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1. Introduction

In this work, we examine a class of minimization problems featured by objective and/or constraint functions that
do not exhibit lower semicontinuity. Analyzing and solving such problems present considerable challenges
because the desirable points, such as global/local solutions, stationary points, or even feasible solutions, might
not be easily accomplished. A broad class of such problems is the following Heaviside composite (HSC) problem:

Jo
minimize fisc )2 (0 10,00 ) (Pg;(x)),
=1
Ji
subject to x € Xpsc2£{ x€P Zl/}ij(x) 1(0,m)((¢>ij(x)) <b,i=1,...,m},
=1

1 ift>0

0 otherwise S the indicator function of the (open) interval

where the (open) Heaviside function l(o,w)(t)é{

(0,00); PCR" is a given polyhedron, m and {J;}|, are positive integers, {b;};-; are scalars, and 1;; and ¢;:0C
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R" — R are some given continuous functions defined on an open set O containing P. Although the Heaviside
function 1(g,«)(t) exhibits lower semicontinuity for t € R, the lower semicontinuity can be destroyed when multi-
plied by functions v;; that are not consistently nonnegative. We refer to the reference Cui et al. [7], which has pre-
sented the modeling breadth of the HSC constraint set Xpsc. In particular, the Heaviside function is central to
the treatment of chance constraints in stochastic programming; see Cui et al. [8] for a comprehensive study of
such a treatment. In turn, to model conjunctive/disjunctive events, the random functionals in the chance con-
straints involve pointwise minimum/maximum operations that render them nondifferentiable. Furthermore,
decision-dependent multiples of the Heaviside composite functions are used in treatment problems to describe
rewards conditional on variable outcomes (Fang [12], Qi et al. [22]). As a unification of these special cases, the
class of additive Heaviside composite optimization problems and the concept of pseudostationarity were intro-
duced in Cui et al. [7]. The latter concept has its origin in Gomez et al. [14] for the sparse optimization problem
and is defined by a fixed-point property of a “pulled-out” formulation.

Originated from a statistical estimation problem with sparsity (Hastie et al. [15]), a special case of the compos-
ite Heaviside optimization problem is the problem with affine sparsity constraints (ASCs) that was introduced in
Dong et al. [11] as a computational framework for rigorously solving estimation problems with structured spar-
sity (i.e., logical sparsity conditions). Such constraints define the following set:

n
XASCé x€P Zaijlleo < bi,izl,...,m , (2)
j=1
a1 ift#0
where |f[p = { 0 otherwise
ple, to model the hierarchical selection among three variables such that x3 can only be selected if at least one of x;
or x; is chosen, the following inequality can be employed:

is the sparsity function that is closely related to the Heaviside function(s). For exam-

|x3]o < |x1lo + [x2]0-

An optimization problem over ASCs is a generalization of cardinality constrained problems, whose continuous
relaxations have been extensively studied in the existing literature (Bian and Chen [2], Chen et al. [3], Kanzow
et al. [17], Kanzow et al. [18]). It is known from Dong et al. [11] that XAsc may not be a closed set when the coeffi-
cients a;; have negative signs, such as in the above example. When it comes to optimization problems over these
sets, a sign restriction on the multiplier functions is a key requirement in their study (Cui et al. [7], Dong et al.
[11]). A main contribution of our work herein is to address problems not satisfying such a sign condition for both
sets Xysc and Xasc.

In addressing nonlower semicontinuous functions within objectives and constraints that lead in particular to
nonclosed feasible sets, an immediate strategy is to consider the closures of these sets. However, this approach
might not be ideal for the following reasons.

e Given that the epilimit (Rockafellar and Wets [23, definition 7.1]; see also Royset [24] and Royset and Wets
[25]) of a function sequence is always lower semicontinuous, it is thus not possible to construct approximating
functions that exhibit epiconvergence to the original nonlower semicontinuous functions. This absence of epicon-
vergence in the approximating functions, either within the objective or constraints, can impede the convergence of
the global minimizers, let alone stationary solutions, for the approximating problems, among many difficulties.

e The best convergence in terms of the epilimit one can achieve from the approximating functions is to the clo-
sure of the lower semicontinuous function. However, in the realm of logical implications and structured variable
selections, the closure of a given constraint can potentially compromise its expressiveness. Consider, for instance,
the constraint (see Dong et al. [11, example 1])

[x1]o < [x2]g =10, +00)([X1]) £ L0, +00)(|22])-

The feasible set for this constraint is ((0, +c0) X R) U ((—o0,0) X R) U {(0,0)}. This constraint expresses the logical
implication: x; # 0 = x; # 0. Yet, the closure of this set is equal to the entire space R?, which clearly does not (even
approximately) model the desired logical conditions accurately.

e On top of the difficulties mentioned above, when there are multiple constraints, it is a demanding task to con-
struct the closure of N, C,, when m > 1 and at least one C; is nonclosed. This closure can be significantly smaller
than N, closure{C;}.

Because there is a simple linear structure in the ASC constraint set Xssc and the only combinatorial aspect of
the set is because of the {o-function that has a well-known integer description, a natural question is whether the
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nonclosedness of Xsc is indeed a challenging issue to deal with per the advances in integer optimization. We
approach this question from the perspective of mixed integer linear representability (MILP) of Xsc, obtaining in
particular a representation of the closure of Xasc that complements the results in Dong et al. [11, section 3] from
which we can deduce a “big-M" integer description of the closure. Deepening the analysis in this reference, the
extended analysis elucidates the general difficulty associated with a mixed signed combination of multiple
{o-functions in that although an integral formulation of the closure of the set Xasc aids the understanding of its
structure, an integer approach for dealing with this set is primarily of conceptual value at the present time; the
efficient solution of an optimization problem over this set would require much further research for the approach
to be practically viable. Because of the difficulty of the global solution of (1), per the integer programming analy-
sis, an in-depth understanding of the local properties of the feasible set Xpsc and of the optimization problem
itself is, therefore, imperative; the study of such properties is the focus of the remaining sections of the paper.

The study of the local properties of (1) begins with its stationarity conditions, which for a general optimization
problem, are necessary for local optimality. For problems where a minimizer, local or global, is impractical to be
computed, a stationary solution is a realistic goal one can hope to obtain in practical computation. The advances
in variational analysis (Rockafellar and Wets [23]) have led to the definitions of many notions of subgradients of
extended-valued functions, each of which can be used to define a stationarity concept. Among these, the regular
subgradients (Rockafellar and Wets [23, definition 8.3]) lead to a sharp stationarity concept that in principle, is
applicable to a general constrained optimization problem without regard to the properties of the defining func-
tions and constraints. However, although offering convenience for mathematical analysis, such an extended-
valued, subdifferential-based stationarity concept has a major drawback. Namely, it hides the constraints in the
objective, rendering the identification of a subgradient a very difficult task. In contrast, by exposing the con-
straints as given, tangents to the constraint set can often be more easily described and lead to constructive
approaches to compute sharp stationary solutions. Indeed, practical computation provides a strong motivation
for treating the constraints as they appear.

There are several fundamental issues associated with the stationarity concepts of a minimization problem lack-
ing lower semicontinuity. Foremost is the question of how the previously defined pulled-out-based pseudosta-
tionarity (Cui et al. [7]) is related to regular subdifferential-based stationarity as the latter is known to be the
sharpest among many stationarity concepts for the very broad class of “Bouligand differentiable” (abbreviated
as B-differentiable) problems; see Cui and Pang [6, proposition 6.1.8], where the term Bouligand stationarity was
used. Although a Heaviside composite function is not B-differentiable, we are able to demonstrate that pseudos-
tationarity is a weaker notion than the subdifferential-based stationarity, which we term “epistationarity” for rea-
sons to be made clear later and we will formally define in Section 4. A follow-up question is whether there are
classes of problems whose epistationary points are local minimizers. This question has its origin in differentiable
problems (extendable to B-differentiable problems) for which the class of pseudoconvex functions introduced by
Mangasarian [19] and Mangasarian [20] provides an answer. Specifically, for a convex-constrained optimization
problem with a differentiable pseudoconvex objective function, a first-order stationary point must be a global
minimizer. As an extension to nonsmooth functions, the property of (local) convexity like of a B-differentiable
function at the given point, initially defined in the study of piecewise quadratic programming (Cui et al. [9]) and
subsequently expanded in Cui et al. [8, section 4.2], provides a sufficient condition for a B-stationary solution of a
Bouligand differentiable problem to be a local minimizer. It should be noted, however, that unlike the well-
known quasiconvex functions, which yield convex level sets, the level set of a locally convex-like function may
not be convex. A further question is whether there are constructive procedures to (approximately) compute an
epistationary point of a nonlower semicontinuous Heaviside composite program. We answer this question via
lifting the problem to one with additional variables and then resorting to the family of surrogation methods (Cui
and Pang [6, chapter 7]) when the functions in the lifted program are “surrogatable” (e.g., difference of convex).
Details of such an algorithmic development are not addressed in the present work; these are best left for a sepa-
rate computational study.

