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Westling and Carone (Ann. Statist. 48 (2020) 1001–1024) proposed a
framework for studying the large sample distributional properties of general-
ized Grenander-type estimators, a versatile class of nonparametric estimators
of monotone functions. The limiting distribution of those estimators is repre-
sentable as the left derivative of the greatest convex minorant of a Gaussian
process whose monomial mean can be of unknown order (when the degree
of flatness of the function of interest is unknown). The standard nonparamet-
ric bootstrap is unable to consistently approximate the large sample distribu-
tion of the generalized Grenander-type estimators even if the monomial order
of the mean is known, making statistical inference a challenging endeavour
in applications. To address this inferential problem, we present a bootstrap-
assisted inference procedure for generalized Grenander-type estimators. The
procedure relies on a carefully crafted, yet automatic, transformation of the
estimator. Moreover, our proposed method can be made “flatness robust” in
the sense that it can be made adaptive to the (possibly unknown) degree of
flatness of the function of interest. The method requires only the consistent
estimation of a single scalar quantity, for which we propose an automatic
procedure based on numerical derivative estimation and the generalized jack-
knife. Under random sampling, our inference method can be implemented
using a computationally attractive exchangeable bootstrap procedure. We il-
lustrate our methods with examples and we also provide a small simulation
study. The development of formal results is made possible by some technical
results that may be of independent interest.

1. Introduction. Monotone function estimators have received renewed attention in
statistics, biostatistics, econometrics, machine learning, and other data science disciplines.
See Groeneboom and Jongbloed (2014, 2018) for a textbook introduction and a review arti-
cle, respectively, the latter being published in a special issue devoted to nonparametric infer-
ence under shape constraints. More recently, Westling and Carone (2020) expanded the scope
and applicability of monotone function estimators by embedding many such estimators in a
unified framework of generalized Grenander-type estimators. Estimation problems covered
by Westling and Carone’s (2020) general theory include many practically relevant examples
such as monotone density, regression and hazard estimation, possibly with censoring and/or
covariate adjustment.

The large sample theory developed by Westling and Carone (2020) offers a general distri-
butional approximation involving the left derivative of the Greatest Convex Minorant (GCM)
of a Gaussian process whose mean and covariance kernel depend on unknown functions. Fur-
thermore, both the convergence rate of the estimator and the shape of the mean appearing in
the representation of the limiting distribution depend on whether the unknown function of
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interest exhibits certain degeneracies. For these reasons, the large sample distributional ap-
proximation for generalized Grenander-type estimators can be difficult to employ in practice
for inference purposes. In their concluding remarks, Westling and Carone (2020) recognize
these limitations and pose the question of whether it would be possible to employ bootstrap-
assisted methods to conduct automatic/robust statistical inference within their framework.

As is well documented, the standard nonparametric bootstrap does not provide a valid
distributional approximation for the generalized Grenander-type estimators (Kosorok (2008),
Sen, Banerjee and Woodroofe (2010)). This fact has led scholars to rely on other bootstrap
schemes such as subsampling (Politis and Romano (1994)), the smoothed bootstrap (Kosorok
(2008), Sen, Banerjee and Woodroofe (2010)), the m-out-of-n bootstrap (Sen, Banerjee and
Woodroofe (2010), Lee and Yang (2020)), or the numerical bootstrap (Hong and Li (2020)).
See also Cavaliere and Georgiev (2020), and references therein, for some related recent re-
sults. Those approaches could in principle be used to construct bootstrap-based inference
methods for (some members of the class of) generalized Grenander-type estimators, but they
all would require employing specific regularized multidimensional bootstrap distributions or
related quantities involving multiple smoothing and tuning parameters, rendering those ap-
proaches potentially difficult to implement in practice. Furthermore, those methods would
not be robust to unknown degeneracies determining the convergence rate and shape of the
limiting distribution without additional modifications. For example, subsampling methods
require knowledge of the precise convergence rate of the statistic, or estimation thereof, as a
preliminary step (Politis, Romano and Wolf (1999)). Another resampling approach was re-
cently proposed by Kuchibhotla, Balakrishnan and Wasserman (2024) and Mallick, Sarkar
and Kuchibhotla (2024), which offers valid confidence intervals under an approximate sym-
metry condition of the limiting distribution of the estimator.

