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Abstract. The minimization of nonlower semicontinuous functions is a difficult topic that 
has been minimally studied. Among such functions is a Heaviside composite function that 
is the composition of a Heaviside function with a possibly nonsmooth multivariate func
tion. Unifying a statistical estimation problem with hierarchical selection of variables and a 
sample average approximation of composite chance constrained stochastic programs, a 
Heaviside composite optimization problem is one whose objective and constraints are 
defined by sums of possibly nonlinear multiples of such composite functions. Via a pulled- 
out formulation, a pseudostationarity concept for a feasible point was introduced in an ear
lier work as a necessary condition for a local minimizer of a Heaviside composite optimiza
tion problem. The present paper extends this previous study in several directions: (a) 
showing that pseudostationarity is implied by (and thus, weaker than) a sharper 
subdifferential-based stationarity condition that we term epistationarity; (b) introducing a 
set-theoretic sufficient condition, which we term a local convexity-like property, under 
which an epistationary point of a possibly nonlower semicontinuous optimization problem 
is a local minimizer; (c) providing several classes of Heaviside composite functions satisfy
ing this local convexity-like property; (d) extending the epigraphical formulation of a non
negative multiple of a Heaviside composite function to a lifted formulation for arbitrarily 
signed multiples of the Heaviside composite function, based on which we show that an 
epistationary solution of the given Heaviside composite program with broad classes of 
B-differentiable component functions can in principle be approximately computed by sur
rogation methods.
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1. Introduction
In this work, we examine a class of minimization problems featured by objective and/or constraint functions that 
do not exhibit lower semicontinuity. Analyzing and solving such problems present considerable challenges 
because the desirable points, such as global/local solutions, stationary points, or even feasible solutions, might 
not be easily accomplished. A broad class of such problems is the following Heaviside composite (HSC) problem:

minimize
x∈Rn

fHSC(x)¢
XJ0

j�1
ψ0j(x) 1( 0, ∞ )(φ0j(x)),

subject to x ∈ XHSC¢ x ∈ P

�
�
�
�
�

XJi

j�1
ψij(x) 1( 0, ∞ )(φij(x)) ≤ bi, i � 1, : : : , m

8
<

:

9
=

;
,

(1) 

where the (open) Heaviside function 1( 0, ∞ )(t)¢
1 if t > 0
0 otherwise

�

is the indicator function of the (open) interval 

(0, ∞); P ⊆ Rn is a given polyhedron, m and {Ji}
m
i�0 are positive integers, {bi}

m
i�1 are scalars, and ψij and φij : O ⊆
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Rn → R are some given continuous functions defined on an open set O containing P. Although the Heaviside 
function 1(0, ∞)(t) exhibits lower semicontinuity for t ∈ R, the lower semicontinuity can be destroyed when multi
plied by functions ψij that are not consistently nonnegative. We refer to the reference Cui et al. [7], which has pre
sented the modeling breadth of the HSC constraint set XHSC. In particular, the Heaviside function is central to 
the treatment of chance constraints in stochastic programming; see Cui et al. [8] for a comprehensive study of 
such a treatment. In turn, to model conjunctive/disjunctive events, the random functionals in the chance con
straints involve pointwise minimum/maximum operations that render them nondifferentiable. Furthermore, 
decision-dependent multiples of the Heaviside composite functions are used in treatment problems to describe 
rewards conditional on variable outcomes (Fang [12], Qi et al. [22]). As a unification of these special cases, the 
class of additive Heaviside composite optimization problems and the concept of pseudostationarity were intro
duced in Cui et al. [7]. The latter concept has its origin in Gómez et al. [14] for the sparse optimization problem 
and is defined by a fixed-point property of a “pulled-out” formulation.

Originated from a statistical estimation problem with sparsity (Hastie et al. [15]), a special case of the compos
ite Heaviside optimization problem is the problem with affine sparsity constraints (ASCs) that was introduced in 
Dong et al. [11] as a computational framework for rigorously solving estimation problems with structured spar
sity (i.e., logical sparsity conditions). Such constraints define the following set:

XASC¢ x ∈ P
Xn

j�1
aij |xj |0 ≤ bi, i � 1, : : : , m

�
�
�
�
�
�

9
=

;
,

8
<

:
(2) 

where |t |0¢
1 if t ≠ 0
0 otherwise

�

is the sparsity function that is closely related to the Heaviside function(s). For exam

ple, to model the hierarchical selection among three variables such that x3 can only be selected if at least one of x1 
or x2 is chosen, the following inequality can be employed:

|x3 |0 ≤ |x1 | 0 + |x2 |0:

An optimization problem over ASCs is a generalization of cardinality constrained problems, whose continuous 
relaxations have been extensively studied in the existing literature (Bian and Chen [2], Chen et al. [3], Kanzow 
et al. [17], Kanzow et al. [18]). It is known from Dong et al. [11] that XASC may not be a closed set when the coeffi
cients aij have negative signs, such as in the above example. When it comes to optimization problems over these 
sets, a sign restriction on the multiplier functions is a key requirement in their study (Cui et al. [7], Dong et al. 
[11]). A main contribution of our work herein is to address problems not satisfying such a sign condition for both 
sets XHSC and XASC.

In addressing nonlower semicontinuous functions within objectives and constraints that lead in particular to 
nonclosed feasible sets, an immediate strategy is to consider the closures of these sets. However, this approach 
might not be ideal for the following reasons. 

• Given that the epilimit (Rockafellar and Wets [23, definition 7.1]; see also Royset [24] and Royset and Wets 
[25]) of a function sequence is always lower semicontinuous, it is thus not possible to construct approximating 
functions that exhibit epiconvergence to the original nonlower semicontinuous functions. This absence of epicon
vergence in the approximating functions, either within the objective or constraints, can impede the convergence of 
the global minimizers, let alone stationary solutions, for the approximating problems, among many difficulties.

• The best convergence in terms of the epilimit one can achieve from the approximating functions is to the clo
sure of the lower semicontinuous function. However, in the realm of logical implications and structured variable 
selections, the closure of a given constraint can potentially compromise its expressiveness. Consider, for instance, 
the constraint (see Dong et al. [11, example 1])

|x1 |0 ≤ |x2 |0 � 1(0, +∞)( |x1 | ) ≤ 1(0, +∞)( |x2 | ):

The feasible set for this constraint is ((0, + ∞) × R) ∪ ((�∞, 0) × R) ∪ {(0, 0)}. This constraint expresses the logical 
implication: x1 ≠ 0 ⇒ x2 ≠ 0. Yet, the closure of this set is equal to the entire space R2, which clearly does not (even 
approximately) model the desired logical conditions accurately.

• On top of the difficulties mentioned above, when there are multiple constraints, it is a demanding task to con
struct the closure of ∩m

i�1 Cm when m > 1 and at least one Ci is nonclosed. This closure can be significantly smaller 
than ∩m

i�1 closure{Ci}.
Because there is a simple linear structure in the ASC constraint set XASC and the only combinatorial aspect of 

the set is because of the ℓ0-function that has a well-known integer description, a natural question is whether the 
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nonclosedness of XASC is indeed a challenging issue to deal with per the advances in integer optimization. We 
approach this question from the perspective of mixed integer linear representability (MILP) of XASC, obtaining in 
particular a representation of the closure of XASC that complements the results in Dong et al. [11, section 3] from 
which we can deduce a “big-M” integer description of the closure. Deepening the analysis in this reference, the 
extended analysis elucidates the general difficulty associated with a mixed signed combination of multiple 
ℓ0-functions in that although an integral formulation of the closure of the set XASC aids the understanding of its 
structure, an integer approach for dealing with this set is primarily of conceptual value at the present time; the 
efficient solution of an optimization problem over this set would require much further research for the approach 
to be practically viable. Because of the difficulty of the global solution of (1), per the integer programming analy
sis, an in-depth understanding of the local properties of the feasible set XHSC and of the optimization problem 
itself is, therefore, imperative; the study of such properties is the focus of the remaining sections of the paper.

The study of the local properties of (1) begins with its stationarity conditions, which for a general optimization 
problem, are necessary for local optimality. For problems where a minimizer, local or global, is impractical to be 
computed, a stationary solution is a realistic goal one can hope to obtain in practical computation. The advances 
in variational analysis (Rockafellar and Wets [23]) have led to the definitions of many notions of subgradients of 
extended-valued functions, each of which can be used to define a stationarity concept. Among these, the regular 
subgradients (Rockafellar and Wets [23, definition 8.3]) lead to a sharp stationarity concept that in principle, is 
applicable to a general constrained optimization problem without regard to the properties of the defining func
tions and constraints. However, although offering convenience for mathematical analysis, such an extended- 
valued, subdifferential-based stationarity concept has a major drawback. Namely, it hides the constraints in the 
objective, rendering the identification of a subgradient a very difficult task. In contrast, by exposing the con
straints as given, tangents to the constraint set can often be more easily described and lead to constructive 
approaches to compute sharp stationary solutions. Indeed, practical computation provides a strong motivation 
for treating the constraints as they appear.

There are several fundamental issues associated with the stationarity concepts of a minimization problem lack
ing lower semicontinuity. Foremost is the question of how the previously defined pulled-out-based pseudosta
tionarity (Cui et al. [7]) is related to regular subdifferential-based stationarity as the latter is known to be the 
sharpest among many stationarity concepts for the very broad class of “Bouligand differentiable” (abbreviated 
as B-differentiable) problems; see Cui and Pang [6, proposition 6.1.8], where the term Bouligand stationarity was 
used. Although a Heaviside composite function is not B-differentiable, we are able to demonstrate that pseudos
tationarity is a weaker notion than the subdifferential-based stationarity, which we term “epistationarity” for rea
sons to be made clear later and we will formally define in Section 4. A follow-up question is whether there are 
classes of problems whose epistationary points are local minimizers. This question has its origin in differentiable 
problems (extendable to B-differentiable problems) for which the class of pseudoconvex functions introduced by 
Mangasarian [19] and Mangasarian [20] provides an answer. Specifically, for a convex-constrained optimization 
problem with a differentiable pseudoconvex objective function, a first-order stationary point must be a global 
minimizer. As an extension to nonsmooth functions, the property of (local) convexity like of a B-differentiable 
function at the given point, initially defined in the study of piecewise quadratic programming (Cui et al. [9]) and 
subsequently expanded in Cui et al. [8, section 4.2], provides a sufficient condition for a B-stationary solution of a 
Bouligand differentiable problem to be a local minimizer. It should be noted, however, that unlike the well- 
known quasiconvex functions, which yield convex level sets, the level set of a locally convex-like function may 
not be convex. A further question is whether there are constructive procedures to (approximately) compute an 
epistationary point of a nonlower semicontinuous Heaviside composite program. We answer this question via 
lifting the problem to one with additional variables and then resorting to the family of surrogation methods (Cui 
and Pang [6, chapter 7]) when the functions in the lifted program are “surrogatable” (e.g., difference of convex). 
Details of such an algorithmic development are not addressed in the present work; these are best left for a sepa
rate computational study.

