ASYMPTOTIC RENYI ENTROPIES OF RANDOM WALKS ON
GROUPS
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ABSTRACT. We introduce asymptotic Rényi entropies as a parameterized family
of invariants for random walks on groups. These invariants interpolate between
various well-studied properties of the random walk, including the growth rate of
the group, the Shannon entropy, and the spectral radius. They furthermore offer
large deviation counterparts of the Shannon-McMillan-Breiman Theorem. We prove
some basic properties of asymptotic Rényi entropies that apply to all groups, and
discuss their analyticity and positivity for the free group and lamplighter groups.

1. INTRODUCTION

The Avez entropy (or asymptotic Shannon entropy) of a random walk on a group
is an essential tool for understanding its asymptotic properties, and in particular the
Furstenberg-Poisson boundary [1,8]. It is also useful for studying geometric properties
of groups; for example, it is always positive for non-amenable groups, and zero for
sub-exponential groups.

We introduce asymptotic Rényi entropies of a random walk on a finitely generated
group. This is a family of invariants that generalizes the Avez entropy, as well as other
useful invariants such as the growth rate of the group and the spectral radius of the
walk. Rényi entropies originated in information theory as a general way to quantify
randomness, beyond Shannon entropy [14]. They share some (but not all) of the
useful properties of the Shannon entropy, including additivity for product measures
and monotonicity under push-forwards, which makes them useful in the setting of
random walks on groups.'
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See [4,12,13] for axiomatic treatments of Rényi entropies and the related Rényi divergences. The
axiomatization in the latter implies that Rényi divergences are the extreme points in the set of all
divergences that are additive and monotone under push-forwards. A similar result applies to Rényi
entropies.
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Let v be a finitely supported probability distribution on a countable set €2. For
a € (0,00) \ {1}, the a-Rényi entropy of v is given by

H,(v) = ! logZV(w)a.

11—«

Letting H;(v) be the Shannon entropy makes o — H,(v) a continuous map at o = 1.
Likewise, letting Ho(v) be the logarithm of the size of the support and H..(v) =
—max,, log v(w) extends this map to a continuous one defined on the domain [0, o).

Let 1 be a finitely supported probability measure on a group G, and denote by (™)
the n-fold convolution of . We say that p is non-degenerate if its support generates
G as a semigroup. For a € [0, 00], the asymptotic a-Rényi entropy of the p-random
walk on G is

1 n
o) = Jim —Ho(u™).

As we explain, this limit exists for every . For non-degenerate p, it is easy to see
that ho(u) is the exponential growth rate of G, hy(u) is the Avez entropy, and that
for symmetric random walks, h.(p) is minus the logarithm of the spectral radius
(Claim 2.3).

We begin by establishing some general properties that apply to all finitely supported
measures on groups.

Theorem 1. Let i be a finitely supported probability measure on a group G, and
consider the map a — hq(p).

(1) For a in [0,1], ho(p) is continuous and decreasing. It is strictly decreasing
for all a such that ha (1) > hi(p).

(2) For a € (1,00], ha(p) is continuous and decreasing.

(8) For symmetric pn and o € (2,00), ha(1t) = =25 hoo(1t).

A few observations are in order. Part (1) implies that h,(u) interpolates continu-
ously between the exponential growth rate ho(u) and the Avez entropy hi (), yielding
a non-trivial family of invariants indexed by o € [0,1]. Parts (1) and (2) together
imply that h,(u) is everywhere (weakly) decreasing, and continuous except possibly
at &« = 1. As we shall see, it is possible to have a discontinuity there. In particular,
there will be a discontinuity for every symmetric, positive entropy random walk on
an amenable group. We also note that by Theorem 3 below, while A, is continuous
on (1,00), it is not always twice-differentiable in this range. We do not know if it is
always differentiable. For symmetric random walks, part (3) shows that asymptotic
Rényi entropies have a trivial form in the range o > 2. The proof of part (1) uses
two convexity properties of Rényi entropies (under re-parameterization), including a
novel one which we show in Proposition 2.1.



FIGURE 1. Rényi entropies for the simple random walk on the free
group with two generators (blue, higher) and the switch-walk-switch
walk on the lamplighter group (orange, lower). For both, hg is the
exponential growth rate of the group, and h; is the Avez entropy. Ele-
mentary formulas for these graphs are given in (3.3) and (3.8).

Figure 1 shows the asymptotic Rényi entropies of the simple random walk on the
free group and the switch-walk-switch walk on the lamplighter group; we calculate
these explicitly below. This graph illustrates some properties of asymptotic Rényi
entropies that hold more generally: (i) h, is (weakly) decreasing in «, (ii) for sym-
metric random walks on non-amenable groups, h,, is positive for all « € [0, o], (iii) for
symmetric random walks on amenable groups, h,, vanishes on (1, o] (Corollary 2.4).
In both of these graphs, h,, is continuous. Theorem 1 shows that this is generally the
case, except perhaps at a = 1.

The asymptotic min-entropy. The Rényi entropy H, is known as the min-
entropy. The asymptotic min-entropy is h, = lim, —% log max, 1™ (g) is the ex-
ponential rate of decay of the largest atom in (™. For symmetric random walks it is
well-known that this maximum is achieved at the identity (at even times), and that
hoo is minus the logarithm of the norm of the Markov operator (see, e.g., [11, Propo-
sition 4.4.9]). Thus—for symmetric non-degenerate random walks—it follows from
Kesten’s Theorem [10] that h., vanishes if and only if the group is amenable. For
non-symmetric random walks, we give an example of a walk on an amenable group
for which hs > 0 (Claim 3.6). For non-amenable groups we show that h., > 0 for
every non-degenerate random walk, including the non-symmetric ones (Claim 3.7).

