferences they propose is a generalization

of expected discounted utility (GEDU) that for a random prize X delivered at a random

time T takes the form E
[

φ(u(X)e−rT )
]

for some strictly increasing transformation φ. The

curvature of φ determines the attitude towards risk. While GEDU satisfies stationarity

for deterministic X and T , stationarity does not in general hold once random times T are

considered, even with respect to adding a deterministic delay. In contrast, we impose a

strong form of stationarity but do not insist on expected utility. The only intersection

between our model and GEDU are preferences represented by Ka, corresponding to a

point-mass mixing measure µ. These preferences have the standard EDU representation,

but perhaps with a negative discount rate, as we explain in §3.3.2

Applied to choice under risk, our representation also bears resemblance to cautious

expected utility theory (Cerreia-Vioglio, Dillenberger, and Ortoleva, 2015), in which a

gamble is evaluated according to the minimum certainty equivalent across a family of utility

functions. The two representations are conceptually related, as both involve uncertainty

over a utility function. Our axioms are however different in that we study preferences that

are invariant to adding an independent gamble, while Cerreia-Vioglio, Dillenberger, and

Ortoleva (2015) consider the effect of mixing with another gamble.

Decision criteria that aggregate multiple certainty equivalents have appeared before

in the literature. Myerson and Zambrano (2019) advocate the maximization of a sum of

certainty equivalents as an effective rule for risk sharing. Chambers and Echenique (2012)

formalize and characterize this rule as a social welfare functional.

The remainder of the paper is organized as follows. In §2 we introduce monotone

additive statistics and state our main result. In §3 we apply this result to time lotteries,

2When the prize X is held constant, a GEDU preference reduces to an expected utility preference over

random times. In contrast, our prizes are always deterministic, and the stationary preferences over random

times are represented by monotone additive statistics, which are not expected utility unless the mixing

measure µ is a point mass (see Proposition 8 in §F of the online appendix).
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and in §4 we apply it to monetary gambles. Finally, §5 provides an overview of the proof of

our main result. The appendix and online appendix contain omitted proofs for the results

in the main text.

2 Monotone Additive Statistics

We denote by L∞ the collection of bounded real random variables, defined over a nonatomic

probability space (Ω, F ,P). We will identify each c ∈ R with the corresponding constant

random variable taking value X(ω) = c at each ω ∈ Ω.

We say that a map Φ: L∞ → R is a statistic if it satisfies (i) Φ(X) = Φ(Y ) whenever

X, Y ∈ L∞ have the same distribution, and (ii) Φ(c) = c for every c ∈ R; that is, Φ

assigns c to the constant random variable c. We are interested in statistics that satisfy

monotonicity with respect to first-order stochastic dominance and additivity for sums of

independent random variables. Formally, Φ is

• additive if Φ(X + Y ) = Φ(X) + Φ(Y ) whenever X and Y are independent, and

• monotone if X ≥1 Y implies Φ(X) ≥ Φ(Y ), where ≥1 denotes first-order stochastic

dominance.

Since, by assumption, the value Φ(X) depends only the distribution of the random variable

X, monotonicity is equivalent to the requirement that Φ(X) ≥ Φ(Y ) whenever X ≥ Y

almost surely. This equivalence is based on the well-known fact that X ≥1 Y if and only if

there are random variables X̃, Ỹ such that X and X̃ are identically distributed, Y and Ỹ

are identically distributed, and X̃ ≥ Ỹ almost surely.3

We denote by R = R ∪ {−∞, ∞} the extended real numbers. Given X ∈ L∞ and

a ∈ R \ {0, ±∞}, we consider the statistic

Ka(X) =
1

a
logE

[

eaX
]

. (2)

The value Ka(X) is the certainty equivalent of X for a CARA utility function with

coefficient of risk aversion −a. In probability and statistics, Ka(X) is known as the

(normalized) cumulant generating function of X, evaluated at a.

If X and Y have the same distribution, then Ka(X) = Ka(Y ). Moreover, Ka(c) = c

for every c ∈ R, so Ka is a statistic. If X and Y are independent, then E
[

ea(X+Y )
]

=

E
[

eaX
]

E
[

eaY
]

, and hence Ka is additive. It is also monotone.

3An alternative, equivalent definition for a statistic is to let the domain of Φ be the set of probability

distributions on R with bounded support. In this domain, additivity would be defined with respect to

convolution. We choose to have the domain consist of random variables, as this approach offers some

notational advantages.
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We additionally define K0(X), K∞(X), K−∞(X) to be the expectation, the essential

maximum, and the essential minimum of X, respectively.4 This choice of notation makes

a 7→ Ka(X) a continuous function from R to R, for any X. Our main result is a

representation theorem for monotone additive statistics:

Theorem 1. Φ: L∞ → R is a monotone additive statistic if and only if there exists a

(unique) Borel probability measure µ on R such that for every X ∈ L∞

Φ(X) =
∫

R

Ka(X) dµ(a). (3)

We refer to µ as the mixing measure of the statistic Φ. Each Ka satisfies monotonicity

and additivity, and it is immediate that these two properties are preserved under convex

combinations. Theorem 1 says that the one-parameter family {Ka} forms the extreme

points of the set of monotone additive statistics; every such statistic must be a weighted

average obtained by mixing over this family. In §5 we provide an overview of the proof of

Theorem 1.

Theorem 1 can be extended to other domains of random variables. We consider the

set LM of random variables X for which Ka(X), as defined in (2), is finite for all a ∈ R.

The domain LM contains those unbounded random variables whose distributions have

sub-exponential tails, as in the case of the Gaussian distribution.

Theorem 2. Φ: LM → R is a monotone additive statistic if and only if it admits a

(unique) representation of the form (3) where the measure µ has compact support in R.

The extension of Theorem 1 to the larger domain LM adds to the applicability of our

representation, as it includes distributions with unbounded support, such as Gaussian or

Poisson, for which the function Ka has closed-form expressions. For example, Theorem 2

implies that when applied to a Gaussian random variable Z, a monotone additive statistic

Φ defined on LM takes the simple mean-variance form Φ(Z) = E [Z] + cVar[Z]/2, where

c ∈ R is the mean of the measure µ characterizing Φ.

A few additional remarks are in order. First, Theorems 1 and 2 answer an open

question in the mathematical finance literature on risk measures posed by Goovaerts,

Kaas, Laeven, and Tang (2004), who asked if entropic risk measures are the only additive

risk measures. Second, a possible strengthening of our additivity condition requires

Φ(X + Y ) = Φ(X) + Φ(Y ) to hold for all pairs of random variables, rather than just the

independent ones. As is well known, the only statistic that is additive in this more restrictive

sense is the expectation (see, for example, de Finetti, 1970). A different strengthening

is additivity with respect to uncorrelated random variables. It follows from the analysis

4The essential maximum and minimum are the maximum and minimum of the support: max[X] =

sup{a : P [X ≤ a] < 1} and min[X] = inf{a : P [X ≤ a] > 0}.
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of Chambers and Echenique (2020) that on a finite probability space the expectation is,

again, the only monotone statistic that is additive for uncorrelated random variables.

3 Monotone Stationary Time Preferences

Next, we apply monotone additive statistics to the study of time preferences. We consider

decision problems where an agent is asked to choose between time lotteries that pay a fixed

payoff at a future random time, as in the case of a driver choosing between different routes,

where some routes are more likely than others to face heavy traffic, or a company choosing

between projects with different random completion times. We argue that in this context

additivity is connected to a notion of stationarity, according to which a choice between

future rewards is not affected by the addition of an independent delay. In this section we

study preferences over time lotteries that are monotone and stationary, characterize them

using monotone additive statistics, discuss the risk attitudes they can model, and apply

them to the problem of aggregating heterogeneous time preferences.

3.1 Domain and Axioms

A time lottery is a monetary reward received by a decision maker at a future, random time.

Formally, it consists of a pair (x, T ), where x ∈ R++ is a positive payoff and T ∈ L∞
+ is

the random time at which it realizes.5 Thus, time is non-negative and continuous. Our

primitive is a complete and transitive binary relation � on the domain R++ × L∞
+ . We

denote by ∼ the indifference relation induced by �. To avoid notational confusion, in the

rest of this section x and y always denote monetary payoffs, t, s and d denote deterministic

times, and T, S, and D denote random times.

We say that a preference relation � on R++ × L∞
+ is a monotone stationary time

preference (henceforth, MSTP) if it satisfies the following axioms:

Axiom 3.1 (More is Better). If x > y then (x, T ) ≻ (y, T ).

Axiom 3.2 (Earlier is Better). If s > t then (x, t) ≻ (x, s), and if S ≥1 T then (x, T ) �

(x, S).

Axiom 3.3 (Stochastic Stationarity). If (x, T ) � (y, S) then (x, T + D) � (y, S + D) for

any D that is independent from T and S.

Axiom 3.4 (Continuity). For any (y, S), the sets {(x, t) : (x, t) � (y, S)} and {(x, t) : (x, t) �

(y, S)} are closed in R++ × R+.

5Per standard notation, L∞
+ denotes the set of non-negative bounded random variables.
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The first two Axioms 3.1 and 3.2 are standard conditions that directly generalize those

in Fishburn and Rubinstein (1982), who studied preferences over dated rewards (x, t) with

a deterministic time t. They require the decision maker to prefer higher payoffs, and to

prefer earlier times. Axiom 3.4 is a standard continuity assumption that does not require

a choice of topology over random times. The most substantive of our axioms is stochastic

stationarity. In §3.4 we discuss this axiom in depth and motivate it using the notions of

time invariance and dynamic consistency (Halevy, 2015).6

3.2 Representation

Our next result characterizes monotone stationary time preferences:

Theorem 3. A preference relation � over time lotteries is an MSTP if and only if there

exist a monotone additive statistic Φ, a constant r > 0, and a continuous and increasing

function u : R++ → R++ such that � is represented by

V (x, T ) = u(x) · e−rΦ(T ). (4)

As in Fishburn and Rubinstein (1982), the parameter r can be normalized to be any

arbitrary positive constant by applying a monotone transformation to the representation

V . We will often set r appropriately to simplify the form of the representation. In contrast,

the monotone additive statistic Φ is uniquely determined by the preference.

Over the domain of deterministic time lotteries (i.e. dated rewards), V coincides with

an exponentially discounted utility representation. For general time lotteries, Φ(T ) is the

certainty equivalent of T , i.e. the unique deterministic time that satisfies (x, T ) ∼ (x, Φ(T )).

The monotonicity and continuity axioms ensure that such a certainty equivalent exists, and

it is an implication of stochastic stationarity that Φ(T ) is independent of the reward x. As

we further show in the proof of Theorem 3, the monotonicity and stochastic stationarity

axioms formally translate into the certainty equivalent Φ being a monotone additive

statistic.

Proposition 7 in the appendix shows that the representation in Theorem 1 extends

to the domain of non-negative bounded random variables. Thus every MSTP can be

represented in the following form:

V (x, T ) = u(x) · e−r
∫

Ka(T ) dµ(a). (5)

6It is worthwhile to note that we implicitly assume agents to be indifferent with respect to the timing

of resolution of uncertainty. We think of the choice as being made at time 0, and we do not distinguish

between situations where the realization of the random time T is revealed immediately, gradually until

time T , or only at time T . Modeling preferences over the timing of resolution of uncertainty would require

enlarging the choice domain beyond time lotteries.
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We recover expected discounted utility when µ is a point mass concentrated on a point

−a < 0, in which case Φ takes the form

Φ(T ) = K−a(T ) =
1

−a
logE

[

e−aT
]

.

This certainty equivalent, with the normalization r = a, yields the familiar representation

V (x, T ) = u(x)E[e−aT ]. For a general measure µ, the statistic Φ(T ) =
∫

Ka(T ) dµ(a)

aggregates different discount rates by mixing over their corresponding certainty equivalents.

The key feature of the representation (5) is that the average is not over discount factors,

but instead over certainty equivalents induced by the discount factors. The resulting

representation is behaviorally distinct from expected discounted utility whenever µ is not a

point mass. Indeed, as we formally prove in §F in the online appendix, this representation

satisfies the independence axiom if and only if µ is a point mass.

3.3 Implications for Risk Attitudes toward Time

Theorem 3 demonstrates that there are many ways to extend discounted utility to the

domain of time lotteries, while maintaining stochastic stationarity. As is well known,

standard expected discounted utility preferences are risk-seeking over time, in the sense

that a decision maker prefers receiving a reward at a random time T rather than at the

deterministic expected time t = E [T ]. But other monotone additive statistics lead to

stationary time preferences that are not risk-seeking. As an example, for every a > 0 the

statistic

Φ(T ) = Ka(T ) =
1

a
logE

[

eaT
]

(6)

leads, with the normalization r = a, to the representation

V (x, T ) =
u(x)

E [eaT ]
, (7)

which is in fact risk-averse over time. Under this preference, the decision maker applies a

negative discount rate −a within the monotone additive statistic Φ, and yet is impatient.

These two aspects are compatible because in the representation u(x)e−rΦ(T ) the statistic

Φ controls the risk attitude, while the decision maker still prefers receiving prizes earlier

rather than later, since Φ appears with a negative coefficient.

Another key distinctive property of monotone stationary time preferences is their

flexibility in allowing for risk attitudes that are not uniform across time lotteries. To

illustrate this point, consider two decision problems with a fixed common reward x = $1000,

where in the first problem the choice is between

(I) receiving the reward after 1 day for sure, versus
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(II) receiving the reward immediately with 99% probability and after 100 days with 1%

probability.

In the second decision problem the choice is between

(I’) receiving the reward after 99 days for sure, versus

(II’) receiving the reward immediately with 1% probability and after 100 days with 99%

probability.

In both problems, the times at which the safe options I and I’ deliver the prize are equal

to the expected delay of the lotteries II and II’, and thus a decision maker who is globally

risk-averse or risk-seeking must either choose the safe options or the risky options in both

problems. Nevertheless, it does not seem unreasonable for a person to choose I over II in

order to avoid the risk of a long delay, but also choose II’ to I’, since the time lottery offers

at least a chance of avoiding an otherwise very long delay.7

Preferences based on monotone additive statistics are not necessarily globally risk-averse

or risk-seeking, and can accommodate the aforementioned behavior. For example, the

statistic

Φ(T ) =
1

2
K1(T ) +

1

2
K−1(T ) =

1

2
logE

[

eT
]

−
1

2
logE

[

e−T
]

leads the decision maker to choose the safe option I in the first problem and the risky

option II’ in the second.

Empirically, both risk-averse and risk-seeking behavior over time lotteries are observed.

For example, the experiment by Ebert (2021) finds that there are risk-seeking and risk-averse

subjects: “Overall, therefore, and in contrast to the evidence on wealth risk preferences,

there is substantial heterogeneity in preferences toward delay risk.” Moreover, DeJarnette,

Dillenberger, Gottlieb, and Ortoleva (2020) find that even the same subject often exhibits

both risk aversion and risk seeking depending on the choice at hand.

In §4.2 below we provide a detailed analysis of the risk attitudes of preferences repre-

sented by monotone additive statistics, including a characterization of those statistics that

give rise to mixed risk attitudes, as in the above example.

3.4 Stationarity, Time Invariance and Dynamic Consistency

In the absence of risk, it was shown by Halevy (2015) that stationarity can be understood as

the implication of two more basic principles: that preferences are not affected by calendar

time, and that the decision maker is dynamically consistent. As we next explain, Axiom 3.3

is related to a particular notion of dynamic consistency for time lotteries.

7We are grateful to Weijie Zhong for suggesting this example to us.
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We consider an enlarged framework where the decision maker is endowed with a profile

(�t) of preferences over time lotteries, with �t representing the preference the decision

maker expresses at time t. Formally, �t is a preference over R++ × L∞
+ , where in the

context of �t the pair (x, T ) represents a payoff of x received at time t + T . Adapting

the definitions from Halevy (2015) to our setting, we define time invariance and dynamic

consistency below:8

Definition. The collection of preferences (�t) satisfies time invariance if all the preferences

�t are identical.