1.1. Organization and Contributions
After a brief summary of the notations and some relevant background materials in Section 2 for the study of
Problem (1), we organize the rest of this paper along with the main contributions as follows.

a. In Section 3, we provide an algebraic description of the closure of the set Xasc that complements the results in
Dong et al. [11, section 3]. Based on Theorem 1, which is a restatement of a classical result, we derive a necessary
and sufficient condition for Xasc to have a mixed integer linear representation. This result is enhanced by a more
detailed description of the representation by exploiting the structure of Xagc; see Theorem 2 and Corollary 1.
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b. We formally define epistationarity for an optimization problem lacking lower semicontinuity in Section 4 (see
Definition 1) and establish several important properties of an epistationary solution. First, epistationarity is a neces-
sary condition for local minimization (Proposition 2). Epistationarity has an equivalent description in terms of a
suitable subderivative (Proposition 3). For a B-differentiable problem, epistationariy recovers B-stationarity (Propo-
sition 4). Finally, for the HSC-constrained optimization Problem (1), epistationarity is sharper than the pulled-out
pseudostationarity (Proposition 5).

c¢. In Section 5, we generalize the functional convexity-like condition to a set-theoretic local convexity-like prop-
erty and establish its sufficiency for local minimization of an epistationary point (Proposition 9). Being the local ver-
sion of the classical result of pseudoconvexity implying global optimality for a differentiable problem, our result is
for a nonlower semicontinuous program with a possibly nonconvex feasible set. The terminology of epistationarity
sufficiency is borrowed from “minimum principle sufficiency” (Ferris and Mangasarian [13]), which aims to
answer a related but different question pertaining to the characterization of the set of optimal solutions of a convex
differentiable program in terms of the minimum principle of the program at a given optimal solution.

d. In Section 6, based on the algebraic descriptions of tangent vectors of various cases of an HSC set, we summa-
rize in Theorem 3 when such a set has the local convexity-like property. With this property, we obtain the equiva-
lence of epistationarity with local optimality for these classes of Heaviside-defined optimization problems.

e. In Section 7, where we assume, for simplicity, that the objective function is B-differentiable, we introduce
through several steps a lifted formulation of Problem (1) and show that the B-stationary points of this lifted formu-
lation, where all functions in the lifted space are B-differentiable, yield pseudostationary points of (1) through pro-
jecting the B-stationarity points from the lifted domain onto the original space; see Proposition 15. Bouligand
stationarity can be obtained from the lifting under a further assumption; see Proposition 16. Both results are estab-
lished without any sign condition on the multiplier functions {¢ij}.

2. Notations and Background
Parallel to the notation R" for the n-dimensional Euclidean space of real numbers, we denote the set of n-dimen-
sional integers and positive integers by Z" and Z'}, respectively. The superscript n is omitted if it equals one. For
a given set S, we denote its closure by cl(S), convex hull by conv(S), recession cone by S.,, and distance to a point
x € R" by dist(x,S) 2 inf{||x — y|l, : y € S}, where ||, £max;|a;| is the infinity norm of a vector. For any vector
x € R", we write its support as supp(x), and |x|, for the vector whose components are |x;|, fori=1, -+, n.

To prepare for the analysis of the Heaviside-defined optimization Problem (1), we review some background
pertaining to a general constrained optimization problem in finite dimensions:

mir}gr{lize f(x), 3)

where X is a nonempty subset of R” (which is not necessarily closed) and f: O — R is a function defined on
the open set O that contains X. It is common in variational analysis to consider the unconstrained formulation
of (3),
mini]glize Ffx(x)2f(x) + 6x(x),
xeR”

o ifxeX
0 ifxeX.
from Royset and Wets [23, theorem 10.1] that if X € X is a local minimizer of (3), then 0 € dfx(x), where

9. (37) 2 i oo Jx(0) = fx(x) — v (x = X)
an(x)_{veR |}(ggg1§ [[x—x||

={veR"|v"w < dfx(x)(w) forall weR"} Roysetand Wets [23, exercise 8.4]

by hiding the constraint set X using the extended-valued indicator function: 6x(x) £ It is known

> 0} Royset and Wets [23, definition 8.3]

and
A lim infw Royset and Wets [23, definition 8.1]
A0 2 ] v
o0 if no such w exists
= liminf M under identification : X" =X + t(w — v).
T (x' =%)—0; 70 T

X+ tveX
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Following Royset and Wets [23, definition 6.1], we define the tangent cone of X at x € X as

V—00 Ty

T(x;X)2 {v e R"|3{x"} c X converging to X and {7, } | 0 such that v = lim G x}.

Note that the domain of the subderivative dfx(x)(e) is a subset of the tangent cone of X at X. According to the
cited reference, &fx(x) and dfx(X)(v) are, respectively, the constrained regular subdifferential and the subderiva-
tive of the pair (f, X) at the vector X € X. The difference between the two limit infima in dfx(X)(v) is that in the first
liminf, the vector ¥ is fixed in the first term (X + Tw), and the direction w is allowed to vary near the given direc-
tion v, whereas in the second, the direction v is fixed in the same term f(x" + 7v), and the vector x’ is allowed to
vary near X. Although the subdifferential Ifx(X) is very convenient for analysis, the fact that the set X is hidden
in the extended-valued function fx complicates the design of solution methods; indeed, unwrapping the elements
therein to expose the set X is invariably needed to take advantage of these properties.

When fis a B-differentiable function (Cui and Pang [6, definition 4.1.1] at X € X (i.e., f is locally Lipschitz contin-
uous near X and directionally differentiable there) so that the one-sided directional derivatives

f/(f; U) A hmf(y + TU) _f(f)
710 T

exist for all v € R", the vector X is said to be a B-stationary point of (3) (Cui and Pang [6, definition 6.1.1] if
f'(x;0) 20, VoeT(X;X).

The closedness of the set X is not needed for the definition of the tangent cone or for B-stationarity; nevertheless,
the directional differentiability of the objective is needed for the latter. It is clear that B-stationarity is a necessary
condition for a local minimizer. Moreover, it is shown in Cui and Pang [6, proposition 6.1.8] that if f is
B-differentiable at X and X is a closed convex set, then X is a B-stationary point of f on X if and only if 0 € afx(x)
additionally, if f*(x;e) is a convex function and X is a convex set, then these stationarity properties are further
equivalent to the condition that 0 € 8f (%) + N(x; X), where NV (X; X) is the normal cone of the convex set X at X as
in classical convex analysis. A B-differentiable function f is said to be Clarke regular at a point x in its domain
(Clarke [4, definition 2.3.4]) if

f'(x;0) =f°(x;v) £ lim sup
X—X
7]0

, veR",

flx+70) —f(x)
T

where f°(x;v) is the Clarke directional derivative of f at X along the direction v.

3. Mixed Integer Linear Representability of Xasc.

To provide a strong motivation for the remainder of the paper, this section validates the computational difficulty
of Problem (1) by providing sufficient and necessary conditions for the ASC constraint set Xasc to be mixed inte-
ger linear representable (MILR). Specifically, a subset S of R" is termed MILR if there exist rational matrices A, B,
and C and a rational vector d, all of appropriate dimensions, such that

S={xeR"|3(y,z) e R" X Z7 such that Ax+By+Cz < d}.

As we will see, even obtaining such a representation for Xasc is not a trivial task, which would be a reasonable
first step in attempting to solve an associated optimization problem to global optimality.

Needless to say, the challenge in dealing with the set Xagc is the £, function | e |,. To address this function, the
integer programming community often employs an indicator variable z € {0,1}" to represent the support of the
continuous variable x € R” (see, e.g., Atamtiirk et al. [1] and Dong and Linderoth [10]). The constraint z = |x|, is
further relaxed to —Mz < x < Mz via the standard big-M technique, enabling a more tractable formulation. This
yields the following mixed integer set that contains Xasc (assumed bounded):

n
x€P|3z€{0,1}" such that — Mz < x < Mz and Zaijzj <b,i=1,...,my,
=1

where M > 0 is chosen to be sufficiently large to ensure Xasc € {x € R"|||x[|, < M}. It is known that such a relaxa-
tion is exact provided that all the coefficients a;; are nonnegative. However, complexities arise when A does not
meet the sign condition.
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The following classical result (Conforti et al. [5, theorem 4.47]) provides geometric conditions under which a
subset S of R" is MILR. It is important to note that the intcone in Expression (4) is an “integer cone” that consists
of nonnegative integral combinations of integer vectors; in particular, this cone is not necessarily polyhedral.

Theorem 1. A set S CR" is MILR if and only if there exist rational polytopes P1,...,Py CR" and vectors r',...,/" € Z"
such that

k
S= UPi +intcone{r!,..., 7"}, 4)
i=1
where intcone{r!, ..., ¥} £ {3 L A A € ZT}.

Note that an MILR set must be closed but not necessarily bounded. Indeed, a set S is closed if and only if SN
{x:|lx|l, < 7} is closed for any scalar 7 > 0. If S is MILR, then by Theorem 1, the set SN {x: x|l < t} is a finite
union of compact sets and is thus closed. This implies that Xagc is not MILR in general. In Dong et al. [11, section 3],
the issue of closedness of Xasc and the identification of its closure have been studied under a key assumption. The
result below generalizes this previous study without such an assumption; besides the improved identification, which
is seemingly conceptual, its proof provides a constructive pathway to the subsequent result, Theorem 2, that provides
a full characterization of the MILR property of the set Xasc.

Proposition 1. Let P CR" be a polyhedron. There exist a matrix A >0 and a {0,1}-vector b such that cl(Xasc) = {x €
P|Alx|q < b}.
Proof. Let S2{z € {0,1}"|z = | x|, x € Xasc} be the set of possible supports of the feasible region. Let sS4 Uzes{y €

{0,1}"|y < z} be the downward closure generated by S. Because Sc {0,1}", one has S =conv(S) N {0,1}". We
claim that cor}V(S )={z>0]Az < b} for some matrix A >0 and {0,1}-vector b. For this purpose, we first show
that y € conv(S) if and only if y > 0 and y"u < max,zu"z for all u > 0. The “only if” assertion is obvious. For the

“if” assertion, suppose that 0 < y ¢ conv(5) is such that y"u < max__;u"z for all u > 0. Because conv(S) is a poly-
tope, by separation, there exist a vector i and a scalar y such that y il >y > max,. ., ' z- For any vector z € S,
the vector Z obtained by zeroing out the components of z corresponding to the negative components of i remains
an element of 5. Thus, with ii* denoting the nonnegative part of the vector i, we have

ylatzy'a>zla=z"ut,

which is a contradiction. This completes the proof of the description of a vector y € conv(S). Next, we note that
y'u < max,su'z for all u > 0 is equivalent to

y'u <1 forall u>0such that maxu'z <1

y'u<aforallu>0,a>maxu' z= s .
28 y'u <0 forall u>0such that maxu'z <0
z€S

y'u<l YuePi2{ulu>0u"z<1, vz e §}
— N
y'u<0 VYuePy2{u|lu>0,u"z<0, VzeS}.