We complement existing methods by introducing a novel bootstrap-assisted inference ap-
proach that restores validity of bootstrap methods by reshaping of the ingredients of the gen-
eralized Grenander-type estimator. Our approach is motivated by a constructive interpretation
of the source of the bootstrap failure. As a by-product, our interpretation explicitly isolates
the role of unknown degeneracies determining the precise form of the limiting distribution,
a feature of the interpretation which allow us to develop an automatic inference method that
is robust to such degeneracies, ultimately resulting in a more robust bootstrap-assisted infer-
ence approach. In the case of random sampling, we show that our method can be implemented
using a computationally attractive exchangeable bootstrap procedure. For completeness, we
also discuss implementation issues, offering a fully automatic (i.e., data-driven) valid infer-
ence method for generalized Grenander-type estimators. Some of the ideas underlying our
approach are similar to ideas used in Cattaneo, Jansson and Nagasawa (2020), where we
introduced a bootstrap-based distributional approximation for M-estimators with possibly
nonstandard Chernoff (1964)-type asymptotic distributions (Kim and Pollard (1990), Seo and
Otsu (2018)). Generalized Grenander-type estimators are not M-estimators, however, and as
further explained in the next paragraph the analysis of generalized Grenander-type estimators
turns out to necessitate the development of technical tools that play no role in the analysis of
M-estimators.

Although valid distributional approximations for monotone estimators can be obtained in
a variety of ways (Groeneboom and Jongbloed (2014)), by far the most common approach
is to employ the switch relation (Groeneboom (1985)) to re-express the cumulative distribu-
tion function (cdf) of the suitably normalized monotone estimator in terms of a probability
statement about the maximizer of a certain stochastic process whose large sample properties
can in turn be analyzed by employing standard empirical process methods (van der Vaart and
Wellner (1996)). From a technical perspective, this approach requires (at least) two ingredi-
ents in order to be successful, namely results establishing (i) validity of the switch relation
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and (ii) continuity of the limiting cdf of the maximizer of a stochastic process. In the process
of developing our main results, we shed new light on both (i) and (ii). First, we show by ex-
ample that Westling and Carone’s ((2020), Supplement) generalization of the switch relation
is incomplete as stated and then propose a modification. Our modification of Westling and
Carone’s ((2020), Supplement) Lemma 1 shows that the conclusion of that lemma is valid
once an additional assumption is made. The additional assumption seems very mild, being
satisfied in all examples considered by Westling and Carone (2020) and all other examples
of which we are aware, including some new examples we consider in this paper. Second, we
present a lemma establishing continuity of the cdf of the maximizer of a Gaussian process, a
result which can in turn be used to establish continuity of the cdf of the suitably normalized
generalized Grenander-type estimator. Interestingly, although these continuity properties are
important when deriving limiting distributions with the help of the switch relation and justify-
ing bootstrap-type inference procedures, respectively, it would appear that explicit statements
of them are unavailable in the existing literature. (A prominent exception is the one where
the limiting distribution is a scaled Chernoff distribution, which is known to be absolutely
continuous.) For further details on (i) and (ii), see the Appendix.

In the remainder of this introductory section we outline key notation and definitions
used throughout the paper. Section 2 then recalls the setup of Westling and Carone (2020)
and presents a version of their main distributional approximation result for generalized
Grenander-type estimators. Section 3 contains our main results about bootstrap-assisted dis-
tributional approximations, while Section 4 discusses implementation issues, including tun-
ing parameter selection and a computationally attractive weighted bootstrap procedure. Sec-
tion 5 illustrates our general theory by means of prominent examples, while Section 6 reports
numerical results from a small-scale simulation experiment. The Appendix reports the two
technical results alluded to in the previous paragraph. All proofs and other technical details
are given in the Supplementary Material (Cattaneo, Jansson and Nagasawa (2024)).

1.1. Notation and definitions. For an interval I ⊆ R and a function f : I →R, GCMI (f )

denotes its greatest convex minorant (on I ) and if f is nondecreasing and right-continuous,
then f − denotes its generalized inverse; that is, f −(x) = inf{u ∈ I : f (u) ≥ x}, where the
dependence of f − on I has been suppressed (and where the infimum of the empty set is
sup I ). Also, if f is nondecreasing and right-continuous, we write f (x−) = limη↓0 f (x − η)

and f −(y+) = limη↓0 f −(y +η). Assuming the relevant derivatives exist, ∂q denotes the qth
partial derivative (operator) and ∂− denotes the left derivative (operator). In addition, f ◦ g

denotes the composition of f and g; that is, (f ◦ g)(x) = f (g(x)). Finally, for a, b ∈ R, we
write a ∧b = min(a, b), a ∨b = max(a, b), and a+ = max(a,0), and 
a� denotes the integer
part of a.