Intuitively, if the agent chooses (x, T ) over (y, S) at some time t then she makes the

same choice at all other times.

Definition. The collection (�t) satisfies deterministic dynamic consistency if, for every

pair of time lotteries (x, T ) and (y, S), and every d, t ∈ R+ it holds that

(x, T ) �t+d (y, S) implies (x, T + d) �t (y, S + d).

That is, the decision maker does not reverse her choice between time t and time t + d.

Time invariance together with deterministic dynamic consistency imply stationarity with

respect to deterministic delays, namely (x, T ) �t (y, S) implies (x, T + d) �t (y, S + d).

Our next definition proposes a generalization of dynamic consistency to a choice between

(x, T ) and (y, S) made after a random delay D. What we call weak stochastic dynamic

consistency requires that if, at the random time t + D, the decision maker always prefers

(x, T ) over (y, S), then she would not revert her choice if asked to make the decision at time

t for her future self. In general, the realization of the delay D could affect the distributions

of S and T faced by the decision maker. Weak stochastic dynamic consistency considers

only the case where the decision maker always faces the same choice independent of the

delay, which mathematically corresponds to D being independent of both S and T .

Definition. The collection (�t) satisfies weak stochastic dynamic consistency if, for every

pair of time lotteries (x, T ) and (y, S), every t ∈ R+, and every D ∈ L∞
+ independent of

S, T it holds that

(x, T ) �t+d (y, S) for almost every realization d of D =⇒ (x, T + D) �t (y, S + D).

As we record in the next claim, our stochastic stationarity axiom is immediately implied

by time invariance and weak stochastic dynamic consistency.

8These definitions are slightly different from his, and in particular his (deterministic) dynamic consistency

axiom is slightly stronger, requiring the implication to hold in both directions.
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Claim 1. Suppose the collection (�t) satisfies time invariance, so that �t = � for every

t, and also satisfies weak stochastic dynamic consistency. Then the preference � satisfies

stochastic stationarity.

Indeed, by time invariance (x, T ) �t (y, S) implies (x, T ) �t+d (y, S) for every re-

alization d of D. Thus by weak stochastic dynamic consistency, (x, T ) �t (y, S) im-

plies (x, T + D) �t (y, S + D) whenever D is independent of S, T . Conversely, if

(x, T ) �t+d (y, S) for any realization d of D, then (x, T ) �t (y, S) by time invariance, and

(x, T +D) �t (y, S +D) would follow from stochastic stationarity. So stochastic stationarity

also implies weak stochastic dynamic consistency under the assumption of time invariance.

Weak stochastic dynamic consistency considers the case where D is independent of S

and T , which means that at the delayed time t + D the agent always chooses between the

same two time lotteries. A stronger dynamic consistency axiom would impose the same

condition, but for an arbitrary delay D that need not be independent of S and T . To

make this dependency more explicit we write Sd, Td for random variables that have the

conditional distributions of S, T when conditioning on D = d.

Definition. The collection (�t) satisfies strong stochastic dynamic consistency if, for

every pair of time lotteries (x, T ) and (y, S), every t ∈ R+, and every D ∈ L∞
+ it holds that

(x, Td) �t+d (y, Sd) for almost every realization d of D =⇒ (x, T + D) �t (y, S + D).

Intuitively, strong stochastic dynamic consistency requires consistency at different times

across different decision problems, while weak stochastic dynamic consistency only requires

it over the same decision problem. For instance, imagine a traveler who must choose

between a train and a flight, which involve travel times S and T respectively, and who

does not know the specific day of the month D when they will need to travel. Dynamic

consistency compares a traveler who must buy their ticket at the start of the month to

one who can make the decision on the day of travel. Weak stochastic dynamic consistency

applies when the distributions of travel times S and T are not dependent on the day of

the month. Strong stochastic dynamic consistency applies further to cases where travel

times Sd and Td do depend on the day d.

The following result shows that under time invariance, strong stochastic dynamic

consistency constrains the preference over time to be represented by Ka for some a ∈ R,

rather than a general monotone additive statistic Φ as in Theorem 3.

Proposition 1. Suppose � is an MSTP. Then the collection (�t) with �t = � for every

t satisfies strong stochastic dynamic consistency if and only if � can be represented by

V (x, T ) = u(x) · e−rKa(T )

for some a ∈ R, r > 0, and u : R++ → R++.
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In words, the preference over time is either risk-neutral, expected discounted utility,

the discounted maximum or minimum, or the negatively discounted preference described

in (7). In particular, strong stochastic dynamic consistency would rule out the kind of

mixed risk attitudes described in §3.3.

Proposition 1 follows from the fact that strong stochastic dynamic consistency, in

combination with monotonicity and continuity, implies the classic independence axiom as

we discuss in §F of the online appendix. Weak stochastic dynamic consistency does not

imply the independence axiom and thus allows for a richer set of time preferences.

3.5 Aggregation of Preferences over Time Lotteries

In this section we apply monotone stationary time preferences to collective decision

problems. A company making a choice among projects with different expected completion

dates, a public agency choosing which research projects to fund, or a family deciding which

highway to take, are all examples of social decisions where the alternatives at hand can be

seen as time lotteries. In such situations, even if individuals share the same views about

the desirability of the possible outcomes, there still exists a need to compromise between

different degrees of patience and risk tolerance.

We model this type of problem by studying a group of individuals where each agent,

denoted by i, is equipped with a preference relation �i over time lotteries. These preferences

may display different degrees of patience. Following the approach in social choice, we ask

how individual preferences can be aggregated into a social preference relation � that is

aligned to the individual preferences by the Pareto principle. In this context, the Pareto

principle requires that if all individuals agree that one time lottery is better than another,

so should the social preference:

Axiom 3.5 (Pareto). If (x, T ) �i (y, S) for every i, then (x, T ) � (y, S).

We first consider the case where each individual preference admits a standard expected

discounted utility representation ui(x)E[e−aiT ], where ui : R++ → R++ is agent i’s utility

function and ai > 0 is her discount rate.9 The next result shows that if one insists that

the social preference also conforms to expected discounted utility, then dictatorship is the

only admissible aggregation procedure satisfying the Pareto axiom whenever the individual

discount rates are distinct.10

9It is important to note that the parameter ai here is uniquely pinned down by agent i’s preference—when

restricting to a fixed reward x, the preference is expected utility over random times T , so the discounting

functions e−ait are unique up to a linear transformation.
10When some agents have the same discount rate, Paretian aggregation need not be dictatorial. For

example, if a1 = a2, then u(x)E[e−aT ] with u = u1+u2

2
and a = a1 = a2 satisfies the Pareto axiom.
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Proposition 2. Let (�1, . . . , �n, �) be expected discounted utility preferences over time

lotteries, where each �i is represented by ui(x)E[e−aiT ] and � is represented by u(x)E[e−aT ].

Suppose a1, . . . , an are distinct positive numbers. Then the Pareto axiom is satisfied if and

only if � = �i for some agent i.

As the proof shows, this impossibility result is a consequence of Harsanyi’s utilitarian

theorem (Harsanyi, 1955). Similar impossibility results have been obtained in the setting of

preferences over consumption streams (Gollier and Zeckhauser, 2005; Zuber, 2011; Jackson

and Yariv, 2014, 2015; Feng and Ke, 2018; Chambers and Echenique, 2018).

The next result offers a solution to this impossibility result. It shows that Paretian

aggregation and stochastic stationarity are compatible, and do not necessarily result in a

dictatorship, if we allow preferences to belong to the larger class of MSTPs.

Proposition 3. Let (�1, . . . , �n, �) be MSTPs, where each �i is represented by ui(x)e−riΦi(T )

and � is represented by u(x)e−rΦ(T ) for some monotone additive statistics (Φi) and Φ. If

there exists λ1, . . . , λn ∈ R+ such that

r =
n
∑

i=1

λiri, rΦ =
n
∑

i=1

λiriΦi, (8)

and u = Πn
i=1uλi

i , then the Pareto axiom is satisfied.

Note that as long as the individual certainty equivalents Φ1, . . . , Φn are not all identical,

then for generic values of λ1, . . . , λn, the social certainty equivalent Φ constructed from

(8) is distinct from each of the individual certainty equivalents. Thus the resulting social

preference � is generically not a dictatorship.

The key insight of Proposition 3 is that a linear aggregation of certainty equivalents

preserves both stochastic stationarity and the Pareto axiom; as we show below, this is

in fact the only way to preserve these properties. In the special case where individuals

have expected discounted utility preferences, the proposition implies that we can aggregate

preferences without violating stochastic stationarity by allowing the social preference to be

an MSTP. This approach complements alternative solutions that have been proposed in

the literature to resolve the tension between Paretian aggregation and stationarity.11

The next result gives a characterization of all social preferences that admit an MSTP

representation and respect the Pareto axiom, in the special case where all agents share the

same utility function and it satisfies a mild richness assumption. The assumption that all

11For example, Feng and Ke (2018) define a different notion of Pareto efficiency that takes into account

the preferences of individuals across generations. They show that a standard expected discounted social

preference can satisfy this weaker Pareto axiom so long as it is more patient than all the individuals.

Chambers and Echenique (2018) study a number of representations that weaken stationarity and generalize

expected discounted utility.

16



agents (and the social planner) share the same utility function is common in the literature

on aggregating discount factors, following Weitzman (2001) and Chambers and Echenique

(2018).

Proposition 4. Let (�1, . . . , �n, �) be MSTPs, where each �i is represented by u(x)e−riΦi(T )

and � is represented by u(x)e−rΦ(T ) for some monotone additive statistics (Φi) and Φ. Sup-

pose that the common utility function satisfies either limx→0 u(x) = 0 or limx→∞ u(x) = ∞.

Then, the Pareto axiom is satisfied if and only if (8) holds for some λ1, . . . , λn ∈ R+

that sum to 1.

It follows from our proof that even if agents had different utility functions, the Pareto

axiom would still require the social certainty equivalent Φ to be a convex combination of

the individual (Φi)n
i=1. However, the implications of the Pareto axiom on the social utility

function seem difficult to characterize in general.12 We leave this question for future work.

4 Preferences Over Gambles

In the theory of risk, CARA utility functions form a restrictive but useful class of expected

utility preferences. Their usefulness stems from the analytical tractability of the exponential

form, as well as from their invariance properties.

CARA utility functions are invariant to changes in wealth, so that a prospect X is

preferred to Y if and only if X + w is preferred to Y + w for all wealth levels w. They are

more generally invariant to the addition of background risk: if X is preferred to Y then

X + W is preferred to Y + W for every independent random variable W .

This property makes CARA utility functions a good approximation whenever stakes

are small. In addition, they are used in empirical settings in which wealth is unknown. For

example, when estimating risk preferences from insurance choices, the CARA family “has

the advantage that it implies a household’s prior wealth w, which frequently is unobserved,

is irrelevant to the household’s decisions.” (Barseghyan, Molinari, O’Donoghue, and

Teitelbaum, 2018). The stronger property of invariance to background risk is also important,

since households’ additional background risk—arising from, say, investments in the stock

market or health conditions—may be unobservable.

12To illustrate the difficulty, consider two individual EDU preferences represented by u1(x)E
[

e−T
]

and

u2(x)E
[

e−T
]

, as well as a social preference represented by u(x)E
[

e−T
]

, all with the same discount rate. In

this case, one can show that the Pareto axiom reduces to the inequality condition u(x)
u(y)

≥ min{ u1(x)
u1(y)

, u2(x)
u2(y)

}

for every pair of rewards x, y. Now suppose u2(x) = u1(x)2 for every x, then the previous condition

simplifies to u1(x)
u1(y)

≤ u(x)
u(y)

≤
(

u1(x)
u1(y)

)2

for every x > y. A wide range of u functions satisfies this condition,

including uα
1 for any power α ∈ [1, 2] and all convex combinations of such powers. This multiplicity of

possible social utility functions makes it challenging to generalize Proposition 4.
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The invariance properties of CARA utility functions are conceptually distinct from the

assumption that preferences obey the axioms of expected utility. In this section, we apply

monotone additive statistics to study the general class of preferences that are monotone

with respect to stochastic dominance and are invariant to background risk.

4.1 Background-risk Invariant Preferences

We consider a complete and transitive preference relation � over L∞, interpreted here as

the space of monetary gambles. We assume that for every gamble X there exists a unique

certainty equivalent Φ(X) such that Φ(X) ∼ X. If the preference � is monotone with

respect to first-order stochastic dominance then so is Φ. We say that � is invariant to

background risk when it has the property that X � Y if and only if X + Z � Y + Z for Z

independent of X and Y .

As we now explain, a preference � is monotone and invariant to background risk if and

only if its certainty equivalent is a monotone additive statistic. Indeed, invariance implies

that X + Y ∼ Φ(X) + Y for any two independent random variables X and Y . Likewise,

Y + Φ(X) ∼ Φ(Y ) + Φ(X). Combining the two indifferences yields X + Y ∼ Φ(X) + Φ(Y ).

So, the certainty equivalent of X + Y is given by the sum Φ(X) + Φ(Y ), and thus Φ is an

additive. The converse is immediate to verify.

By Theorem 1, the certainty equivalent Φ of such a preference is a weighted average

Φ(X) =
∫

Ka(X) dµ(a) of the certainty equivalents of multiple CARA expected utility

agents, where µ is a probability measure over the coefficient of absolute risk aversion.

4.2 Risk Aversion

In this section we characterize risk-averse and risk-seeking behavior for preferences that

are represented by monotone additive statistics. A preference relation � over gambles is

risk-averse if its certainty equivalent Φ satisfies Φ(X) ≤ E [X] for every gamble X, and

risk-seeking if the opposite inequality holds. Risk aversion translates into a property of the

support of the corresponding mixing measure µ:

Proposition 5. A monotone additive statistic satisfies Φ(X) ≤ E [X] for every X ∈ L∞ if

and only if Φ(X) =
∫

R
Ka(X) dµ(a) for a Borel probability measure µ supported on [−∞, 0].

Likewise, Φ(X) ≥ E [X] for every X if and only if µ is supported on [0, ∞].

In words, a preference that is invariant to background risk is additionally risk-averse

(resp. risk-seeking) if and only if it ranks gambles by aggregating the certainty equivalents

of risk-averse (resp. risk-seeking) CARA utility functions.13

13A corollary of Proposition 5 is that an additive statistic Φ is risk averse if and only if it is monotone

with respect to second-order stochastic dominance. This is perhaps surprising, since the two properties are
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4.3 Mixed Risk Aversion

As pointed out in the classical work of Friedman and Savage (1948), it is not uncommon to

observe behavior that is neither risk-averse nor risk-seeking, such as that of a person who

buys both lottery tickets and insurance. For concreteness, in analogy with our discussion

in the time domain, consider a decision maker faced with the following two choices.

In the first, the choice is between (I) facing a risk of losing $100 with probability 1%, or

(II) paying $1 and being fully insured against that risk. In the second decision problem the

choice is between (I’) paying $1 dollar for a lottery ticket that yields $100 with probability

1%, or (II’) not participating in the lottery.

Preferences represented by monotone additive statistics can model a decision maker

who chooses (II) over (I) but (I’) over (II’), while at the same time remaining invariant to

background risk. This is the case, for example, for a preference whose certainty equivalent

Φ(X) takes the form Φ(X) = 1
2K−a(X) + 1

2Ka(X), with a mixing measure that puts equal

weights on two coefficients of risk aversion a and −a.

4.4 Comparative Risk Attitudes

We now proceed to compare the risk attitudes expressed by different monotone additive

statistics. For two preference relations �1 and �2 over gambles, with corresponding

certainty equivalents Φ1 and Φ2, the preference �1 is more risk-averse than �2 if Φ1(X) ≤

Φ2(X) for every gamble X ∈ L∞. That is, if the first decision maker assigns to every

gamble a lower certainty equivalent. The next proposition characterizes comparative risk

aversion for preferences represented by monotone additive statistics:

Proposition 6. Let �1 and �2 be represented by monotone additive statistics with mixing

measures µ1 and µ2, respectively. Then �1 is more risk-averse than �2 if and only if

(i) For every b > 0,
∫

[b,∞]
a−b

a
dµ1(a) ≤

∫

[b,∞]
a−b

a
dµ2(a).