The log-likelihood process. Fix a group G and a finitely supported random walk
. Let X1, X5, ... be random variables distributed i.i.d. 4, and let Z,, = X;- X5 --- X,
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so that Z, has distribution ™, and Z, Z,, ... is the y-random walk on G. Define
the log-likelihood process by L, = —log u™(Z,). Then the Shannon entropy of Z,
is the expectation of L,,, and the Shannon-McMillan-Breiman Theorem is the SLLN
for the process (Ly,)p.

Rényi entropies are, up to a reparametrization, the cumulant generating function
of L,:

Kp,(t) = logE [¢""] = tHy (™).

Hence the asymptotic Rényi entropies of the random walk capture the asymptotics
of the moment generating functions of the log-likelihoods. It follows that the Rényi
entropies are useful for establishing large deviation bounds for %Ln. In particular,
whenever (1 —a)h,(p) is strictly convex its Legendre transform yields a rate function
for large deviations of %Ln. Likewise, positivity of h,(u) yields a Chernoff bound.

These observations lead us to study the positivity and convexity of asymptotic
Rényi entropies. Likewise, we are interested in deviations from continuity and ana-
lyticity, as representing phase transitions.

Positivity of asymptotic Rényi entropies. For symmetric random walks on
amenable groups, we use standard results to show that h,(x) = 0 whenever o > 1.
For non-amenable groups and non-degenerate u, regardless if the random walks are
symmetric or not, h,(u) > 0 for all a € [0, oc].

Amenable groups with exponential growth will have k() > 0 for all non-degenerate
w. If the Avez entropy hi(u) is also positive, then h,(p) will be positive on [0, 1],
since ho (1) is decreasing. However, if hy (1) = 0 then it is possible that h, (u) vanishes
already for some o < 1. We offer this as an open question:

Question. Does there exist a non-degenerate i on a group with an exponential growth
rate for which ho (1) =0 for some o € (0,1)7

While a natural candidate would be the lamplighter group, we show that this is
not the case.

Theorem 2. For any non-degenerate, symmetric, finitely supported probability mea-
sure p on the lamplighter group G = L1 Z with lamps in a non-trivial finite group L,
ho(p) >0 for all a € (0,1).

The proof of Theorem 2 involves “tilting” u along the second coordinate, resulting
in a random walk that has positive drift, and then relating its Rényi entropies to
those of the original, untilted walk.?

ZFor p-random walks with positive drift in the second coordinate (the location of the lamplighter)
it is known that hq(u) > 0 and hence, by the monotonicity of Rényi entropies, the claim also follows.
For asymmetric p with zero drift the claim is likewise true, using a similar proof to that of our
Theorem 2.
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Continuity and analyticity of asymptotic Rényi entropies. Theorem 1 states
that h, is continuous everywhere except perhaps at a = 1. For symmetric random
walks on amenable groups, since h, = 0 for all « > 1, h,, is discontinuous at o = 1
if and only if the Avez entropy h; is positive. It is natural to next ask for which
random walks on non-amenable groups is h, continuous at a = 1. In particular, one
may conjecture that this holds for any random walk on a hyperbolic group (see, e.g.,
[2] for results in this spirit).

As an example supporting this conjecture, we show that for the simple random
walk on the free group, h, is continuous at o = 1. More generally, we show that h,,
is (mostly) analytic.

Theorem 3. Let p be the simple random walk on a free group with at least two
generators. Then hy(u) is analytic on (0,00) \ {2}, but not at o = 2, where it is not
twice-differentiable.

As another example we study the analyticity of the Rényi entropies of the “switch-
walk-switch” (SWS) random walk on the lamplighter group Zs,!Z. Since the Avez
entropy vanishes for this walk, we know that h,(u) = 0 for all o > 1.

Theorem 4. Let y be the SWS random walk on Zy ! Z. Then hy(p) is analytic on
(0,00) \ {1}, but not at o = 1.

We prove Theorems 3 and 4 by explicitly calculating the Rényi entropies and show-
ing that they are elementary functions.

We have so far considered only finitely supported . We end this section with a
note about non-finitely supported p. For such u, Ho(u) = oo, and thus ho(p) = oo.
Nevertheless, it is still possible that ho(p) < oo for some a > 0. For example,
infinitely supported random walks with finite Shannon entropy are important in the
study of groups of subexponential growth (see, e.g., [5,6]). For a > 1, h, () is finite
for any p, and so asymptotic Rényi entropies might provide a tool to study random
walks with heavy tails. We leave this question for future study.

2. PRELIMINARIES

2.1. Rényi entropy. Let v be a finitely supported probability distribution on a
countable set Q. For a € (0,1) U (1, 00), the a-Rényi entropy of v is given by

Ha(w) = ——log 3" v(w)".

1l—«
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For o € {0, 1, 00} it is given by
Hy(v) =log |{w : v(w) > 0}

Hy(v) = Zy(w) log L

weN ]/((,u)

Hy(v) = min log )

Hence Hj is the logarithm of the size of the support, H; is the Shannon entropy, and
H, is minus the log of the mass of the largest atom. Under this definition, it is well
known (see, e.g., [13, pp. 50-51]) or immediate that
(i) The map o — H,(v) is continuous and (weakly) decreasing. If v is not the
uniform distribution on a subset of {2 then it is strictly decreasing.
(ii) For every a € [0, 00| it holds that H, (14 X v9) = Hy(v1) + Hy(1s).
(iii) For every map f: Q — ' and every a € [0, 00] it holds that H,(f.v) < H,(v).
Define the log-likelihood random variable L: Q@ — R by L(w) = —logr(w). Let
K,: R — R be the cumulant generating function of L. That is, let

K, (t) = logE [¢'"] = log Z e P @y (w).

Then for a € (0, 00),
(2.1) K,(1—a)=(1-a)H,(v).

Note that this implies that (1 — «)H,(v) is convex. As we show next, H,(v) admits
another re-parameterization which makes it convex for a € (0,1). A similar version
for av € (1, 00) has been observed in [3].