Because Py and P; are polytopes, one hi}S P;=conv{u’|j=1,...,k} for certain finite families of vectors
{u¥ };‘;1 CRY}, fori=1,2. Therefore, y € conv(S) if and only if y belongs to the set

ly=0, @)y <1, @)y <0, Vj=1,... ki, £=1,...k},

completing the proof of the claimed polyhedral representation of conv(S).

It remains to show that cl(Xasc) = X 2 {x € P|A |x|o < b}. Note that X is a closed set because of A >0. It is evi-
dent that cl(Xasc) € X. To prove the converse inclusion, consider an arbitrary x € X. One has |x|o€ S, which
implies that there exists & € Xasc such that ||, > |x|, by the construction of S. Let x(¢) = e + (1 — ¢)x for
€ €0,1]. Clearly, x(¢) belongs to P, and for almost all € € (0,1], |x(¢)|y = |%|,. Because A|% |, < b, one can deduce
that for almost all € € (0,1], x(e) € Xasc. The proof is now complete because lim,ox(¢) =x. O

A point x € S is called a maximal element in S if there does not exist a point y # x € S such that y > x. The proof
of Proposition 1 indicates that if x € cl(Xasc) and |x|, is the maximal element in the support set {z € {0,1}"
|z = |x|y, x € Xasc}, then x € Xasc. This fact is useful when searching for a point in Xagc to approximate elements
in cl(Xasc). Specifically, consider the case where the matrix A in Proposition 1 is known. Take any point
X € cl(Xasc), and let Z = ||, € {0,1}". Given A >0, it is easy to identify a maximal element 2 € {0,1}" in the
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support set such that z < Z. Following this, one can determine a point & € cl(Xasc) such that |% |, = Z by solving
linear programs over {x € P|x;(1—2;)=0,i=1,...,n}. Consequently, we have % € Xasc, which implies that eX +
(1 —¢e)x € Xasc for almost all € € (0,1].

However, it is worth noting that although the existence of A is guaranteed by Proposition 1, unfortunately, the
effective construction of A remains unclear. Consequently, this proposition is primarily of conceptual signifi-
cance. In the following, we show that for the set Xasc, the integer cone in Theorem 1 can be replaced with a poly-
hedral cone that is given by any maximal element from the support set. We start with a technical lemma.

Lemma 1. Let r € R" and X € Xasc. If Xasc is closed and there exists a nonnegative sequence {t;} — oo such that X + tyr €
Xasc for all k, then the ray {X + tr: t > 0} € Xasc.

Proof. Because Xasc is closed, by Proposition 1, one can assume A > 0. Observe that there exists fp > 0 such that
as t > tg, supp(X + tr) = supp(x) U supp(r). If in addition, x(t) £X + tr € Xasc, then for any y = AX + (1 — A)x(t) and
A€[0,1], one has y € P and |y|, < |x(t)|o, which implies that A|y|y < A|x(t)|y < b. Therefore, we have y € Xasc.
The conclusion follows from the assumption that t — co. O

The noteworthy point of the MILR of Xagc in the result below is twofold; one, the cone in (4) can be made
polyhedral, and two, its generators are recession vectors of the base polyhedron P whose nonzero components
correspond to those of a maximal element of the set 5 in the proof of Proposition 1.

Theorem 2. Assume P is a polyhedron defined by rational data. Then, XASC is MILR if and only if there exist nonempty
rational polytopes {P; }1 1 and a polyhedral cone R such that Xasc = U'_, P; + R. Furthermore, the recession cone R takes
the form {r € P |r; =0, Vi ¢ supp(z™®)}, where z™* is any maximal element of {z € {0,1}"|z = | x|, x € Xasc}-

Proof. Thanks to Proposition 1, we can assume that the matrix, denoted as A, of the coefficients 4;; in the defini-
tion of Xagc is all nonnegative, without loss of generality.

Necessity. Suppose Xasc is MILR. By Theorem 1, there exist rational polytopes Py,...,P, CR" and vectors
rl, ..., 1" € Z" such that Xasc = UK, P; + intcone{r,...,7"}. For an arbitrary vector r = 37, A;# with A € Z" and an
arbitrary point x € Xasc, it holds that x + tr € Xagc for all t € Z,. Thus, one can deduce from Lemma 1 that x + fr €
Xasc for all > 0. This further implies that x+ Y1, u.r' € Xasc for all u € R” that is rational, all t€ R, and x €
Xasc because we can always scale r by a positive integer to make i integral. Because Xasc is closed, it follows that
x + 1 € Xasc for all 7 in the cone generated by the vectors {'}}",, which we denote by R.

Sufficiency. Because P; are polytopes, U, P; is MILR by Theorem 1. Because a polyhedral set is always MILR
and the Minkowski sum of two MILR sets is MILR, we can deduce that Xagc = Ui-‘zlPi + R is MILR.

It remains to prove the representation of the cone R. Let R £ {r € P, |7; =0, Vi ¢ supp(z™®)}. By the definition
of z™™, there exists X € Xasc such that supp(z™®) = supp(x). Note that for any r € R, supp(r) € supp(x). Thus, for
any t >0, A|x +tr|y < A|X|y < b. Hence, X + tr € Xagc for any t > 0; thus, r € R by the above proof for the first
statement of this proposition. Hence, R CR. If there exists r € R\ R, then ¥ + tr € Xasc and |X + tr|, > 2™ for ¢
large enough, contradicting the maximality of z™*. This proves R =R. O

If Xasc 2{x € P|A|x|, < b} is MILR with A nonnegative, one can readily obtain a maximal element z™® in the
support set and the resulting recession cone R. In this favorable case, Xssc admits a big-M extended reformula-
tion. The result is formally stated below.

Corollary 1. Assume that A > 0 is rational and Xasc 2{x € P|Al|x|, < b} is MILR with the recession cone R. Then , there
exists M > 0 such that

Xasc ={x€R"|3(y,z,7r) € Px{0,1}" XR s.t. Az < b;—Mz <y < Mz, and x=y+r}.

Proof. Take M large enough such that in the statement of Theorem 2, it holds that P2 U P; is contained in
{x:|Ixllo < M}. If x € Xasc, then there exists y and r such that y € P C Xasc and r € R. Thus, y € Pand Aly|y < b.
This shows that the Xasc is a subset of the right-hand set in the claim. Conversely, suppose (x,y,z, 1) satisfies the
inequality system in the right-hand set in the claim. Then, z > |y|, and A >0 imply that A|y|, < b, from which
we can deduce that i € Xasc. Because Xasc + R € Xasc, the conclusion follows. O

4. Epistationarity
It is trivial to cast Problem (3) as one with a B-differentiable objective function by “epigraphicalizing” the func-
tion f; this maneuver leads to the lifted problem with an auxiliary variable:

minimize t subject to (x,t) € Z2epi(f) N (X X R), (5)
(x, HHeR™
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where epi(f) 2 {(x,t) € OXR : f(x) < t} is the epigraph of f. In this form, we can speak of a pair (¥,f) € Z with
t£f(x) as being a B-stationary point of (5). When f is not lower semicontinuous, its epigraph epi(f) is not closed.
Nevertheless, we can formally introduce the following concept.

Definition 1. A vector X € X is an epistationary solution of (3) if the pair (x,f(X)) is a B-stationary solution of the
lifted Problem (5).

Unwrapping the B-stationarity condition in the lifted formulation based on the tangent cone of Z, we remark
that X € X is an epistationary point of f on X if the following implication holds:

k -
x<, k) — (X, t
BN A )
(¢, b)eepi(f)N(XxR) Tk
o5, ) = &1, 1 L0

=(v,dt)| = dt>0. (6)

The following simple result shows that epistationarity is a necessary condition for locally minimizing; the note-
worthy point of the result is that no assumption is required of the pair (f, X).

Proposition 2. Let f be continuous. A vector x € X is a local minimizer of (3) if and only if the pair (X, f(x)) is a local mini-
mizer of (5). Thus, if X € X is a local minimizer of (3), then X is an epistationary point of (3).

Proof. “Only if.” Suppose ¥ € X is a local minimizer of (3). Let A/ be a neighborhood of ¥ such that f(x) > f(X) for
all x e XN N. Thus, if (x,t) € ZN (N X R), then t > f(x) > f(X), showing that (X, f(X)) is a local minimizer of (5).

“If.” Conversely, suppose (X,f(X)) is a local minimizer of (5). Let A X A} be a neighborhood of (¥,f(X)) such
that ¢ > f(%) for all (x,t) € Ny X Ny Let N x C N, be a neighborhood of ¥ such that f(x) € N} for all xe N x It then
follows that for x € A, the pair (x,f(x)) belongs to N x Ny; thus, f(x) > f(%), showing that ¥ is a local minimizer
of (3). The last statement of the proposition does not require proof. 0

For the purpose to connect epistationarity with regular subdifferential-based stationarity, we first establish a
lemma.

Lemma 2. Let x € X. It holds that

) —f) _
P oA erap SO @)

with the values * oo allowed. In particular, if X is an isolated vector in X, then the two values are both equal to co.