(ii) For every b < 0,
∫

[−∞,b]
a−b

a
dµ1(a) ≥

∫

[−∞,b]
a−b

a
dµ2(a).

Since Ka(X) increases in the parameter a, a sufficient condition for �1 being more

risk-averse than �2 is that µ2 first-order stochastically dominates µ1. First-order stochastic

dominance is, however, only a sufficient condition. The reason is that the cone generated by

the functions of the form K(·)(X), as we vary X, does not contain all increasing functions,

and hence defines a strictly finer stochastic order over the mixing measures.14

in general not equivalent for a preference over gambles.
14For a concrete example that the order characterized by Proposition 6 is strictly finer than first-order

stochastic dominance, consider µ1 to be a point mass at a = 2 and µ2 to have 1/4 mass at a = 1 and

3/4 mass at a = 3. Clearly, neither one first-order dominates the other. Condition (ii) in Proposition 6 is
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Proposition 6 characterizes this stochastic order by showing that the convex cone

generated by the set of normalized cumulant generating functions is equal to the convex cone

generated by a simple one-parameter family of test functions, of the form g(a) = a−b
a

1a≥b

or g(a) = −a−b
a

1a≤b.

4.5 Betweenness

A disadvantage of the class of preferences represented by monotone additive statistics is

that it is large, with the entire measure µ as an infinite-dimensional parameter of the

preference. In this section we identify a small subset of such preferences that is indexed by

only two parameters, and yet retains enough flexibility to accommodate interesting risk

attitudes such as mixed risk aversion.

To this end we study preferences that satisfy the betweenness axiom. This well-known

property, first studied by Dekel (1986) and Chew (1989), requires that the decision maker’s

preference over probability distributions displays indifference curves that are straight lines.

In comparison, the standard independence axiom (which we study in §F of the online

appendix) would additionally require the indifference curves to be parallel to each other.

Given two random variables X and Y , we denote by XλY any random variable whose

distribution is a convex combination that assigns weight λ to the distribution of X and

weight 1 − λ to the distribution of Y .

Axiom 4.1 (Betweenness). For all X, Y and all λ ∈ (0, 1), X ∼ Y if and only if XλY ∼ Y .

The betweenness axiom characterizes the following class of preferences:

Theorem 4. Suppose a preference � on L∞ is represented by a monotone additive statistic

Φ(X) =
∫

R
Ka(X) dµ(a). Then � satisfies the betweenness axiom if and only if

Φ(X) = βK−aβ(X) + (1 − β)Ka(1−β)(X)

for some β ∈ [0, 1] and a ∈ [0, ∞).

This family of preferences is much smaller, as it is parameterized by only two numbers.

It retains the properties of monotonicity, invariance to background risk, as well as the

tractability of the CARA representation. Yet it is versatile enough to describe the kind of

mixed risk attitude that leads to buying both insurance and lottery tickets.

The risk-attitude parameter β weights the levels of risk aversion/seeking, with β = 1

corresponding to pure CARA risk aversion and β = 0 corresponding to pure CARA risk

seeking. For internal β, the preference exhibits mixed risk aversion as guaranteed by the

trivially satisfied, whereas condition (i) reduces to 1
2
(2 − b)+ ≤ 1

4
(1 − b)+ + 1

4
(3 − b)+, which holds because

the function (a − b)+ = max{a − b, 0} is convex in a.
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previous Proposition 5. Moreover, a simple calculation shows that for any β ∈ (0, 1), such

a preference would buy both insurance and lottery tickets of the kind described in §4.3

whenever those gambles entail a small probability of a large loss or gain.15

The parameter a is a scale parameter. It can be understood as the scale at which the

preference deviates from risk neutrality. For gambles whose sizes are much smaller than

1/a, the preference is very close to being risk-neutral. While for gambles that vary by

much more than 1/a, behavior will be far from risk-neutral.

4.6 Combined Choices over Gambles

In large organizations, risky prospects are not always chosen through a deliberate, central-

ized process. Rather, they are combinations of independent choices, often carried out with

limited coordination among the different actors.

Consider, for example, a bank that employs two workers. The first is a trader who

must choose between two contracts, the Lean Hog futures X and X ′. The second is an

administrator who must choose between two insurance policies Y or Y ′ for the bank’s

building. Assuming the first worker chooses X and the second Y , the resulting revenue for

the bank is given by the random variable X + Y . When the agents face choice problems

that belong to independent domains, so that X and X ′ are stochastically independent from

Y and Y ′, it is natural to ask to what extent coordination is necessary for the organization.

In this section we make this question precise by asking under what conditions the

agents’ combined choices respect first-order stochastic dominance. Our result shows this

is true if and only if individual preferences are identical and represented by a monotone

additive statistic. Thus, this is the only class of preferences with the property that choices

over independent domains can be decentralized without obvious harm to the organization.

We study the following model. We are given two preference relations �1 and �2 over

L∞, the set of bounded gambles, that are complete and transitive (our result immediately

generalizes to three or more agents). As in the example above, we think of each preference

relation as describing the choices of a different agent, so that X �i X ′ if agent i chooses

X over X ′. These preferences can be interpreted as being endogenous or as the result of

exogenous incentives; for example, the bank trader’s preferences could be driven by her

contract with the employer.

Our main axiom requires that whenever the two agents face independent decision

problems, their choices, when combined, do not violate stochastic dominance:

15It can be shown that if β 6= 0.5, then lottery tickets and insurance as described in §4.3 are preferred

if and only if the probability of gain/loss (0.01 in the example) is smaller than min(β, 1 − β), and the

corresponding gain/loss amount (100 in the example) is sufficiently large. If β = 0.5, then the same holds

for any probability of gain/loss < 0.5, and for any gain/loss amount.
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Axiom 4.2 (Consistency of Combined Choices). Suppose X, X ′ are independent of Y, Y ′.

If X ≻1 X ′ and Y ≻2 Y ′, then X ′ + Y ′ does not strictly dominate X + Y in first-order

stochastic dominance.

If we interpret �1 and �2 as decision-making rules that are determined by the organiza-

tion, then Axiom 4.2 requires such rules to never result in an outcome that is stochastically

dominated. That collective choices should not violate stochastic dominance is clearly a

desirable requirement for a rational organization. A similar axiom was first introduced by

Rabin and Weizsäcker (2009) in the context of a model of narrow framing.

In addition to this axiom, we assume individual preference relations �i satisfy basic

continuity and monotonicity assumptions:

Axiom 4.3 (Continuity). If X ≻i Y then there exists ε > 0 such that X ≻i Y + ε and

X − ε ≻i Y .

Axiom 4.4 (Responsiveness). X + ε ≻i X for every ε > 0.

We next show that under these axioms, the two preference relations must be represented

by monotone additive statistics. Moreover, the statistic must be the same for both agents.

Theorem 5. Two preference �1, �2 on L∞ satisfy Axioms 4.2, 4.3, and 4.4 if and only

if there exists a monotone additive statistic that represents both �1 and �2.

Thus, when individual choices are not coordinated, their combination will, in general,

lead to violations of stochastic dominance, even when agents’ choices concern independent

decision problems. The theorem singles out preferences represented by monotone additive

statistics as the only class of preferences that are robust to this lack of coordination.

Theorem 5 admits an alternative interpretation, closely related to the work of Rabin

and Weizsäcker (2009) on narrow framing. In their paper, a decision maker faces multiple

decisions and engages in “narrow bracketing” by choosing separately, in each problem,

according to a fixed preference relation � over gambles. This is a special case of our model

where � = �1 = �2. They show that the decision maker’s combined choices result in

dominated outcomes whenever � is not invariant to changes in wealth (i.e. for some X, Y

and c ∈ R, X ≻ Y and Y + c ≻ X + c), but leave open the question of characterizing the

class of preferences, beyond expected utility, that satisfy Axiom 4.2. Theorem 5 provides a

complete characterization of those preferences over gambles for which narrow framing does

not lead to dominated choices.

5 Overview of the Proof of Theorem 1

Our approach to the proof of Theorem 1 is via a stochastic order known as the catalytic

stochastic order (see Fritz, 2017, and references therein). Given X, Y ∈ L∞, we say that X
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in fact bounded away from zero by the Extreme Value Theorem. The term (∗∗) can be

made arbitrarily close to 1—uniformly on the integral domain [−N, N ]—by making V

large. This implies that [G ∗ h − F ∗ h](y) > 0 for all y, and we further show that the

inequality still holds if we modify H by truncating its tails, ensuring that it is in L∞.

Theorem 6 leads to the following lemma, which is a key component of the proof of

Theorem 1:

Lemma 1. Let Φ: L∞ → R be a monotone additive statistic. If Ka(X) ≥ Ka(Y ) for all

a ∈ R then Φ(X) ≥ Φ(Y ).

Proof. Suppose Ka(X) ≥ Ka(Y ) for all a ∈ R. Given ε > 0, let X̂, Ŷ and Z in L be such

that: X̂ has the same c.d.f. as X + ε, Ŷ has the same c.d.f. as Y , and Z has the c.d.f.

obtained by applying Theorem 6 to X̂ and Ŷ . We can indeed apply the theorem, since

Ka(X̂) = Ka(X) + ε > Ka(Y ) = Ka(Ŷ ) for all a. Hence, X̂ + Z ≥1 Ŷ + Z. Thus, by

monotonicity of Φ, Φ(X̂ + Z) ≥ Φ(Ŷ + Z), and by additivity Φ(X̂) ≥ Φ(Ŷ ). This means

that Φ(X) + ε = Φ(X̂) ≥ Φ(Ŷ ) = Φ(Y ) for all ε > 0, and hence Φ(X) ≥ Φ(Y ).

Once we have established Lemma 1, the remainder of the proof uses functional anal-

ysis techniques (in particular the Riesz Representation Theorem) to deduce the integral

representation in Theorem 1. See §A in the appendix for the complete proof.

An alternative proof of Lemma 1 can be given based on a different stochastic order.

Given two random variables X and Y , let X1, X2, . . . and Y1, Y2, . . . be i.i.d. copies of X

and Y , respectively. We say that X dominates Y in large numbers if

X1 + · · · + Xn ≥1 Y1 + · · · + Yn

for all n large enough. Using large-deviations techniques, it was shown by Aubrun and

Nechita (2008) that if Ka(X) > Ka(Y ) for all a ∈ R, then X dominates Y in large numbers.

This implies Lemma 1 since, by the additivity of Φ, Φ(X) ≥ Φ(Y ) holds if and only if

nΦ(X) = Φ(X1 + · · · + Xn) ≥ Φ(Y1 + · · · + Yn) = nΦ(Y ).

Compared to this alternative argument, our proof of Lemma 1 based on Theorem 6

is self-contained and more elementary. More importantly, (an analogue of) the catalytic

stochastic order established in Theorem 6 is essential for studying monotone additive

statistics defined on a domain of unbounded random variables, for which the large numbers

order is difficult to characterize as far as we know.19 This generalization of Theorem 6 is

presented in Lemma 9 in the online appendix, as a key step toward the proof of Theorem 2.
19One particular challenge is that the large numbers order require a uniform comparison between the tail

probabilities of X1 + · · · + Xn versus those of Y1 + · · · + Yn, for a fixed large n. For a given threshold of

the tail, large-deviations theory can be used to show the desired comparison when n is large enough. But

making the required n uniform across all thresholds becomes nontrivial when the random variables X and

Y are unbounded.
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Appendix

The appendix contains the omitted proofs for most of the results in the main text,

in the order in which they appeared. The only exceptions are Theorem 2 regarding the

larger domain LM , Proposition 1 regarding strong stochastic dynamic consistency and a

few results in Section 4, whose proofs are relegated to the online appendix.

Throughout the proofs we will often use the notation KX(a) = Ka(X), so that KX is

a map from R to R. The following facts are standard:

Lemma 2. Let X, Y ∈ L∞.

1. KX : R → R is well defined, non-decreasing and continuous.

2. If KX = KY then X and Y have the same distribution.

Proof. Over R the map KX is continuous and non-decreasing. This follows directly

from the fact that KX(a) is the certainty equivalent of a CARA expected utility prefer-

ence with coefficient of risk aversion equal to −a. That lima→∞ KX(a) = max[X] and

lima→−∞ KX(a) = min[X] follow from a simple application of Laplace’s method. It is a

standard fact that KX = KY implies that X and Y have the same distribution (see for

instance Curtiss, 1942).

A Proof of Theorem 1

We follow the proof outlined in §5 of the main text and first establish Theorem 6.

A.1 Proof of Theorem 6

First, we can add the same constant b to both X and Y so that min[Y + b] = −N and

max[X + b] = N for some N > 0. Since translating both X and Y leaves the existence of

an appropriate Z unchanged (and also does not affect KX > KY ), we henceforth assume

without loss of generality that min[Y ] = −N , and max[X] = N . Since KX > KY , we

know that min[X] > −N and max[Y ] < N .

Denote the c.d.f.s of X and Y by F and G, respectively. Let σ(x) = G(x) − F (x).

Note that σ is supported on [−N, N ] and bounded in absolute value by 1. Moreover, by

choosing ε > 0 sufficiently small, we have that min[X] > −N + ε and max[Y ] < N − ε. So

σ(x) is positive on [−N, −N + ε] and on [N − ε, N ]. In fact, there exists δ > 0 such that

σ(x) ≥ δ whenever x ∈ [−N + ε
4 , −N + ε

2 ] and x ∈ [N − ε
2 , N − ε

4 ]. We also fix a large

constant A such that

e
εA
4 ≥

8N

εδ
.
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Define

Mσ(a) =
∫ N

−N
σ(x)eax dx.

Note that for a 6= 0, integration by parts shows Mσ(a) = 1
a

(

E
[

eaX
]

− E
[

eaY
])

, and that

Mσ(0) = E [X] − E [Y ]. Therefore, since KX > KY , we have that Mσ is strictly positive

everywhere. Since Mσ(a) is clearly continuous in a, it is in fact bounded away from zero

on any compact interval.

We will use these properties of σ to construct a truncated Gaussian density h such that

[σ ∗ h](y) =
∫ N

−N
σ(x)h(y − x) dx ≥ 0

for each y ∈ R. If we let Z be a random variable independent from X and Y , whose

distribution has density function h, then σ ∗ h = (G − F ) ∗ h is the difference between the

c.d.f.s of Y + Z and X + Z. Thus [σ ∗ h](y) ≥ 0 for all y would imply X + Z ≥1 Y + Z.

To do this, we write h(x) = e− x2

2V for all |x| ≤ T , where V is the variance and T is the

truncation point to be chosen.20 We will show that given the above constants N and A,

[σ ∗ h](y) ≥ 0 holds for each y when V is sufficiently large and T ≥ AV + N .

First consider the case where y ∈ [−AV, AV ]. In this region, |y−x| ≤ T is automatically

satisfied when x ∈ [−N, N ]. So we can compute the convolution σ ∗ h as follows:

∫

σ(x)h(y − x) dx = e− y2

2V ·

∫ N

−N
σ(x) · e

y

V
·x · e− x2

2V dx. (9)

Note that y
V

in the exponent belongs to the compact interval [−A, A]. So for our fixed

choice of A, the integral Mσ( y
V

) =
∫N

−N σ(x) · e
y

V
·x dx is uniformly bounded away from zero

when y varies in the current region. Thus,

∫ N

−N
σ(x) · e

y

V
·x · e− x2

2V dx = Mσ

(

y

V

)

−

∫ N

−N
σ(x) · e

y

V
·x · (1 − e− x2

2V ) dx

≥ Mσ

(

y

V

)

− 2N · eAN · (1 − e
−N2

2V ),

(10)

which is positive when V is sufficiently large. So the right-hand side of (9) is positive.

