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Abstract. This paper tackles the challenging problem of finding global optimal solutions for
two-stage stochastic programs with continuous decision variables and nonconvex recourse functions.
We introduce a two-phase approach. The first phase involves the construction of a polynomial lower
bound for the recourse function through a linear optimization problem over a nonnegative polynomial
cone. Given the complex structure of this cone, we employ semidefinite relaxations with quadratic
modules to facilitate our computations. In the second phase, we solve a surrogate first-stage problem
by substituting the original recourse function with the polynomial lower approximation obtained in
the first phase. Our method is particularly advantageous for two reasons: it not only generates global
lower bounds for the nonconvex stochastic program, aiding in the certificate of global optimality for
prospective solutions like stationary solutions computed from other methods, but it also yields an
explicit polynomial approximation for the recourse function through the solution of a linear conic
optimization problem, where the number of variables is independent of the support of the underlying
random vector. Therefore, our approach is particularly suitable for the case where the random
vector follows a continuous distribution or when dealing with a large number of scenarios. Numerical
experiments are conducted to demonstrate the effectiveness of our proposed approach.
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1. Introduction. Two-stage stochastic programs (SPs) with recourse functions
serve as a powerful framework for modeling decision-making problems under uncer-
tainty. In the first stage, ``here-and-now"" decisions are made prior to the uncertainty
being revealed. Following this, the second stage accommodates additional decisions,
which are often contingent on the outcomes of the uncertainty and are referred to as
``recourse actions."" The goal of two-stage SPs is to determine decisions that minimize
the expected total cost. Mathematically, a two-stage SP with recourse functions is
formulated as \Biggl\{ 

min
x\in Rn1

f(x) := f1(x) +E\mu [f2(x, \xi )]

s.t. x\in X := \{ x\in Rn1 : g1,i(x)\geq 0 (i\in \scrI 1)\} ,
(1.1)
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3478 SUHAN ZHONG, YING CUI, AND JIAWANG NIE

where \xi \in Rn0 is a random vector associated with the probability measure \mu supported
on

S := \{ \xi \in Rn0 : g0,i(\xi )\geq 0 (i\in \scrI 0)\} ,(1.2)

and f2(x, \xi ) is the so called recourse function given by\Biggl\{ 
f2(x, \xi ) := min

y\in Rn2
F (x, y, \xi )

s.t. y \in Y (x, \xi ) := \{ y \in Rn2 : g2,i(x, y, \xi )\geq 0 (i\in \scrI 2)\} .
(1.3)

Here (1.1)--(1.3) satisfy the following assumption.

Assumption 1.1. The index sets \scrI 0,\scrI 1, and \scrI 2 are finite and potentially empty.
The functions g0,i : Rn0 \rightarrow R for each i \in \scrI 0; f1, g1,i : Rn1 \rightarrow R for i \in \scrI 1; and
F, g2,i : Rn1 \times Rn2 \times Rn0 \rightarrow R for i\in \scrI 2.

As a versatile modeling paradigm, two-stage SPs have found applications across
numerous domains, such as supply chain management [8, 28], energy systems [6, 31],
and transportation planning [20, 37], among others. For a comprehensive under-
standing of this subject matter, readers are referred to the monographs [1, 44] and
references therein.

When f is a convex function and X is a convex set, problem (1.1) is convex.
Numerical methods for solving convex two-stage SPs have been extensively studied.
When \xi follows a discrete distribution or is approximated by sample averages, (1.1)
simplifies to a convex deterministic problem, enabling the application of the L-shaped
method [46, 47], the (augmented) Lagrangian method [36], and the progressive hedg-
ing method [10, 42]. In instances where \xi follows a continuous distribution, one may
either directly employ stochastic approximation or utilize sample average approxima-
tion to recast it into a deterministic formulation, subsequently applying the afore-
mentioned methods. Under technical assumptions, the (sub)sequences generated by
these algorithms converge to globally optimal solutions to the convex SPs.

Many real-world applications feature two-stage SPs that are inherently noncon-
vex. Examples include the two-stage stochastic interdiction problem [4, 12] and the
stochastic program with decision-dependent uncertainty [9, 13, 26, 27, 39]. In fact,
the recourse function in the form of (1.3) easily becomes nonconvex in the first-stage
variable x, even in the simple situation where the second-stage problem is linearly
parameterized by x: \Biggl\{ 

f2(x, \xi ) = min
y\in Rn2

[ c(\xi ) +C(\xi )x ]T y

s.t. A(\xi )x+B(\xi )y\geq b(\xi ).

It is important to note that the nonconvexity in the above problem does not arise
from the integrality of decision variables y, and thus techniques from mixed-integer
programming are not applicable here. For such problems, the focus in the existing
literature is primarily on the efficient computation of local solutions, such as stationary
points [2, 26, 27]. Generally, it is challenging to compute global optimal solutions of
nonconvex two-stage SPs as well as to certify the quality of a given point in terms of
its global optimality.

The primary goal of the present paper is to design a relaxation approach that
can asymptotically solve problem (1.1) to global optimality, under the setting that
the recourse function f2 is nonconvex in x. Throughout this paper, we consider the
two-stage SP in the form of (1.1) satisfying the following condition.

Assumption 1.2. The functions F (x, y, \xi ), \{ g1,i(x)\} , \{ g0,i(\xi )\} , and \{ g2,i(x, y, \xi )\} 
are all polynomials in terms of the arguments (x, y, \xi ).
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GLOBAL SOLUTIONS FOR NONCONVEX STOCHASTIC PROGRAMS 3479

One major challenge in globally solving (1.1) stems from the typical lack of an
explicit parametric representation of the recourse function f2(x, \xi ). To overcome
this difficulty, we introduce a two-phase algorithm. In the first phase, we construct
a parametric function p(x, \xi ) that serves as a lower approximation of the recourse
function f2(x, \xi ) over X \times S, satisfying

f2(x, \xi ) - p(x, \xi )\geq 0 \forall x\in X, \xi \in S.(1.4)

In the second phase, we replace f2(x, \xi ) in problem (1.1) with the approximating
function p(x, \xi ) and solve the corresponding surrogate problem to global optimality.
Given that p provides a lower approximation of f2 on its domain, the global optimal
value computed from the surrogate problem must be a lower bound of the true optimal
value of problem (1.1). Consequently, this computed value also provides an estimate
of the distance from the objective value at a local solution/stationary point that is
obtained by any other methods to the true global optimal value. In addition, we
design a hierarchical procedure to asymptotically diminish the gap between f2(x, \xi )
and p(x, \xi ) (in the \scrL 1 space), thereby ensuring that the objective value obtained from
the surrogate problem converges to the true global optimal value of (1.1).

To achieve our goal of finding the global optimal solution of the nonconvex two-
stage SP, we leverage techniques from polynomial optimization. It is well known that
under the archimedean condition, a generic polynomial optimization problem can be
solved to global optimality through a hierarchy of Moment-Sum-of-Squares (Moment-
SOS) relaxations [23]; see, for example, the monographs [24, 25, 34]. Specifically, let
us denote

\scrF := \{ (x, \xi )\in X \times S : Y (x, \xi ) \not = \emptyset \} and K := \{ (x, y, \xi ) : (x, \xi )\in \scrF , y \in Y (x, \xi )\} .
(1.5)

Then for any (x, \xi )\in \scrF , the inequality (1.4) is equivalent to

F (x, y, \xi ) - p(x, \xi )\geq 0 \forall y \in Y (x, \xi ).(1.6)

Assuming that the functions F and g2,i for i\in \scrI 2 in (1.3) are polynomials over (x, y, \xi ),
we construct a polynomial function p(x, \xi ) such that F (x, y, \xi ) - p(x, \xi ) is a nonnegative
polynomial over K. Obviously there are infinitely many polynomials satisfying the
above condition. In order to approximate the recourse function f2(x, \xi ) as tightly as
possible, we seek the one that is closest to it from below under a prescribed metric.
Specifically, letting P(K) be the set of polynomials in (x, y, \xi ) that are nonnegative
on K and \nu be a probability measure supported on \scrF , we solve for a best polynomial
lower approximating function via the following problem:\left\{   max

p

\int 
\scrF 
p(x, \xi )d\nu 

s.t. F (x, y, \xi ) - p(x, \xi )\in P(K).
(1.7)

When the degree of the polynomial p(x, \xi ) is fixed, the above problem reduces to a
linear conic optimization in the coefficients of p. A noteworthy benefit of problem
(1.7) is that the sizes of the decision variables are determined merely by the dimen-
sions of (x, \xi ) and the degree of the polynomial p, while remaining unaffected by the
distribution of \xi or the number of samples used to approximate \xi 's distribution. This
becomes particularly advantageous when there is a large number of scenarios for \xi .
Even more appealingly, if \xi follows a continuous distribution, there is no necessity to
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3480 SUHAN ZHONG, YING CUI, AND JIAWANG NIE

Fig. 1. An illustration of our approach. The left panel shows how a nonconvex recourse function
f(x, \xi ) can be efficiently approximated from below by a polynomial p(x, \xi ). The right panel shows the
expectation of the recourse and its approximation from the left (i.e., E\nu [f(x, \xi )] versus E\nu [p(x, \xi )])
for a given measure \nu .

draw samples to approximate its distribution in order to compute E\nu [p(x, \xi ) ]; it can
instead be computed analytically through the moments of \xi . An illustration of our
approach is shown in Figure 1.

We outline the major advantages of our proposed approach below.
(a) Our method efficiently computes lower bounds for the global optimal value

of problem (1.1), which can be particularly tight when the recourse function
is polynomial. These bounds can be used to certify the global optimality of
prospective solutions like stationary solutions computed from other methods.

(b) The approach yields an explicit polynomial lower bound for the recourse
function. With certain assumptions of compactness and continuity, these
polynomials can achieve an arbitrary level of accuracy in the \scrL 1 space relative
to a given probability measure.

(c) The number of variables in problem (1.7) is independent of the distribution of
\xi . Therefore, our approach is especially beneficial in instances where \xi follows
a continuous distribution or is approximated by a large number of scenarios.

The rest of this paper is organized as follows. Some notation and basic knowledge on
polynomial optimization is introduced first. In section 2, we discuss the construction
of polynomial lower approximation of the recourse function via linear conic optimiza-
tion. Utilizing the derived polynomial lower approximating functions, we develop
algorithms to approximately solve nonconvex two-stage SPs in section 3 and study
their convergent properties. In section 4, the Moment-SOS relaxation methods are
introduced to solve the subproblems arising from the algorithms in the previous sec-
tion. Some numerical results are given in section 5. The paper ends with a concluding
section.