Proof. Let {x*} c X\ {x} be a sequence converging to X such that

fO) @) _ | f0—f@)

lim inf

Fxex)—-% =T ko |k =]
Without loss of generality, we may assume that the normalized sequence {wk £ Hik:g\l} converges to a tangent
vector v® € T(x; X), which must have unit norm. Letting 7 £||x* — X||, we have x* = x + Fyw*; hence,
— — k —
x)—f(x X+ 7hw') —f(x
hom g T —I®) _ S+ ma) ()
T#x(eX)-x ||[Xx —=X]|| ko Tk
X +1w)—f(x
>liminff( ) =f®)
w—v™; 7|0 T
X +1weX
= dfx(®)(v™) > inf dfx(x)(v).

v€T (x;X); [loll=1

Conversely, let v € 7(X; X) be an arbitrary vector with unit norm. We have

e fETO @ ) —f®)
Rt R I A s T

Hence, the equalities in (7) hold. O

The following result establishes the equivalence of epistationarity with the nonnegativity of the subderivative
dfx(x) on 7 (¥; X) and with regular subdifferential-based stationarity.
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Proposition 3. Lef f : R" — R be an arbitrary function and X be an arbitrary subset of R". Let X € X be given. The follow-
ing three statements are equivalent:

a. dfx(x)(v) =0 forallve T (x;X),

b. X is an epistationary point of f on X, and

c. 0€dfx(X).

Proof. (a) = (b). Let {x*}, {t}, {tx}, and dt satisfy the conditions in the left-hand limit of (6). Then, v € 7 (¥; X);
furthermore,

¥k
dtzlimsupf( ) f( )>hm1 fw dfx(x)(v) =0,
k—oo w—v; 7|0
X+tweX
where the last inequality holds because dfx(x)(v) > 0 by assumption.
(b) = (c). Suppose ¥ € X is an epistationary point of f on X. If suffices to show that dfx(¥)(v) > 0 for all v € R".
This is clearly true if dfx(x)(v) = co. Suppose that dfx(¥)(v) is finite. Then, there exist {w*} — v and {1;} | 0 such
that X + 7,w* € X for all k and

fx + 7wk) — f(x) .

Tk

df(¥)(0) = lim

Let x* £x + 1wk and t 2£(xF). It follows that the sequences {x*}, {t;}, and {1;} satisfy the conditions in the left-
hand limit of (6) with df = dfx(x)(v). Thus, this subderivative is nonnegative.
Lastly, suppose that dfx(¥)(v) = —co. Then, there exists {w*} — v such that ¥ + 7,w* € X for some 1 | 0, and

lim fx + Twk) — f(%) _

Tk

k—
Thus, there exists a positive integer K such that
fx + k) — f(x) < —11, VE= K.

Let X*£% + twk and t £f(X) — 74. It follows that the sequences {x}, {f}, and {t;} satisfy the conditions in the
left-hand limit of (6) with dt = —1. This contradicts the epistationarity of X.
(c) = (a). This is obvious by the definition of an(x) O

Remark 1. Although the proof of Proposition 3 is closely related to Royset and Wets [23, theorem 8.2], which
asserts that the tangent cone of the epigraph of an extended-valued function g at the pair (¥,g(x)) with g(x) finite
is equal to the epigraph of the (unconstrained) subderivative dgx(¥) of ¢x £¢ + dx, the main point of the proposi-
tion is on the restatement of epistationarity in terms of subderivatives.

We next show that the new concept of epistationarity coincides with the old concept of B-stationarity when the
objective function f is B-differentiable.

Proposition 4. Let f be B-differentiable near x € X. Then, X is a B-stationary point of (3) if and only if X is epistationary.

Proof. The “only if” part is the same as that of part (a) of Proposition 3 and straightforward. It remains to prove
the “if” part by showing that f (x ) > 0 for all v € T(x; X). There exist sequences {x'} c X convergmg to ¥ and
{7} 1 0 such that v = lim;_,o, *==. Let t; £f(xX) and dt&f'(x;dx). Then, (v,f'(x;v)) € T(z;Z), where z 2 (%,f(X)),
and Z is given in (5). By the eplstatlonarlty of ¥, it follows that f'(x;v) > 0. O

Referring to the HSC-constrained optimization Problem (1), we say that a vector X in Xysc is a pseudostationary
point of this problem if X is an epistationary point of the “pulled-out” problem:

mirkierllj1ize ‘ Z, Ipoj(x)
j€T0,+(X)
subjectto foralli=0,1,...,m
Z Bbij(x) < b; (Wlth by = 00) (8)
feji,+(f)
$;(x) 2 0,forallje ;. (x)
and qbl.].(x) <0, forallje J; < (%),

where J; < (x) £ {]|qb (X)<0}and J;,(x) 2 {]lqb (x) >0} fori=0,1,...,m. We also define ji,o(f)é{jlqbij(f) =0}.
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We remark that in Cui et al. [7, definition 3], the definition of pseudostationarity assumes that all the functions
{y; (;bij}j]-izl}?io are B-differentiable; here, these continuous functions can be arbitrary.

The pseudostationarity definition provides one way to resolve the challenge caused by the Heaviside composite
functions 1(g,.0)(¢;(x)) by exposing the inner functions relative to the reference vector x instead of at the variable
vector x. Provided that the functions {{yy, qblj}};l};io have favorable properties (e.g., difference of convexity), the
resulting Problem (8) is computationally tractable (Pang et al. [21]) and enables the verification of the stipulated
fixed-point condition on the candidate solution X. The paper by Cui et al. [7] has provided constructive ways to
approximately compute a B-stationary point of (8) under some sign conditions on the functions 1);; see also Gémez
et al. [14] and He et al. [16] for a special quadratic sparse optimization problem involving the £y-function.

In the following, we show that for Problem (1), epistationarity is sharper than pseudostationarity. Note that (8)
is a restriction of the original Problem (1) around X. Thus, the global optimality and the local optimality of (8) are
necessary conditions for the respective optimality of (1).

Proposition 5. If X is an epistationary point of (1), then it is pseudostationary.

Proof. Let - and X5 denote the objective function and constraint set of (8), respectively, and ZP. 2

epi(Yhsc) N (XFse X R). Recalling the epigraphical set Z (see (5)) of Problem (1), we first show that if x is sufficiently
close to x and if (x, t) belongs to Zféc, then (x,t) € Z. This is indeed true because for such an x, it holds that

Ti,+(x) = {j|¢l-]-(x) >0} =J;+()

foralli=0,1, ---,m, which implies

Ji
;%(x)l(o,oo)(%(x)ﬁ S owm= >y <

j€Ti,+ (%) j€T;, +(X)
In particular, fisc(x) = Yhc(x). Because X is an epistationary point of (1), one has (6). Moreover, because of the
inclusive relationship of Z and Z[; at X, one can deduce that the implication (6) still holds true if Z = epi(f) N
(X x R) is replaced with ZF; . The conclusion follows by the definition of epistationarity. [

5. The Set-Theoretic Local Convexity-Like Property

To motivate the subsequent definition, we recall that a B-differentiable function f is (locally) convex like at a point
X in its domain (Cui et al. [8, section 4.2]; see the earlier reference (Cui et al. [9, proposition 4.1]) for a special case
of this property) if there exists a neighborhood N of ¥ such that

fl)=f(X)+f'(x;x—X%), VxeN. 9)

Slightly generalizing the family of functions in Cui et al. [8, display (25)], a large class of convex-like functions is
given by the composition of convex functions and piecewise affine functions:

f=9oBoy,
where ¢ : R' — R is (multivariate) piecewise affine and isotone (i.e., ¢(z) > ¢(z’) for any two L-dimensional vec-
tors z>z’); ®:R™ — R" is a vector-valued function such that each of its component functions 6;: R" — R for

t=1,...,Lis convex; and i : R" = R" is a piecewise affine function. In classical nonlinear programming pro-
blems, the set X is often closed and takes the form

X2{xeP|fi(x) <0,k=1,...,K} (10)

for some integer K > 0, where P is a polyhedron and each f; : O — R is a B-differentiable function near a given
X € X. We say that the Abadie constraint qualification (ACQ) holds at x if

T(x;X) = {ve T(%;P)|f (%;0) < 0, k€ AX)} 2 L(%; X),

where A(%) = {k|f,(X) = 0} is the index set of the active constraints at X¥. The following is proven in Cui et al. [8,
proposition 9(ii)].

Proposition 6. Let P be a polyhedron. Suppose that f and each fi for k=1, ..., K are locally convex like near a B-stationary
point X of (3) with X given by (10). If the ACQ holds at X, then X is a local minimizer of f on X.

The above is a B-stationarity sufficiency result, meaning that sufficient conditions are provided under which a
B-stationary point is a local minimizer. We next introduce an important geometric property of an arbitrary set that
allows us to establish epistationarity sufficiency (i.e., the question of when an epistationary point is a local minimizer).
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Definition 2. A subset S C RY is said to be locally convex like at a vector z € S if there exists a neighborhood A of Z
such that SN AN CZ+7(Z;S).

Without involving stationarity, the next result shows that the functional convexity-like property implies the
set-theoretic convexity-like property, under a suitable constraint qualification.

Proposition 7. Let X2 {x € R"|fi(x) < 0,k =1,...,K} ,where each f, is B-differentiable near X € X. If each f for k € A(X)
is locally convex like near X and the ACQ holds at X for the set X, then the set X is locally convex-like near x.

Proof. By the local convexity like of each f; near ¥ for k € A(¥), there exists a neighborhood A of X such that
fix) = fiu(®) + f, (F;x — %), Vke A(X) and VxeN.

Hence, if x € XN N, the above inequalities imply that £, (¥;x —X) < 0 for all k€ A(X). Hence, x —X € 7(x;X)
under the ACQ. Because x € X N N is arbitrary, it follows that X N N C X + 7 (¥; X), establishing the local convex-
ity like of the set X near x. [

A further connection between locally convex-like functions and locally convex-like sets is presented in the next result.

Proposition 8. A B-differentiable function f : R" — R near X is locally convex like at X if and only if its epigraph epi(f) is
locally convex like at (X, f(X)).