Next consider the case where y ∈ (AV, T + N − ε]; the case where −y is in this range

can be treated symmetrically. Here the convolution can be written as

[σ ∗ h](y) =
∫ N

max{−N,y−T }
σ(x) · e

−(y−x)2

2V dx.

We break the range of integration into two sub-intervals: I1 = [max{−N, y − T}, N − ε]

and I2 = [N − ε, N ]. On I1 we have σ(x) = G(x) − F (x) ≥ −1. As long as AV ≥ N − ε,

20In general we need a normalizing factor to ensure h integrates to one, but this multiplicative constant

does not affect the argument.
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we have e
−(y−x)2

2V ≤ e
−(y−N+ε)2

2V for y > AV and x ≤ N − ε, and thus

∫

x∈I1

σ(x) · e
−(y−x)2

2V dx ≥ −2N · e
−(y−N+ε)2

2V .

On I2 we have σ(x) ≥ 0 by our choice of ε, and furthermore σ(x) ≥ δ when x ∈ [N− ε
2 , N− ε

4 ].

Thus
∫

x∈I2

σ(x) · e
−(y−x)2

2V dx ≥
ε

4
· δ · e

−(y−N+ ε
2 )2

2V ≥ 2N · e
−(y−N+ ε

2 )2

2V
− εA

4 ,

where the second inequality holds by the choice of A. Observe that when y > AV and V

is large, the exponent
−(y−N+ ε

2
)2

2V
− εA

4 is larger than −(y−N+ε)2

2V
. Summing the above two

inequalities then yields the desired result that [σ ∗ h](y) ≥ 0.

Finally, if y ∈ (T +N −ε, T +N ], then the range of integration in computing [σ ∗h](y) is

from x = y−T to x = N , where σ(x) is always positive. So the convolution is positive. And

if y > T + N , then clearly the convolution is zero. These arguments symmetrically apply

to −y ∈ (T + N − ε, T + N ] and −y > T + N . We therefore conclude that [σ ∗ h](y) ≥ 0

for all y, completing the proof.

A.2 Integral Representation

For fixed X, KX(a) = Ka(X) is a function of a, from R to R. Let L denote the set of

functions {KX : X ∈ L∞}. If Φ is a monotone additive statistic and KX = KY , then X

and Y have the same distribution and Φ(X) = Φ(Y ). Thus there exists some functional

F : L → R such that Φ(X) = F (KX). It follows from the additivity of Φ and the additivity

of Ka that F is additive: F (KX + KY ) = F (KX) + F (KY ).21 Moreover, F is monotone in

the sense that F (KX) ≥ F (KY ) whenever KX ≥ KY (i.e., KX(a) ≥ KY (a) for all a ∈ R);

this follows from Lemma 1 which in turn is proved by Theorem 6 (see §5 in the main text).

The rest of this proof is a functional analysis exercise analogous to the proof of Theorem

2 in Mu, Pomatto, Strack, and Tamuz (2021), but for completeness we provide the details

below. The main goal is to show that the monotone additive functional F on L can be

extended to a positive linear functional on the entire space of continuous functions C(R).

We first equip L with the sup-norm of C(R) and establish a technical claim.

Lemma 3. F : L → R is 1-Lipschitz:

|F (KX) − F (KY )| ≤ ‖KX − KY ‖.

21We note that L is closed under addition. This is because KX + KY = KX′ + KY ′ whenever X ′, Y ′ are

independently distributed random variables with the same distribution as X, Y . Such random variables

X ′, Y ′ exist as the probability space is non-atomic, see for example Proposition 9.1.11 in Bogachev (2007).

Thus, for KX , KY ∈ L we can find X ′, Y ′ so that KX + KY = KX′ + KY ′ = KX′+Y ′ ∈ L.
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Proof. Let ‖KX − KY ‖ = ε. Then KX+ε = KX + ε ≥ KY . Hence, by Lemma 1, F (KY ) ≤

F (KX+ε), and so

F (KY ) − F (KX) ≤ F (KX+ε) − F (KX) = F (Kε) = Φ(ε) = ε.

Symmetrically we have F (KX) − F (KY ) ≤ ε, as desired.

Lemma 4. Any monotone additive functional F on L can be extended to a positive linear

functional on C(R).

Proof. First consider the rational cone spanned by L:

ConeQ(L) = {qL : q ∈ Q+, L ∈ L}.

Define G : ConeQ(L) → R as G(qL) = qF (L), which is an extension of F . The functional

G is well defined: If m
n

K1 = r
n

K2 for K1, K2 ∈ L and n, m, r ∈ N, then, using the fact that

L is closed under addition, we obtain mF (K1) = F (mK1) = F (rK2) = rF (K2), hence
m
n

F (K1) = r
n

F (K2). G is also additive, because

G

(

m

n
K1

)

+ G

(

r

n
K2

)

=
m

n
F (K1) +

r

n
F (K2) =

1

n
F (mK1 + rK2) = G

(

m

n
K1 +

r

n
K2

)

.

In the same way we can show G is positively homogeneous over Q+ and monotone.

Moreover, G is Lipschitz: Lemma 3 implies
∣

∣

∣

∣

G

(

m

n
K1

)

− G

(

r

n
K2

)∣

∣

∣

∣

=
1

n
|F (mK1) − F (rK2)| ≤

1

n
‖mK1 − rK2‖ =

∥

∥

∥

∥

m

n
K1 −

r

n
K2

∥

∥

∥

∥

.

Thus G can be extended to a Lipschitz functional H defined on the closure of ConeQ(L)

with respect to the sup norm. In particular, H is defined on the convex cone spanned by L:

Cone(L) = {λ1K1 + · · · + λkKk : k ∈ N and for each 1 ≤ i ≤ k, λi ∈ R+, Ki ∈ L}.

It is immediate to verify that the properties of additivity, positive homogeneity (now over

R+), and monotonicity extend, by continuity, from G to H.

Consider the vector subspace V = Cone(L) − Cone(L) ⊂ C(R) and define I : V → R as

I(g1 − g2) = H(g1) − H(g2)

for all g1, g2 ∈ Cone(L). The functional I is well defined and linear (because H is additive

and positively homogeneous). Moreover, by monotonicity of H, I(f) ≥ 0 for any non-

negative function f ∈ V.

The lemma then follows from the next theorem of Kantorovich (1937), a generalization

of the Hahn-Banach Theorem. It applies not only to C(R) but to any Riesz space (see

Theorem 8.32 in Aliprantis and Border, 2006).
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Theorem. Let V be a vector subspace of C(R) with the property that for every f ∈ C(R)

there exists a function g ∈ V such that g ≥ f . Then every positive linear functional on V

extends to a positive linear functional on C(R).

The “majorization” condition g ≥ f is satisfied because every function in C(R) is

bounded and V contains all of the constant functions.

The integral representation in Theorem 1 now follows from Lemma 4 by the Riesz-

Markov-Kakutani Representation Theorem.

A.3 Uniqueness of Mixing Measure

We complete the proof of Theorem 1 by showing that the mixing measure µ is unique:

Lemma 5. Suppose µ and ν are two Borel probability measures on R such that
∫

R

Ka(X) dµ(a) =
∫

R

Ka(X) dν(a).

for all X ∈ L∞.22 Then µ = ν.

Proof. We first show µ({∞}) = ν({∞}). For any ε > 0, consider the Bernoulli random

variable Xε that takes value 1 with probability ε and value 0 with probability 1−ε. It is easy

to see that as ε decreases to zero, Ka(Xε) also decreases to zero for each a < ∞ whereas

K∞(Xε) = max[Xε] = 1. Since Ka(Xε) is uniformly bounded in [0, 1], the Dominated

Convergence Theorem implies

lim
ε→0

∫

R

Ka(Xε) dµ(a) = µ({∞}).

A similar identity holds for the measure ν, so µ({∞}) = ν({∞}) follows from the assumption

that
∫

R
Ka(Xε) dµ(a) =

∫

R
Ka(Xε) dν(a).

We can symmetrically apply the above argument to the Bernoulli random variable that

takes value 1 with probability 1 − ε and value 0 with probability ε. Thus µ({−∞}) =

ν({−∞}) holds as well.

Next, for each n ∈ N+ and real number b > 0, define a random variable Xn,b by

P [Xn,b = n] = e−bn

P [Xn,b = 0] = 1 − e−bn.

22The proof shows that it suffices to require such equality for non-negative integer-valued X.

33



Then Ka(Xn,b) = 1
a

log
[

(1 − e−bn) + e(a−b)n
]

, and so

lim
n→∞

1

n
Ka(Xn,b) = lim

n→∞

1

n

1

a
log

[

1 − e−bn + e(a−b)n
]

=







0 if a < b

a−b
a

if a ≥ b.

This result holds also for a = 0, ±∞.

Note that 1
n

Ka(Xn,b) is uniformly bounded in [0, 1] for all values of n, b, a, since

Ka(Xn,b) is bounded between min[Xn,b] = 0 and max[Xn,b] = n. Thus, by the Dominated

Convergence Theorem,

lim
n→∞

∫

R

1

n
Ka(Xn,b) dµ(a) =

∫

[b,∞]

a − b

a
dµ(a), (11)

and similarly for ν. It follows that for all b > 0,
∫

[b,∞]

a − b

a
dµ(a) =

∫

[b,∞]

a − b

a
dν(a).

As µ({∞}) = ν({∞}), we in fact have
∫

[b,∞)

a − b

a
dµ(a) =

∫

[b,∞)

a − b

a
dν(a).

This common integral is denoted by f(b).

We now define a measure µ̂ on (0, ∞) by the condition dµ̂(a)
dµ(a) = 1

a
; note that µ̂ is a

positive measure, but need not be a probability measure. Then

f(b) =
∫

[b,∞)

a − b

a
dµ(a) =

∫

[b,∞)
(a − b) dµ̂(a) =

∫ ∞

b
µ̂([x, ∞)) dx,

where the last step uses Tonelli’s Theorem. Hence µ̂([b, ∞]) is the negative of the left

derivative of f(b) (this uses the fact that µ̂([b, ∞]) is left continuous in b). In the same

way, if we define ν̂ by dν̂(a)
dν(a) = 1

a
, then ν̂([b, ∞]) is also the negative of the left derivative

of f(b). Therefore µ̂ and ν̂ are the same measure on (0, ∞), which implies that µ and ν

coincide on (0, ∞).

By a symmetric argument (with n − Xn,b in place of Xn,b), we deduce that µ and ν

also coincide on (−∞, 0). Finally, since they are both probability measures, µ and ν must

have the same mass at 0, if any. So µ = ν.

B Applications to Time Lotteries

B.1 Monotone Additive Statistics for Non-Negative Random Variables

In our applications to time lotteries the random times are non-negative (bounded) random

variables. We accordingly prove a version of Theorem 1 that applies to this smaller domain.
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Proposition 7. Φ: L∞
+ → R is a monotone additive statistic if and only if there exists a

unique Borel probability measure µ on R such that for every X ∈ L∞

Φ(X) =
∫

R

Ka(X) dµ(a). (12)

Proof. It suffices to show that a monotone additive statistic defined on L∞
+ can be extended

to a monotone additive statistic defined on L∞. Suppose Φ is defined on L∞
+ . Then for

any bounded random variable X, we can define

Ψ(X) = min[X] + Φ(X − min[X]),

where we note that X − min[X] is a non-negative random variable.

Clearly Ψ is a statistic that depends only on the distribution of X (as Φ does), and

Ψ(c) = c + Φ(0) = c for constants c. When X is non-negative, the additivity of Φ

gives Φ(X) = Φ(min[X]) + Φ(X − min[X]) = min[X] + Φ(X − min[X]), so Ψ is an

extension of Φ. Moreover, Ψ is additive because min[X + Y ] = min[X] + min[Y ], and

Φ(X + Y − min[X + Y ]) = Φ(X − min[X]) + Φ(Y − min[Y ]) by the additivity of Φ.

Finally, to show Ψ is monotone, suppose X and Y are bounded random variables satisfying

X ≥1 Y . Then we can choose a sufficiently large n such that X + n and Y + n are both

non-negative, and X + n ≥1 Y + n. Since Φ is monotone for non-negative random variables,

Φ(X + n) ≥ Φ(Y + n). Thus Ψ(X + n) ≥ Ψ(Y + n) by the fact that Ψ extends Φ, and

Ψ(X) ≥ Ψ(Y ) by the additivity of Ψ. This proves that Ψ is a monotone additive statistic

on L∞ that extends Φ.

B.2 Proof of Theorem 3

It is straightforward to check that the representation satisfies the axioms, so we focus

on the other direction of deriving the representation from the axioms. In the first step,

we fix any reward x > 0. Then by monotonicity in time and continuity, for each (x, T )

there exists a (unique) deterministic time Φx(T ) such that (x, Φx(T )) ∼ (x, T ). Clearly,

when T is a deterministic time, Φx(T ) is simply T itself. Note also that if S first-order

stochastically dominates T , then

(x, Φx(T )) ∼ (x, T ) � (x, S) ∼ (x, Φx(S)),

so that Φx(S) ≥ Φx(T ). We next show that for any T and S that are independent,

Φx(T + S) = Φx(T ) + Φx(S). Indeed, by stochastic stationarity, (x, Φx(T )) ∼ (x, T )

implies (x, Φx(T ) + S) ∼ (x, T + S) and (x, Φx(S)) ∼ (x, S) implies (x, Φx(T ) + Φx(S)) ∼

(x, Φx(T ) + S). Taken together, we have

(x, Φx(T ) + Φx(S)) ∼ (x, T + S).
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Since Φx(T ) + Φx(S) is a deterministic time, the definition of Φx gives Φx(T ) + Φx(S) =

Φx(T + S) as desired. It follows that each Φx : L∞
+ → R is a monotone additive statistic.

In the second step, note that our preference � induces a preference on R++ × R+

consisting of deterministic dated rewards. By Theorem 2 in Fishburn and Rubinstein

(1982), for any given r > 0 we can find a continuous and strictly increasing utility function

u : R++ → R++ such that for deterministic times t, s ≥ 0

(x, t) � (y, s) if and only if u(x) · e−rt ≥ u(y) · e−rs.

By definition, (x, T ) ∼ (x, Φx(T )) for any random time T . Thus we obtain that the decision

maker’s preference is represented by

(x, T ) � (y, S) if and only if u(x) · e−rΦx(T ) ≥ u(y) · e−rΦy(S).

It remains to show that for all x, y > 0, Φx and Φy are the same statistic. For this we

choose deterministic times t and s such that (x, t) ∼ (y, s), i.e., u(x) · e−rt = u(y) · e−rs.

For any random time T , stochastic stationarity implies (x, t + T ) ∼ (y, s + T ), so that

u(x) · e−rΦx(t+T ) = u(y) · e−rΦy(s+T ).

Using the additivity of Φx and Φy, we can divide the above two equalities and obtain

Φx(T ) = Φy(T ) as desired. Since this holds for all T and all x, y > 0, we can write

Φx(T ) = Φ(T ) for a single monotone additive statistic Φ. This completes the proof.

B.3 Proof of Proposition 2

Define, for every t ≥ 0, vi(t) = e−ait and v(t) = e−at. We have that for any two random

times S and T , (1, S) �i (1, T ) if and only if E [vi(S)] ≥ E [vi(T )], and (1, S) � (1, T ) if

and only if E [v(S)] ≥ E [v(T )]. Thus it follows from the Pareto axiom that for any two

random times S and T , E [vi(S)] ≥ E [vi(T )] for all i implies E [v(S)] ≥ E [v(T )].