Proposition 2.1. For any finitely supported measure v, 5 — HH_%(I/) s convex for
B € (—OO, _1)

Proof. Let v be a finitely supported probability measure on a set 2. For f: @ — R
and p < 0, we denote ¢ norms by | f[|7 := >, |f(w)[" v(w), where the sum is taken
over all w such that f(w) # 0.

Fixing p1,p2 < 0 and 6 € (0,1), we let p < 0 be such that

1 0 1-0
_:_+
p P1 D2
so that
1—
@_’_ﬂ:l'

b1 D2



Then,
I1£1P = Z|f )% | ()| < £l |

0 1-0
= Il 1115,
where the inequality follows from an application of the standard Holder’s inequality.

It then follows that
plog | fll, < Oplogl/fll,, + (1 —0)plog|fll,,

and therefore

log |[f]l, = log || f]l,,, + (1 —6)log|[f]],, -

Since % —|— =% this shows that p — log HfH 1 is concave for p < 0.
Now let f.Q—)]Rbe given by f(w) = v(w). Then

1 = pl ”1
og | fll: = plog } | v(w

Thus,
v) = ~Blog Y v(w)'F = ~log| 1]},
is a convex function for § € (—oo, —1). U
We end this section with another simple observation.
Lemma 2.2. For a > 1 it holds that
@
H,(v) < ——Hy(v).
() <~ Hoo(v)

Proof. Since o > 1, we note that the factor 1 — « is negative, and hence

1 1
Ho(v) = — ” logz v(w)* < T o log max v(w)®,

which, by the definition of H., is equal to -*5 H(v).
U

2.2. Random walks on groups. Let G be a finitely generated discrete group, and

let v be a finitely supported probability measure on G. Denote convolution by s,

and the n-fold convolution of u with itself by u(™. We say that p is symmetric if

w(g) = pu(g™'). We say that u is non-degenerate if the support of y generates G as a

semi-group; equivalently, the py-random walk on G is an irreducible Markov chain.
For a € [0, o¢], define

S IR
(1) = Tim — Ho (™).
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We refer to the family (h, ), as invariants, since if 7: G — H is a group isomorphism
that maps the probability measure p on G to the probability measure v on H, then
ha(p) = ha(v).

It follows from property (i) of H, that Ho(u™ x p™) = H,(u™) + H,(u™).
And since p™™) = p™ x (™ it follows from property (iii) of H, that H,(pu™+™) <
H, (™) + Hy(u™). Thus the map n + H, (™) is subadditive, and so the limit
above exists and is finite. Moreover, this limit is equal to the infimum of 2 H, (u™).
Thus, for a given p, h,(p) is upper semi-continuous.

By definition,

ha (i) = lim zg: K (9)log s
is the random walk entropy, or Avez entropy. Similarly, ho(p) is the exponential
growth rate of the group generated by the support of pu:

N . 1
o () = lim —Hy(u™) =1lim —log [{g : p"(g) > 0}| =1lim —log | B,(n)].

Here B, (n) is the ball of radius n with respect to the word metric defined by the
generating set given by the support of u.

The proof of the next claim is standard; see, e.g., [11, Exercise 4.4.5], where it is
shown that H.(u®") = —log ™ (e).

Claim 2.3. Let p be a finitely supported symmetric measure. Then ho(u) is the
logarithm of the inverse of the spectral radius:

1 1

There is an immediate corollary.

Corollary 2.4. Let G be a finitely generated amenable group, and let p be a finitely
supported, symmetric, non-degenerate probability measure on G. Then hy(u) = 0 for
all o > 1.

Proof. By Kesten’s Theorem [9, 10], the assumptions on p and the amenability of
G imply that the spectral radius of the random walk is 1. Hence, by Claim 2.3,

heo(p) = 0.
By Lemma 2.2, if @ > 1 then H, < -%3H, and so we have that h,(u) <
%hoo(,u) =0. O
3. PROOFS

Proof of Theorem 1. Recall from (2.1) that for a € (0,00), it holds that
(1-—a)H,(v) = K,(1— ).
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The cumulant generating function K, (t) of L(w) := —logv(w) is a convex function
for t € R. For a fixed t, it is straightforward to check that the following hold:

(1) Additivity: K, (t) = K, (t) + K, (t).

(2) Monotonicity under push-forwards: Ky,,(t) < K, (t).
By Fekete’s lemma, the sequence of functions ¢ +— %K () (t) converges pointwise. The
limit, which we denote by k() is a convex function as well, and thus continuous. For
a >0, we have k,(1—a) = (1—a)hqa(1t). Hence the restriction of h, (1) to [0, 00)\ {1}
is continuous. The function o+ hq(p) = inf, 2 H,(u™) is upper semi-continuous as
an infimum of continuous functions. Since H,(v) is decreasing for any v, so is ha ().
Upper semi-continuity and monotonicity imply that h,(u) is caglad. Thus we can
conclude that it is left continuous at 1.

To prove the continuity at oo, we note that H,(v) is decreasing so that Hy(v) =

infoe(0,00) Ha(v). Therefore,

1 1
hoo(pt) = inf —Hoo (™) = inf inf —H,(u™) = inf ha(p).
() = inf - Hoo (™) = 0t inf = Ha(u™) = Inf  ha(p)
As ho(p) is decreasing in «, we obtain continuity at oco.
We next show that h,(p) is strictly decreasing on [0, 1] whenever it is larger than
hi(p). By Proposition 2.1, H1+% (™) is a convex function for 8 € (—oo, —1). Passing

to the limit,
1 n
h1+%(u) = 1171511 EHHé(N( ))

is also a convex function for 3 € (—oo, —1).
Denote h(f) = hH%(u), so that h is convex for f € (—oo0,—1). Since the map

B+ 1+1/3 is strictly decreasing and h, (i) is decreasing, h is increasing. Since it is
convex, it must be strictly increasing whenever it is not equal to its infimum. Hence,
ho(i) = h(1/(a — 1)) is strictly decreasing in (0,1) whenever it is not equal to its
infimum, Ay (p).

