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Abstract

The expectation is an example of a descriptive statistic that is monotone with
respect to stochastic dominance, and additive for sums of independent random variables.
We provide a complete characterization of such statistics, and explore a number of
applications to models of individual and group decision-making. These include a
representation of stationary monotone time preferences, extending the work of Fishburn
and Rubinstein (1982) to time lotteries. This extension offers a new perspective on risk
attitudes toward time, as well as on the aggregation of multiple discount factors. We
also offer a novel class of nonexpected utility preferences over gambles which satisfy
invariance to background risk as well as betweenness, but are versatile enough to
capture mixed risk attitudes.

1 Introduction

How should a random quantity be summarized by a single number? In Bayesian statistics,
point estimators capture an entire posterior distribution. In finance, risk measures quantify
the risk of a financial position. And in economics, certainty equivalents characterize an
agent’s preference for uncertain outcomes.

We use the term descriptive statistic, or simply statistic, to refer to a map that assigns
a number to each bounded random variable. We study statistics that are monotone with
respect to first-order stochastic dominance, and additive for sums of independent random
variables. An example of a monotone additive statistic is the expectation. The median is

monotone but not additive, while the variance is additive, but not monotone.
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Monotonicity is a well studied property of statistics (see, e.g., Bickel and Lehmann,
1975a,b), and holds, for example, for certainty equivalents of monotone preferences over
lotteries. Additivity is a stronger assumption. We focus on this property because of its
conceptual simplicity and because it serves as a baseline assumption in many settings.
As we argue, additivity corresponds to stationarity in the context of preferences over
time lotteries (see §3). In the context of choices over monetary gambles it corresponds
to invariance to background risk (§4.1), or to a form of separability across independent
decision problems (§4.6).

Beyond the expectation, an additional example of a monotone additive statistic is the

map K, that, given a € R, assigns to each random variable X the value
1
Ko(X) =~ logE [e*¥]. (1)
a

In the fields of probability and statistics, this function is known as the (normalized) cumulant
generating function evaluated at a. In finance it is called the entropic risk measure. In
economics, it corresponds to the certainty equivalent of an expected utility maximizer
who exhibits constant absolute risk aversion (CARA) over gambles. For bounded random
variables, the essential minimum and maximum provide further examples of such statistics;
as we explain later, they are the limits of K, as a approaches +o00. The expectation is
equal to Ky, the limit of K, as a approaches 0.

Our main result establishes that these examples, and their weighted averages, are the
only monotone additive statistics. That is, we show that if a statistic ® is monotone,
additive and normalized so that it satisfies ®(c) = ¢ for every constant ¢, then it is of the

form

2(X) = [ Ka(X) dpla)

for some probability measure p over the extended real line. This result provides a simple
representation of a natural family of statistics, which one may a priori have expected to be

much richer.

Our first application is to time preferences. The starting point for our analysis is the
work by Fishburn and Rubinstein (1982), who study preferences over dated rewards—a
monetary reward, together with the time at which it will be received. They show that
exponential discounting of time arises from a set of axioms, of which the most substantial,
stationarity, postulates that preferences between two dated rewards are unaffected by the
addition of a common delay.

We extend the analysis of Fishburn and Rubinstein (1982) to time lotteries, which
consist of a monetary reward x and a random time 7" at which it will be received. In this

setting, we too introduce a stationarity axiom that requires preferences to be invariant with



respect to random independent delays. As we argue in the main text, this stationarity axiom
captures an assumption of dynamic consistency, together with the idea that preferences do
not depend on calendar time.

We show that a monotone and stationary preference over time lotteries admits a
representation of the form

u(x>e—rq>(T) 7

where ® is a monotone additive statistic (Theorem 3). Thus, ®(T') is the certainty
equivalent of the random time 7', i.e. the deterministic time that is as desirable as T'. Over
deterministic dated rewards, the above representation coincides with standard discounted
utility. General time lotteries are reduced to deterministic ones through the certainty
equivalent ®. By our main representation theorem, it takes the form ®(7") = [ K,(T') du(a).
In this context, each K,(T") is the certainty equivalent of 7' under an expected discounted
preference with discount rate —a. The different certainty equivalents are then averaged
according to the measure p.

In this representation it is as if the decision maker had in mind not one but multiple
discount factors. Thus, ® can be interpreted as the certainty equivalent of a decision
maker who is uncertain about the correct discount factor, or as the aggregated certainty
equivalent of a group of agents with different discount factors.

Our representation theorem for monotone and stationary time preferences has implica-
tions for understanding the relation between stationarity and risk attitudes toward time.
How people choose among prospects that involve risk over time has been studied both
theoretically and experimentally (Chesson and Viscusi, 2003; Onay and Onciiler, 2007;
Ebert, 2020; DeJarnette et al., 2020; Ebert, 2021). A basic paradox these papers highlight
is that many subjects display risk aversion over the time dimension, even though the
standard theory of expected discounted utility predicts that people are risk-seeking with
respect to time lotteries.

This raises the question of whether there is a tractable and well-motivated class of
preferences that allows risk-aversion, risk-seeking, or a combination of the two, as well as
stationarity. As pointed out by DeJarnette, Dillenberger, Gottlieb, and Ortoleva (2020),
this is not entirely obvious. The preferences we study in this paper offer a solution to this
problem, as they satisfy a strong notion of stationarity while allowing for a variety of risk
attitudes.

We further apply the characterization of monotone stationary preferences to the problem
of aggregating heterogeneous time preferences. It is well known that when aggregating
expected discounted utility preferences, a utilitarian approach that averages individual
utility functions leads to present bias (see Jackson and Yariv, 2014, 2015). Based on

this observation, the literature concludes that within expected discounted utility, it is



impossible to aggregate individual preferences into a social preference unless the latter is
dictatorial.

We show that this difficulty is not due to stationarity, but rather to an insistence
on the idea that the social preference should conform to expected discounted utility.
When preferences are allowed to belong to the more general class of monotone stationary
preferences, then a social preference obtained by averaging the certainty equivalents of the
individuals satisfies Pareto efficiency and stationarity (Proposition 3). Moreover, under
some assumptions, every Paretian and stationary social preference is obtained in this way

(Proposition 4).

Monotone additive statistics also find applications to models of choice over monetary
gambles. It is well known that an expected utility agent whose preferences are invariant to
independent background risk must have CARA preferences. This invariance property makes
CARA utility functions useful modeling tools when the analyst does not observe the agents’
wealth level or the additional risks they face (see, e.g., Barseghyan, Molinari, O’Donoghue,
and Teitelbaum, 2018). Beyond expected utility, monotone preferences that are invariant
to background risk have certainty equivalents that are monotone additive statistics. Thus,
by our main theorem, any such preference can be represented by a weighted average of
CARA certainty equivalents, where the mixing measure p is now over the coefficient of
absolute risk aversion. In this representation, the decision maker entertains multiple utility
functions, each defining a different certainty equivalent. Every lottery is evaluated by
averaging over these certainty equivalents.

An interesting feature of preferences represented by monotone additive statistics is that
they can display behavior that is not uniformly risk-averse nor risk-seeking, such as that of
an agent buying both lottery tickets and insurance (Friedman and Savage, 1948), all while
maintaining invariance to background risk. At the same time, a potential difficulty for this
class of preferences is that their defining parameter, the measure p over the coefficient of
risk aversion, is infinite-dimensional. To narrow down the parameter space, we focus on
those preferences that also satisfy betweenness, a well-known weakening of the independence
axiom that has been extensively studied in the literature (see Dekel, 1986; Gul, 1991;
Cerreia-Vioglio, Dillenberger, and Ortoleva, 2020). We show that a preference represented

by a monotone additive statistic ® satisfies betweenness if and only if it is of the form
D(X) = BK 45(X) + (1 = B)Ky1—p)(X)-

The parameter § € [0, 1] controls the the relative weights of the risk-averse and risk-seeking
components, with increased 8 making the decision maker more risk-averse. The parameter
a is a scale parameter. This is a simple two-parameter family, but it is rich enough to
accommodate preferences that are neither risk-averse nor risk-seeking, while maintaining

invariance to background risk.



Our final application concerns group decision-making under risk. We consider an
organization that employs multiple agents, each of whom makes decisions following an indi-
vidual preference relation, which can be seen as a decision rule prescribed by the firm. We
show that in order for the agents’ independent choices to not violate stochastic dominance
when combined, it is sufficient and necessary that their preferences are represented by the
same monotone additive statistic. Thus, these are the only preferences with the property
that decentralized decisions cannot result in stochastically dominated outcomes for the

organization.

1.1 Related Literature

A large literature in statistics studies descriptive statistics of probability distributions. A
representative example is the work of Bickel and Lehmann (1975a,b), who study location
statistics using an axiomatic, non-parametric approach that is similar to ours. This
literature has however focused on different properties, and, to the best of our knowledge,
does not contain a similar characterization of additivity and monotonicity. The mathematics
literature has studied additive statistics as homomorphisms from the convolution semigroup
to the real numbers (see Ruzsa and Székely, 1988; Mattner, 1999, 2004), but without
imposing monotonicity.

In finance and actuarial sciences, —K,(X) is also known as an entropic risk measure,
and is used to assess the riskiness of a financial position X. It is a canonical example of a
coherent risk measure (see Follmer and Schied, 2002, 2011; Follmer and Knispel, 2011). In
this literature, Goovaerts, Kaas, Laeven, and Tang (2004) study additive statistics that
are monotone with respect to all entropic risk measures, i.e. those with the property that
K.(X) > Kq(Y) for all a € R implies ®(X) > ®(Y), and show that they must be weighted
averages of entropic risk measures, as in our main representation theorem. In contrast, we
do not assume this property of ®, but instead show that it is implied by monotonicity and
additivity of ®.

In an earlier paper, Pomatto, Strack, and Tamuz (2020) show that on the domain
of random variables that have all moments, the only monotone additive statistic is the
expectation.! This is because the larger domain includes fat-tailed random variables, which
rule out all other monotone additive statistics. In contrast, in this paper we primarily
study the domain of bounded random variables, which allows for much richer preferences
with a variety of risk attitudes.

Monotone additive statistics also relate to what we called additive divergences in Mu,

!The same phenomenon is studied more in depth in Fritz, Mu, and Tamuz (2020). It is shown there that
the expectation remains the unique monotone additive statistic on the domain L?, for any p > 1, while

there are no monotone additive statistics on LP with p < 1, or on the domain of all random variables.



Pomatto, Strack, and Tamuz (2021). An additive divergence is a map defined over Blackwell
experiments that satisfies monotonicity with respect to the Blackwell order and additivity
for product experiments. While some of the techniques used in the two papers are similar,
the main mathematical argument is fundamentally different. The last step of the proof of
Theorem 1 is an application of the Riesz Representation Theorem and is similar to the
argument used in the previous paper. However, because the Blackwell order has different
properties from first-order stochastic dominance, the remainder of the proof is different,
with the previous paper having no analogue of Theorem 6, which is the main technical step
in the proof of Theorem 1. This new technique is also needed for the proof of Theorem 2,
which characterizes monotone additive statistics beyond bounded random variables.

DelJarnette, Dillenberger, Gottlieb, and Ortoleva (2020) study preferences over time
lotteries that display risk aversion. One class of preferences they propose is a generalization
of expected discounted utility (GEDU) that for a random prize X delivered at a random
time 7' takes the form E [(b(u(X )e*"T)} for some strictly increasing transformation ¢. The
curvature of ¢ determines the attitude towards risk. While GEDU satisfies stationarity
for deterministic X and T, stationarity does not in general hold once random times 71" are
considered, even with respect to adding a deterministic delay. In contrast, we impose a
strong form of stationarity but do not insist on expected utility. The only intersection
between our model and GEDU are preferences represented by K,, corresponding to a
point-mass mixing measure p. These preferences have the standard EDU representation,
but perhaps with a negative discount rate, as we explain in §3.3.2

Applied to choice under risk, our representation also bears resemblance to cautious
expected utility theory (Cerreia-Vioglio, Dillenberger, and Ortoleva, 2015), in which a
gamble is evaluated according to the minimum certainty equivalent across a family of utility
functions. The two representations are conceptually related, as both involve uncertainty
over a utility function. Our axioms are however different in that we study preferences that
are invariant to adding an independent gamble, while Cerreia-Vioglio, Dillenberger, and
Ortoleva (2015) consider the effect of mixing with another gamble.

Decision criteria that aggregate multiple certainty equivalents have appeared before
in the literature. Myerson and Zambrano (2019) advocate the maximization of a sum of
certainty equivalents as an effective rule for risk sharing. Chambers and Echenique (2012)

formalize and characterize this rule as a social welfare functional.

The remainder of the paper is organized as follows. In §2 we introduce monotone

additive statistics and state our main result. In §3 we apply this result to time lotteries,

ZWhen the prize X is held constant, a GEDU preference reduces to an expected utility preference over
random times. In contrast, our prizes are always deterministic, and the stationary preferences over random
times are represented by monotone additive statistics, which are not expected utility unless the mixing

measure 4 is a point mass (see Proposition 8 in §F of the online appendix).



and in §4 we apply it to monetary gambles. Finally, §5 provides an overview of the proof of
our main result. The appendix and online appendix contain omitted proofs for the results

in the main text.

2 Monotone Additive Statistics

We denote by L the collection of bounded real random variables, defined over a nonatomic
probability space (2, F,[P). We will identify each ¢ € R with the corresponding constant
random variable taking value X (w) = ¢ at each w € Q.

We say that a map ®: L™ — R is a statistic if it satisfies (i) ®(X) = ®(Y") whenever
X,Y € L have the same distribution, and (ii) ®(c¢) = ¢ for every ¢ € R; that is, ®
assigns ¢ to the constant random variable c. We are interested in statistics that satisfy
monotonicity with respect to first-order stochastic dominance and additivity for sums of

independent random variables. Formally, ® is
o additive if (X +Y) = &(X) + ®(Y) whenever X and Y are independent, and

o monotone if X >1 Y implies ®(X) > ®(Y), where >; denotes first-order stochastic

dominance.

Since, by assumption, the value ®(X) depends only the distribution of the random variable
X, monotonicity is equivalent to the requirement that ®(X) > ®(Y) whenever X > Y
almost surely. This equivalence is based on the well-known fact that X >; Y if and only if
there are random variables X,Y such that X and X are identically distributed, Y and Y
are identically distributed, and X > Y almost surely.?
We denote by R = R U {—00, 00} the extended real numbers. Given X € L and
a € R\ {0,400}, we consider the statistic
Ko(X) = L logE [e]. (2)

a
The value K,(X) is the certainty equivalent of X for a CARA utility function with
coefficient of risk aversion —a. In probability and statistics, K,(X) is known as the
(normalized) cumulant generating function of X, evaluated at a.

If X and Y have the same distribution, then K,(X) = K,(Y). Moreover, K,(c) = ¢
for every ¢ € R, so K, is a statistic. If X and Y are independent, then E {ea(XJFY)} =

E [eaX ]IE {e“y}, and hence K, is additive. It is also monotone.

3An alternative, equivalent definition for a statistic is to let the domain of ® be the set of probability
distributions on R with bounded support. In this domain, additivity would be defined with respect to
convolution. We choose to have the domain consist of random variables, as this approach offers some

notational advantages.



We additionally define Ko(X), Koo(X), K_o(X) to be the expectation, the essential
maximum, and the essential minimum of X, respectively.* This choice of notation makes
a — K,(X) a continuous function from R to R, for any X. Our main result is a

representation theorem for monotone additive statistics:

Theorem 1. ®: L>™® — R is a monotone additive statistic if and only if there exists a

(unique) Borel probability measure u on R such that for every X € L™

B(X) = /ﬁKam dua). (3)

We refer to p as the mizing measure of the statistic ®. Each K, satisfies monotonicity
and additivity, and it is immediate that these two properties are preserved under convex
combinations. Theorem 1 says that the one-parameter family {K,} forms the extreme
points of the set of monotone additive statistics; every such statistic must be a weighted
average obtained by mixing over this family. In §5 we provide an overview of the proof of
Theorem 1.