By Harsanyi’s Theorem (Zhou, 1997, Theorem 2) there exist (λi) in R+ and c ∈ R such

that for every t, v(t) =
∑

i λivi(t) + c. By letting t → ∞ we obtain 0 = c and by setting

t = 0 it follows that 1 =
∑

i λi. Further plugging in t = 1 and t = 2, we obtain

n
∑

i=1

λie
−2ai = e−2a =

(

e−a
)2

=

(

n
∑

i=1

λie
−ai

)2

.

But the Cauchy-Schwarz inequality gives

n
∑

i=1

λie
−2ai =

(

n
∑

i=1

λie
−2ai

)

·

(

n
∑

i=1

λi

)

≥

(

n
∑

i=1

λie
−ai

)2

.
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Thus equality holds. Since the individual discount rates {ai} are assumed to be distinct,

the equality condition of the Cauchy-Schwarz inequality implies that exactly one λi is

nonzero (in fact equal to 1), and hence a = ai for some agent i.

Without loss of generality suppose a = a1. It remains to show that u(x) is a constant

multiple of u1(x) so that the social preference coincides with agent 1. Note that by the

same argument as above, v1(t) = e−a1t cannot be expressed as a linear combination of

1, v2(t), v3(t), · · · , vn(t) whenever a1 is distinct from a2, · · · , an. So the contrapositive of

Harsanyi’s Theorem implies the existence of random times S and T such that E [vi(S)] ≥

E [vi(T )] for all i > 1 but E [v1(T )] > E [v1(S)]. In what follows we fix these particular S

and T , and also fix ε > 0 sufficiently small so that E [v1(T )] ≥ (1 + ε)E [v1(S)].

For any pair of rewards x, y ∈ R++, we now show that the Pareto property implies
u(y)
u1(y) = u(x)

u1(x) which will complete the proof. To do this, let k be a sufficiently large positive

integer, and define T ⊕k, S⊕k to be the random variables obtained by adding k independent

copies of T and S. Since the moment generating function E
[

e−αZ
]

is multiplicative when we

add two independent random variables Z1 and Z2, our previous assumptions about S and T

imply that E
[

e−aiS
⊕k
]

≥ E
[

e−aiT
⊕k
]

for all i > 1 but E
[

e−a1T ⊕k
]

≥ (1 + ε)kE
[

e−a1S⊕k
]

.

Next, let tk ∈ R be the number that satisfies

e−a1tk · u1(x)E
[

e−a1T ⊕k
]

= u1(y)E
[

e−a1S⊕k
]

.

Thus, the time lottery (x, T ⊕k + tk) is indifferent to (y, S⊕k) for agent 1. At the same time,

the above equality implies ea1tk ≥ (1 + ε)k · u1(x)
u1(y) , so that limk→∞ tk = ∞. In particular,

we deduce that for k large, eaitk ≥ ui(x)
ui(y) for every i > 1 and thus

e−aitk · ui(x)E
[

e−aiT
⊕k
]

≤ ui(y)E
[

e−aiS
⊕k
]

.

Therefore (x, T ⊕k + tk) is less preferred than (y, S⊕k) for every agent i > 1.

Putting together the above analysis, we can find k and tk such that (x, T ⊕k + tk) is

weakly less preferred than (y, S⊕k) for every agent, with indifference for agent 1. By the

Pareto property, (x, T ⊕k + tk) must be weakly less preferred than (y, S⊕k) under the social

preference. That is, we must have

e−atk · u(x)E
[

e−aT ⊕k
]

≤ u(y)E
[

e−aS⊕k
]

.

But we already know e−a1tk · u1(x)E
[

e−a1T ⊕k
]

= u1(y)E
[

e−a1S⊕k
]

and a = a1, so after

dividing out e−atk , E
[

e−aT ⊕k
]

and E
[

e−aS⊕k
]

we obtain u(y)
u1(y) ≥ u(x)

u1(x) .

Finally, since x, y are arbitrary, we can switch them and use the same argument to

deduce the opposite inequality u(x)
u1(x) ≥ u(y)

u1(y) . This proves that u(y)
u1(y) = u(x)

u1(x) for any pair of

rewards x, y. Hence the social utility representation is a constant multiple of agent 1’s.
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B.4 Proof of Proposition 3

We prove that the proposed representation for the social preference relation � satisfies the

Pareto axiom. If (x, T ) �i (y, S) for every i, then ui(x)e−riΦi(T ) ≥ ui(y)e−riΦi(S), which

can be rewritten as

ri(Φi(S) − Φi(T )) ≥ log
ui(y)

ui(x)
.

Summing across i using the weights λi we obtain

n
∑

i=1

λiri(Φi(S) − Φi(T )) ≥
n
∑

i=1

λi log
ui(y)

ui(x)
= log

u(y)

u(x)
,

where the last equality uses u = Πn
i=1uλi

i . Since rΦ =
∑n

i=1 λiriΦi, it follows that

r(Φ(S) − Φ(T )) ≥ log u(y)
u(x) , which is equivalent to u(x)e−rΦ(T ) ≥ u(y)e−rΦ(S). Thus

(x, T ) � (y, S) as desired.

B.5 Proof of Proposition 4

We assume the Pareto axiom holds and deduce its implications. Note that if Φi(T ) ≤ Φi(S)

for every i, then (1, T ) �i (1, S) for every i and thus, by the Pareto axiom, (1, T ) � (1, S)

and Φ(T ) ≤ Φ(S) also hold.

We say that a collection of monotone additive statistics (Φ1, . . . , Φn, Φ) have the Pareto

property if Φi(T ) ≤ Φi(S) for every i implies Φ(T ) ≤ Φ(S). We have the following result:

Lemma 6. Let (Φ1, . . . , Φn, Φ) be monotone additive statistics defined on L∞
+ , and suppose

that they satisfy the Pareto property. Then there exists a probability vector (β1, . . . , βn)

such that Φ =
∑n

i=1 βiΦi.

Proof. Let (µ1, . . . , µn, µ) be the mixing measures on R that correspond to the monotone

additive statistics (Φ1, . . . , Φn, Φ). Define the linear functionals (I1, . . . , In, I) on C(R) as

Ii(f) =
∫

R
fdµi and I(f) =

∫

R
fdµ.

We call a set of functions D ⊆ C(R) a Pareto domain if for every f, g ∈ D,

Ii(f) ≥ Ii(g) i = 1, . . . , n =⇒ I(f) ≥ I(g).

The Pareto property implies L+ = {KX : X ∈ L∞
+ } is a Pareto domain. Define, as in the

proof of Theorem 1, L = {KX : X ∈ L∞} as well as the rational cone spanned by L:

coneQ(L) = {qL : q ∈ Q+, L ∈ L} =
∞
⋃

n=1

1

n
L

We show that L and coneQ(L) are both Pareto domains. Given X, Y ∈ L∞, let c be a

large positive constant such that X + c ≥ 0 and Y + c ≥ 0. If Ii(KX) ≥ Ii(KY ) for all i
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then Ii(KX + c) ≥ Ii(KY + c) for all i since each Ii is linear. Thus, by the Pareto property

and the linearity of I, I(KX + c) ≥ I(KY + c) and I(KX) ≥ I(KY ). This shows L is a

Pareto domain. As for coneQ(L), observe that Ii(
1
m

KX) ≥ Ii(
1
n

KY ) for all i is equivalent

to Ii(nKX) ≥ Ii(mKY ) for all i, which implies I(nKX) ≥ I(mKY ) since L is a Pareto

domain and is closed under addition. This shows I( 1
m

KX) ≥ I( 1
n

KY ) as desired.

Next we show that the closure of coneQ(L) (with respect to the usual sup norm) is also

a Pareto domain. Let f, g be in the closure, such that Ii(f) ≥ Ii(g) for all i. Pick sequences

(fk) and (gk) in coneQ(L) converging to f and g. Define εi,k = |Ii(f)−Ii(fk)|+|Ii(g)−Ii(gk)|

and εk = max1≤i≤n εi,k. Then from Ii(f) ≥ Ii(g) we deduce Ii(fk) ≥ Ii(gk)−εk = Ii(gk−εk)

for every i. Note that gk − εk belongs to coneQ(L) since the latter contains all the constant

functions and is closed under addition. Thus by the fact that coneQ(L) is a Pareto domain,

Ii(fn) ≥ Ii(gn − εn) for every i implies I(fk) ≥ I(gk − εk) = I(gk) − εk for every k.

Continuity of the functionals (Ii) yields εk → 0. Continuity of I thus yields I(f) ≥ I(g).

This proves that the closure of coneQ(L) is a Pareto domain. Since the subset of a

Pareto domain is a Pareto domain, we conclude that cone(L) (i.e. the cone generated by

L) is a Pareto domain as well.

Now define V = cone(L) − cone(L) to be the vector space generated by the cone. It

is immediate to verify, using the linearity of the integral, that V is a Pareto domain as

well. In particular, for any f ∈ V, Ii(f) ≤ 0 for every i implies I(f) ≤ 0. Corollary 5.95 in

Aliprantis and Border (2006) thus implies there exist non-negative scalars β1, . . . , βn such

that I =
∑n

i=1 βiIi on V. So I(KX) =
∑n

i=1 βiIi(KX) for every X ∈ L∞, which implies

Φ(X) =
∑n

i=1 βiΦi(X). For constant X this implies
∑

i βi = 1, proving the lemma.

Thus, the Pareto axiom implies that the social certainty equivalent Φ must be a convex

combination of the individual Φi. To complete the proof, we restrict to the case of identical

utility functions ui = u which additionally satisfies limx→0 u(x) = 0 or limx→∞ u(x) = ∞.

In this case, in order for u = Πn
i=1uλi

i to hold, the weights λ1, . . . , λn must sum to 1.

Therefore the desired identity rΦ =
∑n

i=1 λiriΦi requires us to show that not only Φ is a

convex combination of (Φi), but rΦ is also a convex combination of (riΦi).

To prove this, we make use of the Pareto axiom when applied to time lotteries with

different rewards. For any S, T ∈ L∞
+ , the Pareto axiom says that if rewards x, y are such

that riΦi(S) − riΦi(T ) ≥ log (u(y)/u(x)) for all i, then rΦ(S) − rΦ(T ) ≥ log (u(y)/u(x))

also holds. By the richness assumption on u, we can choose x, y with

log (u(y)/u(x)) = min
1≤i≤n

{riΦi(S) − riΦi(T )}.

Therefore the Pareto axiom implies that for any S, T ∈ L∞
+ ,

rΦ(S) − rΦ(T ) ≥ min
1≤i≤n

{riΦi(S) − riΦi(T )}. (13)
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The conclusion that rΦ is a convex combination of (riΦi) will follow from the condition

(13) via an application of Farkas’ Lemma. To rewrite this condition in linear algebra

form, we let m ≤ n be the largest number of different Φi that are linearly independent

(when viewed as functions on L∞
+ ). Reordering if necessary, we can assume Φ1, . . . , Φm

are linearly independent, and every Φi is a (not necessarily positive) linear combination of

those m. Thus we can find vectors γ1, . . . , γn ∈ Rm such that every riΦi can be rewritten

as the following inner product (i.e., linear combination):

riΦi = γi · (Φ1, . . . , Φm).

Since Φ is a convex combination of (Φi), there also exists γ ∈ Rm such that rΦ =

γ · (Φ1, . . . , Φm).

Consider the following set of vectors:

W = {w ∈ Rm : γ · w ≥ min
1≤i≤n

γi · w}.

Let D be all vectors of the form (Φ1(S) − Φ1(T ), . . . , Φm(S) − Φm(T )) for some S, T ∈ L∞
+ .

Condition (13) says that D ⊆ W. Note that −D = D, and D is closed under addition

because every Φi is additive. Moreover, since the definition of W involve homogeneous

inequalities, 1
N

D ⊆ W for every positive integer N . From these properties we deduce that

any vector of the form q1w1 + · · · + qkwk with qj ∈ Q and wj ∈ D belongs to W , because it

can be written as 1
N

w for some positive integer N and w ∈ D. Since W is a closed set, the

span of D (not just the rational span) is also contained in W. Finally note that D spans

the entirety of Rm. This is because by setting T = 0, D in particular includes vectors of

the form (Φ1(S), . . . , Φm(S)), and such vectors cannot all belong to a lower-dimensional

subspace by the assumption that Φ1, . . . , Φm are linearly independent.

Therefore, D = W = Rm, which implies

γ · w ≥ min
1≤i≤n

γi · w for all w ∈ Rm. (14)

For any ε > 0, this condition implies that there exists no w ∈ Rm such that −γi ·w ≤ −1−ε

for every i while γ·w ≤ 1. Let A be an (n+1)×m matrix whose first n rows are −γ1, . . . , −γn,

and whose last row is γ. Let b be the n + 1-dimensional vector (−1 − ε, . . . , −1 − ε, 1).

Then Aw ≤ b has no solution w ∈ Rm.

By Farkas’ Lemma, there exists a non-negative n+1-dimensional vector z = (z1, . . . , zn+1)

such that z′A = 0 while z · b < 0. The former implies zn+1γ = z1γ1 + · · · + znγn, while the

latter implies zn+1 < (1 + ε)(z1 + · · · + zn). Note that zn+1 cannot be zero, for otherwise

we have a positive linear combination of γ1, . . . , γn that gives the zero vector, leading to

the impossible implication that a positive linear combination of Φ1, . . . , Φn equals zero.
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Thus we can write γ = α1γ1 + · · · + αnγn, with non-negative weights αi = zi

zn+1
whose

sum is greater than 1
1+ε

. Consequently rΦ =
∑n

i=1 αiriΦi, which implies r =
∑n

i=1 αiri

and thus αi ≤ r
ri

in any such representation. Since ε is arbitrary, a compactness argument

then yields that γ =
∑n

i=1 αiγ
i for some non-negative weights αi with

∑n
i=1 αi ≥ 1.

We can also choose b̂ = (1 − ε, . . . , 1 − ε, −1) and deduce from (14) that Aw ≤ b̂ has no

solution w ∈ Rm. Then a similar analysis yields γ = α̂1γ1 + · · · + α̂nγn for some weights

α̂i ≥ 0 and
∑n

i=1 αi < 1
1−ǫ

. Again by compactness, we can assume
∑n

i=1 α̂i ≤ 1. Finally,

by suitably averaging between αi and α̂i, we can find non-negative weights (λi) whose sum

is equal to 1, such that γ =
∑n

i=1 λiγ
i. So rΦ =

∑n
i=1 λiriΦi. Since Φ is also a convex

combination of (Φi), it follows that r =
∑

i λiri, completing the proof.

C Proof of Theorem 4

Since the preference � is represented by Φ, the betweenness axiom is equivalent to the

following:

Φ(X) = Φ(Y ) if and only if Φ(XλY ) = Φ(Y ).

In this case, we say that the statistic Φ satisfies betweenness. We need to show that

Φ(X) satisfies betweenness if and only if it is equal to Ka(X) for some a ∈ R or equal to

βK−aβ(X) + (1 − β)Ka(1−β)(X) for some β ∈ (0, 1) and a ∈ (0, ∞).

We first show the “if” direction. Specifically, when Φ(X) = Ka(X) for some a ∈ R, then

the preference is CARA expected utility, which satisfies independence and thus betweenness.

When Φ(X) = βK−aβ(X) + (1 − β)Ka(1−β)(X), we can use the definition of K to rewrite

it as

Φ(X) =
1

a

(

logE[ea(1−β)X ] − logE[e−aβX ]
)

.

Thus Φ(X) = Φ(Y ) if and only if logE
[

ea(1−β)X
]

− logE
[

e−aβX
]

= logE
[

ea(1−β)Y
]

−

logE
[

e−aβY
]

, which in turn is equivalent to

E
[

ea(1−β)X
]

E
[

ea(1−β)Y
] =

E
[

e−aβX
]

E [e−aβY ]
.

Since E
[

ebXλY
]

= λE
[

ebX
]

+ (1 − λ)E
[

ebY
]

for every b ∈ R, it is not difficult to see that

the above ratio equality holds if and only if it holds when X is replaced by XλY . Hence

Φ(X) = Φ(Y ) if and only if Φ(XλY ) = Φ(Y ), i.e. betweenness is satisfied.