Notation and preliminaries. The symbol R denotes the set of real numbers
and N denotes the set of nonnegative integers. The notation Rn (resp., Nn) stands
for the set of n-dimensional vectors with entries in R (resp., N). For t \in R, \lceil t\rceil 
denotes the smallest integer that is not smaller than t. For an integer k > 0, denote
[k] := \{ 1, . . . , k\} . For a vector v \in Rn, we use \| v\| to denote its Euclidean norm. The
superscript T denotes the transpose of a matrix or vector. Let \Omega 1 and \Omega 2 be two
sets. Their Cartesian product is denoted as \Omega 1 \times \Omega 2 := \{ (v1, v2) : v1 \in \Omega 1, v2 \in \Omega 2\} .
Let \nu be a probability measure supported on \Omega 1, and let \scrL 1(\nu ) denote the set of
functions f : \Omega 1 \rightarrow R such that

\int 
\Omega 1

| f | d\nu < \infty . A matrix A \in Rn\times n is said to be

positive semidefinite, denoted as A \succeq 0, if vTAv \geq 0 for all v \in Rn. If vTAv > 0
for every nonzero vector v \in Rn, then A is positive definite, written as A \succ 0. Let
w = (w1, . . . ,w\ell ) be a vector of variables. We use R[w] to denote the ring of real
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GLOBAL SOLUTIONS FOR NONCONVEX STOCHASTIC PROGRAMS 3481

polynomials in w. Then R[w]d \subseteq R[w] is the set of real polynomials with degrees
no more than d. For a polynomial f(x, y, \xi ), its total degree is denoted by deg(f).
We use degx(f) (resp., degy(f), deg\xi (f)) to denote its partial degree in x (resp., y,
\xi ). For a tuple of polynomials h = (h1, . . . , hm), the notation deg(h) represents the
highest degree among all hi's. For a monomial power \alpha := (\alpha 1, . . . , \alpha \ell )\in N\ell , denote

w\alpha := w\alpha 1
1 \cdot \cdot \cdot w\alpha \ell 

\ell , with | \alpha | := \alpha 1 + \cdot \cdot \cdot + \alpha \ell .

For a degree d, denote the set of monomial powers in w as N\ell 
d := \{ \alpha \in N\ell : | \alpha | \leq d\} .

The notation

[w]d :=
\bigl[ 
1 w1 \cdot \cdot \cdot w\ell (w1)

2 w1w2 \cdot \cdot \cdot (w\ell )
d
\bigr] T

denotes the monomial vector with the highest degree d and ordered alphabetically.
A polynomial p\in R[w] is said to be a sum-of-squares (SOS) if it can be expressed

as p= p21 + \cdot \cdot \cdot + p2t for some p1, . . . , pt \in R[w]. The set of all SOS polynomials in w is
denoted by \Sigma [w]. Its dth degree truncation is denoted by \Sigma [w]d := \Sigma [w]\cap R[w]d. Let
h = (h1, . . . , hm) be a tuple of polynomials and define \Omega = \{ w \in R\ell : h(w) \geq 0\} . We
denote the nonnegative polynomial cone over \Omega as

P(\Omega ) := \{ p\in R[w] : p(w)\geq 0\forall w \in \Omega \} .

For every degree d, Pd(\Omega ) := P(\Omega )\cap R[w]d. The preordering of h is given as

Pre[h] :=
\sum 

J\subseteq [m]

\Biggl( \prod 
i\in J

hi

\Biggr) 
\cdot \Sigma [w].(1.8)

Clearly, Pre[h] \subseteq P(\Omega ). Interestingly, when \Omega is compact, every polynomial that
is positive on \Omega belongs to Pre[h]. This conclusion is referenced as Schmudgen's
Positivstellensatz [38]. The quadratic module of h is a subset of Pre[h], which is
defined as

QM [h] := \Sigma [w] + h1 \cdot \Sigma [w] + \cdot \cdot \cdot + hm \cdot \Sigma [w].

Its kth order truncation is given as

QM [h]2k := \Sigma [w]2k + h1 \cdot \Sigma [w]2k - deg(h1) + \cdot \cdot \cdot + hm \cdot \Sigma [w]2k - deg(hm).(1.9)

When \Omega is compact, QM [h] and each QM [h]2k are closed convex cones. For every k
such that 2k\geq deg(h), the nested containment relation holds such that

QM [h]2k \subseteq QM [h]2k+2 \subseteq \cdot \cdot \cdot \subseteq QM [h] \subseteq Pre[h] \subseteq P(\Omega ).

In particular, QM [h] is said to be archimedean if there exists q \in QM [h] such that
q(w)\geq 0 determines a compact set. Suppose QM [h] is archimedean. Every polynomial
that is positive on \Omega must be contained in QM [h]. This conclusion is called Putinar's
Postivstellensatz [38]. It is clear that \Omega is compact when QM [h] is archimedean.
Conversely, if \Omega is compact, QM [h] may not be archimedean. In this case, we can
always find a sufficiently large R > 0 such that \Omega is contained in \{ w :R - \| w\| 2 \geq 0\} 
and that QM [\~h] is archimedean for \~h= (h,R - \| w\| 2).

For an integer k\geq 0, a real vector z = (z\alpha )\alpha \in N\ell 
2k

is said to be a truncated multise-
quence (tms) of x with degree 2k. For a polynomial p(x) =

\sum 
\alpha \in N\ell 

2k
p\alpha x

\alpha , denote the
bilinear operation in p and z as:

\langle p, z\rangle :=
\sum 

\alpha \in N\ell 
2k

p\alpha z\alpha .(1.10)
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3482 SUHAN ZHONG, YING CUI, AND JIAWANG NIE

For a polynomial q \in R[x]2t with t \leq k, the kth order localizing matrix of q and z is

the symmetric matrix L
(k)
q [z] that satisfies

\langle qa2, z\rangle = vec(a)T
\bigl( 
L(k)
q [z]

\bigr) 
vec(a)(1.11)

for each polynomial a(x) = vec(a)T [x]s with s \leq k  - t. When q = 1 is the constant

one polynomial, L
(k)
q [z] becomes the kth order moment matrix Mt[z] :=L

(k)
1 [z]. Qua-

dratic modules and their dual cones play a critical role in polynomial optimization.
Recently, polynomial optimization has been actively studied in [21, 22, 30, 40]. We
refer the reader to monographs [24, 25, 34] for comprehensive results in polynomial
optimization.

2. Lower approximations of recourse functions via polynomials. This
section is devoted to phase one of our approach on the construction of a polynomial
lower approximation of the (nonconvex) recourse function f2(x, \xi ) over \scrF , under the
assumption that the functions F (x, y, \xi ), \{ g2,i(x, y, \xi )\} , and \{ g0,i(\xi )\} in problems (1.1)
and (1.2) are polynomials.

2.1. Linear conic optimization. In this subsection, we discuss how to solve
problem (1.7). This is a linear conic optimization problem whose decision variable is
the coefficient vector of p(x, \xi ). We start with a toy example.

Example 2.1. Let x, y, \xi \in R and

F (x, y, \xi ) = (x+ y - \xi )2, X = S =R, Y (x, \xi ) = Y =R.

Obviously \scrF =R2 and K =R3. We take \nu as the standard normal distribution on R2

and p(x, \xi ) as a quadratic polynomial in the form of

p(x, \xi ) = p00 + p10x+ p01\xi + p20x
2 + p11x\xi + p02\xi 

2.

Since
\int 
\scrF xd\nu =

\int 
\scrF \xi d\nu =

\int 
\scrF x\xi d\nu = 0 and

\int 
\scrF 1d\nu =

\int 
\scrF x2d\nu =

\int 
\scrF \xi 2d\nu = 1, we have\int 

\scrF 
p(x, \xi )d\nu = p00 + p20 + p02.

In addition, since P2(R3) =\Sigma [x, y, \xi ]2, we have that

F (x, y, \xi ) - p(x, \xi ) =

\left[    
1
x
y
\xi 

\right]    
T \left[    

 - p00  - 0.5p10 0  - 0.5p01
 - 0.5p10 1 - p20 1  - 1 - 0.5p11

0 1 1  - 1
 - 0.5p01  - 1 - 0.5p11  - 1 1 - p02

\right]    
\left[    
1
x
y
\xi 

\right]    
is nonnegative on R3 if and only if the above coefficient matrix is positive semidefinite.
This is satisfied when all coefficients of p(x, \xi ) are zeros, i.e., p = 0 is the identically
zero polynomial.

In general, even if all the functions F (x, y, \xi ) and g2,i(x, y, \xi ) for i \in \scrI 2 in (1.3)
are polynomials, the value function f2(x, \xi ) may not be continuous, as can be seen
from the following example (x, y, \xi are all univariate):\Biggl( 

f2(x, \xi ) = min
y

y

s.t. xy= 0,  - 1\leq y\leq \xi 2.

\Biggr) 
=

\biggl\{ 
 - 1 if x= 0,

0 if x \not = 0.
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GLOBAL SOLUTIONS FOR NONCONVEX STOCHASTIC PROGRAMS 3483

Additional assumptions are needed to make the function f2 continuous, such as the
restricted inf-compactness condition [11, Definition 3.13] together with some constraint
qualifications. We refer the reader to [3, section 6.5.1] and [7, 41] for more details on
these results. When \scrF is compact and the value function f2(x, \xi ) is continuous, the
objective in (1.7) is bounded from above and its optimal value equals the integral of
f2(x, \xi ) with respect to \nu . We formally state the results below.

Theorem 2.2. Assume \scrF is compact and f2(x, \xi ) is continuous on \scrF . For a
given probability measure \nu supported on \scrF , the objective in (1.7) is bounded from
above on its feasible region and the optimal value equals

\int 
\scrF f2(x, \xi )d\nu .

Proof. Under the given assumptions, the integral
\int 
\scrF f2(x, \xi )d\nu is finite and it is

an upper bound for the optimal value of (1.7). Let \varepsilon > 0 be an arbitrarily small scalar.
By the Weierstrass approximation theorem [43, Theorem 7.26], there is a polynomial
q\varepsilon \in R[x, \xi ] such that

| f2(x, \xi ) - q\varepsilon (x, \xi )| \leq \varepsilon \forall (x, \xi )\in \scrF .

Let \~q\varepsilon (x, \xi ) := q\varepsilon (x, \xi ) - \varepsilon . It is feasible for (1.7) because for every triple (x, y, \xi )\in K,
we have

F (x, y, \xi ) - \~q\varepsilon (x, \xi ) \geq (f2(x, \xi ) - q(x, \xi )) + \varepsilon \geq 0.

In addition, for the given probability measure \nu , since
\int 
\scrF 1d\nu = 1, it holds that\int 

\scrF 
| f2(x, \xi ) - \~q\varepsilon (x, \xi )| d\nu \leq max

(x,\xi )\in \scrF 
| f2(x, \xi ) - q\varepsilon (x, \xi )| + \varepsilon \leq 2\varepsilon .

Since \varepsilon can be arbitrarily small, there exists a sequence of optimizing polynomials
converging to f2(x, \xi ) in \scrL 1(\nu ). Hence, their integrals converge to

\int 
\scrF f2(x, \xi )d\nu .

When the recourse function f2(x, \xi ) is itself a polynomial, problem (1.7) has a
global optimal solution f2(x, \xi ). If, however, the function f2(x, \xi ) is not a polynomial,
we can construct a sequence of approximating polynomial functions \{ p(k)\} \infty k=1, each
serving as a lower bound for f2(x, \xi ) over \scrF . Furthermore, the integral

\int 
\scrF p(k)(x, \xi )d\nu 

converges to the optimal value of (1.7) as k \rightarrow \infty . In section 4, we will discuss how
to compute such a convergent polynomial sequence numerically.