Theorem 1 can be extended to other domains of random variables. We consider the
set Lys of random variables X for which K,(X), as defined in (2), is finite for all a € R.
The domain Lj; contains those unbounded random variables whose distributions have

sub-exponential tails, as in the case of the Gaussian distribution.

Theorem 2. ®: Ly; — R is a monotone additive statistic if and only if it admits a

(unique) representation of the form (3) where the measure p has compact support in R.

The extension of Theorem 1 to the larger domain Lj; adds to the applicability of our
representation, as it includes distributions with unbounded support, such as Gaussian or
Poisson, for which the function K, has closed-form expressions. For example, Theorem 2
implies that when applied to a Gaussian random variable Z, a monotone additive statistic
® defined on Ly, takes the simple mean-variance form ®(Z) = E [Z] 4 ¢Var[Z]/2, where
¢ € R is the mean of the measure u characterizing ®.

A few additional remarks are in order. First, Theorems 1 and 2 answer an open
question in the mathematical finance literature on risk measures posed by Goovaerts,
Kaas, Laeven, and Tang (2004), who asked if entropic risk measures are the only additive
risk measures. Second, a possible strengthening of our additivity condition requires
O(X+Y)=®(X)+ (YY) to hold for all pairs of random variables, rather than just the
independent ones. As is well known, the only statistic that is additive in this more restrictive
sense is the expectation (see, for example, de Finetti, 1970). A different strengthening

is additivity with respect to uncorrelated random variables. It follows from the analysis

4The essential maximum and minimum are the maximum and minimum of the support: max[X] =
sup{a : P[X < a] < 1} and min[X] = inf{a : P[X < a] > 0}.



of Chambers and Echenique (2020) that on a finite probability space the expectation is,

again, the only monotone statistic that is additive for uncorrelated random variables.

3 Monotone Stationary Time Preferences

Next, we apply monotone additive statistics to the study of time preferences. We consider
decision problems where an agent is asked to choose between time lotteries that pay a fixed
payoff at a future random time, as in the case of a driver choosing between different routes,
where some routes are more likely than others to face heavy traffic, or a company choosing
between projects with different random completion times. We argue that in this context
additivity is connected to a notion of stationarity, according to which a choice between
future rewards is not affected by the addition of an independent delay. In this section we
study preferences over time lotteries that are monotone and stationary, characterize them
using monotone additive statistics, discuss the risk attitudes they can model, and apply

them to the problem of aggregating heterogeneous time preferences.

3.1 Domain and Axioms

A time lottery is a monetary reward received by a decision maker at a future, random time.
Formally, it consists of a pair (x,T"), where x € Ry is a positive payoff and T' € LY is
the random time at which it realizes.” Thus, time is non-negative and continuous. Our
primitive is a complete and transitive binary relation = on the domain R, x L. We
denote by ~ the indifference relation induced by >=. To avoid notational confusion, in the
rest of this section x and y always denote monetary payoffs, ¢, s and d denote deterministic
times, and T, S, and D denote random times.

We say that a preference relation = on Ry x L5 is a monotone stationary time

preference (henceforth, MSTP) if it satisfies the following axioms:
Axiom 3.1 (More is Better). If z >y then (x,T) > (y,T).

Axiom 3.2 (Earlier is Better). If s >t then (x,t) > (z,s), and if S >1 T then (z,T) >
(z,9).

Axiom 3.3 (Stochastic Stationarity). If (z,T) = (y,S) then (x,T + D) *= (y,S + D) for
any D that is independent from T and S.

Axiom 3.4 (Continuity). For any (y,S), the sets {(z,t): (z,t) = (y,S5)} and {(x,t): (x,t) =2
(y,S)} are closed in Ry x Ry.

®Per standard notation, LS denotes the set of non-negative bounded random variables.



The first two Axioms 3.1 and 3.2 are standard conditions that directly generalize those
in Fishburn and Rubinstein (1982), who studied preferences over dated rewards (x,t) with
a deterministic time t. They require the decision maker to prefer higher payoffs, and to
prefer earlier times. Axiom 3.4 is a standard continuity assumption that does not require
a choice of topology over random times. The most substantive of our axioms is stochastic
stationarity. In §3.4 we discuss this axiom in depth and motivate it using the notions of

time invariance and dynamic consistency (Halevy, 2015).6

3.2 Representation

Our next result characterizes monotone stationary time preferences:

Theorem 3. A preference relation > over time lotteries is an MSTP if and only if there
exist a monotone additive statistic ®, a constant r > 0, and a continuous and increasing

function u: Ry y — Ry such that = is represented by
Ve, T) = u(z)-e D), (4)

As in Fishburn and Rubinstein (1982), the parameter r can be normalized to be any
arbitrary positive constant by applying a monotone transformation to the representation
V. We will often set r appropriately to simplify the form of the representation. In contrast,
the monotone additive statistic @ is uniquely determined by the preference.

Over the domain of deterministic time lotteries (i.e. dated rewards), V' coincides with
an exponentially discounted utility representation. For general time lotteries, ®(7") is the
certainty equivalent of 7', i.e. the unique deterministic time that satisfies (z,T") ~ (x, ®(7T)).
The monotonicity and continuity axioms ensure that such a certainty equivalent exists, and
it is an implication of stochastic stationarity that ®(7") is independent of the reward x. As
we further show in the proof of Theorem 3, the monotonicity and stochastic stationarity
axioms formally translate into the certainty equivalent & being a monotone additive
statistic.

Proposition 7 in the appendix shows that the representation in Theorem 1 extends
to the domain of non-negative bounded random variables. Thus every MSTP can be

represented in the following form:

Ve, T) = u(z) - e J Ke(D dula), (5)

51t is worthwhile to note that we implicitly assume agents to be indifferent with respect to the timing
of resolution of uncertainty. We think of the choice as being made at time 0, and we do not distinguish
between situations where the realization of the random time T is revealed immediately, gradually until
time 7', or only at time 7. Modeling preferences over the timing of resolution of uncertainty would require

enlarging the choice domain beyond time lotteries.
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We recover expected discounted utility when p is a point mass concentrated on a point

—a < 0, in which case ® takes the form
1 —aT
O(T) = K_o(T) = — logE [e~"].
—a

This certainty equivalent, with the normalization r = a, yields the familiar representation
V(z,T) = u(z)E[e=?"]. For a general measure u, the statistic ®(T) = [ K,(T)du(a)
aggregates different discount rates by mixing over their corresponding certainty equivalents.

The key feature of the representation (5) is that the average is not over discount factors,
but instead over certainty equivalents induced by the discount factors. The resulting
representation is behaviorally distinct from expected discounted utility whenever u is not a
point mass. Indeed, as we formally prove in §F in the online appendix, this representation

satisfies the independence axiom if and only if © is a point mass.

3.3 Implications for Risk Attitudes toward Time

Theorem 3 demonstrates that there are many ways to extend discounted utility to the
domain of time lotteries, while maintaining stochastic stationarity. As is well known,
standard expected discounted utility preferences are risk-seeking over time, in the sense
that a decision maker prefers receiving a reward at a random time 7' rather than at the
deterministic expected time ¢t = E [T]. But other monotone additive statistics lead to
stationary time preferences that are not risk-seeking. As an example, for every a > 0 the

statistic
1 al
O(T) = Ko(T) =~ log E ¢ | (6)
a
leads, with the normalization r = a, to the representation

V(a,T) = E“[fjj;], (7)

which is in fact risk-averse over time. Under this preference, the decision maker applies a
negative discount rate —a within the monotone additive statistic ®, and yet is impatient.
These two aspects are compatible because in the representation u(z)e~"®() the statistic
® controls the risk attitude, while the decision maker still prefers receiving prizes earlier
rather than later, since ® appears with a negative coefficient.

Another key distinctive property of monotone stationary time preferences is their
flexibility in allowing for risk attitudes that are not uniform across time lotteries. To
illustrate this point, consider two decision problems with a fixed common reward z = $1000,

where in the first problem the choice is between

(I) receiving the reward after 1 day for sure, versus

11



(IT) receiving the reward immediately with 99% probability and after 100 days with 1%
probability.

In the second decision problem the choice is between
(I’) receiving the reward after 99 days for sure, versus

(IT’) receiving the reward immediately with 1% probability and after 100 days with 99%
probability.

In both problems, the times at which the safe options I and I’ deliver the prize are equal
to the expected delay of the lotteries II and IT’, and thus a decision maker who is globally
risk-averse or risk-seeking must either choose the safe options or the risky options in both
problems. Nevertheless, it does not seem unreasonable for a person to choose I over II in
order to avoid the risk of a long delay, but also choose II’ to I’, since the time lottery offers
at least a chance of avoiding an otherwise very long delay.”

Preferences based on monotone additive statistics are not necessarily globally risk-averse
or risk-seeking, and can accommodate the aforementioned behavior. For example, the
statistic

o(T) = %Kl(T) + %K_l(T) = %logE "] - %ng [e~7]
leads the decision maker to choose the safe option I in the first problem and the risky
option I’ in the second.

Empirically, both risk-averse and risk-seeking behavior over time lotteries are observed.
For example, the experiment by Ebert (2021) finds that there are risk-seeking and risk-averse
subjects: “Overall, therefore, and in contrast to the evidence on wealth risk preferences,
there is substantial heterogeneity in preferences toward delay risk.” Moreover, DeJarnette,
Dillenberger, Gottlieb, and Ortoleva (2020) find that even the same subject often exhibits
both risk aversion and risk seeking depending on the choice at hand.

In §4.2 below we provide a detailed analysis of the risk attitudes of preferences repre-
sented by monotone additive statistics, including a characterization of those statistics that

give rise to mixed risk attitudes, as in the above example.

3.4 Stationarity, Time Invariance and Dynamic Consistency

In the absence of risk, it was shown by Halevy (2015) that stationarity can be understood as
the implication of two more basic principles: that preferences are not affected by calendar
time, and that the decision maker is dynamically consistent. As we next explain, Axiom 3.3

is related to a particular notion of dynamic consistency for time lotteries.

"We are grateful to Weijie Zhong for suggesting this example to us.
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We consider an enlarged framework where the decision maker is endowed with a profile
(>¢) of preferences over time lotteries, with >, representing the preference the decision
maker expresses at time ¢. Formally, =; is a preference over Ry x L5, where in the
context of »; the pair (z,T) represents a payoff of = received at time ¢ + 7. Adapting
the definitions from Halevy (2015) to our setting, we define time invariance and dynamic

consistency below:®

Definition. The collection of preferences (=) satisfies time invariance if all the preferences

=+ are identical.

Intuitively, if the agent chooses (z,7T) over (y,S) at some time ¢ then she makes the

same choice at all other times.

Definition. The collection (=) satisfies deterministic dynamic consistency if, for every
pair of time lotteries (x,T) and (y,S), and every d,t € Ry it holds that

(2, T) =t4a (y,S) implies (x, T +d) =¢ (y,S + d).

That is, the decision maker does not reverse her choice between time ¢ and time ¢ + d.
Time invariance together with deterministic dynamic consistency imply stationarity with
respect to deterministic delays, namely (z,T') > (y,.S) implies (z,T + d) =¢ (y, S + d).

Our next definition proposes a generalization of dynamic consistency to a choice between
(z,T) and (y,S) made after a random delay D. What we call weak stochastic dynamic
consistency requires that if, at the random time ¢ + D, the decision maker always prefers
(z,T) over (y,S), then she would not revert her choice if asked to make the decision at time
t for her future self. In general, the realization of the delay D could affect the distributions
of S and T faced by the decision maker. Weak stochastic dynamic consistency considers
only the case where the decision maker always faces the same choice independent of the

delay, which mathematically corresponds to D being independent of both S and T

Definition. The collection (=) satisfies weak stochastic dynamic consistency if, for every
pair of time lotteries (x,T) and (y,S), everyt € Ry, and every D € LY independent of
S, T it holds that

(,T) =¢4a (y, S) for almost every realization d of D = (x,T + D) = (y, S + D).

As we record in the next claim, our stochastic stationarity axiom is immediately implied

by time invariance and weak stochastic dynamic consistency.

8These definitions are slightly different from his, and in particular his (deterministic) dynamic consistency

axiom is slightly stronger, requiring the implication to hold in both directions.
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Claim 1. Suppose the collection (=) satisfies time invariance, so that =y = = for every
t, and also satisfies weak stochastic dynamic consistency. Then the preference = satisfies

stochastic stationarity.

Indeed, by time invariance (z,T) =; (y,S) implies (z,T) =14 (y,S) for every re-
alization d of D. Thus by weak stochastic dynamic consistency, (z,T) =¢ (y,S) im-
plies (z,7 + D) > (y,S + D) whenever D is independent of S,7. Conversely, if
(,T) =144 (y,S) for any realization d of D, then (z,T) = (y,S) by time invariance, and
(x, T+ D) = (y, S+ D) would follow from stochastic stationarity. So stochastic stationarity
also implies weak stochastic dynamic consistency under the assumption of time invariance.

Weak stochastic dynamic consistency considers the case where D is independent of S
and 7T, which means that at the delayed time ¢ + D the agent always chooses between the
same two time lotteries. A stronger dynamic consistency axiom would impose the same
condition, but for an arbitrary delay D that need not be independent of S and T. To
make this dependency more explicit we write Sy, Ty for random variables that have the

conditional distributions of S,T when conditioning on D = d.

Definition. The collection (=) satisfies strong stochastic dynamic consistency if, for

every pair of time lotteries (x,T) and (y,S), every t € Ry, and every D € LS it holds that
(,Ty) =t+a (y, Sq) for almost every realization d of D = (x,T + D) =4 (y,S + D).

Intuitively, strong stochastic dynamic consistency requires consistency at different times
across different decision problems, while weak stochastic dynamic consistency only requires
it over the same decision problem. For instance, imagine a traveler who must choose
between a train and a flight, which involve travel times S and T respectively, and who
does not know the specific day of the month D when they will need to travel. Dynamic
consistency compares a traveler who must buy their ticket at the start of the month to
one who can make the decision on the day of travel. Weak stochastic dynamic consistency
applies when the distributions of travel times S and 7" are not dependent on the day of
the month. Strong stochastic dynamic consistency applies further to cases where travel
times Sy and T; do depend on the day d.

The following result shows that under time invariance, strong stochastic dynamic
consistency constrains the preference over time to be represented by K, for some a € R,

rather than a general monotone additive statistic ¢ as in Theorem 3.

Proposition 1. Suppose = is an MSTP. Then the collection (=) with = = > for every

t satisfies strong stochastic dynamic consistency if and only if > can be represented by
V(z,T) = u(z) - e e

for somea €R, r >0, andu: Ry, — R, ,.
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In words, the preference over time is either risk-neutral, expected discounted utility,
the discounted maximum or minimum, or the negatively discounted preference described
in (7). In particular, strong stochastic dynamic consistency would rule out the kind of
mixed risk attitudes described in §3.3.

Proposition 1 follows from the fact that strong stochastic dynamic consistency, in
combination with monotonicity and continuity, implies the classic independence axiom as
we discuss in §F of the online appendix. Weak stochastic dynamic consistency does not

imply the independence axiom and thus allows for a richer set of time preferences.

3.5 Aggregation of Preferences over Time Lotteries

In this section we apply monotone stationary time preferences to collective decision
problems. A company making a choice among projects with different expected completion
dates, a public agency choosing which research projects to fund, or a family deciding which
highway to take, are all examples of social decisions where the alternatives at hand can be
seen as time lotteries. In such situations, even if individuals share the same views about
the desirability of the possible outcomes, there still exists a need to compromise between
different degrees of patience and risk tolerance.

We model this type of problem by studying a group of individuals where each agent,
denoted by 14, is equipped with a preference relation »=; over time lotteries. These preferences
may display different degrees of patience. Following the approach in social choice, we ask
how individual preferences can be aggregated into a social preference relation > that is
aligned to the individual preferences by the Pareto principle. In this context, the Pareto
principle requires that if all individuals agree that one time lottery is better than another,

so should the social preference:
Axiom 3.5 (Pareto). If (z,T) =; (y,S) for every i, then (z,T) = (y,S).