Turning to the “only if” direction. We will characterize any monotone additive statistic

Φ that satisfies a weaker form of betweenness:
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Lemma 7. Suppose Φ is a monotone additive statistic such that Φ(X) = c implies

Φ(Xλc) = c whenever c is a constant. Then either Φ takes the form described by Theorem 4,

or Φ(X) = β min[X] + (1 − β) max[X] for some β ∈ [0, 1].

This result implies Theorem 4 because Φ(X) = β min[X] + (1 − β) max[X] violates the

original betweenness axiom. To see that, let X = 0 and choose any Y supported on ±1.

Then XλY and Y have the same minimum and maximum, so that Φ(XλY ) = Φ(Y ). But

Φ(X) = Φ(Y ) cannot hold for all Y supported on ±1.

The proof of Lemma 7 is in turn based on the following lemma which further relaxes

betweenness:

Lemma 8. Suppose Φ(X) =
∫

R Ka(X) dµ(a) has the property that Φ(X) = c implies

Φ(Xλc) ≤ c. Then the measure µ restricted to [0, ∞] is either the zero measure, or it is

supported on a single point.

Proof. It suffices to show that if µ puts positive mass on (0, ∞], then that mass is supported

on a single point and µ({0}) = 0. For this let N > 0 denote the essential maximum of the

support of µ; that is, N = min{x : µ((x, ∞]) = 0}. We allow N = ∞ when the support of

µ is unbounded from above, or when µ has a non-zero mass at ∞. For any positive real

number b < N , consider the same random variable Xn,b as in the proof of Lemma 5, given

by

P [Xn,b = n] = e−bn

P [Xn,b = 0] = 1 − e−bn.

As shown in the proof of Lemma 5, 1
n

Ka(Xn,b) is uniformly bounded in [0, 1], and

lim
n→∞

1

n
Ka(Xn,b) =

(a − b)+

a
.

Thus if we let cn = Φ(Xn,b), then by the Dominated Convergence Theorem,

lim
n→∞

cn

n
= lim

n→∞

1

n
Φ(Xn,b) = lim

n→∞

∫

R

1

n
Ka(Xn,b) dµ(a) =

∫

(b,∞]

a − b

a
dµ(a).

Denote γ =
∫

(b,∞]
a−b

a
dµ(a). This number γ is strictly positive because b < N implies

µ((b, ∞]) > 0. We can also assume γ < 1, since otherwise µ must be the point mass at ∞.

Now, as Φ(Xn,b) = cn we know by assumption that Φ(Yn,b) ≤ cn for each n, where Yn,b

is the mixture between Xn,b and the constant cn (in what follows λ is fixed as n varies):

P [Yn,b = n] = λe−bn

P [Yn,b = 0] = λ(1 − e−bn)

P [Yn,b = cn] = 1 − λ.
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Using limn→∞ cn/n = γ, we have

lim
n→∞

1

n
Ka(Yn,b) = lim

n→∞

1

n

1

a
log

[

λ
(

1 − e−bn + e(a−b)n
)

+ (1 − λ)ea·cn

]

=



































0 if a < 0

(1 − λ)γ if a = 0

γ if 0 < a < b
1−γ

a−b
a

if a ≥ b
1−γ

.

Note that the cutoff point a = b
1−γ

is where a − b = aγ. When a is smaller than this,

the dominant term in the bracketed sum above is (1 − λ)ea·cn . Whereas for larger a, the

dominant term becomes λe(a−b)·n.

Crucially, limn→∞
1
n

Ka(Yn,b) ≥ (a−b)+

a
holds for every a, with strict inequality for

a ∈ [0, b
1−γ

). Thus again by the Dominated Convergence Theorem,

lim
n→∞

cn

n
≥ lim

n→∞

1

n
Φ(Yn,b) = lim

n→∞

∫

R

1

n
Ka(Yn,b) dµ(a) ≥

∫

(b,∞]

a − b

a
dµ(a).

But we know that the far left is equal to the far right. So both inequalities hold equal, and

in particular limn→∞
1
n

Ka(Yn,b) = (a−b)+

a
holds µ-almost surely.

As discussed, limn→∞
1
n

Ka(Yn,b) > (a−b)+

a
for any a ∈ [0, b

1−γ
). So we can conclude

that µ([0, b
1−γ

)) = 0. This must hold for any b ∈ (0, N) and corresponding γ. Letting

b arbitrarily close to N thus yields µ([0, N)) = 0 (since b
1−γ

> b). It follows that when

restricted to [0, ∞] the measure µ is concentrated at the single point N , as we desire to

show.

Proof of Lemma 7. From Lemma 8, we know that the measure µ associated with Φ can

only be supported on one point in all of [0, ∞]. By a symmetric argument, µ also has

at most one point support in all of [−∞, 0]. Thus either µ = δa for some a ∈ R, or µ is

supported on two points {a1, a2} with a1 < 0 < a2. In the former case we are done, so

below we study the latter case where µ has two-point support.

Suppose Φ(X) = βKa1(X) + (1 − β)Ka2(X) for some β ∈ (0, 1) and a1 < 0 < a2. If

a1 = −∞ while a2 < ∞, then Φ(X) = β min[X]+(1−β)Ka2(X). Take any non-constant X

and let c denote Φ(X). Note that since Ka2(X) > min[X], c = β min[X]+(1−β)Ka2(X) lies

strictly between min[X] and Ka2(X). Consider the mixture Xλc, then min[Xλc] = min[X],

whereas

Ka2(Xλc) =
1

a2
log

(

λE
[

ea2X
]

+ (1 − λ)ea2c
)

<
1

a2
logE

[

ea2X
]

= Ka2(X),

where the inequality uses c < Ka2(X) = 1
a2

logE
[

ea2X
]

and a2 > 0. We thus deduce that

Φ(Xλc) = β min[Xλc] + (1 − β)Ka2(Xλc) < β min[X] + (1 − β)Ka2(X) = c,
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contradicting the betweenness axiom. A symmetric argument rules out the possibility that

a1 > −∞ while a2 = ∞.

Hence, either a1 = −∞ and a2 = ∞, or a1 ∈ (−∞, 0) and a2 ∈ (0, ∞). In the former

case Φ(X) is an average of the minimum and the maximum, so we are again done. It

remains to consider the latter case where a1, a2 are both finite. In this case we will show

that β = −a1
a2−a1

. Once this is shown, we can let a = a2 − a1 so that a1 = −aβ and

a2 = a(1 − β). Thus Φ(X) = βK−aβ(X) + (1 − β)Ka(1−β)(X) as desired.

Let us take an arbitrary non-constant X, and let

c = Φ(X) =
β

a1
logE

[

ea1X
]

+
1 − β

a2
logE

[

ea2X
]

.

For an arbitrary λ ∈ [0, 1], we must also have

c = Φ(Xλc) =
β

a1
logE

[

λea1X + (1 − λ)ea1c
]

+
1 − β

a2
logE

[

λea2X + (1 − λ)ea2c
]

. (15)

Since (15) holds for every λ, we can differentiate it with respect to λ to obtain

0 =
β(E

[

ea1X
]

− ea1c)

a1E [λea1X + (1 − λ)ea1c]
+

(1 − β)(E
[

ea2X
]

− ea2c)

a2E [λea2X + (1 − λ)ea2c]
.

Plugging in λ = 0 and λ = 1 gives, respectively,

β(E
[

ea1X
]

− ea1c)

a1ea1c
= −

(1 − β)(E
[

ea2X
]

− ea2c)

a2ea2c
. (16)

β(E
[

ea1X
]

− ea1c)

a1E [ea1X ]
= −

(1 − β)(E
[

ea2X
]

− ea2c)

a2E [ea2X ]
. (17)

Since c = βKa1(X) + (1 − β)Ka2(X), the fact that Ka2(X) > Ka1(X) implies c is strictly

between Ka1(X) and Ka2(X). Thus, using a1 < 0 < a2 we deduce ea1c < E
[

ea1X
]

and

ea2c < E
[

ea2X
]

.

We can therefore divide (16) by (17) to obtain

E
[

ea1X
]

ea1c
=

E
[

ea2X
]

ea2c
.

Plugging this back to (16), we conclude β
a1

= −1−β
a2

, so β = −a1
a2−a1

as we desire to show.
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Online Appendix

D Proof of Theorem 2

The proof is considerably more complex than the proof of Theorem 1, so we break it into

several steps below.

D.1 Step 1: Catalytic Order on LM

We first establish a generalization of Theorem 6 to unbounded random variables. For two

random variables X and Y with c.d.f. F and G respectively, we say that X dominates Y

in both tails if there exists a positive number N with the property that

G(x) > F (x) for all |x| ≥ N.

In particular, X needs to be unbounded from above, and Y unbounded from below.

Lemma 9. Suppose X, Y ∈ LM satisfy Ka(X) > Ka(Y ) for every a ∈ R. Suppose further

that X dominates Y in both tails. Then there exists an independent random variable

Z ∈ LM such that X + Z ≥1 Y + Z.

Proof. We will take Z to have a normal distribution, which does belong to LM . Following

the proof of Theorem 6, we let σ(x) = G(x) − F (x), and seek to show that [σ ∗ h](y) ≥ 0

for every y when h is a Gaussian density with sufficiently large variance. By assumption,

σ(x) is strictly positive for |x| ≥ N . Thus there exists δ > 0 such that
∫N+2

N+1 σ(x) dx > δ,

as well as
∫−N−1

−N−2 σ(x) dx > δ. We fix A > 0 that satisfies eA ≥ 4N
δ

.

Similar to (9), we have for h(x) = e− x2

2V that

e
y2

2V

∫

σ(x)h(y − x) dx =
∫ ∞

−∞
σ(x) · e

y

V
·x · e− x2

2V dx. (18)

The variance V is to be determined below.

We first show that the right-hand side is positive if V ≥ (N + 2)2 and y
V

≥ A. Indeed,

since σ(x) > 0 for |x| ≥ N , this integral is bounded from below by

∫ N

−N
σ(x) · e

y

V
·x · e− x2

2V dx +
∫ N+2

N+1
σ(x) · e

y

V
·x · e− x2

2V dx

≥ − 2N · e
y

V
·N + δ · e

y

V
·(N+1) · e−

(N+2)2

2V

= e
y

V
·N · (−2N + δ · e

y

V · e−
(N+2)2

2V )

> 0,
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where the last inequality uses e
y

V ≥ eA ≥ 4N
δ

and e−
(N+2)2

2V ≥ e− 1
2 > 1

2 . By a symmetric

argument, we can show that the right-hand side of (18) is also positive when y
V

≤ −A.

It remains to consider the case where y
V

∈ [−A, A]. Here we rewrite the integral on the

right-hand side of (18) as
∫ ∞

−∞
σ(x) · e

y

V
·x · e− x2

2V dx = Mσ(
y

V
) −

∫ ∞

−∞
σ(x) · e

y

V
·x · (1 − e− x2

2V ) dx,

where Mσ(a) =
∫∞

−∞ σ(x) · eax dx = 1
a
E
[

eaX
]

− 1
a
E
[

eaY
]

is by assumption strictly positive

for all a. By continuity, there exists some ε > 0 such that Mσ(a) > ε for all |a| ≤ A. So it

only remains to show that when V is sufficiently large,
∫ ∞

−∞
σ(x) · eax · (1 − e− x2

2V ) dx < ε for all |a| ≤ A. (19)

To estimate this integral, note that Mσ(A) =
∫∞

−∞ σ(x) · eAx dx is finite. Since σ(x) >

0 for |x| sufficiently large, we deduce from the Monotone Convergence Theorem that
∫ T

−∞ σ(x) · eAx dx converges to Mσ(A) as T → ∞. In other words,
∫∞

T σ(x) · eAx dx → 0.

We can thus find a sufficiently large T > N such that
∫∞

T σ(x) · eAx dx < ε
4 , and likewise

∫−T
−∞ σ(x) · e−Ax dx < ε

4 .

As 1 − e− x2

2V ≥ 0 and eax ≤ eA|x| when |a| ≤ A, we deduce that
∫

|x|≥T
σ(x) · eax · (1 − e− x2

2V ) dx <
ε

2
for all |a| ≤ A.

Moreover, for this fixed T , we have e− T 2

2V → 1 when V is large, and thus
∫

|x|≤T
σ(x) · eax · (1 − e− x2

2V ) dx < 2T eAT (1 − e− T 2

2V ) <
ε

2
for all |a| ≤ A.

These estimates together imply that (19) holds for sufficiently large V . This completes the

proof.

D.2 Step 2: A Perturbation Argument

With Lemma 9, we know that if Φ is a monotone additive statistic defined on LM , then

Ka(X) ≥ Ka(Y ) for all a ∈ R implies Φ(X) ≥ Φ(Y ) under the additional assumption

that X dominates Y in both tails (same proof as for Lemma 1). Below we deduce the

same result without this extra assumption. To make the argument simpler, assume X

and Y are unbounded both from above and from below; otherwise, we can add to them

an independent Gaussian random variable without changing either the assumption or

the conclusion. In doing so, we can further assume X and Y admit probability density

functions.

We first construct a heavy right-tailed random variable as follows:
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Lemma 10. For any Y ∈ LM that is unbounded from above and admits densities, there

exists Z ∈ LM such that Z ≥ 0 and P[Z>x]
P[Y >x] → ∞ as x → ∞.

Proof. For this result, it is without loss to assume Y ≥ 0 because we can replace Y by |Y |

and only strengthen the conclusion. Let g(x) be the probability density function of Y . We

consider a random variable Z whose p.d.f. is given by cxg(x) for all x ≥ 0, where c > 0 is

a normalizing constant to ensure
∫

x≥0 cxg(x) dx = 1. Since the likelihood ratio between

Z = x and Y = x is cx, it is easy to see that the ratio of tail probabilities also diverges.

Thus it only remains to check Z ∈ LM . This is because

E
[

eaZ
]

= c

∫

x≥0
xg(x)eax dx,

which is simply c times the derivative of E
[

eaY
]

with respect to a. It is well-known that

the moment generating function is smooth whenever it is finite. So this derivative is finite,

and Z ∈ LM .

In the same way, we can construct heavy left-tailed distributions:

Lemma 11. For any X ∈ LM that is unbounded from below and admits densities, there

exists W ∈ LM , such that W ≤ 0 and P[W ≤x]
P[X≤x] → ∞ as x → −∞.

With these technical lemmata, we now construct “perturbed” versions of any two

random variables X and Y to achieve dominance in both tails. For any random variable

Z ∈ LM and every ε > 0, let Zε be the random variable that equals Z with probability ε,

and 0 with probability 1 − ε. Note that Zε also belongs to LM .

Lemma 12. Given any two random variables X, Y ∈ LM that are unbounded on both sides

and admit densities. Let Z ≥ 0 and W ≤ 0 be constructed from the above two lemmata.

Then for every ε > 0, X + Zε dominates Y + Wε in both tails.

Proof. For the right tail, we need P[X + Zε > x] > P[Y + Wε > x] for all x ≥ N . Note

that Wε ≤ 0, so P[Y + Wε > x] ≤ P[Y > x]. On other hand,

P[X + Zε > x] ≥ P[X ≥ 0] · P[Zε > x] = P[X ≥ 0] · ε · P[Z > x].

Since by assumption X is unbounded from above, the term P[X ≥ 0] ·ε is a strictly positive

constant that does not depend on x. Thus for sufficiently large x, we have

P[X ≥ 0] · ε · P[Z > x] > P[Y > x]

by the construction of Z. This gives dominance in the right tail. The left tail is similar.
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D.3 Step 3: Monotonicity w.r.t. Ka

The next result generalizes the key Lemma 1 to our current setting:

Lemma 13. Let Φ: LM → R be a monotone additive statistic. If Ka(X) ≥ Ka(Y ) for all

a ∈ R then Φ(X) ≥ Φ(Y ).