Suppose \{ p(k)(x, \xi )\} \infty k=1 is an optimizing sequence of (1.7), i.e., each of them is fea-
sible to (1.7) and limk\rightarrow \infty 

\int 
\scrF p(k)(x, \xi )d\nu =

\int 
\scrF f2(x, \xi )d\nu . Then the term E\mu [f2(x, \xi )],

which is the expectation of the recourse function in the first-stage problem (1.1),
should be well approximated by E\mu [p

(k)(x, \xi )] when k is sufficiently large. The ac-
curacy of the estimation depends on the selection of the probability measure \nu . For
instance, if \nu is the uniform distribution over \scrF , then (1.7) finds a lower approximat-
ing function that uniformly approximates f2(x, \xi ) across \scrF . If we define \nu := \delta \^x \times \mu ,
where \delta \^x is a Dirac measure centered at \^x \in X, and S denotes the projection of \scrF 
onto the \xi -plane, then the objective of (1.7) reduces to\int 

\scrF 
p(x, \xi )d(\delta \^x \times \mu ) =

\int 
S

p(\^x, \xi )d\mu = E\mu [p(\^x, \xi )].

Solving (1.7) gives an accurate evaluation of E\mu [p(x, \xi )] at the point x= \^x. In practice,
we can strategically modify the measure \nu to enhance the approximation of the original
function in specific areas. Further discussions of this approach are given in the next
section.
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3484 SUHAN ZHONG, YING CUI, AND JIAWANG NIE

The requirement for f2(x, \xi ) being continuous over \scrF can be relaxed to being
integrable with respect to the Lebesgue--Stieltjes measure \nu . This relaxed condition
allows for the inclusion of functions that may possess discontinuities yet remain inte-
grable. The formal statement and proof of this relaxation are given in the following
corollary.

Corollary 2.3.
(a) If f2(x, \xi ) is a polynomial, then it must be a global optimal solution of (1.7).
(b) Suppose \scrF is compact and \nu is a Lebesgue--Stieltjes probability measure sup-

ported on \scrF . If f2(x, \xi ) \in \scrL 1(\nu ), then the problem (1.7) is bounded from
above, and its optimal value is equal to

\int 
\scrF f2(x, \xi )d\nu .

Proof. Part (a) is obvious. For part (b), when \scrF is compact and \nu is a Lebesgue--
Stieltjes measure, the set of continuous functions is dense in \scrL 1(\nu ). Therefore, the
result can be proved via arguments similar to those in the proof of Theorem 2.2.

We would like to highlight that using SOS techniques to lower approximate non-
smooth functions has been extensively studied in the existing literature for various
applications. In particular, when \nu is the Lebesgue measure, the asymptotical con-
vergence of the polynomial lower approximating functions towards different target
functions is well studied under proper compact and semicontinuity assumptions. For
example, the readers can consult [14, Theorem 1] for the approximation of eigen-
value functions in robust control, [19, Theorem 3.2] for the spectral abscissa, and
[18, Theorem 1] for the value function in the optimal control.

2.2. A special case: \bfitxi has a finite support. When the random vector \xi has
a finite support, say S = \{ \xi (1), . . . , \xi (r)\} , we may approximate the recourse function
f2(x, \xi ) at each \xi (i) individually by a polynomial merely in terms of x to enhance the
quality of the overall approximations. Specifically, assume

\mu = \lambda 1\delta \xi (1) + \lambda 2\delta \xi (2) + \cdot \cdot \cdot + \lambda r\delta \xi (r) ,(2.1)

where each \lambda i > 0, and that \lambda 1 + \lambda 2 + \cdot \cdot \cdot + \lambda r = 1. In this setting, the expected
recourse can be expressed as

E\mu [f2(x, \xi )] = \lambda 1f2(x, \xi 
(1)) + \lambda 2f2(x, \xi 

(2)) + \cdot \cdot \cdot + \lambda rf2(x, \xi 
(r)).

In the above, every f2(x, \xi 
(i)) is a function only dependent on x. Note f2(x, \xi 

(i)) \leq 
F (x, y, \xi (i)) for every y \in Y (x, \xi (i)). Since F (x, y, \xi (i)) is a polynomial, when X is
compact, the function f2(x, \xi 

(i)) is bounded from above over the set

\scrF i := \{ x\in X : Y (x, \xi (i)) \not = \emptyset \} .(2.2)

The feasible region in (1.5) becomes \scrF =
\bigcup r

i=1\scrF i \times \{ \xi (i)\} . If for every i \in [r] we can
find a polynomial pi \in R[x] such that

f2(x, \xi 
(i)) - pi(x) \geq 0 \forall x\in \scrF i,(2.3)

then a lower approximating function for the expected recourse can be constructed as

p(x) := \lambda 1p1(x) + \lambda 2p2(x) + \cdot \cdot \cdot + \lambda rpr(x).(2.4)

Consequently, E\mu [f2(x, \xi )] - p(x) \geq 0 for any x \in X. Such polynomials pi(x) can be
solved via linear conic optimization problems similarly as in the previous subsection.
Let \nu i be a probability measure supported on \scrF i and denote the feasible region

Ki :=
\bigl\{ 
(x, y) : x\in \scrF i, y \in Y (x, \xi (i))

\bigr\} 
.(2.5)
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GLOBAL SOLUTIONS FOR NONCONVEX STOCHASTIC PROGRAMS 3485

Consider the optimization problem\left\{   max
pi\in R[x]

\int 
\scrF i

pi(x)d\nu i

s.t. F (x, y, \xi (i)) - pi(x)\in P(Ki)
x,y,

(2.6)

where P(Ki)
x,y := \{ q \in R[x, y] : q(x, y) \geq 0\forall (x, y) \in Ki\} is the nonnegative polyno-

mial cone. To emphasize P(Ki)
x,y \subseteq R[x, y], we add the superscript x,y to distin-

guish it from P(K) \subseteq R[x, y, \xi ]. Clearly, every feasible polynomial of (2.6) satisfies
(2.3). Problem (2.6) aims to find the best polynomial lower approximating function
of f2(x, \xi 

(i)) such that\int 
\scrF i

| f2(x, \xi (i)) - pi(x)| d\nu i =
\int 
\scrF i

f2(x, \xi 
(i))d\nu i  - 

\int 
\scrF i

pi(x)d\nu i

is minimized. Compared to problem (1.7), problem (2.6) has a smaller number of
variables and so is expected to be easier to solve in practice. It has computational
advantages when the cardinality of the support set S is small but the dimension for
the random vector \xi is large. Indeed, to solve for a polynomial lower bound function
of degree d, the number of variables in (1.7) is

\bigl( 
n0+n1+d

d

\bigr) 
and the number of variables

in (2.6) is
\bigl( 
n1+d

d

\bigr) 
. In applications, the finite support S is usually not given directly

but is approximated by a large number of samples. In this case, we can apply the
method proposed in [35] to find a finite set \~S that is close to S. A group of lower
approximating functions \~pi(x) can be similarly computed by solving (2.6) with respect
to each scenario in \~S. When \~S is sufficiently close to S, such \~pi(x) can also be used
to form a good approximation of the recourse function.

Under some compact and continuity assumptions, we can obtain results similar
to those of Theorem 2.2.

Theorem 2.4. Assume \scrF i is compact and f2(x, \xi 
(i)) is continuous on \scrF i. For

a given probability measure \nu i supported on \scrF i, problem (2.6) is bounded from above
and its optimal value is

\int 
\scrF i

f2(x, \xi 
(i))d\nu i.

Proof. Under given assumptions, the integral
\int 
\scrF i

f2(x, \xi )d\nu i is finite and we have\int 
\scrF i

f2(x, \xi )d\nu i \geq 
\int 
\scrF i

p(x)d\nu i for every feasible polynomial of (2.6). By the Weier-
strass approximation theorem [43, Theorem 7.26], for every \varepsilon > 0, there exists a real
polynomial q\varepsilon (x) such that

| f2(x, \xi (i)) - q\varepsilon (x)| \leq \varepsilon \forall x\in \scrF i.

Let \~q\varepsilon (x) := q\varepsilon (x) - \varepsilon . It is feasible for (2.6) and satisfies\int 
\scrF i

| f2(x, \xi (i)) - \~q\varepsilon (x)| d\nu i \leq max
x\in \scrF i

| f2(x, \xi (i)) - q\varepsilon (x)| + \varepsilon \leq 2\varepsilon .

Since \varepsilon can be arbitrarily small, there exists a sequence of feasible optimizing poly-
nomials that converges to f2(x, \xi 

(i)) in \scrL 1(\nu i), with their integrals converging to\int 
\scrF i

f2(x, \xi 
(i))d\nu i.

As in Corollary 2.3, the continuous assumption of f2(x, \xi 
(i)) can be relaxed when

\nu i is a Lebesgue--Stieltjes measure.

Corollary 2.5.
(a) If f2(x, \xi 

(i)) is a polynomial, then it must be an optimizer of (2.6).
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3486 SUHAN ZHONG, YING CUI, AND JIAWANG NIE

(b) Suppose \scrF i is compact and \nu i is a Lebesgue--Stieltjes measure supported on
\scrF i. If f2(x, \xi ) \in \scrL 1(\nu i), then problem (2.6) is bounded from above and its
optimal value is

\int 
\scrF i

f2(x, \xi 
(i)).

2.3. Conditions on tight lower bounds. A polynomial lower approximating
function p(x, \xi ) is said to be a tight approximation of f2(x, \xi ) on \scrF with respect to
the metric \nu if

\int 
\scrF | f2(x, \xi ) - p(x, \xi )| d\nu = 0. This particularly happens when f2(x, \xi )

is itself a polynomial. It is thus an interesting question to understand the conditions
under which the recourse function is a polynomial. For the two-stage SP (1.1), denote
the tuple of constraining polynomials as

\~g(x, y, \xi ) :=
\bigl( 
(g0,i(\xi ))i\in \scrI 0

, (g1,i(x))i\in \scrI 1
, (g2,i(x, y, \xi ))i\in \scrI 2

\bigr) 
.

It is clear that K = \{ (x, y, \xi ) : \~g(x, y, \xi ) \geq 0\} . For convenience, we assume [m] :=
\scrI 0 \cup \scrI 2 \cup \scrI 2 and use \~gi to denote the ith component of \~g. Then the preordering of \~g
can be written as

Pre[\~g] :=
\sum 

J\subseteq [m]

\Biggl( \prod 
i\in J

\~gi(x, y, \xi )

\Biggr) 
\cdot \Sigma [x, y, \xi ].

Clearly, every polynomial in Pre[\~g] is nonnegative on K.
First, we consider the relatively easy case where (1.3) is an unconstrained opti-

mization problem, i.e., \scrI 2 = \emptyset and F (x, y, \xi ) is a quadratic function in y.