1.1. Organization and Contributions
After a brief summary of the notations and some relevant background materials in Section 2 for the study of 
Problem (1), we organize the rest of this paper along with the main contributions as follows. 

a. In Section 3, we provide an algebraic description of the closure of the set XASC that complements the results in 
Dong et al. [11, section 3]. Based on Theorem 1, which is a restatement of a classical result, we derive a necessary 
and sufficient condition for XASC to have a mixed integer linear representation. This result is enhanced by a more 
detailed description of the representation by exploiting the structure of XASC; see Theorem 2 and Corollary 1.
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b. We formally define epistationarity for an optimization problem lacking lower semicontinuity in Section 4 (see 
Definition 1) and establish several important properties of an epistationary solution. First, epistationarity is a neces
sary condition for local minimization (Proposition 2). Epistationarity has an equivalent description in terms of a 
suitable subderivative (Proposition 3). For a B-differentiable problem, epistationariy recovers B-stationarity (Propo
sition 4). Finally, for the HSC-constrained optimization Problem (1), epistationarity is sharper than the pulled-out 
pseudostationarity (Proposition 5).

c. In Section 5, we generalize the functional convexity-like condition to a set-theoretic local convexity-like prop
erty and establish its sufficiency for local minimization of an epistationary point (Proposition 9). Being the local ver
sion of the classical result of pseudoconvexity implying global optimality for a differentiable problem, our result is 
for a nonlower semicontinuous program with a possibly nonconvex feasible set. The terminology of epistationarity 
sufficiency is borrowed from “minimum principle sufficiency” (Ferris and Mangasarian [13]), which aims to 
answer a related but different question pertaining to the characterization of the set of optimal solutions of a convex 
differentiable program in terms of the minimum principle of the program at a given optimal solution.

d. In Section 6, based on the algebraic descriptions of tangent vectors of various cases of an HSC set, we summa
rize in Theorem 3 when such a set has the local convexity-like property. With this property, we obtain the equiva
lence of epistationarity with local optimality for these classes of Heaviside-defined optimization problems.

e. In Section 7, where we assume, for simplicity, that the objective function is B-differentiable, we introduce 
through several steps a lifted formulation of Problem (1) and show that the B-stationary points of this lifted formu
lation, where all functions in the lifted space are B-differentiable, yield pseudostationary points of (1) through pro
jecting the B-stationarity points from the lifted domain onto the original space; see Proposition 15. Bouligand 
stationarity can be obtained from the lifting under a further assumption; see Proposition 16. Both results are estab
lished without any sign condition on the multiplier functions {ψij}.

2. Notations and Background
Parallel to the notation Rn for the n-dimensional Euclidean space of real numbers, we denote the set of n-dimen
sional integers and positive integers by Zn and Zn

+, respectively. The superscript n is omitted if it equals one. For 
a given set S, we denote its closure by cl(S), convex hull by conv(S), recession cone by S∞, and distance to a point 
x ∈ Rn by dist(x, S)¢inf{‖x � y‖∞ : y ∈ S}, where ‖a‖∞¢maxi |ai | is the infinity norm of a vector. For any vector 
x ∈ Rn, we write its support as supp(x), and |x |0 for the vector whose components are |xi |0 for i � 1, ⋯ , n.

To prepare for the analysis of the Heaviside-defined optimization Problem (1), we review some background 
pertaining to a general constrained optimization problem in finite dimensions:

minimize
x∈X

f (x), (3) 

where X is a nonempty subset of Rn (which is not necessarily closed) and f : O → R is a function defined on 
the open set O that contains X. It is common in variational analysis to consider the unconstrained formulation 
of (3),

minimize
x∈Rn

fX(x)¢f (x) + δX(x), 

by hiding the constraint set X using the extended-valued indicator function: δX(x)¢
∞ if x ∉ X
0 if x ∈ X:

�

It is known 

from Royset and Wets [23, theorem 10.1] that if x ∈ X is a local minimizer of (3), then 0 ∈ ∂̂fX(x), where

∂̂fX(x)¢ v ∈ Rn | lim inf
x(≠x)→x

fX(x) � fX(x) � v⊤(x � x)

‖ x � x ‖
≥ 0

� �

Royset and Wets [23, definition 8:3]

� {v ∈ Rn |v⊤w ≤ dfX(x)(w) for all w ∈ Rn} Royset and Wets [23, exercise 8:4]

and

dfX(x)(v)¢
lim inf
x + τw∈X
w→v;τ↓0

f (x + τw) � f (x)

τ
Royset and Wets [23, definition 8:1]

∞ if no such w exists

8
><

>:

� lim inf
x′ + τv∈X

τ�1(x′�x)→0;τ↓0

f (x′ + τv) � f (x)

τ
under identification : x′ � x + τ(w � v):

Han, Cui, and Pang: Minimization Problems Lacking Lower Semicontinuity 
4 Mathematics of Operations Research, Articles in Advance, pp. 1–24, © 2024 INFORMS 



Following Royset and Wets [23, definition 6.1], we define the tangent cone of X at x ∈ X as

T (x; X)¢ v ∈ Rn |∃ {xν} ⊂ X converging to x and {τν} ↓ 0 such that v � lim
ν→∞

xν� x
τν

� �

:

Note that the domain of the subderivative dfX(x)(•) is a subset of the tangent cone of X at x. According to the 
cited reference, ∂̂fX(x) and dfX(x)(v) are, respectively, the constrained regular subdifferential and the subderiva
tive of the pair (f, X) at the vector x ∈ X. The difference between the two limit infima in dfX(x)(v) is that in the first 
liminf, the vector x is fixed in the first term f (x + τw), and the direction w is allowed to vary near the given direc
tion v, whereas in the second, the direction v is fixed in the same term f (x′ + τv), and the vector x′ is allowed to 
vary near x. Although the subdifferential ∂̂fX(x) is very convenient for analysis, the fact that the set X is hidden 
in the extended-valued function fX complicates the design of solution methods; indeed, unwrapping the elements 
therein to expose the set X is invariably needed to take advantage of these properties.

When f is a B-differentiable function (Cui and Pang [6, definition 4.1.1] at x ∈ X (i.e., f is locally Lipschitz contin
uous near x and directionally differentiable there) so that the one-sided directional derivatives

f ′(x; v)¢ lim
τ↓0

f (x + τv) � f (x)

τ 

exist for all v ∈ Rn, the vector x is said to be a B-stationary point of (3) (Cui and Pang [6, definition 6.1.1] if
f ′(x; v) ≥ 0, ∀v ∈ T (x; X):

The closedness of the set X is not needed for the definition of the tangent cone or for B-stationarity; nevertheless, 
the directional differentiability of the objective is needed for the latter. It is clear that B-stationarity is a necessary 
condition for a local minimizer. Moreover, it is shown in Cui and Pang [6, proposition 6.1.8] that if f is 
B-differentiable at x and X is a closed convex set, then x is a B-stationary point of f on X if and only if 0 ∈ ∂̂fX(x); 
additionally, if f ′(x; •) is a convex function and X is a convex set, then these stationarity properties are further 
equivalent to the condition that 0 ∈ ∂̂f (x) + N (x; X), where N (x; X) is the normal cone of the convex set X at x as 
in classical convex analysis. A B-differentiable function f is said to be Clarke regular at a point x in its domain 
(Clarke [4, definition 2.3.4]) if

f ′(x; v) � f ◦(x; v)¢ lim sup

τ ↓ 0
x→x

f (x + τv) � f (x)

τ
, v ∈ Rn, 

where f ◦(x; v) is the Clarke directional derivative of f at x along the direction v.

3. Mixed Integer Linear Representability of XASC.
To provide a strong motivation for the remainder of the paper, this section validates the computational difficulty 
of Problem (1) by providing sufficient and necessary conditions for the ASC constraint set XASC to be mixed inte
ger linear representable (MILR). Specifically, a subset S of Rn is termed MILR if there exist rational matrices A, B, 
and C and a rational vector d, all of appropriate dimensions, such that

S � {x ∈ Rn |∃ (y, z) ∈ Rn × Zq such that Ax + By + Cz ≤ d}:

As we will see, even obtaining such a representation for XASC is not a trivial task, which would be a reasonable 
first step in attempting to solve an associated optimization problem to global optimality.

Needless to say, the challenge in dealing with the set XASC is the ℓ0 function | • |0. To address this function, the 
integer programming community often employs an indicator variable z ∈ {0, 1}

n to represent the support of the 
continuous variable x ∈ Rn (see, e.g., Atamtürk et al. [1] and Dong and Linderoth [10]). The constraint z � |x |0 is 
further relaxed to �Mz ≤ x ≤ Mz via the standard big-M technique, enabling a more tractable formulation. This 
yields the following mixed integer set that contains XASC (assumed bounded):

x ∈ P

�
�
�
�
�
∃ z ∈ {0, 1}

n such that � Mz ≤ x ≤ Mz and
Xn

j�1
aijzj ≤ bi, i � 1, : : : , m

8
<

:

9
=

;
, 

where M > 0 is chosen to be sufficiently large to ensure XASC ⊆ {x ∈ Rn | ‖x‖∞ ≤ M}. It is known that such a relaxa
tion is exact provided that all the coefficients aij are nonnegative. However, complexities arise when A does not 
meet the sign condition.
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The following classical result (Conforti et al. [5, theorem 4.47]) provides geometric conditions under which a 
subset S of Rn is MILR. It is important to note that the intcone in Expression (4) is an “integer cone” that consists 
of nonnegative integral combinations of integer vectors; in particular, this cone is not necessarily polyhedral.

Theorem 1. A set S ⊆ Rn is MILR if and only if there exist rational polytopes P1, : : : , Pk ⊆ Rn and vectors r1, : : : , rm ∈ Zn 

such that

S �
[k

i�1
Pi + intcone{r1, : : : , rm}, (4) 

where intcone{r1, : : : , rm}¢{
Pm

i�1λiri |λ ∈ Zm
+ }.

Note that an MILR set must be closed but not necessarily bounded. Indeed, a set S is closed if and only if S ∩

{x : ‖x‖2 ≤ τ} is closed for any scalar τ > 0. If S is MILR, then by Theorem 1, the set S ∩ {x : ‖x‖2 ≤ τ} is a finite 
union of compact sets and is thus closed. This implies that XASC is not MILR in general. In Dong et al. [11, section 3], 
the issue of closedness of XASC and the identification of its closure have been studied under a key assumption. The 
result below generalizes this previous study without such an assumption; besides the improved identification, which 
is seemingly conceptual, its proof provides a constructive pathway to the subsequent result, Theorem 2, that provides 
a full characterization of the MILR property of the set XASC.

Proposition 1. Let P ⊆ Rn be a polyhedron. There exist a matrix Ã ≥ 0 and a {0, 1}-vector b̃ such that cl(XASC) � {x ∈

P |Ã |x |0 ≤ b̃}.

Proof. Let S¢{z ∈ {0, 1}
n

|z � |x |0, x ∈ XASC} be the set of possible supports of the feasible region. Let Ŝ¢∪z∈S{y ∈

{0, 1}
n

|y ≤ z} be the downward closure generated by S. Because Ŝ ⊆ {0, 1}
n, one has Ŝ � conv(Ŝ) ∩ {0, 1}

n. We 
claim that conv(Ŝ) � {z ≥ 0 |Ãz ≤ b̃} for some matrix Ã ≥ 0 and {0, 1}-vector b̃. For this purpose, we first show 
that y ∈ conv(Ŝ) if and only if y ≥ 0 and y⊤u ≤ maxz∈Ŝu⊤z for all u ≥ 0. The “only if” assertion is obvious. For the 
“if” assertion, suppose that 0 ≤ y ∉ conv(Ŝ) is such that y⊤u ≤ maxz∈Ŝu⊤z for all u ≥ 0. Because conv(Ŝ) is a poly
tope, by separation, there exist a vector ũ and a scalar γ such that y⊤ũ > γ ≥ maxz∈conv(Ŝ)ũ⊤z. For any vector z ∈ bS, 
the vector z̃ obtained by zeroing out the components of z corresponding to the negative components of ũ remains 
an element of Ŝ. Thus, with ũ+ denoting the nonnegative part of the vector ũ, we have

y⊤ũ+ ≥ y⊤ũ > z̃⊤ũ � z⊤ũ+, 

which is a contradiction. This completes the proof of the description of a vector y ∈ conv(Ŝ). Next, we note that 
y⊤u ≤ maxz∈Ŝu⊤z for all u ≥ 0 is equivalent to

y⊤u ≤ α for all u ≥ 0,α ≥ max
z∈Ŝ

u⊤z�
y⊤u ≤ 1 for all u ≥ 0 such that max

z∈Ŝ
u⊤z ≤ 1

y⊤u ≤ 0 for all u ≥ 0 such that max
z∈Ŝ

u⊤z ≤ 0

8
><

>:

�
y⊤u ≤ 1 ∀u ∈ P1¢{u |u ≥ 0, u⊤z ≤ 1, ∀z ∈ Ŝ}

y⊤u ≤ 0 ∀u ∈ P0¢{u |u ≥ 0, u⊤z ≤ 0, ∀z ∈ Ŝ}:

(

Because P0 and P1 are polytopes, one has Pi � conv{uij | j � 1, : : : , ki} for certain finite families of vectors 
{uij}

ki
j�1 ⊆ Rn

+, for i � 1, 2. Therefore, y ∈ conv(Ŝ) if and only if y belongs to the set

{y |y ≥ 0, (u1j)⊤y ≤ 1, (u2ℓ)⊤y ≤ 0, ∀j � 1, : : : , k1, ℓ � 1, : : : , k2}, 

completing the proof of the claimed polyhedral representation of conv(Ŝ).
It remains to show that cl(XASC) � X̃¢{x ∈ P |Ã |x |0 ≤ b̃}. Note that X̃ is a closed set because of Ã ≥ 0. It is evi

dent that cl(XASC) ⊆ X̃. To prove the converse inclusion, consider an arbitrary x ∈ X̃. One has |x |0 ∈ Ŝ, which 
implies that there exists x̂ ∈ XASC such that | x̂ |0 ≥ |x | 0 by the construction of Ŝ. Let x(ε) � εx̂ + (1 � ε)x for 
ε ∈ [0, 1]. Clearly, x(ε) belongs to P, and for almost all ε ∈ (0, 1], |x(ε) |0 � | x̂ |0. Because A | x̂ |0 ≤ b, one can deduce 
that for almost all ε ∈ (0, 1], x(ɛ) ∈ XASC. The proof is now complete because limε↓0x(ε) � x. w

A point x ∈ S is called a maximal element in S if there does not exist a point y ≠ x ∈ S such that y ≥ x. The proof 
of Proposition 1 indicates that if x ∈ cl(XASC) and |x |0 is the maximal element in the support set {z ∈ {0, 1}

n 

|z � |x |0, x ∈ XASC}, then x ∈ XASC. This fact is useful when searching for a point in XASC to approximate elements 
in cl(XASC). Specifically, consider the case where the matrix Ã in Proposition 1 is known. Take any point 
x ∈ cl(XASC), and let z � |x |0 ∈ {0, 1}

n. Given Ã ≥ 0, it is easy to identify a maximal element ẑ ∈ {0, 1}
n in the 

Han, Cui, and Pang: Minimization Problems Lacking Lower Semicontinuity 
6 Mathematics of Operations Research, Articles in Advance, pp. 1–24, © 2024 INFORMS 



support set such that z ≤ ẑ. Following this, one can determine a point x̂ ∈ cl(XASC) such that | x̂ |0 � ẑ by solving 
linear programs over {x ∈ P |xi(1 � ẑi) � 0, i � 1, : : : , n}. Consequently, we have x̂ ∈ XASC, which implies that εx̂ +

(1 � ε)x ∈ XASC for almost all ε ∈ (0, 1].
However, it is worth noting that although the existence of Ã is guaranteed by Proposition 1, unfortunately, the 

effective construction of Ã remains unclear. Consequently, this proposition is primarily of conceptual signifi
cance. In the following, we show that for the set XASC, the integer cone in Theorem 1 can be replaced with a poly
hedral cone that is given by any maximal element from the support set. We start with a technical lemma.

Lemma 1. Let r ∈ Rn and x ∈ XASC. If XASC is closed and there exists a nonnegative sequence {tk} → ∞ such that x + tkr ∈

XASC for all k, then the ray {x + tr : t ≥ 0} ⊆ XASC.

Proof. Because XASC is closed, by Proposition 1, one can assume A ≥ 0. Observe that there exists t0 > 0 such that 
as t > t0, supp(x + tr) � supp(x) ∪ supp(r). If in addition, x(t)¢x + tr ∈ XASC, then for any y � λx + (1 �λ)x(t) and 
λ ∈ [0, 1], one has y ∈ P and |y |0 ≤ |x(t) |0, which implies that A |y | 0 ≤ A |x(t) |0 ≤ b. Therefore, we have y ∈ XASC. 
The conclusion follows from the assumption that t → ∞. w

The noteworthy point of the MILR of XASC in the result below is twofold; one, the cone in (4) can be made 
polyhedral, and two, its generators are recession vectors of the base polyhedron P whose nonzero components 
correspond to those of a maximal element of the set Ŝ in the proof of Proposition 1.

Theorem 2. Assume P is a polyhedron defined by rational data. Then, XASC is MILR if and only if there exist nonempty 
rational polytopes {Pi}

k
i�1 and a polyhedral cone R such that XASC � ∪k

i�1 Pi + R. Furthermore, the recession cone R takes 
the form {r ∈ P∞ |ri � 0, ∀i ∉ supp(zmax)}, where zmax is any maximal element of {z ∈ {0, 1}

n
|z � |x |0, x ∈ XASC}.

Proof. Thanks to Proposition 1, we can assume that the matrix, denoted as A, of the coefficients aij in the defini
tion of XASC is all nonnegative, without loss of generality. 

Necessity. Suppose XASC is MILR. By Theorem 1, there exist rational polytopes P1, : : : , Pk ⊆ Rn and vectors 
r1, : : : , rm ∈ Zn such that XASC � ∪k

i�1 Pi + intcone{r1, : : : , rm}. For an arbitrary vector r �
Pm

i�1λiri with λ ∈ Zm
+ and an 

arbitrary point x ∈ XASC, it holds that x + tr ∈ XASC for all t ∈ Z+. Thus, one can deduce from Lemma 1 that x + tr ∈

XASC for all t ≥ 0. This further implies that x + t
Pm

i�1µiri ∈ XASC for all µ ∈ Rm
+ that is rational, all t ∈ R+, and x ∈

XASC because we can always scale r by a positive integer to make µ integral. Because XASC is closed, it follows that 
x + r ∈ XASC for all r in the cone generated by the vectors {ri}

m
i�1, which we denote by R.

Sufficiency. Because Pi are polytopes, ∪k
i�1Pi is MILR by Theorem 1. Because a polyhedral set is always MILR 

and the Minkowski sum of two MILR sets is MILR, we can deduce that XASC � ∪k
i�1Pi + R is MILR.

It remains to prove the representation of the cone R. Let R̃¢{r ∈ P∞ |ri � 0, ∀i ∉ supp(zmax)}. By the definition 
of zmax, there exists x ∈ XASC such that supp(zmax) � supp(x). Note that for any r ∈ R̃, supp(r) ⊆ supp(x). Thus, for 
any t ≥ 0, A |x + tr |0 ≤ A |x |0 ≤ b. Hence, x + tr ∈ XASC for any t ≥ 0; thus, r ∈ R by the above proof for the first 
statement of this proposition. Hence, R̃ ⊆ R. If there exists r ∈ R \ R̃, then x + tr ∈ XASC and |x + tr |0 > zmax for t 
large enough, contradicting the maximality of zmax. This proves R̃ � R: w

If XASC¢{x ∈ P |A |x |0 ≤ b} is MILR with A nonnegative, one can readily obtain a maximal element zmax in the 
support set and the resulting recession cone R. In this favorable case, XASC admits a big-M extended reformula
tion. The result is formally stated below.

Corollary 1. Assume that A ≥ 0 is rational and XASC¢{x ∈ P |A |x |0 ≤ b} is MILR with the recession cone R. Then , there 
exists M ≥ 0 such that

XASC � {x ∈ Rn |∃ (y, z, r) ∈ P × {0, 1}
n

× R s:t: Az ≤ b; �Mz ≤ y ≤ Mz, and x � y + r}:

Proof. Take M large enough such that in the statement of Theorem 2, it holds that P̂¢∪k
i�1Pi is contained in 

{x : ‖x‖∞ ≤ M}. If x ∈ XASC, then there exists y and r such that y ∈ P̂ ⊆ XASC and r ∈ R. Thus, y ∈ P and A |y |0 ≤ b. 
This shows that the XASC is a subset of the right-hand set in the claim. Conversely, suppose (x, y, z, r) satisfies the 
inequality system in the right-hand set in the claim. Then, z ≥ |y |0 and A ≥ 0 imply that A |y | 0 ≤ b, from which 
we can deduce that y ∈ XASC. Because XASC + R ⊆ XASC, the conclusion follows. w

4. Epistationarity
It is trivial to cast Problem (3) as one with a B-differentiable objective function by “epigraphicalizing” the func
tion f; this maneuver leads to the lifted problem with an auxiliary variable:

minimize
(x, t)∈Rn+1

t subject to (x, t) ∈ Z¢epi(f ) ∩ (X × R), (5) 
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where epi(f )¢{(x, t) ∈ O × R : f (x) ≤ t} is the epigraph of f. In this form, we can speak of a pair (x, t) ∈ Z with 
t¢f (x) as being a B-stationary point of (5). When f is not lower semicontinuous, its epigraph epi(f ) is not closed. 
Nevertheless, we can formally introduce the following concept.

Definition 1. A vector x ∈ X is an epistationary solution of (3) if the pair (x, f (x)) is a B-stationary solution of the 
lifted Problem (5).

Unwrapping the B-stationarity condition in the lifted formulation based on the tangent cone of Z, we remark 
that x ∈ X is an epistationary point of f on X if the following implication holds:

lim

(xk, tk) → (x, t), τk ↓ 0
(xk, tk)∈epi(f )∩(X×R)

(xk, tk) � (x, t)

τk
� (v, dt)

2

6
6
4

3

7
7
5 ⇒ dt ≥ 0: (6) 

The following simple result shows that epistationarity is a necessary condition for locally minimizing; the note
worthy point of the result is that no assumption is required of the pair (f, X).

Proposition 2. Let f be continuous. A vector x ∈ X is a local minimizer of (3) if and only if the pair (x, f (x)) is a local mini
mizer of (5). Thus, if x ∈ X is a local minimizer of (3), then x is an epistationary point of (3).

Proof. “Only if.” Suppose x ∈ X is a local minimizer of (3). Let N be a neighborhood of x such that f (x) ≥ f (x) for 
all x ∈ X ∩ N . Thus, if (x, t) ∈ Z ∩ (N × R), then t ≥ f (x) ≥ f (x), showing that (x, f (x)) is a local minimizer of (5).

“If.” Conversely, suppose (x, f (x)) is a local minimizer of (5). Let Nx × N t be a neighborhood of (x, f (x)) such 
that t ≥ f (x) for all (x, t) ∈ Nx × N t. Let N

′

x ⊆ Nx be a neighborhood of x such that f (x) ∈ N t for all x ∈ N
′

x. It then 
follows that for x ∈ N

′

x, the pair (x, f (x)) belongs to Nx × N t; thus, f (x) ≥ f (x), showing that x is a local minimizer 
of (3). The last statement of the proposition does not require proof. w

For the purpose to connect epistationarity with regular subdifferential-based stationarity, we first establish a 
lemma.

Lemma 2. Let x ∈ X. It holds that

lim inf
x≠x(∈X)→x

f (x) � f (x)

‖x � x‖
� inf

v∈T (x;X); ‖v‖�1
dfX(x)(v) (7) 

with the values 6∞ allowed. In particular, if x is an isolated vector in X, then the two values are both equal to ∞.