We first consider the case where each individual preference admits a standard expected
discounted utility representation u;(x)E[e~%7], where u;: Ry, — Ry is agent i’s utility
function and a; > 0 is her discount rate.” The next result shows that if one insists that
the social preference also conforms to expected discounted utility, then dictatorship is the
only admissible aggregation procedure satisfying the Pareto axiom whenever the individual

discount rates are distinct.0

9Tt is important to note that the parameter a; here is uniquely pinned down by agent i’s preference—when
restricting to a fixed reward x, the preference is expected utility over random times 7T, so the discounting

functions e~ %" are unique up to a linear transformation.
10When some agents have the same discount rate, Paretian aggregation need not be dictatorial. For

example, if a; = a2, then u(x)]E[e_aT] with u = LQ“? and a = a1 = a satisfies the Pareto axiom.
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Proposition 2. Let (=1,...,7=p, =) be expected discounted utility preferences over time

—aiT) and > is represented by u(x)E[e™T].

lotteries, where each =; is represented by u;(z)E[e
Suppose aq, . ..,a, are distinct positive numbers. Then the Pareto axiom is satisfied if and

only if = = >, for some agent 1.

As the proof shows, this impossibility result is a consequence of Harsanyi’s utilitarian
theorem (Harsanyi, 1955). Similar impossibility results have been obtained in the setting of
preferences over consumption streams (Gollier and Zeckhauser, 2005; Zuber, 2011; Jackson
and Yariv, 2014, 2015; Feng and Ke, 2018; Chambers and Echenique, 2018).

The next result offers a solution to this impossibility result. It shows that Paretian
aggregation and stochastic stationarity are compatible, and do not necessarily result in a

dictatorship, if we allow preferences to belong to the larger class of MSTPs.

Proposition 3. Let (=1,...,>n, =) be MSTPs, where each =; is represented by ui(:z:)e*”q’i(T)
and > is represented by u(z)e~"®T) for some monotone additive statistics (®;) and ®. If
there exists A1,...,A\p € Ry such that

n n
r = Z )\Z‘TZ‘, rd = Z )\Z‘TZ‘(I)Z', (8)
=1 =1

and u = Hf‘zlu;\i, then the Pareto axiom is satisfied.

Note that as long as the individual certainty equivalents @, ..., ®,, are not all identical,
then for generic values of A,..., A,, the social certainty equivalent ® constructed from
(8) is distinct from each of the individual certainty equivalents. Thus the resulting social
preference = is generically not a dictatorship.

The key insight of Proposition 3 is that a linear aggregation of certainty equivalents
preserves both stochastic stationarity and the Pareto axiom; as we show below, this is
in fact the only way to preserve these properties. In the special case where individuals
have expected discounted utility preferences, the proposition implies that we can aggregate
preferences without violating stochastic stationarity by allowing the social preference to be
an MSTP. This approach complements alternative solutions that have been proposed in
the literature to resolve the tension between Paretian aggregation and stationarity.!!

The next result gives a characterization of all social preferences that admit an MSTP
representation and respect the Pareto axiom, in the special case where all agents share the

same utility function and it satisfies a mild richness assumption. The assumption that all

"For example, Feng and Ke (2018) define a different notion of Pareto efficiency that takes into account
the preferences of individuals across generations. They show that a standard expected discounted social
preference can satisfy this weaker Pareto axiom so long as it is more patient than all the individuals.
Chambers and Echenique (2018) study a number of representations that weaken stationarity and generalize

expected discounted utility.
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agents (and the social planner) share the same utility function is common in the literature
on aggregating discount factors, following Weitzman (2001) and Chambers and Echenique
(2018).

Proposition 4. Let (=1,...,>n, =) be MSTPs, where each =; is represented by u(:n)e*”q”(T)

and > is represented by u(x)e ") for some monotone additive statistics (®;) and ®. Sup-

pose that the common utility function satisfies either lim,_,ou(z) = 0 or lim,_,o u(z) = co.
Then, the Pareto axiom is satisfied if and only if (8) holds for some A\1,..., A\, € Ry

that sum to 1.

It follows from our proof that even if agents had different utility functions, the Pareto
axiom would still require the social certainty equivalent ® to be a convex combination of
the individual (®;)?_,. However, the implications of the Pareto axiom on the social utility

1'12

function seem difficult to characterize in genera We leave this question for future work.

4 Preferences Over Gambles

In the theory of risk, CARA utility functions form a restrictive but useful class of expected
utility preferences. Their usefulness stems from the analytical tractability of the exponential
form, as well as from their invariance properties.

CARA utility functions are invariant to changes in wealth, so that a prospect X is
preferred to Y if and only if X + w is preferred to Y + w for all wealth levels w. They are
more generally invariant to the addition of background risk: if X is preferred to Y then
X 4+ W is preferred to Y + W for every independent random variable W.

This property makes CARA utility functions a good approximation whenever stakes
are small. In addition, they are used in empirical settings in which wealth is unknown. For
example, when estimating risk preferences from insurance choices, the CARA family “has
the advantage that it implies a household’s prior wealth w, which frequently is unobserved,
is irrelevant to the household’s decisions.” (Barseghyan, Molinari, O’Donoghue, and
Teitelbaum, 2018). The stronger property of invariance to background risk is also important,
since households’ additional background risk—arising from, say, investments in the stock

market or health conditions—may be unobservable.

1276 illustrate the difficulty, consider two individual EDU preferences represented by u1 (z)E [efT] and

uz(z)E [efT} , as well as a social preference represented by u(z)E [efT} , all with the same discount rate. In

this case, one can show that the Pareto axiom reduces to the inequality condition ZEB > min{ Zig?, Zigi}

for every pair of rewards x,y. Now suppose uz(x) = ui(x)? for every z, then the previous condition

ui(y) — u(y) — \(uwi(y)
including u{ for any power « € [1,2] and all convex combinations of such powers. This multiplicity of

simplifies to &) < &) < (“1(1)) for every « > y. A wide range of u functions satisfies this condition,

possible social utility functions makes it challenging to generalize Proposition 4.
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The invariance properties of CARA utility functions are conceptually distinct from the
assumption that preferences obey the axioms of expected utility. In this section, we apply
monotone additive statistics to study the general class of preferences that are monotone

with respect to stochastic dominance and are invariant to background risk.

4.1 Background-risk Invariant Preferences

We consider a complete and transitive preference relation > over L°°, interpreted here as
the space of monetary gambles. We assume that for every gamble X there exists a unique
certainty equivalent ®(X) such that ®(X) ~ X. If the preference > is monotone with
respect to first-order stochastic dominance then so is ®. We say that > is invariant to
background risk when it has the property that X = Y ifand only if X + Z > Y + Z for Z
independent of X and Y.

As we now explain, a preference > is monotone and invariant to background risk if and
only if its certainty equivalent is a monotone additive statistic. Indeed, invariance implies
that X +Y ~ ®(X) 4+ Y for any two independent random variables X and Y. Likewise,
Y+@(X)~®(Y)+ ®(X). Combining the two indifferences yields X +Y ~ &(X) + ®(Y).
So, the certainty equivalent of X + Y is given by the sum ®(X) + ®(Y), and thus @ is an
additive. The converse is immediate to verify.

By Theorem 1, the certainty equivalent ® of such a preference is a weighted average
O(X) = [ Kqo(X)du(a) of the certainty equivalents of multiple CARA expected utility

agents, where p is a probability measure over the coefficient of absolute risk aversion.

4.2 Risk Aversion

In this section we characterize risk-averse and risk-seeking behavior for preferences that
are represented by monotone additive statistics. A preference relation > over gambles is
risk-averse if its certainty equivalent ® satisfies ®(X) < E[X] for every gamble X, and
risk-seeking if the opposite inequality holds. Risk aversion translates into a property of the

support of the corresponding mixing measure p:

Proposition 5. A monotone additive statistic satisfies ®(X) < E[X] for every X € L™ if
and only if ®(X) = [z Ko(X)dp(a) for a Borel probability measure p supported on [—o0, 0].
Likewise, ®(X) > E [X] for every X if and only if u is supported on [0, oc].

In words, a preference that is invariant to background risk is additionally risk-averse

(resp. risk-seeking) if and only if it ranks gambles by aggregating the certainty equivalents

of risk-averse (resp. risk-seeking) CARA utility functions.

13A corollary of Proposition 5 is that an additive statistic ® is risk averse if and only if it is monotone

with respect to second-order stochastic dominance. This is perhaps surprising, since the two properties are
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4.3 Mixed Risk Aversion

As pointed out in the classical work of Friedman and Savage (1948), it is not uncommon to
observe behavior that is neither risk-averse nor risk-seeking, such as that of a person who
buys both lottery tickets and insurance. For concreteness, in analogy with our discussion
in the time domain, consider a decision maker faced with the following two choices.

In the first, the choice is between (I) facing a risk of losing $100 with probability 1%, or
(IT) paying $1 and being fully insured against that risk. In the second decision problem the
choice is between (I’) paying $1 dollar for a lottery ticket that yields $100 with probability
1%, or (II’) not participating in the lottery.

Preferences represented by monotone additive statistics can model a decision maker
who chooses (II) over (I) but (I') over (II’), while at the same time remaining invariant to
background risk. This is the case, for example, for a preference whose certainty equivalent
®(X) takes the form ®(X) = $K_,(X) + $K,(X), with a mixing measure that puts equal

weights on two coefficients of risk aversion a and —a.

4.4 Comparative Risk Attitudes

We now proceed to compare the risk attitudes expressed by different monotone additive
statistics. For two preference relations =1 and >3 over gambles, with corresponding
certainty equivalents ®; and Py, the preference > is more risk-averse than »9 if ®1(X) <
®y(X) for every gamble X € L. That is, if the first decision maker assigns to every
gamble a lower certainty equivalent. The next proposition characterizes comparative risk

aversion for preferences represented by monotone additive statistics:

Proposition 6. Let =1 and =2 be represented by monotone additive statistics with mizing

measures 1 and po, respectively. Then =1 is more risk-averse than >=o if and only if
(i) For every b >0, [}, o b 4y (a) < Jipoo) b duo(a).
(i) For every b <0, [i_. .y 2= dyiy (a) > Ji—oo b duy(a).

Since K,(X) increases in the parameter a, a sufficient condition for >; being more
risk-averse than > is that us first-order stochastically dominates uq. First-order stochastic
dominance is, however, only a sufficient condition. The reason is that the cone generated by
the functions of the form K (.)(X ), as we vary X, does not contain all increasing functions,

and hence defines a strictly finer stochastic order over the mixing measures.'*

in general not equivalent for a preference over gambles.
MFor a concrete example that the order characterized by Proposition 6 is strictly finer than first-order
stochastic dominance, consider p; to be a point mass at a = 2 and p2 to have 1/4 mass at a = 1 and

3/4 mass at a = 3. Clearly, neither one first-order dominates the other. Condition (ii) in Proposition 6 is
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Proposition 6 characterizes this stochastic order by showing that the convex cone
generated by the set of normalized cumulant generating functions is equal to the convex cone

generated by a simple one-parameter family of test functions, of the form g(a) = aT_blazb

or g(a) = —“T_blagb.

4.5 Betweenness

A disadvantage of the class of preferences represented by monotone additive statistics is
that it is large, with the entire measure p as an infinite-dimensional parameter of the
preference. In this section we identify a small subset of such preferences that is indexed by
only two parameters, and yet retains enough flexibility to accommodate interesting risk
attitudes such as mixed risk aversion.

To this end we study preferences that satisfy the betweenness axiom. This well-known
property, first studied by Dekel (1986) and Chew (1989), requires that the decision maker’s
preference over probability distributions displays indifference curves that are straight lines.
In comparison, the standard independence axiom (which we study in §F of the online
appendix) would additionally require the indifference curves to be parallel to each other.

Given two random variables X and Y, we denote by XY any random variable whose
distribution is a convex combination that assigns weight A to the distribution of X and
weight 1 — A to the distribution of Y.

Axiom 4.1 (Betweenness). For all X,Y and all A € (0,1), X ~Y if and only if XY ~ Y.
The betweenness axiom characterizes the following class of preferences:

Theorem 4. Suppose a preference = on L™ is represented by a monotone additive statistic
O(X) = [g Ko(X)dp(a). Then = satisfies the betweenness axiom if and only if

O(X) = BE _ap(X) + (1 = B) Kq1-p)(X)
for some 5 € [0,1] and a € [0, c0).

This family of preferences is much smaller, as it is parameterized by only two numbers.
It retains the properties of monotonicity, invariance to background risk, as well as the
tractability of the CARA representation. Yet it is versatile enough to describe the kind of
mixed risk attitude that leads to buying both insurance and lottery tickets.

The risk-attitude parameter 5 weights the levels of risk aversion/seeking, with § =1
corresponding to pure CARA risk aversion and 8 = 0 corresponding to pure CARA risk

seeking. For internal 3, the preference exhibits mixed risk aversion as guaranteed by the

trivially satisfied, whereas condition (i) reduces to 1(2—b)* < (1 —b)* + 2(3 —b)™, which holds because

the function (a — b)* = max{a — b,0} is convex in a.
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previous Proposition 5. Moreover, a simple calculation shows that for any 5 € (0, 1), such
a preference would buy both insurance and lottery tickets of the kind described in §4.3
whenever those gambles entail a small probability of a large loss or gain.'®

The parameter a is a scale parameter. It can be understood as the scale at which the
preference deviates from risk neutrality. For gambles whose sizes are much smaller than
1/a, the preference is very close to being risk-neutral. While for gambles that vary by

much more than 1/a, behavior will be far from risk-neutral.

4.6 Combined Choices over Gambles

In large organizations, risky prospects are not always chosen through a deliberate, central-
ized process. Rather, they are combinations of independent choices, often carried out with
limited coordination among the different actors.

Consider, for example, a bank that employs two workers. The first is a trader who
must choose between two contracts, the Lean Hog futures X and X’. The second is an
administrator who must choose between two insurance policies Y or Y’ for the bank’s
building. Assuming the first worker chooses X and the second Y, the resulting revenue for
the bank is given by the random variable X + Y. When the agents face choice problems
that belong to independent domains, so that X and X’ are stochastically independent from
Y and Y’ it is natural to ask to what extent coordination is necessary for the organization.

In this section we make this question precise by asking under what conditions the
agents’ combined choices respect first-order stochastic dominance. Our result shows this
is true if and only if individual preferences are identical and represented by a monotone
additive statistic. Thus, this is the only class of preferences with the property that choices
over independent domains can be decentralized without obvious harm to the organization.

We study the following model. We are given two preference relations >; and >, over
L, the set of bounded gambles, that are complete and transitive (our result immediately
generalizes to three or more agents). As in the example above, we think of each preference
relation as describing the choices of a different agent, so that X =; X’ if agent ¢ chooses
X over X'. These preferences can be interpreted as being endogenous or as the result of
exogenous incentives; for example, the bank trader’s preferences could be driven by her
contract with the employer.

Our main axiom requires that whenever the two agents face independent decision

problems, their choices, when combined, do not violate stochastic dominance:

15Tt can be shown that if B # 0.5, then lottery tickets and insurance as described in §4.3 are preferred
if and only if the probability of gain/loss (0.01 in the example) is smaller than min(8,1 — /), and the
corresponding gain/loss amount (100 in the example) is sufficiently large. If 8 = 0.5, then the same holds

for any probability of gain/loss < 0.5, and for any gain/loss amount.
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Axiom 4.2 (Consistency of Combined Choices). Suppose X, X’ are independent of Y,Y".
If X =1 X' and Y = Y’', then X' +Y’ does not strictly dominate X +Y in first-order

stochastic dominance.

If we interpret =1 and > as decision-making rules that are determined by the organiza-
tion, then Axiom 4.2 requires such rules to never result in an outcome that is stochastically
dominated. That collective choices should not violate stochastic dominance is clearly a
desirable requirement for a rational organization. A similar axiom was first introduced by
Rabin and Weizsdcker (2009) in the context of a model of narrow framing.

In addition to this axiom, we assume individual preference relations >=; satisfy basic

continuity and monotonicity assumptions:

Axiom 4.3 (Continuity). If X =; Y then there exists € > 0 such that X =; Y + ¢ and
X —e>;Y.

Axiom 4.4 (Responsiveness). X + ¢ >=; X for every e > 0.

We next show that under these axioms, the two preference relations must be represented

by monotone additive statistics. Moreover, the statistic must be the same for both agents.