Proof. By Rockafellar and Wets [23, theorem 8.2], it holds that 7 ((X,f(¥));epi(f)) = epi(f’(x;e)). Hence, with
h(x)2f(X) +f'(X;x — X), it follows that 7 ((,f(%)); epi(f)) + {(x,f(X))} = epi(h). By definition, f is locally convex like
at X if and only if there exists a neighborhood A of X such that f(x) >h(x) for all x € N; equivalently,
epi(f) NN Cepi(h), where N 2N x R. Hence, f is locally convex like at X if and only if there exists a neighbor-
hood N of X such that

epi(f) NN € T((®,f(@))sepi(f)) + {(Z.f @)},
which is the local convexity-like property of epi(f) at (x,f(x)). O

The next result establishes the promised epistationarity sufficiency under the set-theoretic local convexity-like
property; it highlights the fundamental role of the latter property in the local optimality theory of optimization
problems lacking lower semicontinuity.

Proposition 9. If the set Z defined in (5) is locally convex like at Z 2 (X, f(X)) and X is an epistationary point of (3), then X
is a local minimizer of f on X.

Proof. Let N/ = N X N be a neighborhood of z such that Z NN Cz + 7(z; Z). It suffices to show that f(x") > f(X)
for all x” € X N N;. By way of contradiction, assume that there exists x” € X N N, such that f(x’) < f(¥). Let t’ €
N be such that f(x’) < t’ < f(X). Then, (x’,t’) € ZNN. Thus, there exists (dx,dt) € T7(z;Z) such that (x’,t') =
(X,f(x)) + (dx, dt). By epistationarity, we have dt > 0. However, then ¢’ = f(x) + df > f(x), which is a contradiction. O

Clearly, convex sets are locally convex like; although it is not too interesting from an optimization perspective,
we remark that open sets are always locally convex like. The union of finitely many locally convex-like sets at a
common vector is locally convex like at the vector; the Cartesian product of finitely many locally convex-like sets
is locally convex like. In general, the intersection of locally convex-like sets is not necessarily locally convex like
unless a suitable constraint qualification holds so that the tangent cone of the intersection of these sets is equal to
the intersection of the respective tangent cones of the sets. This is illustrated in the following example.

Example 1. Define f(t) = log(f + 1). Consider

Xi=J {(x,y)l}/ =2ﬂf<%)x'xe {O' %}

ne[N]

HELUJV] {(x,y)ly =@n+1)f (zn1+ z) % x€ {0’ 2n1+ 1] } U
f(z) —f(mn) (x 1 )

1
(x’y)|y‘f(2n+2>+ 11 T2n+1

2n~ 2n+1
11
neN] | 5 e 1
* [2n+1'2n]

X5
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Figure 1. (Color online) Intersection of two locally convex-like sets. X; and X, consist of the red and blue line segments, respec-
tively; their intersection is represented by the black points.

T2

-
—_——
-
-
-

Then,

xinx= U {(5/(3)) jUco

ne[N|

is a closed set but not locally convex like at (0, 0). See Figure 1 for the illustration.
The following example shows that unlike (quasi-)convex functions, the sublevel set of a locally convex-like
function is generally not locally convex like.

Example 2. Consider the two sets X; and X, given in Example 1. Let Rg = {(¢,#) : t > 0} and Ry = {(¢,0),t > 0} be
two rays. Define Y; = X; URyUR;, i = 1, 2. Note that Y; and Y are two closed convex-like sets. Define fi(x) =
dist(x, Y;) for i = 1, 2. If f; and f, are locally convex like and B-differentiable, then so is max{fi,f>}. However, the
sublevel set {x : max{f1,2}(x) < 0} = Y7 N'Y3 is not locally convex like for the similar reason as in Example 1.

Next, we prove that f; is indeed locally convex like and B-differentiable. Note that X; = U;L;, where each L; is a
line segment as shown in Figure 2. Thus, fi(x) = min{min;(x), ro(x), 71(x)}, where h;(x) 2dist(x,L;), i=1,2,...,
and r; =dist(x,R;), j = 1, 2. Let S=conv(Y1) and r(x) = dist(x,S). Consider an arbitrary x € R". There are four
cases.

e X €¢R"\ S.In this case, f1(¥) = r(x).

e X is an inner point of S. In this case, the set of active pieces {i : f(x) = h;(x)} C {7 : f(X) = (¥)} is finite near X.

e X € (RgURy)\{0}. In this case, f1(x) = ro(x) or r1(x) near X.

o x=0.

In the first three cases, it can be seen easily that f; is a pointwise minimum of a finite number of convex func-
tions near ¥, which implies f; locally convex like and B-differentiable at X; see Figure 2 for illustration. It remains

Figure 2. (Color online) Illustration of Example 2. X; and R consist of the red line segments and orange rays, respectively. The
set S is represented by the shaded region.

T2
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to show that f; is convex like and directionally differentiable at ¥ = 0. Define a closed set R={r:r=tx,t>0,x €
Y1} as the cone generated by Y;. Note that f'(0;d) = dist(d, R). Indeed, if d = (1,1), then f’(0;d) = dist(d,R) =0. If 4
is not a scalar multiple of (1, 1), then because Y; is locally a finite union of line segments near td for ¢t > 0 small
enough, f'(0;d) = dist(d, R). Because X; C R, we have fl' (0;d) < fi(d), and thus, f; is locally convex like at zero.
The above arguments can be extended to prove that f; is a locally convex-like function in a similar way. We omit
the details.

It turns out that the gap between the everywhere local convexity-like property and the global convexity is the
Clarke regularity, as can be seen from the following proposition.

Proposition 10. Let f : R" — R be locally convex like at every point in R". Then, f is Clarke regular at every point in R" if
and only if it is convex on R".

Proof. Taking an arbitrary reference point ¥ € R" and an arbitrary direction d € R", we define a univariate func-
tion g(t) = f(x + td). Note that g is convex like by definition. It suffices to prove that g is convex, which amounts
to g(t) > ¢(f) + ¢’ (t;t — t) for all t,f € R. Assume for contradiction that there exist t; and t, such that g(t1) < g(to) +
g'(to;t1 —to). Let h(t) =g(t) — g'(to;t — to) — g(to). Without loss of generality, we also assume t; >t;. Define
S =arg max{h(t): tp < t < t;}, which is a compact set. Let t, = max{t : t € S}. Then, by construction, h(t) < h(t.)
for t. < t < t;. Because h(tg) =0 > h(t;), one has t. < t;. Thus, we have either t. =ty or ty < t. < t;. These two
cases are addressed below.

e Case 1. t, = t). In this case, I’ (t.; 1) = I’ (fp; 1) = 0. By the local convexity-like property of 1 over (tp, o), an ¢ > 0
exists such that for t, <t < t. + ¢, one has h(t) > h(t.) + I’ (t.; t — t.) = h(t.). However, this contradicts h(t) < h(t.) for
allt, <t < 1.

e Case 2.ty < t* < t1. Because h(t) < h(t,) for all t, < t < t;, one can deduce that i'(t.;1) < 0. If /'(#*;1) =0, we
can repeat the same argument in the first case to draw a contradiction. For this reason, we assume /’(t*;1) < 0.
Because h(t) = g(t) — (t — fo)g’(to; 1) — g(to) for t >ty by the Clarke regularity of g, it follows that /' (t,; ®) is convex;
thus, h'(t.;1) + h’(t.; —1) > h’(t;0) = 0, which implies h’(t.; —1) > 0. However, this indicates that h(t) > h(#") for all ¢
smaller than but close enough to t., contradicting the fact thatt. € S. O

Assume X={xeR"|fi(x) <0,k=1,...,K}, where each f; is a locally convex-like function. Proposition 10
implies that if X is a locally convex like but not convex set, then at least one f; is nondifferentiable. Another
immediate consequence of this proposition is that if f is a PC! (piecewise continuously differentiable) function
with convex element functions (i.e., if f is continuous and there exist finitely many convex differentiable functions
{fi}_, such that f(x) € {f(x)}._, for all x € R"), then f is convex if and only if it is Clarke regular. This is because
such a function f must be locally convex like at every point in R".

6. Tangents of Heaviside Composite Constraints

As the tangent cone plays an important role in the local convexity-like property and is of independent interest, it
would be useful to describe the tangent vectors of the set Xpsc. Such descriptions will be instrumental to demon-
strate the local convexity-like property of Xpsc at ¥ € Xpsc under appropriate assumptions of the defining func-
tions; see Table 1. We start with the ASC set Xasc whose tangent cone at a vector X € Xasc is known (Dong et al.
[11, proposition 10]). Specifically, we have

n
T(Y;XAsc) =cl{ve T(E,P) Zaij|v]-|0 < bi — Zﬂjjlfjlo, i= 1,...,111 , (11)
jeb =1
=hi727€ﬁﬂll’20

Table 1. Conditions for the local convexity-like property of Xpsc.

¢fj

Vi Convex Piecewise affine

Convex Y; 20 Free

Piecewise affine Y; 20 Free
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where B 2 {i|x; # 0} £ supp(¥) is the support of the vector X. (We remark that although the proof of this represen-
tation in the reference has the side polyhedron P being the entire space, the proof therein applies to P being a
proper polyhedral set.) The closure on the right-hand cone in (11) can be removed if all the coefficients a;; are
nonnegative as this cone itself is closed in this case. Based on the above representation, the following result is
easy to prove.

Proposition 11. Let P be a polyhedron. The set X asc is locally convex like at every X in Xasc.

Proof. Let V be a neighborhood of X such that x; # 0 for all j € B and all x € . Let x € Xasc NN Then, we have

b > Zaz]|x]|0 = Za1]|x]|0 + Zazjlleo
j#B jep
= Zﬂ,’jlx]' — xj|0 + Zai]».
jep jeB
Thus, b; — Z]eﬁ aj > nggﬂiﬂxj —Xj|oforalli=1,...,m. Hence, x — X € 7 (x; Xasc). O
As a preliminary result for the set Xpsc, we consider the case where each function ;; is affine and ¢, is piece-
wise affine. First, we derive an explicit expression of the tangent cone of Xpsc at an arbitrary vector x € XHSC and

use this expression to show that (a) Xusc is locally convex like at ¥ and that (b) epistationarity of a
B-differentiable objective function on the set Xpsc is sharper than pseudo-B-stationarity.