Proof. Let {xk} ⊂ X \ {x} be a sequence converging to x such that

lim inf
x≠x(∈X)→x

f (x) � f (x)

‖x � x‖
� lim

k→∞

f (xk) � f (x)

‖xk � x‖
:

Without loss of generality, we may assume that the normalized sequence wk¢ xk�x
‖xk�x‖

n o
converges to a tangent 

vector v∞ ∈ T (x; X), which must have unit norm. Letting τk¢‖xk � x‖, we have xk � x + τkwk; hence,

lim inf
x≠x(∈X)→x

f (x) � f (x)

‖ x � x ‖
� lim

k→∞

f (x + τkwk) � f (x)

τk

≥ lim inf
x +τw∈X

w→v∞ ;τ↓0

f (x + τw) � f (x)

τ

� dfX(x)(v∞) ≥ inf
v∈T (x;X); ‖v‖�1

dfX(x)(v):

Conversely, let v ∈ T (x; X) be an arbitrary vector with unit norm. We have

dfX(x)(v) � lim inf
x +τw∈X
w→v;τ↓0

f (x + τw) � f (x)

τ‖w‖
≥ lim inf

x≠x(∈X)→x

f (x) � f (x)

‖x � x‖
:

Hence, the equalities in (7) hold. w

The following result establishes the equivalence of epistationarity with the nonnegativity of the subderivative 
dfX(x) on T (x; X) and with regular subdifferential-based stationarity.
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Proposition 3. Let f : Rn → R be an arbitrary function and X be an arbitrary subset of Rn. Let x ∈ X be given. The follow
ing three statements are equivalent: 

a. dfX(x)(v) ≥ 0 for all v ∈ T (x; X),
b. x is an epistationary point of f on X, and
c. 0 ∈ ∂̂fX(x).

Proof. (a) ⇒ (b). Let {xk}, {tk}, {τk}, and dt satisfy the conditions in the left-hand limit of (6). Then, v ∈ T (x; X); 
furthermore,

dt ≥ lim sup
k→∞

f (xk) � f (x)

τk
≥ lim inf

x +τw∈X
w→v;τ↓0

f (x + τw) � f (x)

τ
� dfX(x)(v) ≥ 0, 

where the last inequality holds because dfX(x)(v) ≥ 0 by assumption.
(b) ⇒ (c). Suppose x ∈ X is an epistationary point of f on X. If suffices to show that dfX(x)(v) ≥ 0 for all v ∈ Rn. 

This is clearly true if dfX(x)(v) � ∞. Suppose that dfX(x)(v) is finite. Then, there exist {wk} → v and {τk} ↓ 0 such 
that x + τkwk ∈ X for all k and

dfX(x)(v) � lim
k→∞

f (x + τkwk) � f (x)

τk
:

Let xk¢x + τkwk and tk¢f (xk). It follows that the sequences {xk}, {tk}, and {τk} satisfy the conditions in the left- 
hand limit of (6) with dt � dfX(x)(v). Thus, this subderivative is nonnegative.

Lastly, suppose that dfX(x)(v) � �∞. Then, there exists {wk} → v such that x + τkwk ∈ X for some τk ↓ 0, and

lim
k→∞

f (x + τkwk) � f (x)

τk
� �∞:

Thus, there exists a positive integer K such that

f (x + τkwk) � f (x) ≤ �τk, ∀k ≥ K:

Let xk¢x + τkwk and tk¢f (x) � τk. It follows that the sequences {xk}, {tk}, and {τk} satisfy the conditions in the 
left-hand limit of (6) with dt � �1. This contradicts the epistationarity of x.

(c) ⇒ (a). This is obvious by the definition of ∂̂fX(x). w

Remark 1. Although the proof of Proposition 3 is closely related to Royset and Wets [23, theorem 8.2], which 
asserts that the tangent cone of the epigraph of an extended-valued function g at the pair (x, g(x)) with g(x) finite 
is equal to the epigraph of the (unconstrained) subderivative dgX(x) of gX¢g + δX, the main point of the proposi
tion is on the restatement of epistationarity in terms of subderivatives.

We next show that the new concept of epistationarity coincides with the old concept of B-stationarity when the 
objective function f is B-differentiable.

Proposition 4. Let f be B-differentiable near x ∈ X. Then, x is a B-stationary point of (3) if and only if x is epistationary.

Proof. The “only if” part is the same as that of part (a) of Proposition 3 and straightforward. It remains to prove 
the “if” part by showing that f ′(x; v) ≥ 0 for all v ∈ T (x; X). There exist sequences {xk} ⊂ X converging to x and 
{τk} ↓ 0 such that v � limk→∞

xk�x
τk

. Let tk¢f (xk) and dt¢f ′(x; dx). Then, (v, f ′(x; v)) ∈ T (z; Z), where z¢(x, f (x)), 
and Z is given in (5). By the epistationarity of x, it follows that f ′(x; v) ≥ 0. w

Referring to the HSC-constrained optimization Problem (1), we say that a vector x in XHSC is a pseudostationary 
point of this problem if x is an epistationary point of the “pulled-out” problem:

minimize
x∈P

X

j∈J 0,+(x)

ψ0j(x)

subject to for all i � 0, 1, : : : , m
X

j∈J i,+(x)

ψij(x) ≤ bi (with b0 � ∞)

φij(x) ≥ 0, for all j ∈ J i, +(x)

and φij(x) ≤ 0, for all j ∈ J i, ≤ (x),

(8) 

where J i, ≤ (x)¢{j |φij(x) ≤ 0} and J i, +(x)¢{j |φij(x) > 0} for i � 0, 1, : : : , m. We also define J i, 0(x)¢{j |φij(x) � 0}. 
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We remark that in Cui et al. [7, definition 3], the definition of pseudostationarity assumes that all the functions 
{{ψij,φij}

Ji
j�1}

m
i�0 are B-differentiable; here, these continuous functions can be arbitrary.

The pseudostationarity definition provides one way to resolve the challenge caused by the Heaviside composite 
functions 1( 0, ∞ )(φij(x)) by exposing the inner functions relative to the reference vector x instead of at the variable 
vector x. Provided that the functions {{ψij,φij}

Ji
j�1}

m
i�0 have favorable properties (e.g., difference of convexity), the 

resulting Problem (8) is computationally tractable (Pang et al. [21]) and enables the verification of the stipulated 
fixed-point condition on the candidate solution x. The paper by Cui et al. [7] has provided constructive ways to 
approximately compute a B-stationary point of (8) under some sign conditions on the functions ψij; see also Gómez 
et al. [14] and He et al. [16] for a special quadratic sparse optimization problem involving the ℓ0-function.

In the following, we show that for Problem (1), epistationarity is sharper than pseudostationarity. Note that (8) 
is a restriction of the original Problem (1) around x. Thus, the global optimality and the local optimality of (8) are 
necessary conditions for the respective optimality of (1).

Proposition 5. If x is an epistationary point of (1), then it is pseudostationary.

Proof. Let ψps
HSC and Xps

HSC denote the objective function and constraint set of (8), respectively, and Zps
HSC¢ 

epi(ψps
HSC) ∩ (Xps

HSC × R). Recalling the epigraphical set Z (see (5)) of Problem (1), we first show that if x is sufficiently 
close to x and if (x, t) belongs to Zps

HSC, then (x, t) ∈ Z. This is indeed true because for such an x, it holds that
J i, +(x) � {j |φij(x) > 0} � J i, +(x)

for all i � 0, 1, ⋯ , m, which implies
XJi

j�1
ψij(x)1( 0, ∞ )(φij(x)) �

X

j∈Ji,+(x)

ψij(x) �
X

j∈Ji,+(x)

ψij(x) ≤ bi:

In particular, fHSC(x) � ψps
HSC(x). Because x is an epistationary point of (1), one has (6). Moreover, because of the 

inclusive relationship of Z and Zps
HSC at x, one can deduce that the implication (6) still holds true if Z � epi(f ) ∩

(X × R) is replaced with Zps
HSC. The conclusion follows by the definition of epistationarity. w

5. The Set-Theoretic Local Convexity-Like Property
To motivate the subsequent definition, we recall that a B-differentiable function f is (locally) convex like at a point 
x in its domain (Cui et al. [8, section 4.2]; see the earlier reference (Cui et al. [9, proposition 4.1]) for a special case 
of this property) if there exists a neighborhood N of x such that

f (x) ≥ f (x) + f ′(x; x � x), ∀x ∈ N : (9) 

Slightly generalizing the family of functions in Cui et al. [8, display (25)], a large class of convex-like functions is 
given by the composition of convex functions and piecewise affine functions:

f � φ ◦Θ ◦ ψ, 

where φ : RL → R is (multivariate) piecewise affine and isotone (i.e., φ(z) ≥ φ(z ′) for any two L-dimensional vec
tors z ≥ z ′); Θ : Rm → RL is a vector-valued function such that each of its component functions θℓ : Rm → R for 
ℓ � 1, : : : , L is convex; and ψ : Rn → Rm is a piecewise affine function. In classical nonlinear programming pro
blems, the set X is often closed and takes the form

X¢{x ∈ P | fk(x) ≤ 0, k � 1, : : : , K} (10) 

for some integer K > 0, where P is a polyhedron and each fk : O → R is a B-differentiable function near a given 
x ∈ X. We say that the Abadie constraint qualification (ACQ) holds at x if

T (x; X) � {v ∈ T (x; P) | f ′

k (x; v) ≤ 0, k ∈ A(x)}¢L(x; X), 

where A(x)¢{k | fk(x) � 0} is the index set of the active constraints at x. The following is proven in Cui et al. [8, 
proposition 9(ii)].

Proposition 6. Let P be a polyhedron. Suppose that f and each fk for k � 1, : : : , K are locally convex like near a B-stationary 
point x of (3) with X given by (10). If the ACQ holds at x, then x is a local minimizer of f on X.

The above is a B-stationarity sufficiency result, meaning that sufficient conditions are provided under which a 
B-stationary point is a local minimizer. We next introduce an important geometric property of an arbitrary set that 
allows us to establish epistationarity sufficiency (i.e., the question of when an epistationary point is a local minimizer).
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Definition 2. A subset S ⊆ RN is said to be locally convex like at a vector z ∈ S if there exists a neighborhood N of z 
such that S ∩ N ⊆ z + T (z; S).

Without involving stationarity, the next result shows that the functional convexity-like property implies the 
set-theoretic convexity-like property, under a suitable constraint qualification.

Proposition 7. Let X¢{x ∈ Rn | fk(x) ≤ 0, k � 1, : : : , K} ,where each fk is B-differentiable near x ∈ X. If each fk for k ∈ A(x)

is locally convex like near x and the ACQ holds at x for the set X, then the set X is locally convex-like near x.

Proof. By the local convexity like of each fk near x for k ∈ A(x), there exists a neighborhood N of x such that

fk(x) ≥ fk(x) + f ′

k (x; x � x), ∀k ∈ A(x) and ∀x ∈ N :

Hence, if x ∈ X ∩ N , the above inequalities imply that f ′

k (x; x � x) ≤ 0 for all k ∈ A(x). Hence, x � x ∈ T (x; X)

under the ACQ. Because x ∈ X ∩ N is arbitrary, it follows that X ∩ N ⊆ x + T (x; X), establishing the local convex
ity like of the set X near x. w

A further connection between locally convex-like functions and locally convex-like sets is presented in the next result.

Proposition 8. A B-differentiable function f : Rn → R near x is locally convex like at x if and only if its epigraph epi(f ) is 
locally convex like at (x, f (x)).

Proof. By Rockafellar and Wets [23, theorem 8.2], it holds that T ((x, f (x)); epi(f )) � epi(f ′(x; •)). Hence, with 
h(x)¢f (x) + f ′(x; x � x), it follows that T ((x, f (x)); epi(f )) + {(x, f (x))} � epi(h). By definition, f is locally convex like 
at x if and only if there exists a neighborhood N of x such that f (x) ≥ h(x) for all x ∈ N ; equivalently, 
epi(f ) ∩ cN ⊆ epi(h), where cN ¢N × R. Hence, f is locally convex like at x if and only if there exists a neighbor
hood N of x such that

epi(f ) ∩ cN ⊆ T ((x, f (x)); epi(f )) + {(x, f (x))}, 

which is the local convexity-like property of epi(f ) at (x, f (x)). w

The next result establishes the promised epistationarity sufficiency under the set-theoretic local convexity-like 
property; it highlights the fundamental role of the latter property in the local optimality theory of optimization 
problems lacking lower semicontinuity.

Proposition 9. If the set Z defined in (5) is locally convex like at z¢(x, f (x)) and x is an epistationary point of (3), then x 
is a local minimizer of f on X.