Example 2.6. Given (x, \xi ), suppose the second-stage problem takes the form of

f2(x, \xi ) =

\biggl[ 
min
y\in Rn2

F (x, y, \xi ) =
1

2
yTAy+ b(x, \xi )T y

\biggr] 
,

where A is a symmetric positive definite matrix. Since the objective function is
strongly convex in y, we can solve for its unique optimizer y\ast = - A - 1b(x, \xi ) from the
first-order optimality condition \nabla yF (x, y\ast , \xi ) = Ay\ast + b(x, \xi ) = 0. This leads to the
polynomial recourse function

f2(x, \xi ) = - 1

2
b(x, \xi )TA - 1b(x, \xi ).

One can easily verify that F  - f2 is an SOS polynomial, i.e.,

F (x, y, \xi ) - f2(x, \xi ) =
1

2

\bigl( 
y - A - 1b(x, \xi )

\bigr) T
A
\bigl( 
y - A - 1b(x, \xi )

\bigr) 
.

In particular, for given (x, \xi ), the SOS polynomial on the right-hand side can always
achieve its global minimum at some y \in Rn2 .

The above example motivates us to derive sufficient conditions of polynomial
recourse functions with SOS polynomial cones and preorderings, as stated in the
following theorem.

Theorem 2.7. Suppose that there exists a polynomial q \in Pre[\~g] such that F - q \in 
R[x, \xi ] and the set

\scrV q(x, \xi ) := \{ y \in Rn2 : q(x, y, \xi ) = 0\} (2.7)

is nonempty for every (x, \xi ) \in \scrF . Then the recourse function of (1.1) satisfies
f2(x, \xi ) = F (x, y, \xi ) - q(x, y, \xi ) for any (x, \xi )\in \scrF .
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GLOBAL SOLUTIONS FOR NONCONVEX STOCHASTIC PROGRAMS 3487

Proof. Let p := F  - q \in R[x, y]. For given (\^x, \^\xi )\in \scrF , we have

f2(\^x, \^\xi ) - p(\^x, \^\xi ) = min
y\in Y (\^x,\^\xi )

F (\^x, y, \^\xi ) - p(\^x, \^\xi ) = min
y\in Y (\^x,\^\xi )

q(\^x, y, \^\xi ).

Notice that K is a lifted set of \scrF and Y (x, \xi ). Since K is determined by \~g \geq 0 and
q \in Pre[\~g], it holds that

min
y\in Y (\^x,\^\xi )

q(\^x, y, \^\xi ) \geq min
(x,y,\xi )\in K

q(x, y, \xi ) \geq 0.

In fact, q(\^x, y, \^\xi ) = 0 can always be achieved since \scrV q(x, \xi ) is nonempty for every
(x, \xi ) \in \scrF . The above arguments work for arbitrary (\^x, \^\xi ) \in \scrF , so f2  - p vanishes
on \scrF .

Note that \scrF = X \times S when the second-stage problem of (1.1) is unconstrained.
We then have the following result as a special case of Theorem 2.7.

Corollary 2.8. Suppose that the second-stage problem of (1.1) is unconstrained.
If there exists q \in Pre[\~g] such that F  - q \in R[x, \xi ], and the set \scrV q(x, \xi ) is nonempty
for every x \in X and \xi \in S, then the recourse function of (1.1) satisfies f2(x, \xi ) =
F (x, y, \xi ) - q(x, y, \xi ) for any (x, \xi )\in X \times S.

We give an example of constrained second-stage optimization that has a polyno-
mial recourse function.

Example 2.9. Given x \in R1 and \xi \in R1, consider the second-stage optimization
problem \Biggl\{ 

f2(x, \xi ) = min
y\in R2

F (x, y, \xi ) = x2y1  - xy22

s.t. y1  - x\geq 0, y2 \geq 0, x+ \xi  - y1  - y2 \geq 0.

Assume S =X = [0,1] are determined by (\xi , 1 - \xi )\geq 0 and (x,1 - x)\geq 0, respectively.
Then \scrF =X \times S. Denote the tuple of constraining polynomials

\~g(x, y, \xi ) = (\xi , 1 - \xi , x, 1 - x, y1  - x, y2, x+ \xi  - y1  - y2).

Let q \in Pre[\~g] be given as

q(x, y, \xi ) = x2(y1  - x) + xy2(y1  - x) + x\xi (y1  - x) + xy2(x+ \xi  - y1  - y2)

+ x\xi (x+ \xi  - y1  - y2).

For every (x, \xi ) \in \scrF , the set \scrV q(x, \xi ) in (2.7) is not empty since it always contains
y= (y1, y2) = (x, \xi ). In addition, it is easy to compute that

F (x, y, \xi ) - q(x, y, \xi ) = x3  - x\xi 2 \in R[x, \xi ].

Then by Theorem 2.7, the recourse function of this problem is f2(x, \xi ) = x3  - x\xi 2.

3. Algorithms for solving two-stage SPs. In this section, we introduce a
polynomial approximation framework to solve the two-stage SP (1.1), which is restated
here for convenience:

min
x\in X

f(x) := f1(x) +E\mu [f2(x, \xi )].
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Our algorithm has two phases. First, we compute a polynomial lower approximating
function p(x, \xi ) for the recourse function f2(x, \xi ), leveraging the optimization problem
(1.7) or (2.6). Subsequently, we approximate the first-stage problem (1.1) via

min
x\in X

\~f(x) := f1(x) +E\mu [p(x, \xi )].(3.1)

The optimal value of the above problem yields a lower bound for the optimal value of
the original two-stage SP. If \~x is a global optimizer of (3.1), and given f(x) - \~f(x)\geq 0
for every x\in X, it follows that

\~f(\~x)\leq min
x\in X

f(x)\leq f(\~x).

In the case where \~f(\~x) = f(\~x), we can confirm the global optimality of \~x for the
original two-stage SP. Otherwise, we can use \~x to refine the probability measures \nu in
(1.7) or \nu i in (2.6), facilitating the determination of a subsequent lower approximating
function and an improved objective value of (3.1). Since (1.7) seeks to minimize\int 
\scrF | f2(x, \xi ) - p(x, \xi )| d\nu , we suggest updating

\nu := \alpha \nu + (1 - \alpha )(\delta \~x \times \mu ) with a small \alpha \in (0,1),

where \delta \~x denotes the Dirac measure supported at \~x. This strategy ensures that the
newly computed lower bound functions more accurately approximate the true recourse
function in the neighborhood of previous candidate solutions. A similar strategy is
recommended to update \nu i := \alpha \nu i + (1  - \alpha )\delta \~x in (1.7). Moreover, it is desirable to
ensure that the optimal objective values computed from the approximating problem
(3.1) exhibit an increasing trend along the iterations. Therefore, in the next iteration,
we add the following constraint to compute a new lower bound function:

f1(\~x) +E\mu [p(\~x, \xi )] - \~f(\~x) \geq 0.(3.2)

This iterative process is repeated until the difference between the computed largest
lower bound and the smallest upper bound for the optimal value of (1.1) is sufficiently
small. We summarize the entire procedure in Algorithm 3.1.

We make some remarks on Algorithm 3.1.

Algorithm 3.1 An algorithm for (1.1).
For the two-stage SP (1.1), proceed as follows:
Step 0 (Initialization): Let \alpha \in (0,1) be a given scalar, \epsilon \geq 0 be a given tolerance,

and \nu be a probability measure supported on \scrF . Select the degree of
polynomial lower approximating functions. Set v+ :=+\infty and v - := - \infty .

Step 1 (Lower Approximating Functions Generation): Solve the
optimization problem (1.7) to get a polynomial lower approximating
function p(x, \xi ) at a given degree.

Step 2 (Lower and Upper Bounds Update): Let \~f(x) := f1(x) +E\mu [p(x, \xi )].
Solve the optimization problem (3.1) for an optimal solution \~x. Update
v - :=max\{ v - , \~f(\~x)\} . If v+ > f(\~x), write \~x\ast := \~x and update v+ := f(\~x).

Step 3 (Termination Check): If v+  - v - \leq \epsilon , let \~f\ast := v - . Stop and output \~x\ast 

and \~f\ast as an (approximate) optimal solution and an optimal value of (1.1),
respectively. Otherwise, add the new constraint (3.2) in (1.7) and update
\nu := \alpha \nu + (1 - \alpha )(\delta \^x \times \mu ). Then go back to Step 1.
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In Step 0, the degree of polynomial lower bound functions is predetermined for
the sake of computational feasibility. When \scrF is a simple set such as boxes, simplices,
or balls, the probability measure \nu can be conveniently chosen to be the uniform
distribution. In cases where \scrF is compact yet possesses complex geometrical char-
acteristics, we often construct \nu as a finitely atomic measure derived from sampling
procedures. For instance, if \scrF \subseteq [ - R,R]n1\times n0 for some sufficiently large R > 0, we
would first generate samples following distribution supported on [ - R,R]n1\times n0 and
then select those in \scrF as the finite support of \nu .

In Step 1, the optimization problem (1.7) is a linear conic optimization problem
with a nonnegative polynomial cone. This problem can be relaxed to a hierarchy of
linear semidefinite programs. Under the archimedean assumption, we can solve for a
sequence of optimizing polynomials of (1.7) from these relaxations. In Step 2, (3.1)
is a deterministic polynomial optimization problem, which can be solved globally by
Moment-SOS relaxations. Detailed discussions on Moment-SOS relaxations are given
in section 4.

In Steps 2 and 3, one needs to compute the expectation E\mu [\cdot ] to evaluate f(\~x),
which can be estimated via the sample average when \xi follows a continuous distribu-
tion. The implementation of such methods is introduced in section 5. It is clear that
v+ is an upper bound and v - is a lower bound for the optimal value of (1.1). Notice
that when the algorithm terminates, the output solution \~x\ast satisfies f(\~x\ast ) = v - , but
\~x\ast may not be the optimizer \~x computed in the last iterate.

Proposition 3.1. Suppose that f\ast is the global optimal value of (1.1). If Algo-
rithm 3.1 terminates with an output pair (\~x\ast , \~f\ast ), then

\~f\ast \leq f\ast \leq \~f\ast + \epsilon , f(\~x\ast ) - \epsilon \leq f\ast \leq f(\~x\ast ).

For the special case where \epsilon = 0, we have f\ast = \~f\ast and \~x\ast is a global optimal solution
of (1.1).

Proof. By given conditions, \~x\ast is the optimizer of (3.1) at some iterate t. Let
\~ft(x) denote the objective function of (3.1) at the same iterate. Since f(x) - \~ft(x)\geq 0
for every x\in X, we have

\~f\ast = min
x\in X

\~ft(x) \leq min
x\in X

f(x) = f\ast \leq f(\~x\ast ).

For Algorithm 3.1 to terminate, we must have f(\~x\ast ) - \~f\ast \leq \epsilon ; thus f(\~x\ast ) - \epsilon \leq f\ast \leq 
\~f\ast + \epsilon . For the special case where \epsilon = 0, we have f(\~x\ast ) = f\ast = \~f\ast , so \~x\ast is a global
optimizer of (1.1).