Theorem 5. Two preference =1, =92 on L™ satisfy Axzioms 4.2, 4.3, and 4.4 if and only

if there exists a monotone additive statistic that represents both =1 and .

Thus, when individual choices are not coordinated, their combination will, in general,
lead to violations of stochastic dominance, even when agents’ choices concern independent
decision problems. The theorem singles out preferences represented by monotone additive
statistics as the only class of preferences that are robust to this lack of coordination.

Theorem 5 admits an alternative interpretation, closely related to the work of Rabin
and Weizsiacker (2009) on narrow framing. In their paper, a decision maker faces multiple
decisions and engages in “narrow bracketing” by choosing separately, in each problem,
according to a fixed preference relation > over gambles. This is a special case of our model
where > = >; = »9. They show that the decision maker’s combined choices result in
dominated outcomes whenever = is not invariant to changes in wealth (i.e. for some X,Y
and ce R, X > Y and Y 4+ ¢ = X + ¢), but leave open the question of characterizing the
class of preferences, beyond expected utility, that satisfy Axiom 4.2. Theorem 5 provides a
complete characterization of those preferences over gambles for which narrow framing does

not lead to dominated choices.

5 Overview of the Proof of Theorem 1

Our approach to the proof of Theorem 1 is via a stochastic order known as the catalytic
stochastic order (see Fritz, 2017, and references therein). Given X,Y € L, we say that X
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Figure 1: The c.d.f.s of X (blue) and Y (orange).

dominates Y in the catalytic stochastic order on L™ if there exists a Z € L*°, independent
of X and Y, such that X + Z dominates Y + Z in first-order stochastic dominance.
The applicability of this order to our problem is immediate. If X dominates Y in the

catalytic stochastic order then
X +2Z)>d(Y +2)

for some Z, independent of X and Y. If ® is also additive, then ®(X + Z) = &(X) + ®(Z)
and (Y + Z) = (YY) + ®(Z), and so we have that ®(X) > ®(Y"). Thus, any monotone
additive ® is monotone with respect to this order.

Clearly, if X >1 Y then X also dominates Y in the catalytic stochastic order, as one
can take Z = 0. A priori, one may conjecture that this is also a necessary condition. But
as Figure 1 shows, it is easy to give examples of two random variables X and Y that are
not ranked with respect to first-order stochastic dominance, but are ranked with respect to
the catalytic stochastic order.'® The random variable X equals 1 with probability 1/3 and
0 with probability 2/3, while Y is uniformly distributed on [—%, %] As the figure shows,
their c.d.f.s are not ranked, and hence they are not ranked in terms of first-order stochastic
dominance.!” However, if we let Z assign probability half to :I:%, then X + 7 > Y + Z.
Intuitively, since the c.d.f. of X 4+ Z is the average of the two translations (by :I:%) of
the c.d.f. of X, and since the same holds for the c.d.f. of Y, the result of adding Z is the
disappearance of the small “kink” in which the ranking of the c.d.f.s is reversed. This is

depicted in Figure 2.

We are indebted to the late Kim Border for helping us construct this example.
YPomatto, Strack, and Tamuz (2020) give examples of random variables X and Y that are not ranked

in stochastic dominance, but are ranked after adding an unbounded independent Z. In fact, they show that
this is possible whenever E [X] > E[Y]. As we explain below, this result no longer holds when Z is required
to be bounded.
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Figure 2: The c.d.f.s of X + Z (blue) and Y + Z (orange).

Every monotone additive statistic ® provides an obstruction to dominance in the
catalytic stochastic order. That is, if ®(X) < ®(Y'), then it is impossible that X + Z >
Y + Z for some independent Z, since monotonicity would imply that ®(X + Z) > &(Y + Z),
and additivity would then imply that ®(X) > ®(Y). In particular, the existence of an a for
which K,(X) < K,(Y) forms an obstruction to the existence of such a Z. The following

result shows that these are, in a sense, the only possible obstructions:*?

Theorem 6. Let X,Y € L™ satisfy K,(X) > K,(Y) for all a € R. Then there exists a
c.d.f. H such that any independent Z € L with c.d.f. H satisfies X + Z >1Y + Z.

To prove Theorem 6 we explicitly construct H as a truncated Gaussian c.d.f. with
appropriately chosen parameters. The idea behind the proof is as follows. Denote by
I and G the c.d.f.is of X andQY, respectively, and suppose that they are supported on
[—N, N]. Let h(z) = —A—=e 2V be the density of a Gaussian Z. Then the c.d.fs of X + Z

VoV
and Y 4+ Z are given by the convolutions I x A and G * h, and their difference is equal to

N
(G sh—Fxh)(y) = /7N[G(x) _F(2)] by — o) da

1 N bo
= ¢ ZV'/N[G(x)—li(x)]-eV ok dz
(*) k%K

If we denote a = %, then by integration by parts, the integral of just (x) is equal to
L (E [e“X} —E [e“YD, which is positive by the assumption that K,(X) > K,(Y) and is

a

811 fact, except for the trivial case where X and Y have the same distribution, the strict inequality
K.(X) > Kao(Y) for all ¢ € R is necessary for the existence of a Z such that X +Z >; Y 4+ Z. This is
because X + Z >1 Y + Z implies the strict inequality Ko (X + Z) > K.(Y + Z) for finite a whenever
X + Z and Y + Z have different distributions. Thus, Theorem 6 below implies that for distributions with
different minima and maxima, the condition K,(X) > K,(Y) for all ¢ € R is both necessary and sufficient

for dominance in the catalytic stochastic order.
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in fact bounded away from zero by the Extreme Value Theorem. The term (xx) can be
made arbitrarily close to 1—uniformly on the integral domain [—N, N]—by making V'
large. This implies that [G * h — F % h](y) > 0 for all y, and we further show that the
inequality still holds if we modify H by truncating its tails, ensuring that it is in L.
Theorem 6 leads to the following lemma, which is a key component of the proof of

Theorem 1:

Lemma 1. Let ®: L — R be a monotone additive statistic. If K,(X) > Kq(Y') for all
a € R then ®(X) > ®(Y).

Proof. Suppose Ko(X) > K4(Y) for all a € R. Given ¢ > 0, let X, ¥ and Z in L be such
that: X has the same c.d.f. as X + ¢, Y has the same c.d.f. as Y, and Z has the c.d.f.
obtained by applying Theorem 6 to X and Y. We can indeed apply the theorem, since
Ko(X) = Ko(X) + & > K (Y) = Ko(Y) for all a. Hence, X + Z >1 Y + Z. Thus, by
monotonicity of ®, ®(X + Z) > &(Y + Z), and by additivity ®(X) > (V). This means
that ®(X) +¢e = ®(X) > ®(Y) = ®(Y) for all € > 0, and hence ®(X) > &(Y). O

Once we have established Lemma 1, the remainder of the proof uses functional anal-
ysis techniques (in particular the Riesz Representation Theorem) to deduce the integral
representation in Theorem 1. See §A in the appendix for the complete proof.

An alternative proof of Lemma 1 can be given based on a different stochastic order.
Given two random variables X and Y, let X1, Xo,... and Y7, Y5, ... be i.i.d. copies of X

and Y, respectively. We say that X dominates Y in large numbers if
X1+ +Xp 211+ 4+ Y,

for all n large enough. Using large-deviations techniques, it was shown by Aubrun and
Nechita (2008) that if K,(X) > K,(Y) for all a € R, then X dominates Y in large numbers.
This implies Lemma 1 since, by the additivity of ®, ®(X) > ®(Y") holds if and only if
n®(X) = B(X1 + -+ Xp) > B3 4+ + Vy) = nd(Y).

Compared to this alternative argument, our proof of Lemma 1 based on Theorem 6
is self-contained and more elementary. More importantly, (an analogue of) the catalytic
stochastic order established in Theorem 6 is essential for studying monotone additive
statistics defined on a domain of unbounded random variables, for which the large numbers
order is difficult to characterize as far as we know.!? This generalization of Theorem 6 is

presented in Lemma 9 in the online appendix, as a key step toward the proof of Theorem 2.

190ne particular challenge is that the large numbers order require a uniform comparison between the tail
probabilities of X1 + - -+ + X,, versus those of Y1 + --- 4+ Y, for a fixed large n. For a given threshold of
the tail, large-deviations theory can be used to show the desired comparison when n is large enough. But
making the required n uniform across all thresholds becomes nontrivial when the random variables X and

Y are unbounded.
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Appendix

The appendix contains the omitted proofs for most of the results in the main text,
in the order in which they appeared. The only exceptions are Theorem 2 regarding the
larger domain Ly, Proposition 1 regarding strong stochastic dynamic consistency and a
few results in Section 4, whose proofs are relegated to the online appendix.

Throughout the proofs we will often use the notation Kx(a) = K4(X), so that Kx is

a map from R to R. The following facts are standard:
Lemma 2. Let X, Y € L*°.

1. Kx: R — R is well defined, non-decreasing and continuous.

2. If Kx = Ky then X andY have the same distribution.

Proof. Over R the map Kx is continuous and non-decreasing. This follows directly
from the fact that Kx(a) is the certainty equivalent of a CARA expected utility prefer-
ence with coefficient of risk aversion equal to —a. That lim,_. Kx(a) = max[X] and
lim, oo Kx(a) = min[X] follow from a simple application of Laplace’s method. It is a
standard fact that Kx = Ky implies that X and Y have the same distribution (see for
instance Curtiss, 1942). O

A Proof of Theorem 1

We follow the proof outlined in §5 of the main text and first establish Theorem 6.

A.1 Proof of Theorem 6

First, we can add the same constant b to both X and Y so that min[Y 4+ b] = —N and
max[X + b] = N for some N > 0. Since translating both X and Y leaves the existence of
an appropriate Z unchanged (and also does not affect Kx > Ky ), we henceforth assume
without loss of generality that min[Y] = —N, and max[X]| = N. Since Kx > Ky, we
know that min[X] > —N and max[Y] < N.

Denote the c.d.f.s of X and Y by F and G, respectively. Let o(z) = G(x) — F(x).
Note that o is supported on [—N, N] and bounded in absolute value by 1. Moreover, by
choosing € > 0 sufficiently small, we have that min[X] > —N + ¢ and max[Y] < N —e. So
o(z) is positive on [-N, —N + €] and on [N — ¢, N|. In fact, there exists 6 > 0 such that
o(x) > § whenever x € [-N + §,—-N + 5] and z € [N — §,N — ]. We also fix a large
constant A such that
A 8N

> —,
Y]

€
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Define

Note that for a # 0, integration by parts shows M, (a) = % (E {e“X} —E {e“y]), and that
M,(0) =E[X] —E[Y]. Therefore, since Kx > Ky, we have that M, is strictly positive
everywhere. Since M, (a) is clearly continuous in a, it is in fact bounded away from zero
on any compact interval.

We will use these properties of o to construct a truncated Gaussian density h such that

o hl) = [ oty 2)dz 20

for each y € R. If we let Z be a random variable independent from X and Y, whose
distribution has density function h, then o x h = (G — F') % h is the difference between the
cdfsof Y+ Zand X + Z. Thus [0 * h](y) > 0 for all y would imply X + 272 > Y + Z.

CEQ
To do this, we write h(z) = e~ 2V for all |x| < T, where V is the variance and T is the

truncation point to be chosen.?’ We will show that given the above constants N and A,
[0 % h](y) > 0 holds for each y when V is sufficiently large and 7> AV + N .
First consider the case where y € [—AV, AV]. In this region, |y—z| < T is automatically

satisfied when = € [-N, N]. So we can compute the convolution o * h as follows:

N y 2

/a(ac)h(y —xz)dr =e 2V - / o(x)-ev?®.e 2v dz. (9)
Note that { in the exponent belongs to the compact interval [—A, A]. So for our fixed
choice of A, the integral My () = fiVN o(x) - eV dz is uniformly bounded away from zero

when y varies in the current region. Thus,

N Yy x2 y N y x2
/ o(z) eV®-e72 do = M, (V) —/ o(x)-ev?® . (1—e 2v)dx
B N : (10)

> M, (é) N AN (1 — e,

which is positive when V is sufficiently large. So the right-hand side of (9) is positive.
Next consider the case where y € (AV,T + N — ¢|; the case where —y is in this range

can be treated symmetrically. Here the convolution can be written as

N —(y—=)?
[0 h](y) = / o(x)-e 2v dax.
max{—N,y—T}

We break the range of integration into two sub-intervals: I} = [max{—N,y — T}, N — ¢|
and Iy = [N — e, N]. On I; we have o(z) = G(x) — F(z) > —1. Aslong as AV > N —¢,

20Tn general we need a normalizing factor to ensure h integrates to one, but this multiplicative constant

does not affect the argument.
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—(y—x)? —(y—N-+e)?

)
we have e~ 2v. - <e™ 2v for y > AV and x < N — ¢, and thus

—(y—x)* —(y—N+e)?
2V

/ o(x)-e"2v _dz>—-2N-e
xzely

-

On I3 we have o(x) > 0 by our choice of ¢, and furthermore o(z) > 0 whenz € [N—§, N—
Thus

IS

—(y=a)? € ~(y-N+§)? ~w-N+5)% 4
/ o(x)-e"2v de>-=-5-e v >2N .e~ 2v Za
z€ls 4

where the second inequality holds by the choice of A. Observe that when y > AV and V
is large, the exponent 7(3/727]‘\7%)2 — % is larger than _(34_27]‘\?8)2 Summing the above two
inequalities then yields the desired result that [o * h](y) > 0.

Finally, if y € (T'+ N —e, T+ NJ, then the range of integration in computing [0 *h](y) is
from x = y—T to x = N, where o(x) is always positive. So the convolution is positive. And
if y > T + N, then clearly the convolution is zero. These arguments symmetrically apply
to—y€(T'+N—¢,T+ N]and —y > T + N. We therefore conclude that [0 * h](y) > 0

for all y, completing the proof.

A.2 Integral Representation

For fixed X, Kx(a) = K,(X) is a function of a, from R to R. Let £ denote the set of
functions {Kx : X € L*}. If ® is a monotone additive statistic and Kx = Ky, then X
and Y have the same distribution and ®(X) = ®(Y"). Thus there exists some functional
F: £ — R such that ®(X) = F(Kx). It follows from the additivity of ® and the additivity
of K, that F is additive: F(Kx + Ky) = F(Kx)+ F(Ky).2! Moreover, F is monotone in
the sense that F'(Kx) > F(Ky) whenever Kx > Ky (i.e., Kx(a) > Ky (a) for all a € R);
this follows from Lemma 1 which in turn is proved by Theorem 6 (see §5 in the main text).

The rest of this proof is a functional analysis exercise analogous to the proof of Theorem
2 in Mu, Pomatto, Strack, and Tamuz (2021), but for completeness we provide the details
below. The main goal is to show that the monotone additive functional F' on £ can be
extended to a positive linear functional on the entire space of continuous functions C(R).

We first equip £ with the sup-norm of C(R) and establish a technical claim.

Lemma 3. F: L — R is 1-Lipschitz:

|[F(Kx)— F(Ky)| < |[Kx — Kyl

21'We note that £ is closed under addition. This is because Kx + Ky = Kx/ + Ky whenever X', Y’ are

independently distributed random variables with the same distribution as X,Y. Such random variables

X',Y" exist as the probability space is non-atomic, see for example Proposition 9.1.11 in Bogachev (2007).
Thus, for Kx, Ky € £ we can find X', Y’ so that Kx + Ky = Kx' + Ky = Kx/yy' € L.
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Proof. Let |Kx — Ky || =¢. Then Kx,. = Kx +¢ > Ky. Hence, by Lemma 1, F(Ky) <
F(Kx4c), and so

F(Ky) = F(Kx) < F(Kx4e) = F(Kx) = F(K:) = ®(¢) =e.
Symmetrically we have F(Kx) — F(Ky) < ¢, as desired. O

Lemma 4. Any monotone additive functional F' on L can be extended to a positive linear
functional on C(R).

Proof. First consider the rational cone spanned by L:
Coneg(L) ={¢L:q€ Q4,L € L}.