Proof. Let N � Nx × N t be a neighborhood of z such that Z ∩ N ⊆ z + T (z; Z). It suffices to show that f (x ′) ≥ f (x)

for all x ′ ∈ X ∩ Nx. By way of contradiction, assume that there exists x ′ ∈ X ∩ Nx such that f (x ′) < f (x). Let t ′ ∈

N t be such that f (x ′) < t ′ < f (x). Then, (x ′, t ′) ∈ Z ∩ N . Thus, there exists (dx,dt) ∈ T (z; Z) such that (x ′, t ′) �

(x, f (x)) + (dx, dt). By epistationarity, we have dt ≥ 0. However, then t ′ � f (x) + dt ≥ f (x), which is a contradiction. w

Clearly, convex sets are locally convex like; although it is not too interesting from an optimization perspective, 
we remark that open sets are always locally convex like. The union of finitely many locally convex-like sets at a 
common vector is locally convex like at the vector; the Cartesian product of finitely many locally convex-like sets 
is locally convex like. In general, the intersection of locally convex-like sets is not necessarily locally convex like 
unless a suitable constraint qualification holds so that the tangent cone of the intersection of these sets is equal to 
the intersection of the respective tangent cones of the sets. This is illustrated in the following example.

Example 1. Define f (t) � log(t + 1). Consider

X1 �
[

n∈[N]

(x, y) |y � 2nf 1
2n

� �

x, x ∈ 0, 1
2n

� �� �

X2 �
[

n∈[N]

(x, y) |y � (2n + 1)f 1
2n + 2

� �

x, x ∈ 0, 1
2n + 1

� �� �
[

[

n∈[N]

(x, y) |y � f 1
2n + 2

� �

+
f 1

2n
� �

� f 1
2n+2

� �

1
2n � 1

2n+1
x �

1
2n + 1

� �

x ∈
1

2n + 1 , 1
2n

� �

8
>>><

>>>:

9
>>>=

>>>;

:
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Then,

X1 ∩ X2 �
[

n∈[N]

1
2n

, f 1
2n

� �� �� �
[

{(0, 0)}

is a closed set but not locally convex like at (0, 0). See Figure 1 for the illustration.
The following example shows that unlike (quasi-)convex functions, the sublevel set of a locally convex-like 

function is generally not locally convex like.

Example 2. Consider the two sets X1 and X2 given in Example 1. Let R0 � {(t, t) : t ≥ 0} and R1 � {(t, 0), t ≥ 0} be 
two rays. Define Yi � Xi ∪ R0 ∪ R1, i � 1, 2. Note that Y1 and Y2 are two closed convex-like sets. Define fi(x) �

dist(x, Yi) for i � 1, 2. If f1 and f2 are locally convex like and B-differentiable, then so is max{f1, f2}. However, the 
sublevel set {x : max{f1, f2}(x) ≤ 0} � Y1 ∩ Y2 is not locally convex like for the similar reason as in Example 1.

Next, we prove that f1 is indeed locally convex like and B-differentiable. Note that X1 � ∪iLi, where each Li is a 
line segment as shown in Figure 2. Thus, f1(x) � min{minihi(x), r0(x), r1(x)}, where hi(x)¢dist(x, Li), i � 1, 2, : : : , 
and rj � dist(x, Rj), j � 1, 2. Let S � conv(Y1) and r(x) � dist(x, S). Consider an arbitrary x ∈ Rn. There are four 
cases. 

• x ∈ Rn \ S. In this case, f1(x) � r(x).
• x is an inner point of S. In this case, the set of active pieces {i : f (x) � hi(x)} ⊆ {i : f (x) � (x)} is finite near x.
• x ∈ (R0 ∪ R1) \ {0}. In this case, f1(x) � r0(x) or r1(x) near x.
• x � 0.
In the first three cases, it can be seen easily that f1 is a pointwise minimum of a finite number of convex func

tions near x, which implies f1 locally convex like and B-differentiable at x; see Figure 2 for illustration. It remains 

Figure 1. (Color online) Intersection of two locally convex-like sets. X1 and X2 consist of the red and blue line segments, respec
tively; their intersection is represented by the black points. 

Figure 2. (Color online) Illustration of Example 2. X1 and R consist of the red line segments and orange rays, respectively. The 
set S is represented by the shaded region. 
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to show that f1 is convex like and directionally differentiable at x � 0. Define a closed set R � {r : r � tx, t ≥ 0, x ∈

Y1} as the cone generated by Y1. Note that f ′(0; d) � dist(d, R). Indeed, if d � (1, 1), then f ′(0; d) � dist(d, R) � 0. If d 
is not a scalar multiple of (1, 1), then because Y1 is locally a finite union of line segments near td for t > 0 small 
enough, f ′(0; d) � dist(d, R). Because X1 ⊆ R, we have f ′

1 (0; d) ≤ f1(d), and thus, f1 is locally convex like at zero. 
The above arguments can be extended to prove that f2 is a locally convex-like function in a similar way. We omit 
the details.

It turns out that the gap between the everywhere local convexity-like property and the global convexity is the 
Clarke regularity, as can be seen from the following proposition.

Proposition 10. Let f : Rn → R be locally convex like at every point in Rn. Then, f is Clarke regular at every point in Rn if 
and only if it is convex on Rn.

Proof. Taking an arbitrary reference point x ∈ Rn and an arbitrary direction d ∈ Rn, we define a univariate func
tion g(t) � f (x + td). Note that g is convex like by definition. It suffices to prove that g is convex, which amounts 
to g(t) ≥ g(t) + g′(t; t � t) for all t, t ∈ R. Assume for contradiction that there exist t1 and t0 such that g(t1) < g(t0) +

g′(t0; t1 � t0). Let h(t) � g(t) � g′(t0; t � t0) � g(t0). Without loss of generality, we also assume t1 > t0. Define 
S � arg max{h(t) : t0 ≤ t ≤ t1}, which is a compact set. Let t∗ � max{t : t ∈ S}. Then, by construction, h(t) < h(t∗)

for t∗ < t ≤ t1. Because h(t0) � 0 > h(t1), one has t∗ < t1. Thus, we have either t∗ � t0 or t0 < t∗ < t1. These two 
cases are addressed below. 

• Case 1. t∗ � t0. In this case, h′(t∗; 1) � h′(t0; 1) � 0. By the local convexity-like property of h over (t0, ∞), an ε > 0 
exists such that for t∗ ≤ t < t∗ + ε, one has h(t) ≥ h(t∗) + h′(t∗; t � t∗) � h(t∗). However, this contradicts h(t) < h(t∗) for 
all t∗ < t ≤ t1.

• Case 2. t0 < t∗ < t1. Because h(t) < h(t∗) for all t∗ < t ≤ t1, one can deduce that h′(t∗; 1) ≤ 0. If h′(t∗; 1) � 0, we 
can repeat the same argument in the first case to draw a contradiction. For this reason, we assume h′(t∗; 1) < 0. 
Because h(t) � g(t) � (t � t0)g ′(t0; 1) � g(t0) for t ≥ t0 by the Clarke regularity of g, it follows that h ′(t∗; •) is convex; 
thus, h ′(t∗; 1) + h ′(t∗; �1) ≥ h ′(t∗; 0) � 0, which implies h ′(t∗; �1) > 0. However, this indicates that h(t) > h(t∗) for all t 
smaller than but close enough to t∗, contradicting the fact that t∗ ∈ S. w

Assume X¢{x ∈ Rn | fk(x) ≤ 0, k � 1, : : : , K}, where each fk is a locally convex-like function. Proposition 10
implies that if X is a locally convex like but not convex set, then at least one fk is nondifferentiable. Another 
immediate consequence of this proposition is that if f is a PC1 (piecewise continuously differentiable) function 
with convex element functions (i.e., if f is continuous and there exist finitely many convex differentiable functions 
{fi}I

i�1 such that f (x) ∈ {fi(x)}
I
i�1 for all x ∈ Rn), then f is convex if and only if it is Clarke regular. This is because 

such a function f must be locally convex like at every point in Rn.

6. Tangents of Heaviside Composite Constraints
As the tangent cone plays an important role in the local convexity-like property and is of independent interest, it 
would be useful to describe the tangent vectors of the set XHSC. Such descriptions will be instrumental to demon
strate the local convexity-like property of XHSC at x ∈ XHSC under appropriate assumptions of the defining func
tions; see Table 1. We start with the ASC set XASC whose tangent cone at a vector x ∈ XASC is known (Dong et al. 
[11, proposition 10]). Specifically, we have

T (x; XASC) � cl v ∈ T (x; P)

�
�
�
�
�

X

j∉β

aij |vj |0 ≤ bi �
Xn

j�1
aij |xj |0,

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
�bi�

P
j∈β

aij≥0

i � 1, : : : , m

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

, (11) 

Table 1. Conditions for the local convexity-like property of XHSC.

ψij 

φij

Convex Piecewise affine

Convex ψij ≥ 0 Free
Piecewise affine ψij ≥ 0 Free
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where β¢{i |xi ≠ 0}¢supp(x) is the support of the vector x. (We remark that although the proof of this represen
tation in the reference has the side polyhedron P being the entire space, the proof therein applies to P being a 
proper polyhedral set.) The closure on the right-hand cone in (11) can be removed if all the coefficients aij are 
nonnegative as this cone itself is closed in this case. Based on the above representation, the following result is 
easy to prove.

Proposition 11. Let P be a polyhedron. The set XASC is locally convex like at every x in XASC.

Proof. Let N be a neighborhood of x such that xj ≠ 0 for all j ∈ β and all x ∈ N . Let x ∈ XASC ∩ N . Then, we have

bi ≥
Xn

j�1
aij |xj |0 �

X

j∉β

aij |xj |0 +
X

j∈β

aij |xj |0

�
X

j∉β

aij |xj � xj |0 +
X

j∈β

aij:

Thus, bi �
P

j∈β aij ≥
P

j∉β aij |xj � xj |0 for all i � 1, : : : , m. Hence, x � x ∈ T (x; XASC). w

As a preliminary result for the set XHSC, we consider the case where each function ψij is affine and φij is piece
wise affine. First, we derive an explicit expression of the tangent cone of XHSC at an arbitrary vector x ∈ XHSC and 
use this expression to show that (a) XHSC is locally convex like at x and that (b) epistationarity of a 
B-differentiable objective function on the set XHSC is sharper than pseudo-B-stationarity.

Proposition 12. Let P be a polyhedron. Let each ψij be an affine function and φij be a piecewise affine function for all j �

1, : : : Ji and i � 1, : : : , m. For x ∈ XHSC, it holds that
T (x; XHSC) ⊇ closure of

v ∈ T (x; P)

for all i � 1, : : : , m :
X

j∈J i, 0(x)

ψij(x) 1( 0, ∞ )(φ
′
ij (x; v)) +

X

j∈J i,+(x)

ψij(x) ≤ bi

and if
X

j∈J i, 0(x)

ψij(x) 1( 0, ∞ )(φ
′
ij (x; v)) +

X

j∈J i,+(x)

ψij(x) � bi, then

X

j∈J i, 0(x)

[∇ψij(x)
⊤v]1( 0, ∞ )(φ

′
ij (x; v)) +

X

j∈J i,+(x)

∇ψij(x)
⊤v ≤ 0

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

(12) 

Conversely, if the following two conditions hold for all i � 1, : : : , m: 
a. for all j ∈ J i, 0(x),

[v ∈ T (x; P) and φ′
ij (x; v) > 0] ⇒ ∇ψij(x)

⊤v ≤ 0; and 

b. for all j ∈ J i, +(x), ∇ψij(x) ∈ T (x; P)
∗, where T (x; P)

∗ is the dual of T (x; P),
then equality holds in (12).