3.1. The case where \bfitxi has a finite support. In this subsection, we consider
the special case where \xi possesses a finite support S = \{ \xi (1), . . . , \xi (r)\} . Suppose

\mu = \lambda 1\delta \xi (1) + \cdot \cdot \cdot + \lambda r\delta \xi (r) ,(3.3)

where each \lambda i > 0 and \lambda 1 + \cdot \cdot \cdot + \lambda r = 1. Under this structure, we can construct the
lower bound function of p(x, \xi ) as in (2.4):

p(x, \xi ) := \lambda 1p1(x) + \cdot \cdot \cdot + \lambda rpr(x),

where each pi(x) is solved from the linear conic optimization (2.6). Then we propose
Algorithm 3.2, which is a variant of Algorithm 3.1.

The framework of Algorithm 3.2 has a major difference from Algorithm 3.1. In
each iteration, Algorithm 3.1 computes a single lower bound function p(x, \xi ), whereas
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3490 SUHAN ZHONG, YING CUI, AND JIAWANG NIE

Algorithm 3.2 An algorithm for (1.1) when \xi has a finite support.
For the two-stage SP (1.1) with \nu given in (3.3), proceed as follows:
Step 0 (Initialization): Let \alpha \in (0,1) be a given scalar and \epsilon \geq 0 be a given

tolerance. Choose the degree of lower bound functions. Set T := [r] and
v+ :=+\infty . For every i\in T , fix a probability measure \nu i supported on \scrF i,
and let v - i := - \infty .

Step 1 (Lower Approximating Functions Generation): For every i\in T , solve
the optimization problem (2.6) for a polynomial lower approximating
function pi(x) of the given degree.

Step 2 (Lower and Upper Bounds Update): Let \~f(x) := f1(x) +E\mu [p(x, \xi )]
with p(x, \xi ) as in (2.4). Solve the optimization problem (3.1) to get an
optimal solution \~x. For each i\in T , update v - i :=max\{ v - i , pi(\~x)\} . If
v+ > f(\~x), write \~x\ast := \~x and update v+ := f(\~x).

Step 3 (Termination Check): Update T := \{ i\in [r] : f2(\~x
\ast , \xi (i)) - v - i > \epsilon \} . If

T = \emptyset , let \~f\ast := \lambda 1v
 - 
1 + \cdot \cdot \cdot + \lambda rv

 - 
r . Stop and output \~x\ast and \~f\ast as an

(approximate) optimal solution and an optimal value of (1.1), respectively.
Otherwise, add the new constraint pi(\~x)\geq v - i to (2.6) and update
\nu i := \alpha \nu i + (1 - \alpha )\delta \~x for all i\in T .

Algorithm 3.2 computes | S| many polynomials pi(x) each time. When | S| is small
and \xi is of large dimension, Algorithm 3.2 can be more computationally efficient
than Algorithm 3.1. By setting deg(p(x, \xi )) = deg(pi(x)), the problem (2.6) has far
fewer variables than (1.7), which allows for faster and more robust computation of
each individual optimization problem. When S contains infinitely many elements,
Algorithm 3.2 may still be applied using sampling methods, although the number of
lower bound functions computed in each iteration increases linearly with the size of
the samples.

Similar to Algorithm 3.1, all optimization problems in Algorithm 3.2 can be ef-
ficiently solved using Moment-SOS relaxations. Additionally, Algorithm 3.2 has con-
vergence properties similar to those described in Proposition 3.1, which corresponds
to Algorithm 3.1.

Proposition 3.2. Suppose that f\ast is the global optimal value of (1.1), where \xi 
possesses a finite support S = \{ \xi (1), . . . , \xi (r)\} . If Algorithm 3.2 terminates with an
output pair (\~x\ast , \~f\ast ), then

\~f\ast \leq f\ast \leq \~f\ast + \epsilon , f(\~x\ast ) - \epsilon \leq f\ast \leq f(\~x\ast ).

For the special case where \epsilon = 0, we have f\ast = \~f\ast and \~x\ast is a global optimal solution
of (1.1).

Proof. It is evident that f(\~x\ast )\geq f\ast . Recall that \~f\ast := \lambda 1v
 - 
1 + \cdot \cdot \cdot + \lambda rv

 - 
r . Since

each v - i provides a lower bound for f2(x, \xi 
(i)) over all x \in X, it follows that f\ast \geq \~f\ast .

Upon the termination of Algorithm 3.2, the condition f2(\~x, \xi 
(i)) - v - i \leq \epsilon must hold

for each i\in [r]. Consequently, we have

f(\~x\ast ) - \~f\ast =
r\sum 

i=1

\lambda i(f2(x, \xi 
(i)) - v - i ) \leq \epsilon 

\Biggl( 
r\sum 

i=1

\lambda i

\Biggr) 
= \epsilon .

Employing arguments similar to that in Proposition 3.1, one can derive all stated
results.
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4. Moment-SOS relaxations. In this section, we introduce Moment-SOS re-
laxation methods for solving linear conic optimization and polynomial optimization
problems in Algorithms 3.1 and 3.2. For the two-stage SP (1.1), denote tuples of
constraining polynomials

g0(\xi ) := (g0,i(\xi ))i\in \scrI 0 , g1(x) := (g1,i(x))i\in \scrI 1 , g2(x, y, \xi ) := (g2,i(x, y, \xi ))i\in \scrI 2 .
(4.1)

4.1. Relaxations of problem (1.7). The linear conic optimization problem
(1.7) is \left\{   max

p\in R[x,\xi ]

\int 
\scrF 
p(x, \xi )d\nu 

s.t. F (x, y, \xi ) - p(x, \xi )\in P(K),

where \nu is a given measure and K is a semialgebraic set determined by

g0(\xi )\geq 0, g1(x)\geq 0, g2(x, y, \xi )\geq 0.(4.2)

The nonnegative polynomial cone P(K) typically does not have a convenient expres-
sion in computations. Note that g0, g1, g2 can all be viewed as tuples of polynomials
in (x, y, \xi ). Denote the quadratic module as

QM [g0, g1, g2] := QM [g0] +QM [g1] +QM [g2],

where (recall \Sigma [x, y, z] is the SOS polynomial cone)

QM [gj ] =
\sum 
i\in \scrI j

\bigl( 
gj,i(x, y, \xi ) \cdot \Sigma [x, y, z]

\bigr) 
, j = 1,2,3.

Let QM [g0, g1, g2]2k :=QM [g0, g1, g2]\cap R[x, y, \xi ]2k be the kth order truncation. It can
be explicitly expressed with semidefinite constraints. We can use these truncated qua-
dratic modules to approximate P(K). Indeed, for a given degree d, if QM [g0, g1, g2]
is archimedean, it holds that

int (Pd(K)) =
\bigcap 

k\geq \lceil d/2\rceil 

(QM [g0, g1, g2]2k \cap R[x, y, \xi ]d) .(4.3)

Then we can construct a hierarchy of semidefinite relaxations of (1.7). For k with
2k\geq deg(F ), the kth order SOS relaxation of (1.7) is\left\{   max

p\in R[x,\xi ]

\int 
\scrF 
p(x, \xi )d\nu 

s.t. F (x, y, \xi ) - p(x, \xi )\in QM [g0, g1, g2]2k.
(4.4)

Its dual problem is called the kth order moment relaxation of (1.7). The problem
(4.4) is a linear conic optimization problem, where the coefficient vector of p(x, \xi )
is the decision vector. For p(x, \xi ) to be feasible for (4.4), its total degree must be
smaller than or equal to 2k. Since QM [g0, g1, g2]2k can be expressed by semidefinite
constraints, the optimization problem (4.4) can be solved efficiently by interior point
methods.

Theorem 4.1. Suppose QM [g0, g1, g2] is archimedean and f2(x, \xi ) is continuous
on \scrF . For a given probability measure \nu , problem (4.4) is solvable with an optimal
solution p(k)(x, \xi ) when k is large enough, and\int 

\scrF 
| f2(x, \xi ) - p(k)(x, \xi )| d\nu \rightarrow 0 as k\rightarrow \infty .
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3492 SUHAN ZHONG, YING CUI, AND JIAWANG NIE

Proof. Under the archimedean condition, K in (4.2) is compact and the truncated
quadratic module QM [g0, g1, g2]2k is closed for every k. Then \scrF is also compact
as a projection of K onto the (x, \xi ) space. Since f2(x, \xi ) is continuous on \scrF , by
Theorem 2.2, for every \varepsilon > 0, there exists a polynomial p(x, \xi ) that is feasible for (1.7)
and satisfies

\int 
\scrF | f2(x, \xi ) - p(x, \xi )| d\nu \leq \varepsilon . Then

F (x, y, \xi ) - (p(x, \xi ) - \varepsilon ) \geq \varepsilon > 0 \forall (x, y, \xi )\in K.

By Putinar's Positivstellensatz, F (x, y, \xi )  - (p(x, \xi )  - \varepsilon ) \in QM [g0, g1, g2]. So there
exists k\varepsilon \in N that is sufficiently large such that the polynomial p(x, \xi ) - \varepsilon is feasible
for (4.4) at the k\varepsilon th relaxation. At the k\varepsilon th relaxation, (4.4) is bounded from above
and has a nonempty closed feasible set, so it is solvable with an optimizer p(k\varepsilon )(x, \xi ).
Then we have\int 

\scrF 
| f2(x, \xi ) - p(k\varepsilon )(x, \xi )| d\nu \leq 

\int 
\scrF 
| f2(x, \xi ) - (p(x, \xi ) - \varepsilon )| d\nu \leq 2\varepsilon .

Since QM [g0, g1, g2]2k \subseteq QM [g0, g1, g2]2k+2 for every k, the optimal value of (4.4)
increases monotonically as the relaxation order grows. In other words, k\varepsilon \rightarrow \infty as
\varepsilon \rightarrow 0. So the conclusion holds.

For the special case that f2(x, \xi ) is a polynomial and F  - f2 \in QM [g0, g1, g2], the
true recourse function is an optimizer of (4.4) when k is big enough. Since p(x, \xi ) has
two kinds of variables x and \xi , one can also use a pair of degrees as the relaxation
order. Denote

d1 := max\{ degx(F ), deg(g1), degx(g2)\} ,(4.5)

d2 := max
\bigl\{ 
deg\xi (F ), deg(g0), deg\xi (g2)

\bigr\} 
.(4.6)

Let k = (k1, k2, k) such that k1 \geq d1, k2 \geq d2, k = max\{ \lceil (k1 + k2)/2\rceil , \lceil deg(F )/2\rceil \} .
The kth order SOS relaxation of (1.7) is\left\{       

max

\int 
\scrF 
p(x, \xi )d\nu 

s.t. F (x, y, \xi ) - p(x, \xi )\in QM [g1, g2, g3]2k,

p(x, \xi )\in R[x, \xi ]k1,k2
.

(4.7)

In the above, R[x, \xi ]k1,k2
is the set of real polynomials with partial degree in x no

more than k1 and partial degree in \xi no more than k2. Let v(k) denote the optimal
value of (4.4) and let v(k) denote the optimal value of (4.7). We have v(k) \geq v(k) for
every k= (k1, k2, k) such that k= \lceil (k1 + k2)/2\rceil .