Define G': Coneg(L) — R as G(qL) = ¢F(L), which is an extension of F'. The functional
G is well defined: If > Ky = - K3 for K1, K2 € £ and n,m,r € N, then, using the fact that
L is closed under addition, we obtain mF(K;) = F(mK;) = F(rKsy) = rF(Ks), hence
MF(K1) = - F(K2). G is also additive, because

1
G <mK1> +G (rK2> = R (K + LF (K3) = ~F(mKy + 1K) = G <mK1 + TK2> .
n n n n n n n

In the same way we can show G is positively homogeneous over Q4+ and monotone.

Moreover, G is Lipschitz: Lemma 3 implies

m T 1 1 m T
’G <K1> ye (IQ)’ = Y \FmKy) - F K| < L mEy — K| = HK1 .
n n n n n n

Thus G can be extended to a Lipschitz functional H defined on the closure of Coneg(L)

with respect to the sup norm. In particular, H is defined on the convex cone spanned by L:
Cone(L) ={M K1+ -+ MKy :ke€Nand foreach 1 <i<k X\ € Ry, K; € L}.

It is immediate to verify that the properties of additivity, positive homogeneity (now over
R, ), and monotonicity extend, by continuity, from G to H.
Consider the vector subspace V = Cone(L) — Cone(£) C C(R) and define I: V — R as

I(g1 — 92) = H(g1) — H(g2)

for all g1, g2 € Cone(L). The functional I is well defined and linear (because H is additive
and positively homogeneous). Moreover, by monotonicity of H, I(f) > 0 for any non-
negative function f € V.

The lemma then follows from the next theorem of Kantorovich (1937), a generalization
of the Hahn-Banach Theorem. It applies not only to C(R) but to any Riesz space (see
Theorem 8.32 in Aliprantis and Border, 2006).
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Theorem. Let V be a vector subspace of C(R) with the property that for every f € C(R)
there exists a function g € V such that g > f. Then every positive linear functional on V

extends to a positive linear functional on C(R).

The “majorization” condition g > f is satisfied because every function in C(R) is

bounded and V contains all of the constant functions. O

The integral representation in Theorem 1 now follows from Lemma 4 by the Riesz-

Markov-Kakutani Representation Theorem.

A.3 Uniqueness of Mixing Measure

We complete the proof of Theorem 1 by showing that the mixing measure p is unique:

Lemma 5. Suppose pu and v are two Borel probability measures on R such that
/7 Ko(X) dp(a) = /7 Ko(X) du(a).
R R
for all X € L>®°.?2 Then = v.

Proof. We first show p({oo}) = v({oo}). For any ¢ > 0, consider the Bernoulli random
variable X, that takes value 1 with probability € and value 0 with probability 1—e. It is easy
to see that as ¢ decreases to zero, K,(X.) also decreases to zero for each a < oo whereas
Ko (X:) = max[X.] = 1. Since K,(X;) is uniformly bounded in [0, 1], the Dominated
Convergence Theorem implies

liny [ K, (X.) du(a) = p({oo}).

e—0

A similar identity holds for the measure v, so pu({o0}) = v({oo}) follows from the assumption
that [z K, (Xe)du(a) = [g Ko(X:) dv(a).

We can symmetrically apply the above argument to the Bernoulli random variable that
takes value 1 with probability 1 — ¢ and value 0 with probability . Thus pu({—o0}) =
v({—o0}) holds as well.

Next, for each n € N4 and real number b > 0, define a random variable X, ; by

PX,,=n] = et
P[X,=0=1—e""

22The proof shows that it suffices to require such equality for non-negative integer-valued X.
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Then Kq(Xnp) = L log [(1 —e ) 4 e(a_b)”}, and so

1 11
lim —K,(X,;) = lim ——log {1 —etn 4 e(a—b)n}

n—o00 N, _n—>oona

0 ifa<bd
b if g >b.
This result holds also for a = 0, 0.
Note that & K,(X,p) is uniformly bounded in [0,1] for all values of n,b,a, since
Ko(Xpp) is bounded between min[X,, ;] = 0 and max[X,, ;] = n. Thus, by the Dominated

Convergence Theorem,

' 1 a—b
Jim [ R an(e) = [ duta), (1)

and similarly for v. It follows that for all b > 0,

a—>b a—>
d = / d .
/[bm] a ula) [boo] @ v(a)

As p({oo}) = v({oo}), we in fact have

a—2>b a—>
d = / d .
/[b,OO) a ula) [byoo) @ v(a)

This common integral is denoted by f(b).

We now define a measure i on (0,00) by the condition SZ EZ% = %; note that i is a

positive measure, but need not be a probability measure. Then

a—2b N I S
ﬂw—ﬁm) <M@—A%memmw—é ([, 50)) o,

a

where the last step uses Tonelli’s Theorem. Hence [i([b, >0]) is the negative of the left

derivative of f(b) (this uses the fact that fi([b, o0]) is left continuous in b). In the same

way, if we define © by izgzg = %, then ([b, 00]) is also the negative of the left derivative

of f(b). Therefore ji and © are the same measure on (0, 00), which implies that x4 and v
coincide on (0, 00).

By a symmetric argument (with n — X, in place of X,,;), we deduce that p and v
also coincide on (—o00,0). Finally, since they are both probability measures, p and v must

have the same mass at 0, if any. So u = v. O

B Applications to Time Lotteries

B.1 Monotone Additive Statistics for Non-Negative Random Variables

In our applications to time lotteries the random times are non-negative (bounded) random

variables. We accordingly prove a version of Theorem 1 that applies to this smaller domain.
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Proposition 7. ®: L — R is a monotone additive statistic if and only if there exists a

unique Borel probability measure p on R such that for every X € L™
O(X) = [ KalX) du(a). (12)

Proof. It suffices to show that a monotone additive statistic defined on L5 can be extended
to a monotone additive statistic defined on L>. Suppose @ is defined on L°. Then for

any bounded random variable X, we can define
U(X) = min[X] + &(X — min[X]),

where we note that X — min[X] is a non-negative random variable.

Clearly V is a statistic that depends only on the distribution of X (as ® does), and
U(c) = ¢+ ®(0) = c for constants c. When X is non-negative, the additivity of @
gives ®(X) = ®(min[X]) + &(X — min[X]) = min[X] + &(X — min[X]), so ¥ is an
extension of ®. Moreover, ¥ is additive because min[X + Y] = min[X] + min[Y], and
(X +Y —min[X +Y]) = &(X — min[X]) + ®(Y — min[Y]) by the additivity of ®.
Finally, to show V¥ is monotone, suppose X and Y are bounded random variables satisfying
X >1Y. Then we can choose a sufficiently large n such that X +n and Y + n are both
non-negative, and X +n >1 Y +n. Since ® is monotone for non-negative random variables,
®(X +n) > P(Y +n). Thus ¥(X +n) > ¥(Y +n) by the fact that ¥ extends ®, and
U(X) > ¥(Y) by the additivity of W. This proves that ¥ is a monotone additive statistic
on L™ that extends ®. O

B.2 Proof of Theorem 3

It is straightforward to check that the representation satisfies the axioms, so we focus
on the other direction of deriving the representation from the axioms. In the first step,
we fix any reward > 0. Then by monotonicity in time and continuity, for each (z,T)
there exists a (unique) deterministic time ®,(7") such that (z,®,(T)) ~ (z,T). Clearly,
when T is a deterministic time, ®,(7") is simply 7 itself. Note also that if S first-order

stochastically dominates T', then
(wv(pﬂi(T)) ~ (x,T) = (an) ~ (m,@w(S)),

so that ®,(S) > ®,(T). We next show that for any 7" and S that are independent,
O, (T + S) = ©,(T) + ®,(S). Indeed, by stochastic stationarity, (z, ®5(T")) ~ (z,T)
implies (z,®,(T) + S) ~ (z,T + 5) and (z, P,(S)) ~ (x,5) implies (z, P5(T) + P5(5)) ~
(x,®,(T) + S). Taken together, we have

(2,D,(T) + ®,(5)) ~ (x, T+ S).
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Since ®,(T") + ®,(5) is a deterministic time, the definition of ¢, gives ®,(T") + ¢,(S) =
(T + S) as desired. It follows that each ®,: L — R is a monotone additive statistic.

In the second step, note that our preference = induces a preference on Ry x Ry
consisting of deterministic dated rewards. By Theorem 2 in Fishburn and Rubinstein
(1982), for any given r > 0 we can find a continuous and strictly increasing utility function

w: Ryy — R4y such that for deterministic times ¢,s > 0
(z,t) = (y,s) ifand only if wu(z)-e " > u(y) e .

By definition, (x,T") ~ (z, ®,(T)) for any random time 7. Thus we obtain that the decision

maker’s preference is represented by
(z,T) = (y,S) if and only if u(zx) - o (1) > u(y) e TPu(S).

It remains to show that for all z,y > 0, ®, and ®, are the same statistic. For this we

‘= uly) e
For any random time T, stochastic stationarity implies (x,t + T) ~ (y,s +T), so that

choose deterministic times ¢ and s such that (z,t) ~ (y, s), i.e., u(x)-e™" s,

u(l’) . efr<1>z(t+T) _ u(y) . efrq)y(erT)‘

Using the additivity of ®, and ®,, we can divide the above two equalities and obtain
¢, (T) = ¢,(T") as desired. Since this holds for all 7" and all z,y > 0, we can write
®,(T) = ®(T) for a single monotone additive statistic ®. This completes the proof.

B.3 Proof of Proposition 2

Define, for every t > 0, v;(t) = e~ %! and v(t) = e~*. We have that for any two random
times S and 7', (1,.5) =; (1,7) if and only if E [v;(S)] > E[v;(T)], and (1,5) = (1,T) if
and only if E[v(S)] > E[v(T)]. Thus it follows from the Pareto axiom that for any two
random times S and T, E [v;(S)] > E [v;(T)] for all i implies E [v(S)] > E [v(T)].

By Harsanyi’s Theorem (Zhou, 1997, Theorem 2) there exist (\;) in Ry and ¢ € R such
that for every ¢, v(t) = > ; \ivi(t) + c¢. By letting ¢ — oo we obtain 0 = ¢ and by setting
t =0 it follows that 1 =), \;. Further plugging in t =1 and ¢ = 2, we obtain

Z Aie 24 = e = (e79)" = (Z )\ieC”) )
i=1 i=1
But the Cauchy-Schwarz inequality gives

znjx,;e—%i = (XZ; Aie_Qai> : <zn: )\Z) > (i: )\ie_‘“>2.

i=1
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Thus equality holds. Since the individual discount rates {a;} are assumed to be distinct,
the equality condition of the Cauchy-Schwarz inequality implies that exactly one A; is
nonzero (in fact equal to 1), and hence a = a; for some agent i.

Without loss of generality suppose a = a;. It remains to show that u(x) is a constant
multiple of uj(z) so that the social preference coincides with agent 1. Note that by the

~a1t cannot be expressed as a linear combination of

same argument as above, vy (t) = e
1,va(t),v3(t), -+ ,v,(t) whenever aq is distinct from asg, - - - ,a,. So the contrapositive of
Harsanyi’s Theorem implies the existence of random times S and T such that E [v;(S)] >
E [v;(T)] for all i > 1 but E [v1(T")] > E[v1(S)]. In what follows we fix these particular S
and T, and also fix € > 0 sufficiently small so that E [v1(T)] > (1 + €)E [v1(5)].

For any pair of rewards z,y € R, 1, we now show that the Pareto property implies
% ;L((x )) which will complete the proof. To do this, let k be a sufficiently large positive
integer, and define T9%, S®* to be the random variables obtained by adding k independent
copies of T"and S. Since the moment generating function E [e*az } is multiplicative when we
add two independent random variables Z7 and Zs, our previous assumptions about S and T’
imply that E [e_‘“S@k} >E {e_‘“T@k] for all 2 > 1 but E [e_alT%} > (1+¢)*E {e_als%}.

Next, let £, € R be the number that satisfies

" .y (2)E {e_alT%} =uy(y)E [e_‘”S@k}.

Thus, the time lottery (x, T +t;) is indifferent to (y, S®¥) for agent 1. At the same time,
u1 (@)

the above equality implies e® > (1 4 ¢)k - W’ so that limy_,o tx = co. In particular,

we deduce that for k large, e’ > E”’g for every i > 1 and thus
e*aitk uy (.’Z’)E {e*aiT@k} < u,(y)E {e—ais@k} '

Therefore (z, T®* 4 t}) is less preferred than (y, S®¥) for every agent i > 1.

Putting together the above analysis, we can find k and t;, such that (z, T®* +t}) is
weakly less preferred than (y, S®¥) for every agent, with indifference for agent 1. By the
Pareto property, (x, T®* 4 t;) must be weakly less preferred than (y, S®¥) under the social

preference. That is, we must have
etk . u(x)E [e—aT@k} < u(y)E [e—aSGBk} .

But we already know e~ %% .y (z)E [e_‘“T@k} = uy(y)E {e_‘“s@k} and a = aj, so after
dividing out e~ R [e_aT&Bk} and E {e‘“s%} we obtain % > J‘l((x))
Finally, since x,y are arbitrary, we can switch them and use the same argument to

deduce the opposite inequality u((zw)) > ((y)) This proves that ((y)) = 1((9;)) for any pair of

rewards z,y. Hence the social utility representation is a constant multiple of agent 1’s.
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B.4 Proof of Proposition 3

We prove that the proposed representation for the social preference relation > satisfies the
Pareto axiom. If (z,T) =; (y,S) for every i, then u;(z)e "% (1) > y;(y)e %5 which

can be rewritten as

ri(®;(S) — ®;(T)) > log

Summing across ¢ using the weights A\; we obtain

z”: Airi(®i(S) — (7)) > Zn: i log ui(y) = log u(y)’
i=1 =1 ui(z) u(x)

where the last equality uses u = H?zluf‘i. Since r® = Y i, \iri®;, it follows that
r(®(S) — ®(T)) > log %, which is equivalent to u(x)e "®™) > u(y)e "®S). Thus
(x,T) = (y,95) as desired.

B.5 Proof of Proposition 4

We assume the Pareto axiom holds and deduce its implications. Note that if ®;(7T")

< 9;(5)
= (1,

for every i, then (1,7) =; (1,5) for every i and thus, by the Pareto axiom, (1,7) S)
and ®(7") < ®(5) also hold.
We say that a collection of monotone additive statistics (®q, ..., ®,, ®) have the Pareto

property if ®;(T) < ®;(S) for every i implies ®(T") < ®(.S). We have the following result:

Lemma 6. Let (Py,...,P,, P) be monotone additive statistics defined on LS°, and suppose
that they satisfy the Pareto property. Then there exists a probability vector (S1,...,[n)
such that ® = Y"1 | 5;®;.

Proof. Let (u1, ..., fin, 1) be the mixing measures on R that correspond to the monotone
additive statistics (®1, ..., ®,, ®). Define the linear functionals (I1,...,I,, ) on C(R) as

Li(f) = Jg fdpi and I(f) = [z fdp.
We call a set of functions D C C(R) a Pareto domain if for every f,g € D,

L(f) > Ilg) i=1,....n — I(f) > I(g).

The Pareto property implies £, = {Kx : X € LT} is a Pareto domain. Define, as in the
proof of Theorem 1, £L = {Kx : X € L>} as well as the rational cone spanned by L:

> 1

={qL:q¢€ Lecl}= —

coneq(£) = {aL 14 € O, U e

We show that £ and coneg(L) are both Pareto domains. Given X,Y € L*, let ¢ be a
large positive constant such that X +¢>0and Y +¢> 0. If [;(Kx) > I;(Ky) for all 4
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then I;(Kx + ¢) > I;(Ky + c¢) for all i since each I; is linear. Thus, by the Pareto property
and the linearity of I, I(Kx + ¢) > I(Ky + ¢) and I(Kx) > I(Ky). This shows L is a
Pareto domain. As for coneg(L), observe that I;(L Kx) > I;(2 Ky) for all i is equivalent
to I;(nKx) > I;(mKy) for all ¢, which implies I(nKx) > I(mKy) since L is a Pareto
domain and is closed under addition. This shows I(+Kx) > I(1Ky) as desired.