Proof. Let v ∈ T (x; P) satisfy the functional conditions in the right-hand set. We claim that v belongs to 
T (x; XHSC) by showing that xτ¢x + τv ∈ XHSC for all τ > 0 sufficiently small that depends on v. Once this is 
shown, the one-side inclusion ⊇ of the two cones in (12) follows. Because P is a polyhedron, we have xτ ∈ P for 
all τ > 0 sufficiently small. Moreover, by continuity of φij, we have

[φij(x) > 0 ⇒ φij(x
τ) > 0] and [φij(x) < 0 ⇒ φij(x

τ) < 0]

for all τ > 0 sufficiently small. Hence,

XJi

j�1
ψij(x

τ) 1( 0, ∞ )(φij(x
τ)) �

X

j∈J i, 0(x)

ψij(x
τ) 1( 0, ∞ )(φij(x

τ)) +
X

j∈J i,+(x)

ψij(x
τ):

Because φij is piecewise affine, it follows that if τ > 0 is sufficiently small, we have
φij(x

τ) � φij(x) + τφ′
ij (x; v) � τφ′

ij (x; v), if j ∈ J i, 0(x):
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Therefore, we can further derive that

XJi

j�1
ψij(x

τ) 1( 0, ∞ )(φij(x
τ)) �

X

j∈J i, 0(x)

ψij(x) 1( 0, ∞ )(φ
′
ij (x; v)) +

X

j∈J i, +(x)

ψij(x)

+ τ
X

j∈J i, 0(x)

[∇ψij(x)
⊤v] 1( 0, ∞ )(φ

′
ij (x; v)) +

X

j∈J i, +(x)

∇ψij(x)
⊤v

8
<

:

9
=

;
:

Hence, with v as specified, it follows that for τ > 0 sufficiently small, which depends on v, we have PJi
j�1ψij(x

τ) 1( 0, ∞ )(φij(x
τ)) ≤ bi for all i. Thus, xτ ∈ XHSC.

Conversely, let v ∈ T (x; XHSC). Let {xν} ⊂ XHSC be a sequence converging to x and {τν} ↓ 0 such that 
v � limν→∞wν, where wν¢ xν�x

τν 
clearly belongs to T (x; P). Moreover, we have φij(x

ν) > 0 for all ν sufficiently large, 
all j ∈ J i, +(x), all i � 1, : : : , m. We have for all i � 1, : : : , m,

bi ≥
XJi

j�1
ψij(x

ν) 1( 0, ∞ )(φij(x
ν))

�
X

j∈J i, 0(x)

ψij(x
ν) 1( 0, ∞ )(φij(x

ν)) +
X

j∈J i,+(x)

ψij(x
ν)

�
X

j∈J i, 0(x)

[ψij(x) + ∇ψij(x)
⊤

(xν� x)]1( 0, ∞ )(φ
′
ij (x; xν � x))

+
X

j∈J i,+(x)

[ψij(x) + ∇ψij(x)
⊤

(xν � x)]:

Hence, we obtain that

bi �
X

j∈J i, 0(x)

ψij(x) 1( 0, ∞ )(φ
′
ij (x; wν)) �

X

j∈J i, +(x)

ψij(x)

≥ τν
X

j∈J i, 0(x)

[∇ψij(x)
⊤wν] 1( 0, ∞ )(φ

′
ij (x; wν)) +

X

j∈J i, +(x)

∇ψij(x)
⊤wν

8
<

:

9
=

;
:

Under the two assumed conditions (a) and (b), the right side of the above expression is nonnegative because 
wν ∈ T (x; P); hence, so is the left-hand side, which shows that wν satisfies

X

j∈J i, 0(x)

ψij(x) 1( 0, ∞ )(φ
′
ij (x; wν)) +

X

j∈J i,+(x)

ψij(x) ≤ bi, ∀i � 1, : : : , m:

Moreover, if for some i, it holds that
X

j∈J i, 0(x)

ψij(x) 1( 0, ∞ )(φ
′
ij (x; wν)) +

X

j∈J i, +(x)

ψij(x) � bi, 

then
X

j∈J i, 0(x)

[∇ψij(x)
⊤wν] 1( 0, ∞ )(φ

′
ij (x; wν)) +

X

j∈J i, +(x)

∇ψij(x)
⊤wν � 0:

Hence, wν belongs to the right-hand set in (12) without the closure. Because v is the limit of {wν}, it follows that v 
belongs to the closure of this set. Hence, equality holds in (12). w

Remark 2. In fact, the piecewise affinity assumption of each φij in Proposition 12 can be relaxed to the local 
convexity-like property at x in a straightforward manner.

Clearly, conditions (a) and (b) hold trivially if each ψij is a constant function: that is, for the set

XAHC¢ x ∈ P

�
�
�
�
�

XJi

j�1
aij 1( 0, ∞ )(φij(x)) ≤ bi, i � 1, : : : , m

8
<

:

9
=

;
:
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If each φij is piecewise affine, the result in Proposition 12 directly extends the tangent cone expression of XASC 

with the ℓ0-function replaced by the Heaviside function composed with a piecewise affine function. This leads to

T (x; XAHC) � cl v ∈ T (x; P)

X

j∈J i, 0(x)

aij 1( 0, ∞ )(φ
′
ij (x; v))

+
X

j∈J i,+(x)

aij ≤ bi, i � 1, ⋯ , m

�
�
�
�
�
�
�
�

9
>>=

>>;

:

8
>><

>>:

Like T (x; XASC) in (11), the closure operation can be dropped if the coefficients aij are all nonnegative. Note also 
that the above representation of T (x; XAHC) and that of the T (x; XASC) require no “constraint qualifications,” 
although both the ℓ0 function and the Heaviside function are discontinuous. The local convexity-like property of 
the set XAHC follows readily from its tangent cone representation and the proof of the converse part of Proposi
tion 12; no proof is needed.

Corollary 2. Let P be a polyhedron. If each function φij is piecewise affine, then the set XAHC is locally convex like near 
every x ∈ XAHC.

We next give a full description of the tangent cone T (x; XHSC) under a sign restriction on the functions {ψij} for 
j ∈ [Ji]¢{1, : : : , Ji} and i � 1, : : : , m. Let J(x) and J c

(x) be families of complementary index tuples a¢(αi)
m
i�1 and 

a c¢(α c
i )

m
i�1, respectively, where each αi ⊆ J i, 0(x) for i � 1, : : : , m and α c

i is the complement of αi in J i, 0(x). For 
each tuple a ∈ J(x) with complement a c ∈ J c

(x), define the set

Sa(x)¢ x ∈ P

X

j∈αi

ψij(x) +
X

j∈J i,+(x)

ψij(x) ≤ bi, i � , 1, : : : , m

φij(x) ≤ 0, j ∈ α c
i , i � 1, : : : , m

�
�
�
�
�
�
�

9
>=

>;
,

8
><

>:

which may or may not contain the vector x. Let J̄(x) be the subfamily of J(x) consisting of tuples a for which 
x ∈ Sa(x). Under a nonnegativity condition on the functions ψij, the following result gives a complete description 
of T (x; XHSC) in terms of the sets Sa(x) for all tuples a ∈ J(x); in turn, this can be used to obtain a characteriza
tion of epistationarity of (3) without f being B-differentiable.

Proposition 13. Let each φij and ψij be continuous near x. If ψij is nonnegative in a neighborhood of x for all j ∈ J i, 0(x), 
then

T (x; XHSC) �
[

a∈J̄(x)

T (x;Sa(x)): (13) 

Hence, if for all a ∈ J̄(x), the set Sa(x) is locally convex like at x, then so is XHSC. In particular, this holds if all φij and ψij 
are convex, with the latter being nonnegative also.

Proof. We first show that there exists a neighborhood N of x such that

XHSC ∩ N �
[

a∈J(x)

Sa(x)

0

@

1

A ∩ N : (14) 

We choose N to be such that ψij is nonnegative in N and

[φij(x) > 0 ⇒ φij(x) > 0] and [φij(x) < 0 ⇒ φij(x) < 0], ∀x ∈ N :

For a vector x in the left-hand intersection of (14), it is clear that x ∈ Sa(x), where

αi¢{j ∈ J i, 0(x) |φij(x) > 0}, i � 1, : : : , m:

Conversely, suppose x ∈ Sa(x) ∩ N for some tuple a ∈ J(x); then, by the nonnegativity of ψij in N , we have 
because J i, +(x) ⊆ αi ∪ J i, +(x),

bi ≥
X

j∈αi

ψij(x) +
X

j∈J i,+(x)

ψij(x) ≥
X

j∈J i,+(x)

ψij(x), i � 1, : : : , m, 

showing that x ∈ XHSC. Thus, (14) holds. To see how (14) implies (13), we note that the right-hand union of tan
gent cones in (13) is necessarily a subcone of the left-hand cone. Conversely, for a vector v in T (x; XHSC), let 
{xk} ⊂ XHSC be a sequence converging to x and {τk} ↓ 0 such that v � limk→∞

xk�x
τk

. By (14), we may assume with 
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no loss of generality that there exists a ∈ J(x) such that xk ∈ Sa(x) for all k. Such an index tuple a must necessar
ily be an element of J̄(x) by continuity of ψij. This shows that v ∈ T (x;Sa(x)) for an index tuple a ∈ J̄(x), com
pleting the proof of (13). The next-to-last statement of the proposition is clear because the union of a finite 
number of convex-like sets each containing a common vector (which in this case, is x) is locally convex like near 
the vector. w

Remark 3. Expression (14) shows that for any closed set S ⊆ N , the set XHSC ∩ S is closed, provided that the func
tions ψij and φij are continuous and that ψij is nonnegative.

The example below shows that the nonnegativity assumption on ψij is essential for Equality (13) to hold and 
that the piecewise affine property of the φij functions is essential for the validity of Proposition 14.

Example 3. Let

X � {(x1, x2) ∈ R2 | � x1 � 1( 0, ∞ )(x2
1 + x2

2 � 1) ≤ �1}:

Then, X � {(1, 0)} ∪ {(x1, x2) ∈ R+ × R |x2
1 + x2

2 > 1}. With x � (1, 0), we have T (x; X) � R+ × R; it is easy to see that 
X is not convex like near x. Thus, Equality (13) cannot hold.

We next give a different set of assumptions of the component functions ψij and φij for the set XHSC to be locally 
convex like. On one hand, we replace the nonnegativity of ψij by its convexity; on the other hand, we restrict φij 
to be piecewise affine. This combination, therefore, generalizes the setting of Corollary 2; the proof employs a 
subset of each Sa(x) in which the piecewise structure of each φij can be easily exposed:

bSa(x)¢
\m

i�1
x ∈ P

X

j∈αi

ψij(x) +
X

j∈J i,+(x)

ψij(x) ≤ bi

φij(x) > 0, ∀j ∈ αi

φij(x) ≤ 0, ∀j ∈ α c
i

�
�
�
�
�
�
�
�
�
�

9
>>>>=

>>>>;

,
a ∈ J(x), where the
pair (αi,α c

i ) partitions the
index set J i, 0(x) for i ∈ [m]:

8
>>>><

>>>>:

We note that bSa(x) ⊆ XHSC ∩ Sa(x); yet, x ∉ bSa(x) as long as αi is nonempty for some i.

Proposition 14. Let P be a polyhedron. If each function ψij is convex and each function φij is piecewise affine, then the set 
XHSC is locally convex like at every one of its elements.