Corollary 4.2. Suppose QM [g1, g2, g3] is archimedean and f2(x, \xi ) is continu-
ous on \scrF . For a given measure \nu , problem (4.7) is solvable with an optimal solution
p(k)(x, \xi ) with k= (k1, k2, k) when min(k) is large enough, and\int 

\scrF 
| f2(x, \xi ) - p(k)(x, \xi )| d\nu \rightarrow 0 as min(k)\rightarrow \infty .

Proof. This result is implied by Theorem 4.1.

We remark that the relaxation (4.7) is more flexible than (4.4) in computations.
By adjusting the degrees of x and \xi separately, we can construct lower approximating
functions p(x, \xi ) with different focus on the decision variables and the random vari-
ables. In addition, for a fixed k= \lceil (k1+k2)/2\rceil , problem (4.7) has fewer variables than
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GLOBAL SOLUTIONS FOR NONCONVEX STOCHASTIC PROGRAMS 3493

(4.4), while the computed lower approximating functions may still be very efficient.
Here is such an example.

Example 4.3. Consider a two-stage SP as in (1.1) with x, y, \xi \in R, f1(x) = 0,
\mu \sim \scrU (S), and

X = \{ x\in R : 1 - x2 \geq 0\} , S = \{ \xi \in R : \xi (1 - \xi )\geq 0\} ,

where \scrU (S) denotes the uniform distribution on S. The second-stage problem is given
as \Biggl\{ 

f2(x, \xi ) =min
y\in R

(x+ \xi )y3  - \xi y2 + xy

s.t. \xi 2  - (y - x)2 \geq 0.

Clearly, the second-stage problem is feasible for every x \in X and \xi \in S, so \scrF =
X \times S. Select \nu to be the uniform probability measure supported on \scrF . We solve
lower approximating functions from the SOS relaxations (4.4) with different relaxation
orders k= (k1, k2, k). The resulting polynomials are listed in the following table.

(k1, k2) k p(k)(x, \xi )
(1, 2) 2  - 0.3426 + 0.4788x+ 2.2407\xi  - 3.1747x\xi  - 4.0833\xi 2 + 4.8810x\xi 2

(1, 3) 2  - 0.0042 + 0.0565x - 0.3476\xi  - 1.1198x\xi + 1.7471\xi 2 + 2.3027x\xi 2

 - 3.5887\xi 3 + 0.9257x\xi 3

(2, 2) 2  - 0.4450 + 0.5490x+ 0.8802x2 + 2.4376\xi  - 3.2883x\xi  - 0.4785x2\xi 
 - 4.1466\xi 2 + 4.9806x\xi 2  - 0.5446x2\xi 2

(2, 3) 3  - 0.0903 - 0.0036x+ 1.4816x2  - 0.0754\xi + 0.4759x\xi  - 3.9125x2\xi 
+1.0345\xi 2  - 2.7192x\xi 2 + 5.9542x2\xi 2  - 3.0738\xi 3 + 4.4429x\xi 3

 - 3.5727x2\xi 3

Then we compute f (k)(x) := E\mu [p
(k)(x, \xi )] for each above k and plot them with

the true expected recourse function f(x) = E\mu [f2(x, \xi )] in Figure 2. Specifically, the
function f (1,2,2) is plotted in the dashed line, the function f (1,3,2) is plotted in the
dotted line, the function f (2,2,2) is plotted in the dash-dotted line, the function f (2,3,3)

is plotted in the plus sign line, and the expected recourse f is plotted in the solid line.
In addition, we plot global minimizers of all these f (k)(x) on X in blue dots.

Clearly, the global minimum of E\mu [p
(k)(x, \xi )] on X increases as the relaxation

order increases. Denote by f
(k)
min and x(k) the global minimum and minimizer of (3.1).

Fig. 2. Compute E\mu [p(k)(x, \xi )] and E[f2(x, \xi )] for Example 4.3, where the dashed line is f (1,2,2),
the dotted line is f (1,3,2), the dash-dotted line is f (2,2,2), the plus sign line is f (2,3,3), the solid line
is f , and the big dots are minimizers.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

4/
25

 to
 1

36
.1

52
.2

14
.2

6 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y
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We report the computational results in the following table.

k (1,2,2) (1,3,2) (2,2,2) (2,3,3)

f
(k)
min  - 1.1018  - 0.9883  - 0.7821  - 0.6296

x(k)  - 1.0000  - 1.0000  - 0.6149  - 0.3555

From Figure 2, one can observe that when k = (2,3,3), x(k) =  - 0.3555 is close
to the global optimizer of the two-stage SP. By sample average approximations, we
compute

f( - 0.3555) \approx 1

100

100\sum 
i=1

f2( - 0.3555, 0.01 \cdot i) = - 0.6042,

which is close to f (k)( - 0.3555) = - 0.6296. One can further improve the approxima-
tion quality by increasing the relaxation order.

4.2. Relaxations of problem (2.6). For ease of reference, we repeat the opti-
mization problem (2.6) below:\left\{   max

pi\in R[x]

\int 
\scrF i

pi(x)d\nu i

s.t. F (x, y, \xi (i)) - pi(x)\in P(Ki)
x,y,

where \nu i is a given probability measure supported on \scrF i, and Ki is a semialgebraic
set determined by

g1(x)\geq 0, g2(x, y, \xi 
(i))\geq 0.(4.8)

The functions g1, g2(\bullet , \xi (i)) can be viewed as polynomial tuples in (x, y). Denote the
quadratic module

QM [g1, g2(\bullet , \xi (i))]x,y := QM [g1]
x,y +QM [g2(\bullet , \xi (i))]x,y

as a subset in R[x, y], where

QM [g1]
x,y :=

\sum 
i\in \scrI 1

g1,i(x) \cdot \Sigma [x, y], QM [g2(\bullet , \xi (i))]x,y :=
\sum 
j\in \scrI 2

g2,j(x, y, \xi 
(i)) \cdot \Sigma [x, y].

Let k\geq max\{ \lceil deg(F )/2\rceil , \lceil d1/2\rceil \} . The kth order SOS relaxation of (2.6) is\left\{   max
pi\in R[x]

\int 
\scrF i

pi(x)d\nu i

s.t. F (x, y, \xi (i)) - pi(x)\in QM [g1, g2(\bullet , \xi (i))]x,y2k ,
(4.9)

where QM [g1, g2(\bullet , \xi (i))]x,y2k denotes the kth order truncation of QM [g1, g2(\bullet , \xi (i))]x,y.
Theorem 4.4. Suppose QM [g1, g2(\bullet , \xi (i))]x,y is archimedean and f2(x, \xi 

(i)) is
continuous on \scrF i. For a given measure \nu i, problem (4.9) is solvable with an optimal

solution p
(k)
i (x) when k is large enough, and\int 

\scrF i

| f2(x, \xi (i)) - p
(k)
i (x)| d\nu i \rightarrow 0 as k\rightarrow \infty .
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Proof. Under the archimedean condition, Ki in (4.8) is compact; thus \scrF i is com-
pact. Assume f2(x, \xi 

(i)) is continuous on \scrF i. By Theorem 2.4, for every \varepsilon > 0,
there exists a polynomial pi(x) that is feasible for (2.6) and satisfies

\int 
\scrF i

| f2(x, \xi (i)) - 
pi(x)| d\nu i \leq \varepsilon ; that is,

F (x, y, \xi (i)) - (pi(x) - \varepsilon ) \geq \varepsilon > 0 \forall (x, y)\in Ki.

By Putinar's Positivstellensatz, F (x, y, \xi (i)) - (pi(x) - \varepsilon ) \in QM [g1, g2(\bullet , \xi (i))]x,y. So
there exists k\varepsilon \in N that is sufficiently large such that the polynomial pi(x)  - \varepsilon is
feasible for (4.9) at the k\varepsilon th relaxation. At the k\varepsilon th relaxation, (4.9) is bounded
from above and has a nonempty closed feasible set, so it is solvable with an optimizer
p
(k\varepsilon )
i (x). Then we have\int 

\scrF i

| f2(x, \xi (i)) - p
(k\varepsilon )
i (x)| d\nu i \leq 

\int 
\scrF i

| f2(x, \xi (i)) - (pi(x) - \varepsilon )| d\nu i \leq 2\varepsilon .

Since QM [g1, g2(\bullet , \xi (i))]x,y2k \subseteq QM [g1, g2(\bullet , \xi (i))]x,y2k+2 for every k, the optimal value of
(4.9) increases monotonically as the relaxation order grows. In other words, k\varepsilon \rightarrow \infty 
as \varepsilon \rightarrow 0. So the conclusion holds.

Example 4.5. Consider the two-stage SP as in (1.1) with x, \xi \in R, f1(x) = 0,
y \in R2, and

S = \{ \xi (1), \xi (2)\} = \{  - 0.1,0.2\} , X = \{ x\in R : x(1 - x)\geq 0\} .

The second-stage optimization problem is given as\left\{     
f2(x, \xi ) = min

y\in R2
x2y1 + \xi xy2

s.t. y1  - \xi \geq 0, y2 \geq 0,
x - y1  - y2 \geq 0.

(4.10)

Clearly, \scrF 1 =X = [0,1] and \scrF 2 = [0.2,1]. Since the second-stage optimization problem
is linear in y, we can analytically solve the recourse function at each realization as

f2(x, \xi 
(1)) =  - 0.2x2  - 0.01x, f2(x, \xi 

(2)) = 0.2x2.

Select \nu 1, \nu 2 as uniform probability measures supported on \scrF 1,\scrF 2, respectively. We
solve (4.9) with initial relaxation order k = 2. The computed lower approximating
functions are

p
(2)
1 (x) =  - 0.0004 - 0.0066x - 0.2112x2 + 0.0150x3  - 0.0069x4,

p
(2)
2 (x) =  - 0.0004 + 0.0028x+ 0.1926x2 + 0.0084x3  - 0.0034x4.

They provide reasonably good approximations of the true recourse function. In fact,
we have

sup
x\in X

| f2(x, \xi (1)) - p
(1)
1 (x)| \leq 4 \cdot 10 - 4, sup

x\in X
| f2(x, \xi (2)) - p

(2)
2 (x)| \leq 7 \cdot 10 - 5.