Limits are taken as n → ∞, unless otherwise stated. For two (possibly) random sequences
{an} and {bn}, an = OP(bn) is shorthand for lim supε→∞ lim supnP[|an/bn| ≥ ε] = 0,
an = oP(bn) is shorthand for lim supε→0 lim supnP[|an/bn| ≥ ε] = 0, and the subscript “P”
on “O” and “o” is often omitted when {an} and {bn} are nonrandom. We use →P to de-
note convergence in probability and � to denote weak convergence, where, for a stochastic
process indexed by R, convergence is in the topology of uniform convergence on compacta.
When analyzing the bootstrap, P∗

n denotes the probability measure under the bootstrap dis-
tribution conditional on the original data and �P denotes weak convergence in probability
conditionally on the original data. For more details, see van der Vaart and Wellner (1996).

2. Setup. Our setup is that of Westling and Carone (2020). The goal is to conduct infer-
ence on θ0(x), where, for some interval I ⊆ R, θ0 is nondecreasing on I and x is an interior
point of I . Assuming it is well defined, the function �0 given by

�0(x) =
∫ x

inf I
θ0(v) dv



1512 M. D. CATTANEO, M. JANSSON AND K. NAGASAWA

is convex on I and therefore enjoys the property that if θ0 is left-continuous at x, then

θ0(x) = ∂−GCMI (�0)(x).

An estimator of θ0(x) obtained by replacing �0 and I in the preceding display with estimators
is said to be of the Grenander-type, a canonical example of this class of estimators being the
celebrated Grenander (1956) estimator of a nondecreasing density.

EXAMPLE 1 (Monotone Density Estimation). Suppose X1, . . . ,Xn are i.i.d. copies of a
continuously distributed nonnegative random variable X whose density f0 is nondecreasing
on its support [0, u0], where u0 is (possibly) unknown. For x ∈ (0, u0), the Grenander (1956)
estimator of f0(x) is

f̂n(x) = ∂−GCM[0,ûn](F̂n)(x),

where ûn = max1≤i≤n Xi ∨ x and where F̂n(x) = n−1∑n
i=1 1(Xi ≤ x) is the empirical cdf.

Section 5.1 and the Supplementary Material discuss more general monotone density esti-
mators allowing for censoring and/or covariate adjustment (e.g., van der Laan and Robins
(2003)).

To define the class of generalized Grenander-type estimators, let ψ0 = θ0 ◦ �−
0 , where �0

is nonnegative, nondecreasing, and continuous on I . Defining

	0 = 
0 ◦ �0, 
0(x) =
∫ x

0
ψ0(v) dv,

and assuming that �0(x) < �0(x) < u0 for every x < x, we have

(1) θ0(x) = ∂−GCM[0,u0]
(
	0 ◦ �−

0
) ◦ �0(x)

whenever θ0 is left-continuous at x. In the terminology of Westling and Carone (2020), an
estimator of θ0(x) is of the Generalized Grenander-type if it is obtained by replacing 	0,
�0, and u0 in the preceding display with estimators 	̂n, �̂n, and ûn (say); to be specific, an
estimator of the Generalized Grenander-type is of the form

θ̂n(x) = ∂−GCM[0,ûn]
(
	̂n ◦ �̂−

n

) ◦ �̂n(x),

where �̂n is nonnegative, nondecreasing, and right-continuous. Of course, Grenander-type
estimators are of the generalized Grenander-type (with �̂n equal to the identity mapping)
whenever the associated estimator of I is of the form [0, ûn], but the class of generalized
Grenander-type estimators contains many important estimators that are not of Grenander-
type, a canonical example being the celebrated isotonic regression estimator of Brunk (1958).