Proof. Let x ∈ XHSC be arbitrary. With the same neighborhood N of x as defined in the proof of Proposition 13, it 
can similarly be proved that (no sign restriction on ψij is needed)

XHSC ∩ N �
[

a∈J(x)

bSa(x)

0

@

1

A ∩ N :

Without loss of generality, we may assume that bSa(x) ≠ ∅ for all a ∈ J(x). By the distributive laws of unions and 
intersections and by the piecewise affinity of the functions φij, each bSa(x) is the finite union of nonempty convex 
(albeit not necessarily closed) sets, which we write as bSa(x) � ∪i∈Ia Si

a, where Ia is a certain finite index set and 
where each Si

a is a certain nonempty convex (not necessarily closed) set. Thus,

XHSC ∩ N �
[

a∈J(x)

[

i∈Ia

Si
a

0

@

1

A ∩ N :

The convexity of Si
α implies cl Si

a ⊆ x + T (x; cl Si
a), provided that x ∈ cl Si

a. We may restrict the neighborhood N 

such that N ∩ cl Si
a � ∅ for all i ∈ Ia and all a ∈ J(x) such that x ∉ cl Si

a. Letting I (x) be the collection of pairs 
(i, a) such that x ∈ cl Si

a, we deduce

XHSC ∩ N �
[

(i,a)∈I (x)

Si
a

0

@

1

A ∩ N , 

which yields

T (x; XHSC) �
[

(i,a)∈I (x)

T (x; cl Si
a):
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Combining the last two expressions, we deduce

XHSC ∩ N ⊆
[

(i, a)∈I (x)

[x + T (x; cl S i
a)] � x +

[

(i, a)∈I (x)

T (x; cl S i
a):

Thus, XHSC ∩ N ⊆ x + T (x; XHSC); hence, XHSC is locally convex like at x. w

The discussion of the section is summarized in Table 1. Each entry is indexed by a combination of convexity 
and piecewise affinity imposed over the functions ψij and φij, and it indicates whether the nonnegativity of the 
latter functions is needed to ensure the local convexity-like property of XHSC. For example, the first entry implies 
that if each φij is convex and each ψij is nonnegative and convex, then XHSC is locally convex like. The conclusion 
of the first column is given by Proposition 13. Proposition 14 illustrates the entry (1, 2). The conclusion corre
sponding to the last entry can be proven using similar polyhedral decomposition techniques as in the proof of 
Proposition 14.

Theorem 3. The set XHSC is locally convex like at every one of its elements if the assumptions given by any entry of Table 1
are true. In particular, XASC is locally convex like, and XAHC is locally convex like if each φij is piecewise affine.

Combining Theorem 3 with Proposition 9, we obtain the following result for the Heaviside constrained optimi
zation Problem (1).

Corollary 3. Let P be a polyhedron. If the assumptions given by any entry of Table 1 hold for the functions ψij and φij, then 
a point is a local minimizer of (1) if and only if it is an epistationary point.

7. Computation of Pseudo- and Epistationary Points via Lifting
The results in the last section are all derived under certain convexity/sign/piecewise affinity restrictions under 
which tangents of the set XHSC are identified and its local convexity-like property is established. There has been 
no discussion, however, about how pseudo- or epistationary points of Problem (1) can potentially be computed. 
In this section, via lifting, we present formulations that make such computation possible. One such lifted formu
lation was provided in a previous work (Cui et al. [7, section 6]) for the constraint 

PJi
j�1ψij(x) 1( 0, ∞ )(φij(x)) ≤ bi 

and under a sign restriction of the function ψij on the zero set of φij. It was shown therein that a B-stationary solu
tion of the lifted problem would yield a pseudostationary solution of the given HSC-constrained problem when 
the functions {{ψij,φij}

Ji
j�1}

m
i�1 are B-differentiable. The significance of the results in this section is twofold; (a) the 

sign restriction can be removed via an alternative lifted formulation, and (b) a relaxation of the latter formulation 
provides a constructive pathway to compute an epistationary solution.

7.1. Derivation of the Lifted Formulations
The derivation of the lifted formulations consists of several steps, beginning with the expression of each function 
ψij � ψ+

ij �ψ�
ij as the difference of its nonnegative and nonpositive parts, respectively: ψ6

ij ¢max(6ψij, 0). Intro
ducing an arbitrary scalar ε ≥ 0, we note that

XHSC � x ∈ P

XJi

j�1
ψ+;ε

ij (x) 1( 0, ∞ )(φij(x))

≤
XJi

j�1
ψ�;ε

ij (x) 1( 0, ∞ )(φij(x)) + bi, i � 1, : : : , m

�
�
�
�
�
�
�
�
�
�
�

9
>>>>>=

>>>>>;

,

8
>>>>><

>>>>>:

where ψ6;ε
ij ¢ψ6

ij + ε. The first lifting of the set XHSC exploits the property that the function x ⊢→ ψ+;ε
ij (x) 1( 0, ∞ )

(φij(x)) is lower semicontinuous if both ψij and φij are lower semicontinuous. Thus, we have the option of not lift
ing the sum 

PJi
j�1ψ

+;ε
ij (x) 1( 0, ∞ )(φij(x)) and lifting only the products ψ�;ε

ij (x) 1( 0, ∞ )(φij(x)). This leads to the follow
ing lifting scheme: 

• t-lifting:

dXt;ε
HSC¢

x ∈ P
tij ∈ [0, 1]

all i, j

XJi

j�1
ψ+;ε

ij (x) 1( 0, ∞ )(φij(x)) ≤
XJi

j�1
ψ�;ε

ij (x) tij + bi

tij ≤ 1( 0, ∞ )(φij(x)), j � 1, : : : , Ji;

�
�
�
�
�
�
�
�

9
>>=

>>;

i � 1, : : : , m

8
>><

>>:

9
>>=

>>;

, 

which is connected to XHSC via the equivalence: x ∈ XHSC if and only if there exists t such that (x, t) ∈
dXt;ε
HSC.
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Next, we note that
tij ≤ 1( 0, ∞ )(φij(x))�∃ yij ≥ 0 such that tij ≤ min(φ+

ij (x)yij, 1): (15) 

Indeed, if the left-hand inequality holds, then we may let yij
≥ φij(x)

�1 if φij(x) > 0
� 0 otherwise:

�

Conversely, suppose there is 

yij such that the right-hand conditions are satisfied. If φij(x) ≤ 0, then the left-hand inequality implies tij ≤ 0, which 
is the same as the right-hand inequality in this case. If φij(x) > 0, then the left-hand inequality yields tij ≤ 1, which 
is the right-hand inequality in this case. Substituting the right-hand conditions in (15) to replace the left-hand condi
tions for all (i, j) in the set dXt;ε

HSC, we obtain the next level of lifting:
• (t, y)-lifting:

dXt, y;ε
HSC¢

x ∈ P
tij ∈ [0, 1], all i, j
yij ≥ 0, all i, j

for all i � 1, : : : , m :

XJi

j�1
ψ+;ε

ij (x) 1( 0, ∞ )(φij(x)) ≤
XJi

j�1
ψ�;ε

ij (x) tij + bi

tij ≤ φ+
ij (x) yij, j � 1, : : : , Ji

�
�
�
�
�
�
�
�
�
�
�

9
>>>>>=

>>>>>;

,

8
>>>>><

>>>>>:

which is a closed set in the lifted (x, t, y)-space, provided that the functions φij and ψij are continuous.
The last lifting is the product uij¢ψ

+;ε
ij (x) 1( 0, ∞ )(φij(x)). There are two ways to do this; one is to apply the epi

graphical approach (Cui et al. [7, section 7]), particularly Cui et al. [7, proposition 7], by considering the relaxation 
uij ≥ ψ+;ε

ij (x)1( 0, ∞ )(φij(x)) and replacing it using a piecewise composite function; this leads to
• (t, y, u)-lifting:

dXt, y, u;ε
HSC ¢

x ∈ P

tij ∈ [0, 1], all i, j

yij ≥ 0, all i, j

uij ≥ 0, all i, j

XJi

j�1
uij ≤

XJi

j�1
ψ�;ε

ij (x) tij + bi, i � 1, : : : , m

and for all j � 1, : : : , Ji and i � 1, : : : , m :

tij ≤ φ+
ij (x) yij, and

min{ψ+;ε
ij (x) � uij,φij(x)} ≤ 0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
equivalent to uij ≥ ψ+;ε

ij (x)1(0, ∞)(φij(x)), given uij ≥ 0

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

,

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

which is also closed if φij and ψij are continuous; moreover, if these functions are B-differentiable, then all the 
inequalities in dXt, y, u;ε

HSC are defined by B-differentiable function. Furthermore, if φij and ψij are difference-of- 
convex or piecewise affine functions, then the constraints in dXt, y, u;ε

HSC are of the difference-of-convex kind; thus, 
optimization over this set can in principle be solved by the difference-of-convex methods described in Pang et al. 
[21].

An alternative to the piecewise min/max lifting of ψ+;ε
ij (x)1( 0, ∞ )(φij(x)) is derived from the observation that

XJi

j�1
ψ+;ε

ij (x) 1( 0, ∞ )(φij(x)) �
XJi

j�1
ψ+;ε

ij (x) sij, 

where sij ∈ [0, 1] satisfies φ+
ij (x)(1 � sij) � 0. This leads to

• (t, y, s)-lifting:

gXt, y, s;ε
HSC ¢

x ∈ P
tij, sij ∈ [0, 1] ∀i, j
yij ≥ 0, all i, j

XJi

j�1
ψ+;ε

ij (x) sij ≤
XJi

j�1
ψ�;ε

ij (x) tij + bi, i � 1, : : : , m

and for all j � 1, : : : , Ji and i � 1, : : : , m :

tij ≤ φ+
ij (x) yij,φ+

ij (x) (1 � sij) � 0

�
�
�
�
�
�
�
�
�
�
�

9
>>>>>=

>>>>>;

:

8
>>>>><

>>>>>:
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In the case of an affine sparsity constraint system

XASC¢ x ∈ P :
Xn

j�1
aij |xj |0 ≤ bi, i � 1, : : : , m

8
<

:

9
=

;
, 

the resulting representations of the sets dXt, y, u;ε
ASC and gXt, y, s;ε

ASC simplify somewhat; for simplicity, we give only the latter:

gXt, y, s;ε
ASC ¢

x ∈ P
tj, sj ∈ [0, 1], all j
yj ≥ 0, all j

Xn

j�1
(a+

ij + ε) sj ≤
Xn

j�1
(a�

ij + ε) tj + bi, i � 1, : : : , m

tj ≤ |xj |yj, j � 1, : : : , n
xj (1 � sj) � 0, j � 1, : : : , n

�
�
�
�
�
�
�
�
�
�

9
>>>>=

>>>>;

,

8
>>>><

>>>>:

where the only nonlinear functional constraints are defined by products of two variables. A noteworthy remark 
about gXt, y, s;ε

HSC is that both auxiliary variables sij and tij are introduced as a surrogate for the same Heaviside com
posite term 1( 0, ∞ )(φij(x)); their roles and constraints differ because of their associations with the respective signed 
functions ψ6

ij .
The two lifted sets dXt, y, u;ε

HSC and gXt, y, s;ε
HSC offer a computationally tractable venue for the minimization of a wide 

class of nonconvex nondifferentiable objective functions f over the nonclosed set XHSC, provided that f and all the 
functions φij and ψij are surrogatable by pointwise minima of convex differentiable functions; see Cui and Pang 
[6, chapter 7]. We omit the algorithmic details.

7.2. Recovering Pseudostationarity
For simplicity, we assume that the objective function f (omitting the subscript HSC) in (1) is B-differentiable so 
that it is not necessary to work with the epigraphical formulation (5). We further assume that all the functions 
{{φij,ψij}

Ji
j�1}

m
i�1 are B-differentiable (which does not imply that the set XHSC is closed). In this subsection, we 

show that if (x, t, y, s) is any B-stationary tuple of f on gXt, y, s;ε
HSC , then x is pseudo-B-stationary of f on XHSC; that is, x 

is a B-stationary point of the problem
minimize

x∈P
f (x)

subject to
X

j∈J i,+(x)

ψij(x) ≤ bi, i � 1, : : : , m

and φij(x) ≤ 0, ∀j ∈ J i, ≤ (x), i � 1, : : : , m:

(16) 

Note that for x sufficiently close to x, we must have φij(x) > 0 for all j ∈ J i, +(x) (confer (cf.) the constraints in (8)). 
Thus, the feasible region of (16) is “locally” a subset of XHSC at x (i.e., there exists an open neighborhood Ox of x 
such that if x ∈ Ox is feasible to (16), then x ∈ XHSC). By the definition of the pseudo-B-stationarity of f on XHSC, 

we know that x must be feasible to XHSC that is possibly nonclosed. We omit the analysis for the set dXt, y, u;ε
HSC that 

involves pointwise minimum constraints. The proof of the proposition below is not straightforward as it requires 
the verification of significant details. Part of the challenge is that the triple (t, y, s) is quite arbitrary and is related 

to x only through the constraints in gXt, y, s;ε
HSC . The scalar ε plays an important role for the validity of the result.