Therefore, for an arbitrary probability measure \mu = \lambda 1\delta  - 0.1+(1 - \lambda 2)\delta 0.2 with \lambda \in [0,1],

the recourse approximation \~f(x) := \lambda 1 \cdot p(2)1 (x) + (1 - \lambda ) \cdot p(2)2 (x) satisfies

sup
x\in X

| f(x) - \~f(x)| \leq 4 \cdot 10 - 4.
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3496 SUHAN ZHONG, YING CUI, AND JIAWANG NIE

4.3. Solving the first-stage problem. In this subsection, we discuss how to
replace the recourse function f2(x, \xi ) by the approximating polynomial function p(x, \xi )
in the two-stage SP (1.1) and solve the first-stage problem to global optimality. Let
p(x, \xi ) be a selected polynomial lower approximating function of f2(x, \xi ). The two-
stage SP (1.1) can be approximated by the polynomial optimization problem in (3.1),
which takes the form of\Biggl\{ 

min
x\in Rn1

\~f(x) := f1(x) +E\mu [p(x, \xi )]

s.t. g1(x)\geq 0,

where g1(x) = (g1,i(x))i\in \scrI 1 is the polynomial tuple given as in (4.1). The above
problem can be solved globally by Moment-SOS relaxations. Denote

d3 := max
\bigl\{ 
deg

\bigl( 
\~f
\bigr) 
, deg(g1)

\bigr\} 
.(4.11)

For k \in N such that 2k\geq d3, the kth order SOS relaxation of (3.1) is\Biggl\{ 
max
\gamma \in R

\gamma 

s.t. \~f(x) - \gamma \in QM [g1]
x
2k,

(4.12)

where QM [g]x2k denotes the kth order truncation of

QM [g1]
x :=

\sum 
i\in \scrI 1

g1,i(x) \cdot \Sigma [x].

The dual problem of (4.12) is the kth order moment relaxation of (3.1), which is\left\{       
min

z\in RNn1
2k

\langle \~f, z\rangle 

s.t. z0 = 1, Mk[z]\succeq 0,

L
(k)
g1,i [z]\succeq 0 (i\in \scrI 1).

(4.13)

In the above, Mk[z] and each L
(k)
gi,i [z] are moment and localizing matrices defined

as in (1.11). For each k, the optimization problems (4.12)--(4.13) are semidefinite
programming problems. Suppose \~f0 is the optimal value of (3.1) and \~fk is the optimal
value of (4.13) at the kth relaxation order. Under the archimedean condition of
QM [g1]

x, the dual pair (4.12)--(4.13) has the asymptotic convergence (see [23])

\~fk \leq \~fk+1 \leq \cdot \cdot \cdot \leq \~f0 and lim
k\rightarrow \infty 

\~fk = \~f0.

Interestingly, the finite convergence, i.e., \~fk = \~f0 for k large enough, holds when \~f, g1
are given by generic polynomials. It can be verified by a convenient rank condition
called flat truncation [33]. Suppose z\ast is an optimizer of (4.13) at the kth relaxation.
If there exists t\in [d3, k] such that

rankMt - d3
[z\ast ] = rankMt[z

\ast ],

then (4.13) is a tight relaxation of (3.1). In this case, problem (3.1) has rankMt[z
\ast ]

number of global optimal solutions. These optimal solutions can be extracted via
Schur decompositions [16]. We refer the reader to [24, 33, 34] for detailed study of
polynomial optimization.
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5. Numerical experiments. In this section, we demonstrate the effectiveness
of our method through numerical experiments. The computations were carried out
in MATLAB R2023a on a laptop equipped with an 8th generation Intel®CoreTMi7-
12800H CPU and 32 GB RAM. The computations were implemented with the MAT-
LAB software Yalmip [29], Mosek [32], GloptiPoly 3 [15], and SeDuMi [45]. For
clarity, computational results are reported to four decimal places.

In Algorithms 3.1 and 3.2, all optimization problems are solved using Moment-
SOS relaxations. For the linear conic optimization problem (1.7), we choose a specific
relaxation order k = (k1, k2, k) to compute the lower approximating function p(x, \xi )
from problem (4.7). For the optimization problem (2.4), we select a prescribed relax-
ation order k to determine the lower approximating function pi(x) from (4.9). The
polynomial optimization problem (3.1) is globally solved using a hierarchy of semi-
definite relaxations, as detailed in (4.13).

For the sake of simplicity, we denote the computed lower approximating function
for f(x) at the tth iteration as \~ft(x), with \~ft and \~x(t) representing the global optimal
value and the solution obtained from (3.1) in the corresponding iteration. We use
diff to denote the gap between the upper and lower bounds (i.e., v+  - v - ) at each
iteration.

First, we consider a synthetic example where the recourse function has an explicit
analytical expression.

Example 5.1. Consider the two-stage SP\Biggl\{ 
min
x\in R2

2x1x
2
2  - x2

1 +E\mu [f2(x, \xi )]

s.t. 1 - x2
1  - x2

2 \geq 0,
(5.1)

where \xi \in R is univariate and f2(x, \xi ) is the optimal value function of the problem\Biggl\{ 
min
y\in R

x2y

s.t. x1  - 2\xi \leq y\leq x1 + \xi .

Since the second-stage problem is linear in y with box constraints, one can obtain the
following analytical expression of the recourse function:

f2(x, \xi ) =

\Biggl\{ 
x2(x1  - 2\xi ) if x2 \geq 0,

x2(x1 + \xi ) if x2 \leq 0.

Clearly, f2(x, \xi ) is continuous but nonconvex and is not a polynomial. Assume \mu 
is a probability measure with the support S = [0,1] and moments E\mu [\xi ] = 0.6 and
E\mu [\xi 

2] = 0.5. Then we can find an explicit expression of the overall objective function

f(x) = 2x1x
2
2  - x2

1 +E\mu [f2(x, \xi )] =

\Biggl\{ 
2x1x

2
2  - x2

1 + x1x2  - 1.2x2 if x2 \geq 0,

2x1x
2
2  - x2

1 + x1x2 + 0.6x2 if x2 \leq 0.

One can get the following global optimal solution and the optimal value of (5.1) by
solving two polynomial optimization problems with Moment-SOS relaxations:

x\ast = ( - 0.6451,0.7641)T , f\ast = - 2.5793.

Now we apply Algorithm 3.1 to solve this problem and compare our results with
the above true solution. Clearly, \scrF = X \times S. Select \alpha = 0.1 and \epsilon = 0.001, and
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3498 SUHAN ZHONG, YING CUI, AND JIAWANG NIE

let \nu be the uniform probability measure supported on \scrF . For the relaxation order
k = (2,2,2), Algorithm 3.1 terminates at the initial loop t = 1 with the computed
objective approximation

\~f1(x) = 2x1x
2
2  - x2

1 + ( - 0.6171x2
2 + x1x2  - 0.3000x2  - 0.3281).

By solving optimization problem (3.1), we obtain the following candidate solution and
the corresponding lower bound for the optimal objective value:

\~x\ast = ( - 0.6417,0.7670)T , \~f\ast = - 2.5801.

Since f\ast = - 2.5792, the gap diff= \~f\ast  - \~f\ast = 8.8310 \cdot 10 - 4 < 0.001. Compared to the
true optimizer and the optimal value, the computed polynomial lower approximating
function, even with a low degree, provides a good approximation.

In the next example, we show that by increasing the relaxation order, one can
improve the approximation quality of the polynomial lower approximating functions.

Example 5.2. Consider the two-stage SP as in (1.1) with x, \xi \in R, f1(x) = 0,
y \in R2, \mu \sim \scrU (S), and

X = \{ x\in R : 1 - x2 \geq 0\} , S = \{ \xi \in R : \xi (1 - \xi )\geq 0\} ,

where \mu \in \scrU (S) denotes the uniform probability measure. The second-stage problem
is given by \left\{         

f2(x, \xi ) = min
y\in R2

xy1 + 2xy2

s.t. y1  - x - \xi \geq 0,
y2  - x+ \xi \geq 0,
2x+ 3\xi  - y1  - y2 \geq 0.

Clearly, the second-stage optimization problem is feasible for every x\in X and \xi \in S, so
we have \scrF =X \times S. Select \alpha = 0.1 and \epsilon = 0.1, and let \nu be the uniform probability
measure supported on \scrF . Apply Algorithm 3.1 to this problem. We consider two
different relaxation orders: (i)k= (2,4,3); (ii)k= (4,4,4).

(i) When k= (2,4,3), Algorithm 3.1 terminates at the loop t= 4. We record the
computed polynomial objective approximations in each loop below:

\~f1(x) = - 0.4330 + 1.0000x+ 1.7010x2, \~f2(x) = - 0.2500 + 1.0000x+ 0.7498x2,
\~f3(x) = - 0.4330 + 1.0000x+ 1.7009x2, \~f4(x) = - 0.2586 + 1.0000x+ 0.8248x2.

The computed solutions and lower/upper bounds for the optimal values at each iter-
ation are listed in Table 1. To evaluate f(\~x(t)), we solve the second-stage optimiza-
tion problem by Moment-SOS relaxations and use the sample average of \{ f2(\bullet ,0.01 \cdot 
i)\} i\in [100]. The output solution and the best lower bound of the optimal value are

\~x\ast = \~x(1) =  - 0.2939, \~f\ast = \~f4(\~x
(4)) =  - 0.5617.

(ii) When k= (4,4,4), Algorithm 3.1 terminates at the initial loop t= 1 with the
polynomial objective approximation

\~f1(x) =  - 0.3035 + 1.0000x+ 1.0034x2 + 0.7999x4.

By solving optimization problem (3.1), we get the solution and the lower bound of
the optimal value
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GLOBAL SOLUTIONS FOR NONCONVEX STOCHASTIC PROGRAMS 3499

Table 1
Computational results with k= (2,4,3) for Example 4.5.

t 1 2 3 4

\~x(t)  - 0.2939  - 0.6668  - 0.2939  - 0.6062

\~ft(\~x(t))  - 0.5800  - 0.5834  - 0.5800  - 0.5617

f(\~x(t))  - 0.4756  - 0.3331  - 0.4756  - 0.4131

diff 0.1044 0.1044 0.1044 0.0861

Table 2
Computational results with the decomposition algorithm.

Test number 1 2 3 4 5

Output point  - 0.4200  - 0.4438  - 0.4091  - 0.3926  - 0.4147

Output value  - 0.5042  - 0.5627  - 0.4784  - 0.4406  - 0.4915

\~x\ast = \~x(1) =  - 0.3979, \~f\ast = \~f1(\~x
(1)) =  - 0.5225.

We again evaluate f(\~x\ast ) by the sample average of \{ f2(\bullet ,0.01 \cdot i)\} i\in [100] and obtain

f(\~x\ast ) = - 0.5198, diff= f(\~x(1)) - \~f1(\~x
(1)) = 0.0027< 0.1.

Compared to the previous case, it is clear that the increase of the relaxation order
leads to a better polynomial approximation and a smaller gap between the upper and
lower bounds of objective values.

An important usage of the above computed lower bounds of the objective value is
to certify the quality of a (local) solution obtained by other methods. To illustrate this,
we consider the solutions computed by the decomposition algorithm proposed in 26]
to solve the current example, with the same parameters selected in the reference. The
latter method is only guaranteed to compute a properly defined first-order stationary
point, and it is likely that the computed objective value is far from globally optimal.
We consider 100 scenarios over 5 independent replications and select the initial point
x= 0. The computational results are reported in Table 2.

In Table 2, the output objective value  - 0.5042 from Test 1 is the closest to
our computed lower bound f(\~x\ast ) =  - 0.5225. This may suggest that the computed
objective value in this test is close to the true globally optimal value of the two-
stage SP, and the output point x= - 0.4200 can be viewed as an approximate global
solution.