We have so far established the first and second part of the claim. For the third,
suppose that p is symmetric, and let X;, X5,... be i.i.d. random variables taking
value in G with law p. Let Z, = X7 --- X, be the p-random walk, so that the law of
Z, is ™. Let Z!, Z5, ... be an additional, independent g-random walk. Then, since
the random walk is symmetric,

1 1 1
ho(p) = — liyrlng logz:y,(”)(g)2 = — lirlzn - logP(Z, = 2] = — li7rln - log 1™ (e).
g

Thus

.1 " .1 n
ha () = —lim —log u*"(e) = =21im - log u*"(e) = 2hos (1),
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because for symmetric random walks the maximum probability is achieved at the
identity. This shows the claim for a = 2.

Comparing this to the definition of hy(1), we see that the entire sum over g € G is
dominated by g = e,

1 n .1 n
(1) = —lim o logzg: (1 (9))" = —lim - log (1 (e)’.

The same holds for o > 2. We note that

1 1 1
lim = log M(Zn)(@a _ lim 2_ log Iu(2n)< ) + hrn o log M(Zn)( )afz
noZn

— lim —1 2n lim — 1 2n) a—2
im o ogZu +1m2 og 11* (e)
= hfln % log Z 112 ()22 ()2
g
1
im (2n)
> lim -~ log zg: n(g)

1
> lim — 1 (2n)
2 lim o log p (e)
where the second equality follows from the a = 2 case, and the second last inequality

is because the maximum probability is achieved at the identity. Therefore, all the
inequalities above are in fact equalities and

1 n « : 1 n «
oo () = = lim ——log p®(e)* = —lim ——log 3  n®"(9)" = (& = 1)ha(p).
g
O

3.1. The free group. Let G = F,; be the free group with d > 2 generators and
let 1 be the uniform distribution on the set of d generators and their inverses. As

above, let X1, X5, ... be i.i.d. random variables taking value in G with law p. Let
Zn = Xj -+ X,, be the p-random walk, and let D,, = |Z,| be the distance between Z,,
and the origin. Then Dy, Ds, ... is a Markov chain, where P[D,, = 1|D,,_; = 0] = 1,
and for r > 0, P[D,, =r — 1|D,_1 =71] = 5 and]P[D —7“+1|D q=r]=1-4.

By the symmetry of the random walk, if |g| = || then u™(g) = u™(h). The
number of elements g € Fy with |g| = k is equal to 2d - (2d — 1)*~1. Hence

P[D, = k|
2d - (2d — 1)1

(3.1) pg) =P[Z, = g] =
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It follows that when o # 1,

Ho () = ialogzw -
SEONS ( =)
k=0 |g|=k
- logZ]P’ “(2d - (2d — 1)F 1y
and so
ha(p) = lim logZ]P’ *(2d - (2d — 1)F 1)t

And since the sum is bounded below by its maximum and above by n + 1 times its
maximum,

(3.2)

1 P[D, =k “9d — 1 (1—a)k
— o B F LD = A = D)
—lim logP[D,, = k] + (1 — a)klog(2d — 1)
lrrtnnl—ake?é?}fn}a 08 o )k 108
1 1
= lim ~ logP[D, = 2k — 1 — a)(2k —n)log(2d — 1
lrrtnnl—ake{[g}%}i..,n}a ogP[D, n] + ( a)( n)log( ),

o1
hoc(#’) = hTILn E 1

where the last equality is just a change of variables.
Let Ei, Es,... be a random walk on Z with P[E, ., =E,+1] = 1 — i and

P[En+1 = E, —1] = 55. The only difference between E, and D, is that D, is re-
flected at 0 while F,, is allowed to travel to the left of 0. We then try to understand
the probability distribution of D,, from that of E,,.

Lemma 3.1. For any k > 0 and any n, we have
1
—P[E, = k] <P[D, = k| < 2P[E, = k]
n

Proof. We begin by considering the case where k£ = 0. In particular, we will prove
that for any n,

1 2d — 1
n [ 0 < Pl 0] 2d — 2

For this argument, we may assume that n is even (since, if n were odd, then both
sides of the equation above would equal zero).

P[E, = 0].
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We define a coupling of D; and E; by first sampling F; and then setting
Disyv—D; = Eyg1—FE; ifD;>1
Dy = D;+1 it D; =0.

From above, we see that the random walks are synchronous but their positions may
be shifted upon returning to 0, which gives F,, < D,,. Hence,

P[D, = 0] < P|E, < 0].

Then for n = 2m even, we have

P[Ey, < 0] = ZIP’ [y = —2i]

VAN
agE
N
N

o | &
Q|
—_
~__
3
/\
l\D|H
~__
3

T
/\
v

< T
1__2d 1 2d 2d m

2d —1
= PlE,, =
2d—2" Eam =0
Thus, we have shown that when k = 0,
2d — 1
P[D, =0] < P[E, = 0].
[ 0] < 57— PlEn = 0]

For the lower bound, we first note that if F,, remains nonnegative then D, = FE,,,
which follows from the coupling defined above. Therefore,
{Fym =0and E; >0 for i < 2m} C {D,,, =0}

and so P[Es,, = 0 and E; > 0 for i < 2m] < P[Ds,,, = 0]. To show the desired lower
bound, note that by the Bertrand’s Ballot Theorem,

1
m

For k£ > 0, note that by again using the Bertrand’s Ballot Theorem we have that
k 1
P[D,, = k] >P[E, =k and E; > 0 for i < n| = —-P[E, = k| > —P[E, = k.
n n