Proposition 15. Let P be a polyhedron and ε > 0 be arbitrary. Let the functions f, φij, and ψij be B-differentiable near 

x ∈ P. If the tuple (x, t, y, s) is a B-stationary point of f on gXt, y, s;ε
HSC , then x is a pseudostationary point of f on XHSC.

Proof. We first show that x is feasible to (16) by verifying

ψ+;ε
ij (x)1( 0, ∞ )(φij(x)) ≤ ψ+;ε

ij (x) sij and ψ�;ε
ij (x)1( 0, ∞ )(φij(x)) ≥ ψ�;ε

ij (x) tij:

Indeed, if φij(x) > 0, then sij � 1, and the first inequality holds; the second inequality also holds because tij ≤ 1. If 
φij(x) ≤ 0, then the first inequality clearly holds; moreover, we must have tij � 0. It ,therefore, follows that

XJi

j�1
ψ+;ε

ij (x) 1( 0, ∞ )(φij(x)) ≤
XJi

j�1
ψ�;ε

ij (x) 1( 0, ∞ )(φij(x)) + bi, 
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which is equivalent to 
P

j∈J i,+(x)ψij(x) ≤ bi. Thus, x is feasible to (16). It remains to show that x is a B-stationary 
point of (16). For this purpose, let {xk} be a sequence converging to x and {τk} ↓ 0 such that each xk is feasible to 
(16) and limk→∞

xk�x
τk

� v. We need to show that f ′(x; v) ≥ 0. It turn, it suffices to show the existence of a corre

sponding sequence {(tk, yk, sk)} converging to (t, y, s) such that (xk, tk, yk, sk) belongs to gXt, y, s;ε
HSC for all k sufficiently 

large, and the three sequences

tk � t
τk

� �

;
yk � y
τk

� �

; and sk � s
τk

� �

(17) 

are bounded. Without loss of generality, we may assume that for all (i, j, k), φij(x
k) has the same sign as φij(x) if 

the latter is nonzero. Furthermore, because xk is feasible to (16), we must have that φij(x
k) > 0 implies φij(x) > 0. 

Hence,

1( 0, ∞ )(φij(x)) � 1( 0, ∞ )(φij(x
k)), ∀k: (18) 

Because the constraints in (16) are separable in i, for notational simplicity, we drop the index i in the rest of the 
proof. Let

∆(•; x)¢
XJ

j�1
ψj(•) 1( 0, ∞ )(φj(x)) � b, (19) 

which is a B-differentiable function. Note that ∆(x; x) ≤ 0. Let

S¢{j |φj(x) ≤ 0 < sj} and T¢{j |φj(x) > 0 > tj � 1}:

We have
X

j∈S
(ψ+

j (x) + ε)sj +
X

j∈T
(ψ�

j (x) + ε)(1 � tj)

�
XJ

j�1
(ψ+

j (x) + ε) sj �
XJ

j�1
(ψ�

j (x) + ε) tj �
X

j:φj(x)>0
[(ψ+

j (x) + ε)sj � (ψ�
j (x) + ε)]

≤ b �
X

j:φj(x)>0
[(ψ+

j (x) + ε) � (ψ�
j (x) + ε)] � b �

X

j:φj(x)>0
ψj(x) � �∆(x; x),

(20) 

where the last inequality holds because (x, t, s, y) ∈
gXt, y, s;ε
HSC and sj � 1 for j such that φj(x) > 0. Hence,

∆(x; x) +
X

j∈S
(ψ+

j (x) + ε)sj +
X

j∈T
(ψ�

j (x) + ε)(1 � tj) ≤ 0:

Case 1. Suppose that S ∪ T ≠ ∅. Because ε > 0, the above inequality implies that

∆(x; x) +
X

j∈S
(ψ+

j (x) + ε)sj +
X

j∈T
(ψ�

j (x) + ε)(1 � tj) < 0: (21) 

We can write

∆(x; x) � �
X

j∈S
(ψ+

j (x) + ε)sj + δ s
j

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
denoted ∆s

j ≥0

2

6
6
4

3

7
7
5 +

X

j∈T
(ψ�

j (x) + ε)(1 � tj) + δ t
j

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
denoted ∆t

j ≥0

2

6
6
6
4

3

7
7
7
5

8
>>><

>>>:

9
>>>=

>>>;

for some nonnegative scalars δ s
j and δ t

j . Define the nonnegative scalars:

∆s
j (x

k)¢
∆(xk; x)

∆(x; x)
∆s

j and ∆s
j (x

k)¢
∆(xk; x)

∆(x; x)
∆t

j :
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Because ∆(•; x) is continuous, it follows that limk→∞ ∆s
j (xk) � ∆s

j and limk→∞ ∆t
j(xk) � ∆t

j . Next, we construct a 
sequence (tk, yk, sk) such that (xk, tk, yk, sk) ∈

gXt, y, s;ε
HSC . Let

sk
j ¢

min
∆s

j (xk)

ψ+
j (xk) + ε

, sj

( )

if j ∈ S

sj otherwise;

8
>><

>>:

1 � tk
j ¢

min
∆t

j(xk)

ψ�
j (xk) + ε

, 1 � tj

( )

if j ∈ T

1 � tj otherwise;

8
>><

>>:

yk
j ¢

max
tk
j

φj(xk)
, yj

( )

if φj(x
k) > 0 (�φj(x) > 0)

yj if φj(x
k) ≤ 0:

8
>>><

>>>:

(22) 

We need to verify the functional inequalities in gXt, y, s;ε
HSC . These are done in the following three steps. 

Step 1. By a derivation similar to (20), we can verify the first equality in the following string of derivations:

XJ

j�1
(ψ+

j (xk) + ε) sk
j �

XJi

j�1
(ψ�

j (xk) + ε) tk
j

�
X

j∈S
(ψ+

j (xk) + ε) sk
j +

X

j∉S
(ψ+

j (xk) + ε) sj �
X

j∈T
(ψ�

j (xk) + ε) tk
j �

X

j∉T
(ψ�

j (xk) + ε) tj

�
X

j∈S
(ψ+

j (xk) + ε) sk
j +

X

j∈T
(ψ�

j (xk) + ε) (1 � tk
j ) +

X

j :φj(x)>0
(ψ+

j (xk) + ε)

�
X

j :φj(x)>0
(ψ�

j (xk) + ε) by properties of sj(tj) for j ∉ S(j ∉ T)

�
X

j∈S
(ψ+

j (xk) + ε) sk
j +

X

j∈T
(ψ�

j (xk) + ε) (1 � tk
j ) +

XJ

j�1
ψj(xk)1( 0, ∞ )(φj(x))

≤
X

j∈S
∆s

k(xk) +
X

j∈T
∆t

k(xk) + ∆(xk; x) + b, by the definitions of the ∆’s; see (19) and (22)

≤ b, by (21) and the continuity of
X

j∈S
∆s

k(•) +
X

j∈T
∆t

k(•) + ∆(•; x):

Step 2. If φj(x
k) > 0, we clearly have φj(x

k)yk
j ≥ tk

j by the definition of yk
j . If φj(x

k) ≤ 0, then φj(x) ≤ 0; thus, 
tj � 0. Moreover, j ∉ T; hence, tk

j � tj � 0, and tk
j ≤ φ+

j (xk) yk
j holds.

Step 3. If φj(xk) > 0, then φj(x) > 0 by (18), and j ∉ S; hence, sk
j � sj � 1. It follows that φ+

j (xk) (1 � sk
j ) � 0. The 

latter clearly holds if φj(x
k) ≤ 0.

We have, therefore, shown that (xk, tk, yk, sk) ∈
gXt, y, s;ε
HSC for all k. Next, for j ∈ S, we have

lim
k→∞

sk
j � min lim

k→∞

∆s
j (xk)

ψ+
j (xk) + ε

, sj

( )

� min
∆s

j

ψ+
j (x) + ε

, sj

( )

� sj, 

where the last equality holds because ∆s
j ≥ ψ+

j (x) + ε by the definition of ∆s
j . Hence, limk→∞ sk

j � sj for all j. Simi
larly, we can show that limk→∞ tk

j � tj and limk→∞ yk
j � yj for all j for all j. Because sk

j and tk
j are either constants (sj 

or tj, respectively) or the pointwise minima of a B-differentiable fraction of xk and a constant (sj or tj), they are, there
fore, B-differentiable functions of xk, and hence, so is yk

j . Therefore, the fractions 
tk
j �tj

τk
,

sk
j �sj

τk
, and 

yk
j �yj
τk 

are bounded.
Case 2. If S ∪ T � ∅, then define sk � s and tk � t for all k and yk

j as above. A similar proof applies. w
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7.3. Recovering Bouligand Stationarity
It turns out that by requiring the tuple (x, t, y, s) ∈

gXt, y, s;ε
HSC to be a B-stationary point of an enlargement of the lifted 

set gXt, y, s;ε
HSC , it is possible to sharpen the conclusion of Proposition 15 to the stronger property of B-stationarity of f 

on XHSC. Specifically, consider the set with an additional scalar η > 0:

gXt, y, s;ε
HSC;η¢

x ∈ P
tij, sij ∈ [0, 1], all i, j
yij ≥ 0, all i, j

XJi

j�1
ψ+;ε

ij (x) sij ≤
XJi

j�1
ψ�;ε

ij (x) tij + bi, i � 1, : : : , m

and for all j � 1, : : : , Ji and i � 1, : : : , m :

tij ≤ φ+
ij (x) yij, φ+

ij (x) (1 � sij) ≤ η

�
�
�
�
�
�
�
�
�
�
�

9
>>>>>=

>>>>>;

:

8
>>>>><

>>>>>:

We have the following result.

Proposition 16. Let the functions f, φij, and ψij be B-differentiable near x ∈ P. For an arbitrary pair (ε,η) > 0, if 
(x, t, y, s) ∈

gXt, y, s;ε
HSC is a B-stationary point of f on gXt, y, s;ε

HSC;η , then x is a B-stationary point of f on XHSC.

Proof. We proceed as in the proof of Proposition 15. Let {xk} be a sequence in XHSC converging to x and {τk} ↓ 0 
such that limk→∞

xk�x
τk

� v. We need to show that f ′(x; v) ≥ 0. It suffices to show the existence of a corresponding 
sequence {(tk, yk, sk)} converging to (t, y, s) such that (xk, tk, yk, sk) belongs to gXt, y, s;ε

HSC;η for all k sufficiently large and 
the three sequences

tk � t
τk

� �

;
yk � y
τk

� �

; and sk � s
τk

� �

(23) 

are bounded. As before, we may assume that for all (i, j, k), φij(x
k) has the same sign as φij(x) if the latter is non

zero. Furthermore, (18) is valid for all k except for a k such that φij(x) � 0 < φij(xk). Defining (sk
j , tk

j , yk
j ) by (22), we 

see that the proof of steps 1 and 2 in Proposition 15 is valid as (18) is not used until the last step 3, which we ana
lyze below. 

Step 3. If φj(x
k) > 0, then φj(x) ≥ 0. If φj(x) > 0, then j ∉ S and sk

j � sj � 1. If φj(x) � 0, then φ+
j (xk) (1 � sk

j ) ≤ η for k 
sufficiently large.

Summarizing the three steps, we have established (xk, tk, yk, sk) ∈
gXt, y, s;ε
HSC;η for all k sufficiently large. The proof of 

the convergence of {(tk, yk, sk)} to (t, y, s) and that of the boundedness of the sequences in (23) are the same as 
before. w
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