Next we show that the closure of coneg (L) (with respect to the usual sup norm) is also
a Pareto domain. Let f, g be in the closure, such that I;(f) > I;(g) for all i. Pick sequences
(fx) and (gx) in coneg (L) converging to f and g. Define €; ;, = |1;(f) =L (fr)|+|1:(9) —Li(gr)|
and € = MaxX1<i<n & k- Then from Il(f) > Ii(g) we deduce Iz(fk) > Iz‘(gk)_gk = Ii(gk_fk)
for every i. Note that g, —ej, belongs to coneg(L) since the latter contains all the constant
functions and is closed under addition. Thus by the fact that coneg(L) is a Pareto domain,
Ii(fn) > Ii(gn — €n) for every i implies I(fx) > I(gr — €x) = I(gx) — € for every k.
Continuity of the functionals (/;) yields e — 0. Continuity of I thus yields I(f) > I(g).

This proves that the closure of coneg(L) is a Pareto domain. Since the subset of a
Pareto domain is a Pareto domain, we conclude that cone(L£) (i.e. the cone generated by
L) is a Pareto domain as well.

Now define V = cone(L) — cone(L) to be the vector space generated by the cone. It
is immediate to verify, using the linearity of the integral, that V is a Pareto domain as
well. In particular, for any f € V, I;(f) < 0 for every i implies I(f) < 0. Corollary 5.95 in
Aliprantis and Border (2006) thus implies there exist non-negative scalars 1, ..., 8, such
that I =Y -, il on V. So I(Kx) = >.i—; Bili(Kx) for every X € L*, which implies
O(X) =3, BiPi(X). For constant X this implies }_; 8; = 1, proving the lemma. O

Thus, the Pareto axiom implies that the social certainty equivalent ® must be a convex
combination of the individual ®;. To complete the proof, we restrict to the case of identical
utility functions u; = w which additionally satisfies lim, o u(x) = 0 or lim,_, o u(x) = co.
In this case, in order for u = H?zluf‘i to hold, the weights Aq,..., A, must sum to 1.
Therefore the desired identity r® = > 7" | A\j7;®; requires us to show that not only @ is a
convex combination of (®;), but r® is also a convex combination of (r;®;).

To prove this, we make use of the Pareto axiom when applied to time lotteries with
different rewards. For any S,T" € LS, the Pareto axiom says that if rewards x,y are such
that r;®;(S) — r;®;(T) > log (u(y)/u(z)) for all 4, then r®(S) — r®(T) > log (u(y)/u(zx))
also holds. By the richness assumption on u, we can choose z,y with

log (u(y)/u(z)) = min {r;®;(5) —r;®;(1)}.

1<i<n

Therefore the Pareto axiom implies that for any S,T € L,

r®(S) —rd(T) > 1I£z‘iéln{ri(1)i(s) —r;®;(T)}. (13)
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The conclusion that r® is a convex combination of (r;®;) will follow from the condition
(13) via an application of Farkas’ Lemma. To rewrite this condition in linear algebra
form, we let m < n be the largest number of different ®; that are linearly independent
(when viewed as functions on L5°). Reordering if necessary, we can assume ®q,...,®,,
are linearly independent, and every ®; is a (not necessarily positive) linear combination of
those m. Thus we can find vectors v',...,7™ € R™ such that every r;®; can be rewritten

as the following inner product (i.e., linear combination):
T’Z‘CI)Z‘ = 'yi : (CI)l, ey (I)m).

Since ¢ is a convex combination of (®;), there also exists v € R™ such that r® =
v (Pry .., Pry).

Consider the following set of vectors:

W={weR": v-wzlrgnglnvz'w}.

Let D be all vectors of the form (®1(S) — ®1(T),..., P (S) — ®,(T)) for some S, T € LY.
Condition (13) says that D C W. Note that —D = D, and D is closed under addition
because every ®; is additive. Moreover, since the definition of W involve homogeneous
inequalities, D C W for every positive integer N. From these properties we deduce that
any vector of the form giwi + - - - + gpwy, with ¢; € Q and w; € D belongs to W, because it
can be written as %w for some positive integer N and w € D. Since W is a closed set, the
span of D (not just the rational span) is also contained in W. Finally note that D spans
the entirety of R™. This is because by setting 7" = 0, D in particular includes vectors of
the form (®1(S),..., P, (S5)), and such vectors cannot all belong to a lower-dimensional
subspace by the assumption that ®1,...,®,, are linearly independent.

Therefore, D = W = R™, which implies

.w > min A - m.
yowz min yt-w for all w e R (14)

For any € > 0, this condition implies that there exists no w € R™ such that —*-w < —1—¢

for every i while y-w < 1. Let A be an (n+1) xm matrix whose first n rows are —y!, ... —y",
and whose last row is 7. Let b be the n + 1-dimensional vector (—1 —¢,...,—1 —¢,1).
Then Aw < b has no solution w € R™.

By Farkas’ Lemma, there exists a non-negative n+1-dimensional vector z = (21, ..., 2n+1)

such that z’A = 0 while z-b < 0. The former implies 2,417 = 217" + - - - + 2,7", while the
latter implies z,+1 < (1 +¢)(21 + - -+ + 2,). Note that 2,41 cannot be zero, for otherwise
we have a positive linear combination of v',..., 4™ that gives the zero vector, leading to

the impossible implication that a positive linear combination of ®1,...,®, equals zero.
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Thus we can write v = a;y' + - - - + @, 7", with non-negative weights a; = Zzil whose

sum is greater than I—Jlrs Consequently r® = """ | a;r;®;, which implies r = >71" | aur;
and thus a; < r% in any such representation. Since € is arbitrary, a compactness argument
then yields that v = 31" ; a7 for some non-negative weights a; with 37 | a; > 1.

We can also choose b = (1 —¢,...,1—¢,—1) and deduce from (14) that Aw < b has no
solution w € R™. Then a similar analysis yields v = a1y + - - - + &,7" for some weights
& > 0and )0 a; < ﬁ Again by compactness, we can assume » . ; &; < 1. Finally,
by suitably averaging between «; and &;, we can find non-negative weights (\;) whose sum
is equal to 1, such that v = 3% ; \iv'. So r® = 3" \ir;®;. Since ® is also a convex
combination of (®;), it follows that r = Y, \;r;, completing the proof.

C Proof of Theorem 4

Since the preference = is represented by @, the betweenness axiom is equivalent to the

following:
O(X)=2(Y) if and only if ®(X,Y)=d(Y).

In this case, we say that the statistic ® satisfies betweenness. We need to show that
®(X) satisfies betweenness if and only if it is equal to K,(X) for some a € R or equal to
BK _ap(X) + (1 = B)Ka1—p)(X) for some 3 € (0,1) and a € (0, c0).

We first show the “if” direction. Specifically, when ®(X) = K,(X) for some a € R, then
the preference is CARA expected utility, which satisfies independence and thus betweenness.
When ®(X) = K _45(X) + (1 — B)Kq1—p)(X), we can use the definition of K to rewrite
it as

B(X) = 2 (log B[e=PX] — log E[e~7X])

Thus ®(X) = ®(Y) if and only if logE [ea(l’ﬁ)x} —logE {e’aﬁx} = logE [ea(l’ﬁ)y} —

logE [e_aﬁy}, which in turn is equivalent to

Since E {ebX%Y} = \E [ebx } +(1-MNE [eby} for every b € R, it is not difficult to see that
the above ratio equality holds if and only if it holds when X is replaced by X,Y. Hence
O(X)=®(Y) if and only if ®(X,Y) = &(Y), i.e. betweenness is satisfied.

Turning to the “only if” direction. We will characterize any monotone additive statistic

® that satisfies a weaker form of betweenness:
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Lemma 7. Suppose ® is a monotone additive statistic such that ®(X) = c implies
®(X)c) = ¢ whenever ¢ is a constant. Then either ® takes the form described by Theorem 4,
or ®(X) = fmin[X]| + (1 — B) max[X] for some 8 € [0,1].

This result implies Theorem 4 because ®(X) = fmin[X] + (1 — ) max[X] violates the
original betweenness axiom. To see that, let X = 0 and choose any Y supported on +1.
Then X,Y and Y have the same minimum and maximum, so that ®(X,Y) = ®(Y). But
®(X) = ®(Y) cannot hold for all Y supported on +1.

The proof of Lemma 7 is in turn based on the following lemma which further relaxes

betweenness:

Lemma 8. Suppose ®(X) = [ Ko(X)du(a) has the property that ®(X) = ¢ implies
®(Xyc) < c. Then the measure p restricted to [0,00] is either the zero measure, or it is

supported on a single point.

Proof. 1t suffices to show that if u puts positive mass on (0, oo], then that mass is supported
on a single point and ©({0}) = 0. For this let N > 0 denote the essential maximum of the
support of y; that is, N = min{z : u((x,00]) = 0}. We allow N = oo when the support of
w is unbounded from above, or when p has a non-zero mass at co. For any positive real
number b < N, consider the same random variable X, ; as in the proof of Lemma 5, given
by

PX,p,=n] = et
P[X,=0=1-e""

As shown in the proof of Lemma 5, L K, (X, ;) is uniformly bounded in [0,1], and

_ Kt
lim ~Ko(Xnp) = la=b)7

n—oo n, a

Thus if we let ¢, = ®(X,, ), then by the Dominated Convergence Theorem,

lim & = lim <I> = lim / —Ko(Xnp)dp(a) = / a_bdu(a).
(b,00]

n—o00 n, n—00 N, n—00 a

Denote v = [, o 2=b dyi(a). This number v is strictly positive because b < N implies
w((b,00]) > 0. We can also assume v < 1, since otherwise x must be the point mass at co.
Now, as ®(X,, ) = ¢, we know by assumption that ®(Y},;) < ¢, for each n, where Y}, s

is the mixture between X, ;, and the constant ¢, (in what follows A is fixed as n varies):

P[Y,, =n] = Ae ™"
P[Y,, =0] = A\(1 —e ™)
PYop=cnl=1-A\
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Using lim;, 00 cn/n = ~, we have

lim K (Y, p) = lim 11 log {A (1 —e e(“_b)”) +(1- )\)e“'c"}

n—oco n—oon q
0 ifa<0
A =X)y ifa=0
B v if0<a<%
ab if a > 2.

Note that the cutoff point a = % is where a — b = ay. When a is smaller than this,

the dominant term in the bracketed sum above is (1 — X)e*“*. Whereas for larger a, the

dominant term becomes Ae(@=0)m,

>(a b)

Crucially, lim,, s %Ka(Ymb) holds for every a, with strict inequality for

ac|0,2 7) Thus again by the Domlnated Convergence Theorem,

" 1 1 —
lim < > lim ~®(Y,,) = lim | —K,(Y,,)du(a) > / =0 4u(a).

n—oo 1, = n—oon ’ n—oo JR N (b,00] a
But we know that the far left is equal to the far right. So both inequalities hold equal, and

(a—b)+

in particular lim,, oo %Ka(Yn’b) = holds p-almost surely.

%Ka(Ymb) > (e=b)” b) for any a € [0,%).

that u([0, %)) = 0. This must hold for any b € (0, N) and corresponding 7. Letting
b arbitrarily close to N thus yields ([0, N)) = 0 (since 1— > b). It follows that when

restricted to [0, co] the measure u is concentrated at the single point N, as we desire to
show. O

As discussed, lim,_s So we can conclude

Proof of Lemma 7. From Lemma 8, we know that the measure p associated with ® can
only be supported on one point in all of [0,00]. By a symmetric argument, p also has
at most one point support in all of [—~co,0]. Thus either u = J, for some a € R, or p is
supported on two points {a1, a2} with a; < 0 < ag. In the former case we are done, so
below we study the latter case where 1 has two-point support.

Suppose ®(X) = BKy, (X) + (1 — B) Ky, (X) for some 8 € (0,1) and a1 < 0 < ag. If
a; = —oo while ag < oo, then ®(X) = S min[X]+(1— ) K4, (X). Take any non-constant X
and let ¢ denote ®(X). Note that since K, (X) > min[X], ¢ = fmin[X]+(1—F) K, (X) lies
strictly between min[X] and K,,(X). Consider the mixture X ¢, then min[X)c] = min[X],

whereas

Ko, (Xye) = a1210g (AR [emX] 4+ (1= Ve “20) < — logE [e2X] = Ko, (),

where the inequality uses ¢ < K, (X) = % logE [e“?X } and az > 0. We thus deduce that

®(Xxc) = Bmin[Xyc] + (1 — 5) Ko, (Xac) < fmin[X] + (1 = §)Kq, (X) = c,
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contradicting the betweenness axiom. A symmetric argument rules out the possibility that
a1 > —oo while a9 = oo.

Hence, either a; = —oo0 and as = 00, or a1 € (—00,0) and ag € (0,00). In the former
case ®(X) is an average of the minimum and the maximum, so we are again done. It

remains to consider the latter case where aq, as are both finite. In this case we will show

that 5 = a;f}“. Once this is shown, we can let a = as — a1 so that a1 = —af and

ag = a(l = B). Thus ®(X) = BK_45(X) + (1 — B)Ky1—p)(X) as desired.

Let us take an arbitrary non-constant X, and let

c=9(X) = aﬁllogIE {e“lx} + tflogE {e‘”X}.

For an arbitrary A € [0, 1], we must also have

1-p

a2

c=®(Xye) = C/ilogE [)\e‘“X +(1- )\)e‘“c} + logE {/\eaQX +(1- /\)6“20}. (15)

Since (15) holds for every A, we can differentiate it with respect to A to obtain

- B(E |:ea1X:| ) (1 B)(E [eazX} )
N a E [/\ealx + (1 — /\)ecuc] ) [)\eaQX 4 (1 _ )\)eagc] )

Plugging in A = 0 and A = 1 gives, respectively,

BE[eX] —eme) (1B [eY] - o) (16)

aesic agedz2c

B(E [ealX} _ ealc) (1 _ 6)(]]3 [eagX} _ eagc) (17)
a1 [enX] asE [e®2X] ’
Since ¢ = K4, (X) + (1 — 8) K4, (X), the fact that K,,(X) > K4, (X) implies c is strictly
between K,, (X) and Kg,(X). Thus, using a; < 0 < az we deduce e*¢ < E {e“lx} and
¢ < E [e@X]
We can therefore divide (16) by (17) to obtain

E|enX| E[ew2¥]

eaic eaz2c

Plugging this back to (16), we conclude a‘% = —ﬂ, so f = —%L as we desire to show. [J

2 az—al
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Online Appendix

D Proof of Theorem 2

The proof is considerably more complex than the proof of Theorem 1, so we break it into

several steps below.

D.1 Step 1: Catalytic Order on L,

We first establish a generalization of Theorem 6 to unbounded random variables. For two
random variables X and Y with c.d.f. F' and G respectively, we say that X dominates Y
in both tails if there exists a positive number N with the property that

G(z) > F(z) forall |[x| > N.
In particular, X needs to be unbounded from above, and Y unbounded from below.

Lemma 9. Suppose X, Y € Ly satisfy Kqo(X) > Ko(Y') for every a € R. Suppose further
that X dominates Y in both tails. Then there exists an independent random variable
Z € Ly such that X + 2 >1Y + Z.

Proof. We will take Z to have a normal distribution, which does belong to Lj,;. Following
the proof of Theorem 6, we let o(x) = G(z) — F(x), and seek to show that [0 * h](y) >0
for every y when h is a Gaussian density with sufficiently large variance. By assumption,
o(x) is strictly positive for |x| > N. Thus there exists § > 0 such that fzi,vrlz o(x)dx >4,

as well as f__]]\y__Ql o(x)dz > 0. We fix A > 0 that satisfies el > %.
:1:2
Similar to (9), we have for h(x) = e 2v that
92 o0 Y 132
exv /a(x)h(y —z)dr = / o(x)-ev?®.e 2v dr. (18)

The variance V' is to be determined below.
We first show that the right-hand side is positive if V > (N +2)? and & > A. Indeed,
since o(x) > 0 for |z| > N, this integral is bounded from below by

N y 22 N+2 y 22
/ o(x)-ev?®.e 2vdr+ o(z)-ev®.e 2vdx
-N N+1
_(N+2)?