This shows the lower bound. For the upper bound, we will use induction on n to
prove that for any k
P[D, = k] < 2P[|E, = k].
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The base case n = 0 is trivial. For the inductive step, we suppose that the above
inequality holds for some n and all k. For k£ > 1, we have

2d —1 1
PD,, =k = > P[Dn:k—l]JrﬁIP’[Dn:k:Jrl]
2d —1 1
< = —_ _— =
< 2( 57 PE, =k 1]+2dIP>[En k+1]>

For k = 1, we have

PDyor = 1] = PB[Dy = 0]+ —P[D, = 2]

2d
2d —1 1
< —P[E, = — - 2P|E, =2
< og oElEn =0+ o 2PE, =2
2d —1 1
< 2 PE, = —P[E, =2
< 2(*5 PlE = 0+ ;PIB, = 2))
This completes the induction step. U

The new random walk FE,, may be understood very well. First note that,

() (5 (2)”

By a standard estimate,

1 MHU/m) < n < enH(k/n)7
n+1 k

where H(p) = —plogp — (1 — p)log(1 — p), and so
loglP[E,, = 2k —n] = —nlog(2d) + nH (k/n) + klog(2d — 1) + o(n).
Furthermore, by Lemma 3.1, for k > 0, loglP [D,, = k| = logP [E,, = k] 4+ o(n). Hence
1
- logP [D,, = 2k — n| = —log(2d) + H(k/n) + k/nlog(2d — 1) + o(1)

for k > n/2. Inserting this into (3.2) yields

ho(p) = hrrln T ke{[ir}%)im}a(— log(2d) + H(k/n) + k/nlog(2d — 1))

+ (1 —a)(2k/n —1)log(2d — 1).
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The expression being maximized is a function of k/n, which we denote by f,: [1/2,1] —
R:

fa(p) = a(=log(2d) + H(p) + plog(2d — 1)) + (1 — a)(2p — 1) log(2d — 1).
Using this construction, we may now prove Theorem 3.

Proof of Theorem 3. For o # 1, from the notation established above, we have

he (/JJ)

1
= li a(k/n).
1 -« lvrznke{[g}g]},{..‘,n}f (k/n)

Since f, is continuous,

1

ho(1t) = ().
(1) 1_&p$%§uf (p)

Since f, is furthermore differentiable and concave, this maximum is achieved either
at the end points of the interval, or else at the unique p}, at which the derivative of
fo vanishes. A simple calculation shows that this is given by

. (2d — 1)%/«
Po = 2d—1) + (2d — 12/

for a € (0,2)\{1}. For these a, we have

(3.3) hait) = —— fu(pt),

l—«
where we recall that
fa(p) = a(—1log(2d) + H(p) + plog(2d — 1)) + (1 — a)(2p — 1) log(2d — 1).

This can be written out as an elementary (but unwieldy) function of «, which we
omit. Importantly, this implies that h,(x) is an analytic function of o on (0,2)\{1}.
Moreover, f,(p%), viewed as a complex function, is holomorphic around a neighbor-
hood of a = 1. Some computations show that f,(p%) has a zero of order 1 at a =1
s0 ho(pt) = 1= fa(p},) is a meromorphic function whose singularity at o = 1 can be
removed. In other words, h,(u) is real analytic at o = 1.

For o > 2, the Rényi entropy enters a difference phase hq (1) = =%7hoo(t). Com-
paring this with (3.3), we see that h,(u) is first differentiable, but not second differ-

entiable, at o = 2.
d
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3.2. The lamplighter group. Let G = L Z be the lamplighter group on Z with
lamps in some non-trivial finite group L. We denote an element of G by g = (f, 2)
where f: 7Z — L has finite support, and z € Z. Denote by 7 : G — Z be the group
homomorphism 7(f, z) := z and denote by 7(f,z) := f the projection to the lamp
configurations. Let p be a symmetric, finitely supported measure on G.

We prove Theorem 2 by analyzing “tilted” versions of the py-random walk. For
t > 0 define the tilted measure u; by

1:(g) = C; 'p(g)e™ )

where
Cr=> ulg)e™
g'eqG
is the moment generating function of m,u, evaluated at ¢t. Note that tilting commutes

with convolution, so that ugk) is well-defined.

Note that C;(0) = >, u(h)m(h) = 0 because p is symmetric, and hence the ex-
pectation of m,u is equal to zero. The second derivative of C; at zero is the variance
v > 0 of ., and hence C; = 1 + vt? + o(t?).

Let Z1, Z, ... be a yy-random walk, and let Qf = {w(Z;),...,7(Z,)} be the set of
locations visited by the lamplighter.

Lemma 3.2. There is a constant ¢ > 0 such that, for all t > 0 small enough,
liminf, 2|Q%| > qt almost surely.

Proof. The tilted random walk has a positive drift of
Ay = Cf Z,u exp(tm(g))m(g)

= G| > ulg) exp(tr(g))m(g) + 1(g) exp(tm(g))m(g)
g:m(g)<0 m(g)>0

> O | DD wgm(e)+ D ulg)(d+tr(g)m(g)

g:m(g9)<0 7(g)>0
> Ol Z n(g
g9)>0

As Cy =1+ o(t), we have
Ay, > [t
for t > 0 small enough, where we set 3 := %Zﬂ(g)>0 w(g9)(m(g))?. Note that 8 > 0.



16

Since p has finite support, there exists some M > 0 such that |7(g)| < M for any g
in the support of ;. Then the step size under ; is also bounded by M. Let Z1, Zs, ...
be a p;-random walk. For any € > 0, by law of large numbers, we have

li}ln P(r(Z,) > (At —e)n) = 1.