EXAMPLE 2 (Monotone Regression Estimation). Suppose (Y1,X1), . . . , (Yn,Xn) are
i.i.d. copies of (Y,X), where X is a continuously distributed random variable and where
the regression function μ0(x) = E(Y |X = x) is nondecreasing. For x in the interior of the
support of X, the Brunk (1958) estimator of μ0(x) is

μ̂n(x) = ∂−GCM[0,1]
(
	̂n ◦ F̂−

n

) ◦ F̂n(x),

where 	̂n(x) = n−1∑n
i=1 Yi1(Xi ≤ x) and where F̂n(x) = n−1∑n

i=1 1(Xi ≤ x) is an estima-
tor of F0, the cdf of X. Section 5.2 discusses more general monotone regression estimators
allowing for covariate adjustment (e.g., Westling, Gilbert and Carone (2020)).
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Under regularity conditions, if θ̂n(x) is of the generalized Grenander-type, then its rate of
convergence is governed by the flatness of θ0 around x, as measured by the characteristic
exponent

q = min
{
j ∈ N : ∂j θ0(x) �= 0

}
,

where N is the set of positive integers. (When θ0 is nondecreasing and suitably smooth, q
is necessarily an odd integer.) To be specific, Westling and Carone (2020, Theorem 3) gave
conditions under which

(2) rn
(
θ̂n(x) − θ0(x)

)
� 1

∂�0(x)
∂−GCMR

(
Gx +Mq

x

)
(0), rn = nq/(1+2q),

where Gx is a scalar multiple of two-sided Brownian motion and where Mq
x is a monomial

given by

(3) Mq
x(v) = ∂qθ0(x)∂�0(x)

(q+ 1)! vq+1.

In addition to governing the rate of convergence, the characteristic exponent q also governs
the shape of Mq

x . On the other hand, and as the notation suggests, the covariance kernel of
Gx does not depend on q. If q = 1, then the distribution of ∂−GCMR(Gx +Mq

x)(0) is a scaled
Chernoff distribution. More generally, the distribution of ∂−GCMR(Gx +Mq

x)(0) is a scaled
Chernoff-type distribution (in the terminology of Han and Kato (2022)).

Among other things, the following assumption guarantees validity of the representation
(1) and ensures existence of the right-hand side of (3).

ASSUMPTION A. For some δ > 0 and some s ≥ q, the following are satisfied:

(A1) I ⊆ R is an interval and I δ
x = {x ∈ R : |x − x| ≤ δ} ⊆ I .

(A2) θ0 is nondecreasing and bounded on I , and 
s� times continuously differentiable on
I δ
x with

sup
x,x′∈I δ

x

|∂
s�θ0(x) − ∂
s�θ0(x
′)|

|x − x′|s−
s� < ∞.

(A3) �0 is nonnegative, nondecreasing, continuous, and bounded on I , and 
s� − q + 1
times continuously differentiable on I δ

x with ∂�0(x) �= 0 and

sup
x,x′∈I δ

x

|∂
s�−q+1�0(x) − ∂
s�−q+1�0(x
′)|

|x − x′|s−
s� < ∞.

3. Bootstrap-assisted distributional approximation. The distributional approximation
(2) motivates a plug-in procedure for statistical inference: with consistent estimators of Mq

x

and the covariance kernel of Gx, the limiting law in (2) can be simulated. This approach re-
quires characterizing the covariance kernel explicitly, and then forming a consistent estimator
based on preliminary nonparametric smoothing methods (in addition to the other preliminary
nonparametric estimators needed). Also, simulating from the limiting law requires specify-
ing or estimating the unknown characteristic exponent q. As a consequence, although con-
ceptually feasible, the plug-in approach is often computationally cumbersome to employ in
practice.

Since resampling methods have the potential to provide automatic and robust distributional
approximations, it seems natural to consider such methods as an alternative to plug-in meth-
ods. Letting (	̂∗

n, �̂∗
n, û

∗
n) denote a generic (not necessarily nonparametric) bootstrap analog
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of (	̂n, �̂n, ûn) and assuming that �̂∗
n is nondecreasing and right-continuous, the associated

bootstrap analog of θ̂n(x) is

θ̂∗
n (x) = ∂−GCM[0,û∗

n]
(
	̂∗

n ◦ �̂∗−
n

) ◦ �̂∗
n(x).