Proposmon 12. Let P be a polyhedron. Let each ;; be an affine function and ¢,; be a piecewise affine function for all j =
Jiandi=1,...,m. For x € Xysc, it holds that

T(x; Xusc) 2 closure of
foralli=1,...,m:

Z ll’ij(f)l(o,oo)(qb;j(f;v))+ Z (@) < by

j€Ti,0(x) je€Ti,+(x)
andif Y Pu(®) Lo,e0) (@G 0N+ D (%) = by, then
j€T1,0(X) j€Ji,+(x)

D VY@ 0l 10,0 (@) (o) + D> V(@) T <0

j€T1,0(x) jE€Ti+(x)

veT(X;P) (12)

Conwersely, if the following two conditions hold forall i=1,...,m:
a. forallje J;o(x),

[veT(x; P)andqb (x; v)>0]:V1/J x)'v <0; and

b. forallje J;+(X), le (X) € T(x;P)", where T (X; P)" is the dual of T (X; D),
then equality holds in (12)

Proof. Let ve 7(x;P) satisfy the functional conditions in the right-hand set. We claim that v belongs to
7 (X; Xnsc) by showing that X" £ + v € Xpsc for all 7> 0 sufficiently small that depends on v. Once this is
shown, the one-side inclusion 2 of the two cones in (12) follows. Because P is a polyhedron, we have x* € P for
all 7 > 0 sufficiently small. Moreover, by continuity of ¢,;, we have

[(pz‘j(f) >0= (;bz‘j(ET) >0] and [qbz‘j(y) <0= (Pij(yT) < 0]
forallt>0 sufﬁciently small. Hence,
Z%(f)l(o o) (§;(X7)) = ;( )I,DZJ(TT)l(o ,00)(¢(X%)) + ;:( )1#,](?1)
jeTiox jeTi,+(x

Because ¢, is piecewise affine, it follows that if 7 > 0 is sufficiently small, we have

¢4(x%) = ¢,(X) + TP (T;0) = 1), (), if j € Ti0().
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Therefore, we can further derive that

Z%(xfn(om(%(xf))— Y 9@ L0m @ EN+ S v,

j€Ti,0(%) jeJi,+(x)

g Y V@ 0l L0 (@ @)+ D Vi(E) T
j€Ti,0(x) j€Ti,+(%)
Hence, with v as specified, it follows that for 7 >0 sufficiently small, which depends on v, we have
Z 11/}1](x )1(000)((1) (X")) < b; for all i. Thus, X" € Xpsc.
Conversely, let veT (x; XHSC) Let {x"} c Xpsc be a sequence converging to ¥ and {7,} |0 such that
v =1lim, ,,w", where w" £ "T * clearly belongs to T(x P). Moreover, we have ¢) {(x") > 0 for all v sufficiently large,
allje J,+(x),alli=1,...,m. We have forall i =1 ..,m,

b; > Z Hbij(xv) l(O,m)((Pij(xv))
j=1

3 ) Lo @D+ D )

j€Ti,0(x) j€Ti,+(x)
= > [10(%) + Vi (2) " (" = 2)]1(0,00) (¢ (%" — X))
j€Ti,0(X)
+ Z [lalji]‘(y) + Vl/’ij(f)T(xv -x)].
j€Ti,+(X)

Hence, we obtain that

Z ll)ij(f)l(o,m)((i);j(f;wv))— Z wij(y)

j€Ti,0(x) j€Ti,+(X)

2 Ty Z [ngij(f)va] 1(0,00)((;[);]' (c;w")) + Z ngij(f)va

j€Ti,0(%) j€Ti,+(X)

Under the two assumed conditions (a) and (b), the right side of the above expression is nonnegative because
w” € T(X; P); hence, so is the left-hand side, which shows that w" satisfies

N @0 @w)+ Y X)) < by, Vi=1,
j€Ti,0(X) j€Ji,+()
Moreover, if for some i, it holds that
> V(%) 10,00\ (@] (X 0")) + > v =b
j€Ji,0(x) jeTi, +(x)
then
D V@ @ 10,0y (@f @)+ Y VY(E) W' =
j€Ti,0(%) j€T,+(%)

Hence, w" belongs to the right-hand set in (12) without the closure. Because v is the limit of {w"}, it follows that v
belongs to the closure of this set. Hence, equality holds in (12). O

Remark 2. In fact, the piecewise affinity assumption of each ¢;; in Proposition 12 can be relaxed to the local
convexity-like property at X in a straightforward manner.
Clearly, conditions (a) and (b) hold trivially if each 1);; is a constant function: that is, for the set

Ji
XAHCé xeP Za,-jl(oloo)(qbij(x)) < bi/ i=1,...,m
=1
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If each ¢ is piecewise affine, the result in Proposition 12 directly extends the tangent cone expression of Xasc
with the {p-function replaced by the Heaviside function composed with a piecewise affine function. This leads to

Z aijl(O,m)(¢;j (x;0))
T X =clkveT(x;P JeT40®)
(¥; Xanc) @P)| S ay<by, i=1,,m

jeT, +(%)
Like 7'(x; Xasc) in (11), the closure operation can be dropped if the coefficients a; are all nonnegative. Note also
that the above representation of 7 (¥; Xarc) and that of the 7 (X; Xasc) require no “constraint qualifications,”
although both the ¢, function and the Heaviside function are discontinuous. The local convexity-like property of
the set Xapnc follows readily from its tangent cone representation and the proof of the converse part of Proposi-
tion 12; no proof is needed.

Corollary 2. Let P be a polyhedron. If each function ¢,; is piecewise affine, then the set Xanc is locally convex like near
every X € XaHc-

We next give a full description of the tangent cone 7 (X; Xnsc) under a sign restriction on the functions {i,} for
jelil2{1,...,Ji} andi=1,...,m. Let E(X) and E°(X) be families of complementary index tuples a2 («;)!"; and
a2 (af)!,, respectively, where each a; C J;o(X) for i=1,...,m and af is the complement of a; in 7, (X). For
each tuple a € E(¥) with complement a¢ € E(¥), define the set

v+ D ) <by, i=,1,..m
So(X)2{ xeP| e j€Ti,+ (%) ,
(pij(x) <0,jeafi=1,...,m
which may or may not contain the vector x. Let E(%) be the subfamily of Z(X) consisting of tuples a for which
X € Sq(x). Under a nonnegativity condition on the functions v;;, the following result gives a complete description

of 7 (X; Xusc) in terms of the sets Sq(X) for all tuples a € Z(X); in turn, this can be used to obtain a characteriza-
tion of epistationarity of (3) without f being B-differentiable.

Proposition 13. Let each ¢,; and ;; be continuous near X. If iy; is nonnegative in a neighborhood of X for all j € J;,0(%),
then

T(%Xusc) = | J T(%SalX)). (13)
acE(¥)
Hence, if for all o € E(X), the set Sa(X) is locally convex like at X, then so is Xyusc. In particular, this holds if all ¢ i and Py
are convex, with the latter being nonnegative also.

Proof. We first show that there exists a neighborhood N of ¥ such that

XHSC ﬂ./\/= U Sa(f) ﬂj\/. (14)

ac=(7)
We choose V' to be such that 1;; is nonnegative in A" and
[¢;(x) >0=¢,(x) > 0] and [;(X) < 0= ¢;(x) < 0], VxeN.
For a vector x in the left-hand intersection of (14), it is clear that x € S,(X), where
ae{je jilo(f)|(j)i].(x) >0}i=1,...,m.

Conversely, suppose x € So(X) NN for some tuple a € E(X); then, by the nonnegativity of 1; in N/, we have
because J; +(x) Ca; U J; 1 (%),

2y X gz 3w, i=1m
Jeai j€Ti,+(X) j€Ti,+(x)

showing that x € Xpsc. Thus, (14) holds. To see how (14) implies (13), we note that the right-hand union of tan-
gent cones in (13) is necessarily a subcone of the left-hand cone. Conversely, for a vector v in 7 (x; Xpsc), let
{x*} C Xusc be a sequence converging to ¥ and {1;} | 0 such that v = limy_,, "i—;x By (14), we may assume with
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no loss of generality that there exists & € E(¥) such that x* € S,(x) for all k. Such an index tuple e must necessar-
ily be an element of E(X) by continuity of ;. This shows that v € 7 (X; S(X)) for an index tuple « € Z(¥), com-
pleting the proof of (13). The next-to-last statement of the proposition is clear because the union of a finite
number of convex-like sets each containing a common vector (which in this case, is X) is locally convex like near
the vector. O

Remark 3. Expression (14) shows that for any closed set S C N, the set Xpsc N S is closed, provided that the func-
tions 1;; and ¢,; are continuous and that ;; is nonnegative.

The example below shows that the nonnegativity assumption on 1;; is essential for Equality (13) to hold and
that the piecewise affine property of the ¢, functions is essential for the validity of Proposition 14.

Example 3. Let
X = {(Xl,XQ) € Rzl — X1 — l(olw)(x% +X% — 1) < —1}

Then, X ={(1,0)} U {(x1,x2) € Ry X R|x? + x5 > 1}. With ¥ = (1,0), we have 7(X; X) = R, X R; it is easy to see that
X is not convex like near x. Thus, Equality (13) cannot hold.