Note that in order for the lamplighter to arrive at some position N at time n, the
lamplighter must have visited at least N/M many positions on the way. Thus.

t W(Zn)
@l = =3

Therefore, for ¢ > 0 small enough,
At — & 61(: — &
> .
M M

1
lim inf — ‘QH >
noon
Set q := % As e is arbitrary, we have
1
liminf — |Q;‘ > qt.
noon
O

For the tilted random walk, the lamp status at the origin is a non-trivial tail random
variable so the random walk has positive asymptotic Shannon entropy: hq(p;) > 0.
The next proposition shows that this entropy grows at least linearly with ¢, for small
t.

Proposition 3.3. Suppose p is non-degenerate. There is a constant ¢ > 0 such that
hi(pe) > ct fort > 0 small enough.

Proof. We first show that we can assume that p(e) > 0. Let n = %u + %(56, where 9,
is the point mass at the identity of GG. Define the tilted measures n; similarly to the
definition of y;. Then

_ b L __t (1 1
0o = 1577 (10 + 550) = 1 (30m00) + 350).
and so
M= aupie + (1 — ay)de

for some «; that tends continuously to 1/2 as ¢ tends to zero.

Since hy(aps + (1 — a@)de) = ahy(pe), it follows that if hy(n;) > ct then hy(p;) > ct
for all ¢ small enough. It hence suffices to prove the claim for 7, so that it follows for
w. We thus assume without loss of generality that p(e) > 0.

Denote by f¢: Z — L the function given f(0) = ¢ and f*(z) = e for all z # 0, and
where, by slight notation overloading, e is the identity of L.
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Since p is non-degenerate, and since p(e) > 0, there is some k large enough and
£ > 0 such that u®(f* 0) > 2¢ for all £ € L. We hence again assume without loss of
generality that this already holds for y, since h(,ugk)) = kh(p). For all ¢ small enough
we will have that p;(f,0) > ¢ for all £ € L. Let v be the uniform distribution over
L ={(f%0) : £ € L}. Then we can write y; = ev + (1 — £)fi, where

e
My = 1_¢

is a probability measure.

Let X1, X5, ... be ii.d. random variables with distribution ji;. Let W,, be i.i.d. ran-
dom variables with distribution v. Let By, Bs, ... be i.i.d. Bernoulli random variables
with P[B, = 1] = ¢. Let

X, — X, ?anzo
W, if B, =1.

Then X,, has distribution p;. Let Z, = X7 - X5--- X, be a y;-random walk on G.
We would like to show that H;(Z,) > nct for some ¢, all ¢ small enough and all n

large enough.
Let

P,={z€Z : 3k <n,n(Z) =z By =1}

This is the random set of locations at which the lamplighter was at times in which
Br = 1. Since n(W,) = 0, the probability that 7(Z,) € P, is at least €. Hence
E[|P,|] > €E[|Q%]], and by Lemma 3.2, there is a constant ¢ such that for all ¢ small
enough, E[|P,|] > nct for all n large enough.

Denote F,, = 7(Z,) the lamp configuration at time n. Suppose for a moment that
Xi1,...X, and By,..., B, are given. As m(W,) = 0, we will know the location of
the lamplighter at all times up to n and so we can deduce P,. We will also know
the state of the lamps outside of P,. On P,, the conditional distribution of lamps is
i.i.d. uniform, since W}, are uniform. Hence, the conditional entropy of Fj, is exactly
|P,|log | L| and

H(Z,) > Hl(Zn|)_(1,...)_(n,Bl,.. , By)
> Hl(Fn|X1,...Xn,Bl,...,Bn)
=E[|F.[] log | L]
> nct.

With the above construction, we are now in position to prove Theorem 2.
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Proof of Theorem 2. Suppose by contradiction, for some 0 < o < 1 we have

logZu

he (1) = hm —

Equivalently,

(3.4) > M (g)” = exp(o(n)).

g

Let a = 1+Ta/ < 1. For a fixed t > 0, let A > 0 be chosen later. Then by
Cauchy-Schwarz inequality,

(3.5)

2

> g explata(s)) | < | D u@* | | D] 1™ (g) exp(2atr(g))

w(g)>An w(g)>An w(g)>An

For the first term in the multiplication, we know that

> w9 <> uM(g)” = exp(o(n).

m(g)>An

For the second term, we note that m,u is a zero-drift random walk on Z, since u
is symmetric. By the Hoeffding bound, there exists a constant ¢ > 0 only depending
on T, such that

k2
a0 = Y W) < 30 a0 <o ().
m(g)=k

m(g)=k

Taking a weighted sum of the above inequality, we have

Z 1™ (g) exp(20t7(g Z Z 1™ (g) exp(2atk)
m(g)=An k=[An] n(g)=k
< Z exp(—c—) exp(2atk)
k=[An] "
< Z exp(—ckA) exp(2atk)
k=[An]
M

< - _
< A our exp(An(—cA + 2at))
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for some M large enough, and given that cA — 2at > 0. Sending n — oo, the last
line goes to 0 so

(3.6) lim Z 1™ (g) exp(2at7(g)) — 0.
m(g9)>An
(3.5) together with (3.4) and (3.6) yields
(3.7) > 1™ (g)* explatr(g)) = exp(o(n)).
w(g)>An

For ¢t small enough, by Proposition 3.3, there exists a constant ¢ > 0 such that

At < h(w) = hm — logZC ne ™ (g)* exp(atn(g)).

As Cy = 14 O(#?), we have

ct + O(t?) < hm —

logZu ® exp(atr(g)).

Because the tail is exponentially small as in (3.7), we get

ct+0t*) < hm— log Z )* exp(atm(g))
g)<An
< liml ! log Z 1™ (9)* exp(at An)
- nl—ao
m(g)<An
atA
< lim = 1 (n) o
< oo lim og Y u"(g)
w(g)<An

1 1
< lim = 1 (n) a
< o Flimo— og;u (9)
We set A = (4at)/c so that cA — 2at > 0. Then for ¢ small,

atA a 4o,
—t? < ct + O(t?
1—a l—o ¢ ct+ ( )

Thus,

ha(p) = hm —

~log Z 1™ (g

However, it follows that h./ (p) > ha(p) > O as a > o, a contradiction to our
assumption on «’. This concludes our proof. 0
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Remark 3.4. The proof of Theorem 2 should work more generally for other groups
which have Z as a quotient group and Z acts interestingly on the group, such as
one-dimensional Baumslag-Solitar groups.