Proof. As discussed, we can without loss assume X, Y are unbounded on both sides, and

admit densities. Let Z and W be constructed as above, then for each ε > 0, X + Zε

dominates Y + Wε in both tails, and Ka(X + Zε) > Ka(X) ≥ Ka(Y ) > Ka(Y + Wε) for

every a ∈ R, where the inequalities are strict as Z, W are not identically zero.

Thus the pair X + Zε and Y + Wε satisfy the assumptions in Lemma 9. We can then

find an independent random variable V ∈ LM (depending on ε), such that

X + Zε + V ≥1 Y + Wε + V.

Monotonicity and additivity of Φ then imply Φ(X)+Φ(Zε) ≥ Φ(Y )+Φ(Wε), after canceling

out Φ(V ). The desired result Φ(X) ≥ Φ(Y ) follows from the lemma below, which shows

that our perturbations only slightly affect the statistic value.

Lemma 14. For any Z ∈ LM with Z ≥ 0, it holds that Φ(Zε) → 0 as ε → 0. Similarly

Φ(Wε) → 0 for any W ∈ LM with W ≤ 0.

Proof. We focus on the case for Zε. Suppose for contradiction that Φ(Zε) does not converge

to zero. Note that as ε decreases, Zε decreases in first-order stochastic dominance. So

Φ(Zε) ≥ 0 also decreases, and non-convergence must imply there exists some δ > 0 such

that Φ(Zε) > δ for every ε > 0. Let µε be image measure of Zε. We now choose a sequence

εn that decreases to zero very fast, and consider the measures

νn = µ∗n
εn

,

which is the n-th convolution power of µεn . Thus the sum of n i.i.d. copies of Zεn is a

random variable whose image measure is νn. We denote this sum by Un.

For each n we choose εn sufficiently small to satisfy two properties: (i) εn ≤ 1
n2 , and

(ii) it holds that

E
[

enUn − 1
]

≤ 2−n.

This latter inequality can be achieved because E
[

enUn

]

=
(

E
[

enZεn

])n
, and as εn → 0 we

also have E
[

enZεn

]

= 1 − εn + εnE
[

enZ
]

→ 1 since Z ∈ LM .

For these choices of εn and corresponding Un, let Hn(x) denote the c.d.f. of Un, and

define H(x) = infn Hn(x) for each x ∈ R. Since Hn(x) = 0 for x < 0, the same is true for

48



H(x). Also note that each Hn(x) is a non-decreasing and right-continuous function in x,

and so is H(x).

We claim that limx→∞ H(x) = 1. Indeed, recall that Un is the n-fold sum of Zεn , which

has mass 1−εn at zero. So Un has mass at least (1−εn)n ≥ (1− 1
n2 )n ≥ 1− 1

n
at zero. In other

words, Hn(0) ≥ 1 − 1
n

. By considering the finitely many c.d.f.s H1(x), H2(x), . . . , Hn−1(x),

we can find N such that Hi(x) ≥ 1 − 1
n

for every i < n and x ≥ N . Together with

Hi(x) ≥ Hi(0) ≥ 1 − 1
i

≥ 1 − 1
n

for i ≥ n, we conclude that Hi(x) ≥ 1 − 1
n

whenever x ≥ N ,

and so H(x) ≥ 1 − 1
n

. Since n is arbitrary, the claim follows. The fact that Hn(x) ≥ 1 − 1
n

also shows that in the definition H(x) = infn Hn(x), the “inf” is actually achieved as the

minimum.

These properties of H(x) imply that it is the c.d.f. of some non-negative random

variable U . We next show U ∈ LM , i.e., E
[

eaU
]

< ∞ for every a ∈ R. Since U ≥ 0, we

only need to consider a ≥ 0. To do this, we take advantage of the following identity based

on integration by parts:

E
[

eaUn − 1
]

= −

∫

x≥0
(eax − 1) d(1 − Hn(x)) = a

∫

x≥0
eax(1 − Hn(x)) dx.

Now recall that we chose Un so that E
[

enUn − 1
]

≤ 2−n. So E
[

eaUn − 1
]

≤ 2−n for every

positive integer n ≥ a. It follows that the sum
∑∞

n=1 E
[

eaUn − 1
]

is finite for every a ≥ 0.

Using the above identity, we deduce that

a

∫

x≥0
eax

∞
∑

n=1

(1 − Hn(x)) dx < ∞,

where we have switched the order of summation and integration by the Monotone Conver-

gence Theorem. Since H(x) = minn Hn(x), it holds that 1 − H(x) ≤
∑∞

n=1(1 − Hn(x)) for

every x. And thus

E
[

eaU − 1
]

= a

∫

x≥0
eax(1 − H(x)) dx < ∞

also holds. This proves U ∈ LM .

We are finally in a position to deduce a contradiction. Since by construction the c.d.f.

of U is no larger than the c.d.f. of each Un, we have U ≥1 Un and Φ(U) ≥ Φ(Un) by

monotonicity of Φ. But Φ(Un) = nΦ(Zεn) > nδ by additivity, so this leads to Φ(U) being

infinite. This contradiction proves the desired result.

D.4 Step 4: Functional Analysis

To complete the proof of Theorem 2, we also need to modify the functional analysis step

in our earlier proof of Theorem 1. One difficulty is that for an unbounded random variable

X, Ka(X) takes the value ∞ as a → ∞. Thus we can no longer think of KX(a) = Ka(X)

as a real-valued continuous function on R.
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We remedy this as follows. Note first that if Φ is a monotone additive statistic defined

on LM , then it is also monotone and additive when restricted to the smaller domain of

bounded random variables. Thus Theorem 1 gives a probability measure µ on R ∪ {±∞}

such that

Φ(X) =
∫

R

Ka(X) dµ(a)

for all X ∈ L∞. In what follows, µ is fixed. We just need to show that this representation

also holds for X ∈ LM .

As a first step, we show µ does not put any mass on ±∞. Indeed, if µ({∞}) = ε > 0,

then for any bounded random variable X ≥ 0, the above integral gives Φ(X) ≥ ε · max[X].

Take any Y ∈ LM such that Y ≥ 0 and Y is unbounded from above. Then monotonicity

of Φ gives Φ(Y ) ≥ Φ(min{Y, n}) ≥ ε · n for each n. This contradicts Φ(Y ) being finite.

Similarly we can rule out any mass at −∞.

The next lemma gives a way to extend the representation to certain unbounded random

variables.

Lemma 15. Suppose Z ∈ LM is bounded from below by 1 and unbounded from above,

while Y ∈ LM is bounded from below and satisfies lima→∞
Ka(Y )
Ka(Z) = 0, then

Φ(Y ) =
∫

(−∞,∞)
Ka(Y ) dµ(a).

Proof. Given the assumptions, Ka(Z) ≥ 1 for all a ∈ R, with lima→∞ Ka(Z) = ∞.

Let LZ
M be the collection of random variables X ∈ LM such that X is bounded from

below, and lima→∞
Ka(X)
Ka(Z) exists and is finite. LZ

M includes all bounded X (in which case

lima→∞
Ka(X)
Ka(Z) = 0), as well as Y and Z itself. LZ

M is also closed under adding independent

random variables.

Now, for each X ∈ LZ
M , we can define

KX|Z(a) =
Ka(X)

Ka(Z)
,

which reduces to our previous definition of KX(a) when Z is the constant 1. This function

KX|Z(a) extends by continuity to a = −∞, where its value is min[X]
min[Z] , as well as to a = ∞

by definition of LZ
M . Thus KX|Z(·) is a continuous function on R.

Since Φ induces an additive statistic when restricted to LZ
M , and KX|Z + KY |Z =

KX+Y |Z , we have an additive functional F defined on L = {KX|Z : X ∈ LZ
M }, given by

F (KX|Z) =
Φ(X)

Φ(Z)
.

Because Z ≥ 1 implies Φ(Z) ≥ 1, F is well-defined, and F (1) = 1. By Lemma 13, F is

also monotone in the sense that KX|Z(a) ≥ KY |Z(a) for each a ∈ R implies F (KX|Z) ≥

F (KY |Z).
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Likewise we can show F is 1-Lipschitz. Note that KX|Z(a) ≤ KY |Z(a) + m
n

is equivalent

to Ka(X) ≤ Ka(Y ) + m
n

Ka(Z) and equivalent to Ka(X∗n) ≤ Ka(Y ∗n + Z∗m), where we

use the notation X∗n to denote the sum of n i.i.d. copies of X. If this holds for all a, then

by Lemma 13 we also have Φ(X∗n) ≤ Φ(Y ∗n + Z∗m), and thus Φ(X) ≤ Φ(Y ) + m
n

Φ(Z) by

additivity. An approximation argument shows that for any real number ε > 0, KX|Z(a) ≤

KY |Z(a) + ε for all a implies Φ(X) ≤ Φ(Y ) + εΦ(Z). Thus the functional F is 1-Lipschitz.

Given these properties, we can exactly follow the proof of Theorem 1 to extend the

functional F to be a positive linear functional on the space of all continuous functions

over R (the majorization condition is again satisfied by constant functions, as KZ|Z = 1).

Therefore, by the Riesz Representation Theorem, we obtain a probability measure µZ on

R such that for all X ∈ LZ
M ,

Φ(X)

Φ(Z)
=
∫

R

Ka(X)

Ka(Z)
dµZ(a).

In particular, for any X bounded from below such that lima→∞
Ka(X)
Ka(Z) = 0, it holds

that

Φ(X) =
∫

[−∞,∞)
Ka(X) ·

Φ(Z)

Ka(Z)
dµZ(a),

where we are able to exclude ∞ from the range of integration (this is useful below).

If we define the measure µ̂Z by dµ̂Z

dµZ
(a) = Φ(Z)

Ka(Z) ≤ Φ(Z), then since Ka(X) is finite for

a < ∞, we have

Φ(X) =
∫

[−∞,∞)
Ka(X) dµ̂Z(a).

This in particular holds for all bounded X, so plugging in X = 1 gives that µ̂Z is a

probability measure. But now we have two probability measures µ and µ̂Z on R that lead

to the same integral representation for bounded random variables, so Lemma 5 implies

that µ̂Z coincides with µ and is supported on the standard real line. Plugging in X = Y

in the above display then yields the desired result.

The next lemma further extends the representation:

Lemma 16. For every X ∈ LM that is bounded from below,

Φ(X) =
∫

(−∞,∞)
Ka(X) dµ(a).

Proof. It suffices to consider X that is unbounded from above. Moreover, without loss

we can assume X ≥ 0„ since we can add any constant to X. Given the previous lemma,

we just need to construct Z ≥ 1 such that lima→∞
Ka(X)
Ka(Z) = 0. Note that E

[

eaX
]

strictly

increases in a for a ≥ 0. This means we can uniquely define a sequence a1 < a2 < · · ·

by the equation E
[

eanX
]

= en. This sequence diverges as n → ∞. We then choose any

increasing sequence bn such that bn > n and anbn > 2n2.
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Consider the random variable Z that is equal to bn with probability e− anbn
2 for each n,

and equal to 1 with remaining probability. To see that Z ∈ LM , we have

E
[

eaZ
]

≤ ea +
∞
∑

n=1

e− anbn
2 · eabn = ea +

∞
∑

n=1

e(a− an
2

)·bn .

For any fixed a, an

2 is eventually greater than a + 1. This, together with the fact that

bn > n, implies the above sum converges.

Moreover, for any a ∈ [an, an+1), we have

E
[

eaZ
]

≥ E
[

eanZ
]

≥ P[Z = bn] · eanbn ≥ e
anbn

2 > en2
,

whereas E
[

eaX
]

≤ E
[

ean+1X
]

≤ en+1. Thus

Ka(X)

Ka(Z)
=

logE
[

eaX
]

logE [eaZ ]
≤

n + 1

n2
,

which converges to zero as a (and thus n) approaches infinity.

D.5 Step 5: Wrapping Up

By a symmetric argument, the representation Φ(X) =
∫

(−∞,∞) Ka(X) dµ(a) also holds for

all X bounded from above. In the remainder of the proof, we will use an approximation

argument to generalize this to all X ∈ LM . We first show a technical lemma:

Lemma 17. The measure µ is supported on a compact interval of R.

Proof. Suppose not, and without loss assume the support of µ is unbounded from above.

We will construct a non-negative Y ∈ LM such that Φ(Y ) = ∞ according to the integral

representation. Indeed, by assumption we can find a sequence 2 < a1 < a2 < · · · such

that an → ∞ and µ([an, ∞)) ≥ 1
n

for all large n. Let Y be the random variable that

equals n with probability e− an·n
2 for each n, and equals 0 with remaining probability. Then

similar to the above, we can show Y ∈ LM . Moreover, E
[

eanY
]

≥ e
an·n

2 , implying that

Kan(Y ) ≥ n
2 . Since Ka(Y ) is increasing in a, we deduce that for each n,

∫

[an,∞)
Ka(Y ) dµ(a) ≥ Kan(Y ) · µ([an, ∞)) ≥

n

2
·

1

n
=

1

2
.

The fact that this holds for an → ∞ contradicts the assumption that Φ(Y ) =
∫

(−∞,∞) Ka(Y ) dµ(a)

is finite.

Thus we can take N sufficiently large so that µ is supported on [−N, N ]. To finish

the proof, consider any X ∈ LM that may be unbounded on both sides. For each positive

integer n, let Xn = min{X, n} denote the truncation of X at n. Since X ≥1 Xn, we have

Φ(X) ≥ Φ(Xn) =
∫

[−N,N ]
Ka(Xn) dµ(a)
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Observe that for each a ∈ [−N, N ], Ka(Xn) converges to Ka(X) as n → ∞. Moreover, the

fact that Ka(Xn) increases both in n and in a implies that for all a and all n,

|Ka(Xn)| ≤ max{|Ka(X1)|, |Ka(X)|} ≤ max{|K−N (X1)|, |KN (X1)|, |K−N (X)|, |KN (X)|}.

As Ka(Xn) is uniformly bounded, we can apply the Dominated Convergence Theorem to

deduce

Φ(X) ≥ lim
n→∞

∫

[−N,N ]
Ka(Xn) dµ(a) =

∫

[−N,N ]
Ka(X) dµ(a).

On the other hand, if we truncate the left tail and consider X−n = max{X, −n}, then a

symmetric argument shows

Φ(X) ≤ lim
n→∞

∫

[−N,N ]
Ka(X−n) dµ(a) =

∫

[−N,N ]
Ka(X) dµ(a).

Therefore for all X ∈ LM it holds that

Φ(X) =
∫

[−N,N ]
Ka(X) dµ(a).

This completes the entire proof of Theorem 2.

E Omitted Proofs for Section 4

E.1 Proof of Proposition 5

The result can be derived as a corollary of Proposition 6 which we prove below, but we also

provide a direct proof here. We focus on the “only if” direction because the “if” direction

follows immediately from the monotonicity of Ka(X) in a. Suppose µ is not supported

on [−∞, 0], we will show that the resulting monotone additive statistic Φ does not always

exhibit risk aversion. Since µ has positive mass on (0, ∞], we can find ε > 0 such that

µ assigns mass at least ε to (ε, ∞]. Now consider a gamble X which is equal to 0 with

probability n−1
n

and equal to n with probability 1
n

, for some large positive integer n. Then

E [X] = 1 and Ka(X) ≥ min[X] = 0 for every a ∈ R. Moreover, for a ≥ ε we have

Ka(X) ≥ Kε(X) =
1

ε
log

(

n − 1

n
+

1

n
eεn

)

≥
n

2

whenever n is sufficient large. Thus

Φ(X) =
∫

R

Ka(X) dµ(a) ≥

∫

[ε,∞]
Ka(X) dµ(a) ≥

n

2
ε.

We thus have Φ(X) > 1 = E [X] for all large n, showing that the preference represented by

Φ sometimes exhibits risk seeking.