In addition, we plot the expected recourse function f (evaluated via sample aver-
ages) and computed polynomial lower bound functions in Figure 3. The left subfigure
is for the case k= (2,4,3), and the right subfigure is for the case k= (4,4,4). In both
subfigures, f is plotted with solid lines and \~f1 is plotted with dashed lines. In the left
panel, \~f2 is plotted with the dotted line, and \~f4 is plotted with the dash-dotted line.

It can be observed that the polynomial approximation with order k= (4,4,4) also
gives a better approximation to the true optimizer compared to the case k= (2,4,3).
On the other hand, a small increase of the relaxation order can heavily enlarge the
dimension of the corresponding linear conic optimization problem (4.4). For the case
k = (2,4,3), there are 210 scalar variables, 7 matrix variables equivalent to 1350
scalar variables when scalarized, and 1365 constraints. In contrast, for the case where
k= (4,4,4), there are 495 scalar variables, 7 matrix variables which scalarize to 6265
variables, and 6290 constraints.
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3500 SUHAN ZHONG, YING CUI, AND JIAWANG NIE

Fig. 3. The recourse function and its approximations for Example 5.2. The left panel is for
k= (2,4,3), and the right panel is for k= (4,4,4). The dashed line is for \~f1, the dotted line is for
\~f2, the dash-dotted line is for \~f4, and the solid line is for f .

Next we apply Algorithm 3.1 to a problem of a larger scale, where the second-
stage variable y \in R10. In this example, the polynomial lower approximating functions
again yield a high-quality solution with relatively low degrees.

Example 5.3. Consider the two-stage SP\Biggl\{ 
min
x\in R2

x1x2 +E\mu [f2(x, \xi )]

s.t. 1 - x2
1  - x2

2 \geq 0,

where \xi \in S = [0,1] follows a uniform distribution on S, and f2(x, \xi ) is the optimal
value function of the problem (here e= (1, . . . ,1)T \in Rn2 is the vector of all ones)\left\{             

min
y\in R10

\| y\| 2  - y21  - \xi \cdot eT y

s.t. (x2 + 2)y1  - x1 + 2\xi \geq 0,
2 + x2 + (x1  - 2)y2 \geq 0,
10 - x1  - eT y\geq 0,
yi \geq 0, i= 2, . . . ,9.

Then \scrF =X\times S since the second-stage problem is feasible for every x\in X and \xi \in S.
Now we apply Algorithm 3.1 to this problem. We select \alpha = 0.1 and \epsilon = 0.06 and let \nu 
be the uniform probability measure supported on \scrF . Denote by \~pt(x) the computed
lower bound function for f2(x, \xi ) at the tth loop. For the degree bound k= (2,2,2),
we obtain polynomial objective approximations

\~f1(x) = x1x2 + ( - 5.0868 + 0.4978x1  - 0.0023x2  - 0.0069x2
1  - 0.0113x2

2),

\~f2(x) = x1x2 + ( - 5.0894 + 0.4730x1 + 0.0310x2  - 0.0192x2
1

 - 0.0434x1x2  - 0.0477x2
2).

By solving optimization problem (3.1), we get optimal solutions for each approxima-
tion and corresponding lower/upper bounds for the optimal value:

\~x(1) = ( - 0.8033,0.5956)T , \~f1(\~x
(1)) =  - 5.9750, f(\~x(1)) =  - 5.8801,

\~x(2) = ( - 0.8037,0.5950)T , \~f2(\~x
(2)) =  - 5.9379, f(\~x(2)) =  - 5.8801.

In the above, each f(\~x(t)) is approximated by the sample average of \{ f2(\bullet ,0.01 \cdot 
i)\} i\in [100]. Since

diff = f(\~x(2)) - \~f2(\~x
(2)) = 0.0578 < 0.06,

we have that Algorithm 3.1 terminates at the loop t= 2.
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Our last test example is a joint shipment planning and pricing problem, which
can be modeled in the form of a two-stage SP [27].

Example 5.4. Consider one product in a network consisting of M factories and
N retailer stores. For each i \in [M ], factory i has an initial schedule to produce the
product with amount xi at cost c1i per unit, and it may allow additional production
with amount yi at cost c2i > c1i per unit. In addition, to ship a unit of item from
factory i to store j costs sij . Let x0 denote the product price and zij denote the
product amount shipped from factory i to store j. The goal is to fulfill the demand
with the lowest cost. Suppose the demand is linearly dependent on the price x0 and
some random vectors \xi = (\xi 1, . . . , \xi n0

). In addition, suppose there exist highest price
and production limits. That is, there are scalars d0, d1,i, d2,i > 0 such that x0 \leq d0
and xi \leq d1,i, yi \leq d2,i for every i\in [M ]. Let

cj = (cj,1, . . . , cj,M )T , dj = (dj,1, . . . , dj,M )T , j = 1,2.

The shipment planning problem can be formulated as\Biggl\{ 
min
x0\in R

E\mu [f2(x0, \xi )]

s.t. d0 \geq x0 \geq 0,

where f2(x0, x, \xi ) is the optimal value of\left\{                               

min
(x,y,z)

cT1 x+ cT2 y+
M\sum 
i=1

N\sum 
j=1

(sij  - x0)zij

s.t. aj(\xi )x0 + bj(\xi ) - 
M\sum 
i=1

zij \geq 0 \forall j \in [N ],

xi + yj  - 
N\sum 
j=1

zij \geq 0 \forall i\in [M ],

d1 \geq x\geq 0, x= (x1, . . . , xM )\in RM ,

d2 \geq y\geq 0, y= (y1, . . . , yM )\in RM ,

z \geq 0, z = (zij)i\in [M ],j\in [N ] \in RM\times N .

Up to a proper scaling, suppose the parameters are selected as

M = 2, N = 3, d0 = 1, d1,1 = 1, d1,2 = 1, d2,1 = 1
d2,2 = 1 c1,1 = 0.2, c1,2 = 0.2, c2,1 = 0.44, c2,2 = 0.46, s1,1 = 0.1,
s1,2 = 0.2, s1,3 = 0.3, s2,1 = 0.3, s2,2 = 0.2, s2,3 = 0.1.

(i) Consider \xi = (\xi 1, \xi 2) whose probability measure \mu follows the truncated stan-
dard normal distribution supported on S = [0,1]2. We set

a1(\xi ) =  - 2\xi 1, a2(\xi ) =  - 2.5(\xi 1 + 0.01), a3(\xi ) =  - 3\xi 1  - 0.06,
b1(\xi ) = 0.5\xi 2 + 3, b2(\xi ) = 0.7\xi 2 + 4, b3(\xi ) =  - 0.1\xi 2 + 5.

Now we apply Algorithm 3.1 to this problem. We generate 500 independent samples
following the distribution \mu . Select \alpha = 0.1 and \epsilon = 0.3, and let \nu be the Cartesian
product of \mu and the uniform probability measure supported on X. For the relaxation
order k = (2,2,2), Algorithm 3.1 terminates at the loop t = 3. To improve the
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Table 3
Computational results with k= (2,2,2) for Example 5.4.

t 1 2 3 4 5

\~x
(t)
0 1.0000 1.0000 1.0000 1.0000 1.0000

\~ft(\~x
(t)
0 )  - 2.5568  - 2.3005  - 2.3000  - 2.3000  - 2.2999

f(\~x
(t)
0 )  - 2.1000  - 2.1000  - 2.1000  - 2.1000  - 2.1000

diff 0.4580 0.2018 0.2012 0.2012 0.2011

Fig. 4. The recourse function and its approximations for Example 5.4. The left is for case (i)
and the right is for case (ii). In both subgraphs, the dashed line is for \~f1, and the solid line is for f .
Particularly in the left panel, the dotted line is for \~f2, and the dash-dotted line is for \~f5.

approximation, we execute two more iterations and obtain the following objective
approximations:

\~f1(x0) =  - 0.05386 + 0.8499x0  - 3.3528x2
0,

\~f2(x0) =  - 0.5393x0  - 1.7613x2
0,

\~f3(x0) =  - 0.5943x0  - 1.7057x2
0,

\~f4(x0) =  - 0.0019 - 0.5958x0  - 1.7023x2
0,

\~f5(x0) =  - 0.2300 - 0.2653x0  - 1.8046x2
0.

We report the computational results in Table 3 and plot the expected recourse function
and its approximations in the left subgraph of Figure 4. In the figure, f is plotted in
the solid line, \~f1 is plotted in the dashed line, \~f2 is plotted in the dotted line, and \~f5
is plotted in the dash-dotted line.

(ii) Consider the situation that aj(\xi ) and bj(\xi ) have the following finite realiza-
tions with equal probabilities:

a1(\xi )\in \{  - 0.5, - 2\} a2(\xi )\in \{  - 3\} a3(\xi )\in \{  - 1, - 3\} 
b1(\xi )\in \{ 3\} , b2(\xi )\in \{ 4,7\} , b3(\xi )\in \{ 5\} 

We apply Algorithm 3.2 to this problem. Select \alpha = 0.1 and \epsilon = 0.3, and let each \nu i
be the uniform probability measure supported on X. For the relaxation order k = 4,
Algorithm 3.2 terminates at the loop t = 2 with the following objective approxima-
tions:

\~f1(x0) =  - 0.2981 + 2.9749x0  - 8.0524x2
0 + 3.0694x3

0,
\~f2(x0) =  - 0.3001 + 2.9921x0  - 8.0952x2

0 + 3.1002x3
0.
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The output solution and the corresponding bounds for the optimal value are

\~x\ast 
0 = 1.0000, \~f\ast = - 2.3030, f(\~x\ast ) = - 2.0500.

The gap diff = f(\~x\ast ) - \~f\ast = 0.2530 < 0.3. We plot the expected recourse function
and its polynomial approximation in right subgraph of Figure 4. In the figure, f is
plotted in the solid line, and \~f1 is plotted in the dashed line. It is clear that our
polynomial approximating bound functions provide good approximations to the true
objective function.

6. Conclusions. In this paper, we have explored a novel computational method
for computing global optimal solutions of two-stage stochastic programs through poly-
nomial optimization. Our proposed method hinges on the computation of the polyno-
mial lower bound of the recourse function. These lower bound functions can be deter-
mined by the solutions of a sequence of linear conic optimization problems, where the
size of the decision variable does not depend on the number of scenarios in the second
stage problem. The approach presents significant computational advantages. It can
identify a tight lower bound for the global optimal value of (1.1), which can be used
to certify the global optimality of a candidate solution obtained by other methods.
Furthermore, our method is notably effective when the random variables follow em-
pirical distributions with a large number of scenarios or continuous distributions. In
the future, we plan to further explore the structure of the two-stage stochastic prob-
lems so that our proposed approach can be used to solve large-scale problems more
efficiently. We also aim to improve the efficiency of polynomial lower approximating
functions, particularly for those with low degrees. In addition, we anticipate that our
proposed approach can be generalized to cases where the distribution of \xi depends on
x. We plan to explore this as future work.
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