We next consider a particular case of the lamplighter group where L = Z,. We
calculate the Rényi entropy of the “switch-walk-switch” (SWS) random walk on the
lamplighter group Zy ! Z, i.e., the u-random walk where y = n * o xn, n(f1,0) =
n(0,0) = 1/2, and ¢(0,—1) = ¢(0,1) = 1/2. Thus, at every step the lamplighter
switches the lamp at the current location with probability one half, takes a step of
the simple random walk and then again flips the lamp at the current location with
probability one half.

Theorem 3.5. Let p be the SWS walk on Zo U Z. Then

gt — 4
(3.8) ha(p) = $a (m)

for all o € (0, 1], where

(3.9) Ya(p) = plog2 — [(1—p)log(1—p)+ (1+p)log(l+p)].

2(1-a)

Note that Theorem 4 is an immediate consequence, since Theorem 3.5 shows that
ho() is an elementary function on (0, 1].

Proof of Theorem 3.5. Fix n. We first express the asymptotic Rényi entropies in
terms of the number of positions the lamplighter ever visits up to time n. Let S,, =
7(Zm) be the position of the lamplighter at time m. Note that S,, is a simple random
walk on Z. Let L := inf{S,,,0 <m <n} and R := sup{S,,,0 <m <n}. The
number of positions the lamplighter ever visits up to time n is then R — L + 1. As
L, R € [—n,n], for each k there exists lj, r, with r, — ¢ + 1 = k such that

1

We slightly abuse notation and let u™(f) := >"_u™(f,x) denote the probability
that the lamp configuration at time n is equal to f. Fix a € (0,1). Then

log Z 1™ (g)* = log Z Z ™ (f,2)* > log Z u ()",
g o !

since ¢* + p* > (p + q)* for all p,q € [0,1]. For each k, we can further bound this
from below by restricting the sum:

logd puM(g)* >log > p"M(f)”.

supp(f)Clry, L]
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We note that conditional on L and R, the lamp configuration follows a uniform
distribution over {0, 1}I-F] x {0} (=oeoNEEl - Hence, for supp(f) C [lx, 74],

W) =Pr(Z,) = f12P[1(Z) = [,R=m, L=0] =2"P[R=1}, L = {;].
Thus, since the sum over all such f has 2¥ summands,

log ) 1™(g)* > maxlog [(P[L = by, R = 1] -27")" 2"]
g

(3.11) :m]?xlog [(P[R—L+1=k 27%)%2] + o(n).

For the other direction,

S =" > p( ) <> > p()=2n+1))  u(f)e
g f

[ z€[-n,n] f z€[-n,n]

since u™ (f, z) < u™(f). For a given configuration f : Z — Z/27Z, let r(f) and £(f)
denote the rightmost and leftmost position on which lamps are on. Then

1 (f) =P[r(Z,) = f] :Z}P’[R:m,Lzs,T(Zn) = f]

= >  P[R=mL=s27 ",

m>r(f),s<l(f)
Hence
Zﬂ(n)(g)a <(2n+1) Z Z P[R=m,L =s] 2" M=+
g o \m>r(f),s<e(f)

< (2n+1) Z Z P[R =m,L = s]* - 2~ (m=s+Do
Fomzr(f),s<U(f)

where the second inequality again uses (p + q)* < ¢* + p“.
We exchange the order of summation and note that for each m, s there are 2™ 5!
terms, to get

SO W () < @n+1) S PR =m, L= s]*20ms 00,
f T

m,s

Since this sum has (n + 1)? summands,

SO I (f, ) < dnPmaxP[R = m, L = s]*2m-=t)0-)
7 - m,s

< 4n? mELX]P> [R—L+1=k]"-2k0-9),
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Together with (3.11), we have

(3.12) log Z,u = maxlog [P[R— L=k 2"1"9] + o(n).

We claim that we can replace P [R — L = k] in the equation above with P [R — L > k.
On the one hand, we trivially have P[R — L = k] < P[R — L > k|, yielding one di-
rection. For the other direction, we note that for any & > 0 there exists k* > k' such
that

1
PR—L=k]2 PR—L=K

by the pigeonhole principle. Therefore, for any k' there is a k* > k' such that
maxlog [P[R ~ L = K" - 20=] > log [P[R — L = k*]" - 2"0=)]

iP[R L> K] 2F0- a)]

> log {
na

= log [IP [R—L>FK]"- 2’€’<1—°‘>] + log n—la
Taking the supremum over £ yields
maxlog [P [R — L = k|* - 20"%)] > maxlog [P[R — L > k|" - 2¢"] + o(n).
Now (3.12) becomes

logz i = max log [P[R— L > k" - 2"079] + o(n).

Citing Theorem 1 and Remark 1 in [7], we have that for any x € [0, 1]
1
lim —logP [R — L > nx] = ¢(z),
non

where ¢(z) = —3(1 4+ z)log(l + =) — (1 — z)log(1 — z). We note that when a
sequence of decreasing functions converges pointwise to a continuous function, the
sequence also converges uniformly. Therefore, we can write

log B[R~ L > K] = y(k/n) + o(1),
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where o(1) vanishes uniformly in k. We have

1 1
=1 ) (g)> = = log [P[R — L > k|* . 2k(=a) 1
nogzg:u (9)* = — maxlog [P > k] ] +o(1)

= %m]?x[alog]P[R — L > k| + k(1 —a)log2]+o(1)
= max [aw(g) + S(l — a)log 2} +o(1).