> —92N. e N +5.e%'(N+1) e 2v

(V+2)2

= e%'N-(—2N+5~e%-e_ 2V

> 0,
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: : y _we? 1 .
where the last inequality uses ev > el > % ande 2v. >e"2 > % By a symmetric

argument, we can show that the right-hand side of (18) is also positive when % < —A.
It remains to consider the case where {¢ € [-A, A]. Here we rewrite the integral on the

right-hand side of (18) as

o0 y o2 Y o Y <
/ o(x)-ev®.e 2vdr = MO(V) - / o(x)-ev?®.(1—e 2v)dx,

where M, (a) = [*_ o(z) e dz = 1E [e“X} —1E {e“y} is by assumption strictly positive
for all a. By continuity, there exists some € > 0 such that M,,) > ¢ for all [a| < A. So it
only remains to show that when V is sufficiently large,

oo Z2

/ o(x) e - (1—e 2v)dr <e forall|a] < A. (19)

—0oQ
To estimate this integral, note that M,(A) = [*_ o(x) - eA¥dz is finite. Since o(z) >
0 for |x| sufficiently large, we deduce from the Monotone Convergence Theorem that
firoo o(z) - €% dz converges to M,(A) as T — oco. In other words, [;°o(z) - e/ dx — 0.
We can thus find a sufficiently large 7 > N such that [° o(z) - e dz < £, and likewise
f:; o(z) e Adx < £.

x2
As1—e"2v >0 and e < 4l%l when la| < A, we deduce that

12
/ o(x)- e . (1—e 2v)de < S forall la| < A.
|z|>T 2

2
Moreover, for this fixed T', we have e~V — 1 when V is large, and thus

2

x2
/ o(z) e (1 — e 57)dz < 2TeAT(1 — e 5) < 5 for all a| < A.
jo|<T

€
2
These estimates together imply that (19) holds for sufficiently large V. This completes the
proof. O

D.2 Step 2: A Perturbation Argument

With Lemma 9, we know that if ® is a monotone additive statistic defined on L, then
K.(X) > Kq(Y) for all a € R implies ®(X) > ®(Y) under the additional assumption
that X dominates Y in both tails (same proof as for Lemma 1). Below we deduce the
same result without this extra assumption. To make the argument simpler, assume X
and Y are unbounded both from above and from below; otherwise, we can add to them
an independent Gaussian random variable without changing either the assumption or
the conclusion. In doing so, we can further assume X and Y admit probability density
functions.

We first construct a heavy right-tailed random variable as follows:
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Lemma 10. For any Y € Ly that is unbounded from above and admits densities, there

exists Z € Las such that Z > 0 and g{}Z/iﬁ

— 00 as xr — o0.

Proof. For this result, it is without loss to assume Y > 0 because we can replace Y by |Y|
and only strengthen the conclusion. Let g(x) be the probability density function of Y. We
consider a random variable Z whose p.d.f. is given by cxg(x) for all z > 0, where ¢ > 0 is
a normalizing constant to ensure [ ., czg(xz)dr = 1. Since the likelihood ratio between
Z =xand Y = x is cz, it is easy to see that the ratio of tail probabilities also diverges.

Thus it only remains to check Z € Ljy;. This is because
E {e“z} = c/ xg(x)e™ dx,
x>0

which is simply ¢ times the derivative of E [e“y} with respect to a. It is well-known that
the moment generating function is smooth whenever it is finite. So this derivative is finite,
and Z € L. O

In the same way, we can construct heavy left-tailed distributions:

Lemma 11. For any X € Ly that is unbounded from below and admits densities, there

exists W € Lyy, such that W <0 and 1;[&/;;] — 00 S T — —00.

With these technical lemmata, we now construct “perturbed” versions of any two
random variables X and Y to achieve dominance in both tails. For any random variable
Z € Ly and every € > 0, let Z. be the random variable that equals Z with probability ¢,
and 0 with probability 1 — . Note that Z. also belongs to L.

Lemma 12. Given any two random variables X,Y € Ly that are unbounded on both sides
and admit densities. Let Z > 0 and W < 0 be constructed from the above two lemmata.
Then for every e >0, X 4+ Z. dominates Y + W, in both tails.

Proof. For the right tail, we need P[X + Z. > z] > P[Y + W, > z] for all x > N. Note
that W, <0, so P[Y + W, > z] <P[Y > z]. On other hand,

PX + Z. > ] > P[X >0]-P[Z. > 2] =P[X >0]-¢ - P[Z > a].

Since by assumption X is unbounded from above, the term P[X > 0] -¢ is a strictly positive

constant that does not depend on x. Thus for sufficiently large x, we have
PX >0]-¢-P[Z > z] > P)Y > z]

by the construction of Z. This gives dominance in the right tail. The left tail is similar. [

47



D.3 Step 3: Monotonicity w.r.t. K,

The next result generalizes the key Lemma 1 to our current setting:

Lemma 13. Let ®: Ly — R be a monotone additive statistic. If Ko(X) > Kq(Y) for all
a € R then ®(X) > ®(Y).

Proof. As discussed, we can without loss assume X, Y are unbounded on both sides, and
admit densities. Let Z and W be constructed as above, then for each ¢ > 0, X + Z;
dominates Y + W; in both tails, and K,(X + Z.) > K,(X) > Ko(Y) > K,(Y + W;) for
every a € R, where the inequalities are strict as Z, W are not identically zero.

Thus the pair X 4+ Z. and Y + W, satisfy the assumptions in Lemma 9. We can then
find an independent random variable V' € Lj; (depending on ¢), such that

X+Z.+V22 Y +W. 4+ V.

Monotonicity and additivity of ® then imply ®(X)+®(Z;) > ®(Y)+P(W;), after canceling
out (V). The desired result ®(X) > ®(Y) follows from the lemma below, which shows
that our perturbations only slightly affect the statistic value. O

Lemma 14. For any Z € Ly with Z > 0, it holds that ®(Z;) — 0 as € — 0. Similarly
O (W.) — 0 for any W € Ly with W < 0.

Proof. We focus on the case for Z.. Suppose for contradiction that ®(Z.) does not converge
to zero. Note that as ¢ decreases, Z. decreases in first-order stochastic dominance. So
®(Z.) > 0 also decreases, and non-convergence must imply there exists some ¢ > 0 such
that ®(Z.) > d for every € > 0. Let u. be image measure of Z.. We now choose a sequence

e, that decreases to zero very fast, and consider the measures
. *n
Vn = :uena

which is the n-th convolution power of p., . Thus the sum of n i.i.d. copies of Z,, is a
random variable whose image measure is v,. We denote this sum by U,,.
For each n we choose ¢,, sufficiently small to satisfy two properties: (i) g, < %, and
(ii) it holds that
E " —1] <27,

. . . . nUp| nZEn "
This latter inequality can be achieved because E |e = (E|e ,and as &, — 0 we

also have E [e”ZEn} =1—¢, t+te,E {enz} — 1 since Z € Lyy.
For these choices of ¢, and corresponding U, let H,(x) denote the c.d.f. of U,, and
define H(x) = inf,, H,(x) for each x € R. Since H,(z) = 0 for = < 0, the same is true for
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H(z). Also note that each H,(z) is a non-decreasing and right-continuous function in z,
and so is H(z).

We claim that lim, o, H(z) = 1. Indeed, recall that U, is the n-fold sum of Z._, which
has mass 1—¢,, at zero. So U,, has mass at least (1—¢,)" > (1—#)” > 1—1 at zero. In other
words, Hy,(0) > 1 — 1. By considering the finitely many c.d.f.s Hy(z), Ha(z), ..., Ho—1(z),
we can find N such that H;(z) > 1 — L for every i < n and # > N. Together with
Hi(z) > H;(0) > 1—1% >1—1 for i > n, we conclude that H;(z) > 1 — L whenever 2 > N,
and so H(z) > 1 — 1. Since n is arbitrary, the claim follows. The fact that H,(z) > 1— 1
also shows that in the definition H(x) = inf,, H,(x), the “inf” is actually achieved as the
minimum.

These properties of H(z) imply that it is the c.d.f. of some non-negative random
variable U. We next show U € Ly, i.e., E [eaU} < oo for every a € R. Since U > 0, we
only need to consider a > 0. To do this, we take advantage of the following identity based
on integration by parts:

Bl —1] == [ @ a0 — @) =a | (- H@)dn

Now recall that we chose U,, so that E {enUn — 1] <27 So E {eaU" — 1} < 27" for every

positive integer n > a. It follows that the sum > >° | E [eaU" . 1} is finite for every a > 0.
Using the above identity, we deduce that

a/x>0 ¢ 3" (1 = Hy(z)) dz < oo,

n=1
where we have switched the order of summation and integration by the Monotone Conver-
gence Theorem. Since H(z) = min,, Hy,(z), it holds that 1 — H(z) < > 72, (1 — Hy(x)) for
every x. And thus
E[eaU—l} :a/ e(1— H(x))dr < oo
x>0

also holds. This proves U € L.

We are finally in a position to deduce a contradiction. Since by construction the c.d.f.
of U is no larger than the c.d.f. of each U,, we have U >; U, and ®(U) > ®(U,) by
monotonicity of ®. But ®(U,,) = n®(Z,) > nd by additivity, so this leads to ®(U) being

infinite. This contradiction proves the desired result. O

D.4 Step 4: Functional Analysis

To complete the proof of Theorem 2, we also need to modify the functional analysis step
in our earlier proof of Theorem 1. One difficulty is that for an unbounded random variable
X, Kq(X) takes the value co as a — co. Thus we can no longer think of Kx(a) = K4 (X)

as a real-valued continuous function on R.
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We remedy this as follows. Note first that if ® is a monotone additive statistic defined
on Ljy, then it is also monotone and additive when restricted to the smaller domain of
bounded random variables. Thus Theorem 1 gives a probability measure p on R U {+o0}
such that

0(X) = [ Ku(X) dua)
for all X € L*. In what follows, u is fixed. We just need to show that this representation
also holds for X € Ljy;.

As a first step, we show p does not put any mass on +oo. Indeed, if u({oo}) = ¢ > 0,
then for any bounded random variable X > 0, the above integral gives ®(X) > ¢ - max[X].
Take any Y € Ljs such that Y > 0 and Y is unbounded from above. Then monotonicity
of @ gives ®(Y) > ®(min{Y,n}) > - n for each n. This contradicts ®(Y") being finite.
Similarly we can rule out any mass at —oo.

The next lemma gives a way to extend the representation to certain unbounded random
variables.

Lemma 15. Suppose Z € Lys is bounded from below by 1 and unbounded from above,

while Y € Ly is bounded from below and satisfies limg_ oo [;ZEQ =0, then

B(Y) = /( Kl auo)

Proof. Given the assumptions, K,(Z) > 1 for all a € R, with lim, ,o K,(Z) = 0.
Let L% be the collection of random variables X € Lj; such that X is bounded from

below, and lim, s % exists and is finite. LJ%[ includes all bounded X (in which case
limg oo % =0), as well as Y and Z itself. LJ@ is also closed under adding independent

random variables.
Now, for each X € L%,, we can define

Kxz(a) = f(?f()z(;,

which reduces to our previous definition of Kx(a) when Z is the constant 1. This function
min[X]
min[Z]
by definition of L%,. Thus K x|z(+) is a continuous function on R.

Kx|z(a) extends by continuity to a = —oo, where its value is , as well as to a = co

Since ® induces an additive statistic when restricted to L%, and K x|z + Ky|jz =
Kx yy|z, we have an additive functional F' defined on £ = {Kxz: X € L%}, given by
2(X)

(Z)

Because Z > 1 implies ®(Z) > 1, F' is well-defined, and F'(1) = 1. By Lemma 13, F' is
also monotone in the sense that Kxz(a) > Ky|z(a) for each a € R implies F(Kx;) >
F(Ky|z)-

F(Kxz) =
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Likewise we can show F' is 1-Lipschitz. Note that Kx|z(a) < Ky|z(a)+ 7 is equivalent
to Ko(X) < Ko(Y) 4+ 2 K,(Z) and equivalent to K,(X*") < K(Y*" 4+ Z*™), where we
use the notation X*” to denote the sum of n i.i.d. copies of X. If this holds for all a, then
by Lemma 13 we also have ®(X*") < ®(Y*" + Z*™), and thus ®(X) < ®(Y) + Z®(Z) by
additivity. An approximation argument shows that for any real number € > 0, Kxz(a) <
Kyz(a) + ¢ for all a implies ®(X) < ®(Y) +e®(Z). Thus the functional I is 1-Lipschitz.

Given these properties, we can exactly follow the proof of Theorem 1 to extend the
functional F' to be a positive linear functional on the space of all continuous functions
over R (the majorization condition is again satisfied by constant functions, as K 71z = 1).
Therefore, by the Riesz Representation Theorem, we obtain a probability measure pz on
R such that for all X € L]@

P(X)
7) K (a).

In particular, for any X bounded from below such that limg, .o ]Ii (( ; = 0, it holds

that
®(2)

D(X) = / Kq(X) - duz(a),
()= [ KalX) o anao
where we are able to exclude oo from the range of integration (this is useful below).

If we define the measure fiz by gﬁ; (a) = % < ®(Z), then since K,(X) is finite for

a < oo, we have
B(X) = /[ Ka(X) diz (@)

This in particular holds for all bounded X, so plugging in X = 1 gives that iz is a
probability measure. But now we have two probability measures 1 and iz on R that lead
to the same integral representation for bounded random variables, so Lemma 5 implies
that fiz coincides with p and is supported on the standard real line. Plugging in X =Y
in the above display then yields the desired result. O

The next lemma further extends the representation:

Lemma 16. For every X € Ly that is bounded from below,
B(X) = /( a0 duta),

Proof. 1t suffices to consider X that is unbounded from above. Moreover, without loss
we can assume X > 0,, since we can add any constant to X. Given the previous lemma,
we just need to construct Z > 1 such that lim,_ oo f(z(()z()) = 0. Note that E {e“X } strictly
increases in a for @ > 0. This means we can uniquely define a sequence a; < as < ---

by the equation E [e“”X ] = e". This sequence diverges as n — co. We then choose any

increasing sequence b,, such that b, > n and a,b, > 2n?.
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Consider the random variable Z that is equal to b,, with probability e_anTbn for each n,

and equal to 1 with remaining probability. To see that Z € L;;, we have

%) o)
E |:eaZ:| < % + Z o an2bn . eabn — e + Z e(a_%)'b".
n=1 n=1

For any fixed a, % is eventually greater than a + 1. This, together with the fact that
b, > n, implies the above sum converges.
Moreover, for any a € [ay, an+1), we have

anbn TL2

E[eaz} ZE[eG"Z} > P[Z = by] cetnbn > e THE 5 e

)

whereas E {e“x} <E [ea"“X} < e"t1. Thus

Ko(x) logE[eX] _n+l
K.(Z) logE[e?Z] = n2 '

which converges to zero as a (and thus n) approaches infinity. O

D.5 Step 5: Wrapping Up

By a symmetric argument, the representation ®(X) = [_ ) Ka(X) du(a) also holds for
all X bounded from above. In the remainder of the proof, we will use an approximation

argument to generalize this to all X € Lj;. We first show a technical lemma:
Lemma 17. The measure u is supported on a compact interval of R.

Proof. Suppose not, and without loss assume the support of x is unbounded from above.
We will construct a non-negative Y € Ly, such that ®(Y) = co according to the integral
representation. Indeed, by assumption we can find a sequence 2 < a1 < ag < --- such
that a, — oo and p([ay,00)) > L for all large n. Let Y be the random variable that
equals n with probability e~ ™5 for each n, and equals 0 with remaining probability. Then
similar to the above, we can show Y € Lj;. Moreover, E {eany} > e%, implying that

K,,(Y) > 5. Since K,(Y') is increasing in a, we deduce that for each n,

n 1_1

/ Ko(Y)dp(a) = Ko, (V) - pullan,o0) = 5 — = .
[an,00) n

The fact that this holds for a, — oo contradicts the assumption that ®(Y) = [_, ) Ka(Y) dp(a)
is finite. ]

Thus we can take N sufficiently large so that p is supported on [—N, N]. To finish
the proof, consider any X € Lj; that may be unbounded on both sides. For each positive
integer n, let X;,, = min{ X, n} denote the truncation of X at n. Since X >; X,,, we have

P02 0(0%) = [ Ka(X0) dia)
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Observe that for each a € [-N, N|, Kq(X,,) converges to K,(X) as n — oco. Moreover, the

fact that K,(X,,) increases both in n and in a implies that for all a and all n,
[Ka(Xp)| < max{|Kq(X1)], [Ko(X)]} < max{|K_n(X1)[,[Kn(X1)|, [K_n(X)], [ Kn(X)][}.