We next give a different set of assumptions of the component functions ¢;; and ¢,; for the set Xysc to be locally
convex like. On one hand, we replace the nonnegativity of i; by its convexity; on the other hand, we restrict ¢,
to be piecewise affine. This combination, therefore, generalizes the setting of Corollary 2; the proof employs a
subset of each Sq(X) in which the piecewise structure of each ¢,; can be easily exposed:

Zl’bu(x) + Z ll)if(x) <bi a € B(X), where the

jeai j€Ti,+(X)
SuD4 ﬂ *€Pl o0, viea, , pair (a;, ) partitions the
¢(x) <0, Vj €eaf index set J;,0(x) for i € [m].
Ny = i
We note that S,(%) € Xpsc N So(®); yet, X ¢ So(X) as long as a; is nonempty for some i.

Proposition 14. Let P be a polyhedron. If each function ;; is convex and each function ¢, is piecewise affine, then the set
Xnusc is locally convex like at every one of its elements.

Proof. Let X € Xpsc be arbitrary. With the same neighborhood NV of X as defined in the proof of Proposition 13, it
can similarly be proved that (no sign restriction on 1);; is needed)

Xusc NN = | | Sa®) | NN.

acE(X)

Without loss of generality, we may assume that So(@) # 0 for all & € E(x). By the distributive laws of unions and
intersections and by the piecewise affinity of the functions ¢, each S4(¥) is the finite union of nonempty convex
(albeit not necessarily closed) sets, which we write as So(X) = Ujer, S),, where I, is a certain finite index set and
where each S, is a certain nonempty convex (not necessarily closed) set. Thus,

XHscﬁN= U US; NN.

acE(X) i€ly

The convexity of S. implies cl S}, C X + 7 (x;cl S.), provided that X € cl S.. We may restrict the neighborhood N
such that N'Ncl S, =0 for all i €I, and all @ € E(X) such that X ¢ cl S.. Letting Z(x) be the collection of pairs
(i, @) such that ¥ € cl S}, we deduce

Xusc N N = U SL n N,
(i, 0)eZ(%)

which yields

T(f,‘ Xch) = U T(Y, cl S&)
(i, 0)eZ(x)
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Combining the last two expressions, we deduce

XascN NS | E+TEds)l=x+ [J TEdSs).
(i, ®)€Z(X) (i, W)L (X)

Thus, Xusc NN € X + 7 (X; Xusc); hence, Xpsc is locally convex like at¥. O

The discussion of the section is summarized in Table 1. Each entry is indexed by a combination of convexity
and piecewise affinity imposed over the functions ¢;; and ¢;;, and it indicates whether the nonnegativity of the
latter functions is needed to ensure the local convexity-like property of Xpsc. For example, the first entry implies
that if each ¢, is convex and each ¢;; is nonnegative and convex, then Xysc is locally convex like. The conclusion
of the first column is given by Proposition 13. Proposition 14 illustrates the entry (1, 2). The conclusion corre-
sponding to the last entry can be proven using similar polyhedral decomposition techniques as in the proof of
Proposition 14.

Theorem 3. The set Xysc is locally convex like at every one of its elements if the assumptions given by any entry of Table 1
are true. In particular, Xasc is locally convex like, and X apc is locally convex like if each ,; is piecewise affine.

Combining Theorem 3 with Proposition 9, we obtain the following result for the Heaviside constrained optimi-
zation Problem (1).

Corollary 3. Let P be a polyhedron. If the assumptions given by any entry of Table 1 hold for the functions V; and ¢y, then
a point is a local minimizer of (1) if and only if it is an epistationary point.

7. Computation of Pseudo- and Epistationary Points via Lifting

The results in the last section are all derived under certain convexity/sign/piecewise affinity restrictions under
which tangents of the set Xpsc are identified and its local convexity-like property is established. There has been
no discussion, however, about how pseudo- or epistationary points of Problem (1) can potentially be computed.
In this section, via lifting, we present formulations that make such computation pos51b1e One such lifted formu-
lation was provided in a previous work (Cui et al. [7, section 6]) for the constraint Z - 1/)U(x) 1o, oo)(qo (x)) < b;
and under a sign restriction of the function ;; on the zero set of ¢,,. It was shown thereln that a B- statronary solu-
tion of the lifted problem would yield a pseudostationary solution of the given HSC-constrained problem when
the functions {{% qbl]} ", }ii, are B-differentiable. The significance of the results in this section is twofold; (a) the
sign restriction can be removed via an alternative lifted formulation, and (b) a relaxation of the latter formulation
provides a constructive pathway to compute an epistationary solution.

7.1. Derivation of the Lifted Formulations
The derivation of the lifted formulations consists of several steps, beginning with the expression of each function
Py = 1//1] i; as the difference of its nonnegative and nonpositive parts, respectively: rb —max(+1/)Z ,0). Intro-
ducing an arbitrary scalar ¢ > 0, we note that

I
D @) L0,00)(9(x)

— =1
Xch— xeP ,

Zl‘bl] L(x) 1(0 m)(¢l](X)) + bl/ i= ,m

where % 2y +e¢. The first lifting of the set Xusc exploits the property that the function x +— 1#1 ‘(%) 1(0,00)
(qb (x)) is lower semlcontmuous if both ¢;; and ¢,; are lower semicontinuous. Thus, we have the opt1on of not lift-
mg the sum Z 1 1/1 “(0) 10, oo)((plj(x)) and lifting only the products ¢;; “(x) 1o, w)(¢> (x)). This leads to the follow-
ing lifting scheme

o f-lifting:
FEP S )10y 0) < 30 Wk + b
— : 0,00)(P;; < - B
X?Iésc £ tij € [0,1] j=1 ! ( e j=1 ! ! l i=1,...,my,

all Z’] tl} < 1(0,00)(¢[]'(x))/ ] = 1/’ . ~/]i;

which is connected to Xpsc via the equivalence: x € Xpgc if and only if there exists f such that (x, ) € X?fgsc'
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Next, we note that

ti < 1o, oo)(¢l](x))<:> Jy; > 0 such that t;; < min(qf);(x)y,-j, 1). (15)

otherwise.
yjysuch that the right-hand conditions are satisfied. If ¢, (x) <0, then the left-hand inequality implies ¢; < 0, which
is the same as the right-hand inequality in this case. If gb {(x) > 0, then the left-hand inequality yields ¢; < 1, which
is the right-hand inequality in this case. Substituting the rlght -hand conditions in (15) to replace the left-hand condi-

Indeed, if the left-hand inequality holds, then we may let y;; { = le] (x) if qbif(x) >0 Conversely, suppose there is

tions for all (7, j) in the set XHSC, we obtain the next level of lifting:
o (t,y)-lifting:

foralli:l,...,m
xeP

_ Ji 3
Xyhe &8 1€ [0,1], all ,f Z‘P (1) 1(0,00)(P;(x)) < ;%}’é(x) tij + b

j=1
yij >0, allij . ’
< Gy j=1,...];

which is a closed set in the lifted (x, t, y) space provided that the functions ¢;; and ;; are continuous.

The last lifting is the product u; —11),] “(x) 1o, w0) (P (x)). There are two ways to do this; one is to apply the epi-
graphlcal approach (Cui et al. [7, section 7]), partlcularly Cui et al. [7, proposition 7], by considering the relaxation
ujj > 1/1,] “(x)1q, «0)(¢;(x)) and replacing it using a piecewise composite function; this leads to

o (t,y, u)lifting:

L L
duy S D Pty by =1, m
xXeP j=1 /=1
i ) ti€[01] allijand forallj=1,... Jandi=1,...,m
Xfisc” = '

yy>0,allij |t < ¢j(x)y; and
u;j >0, all i,j min{lpg;f(x) - Mij,¢,j(X)} <0

equivalent to u;; > 1}};” ()10, 00)(;(x)), given u; >0

which is also closed if qbl.]. and 1; are continuous; moreover, if these functions are B-differentiable, then all the
inequalities in X;Iys’cu;e are defined by B-differentiable function. Furthermore, if ¢, and i; are difference-of-

convex or piecewise affine functions, then the constraints in Xié’g;e are of the difference-of-convex kind; thus,
optimization over this set can in principle be solved by the difference-of-convex methods described in Pang et al.
[21].

An alternative to the piecewise min/max lifting of ¢;};S(x)1(0,m)(¢ij(x)) is derived from the observation that

Ji I
Z lp;}'?f (X) 1(0’°°)(¢ij(x)) = Z IP;;;E (JC) Sz’jr
j=1 j=1

where s;; € [0,1] satisfies (1)1] (x)(1 —s;) = 0. This leads to
e (t,y,s)-lifting:

Ji Ji
- x€eP Zgb;-"s(x)s,-j < Zz,b,;;g(x)t,-j+bi, i=1,...,m
=1

Xt,y,s;e N s [0 1] .| =1
HsC b 9 b and forallj=1,...,Jjandi=1,...,m

Yij >0, all l,]
z] = (P,] (x) Yij, (P,] (x) (1 Sij) =0
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In the case of an affine sparsity constraint system

n
N . .
Xasc2<{xeP: E ailxilo < b, i=1,...,my,
=1

— —

the resulting representations of the sets X" and X% simplify somewhat; for simplicity, we give only the latter:

n n
xeP Z(u;]f+£)sj52(ai;+e)tj+bi, i=1,...,m
=1 =1

Xpbe el t,s5€[0,1], all j 1
yjzo, all t < |x,|y], ) s

Xj(l—Sj)ZO, ]'=1,...,n

where the only nonlinear functional constraints are defined by products of two variables. A noteworthy remark

t,y,s¢ . s . s ..
about Xyi%”* is that both auxiliary variables s;; and t; are introduced as a surrogate for the same Heaviside com-

posite term 1(0/m)(d)ij(x)) ; their roles and constraints differ because of their associations with the respective signed
functions ;. - .

The two lifted sets Xy~ and Xy offer a computationally tractable venue for the minimization of a wide
class of nonconvex nondifferentiable objective functions f over the nonclosed set Xusc, provided that f and all the
functions ¢,;; and 1;; are surrogatable by pointwise minima of convex differentiable functions; see Cui and Pang

[6, chapter 7]. We omit the algorithmic details.