Finally, let p := % Then

1 : 1 n o
ha(p) = 7——lim ~log » _ u(g)
g

—

1
= lim max «Q + (1 —a)log?2
[ e n/n}[ ¥(p) + p( ) log 2]

= log 2
max [1 —¥(p) +plog }
= max ¢a(p)
where
(p) = 7——(p) + plog2
o(p) = —— 0
#alp) = 7= 4(p) +plog
o
=plog2 — ———[(1 — p)log(1 — p) + (1 + p)log(1 + p)].
2(1 — «)
Some computations show that the above expression is maximized when
. Al —4
pa - 41/a +4
The continuity of the Rényi entropy from the left extends the result to h;. This
completes the proof of Theorem 3.5. O

3.3. The asymptotic min-entropy. The next claim provides an example of a non-
symmetric random walk on an amenable group for which the asymptotic min-entropy
hs is positive. Consider a drifting SW§S walk pg on Zy!Z. That is, let ug be given by
pg = n* o % n, where n(f*,0) = n(0,0) =1/2, and ¢(0, 1) = 3(1 = 3) =1 —0(0,1)
for some 8 € (—1,1). The drift of the walker is > 1g(g)m(g) = 8.

Claim 3.6. If 3 # 0 then hoo(p5) > 0.

Proof. By symmetry, we can assume without loss of generality that 8 > 0. Let
Z1,Za, . .. be the pg-random walk. Then, by the Chernoff bound, there is some 7 > 0
such that P [7(Z,) < nfB/2] <e ™. In particular, if 7(g) < nf/2 then ps(g) <e ™.
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Now, conditioned on 7(Z,) = k > 0, it holds by the definition of the SWS walk
that the lamp configuration restricted to {0,1,...,k — 1} is distributed uniformly,
so that each configuration has probability 27%. Thus, for k& > n3/2 and g such that

m(g9) =k,

pa(g) < 2702 = o3 l08(2)Bn

It follows that if we let ¢ = min{3 log(2)3,7}, then yz(g) < e " for all g € G, and
hoo(pt) > c. O

Next, we show that for non-degenerate random walks on non-amenable groups
the asymptotic min-entropy is always positive. Note that this follows from Kesten’s
Theorem for symmetric p.

Claim 3.7. Let p be a finitely supported, non-degenerate probability measure on a
non-amenable group G. Then hoo(p) > 0.

To prove this claim we recall some basic definitions. Let £*(G) be the Hilbert space
of real square-integrable functions on G, equipped with the standard inner product
and norm. For h € G, let Ry: (*(G) — (*(G) be the right shift operator given by
[Ru(¢)](9) = ¢(gh). Then R, is an orthogonal linear operator and h — R), is the
right regular representation of G. Let M = )", u(h)Ry be the Markov operator of
the p-random walk. As is well known (see, e.g., [15, Theorem 12.5]) when G is non-
amenable and p is non-degenerate, then the operator norm p(M) is strictly less than
L, ie., p(M) :=sup{||M¢]| : |¢|| =1} < 1. Note that this holds even when p is not
symmetric.

Proof of Claim 3.7. Note that [M"p](g) = >, u(”)(h)go(gh), and so [M"5.](g) =
p™ (g1, Since p(M™) < p(M)", ||M™6,|| < p(M)", and so

p(M)" =" u™ (g™ = max ) (9)°,
9

Hence
—log p(M) < —% log mavx 1™ (g).
Taking the limit as n tends to infinity yields that
—log p(M) < hoo(p),

and so, since p(M) < 1, we have proved the claim. O



[1]

25

REFERENCES

A. Avez, Théoréme de Choquet-Deny pour les groupes a croissance non exponentielle, CR Acad.
Sci. Paris Sér. A 279 (1974), 25-28.

Adrien Boulanger, Pierre Mathieu, Cagri Sert, and Alessandro Sisto, Large deviations for ran-
dom walks on hyperbolic spaces (2021).

Filipp Buryak and Yuliya Mishura, Convexity and robustness of the rényi entropy, 2021,
pp. 387-412.

Tmre Csiszér, Aziomatic characterizations of information measures, Entropy 10 (2008), no. 3,
261-273.

Anna Erschler and Tianyi Zheng, Growth of periodic grigorchuk groups, Inventiones mathemat-
icae 219 (2020), no. 3, 1069-1155.

Joshua Frisch, Yair Hartman, Omer Tamuz, and Pooya Vahidi Ferdowsi, Choquet-deny groups
and the infinite conjugacy class property, Annals of Mathematics 190 (2019), no. 1, 307-320.
Yuji Hamana and Harry Kesten, Large deviations for the range of an integer valued random,
Annales de U'Institut Henri Poincare 38 (2002), 17-58.

Vadim A Kaimanovich and Anatoly M Vershik, Random walks on discrete groups: boundary
and entropy, The annals of probability (1983), 457—-490.

Harry Kesten, Full Banach mean values on countable groups, Mathematica Scandinavica (1959),
146-156.

, Symmetric random walks on groups, Transactions of the American Mathematical So-
ciety 92 (1959), no. 2, 336-354.

Steven P Lalley, Random walks on infinite groups, Vol. 297, Springer Nature, 2023.

Xiaosheng Mu, Luciano Pomatto, Philipp Strack, and Omer Tamuz, From Blackwell dominance
in large samples to Rényi divergences and back again, Econometrica 89 (2021), no. 1, 475-506.
https://arxiv.org/pdf/1906.02838.

Jose C Principe, Information theoretic learning: Renyi’s entropy and kernel perspectives,
Springer Science & Business Media, 2010.

Alfréd Rényi, On measures of entropy and information, Proceedings of the fourth berkeley
symposium on mathematical statistics and probability, volume 1: Contributions to the theory
of statistics, 1961.

Wolfgang Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathemat-
ics, Cambridge University Press, 2000.

CALIFORNIA INSTITUTE OF TECHNOLOGY