As K4 (X,,) is uniformly bounded, we can apply the Dominated Convergence Theorem to

deduce

(X) > lim Koo du(a) = [ Ko(X)dula).
[-N,N] [-N,N]

On the other hand, if we truncate the left tail and consider X " = max{X, —n}, then a
symmetric argument shows

B(X) < lim Ko (X ) dp(a) = / Ko (X) dp(a).

© n—=0 JI_N,N] [-N,N]

Therefore for all X € Ly, it holds that
o(X) = [ Ku(X)dula).
[_NvN]

This completes the entire proof of Theorem 2.

E Omitted Proofs for Section 4

E.1 Proof of Proposition 5

The result can be derived as a corollary of Proposition 6 which we prove below, but we also
provide a direct proof here. We focus on the “only if” direction because the “if” direction
follows immediately from the monotonicity of K,(X) in a. Suppose p is not supported
on [—o00,0], we will show that the resulting monotone additive statistic ® does not always
exhibit risk aversion. Since p has positive mass on (0, 00], we can find £ > 0 such that
w assigns mass at least € to (g,00]. Now consider a gamble X which is equal to 0 with
probability "T_l and equal to n with probability %, for some large positive integer n. Then
E[X] =1 and K,(X) > min[X] = 0 for every a € R. Moreover, for a > ¢ we have

1 n—1 1 n
Ka(X) > K.(X) = glog( me gt nem> >

whenever n is sufficient large. Thus
o(X) = [ Ku(X)du(a) > [ Ku(X)du(a) > Je.
R le,00] 2

We thus have ®(X) > 1 = E[X] for all large n, showing that the preference represented by
® sometimes exhibits risk seeking.

Symmetrically, if x4 is not supported on [0, c0], then ® must sometimes exhibit risk
aversion (by considering X equal to 0 with probability % and equal to n with probability
”T_l) This completes the proof.
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E.2 Proof of Proposition 6

We first show that conditions (i) and (ii) are necessary for [z K, (X)dui(a) < [g Ko (Y) dpz(a)
to hold for every X. This part of the argument closely follows the proof of Lemma 5.
Specifically, by considering the same random variables X, ; as defined there, we have the
key equation (11). Since the limit on the left-hand side is smaller for p; than for us, we
conclude that for every b > 0, [, [b,00] aT_b dgp1(a) on the right-hand side must be smaller than
the corresponding integral for pe. Thus condition (i) holds, and an analogous argument
shows condition (ii) also holds.

To complete the proof, it remains to show that when conditions (i) and (ii) are satisfied,

/ Ko(X)dp(a / Ko (X)dpz(a

holds for every X. Since p; and pg are both probability measures, we can subtract E [X]

from both sides and arrive at the equivalent inequality
L K0 =B dm(a) < [ (Ka(X) ~ ELX]) daa(a). (20)
R R0

Note that we can exclude a = 0 from the range of integration because K,(X) = E [X]

there. Below we show that condition (i) implies
J o el XD @) < [ (KalX) ~B[X]) drif). (1)

Similarly, condition (ii) gives the same inequality when the range of integration is [—o0, 0).
Adding these two inequalities would yield the desired comparison in (20).

To prove (21), we let Lx(a) = a - K,(X) = logE {eaX} be the cumulant generating
function of X. It is well known that Lx(a) is convex in a, with L (0) = E[X] and
lim, 00 L'y (a) = max[X]. Then the integral on the left-hand side of (21) can be calculated

as follows:

[ FuX) ~EIXD dua(@) = [ (KalX) = ELX]) o) + (max[X] ~ E[X]) - ({oo})
(0,00] (0,00)

= /(0 OO)(LX(G) — aE [X]) dulsa) + (max[X] — E[X]) - p1({oc})

Note that since the function g(a) = Lx(a) — aE [X] satisfies g(0) = ¢’(0) = 0, it can be

written as
g(a):/Oag’(t)dt:/Oa/otg”(b)dbdt:/oag”(b)-(a—b)db.
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Plugging back to the previous identity, we obtain

| () ~EXDdm(a)
(0,00]

— - /Oa L% () - (a—b) dbd,ulc(La) + (max[X] — E[X]) - i1 ({o0})

= [Ts0) [ @5 at D g (1 (00) - 2 (0) (oo
0 [b,00)

a

- [T 4o /[bm) “0 s a) o+ |7 250 miochan

= [Tmo [ Pau@a,
0 [b,00]

a

where the last step uses anb =1 when a = 00 > b.
The above identity also holds when g is replaced by ua. We then see that (21) follows
from condition (i) and L’ (b) > 0 for all b. This completes the proof.

E.3 Proof of Theorem 5

The “if” direction is straightforward: if >=; and =5 are both represented by a monotone
additive statistic ®, then they satisfy responsiveness and continuity. In addition, combined
choices are not stochastically dominated because if X »=1; X’ and Y 9 Y’ then ®(X) >
®(X') and ®(Y) > &(Y’). Thus (X +Y) > (X' +Y’) and X' +Y” cannot stochastically
dominate X + Y.

Turning to the “only if” direction, we suppose > and > satisfy the axioms. We
first show that these preferences are the same. Suppose for the sake of contradiction that
X 1Y but Y =9 X for some X,Y. Then by continuity, there exists ¢ > 0 such that
Y =9 X 4+ ¢. By responsiveness, we also have X =1 Y »= Y — % Thus X =1 Y — %,
Y =2 X +¢, but X +V is strictly stochastically dominated by ¥ — 5§+ X +e= X +Y + 5,
contradicting Axiom 4.2.

Henceforth we denote both > and >o by »=. We next show that for any X and
any € > 0, max[X]| +¢ > X > min[X] — e. To see why, suppose for contradiction that
X is weakly preferred to max[X] + € (the other case can be handled similarly). Then
we obtain a contradiction to Axiom 4.2 by observing that X > max[X]+ 5, § > 0 but
X 4+ £ <1y max[X] + 5 +0.

Given these upper and lower bounds for X, we can define ®(X) =sup{c e R: ¢ < X},
which is well-defined and finite. By definition of the supremum and responsiveness, for
any € > 0 it holds that ®(X) —e < X < ®(X) + ¢. Thus by continuity, ®(X) ~ X is the
(unique) certainty equivalent of X.

It remains to show that ® is a monotone additive statistic. For this we show that

X ~ Y implies X + Z ~ Y + Z for any independent Z. Suppose for contradiction that

95



X+ 7 =Y + Z. Then by continuity we can find € > 0 such that X + 7 >~ Y + Z +¢. By
responsiveness, it also holds that Y + 5§ = Y ~ X. But the sum (X + Z) + (Y + §) is
stochastically dominated by (Y + Z + ¢) + X, contradicting Axiom 4.2.

Therefore, from X ~ ®(X) and Y ~ ®(Y) we can apply the preceding result twice
to obtain X +Y ~ ®(X)+Y ~ &(X) + ®(Y) whenever X,Y are independent, so that
(X +Y)=d(X)+ ®(Y) is additive. Finally, we show ® is monotone. Consider any
Y >; X, and suppose for contradiction that X > Y. Then there exists € > 0 such that
X =Y +e. This leads to a contradiction since X =Y +¢, § = 0, but X + 5 is stochastically
dominated by Y + ¢ + 0.

This completes the proof that both preferences =1 and >4 are represented by the same

certainty equivalent ®(X), which is a monotone additive statistic.

F Monotone Additive Statistics and the Independence Axiom

In this appendix we discuss the classic independence axiom and what it implies for

preferences represented by monotone additive statistics.
Axiom F.1 (Independence). For all X,Y,Z and all X € (0,1), X =Y implies X \Z = Y)\Z.

Proposition 8. Suppose a preference = is represented by a monotone additive statistic
O(X) = [gKo(X)du(a). Then = satisfies the independence axiom if and only if p is a

point mass at some a € R.

Proof. The “if” direction is relatively straightforward. If @ = 0 then ®(X) = E [X]. In this
case E [X] > E[Y] does imply

E[X,Z] = AE[X]+ (1 — ME[Z] > AE[Y] + (1 — ME[Z] = E[Y)Z].
If a > 0 then ®(X) > &(Y) implies E [¢X| > E [¢®] and thus
AE [eaX} +(1-MNE {e“z} > A\E [eay} +(1-MNE [e“z},

so that ®(X)Z) > ®(Y)\Z). A similar argument applies to the case of a < 0. Finally it is
easy to see that max[X] > max[Y] implies max[X,Z] > max[Y)Z] and the same holds for
the minimum. So the above independence axiom holds for a = +oo as well.??

We turn to the “only if” direction of the result. By the independence axiom, whenever
c is a constant we have X > ¢ implies Xy ¢ = ¢ and ¢ = X implies ¢ = X)c. Therefore

X ~ ¢ implies Xyc ~ ¢, which allows us to directly apply Lemma 7 from before. It remains

23Note however that ®(X) = max[X] or min[X] would violate a stronger form of independence that
additionally requires X > Y to imply X»Z > Y\ Z with strict preferences. This is related to the fact that

these extreme monotone additive statistics do not satisfy mixture continuity.
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to show that independence rules out ®(X) = BK_5(X) + (1 — 8)K,(1-p)(X) for some
B € (0,1) and a € (0, 0.

Suppose ® takes the above form. If a = co then ®(X) = fmin[X] + (1 — ) max[X]
for some 5 € (0,1). To see that it violates independence, choose X supported on 0 and
ﬁ, and Y =1 so that ®(X) = ®(Y). But with Z being a sufficiently large constant we
see that X, Z has the same maximum as Y)Z, but a strictly smaller minimum. Hence
O(X)Z) < ®(Y)Z), contradicting independence.

If instead a € (0,00), then we can do a similar construction by choosing X and Y
such that ®(X) > (V) but K_,3(X) < K_,3(Y). For example, let Y =1, and let X be
supported on {0, k}, with P[X = k] = % Then

e

1 1 bk
Kb(X) :EIOgE 1—%4‘?

For k tending to infinity, Kj(X) tends to zero if b < 0, and to infinity if b6 > 0. Hence, for
k large enough, X and Y will have the desired property.

Now let Z = n where n is a large positive integer. Then
1
Ky(Yan) = ; logE DE [e7] + (1= )]
1
Ky(Xan) = + log E DE (e8] + (1= A)et]

and so

AE [eby} + (1= At
AE [ebX] + (1 = N)ebn |-

1
Ky(Yan) — Kp(Xyn) = 5108; (

It easily follows that for fixed A € (0,1) and b,
nh_}rgo Kp(Yan) — Kp(Xyn) =0 if b > 0;
11_>Hl Kb(Y)\TL) — Kb(X)\n) = Kb(Y) — Kb<X) if b < 0.
n o0
Thus, as n tends to infinity,
lim ®(Yyn) — ®(Xn)
n

= lim 3 [K_ap(Yan) — K_qs(Xan)] + (1 = 5) [Ka(l—ﬁ)(y)\n) — Ko(1-p) (X,\n)}

= B[K_ap(Yan) — K_q5(Xan)] > 0.

Therefore, for n large enough, we have found X and Y such that ®(X) > ®(Y) but
®(Xyn) < ®(Yyn). This implies X = Y but X n < Yyn, which contradicts the indepen-

dence axiom and completes the proof of Proposition 8. O
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F.1 Proof of Proposition 1

We now prove Proposition 1 as a corollary of Proposition 8. The first observation is that
under time invariance, strong stochastic dynamic consistency is equivalent to the following

property of the preference >:

Axiom F.2 (Strong Stochastic Stationarity). For every pair of time lotteries (x,T),
(y,95) and every D € LY not necessarily independent, if (x,Tq) = (y,Sq) for almost every
realization d of D, then (z,T + D) = (y,S + D).

Indeed, suppose strong stochastic dynamic consistency is satisfied, and (z,Ty) = (y, Sq)
holds for almost every realization d of D. Then by time invariance (x,Ty) =14 (y, Sq) also
holds for almost every d. Strong stochastic dynamic consistency thus implies (z,T 4+ D) =,
(y,S + D) and therefore strong stochastic stationarity. A similar argument shows that
conversely, strong stochastic stationarity also implies strong stochastic dynamic consistency.

For the “only if” direction of Proposition 1, suppose that = is an MSTP that satisfies
strong stochastic stationarity. Let >, denote the preference over random times induced by
= when fixing the payoff. That is, T =, S if and only if (z,T) »= (z,S) for any and every
z > 0.

Fix any X >, Y and any Z € L5°, which can be considered as random times. For a
given A € (0,1), choose D to be a random variable that is equal to either 0 or 1, with
probability A and 1 — X, respectively. Let X be a random variable that conditioned on
D = 0 has the same distribution as X + 1, and conditioned on D = 1 has the same
distribution as Z. Likewise, let Y be a random variable that conditioned on D = 0 has the
same distribution as Y + 1, and conditioned on D = 1 has the same distribution as 7.

By construction Xp =, Yp for every possible value of D, so by strong stochastic
stationarity X +D >, Y + D must hold. But X + D has the same distribution as (XyZ) 41
while Y + D has the same distribution as (YpZ) + 1, so (X»Z) + 1 =, (Y3 Z) + 1. Since
this is an MSTP, we deduce X, Z =, Y)Z as the independence axiom requires.

Note that even though >, and the associated monotone additive statistic ® are defined
only for non-negative bounded random variables, it can be extended to all of L>° as shown
in the proof of Proposition 7. Given additivity, it is easy to see that the extension preserves
independence. So we can assume ~, and ® satisfy independence on L°°. This allows us to
apply Proposition 8 and deduce that ® must have a point-mass mixing measure pu, which
proves the “only if” direction of Proposition 1.

As for the “if” direction, we need to verify that an MSTP represented by V(z,T') =

-e~Ka(T) does satisfy strong stochastic stationarity. First consider a = 0, in which

u()
case the representation simplifies to u(z) - e EIT] with the normalization r = 1. If (z,Ty) >

(y,8Sy) for almost every d, then u(z) - e BTal > y(y) - e El%l which can be rewritten as
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E[Sq] — E[Ty4] > log (u(y)/u(x)). Averaging across different realizations d, this implies
E[S] —E[T] > log (u(y)/u(x)), and thus E[S + D] — E [T + D] > log (u(y)/u(x)). After
rearranging, this yields u(z) - e ET Dl > 4 (y) . e EISHDl So (2,7 + D) = (y,5 + D) as
demanded by strong stochastic stationarity.

Next consider a > 0. In this case we normalize r = a and adjust uw accordingly, to

arrive at an equivalent representation V(z,T) = u(x)/E [e“T}. From (z,Ty) = (y,Sq) we
obtain u(z) - E {easd} >u(y)-E [e“Td} and thus

u(x) - E [ea(3d+d)] >u(y)-E {e“(Tder)].

Averaging across different realizations d then yields u(z) - E [ea(s+D )} > u(y) - E {e“(TJFD )],
which after rearranging gives the desired conclusion V(z,T + D) > V(y, S + D).
If instead a < 0, then we normalize 7 = —a and recover the usual EDU representation
V(z,T)=u(z)-E [e“T] Essentially the same argument as above applies to this case.
Finally consider a = oo, so that V(z,T) = u(z) - e~ ™71 after normalizing 7 = 1. In

this case (x,Ty) = (y,Sq) implies max|[Sy| — max[Ty] > log (u(y)/u(z)), and thus
max[Sy + d] — max[Ty + d] > log (u(y)/u(x)) .

Let o = max[S+ D] and ¢ = log (u(y)/u(x)) be constants. Then the above implies that for
almost every realization d of D, Ty +d < a —c. Thus T'+ D < a — ¢ almost surely, which
gives max[S + D] — max[T + D] > ¢. This implies V(z,T + D) > V(y,S + D) as desired.

A similar argument applies to the case of a = —o0, completing the proof.
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