Symmetrically, if µ is not supported on [0, ∞], then Φ must sometimes exhibit risk

aversion (by considering X equal to 0 with probability 1
n

and equal to n with probability
n−1

n
). This completes the proof.
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E.2 Proof of Proposition 6

We first show that conditions (i) and (ii) are necessary for
∫

R
Ka(X) dµ1(a) ≤

∫

R
Ka(Y ) dµ2(a)

to hold for every X. This part of the argument closely follows the proof of Lemma 5.

Specifically, by considering the same random variables Xn,b as defined there, we have the

key equation (11). Since the limit on the left-hand side is smaller for µ1 than for µ2, we

conclude that for every b > 0,
∫

[b,∞]
a−b

a
dµ1(a) on the right-hand side must be smaller than

the corresponding integral for µ2. Thus condition (i) holds, and an analogous argument

shows condition (ii) also holds.

To complete the proof, it remains to show that when conditions (i) and (ii) are satisfied,
∫

R

Ka(X) dµ1(a) ≤

∫

R

Ka(X) dµ2(a)

holds for every X. Since µ1 and µ2 are both probability measures, we can subtract E [X]

from both sides and arrive at the equivalent inequality
∫

R 6=0

(Ka(X) − E [X]) dµ1(a) ≤

∫

R 6=0

(Ka(X) − E [X]) dµ2(a). (20)

Note that we can exclude a = 0 from the range of integration because Ka(X) = E [X]

there. Below we show that condition (i) implies
∫

(0,∞]
(Ka(X) − E [X]) dµ1(a) ≤

∫

(0,∞]
(Ka(X) − E [X]) dµ2(a). (21)

Similarly, condition (ii) gives the same inequality when the range of integration is [−∞, 0).

Adding these two inequalities would yield the desired comparison in (20).

To prove (21), we let LX(a) = a · Ka(X) = logE
[

eaX
]

be the cumulant generating

function of X. It is well known that LX(a) is convex in a, with L′
X(0) = E [X] and

lima→∞ L′
X(a) = max[X]. Then the integral on the left-hand side of (21) can be calculated

as follows:
∫

(0,∞]
(Ka(X) − E [X]) dµ1(a) =

∫

(0,∞)
(Ka(X) − E [X]) dµ1(a) + (max[X] − E [X]) · µ1({∞})

=
∫

(0,∞)
(LX(a) − aE [X]) d

µ1(a)

a
+ (max[X] − E [X]) · µ1({∞})

Note that since the function g(a) = LX(a) − aE [X] satisfies g(0) = g′(0) = 0, it can be

written as

g(a) =
∫ a

0
g′(t) dt =

∫ a

0

∫ t

0
g′′(b) db dt =

∫ a

0
g′′(b) · (a − b) db.
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Plugging back to the previous identity, we obtain
∫

(0,∞]
(Ka(X) − E [X]) dµ1(a)

=
∫

(0,∞)

∫ a

0
L′′

X(b) · (a − b) db d
µ1(a)

a
+ (max[X] − E [X]) · µ1({∞})

=
∫ ∞

0
L′′

X(b)
∫

[b,∞)
(a − b) d

µ1(a)

a
db + (L′

X(∞) − L′
X(0)) · µ1({∞})

=
∫ ∞

0
L′′

X(b)
∫

[b,∞)

a − b

a
dµ1(a) db +

∫ ∞

0
L′′

X(b) · µ1({∞}) db

=
∫ ∞

0
L′′

X(b)
∫

[b,∞]

a − b

a
dµ1(a) db,

where the last step uses a−b
a

= 1 when a = ∞ > b.

The above identity also holds when µ1 is replaced by µ2. We then see that (21) follows

from condition (i) and L′′
X(b) ≥ 0 for all b. This completes the proof.

E.3 Proof of Theorem 5

The “if” direction is straightforward: if �1 and �2 are both represented by a monotone

additive statistic Φ, then they satisfy responsiveness and continuity. In addition, combined

choices are not stochastically dominated because if X ≻1 X ′ and Y ≻2 Y ′ then Φ(X) >

Φ(X ′) and Φ(Y ) > Φ(Y ′). Thus Φ(X +Y ) > Φ(X ′ + Y ′) and X ′ + Y ′ cannot stochastically

dominate X + Y .

Turning to the “only if” direction, we suppose �1 and �2 satisfy the axioms. We

first show that these preferences are the same. Suppose for the sake of contradiction that

X �1 Y but Y ≻2 X for some X, Y . Then by continuity, there exists ε > 0 such that

Y ≻2 X + ε. By responsiveness, we also have X �1 Y ≻ Y − ε
2 . Thus X ≻1 Y − ε

2 ,

Y ≻2 X + ε, but X + Y is strictly stochastically dominated by Y − ε
2 + X + ε = X + Y + ε

2 ,

contradicting Axiom 4.2.

Henceforth we denote both �1 and �2 by �. We next show that for any X and

any ε > 0, max[X] + ε ≻ X ≻ min[X] − ε. To see why, suppose for contradiction that

X is weakly preferred to max[X] + ε (the other case can be handled similarly). Then

we obtain a contradiction to Axiom 4.2 by observing that X ≻ max[X] + ε
2 , ε

4 ≻ 0 but

X + ε
4 <1 max[X] + ε

2 + 0.

Given these upper and lower bounds for X, we can define Φ(X) = sup{c ∈ R : c � X},

which is well-defined and finite. By definition of the supremum and responsiveness, for

any ε > 0 it holds that Φ(X) − ε ≺ X ≺ Φ(X) + ε. Thus by continuity, Φ(X) ∼ X is the

(unique) certainty equivalent of X.

It remains to show that Φ is a monotone additive statistic. For this we show that

X ∼ Y implies X + Z ∼ Y + Z for any independent Z. Suppose for contradiction that
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X + Z ≻ Y + Z. Then by continuity we can find ε > 0 such that X + Z ≻ Y + Z + ε. By

responsiveness, it also holds that Y + ε
2 ≻ Y ∼ X. But the sum (X + Z) + (Y + ε

2) is

stochastically dominated by (Y + Z + ε) + X, contradicting Axiom 4.2.

Therefore, from X ∼ Φ(X) and Y ∼ Φ(Y ) we can apply the preceding result twice

to obtain X + Y ∼ Φ(X) + Y ∼ Φ(X) + Φ(Y ) whenever X, Y are independent, so that

Φ(X + Y ) = Φ(X) + Φ(Y ) is additive. Finally, we show Φ is monotone. Consider any

Y ≥1 X, and suppose for contradiction that X ≻ Y . Then there exists ε > 0 such that

X ≻ Y +ε. This leads to a contradiction since X ≻ Y +ε, ε
2 ≻ 0, but X + ε

2 is stochastically

dominated by Y + ε + 0.

This completes the proof that both preferences �1 and �2 are represented by the same

certainty equivalent Φ(X), which is a monotone additive statistic.

F Monotone Additive Statistics and the Independence Axiom

In this appendix we discuss the classic independence axiom and what it implies for

preferences represented by monotone additive statistics.

Axiom F.1 (Independence). For all X, Y, Z and all λ ∈ (0, 1), X � Y implies XλZ � YλZ.

Proposition 8. Suppose a preference � is represented by a monotone additive statistic

Φ(X) =
∫

R
Ka(X) dµ(a). Then � satisfies the independence axiom if and only if µ is a

point mass at some a ∈ R.

Proof. The “if” direction is relatively straightforward. If a = 0 then Φ(X) = E [X]. In this

case E [X] ≥ E [Y ] does imply

E [XλZ] = λE [X] + (1 − λ)E [Z] ≥ λE [Y ] + (1 − λ)E [Z] = E [YλZ].

If a > 0 then Φ(X) ≥ Φ(Y ) implies E
[

eaX
]

≥ E
[

eaY
]

and thus

λE
[

eaX
]

+ (1 − λ)E
[

eaZ
]

≥ λE
[

eaY
]

+ (1 − λ)E
[

eaZ
]

,

so that Φ(XλZ) ≥ Φ(YλZ). A similar argument applies to the case of a < 0. Finally it is

easy to see that max[X] ≥ max[Y ] implies max[XλZ] ≥ max[YλZ] and the same holds for

the minimum. So the above independence axiom holds for a = ±∞ as well.23

We turn to the “only if” direction of the result. By the independence axiom, whenever

c is a constant we have X � c implies Xλc � c and c � X implies c � Xλc. Therefore

X ∼ c implies Xλc ∼ c, which allows us to directly apply Lemma 7 from before. It remains

23Note however that Φ(X) = max[X] or min[X] would violate a stronger form of independence that

additionally requires X ≻ Y to imply XλZ ≻ YλZ with strict preferences. This is related to the fact that

these extreme monotone additive statistics do not satisfy mixture continuity.
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to show that independence rules out Φ(X) = βK−aβ(X) + (1 − β)Ka(1−β)(X) for some

β ∈ (0, 1) and a ∈ (0, ∞].

Suppose Φ takes the above form. If a = ∞ then Φ(X) = β min[X] + (1 − β) max[X]

for some β ∈ (0, 1). To see that it violates independence, choose X supported on 0 and
1

1−β
, and Y = 1 so that Φ(X) = Φ(Y ). But with Z being a sufficiently large constant we

see that XλZ has the same maximum as YλZ, but a strictly smaller minimum. Hence

Φ(XλZ) < Φ(YλZ), contradicting independence.

If instead a ∈ (0, ∞), then we can do a similar construction by choosing X and Y

such that Φ(X) > Φ(Y ) but K−aβ(X) < K−aβ(Y ). For example, let Y = 1, and let X be

supported on {0, k}, with P [X = k] = 1
k
. Then

Kb(X) =
1

b
logE

[

1 −
1

k
+

ebk

k

]

.

For k tending to infinity, Kb(X) tends to zero if b < 0, and to infinity if b > 0. Hence, for

k large enough, X and Y will have the desired property.

Now let Z = n where n is a large positive integer. Then

Kb(Yλn) =
1

b
logE

[

λE
[

ebY
]

+ (1 − λ)ebn
]

Kb(Xλn) =
1

b
logE

[

λE
[

ebX
]

+ (1 − λ)ebn
]

and so

Kb(Yλn) − Kb(Xλn) =
1

b
log





λE
[

ebY
]

+ (1 − λ)ebn

λE [ebX ] + (1 − λ)ebn



 .

It easily follows that for fixed λ ∈ (0, 1) and b,

lim
n→∞

Kb(Yλn) − Kb(Xλn) = 0 if b > 0;

lim
n→∞

Kb(Yλn) − Kb(Xλn) = Kb(Y ) − Kb(X) if b < 0.

Thus, as n tends to infinity,

lim
n

Φ(Yλn) − Φ(Xλn)

= lim
n

β [K−aβ(Yλn) − K−aβ(Xλn)] + (1 − β)
[

Ka(1−β)(Yλn) − Ka(1−β)(Xλn)
]

= β [K−aβ(Yλn) − K−aβ(Xλn)] > 0.

Therefore, for n large enough, we have found X and Y such that Φ(X) > Φ(Y ) but

Φ(Xλn) < Φ(Yλn). This implies X ≻ Y but Xλn ≺ Yλn, which contradicts the indepen-

dence axiom and completes the proof of Proposition 8.
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F.1 Proof of Proposition 1

We now prove Proposition 1 as a corollary of Proposition 8. The first observation is that

under time invariance, strong stochastic dynamic consistency is equivalent to the following

property of the preference �:

Axiom F.2 (Strong Stochastic Stationarity). For every pair of time lotteries (x, T ),

(y, S) and every D ∈ L∞
+ not necessarily independent, if (x, Td) � (y, Sd) for almost every

realization d of D, then (x, T + D) � (y, S + D).

Indeed, suppose strong stochastic dynamic consistency is satisfied, and (x, Td) � (y, Sd)

holds for almost every realization d of D. Then by time invariance (x, Td) �t+d (y, Sd) also

holds for almost every d. Strong stochastic dynamic consistency thus implies (x, T + D) �t

(y, S + D) and therefore strong stochastic stationarity. A similar argument shows that

conversely, strong stochastic stationarity also implies strong stochastic dynamic consistency.

For the “only if” direction of Proposition 1, suppose that � is an MSTP that satisfies

strong stochastic stationarity. Let �∗ denote the preference over random times induced by

� when fixing the payoff. That is, T �∗ S if and only if (x, T ) � (x, S) for any and every

x > 0.

Fix any X �∗ Y and any Z ∈ L∞
+ , which can be considered as random times. For a

given λ ∈ (0, 1), choose D to be a random variable that is equal to either 0 or 1, with

probability λ and 1 − λ, respectively. Let X̃ be a random variable that conditioned on

D = 0 has the same distribution as X + 1, and conditioned on D = 1 has the same

distribution as Z. Likewise, let Ỹ be a random variable that conditioned on D = 0 has the

same distribution as Y + 1, and conditioned on D = 1 has the same distribution as Z.

By construction X̃D �∗ ỸD for every possible value of D, so by strong stochastic

stationarity X̃ +D �∗ Ỹ +D must hold. But X̃ +D has the same distribution as (XλZ)+1

while Ỹ + D has the same distribution as (YλZ) + 1, so (XλZ) + 1 �∗ (YλZ) + 1. Since

this is an MSTP, we deduce XλZ �∗ YλZ as the independence axiom requires.

Note that even though �∗ and the associated monotone additive statistic Φ are defined

only for non-negative bounded random variables, it can be extended to all of L∞ as shown

in the proof of Proposition 7. Given additivity, it is easy to see that the extension preserves

independence. So we can assume �∗ and Φ satisfy independence on L∞. This allows us to

apply Proposition 8 and deduce that Φ must have a point-mass mixing measure µ, which

proves the “only if” direction of Proposition 1.

As for the “if” direction, we need to verify that an MSTP represented by V (x, T ) =

u(x) · e−rKa(T ) does satisfy strong stochastic stationarity. First consider a = 0, in which

case the representation simplifies to u(x) · e−E[T ] with the normalization r = 1. If (x, Td) �

(y, Sd) for almost every d, then u(x) · e−E[Td] ≥ u(y) · e−E[Sd], which can be rewritten as
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E [Sd] − E [Td] ≥ log (u(y)/u(x)). Averaging across different realizations d, this implies

E [S] − E [T ] ≥ log (u(y)/u(x)), and thus E [S + D] − E [T + D] ≥ log (u(y)/u(x)). After

rearranging, this yields u(x) · e−E[T +D] ≥ u(y) · e−E[S+D]. So (x, T + D) � (y, S + D) as

demanded by strong stochastic stationarity.

Next consider a > 0. In this case we normalize r = a and adjust u accordingly, to

arrive at an equivalent representation V (x, T ) = u(x)/E
[

eaT
]

. From (x, Td) � (y, Sd) we

obtain u(x) · E
[

eaSd

]

≥ u(y) · E
[

eaTd

]

and thus

u(x) · E
[

ea(Sd+d)
]

≥ u(y) · E
[

ea(Td+d)
]

.

Averaging across different realizations d then yields u(x) · E
[

ea(S+D)
]

≥ u(y) · E
[

ea(T +D)
]

,

which after rearranging gives the desired conclusion V (x, T + D) ≥ V (y, S + D).

If instead a < 0, then we normalize r = −a and recover the usual EDU representation

V (x, T ) = u(x) · E
[

eaT
]

. Essentially the same argument as above applies to this case.

Finally consider a = ∞, so that V (x, T ) = u(x) · e− max[T ] after normalizing r = 1. In

this case (x, Td) � (y, Sd) implies max[Sd] − max[Td] ≥ log (u(y)/u(x)), and thus

max[Sd + d] − max[Td + d] ≥ log (u(y)/u(x)) .

Let α = max[S + D] and c = log (u(y)/u(x)) be constants. Then the above implies that for

almost every realization d of D, Td + d ≤ α − c. Thus T + D ≤ α − c almost surely, which

gives max[S + D] − max[T + D] ≥ c. This implies V (x, T + D) ≥ V (y, S + D) as desired.

A similar argument applies to the case of a = −∞, completing the proof.

59