7.2. Recovering Pseudostationarity

For simplicity, we assume that the objective function f (omitting the subscript HSC) in (1) is B-differentiable so
that it is not necessary to work with the epigraphical formulation (5). We further assume that all the functions
{{cj)z.]., 1#1.].}]].’:1}?;1 are B-differentiable (which does not inlgly that the set Xpgc is closed). In this subsection, we

show that if (x,,7,5) is any B-stationary tuple of f on XtH%CS *, then X is pseudo-B-stationary of f on Xpsc; that is, x

is a B-stationary point of the problem

minimize f(x)
xeP

subject to Z l/)i]-(x) <b, i=1,...,m (16)
jEJi,+(E)
and (j)ij(x) <0, VjeJ, <(x),i=1,...,m.

Note that for x sufficiently close to X, we must have ¢,.(x) > 0 for all j € J; 1(X) (confer (cf.) the constraints in (8)).
Thus, the feasible region of (16) is “locally” a subset of Xpsc at X (i.e., there exists an open neighborhood Oz of X
such that if x € Oz is feasible to (16), then x € Xpsc). By the definition of the pseudo-B-stationarity of f on Xpsc,

we know that ¥ must be feasible to Xpsc that is possibly nonclosed. We omit the analysis for the set X;’{ys’cu;f that
involves pointwise minimum constraints. The proof of the proposition below is not straightforward as it requires
the verification of significant details. Part of the challenge is that the triple (f,7,5) is quite arbitrary and is related

to x only through the constraints in XtHySé ©. The scalar ¢ plays an important role for the validity of the result.

Proposition 15. Let P be a polyhedron and € >0 be arbitrary. Let the functions f, Py and 1;; be B-differentiable near
X € P. If the tuple (X, t,7,5) is a B-stationary point of f on X;’{%’CS;E, then X is a pseudostationary point of f on Xpsc.
Proof. We first show that X is feasible to (16) by verifying

P (@10,00)(0, (D) < Y1 @)55 and 1y (D)(0,00)(0(T)) = ¥, (D) Ty

Indeed, if qbi].(f) >0, then 5;; = 1, and the first inequality holds; the second inequality also holds because f,-j <1.1If
¢ Z.].(f) < 0, then the first inequality clearly holds; moreover, we must have Ti]- = 0. It ,therefore, follows that

Ji Ji
S U0 10,0 (@0 < D15 () 10,0 (0 (D) + by,
=1 =1
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which is equivalent to 3. 7 & Wy (x) < b;. Thus, X is feasible to (16). It remains to show that X is a B-stationary
point of (16). For this purpose, let {x } be a sequence converging to ¥ and {7} | 0 such that each x* is feasible to
(16) and limj_,. =% = 0. We need to show that f'(x;v) = 0. It turn, it suffices to show the existence of a corre-

Tk
tyss

sponding sequence {(t*,1¥,s")} converging to (£,7,5) such that (x*, 5, y¥, s*) belongs to Xy for all k sufficiently

large, and the three sequences
k_ 7 k_ g
(S e ) "
Tk Tk Tk

are bounded. Without loss of generality, we may assume that for all (i, j, k), gbl](xk) has the same sign as ¢, (x) if

the latter is nonzero. Furthermore, because x* is feasible to (16), we must have that gi)l](xk) > 0 implies qb (x)>0.
Hence,

l(o,m)(qbl](f)) = l(O,W)(qbl](xk)), Vk. (18)

Because the constraints in (16) are separable in 7, for notational simplicity, we drop the index i in the rest of the
proof. Let

J
AT 2D 1,(9) 1(0,00)(¢,(%) — b, (19)
=1
which is a B-differentiable function. Note that A(x;x) < 0. Let

S2{jl¢,(¥) <0 <5} and T2{jlg,(®)>0>F—1}.
We have

D W@+ s+ Y (W (1) + )1 - )

jes jeT
J J
=Y W@+e)s5 =Y W @+ah— > [ +e)s — ) ®) +e)] (20)
=1 =1 J:,(x)>0
<b— ) (/@ +e) - @+a)l=b- Y P& =-AF),
i, >0 6,50
where the last inequality holds because (%,,5,7) € X?SJCS " and 5; =1 for j such that ¢,(¥) > 0. Hence,
AT+ Y (WF @) +e)si+ Y (Y (X) +e)(1—F) < 0.

jes jeT

Case 1. Suppose that S U T # (. Because ¢ > 0, the above inequality implies that
AT+ Y (WF @) +e)si+ Y (Y () +e)(1—F) < 0. (1)

jes jeT

We can write

AT ==Y | @ +e)si+067 | + Y | W7 (@) +e)1—1)+5]
(€S | N\ e’ €T
e denoted Aij e denoted A;ZO

for some nonnegative scalars 6; and 6;. Define the nonnegative scalars:

A A7)
A(x; )

A A x)

S~k
Ay & and A0

A]? (k)2
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Because A(e;X) is continuous, it follows that limy_,. A;(xk) = A; and limy_, e A;(xk) = A;. Next, we construct a
sequence (£, yk, s5) such that (x¥, 5, yk, s e XtHySCSg Let

ST (R
ming ———,5; p ifje
e iy e

5 otherwise;
se oy
VY R I e 0
j
1-t otherwise;

tk
{my} i) > 0 (= ,7) > 0)
]

v if ¢,(x*) < 0.

ko

Yj (22)

We need to verify the functional inequalities in X;%g ©. These are done in the following three steps.
Step 1. By a derivation similar to (20), we can verify the first equality in the following string of derivations:

)i Ji
]213 (W7 () + &) sf — ]213 (W () + ) tf
=Y W +e)sE+ Y W) +e)5 =Y (W () + et =D () + o)

jes j&S jeT j&T
=W s+ W ra -+ Y W) +e)
jes jeT ji9,(x)>0
- Z (wf(xk) + &) by properties of 5;(t;) for j ¢ S(j ¢ T)
j:¢,@)>0

D W) + ek + Y (W () +e) (1) + Z () 10,00 (;(%))

j€s jeT

< Z AL (XY + Z AL(x¥) + A(xF; %) + b, by the definitions of the A’s; see (19) and (22)
j€esS jeT

< b, by (21) and the continuity of ZA (o) + Z Ay(e) + A(e; X).

j€s jeT

Step 2. If }; (x) > 0, we clearly have gb](xk)y;‘ > tk by the definition of y}‘. If qu(xk) <0, then qu(f) < 0; thus,
t; = 0. Moreover, j & T; hence, tf = #; = 0,and t{ < o/ (x") holds.
Step 3. 1f ¢, (x*) > 0, then (f)](x) >0 by (18) and] ¢S; hence sf =5; = 1. It follows that cp;“(xk) (1—sf)=0. The
. k
latter clearly holds if ,(x") < 0. —
Y, 8¢

We have, therefore, shown that (x, tk,y ,s) e X{igsc forall k. Next, for j € S, we have

lim s* = mi thXk) S; » = min As Sip=5;
e T BN ur e v e (T (x)+£ (TS
v V7

where the last equality holds because A} > ¢ () + ¢ by the definition of A. Hence im0 s] =5; for all j. Simi-
larly, we can show that limk_,wt =t;and hrn;Hoo y] y; for all j for all j. Because s] and t;‘ are either constants (5;
or t;, respectively) or the pomtw15e minima of a B- dlfferentlable fraction of x* and a constant (5; j o t;), they are, there-
fore, B-differentiable functions of x*, and hence, so is yk Therefore, the fractions ’T b, ’Tk , and Y ky, are bounded.

Case2.If SUT =0, then define s* =5 and t* = for all kand y] as above. A similar proof applies. O

S S]
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7.3. Recovering Bouligand Stationarity —
It turns out that by requiring the tuple (X,t,7,5) € XtHysé to be a B-stationary point of an enlargement of the lifted

set XI’{yS’CS’S, it is possible to sharpen the conclusion of Proposition 15 to the stronger property of B-stationarity of f
on Xusc. Specifically, consider the set with an additional scalar 1 > 0:

Ji Ji
| xerp Yo @sy < Pkl i=1,,m
j=1

Xbvse ol s €[0,1], alldj| =
HSCn o and forallj=1,...,jandi=1,...,m:

Yij 2 0,all ,j .
1] = ¢1] (x)]/l]/ qbij(x) (1 _Sij) < n

We have the following result.

Proposition 16. Let the functions f, by and 1p;; be B-differentiable near x € P. For an arbitrary pair (e,1n)>0, if
(x,t,9,5) € XtHySé * is a B-stationary point of f on XtH%éf], then X is a B-stationary point of f on Xpsc.

Proof. We proceed as in the proof of Proposition 15. Let {x*} be a sequence in Xpsc converging to ¥ and {7;} | 0
such that limy_,e, * xk* =v. We need to show that f’(x;v) > 0. It suffices to show the existence of a corresponding

sequence {(#*, /", sk)} converging to (f,,5) such that (x, 5,1/, s") belongs to X;I%’CSS for all k sufficiently large and

(e 5] @
Tk Tk Tk

are bounded. As before, we may assume that for all (i, j, k), ¢ ](xk) has the same sign as ¢ ](Y) if the latter is non-
zero. Furthermore, (18) is valid for all k except for a k such that qbl X)=0< (j)l (xby. Defining (s ,y]) by (22), we
see that the proof of steps 1 and 2 in Proposition 15 is valid as (18) is not used until the last step 3 which we ana-
lyze below.
Step 3. If¢ (x¥) > 0, then ?; x)=0. Ifcp (¥) >0, thenj¢ Sand s =5;=11If ¢j(f) =0, then q);'(xk) 1- s}‘) < nfork
sufficiently large
Summarizing the three steps, we have established (x¥, #,/,s°) € Xﬁjsés for all k sufficiently large. The proof of
the convergence of {(,y,s)} to (£,7,5) and that of the boundedness of the sequences in (23) are the same as
before. O

the three sequences
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