As is well documented for the classical Grenander estimator (e.g., Kosorok (2008), Sen,
Banerjee and Woodroofe (2010)), the bootstrap analog of (2) does not (necessarily) hold
when (	̂∗

n, �̂∗
n, û

∗
n) is obtained by means of the nonparametric bootstrap. In other words,

rn
(
θ̂∗
n (x) − θ̂n(x)

) ��P
1

∂�0(x)
∂−GCMR

(
Gx +Mq

x

)
(0)

in general; that is, the bootstrap is inconsistent in general. (A precise statement is provided
in Theorem A.1 in Appendix A.3.) It turns out, however, that under plausible conditions
on (	̂∗

n, �̂∗
n, û

∗
n), a valid bootstrap-based distributional approximation can be obtained by

employing

θ̃∗
n (x) = ∂−GCM[0,û∗

n]
(
	̃∗

n ◦ �̂∗−
n

) ◦ �̂∗
n(x),

where, for some judiciously chosen M̃x,n,

	̃∗
n(x) = 	̂∗

n(x) − 	̂n(x) + θ̂n(x)�̂n(x) + M̃x,n(x − x).

(As the notation suggests, and as further discussed below, a defining property of M̃x,n is that
a suitably re-scaled version of it can be interpreted as an estimator of Mq

x .)

3.1. Heuristics. To explain the source of the bootstrap failure and motivate the functional
form of 	̃∗

n , it is useful to begin by sketching the derivation of (2). For any t ∈ R and under
mild conditions on 	̂n and �̂n, it follows from the so-called (generalized) switch relation
(e.g., Appendix A.1) that

P
[
rn
(
θ̂n(x) − θ0(x)

)≤ t
]=P

[
argmin
v∈V̂

q
x,n

{
Ĝq

x,n(v) + Mq
x,n(v) − tL̂q

x,n(v)
}≥ Ẑq

x,n

]
,

where V̂
q
x,n is a “large” subset of R, Ĝ

q
x,n is a stochastic process given by

Ĝq
x,n(v) = √

nan

[
	̂n

(
x+ va−1

n

)− 	̂n(x) − 	0
(
x+ va−1

n

)+ 	0(x)
]

− θ0(x)
√

nan

[
�̂n

(
x+ va−1

n

)− �̂n(x) − �0
(
x+ va−1

n

)+ �0(x)
]
,

an = n1/(1+2q),

M
q
x,n is a smooth nonrandom function, L̂

q
x,n can be interpreted as an estimator of the linear

function Lx given by Lx(v) = v∂�0(x), and where Ẑ
q
x,n is zero when �̂n is the identity map-

ping and can be interpreted as an “estimator” of zero more generally. (The exact definitions
of V̂

q
x,n, M

q
x,n, L̂

q
x,n, and Ẑ

q
x,n are given in Appendix A.4.) In the above and the sequel, the

superscript q indicates that the superscripted object is defined on a “localized” domain.
Under mild conditions, Ĝ

q
x,n converges weakly to a scalar multiple of two-sided Brownian

motion Gx (say), while M
q
x,n, L̂

q
x,n, and Ẑ

q
x,n converge in probability to Mq

x , Lx, and zero,
respectively. In other words, we would expect that

(4)
(
Ĝq

x,n, L̂
q
x,n, Ẑ

q
x,n

)
� (Gx,Lx,0),

and that

(5) Mq
x,n �Mq

x.
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It therefore stands to reason that under mild additional conditions (including suitable conver-
gence of V̂

q
x,n to R), we have

lim
n→∞P

[
rn
(
θ̂n(x) − θ0(x)

)≤ t
]=P

[
argmin

v∈R
{
Gx(v) +Mq

x(v) − tLx(v)
}≥ 0

]
=P

[
1

∂�0(x)
∂−GCMR

(
Gx +Mq

x

)
(0) ≤ t

]
,

where the first equality follows from an argmax continuous mapping theorem, and the second
equality is obtained by another application of the switch relation.

Next, consider the bootstrap analog of θ̂n(x). For any t ∈ R, the switch relation gives

P∗
n

[
rn
(
θ̂∗
n (x) − θ̂n(x)

)≤ t
]= P∗

n

[
argmin
v∈V̂

q,∗
x,n

{
Ĝq,∗

x,n(v) + M̂q
x,n(v) − tL̂q,∗

x,n(v)
}≥ Ẑq,∗

x,n

]
,

where

Ĝq,∗
x,n(v) = √

nan

[
	̂∗

n

(
x+ va−1

n

)− 	̂∗
n(x) − 	̂n

(
x+ va−1

n

)+ 	̂n(x)
]

− θ̂n(x)
√

nan

[
�̂∗

n

(
x+ va−1

n

)− �̂∗
n(x) − �̂n

(
x+ va−1

n

)+ �̂n(x)
]
,

and where V̂
q,∗
x,n , M̂

q
x,n, L̂

q,∗
x,n, and Ẑ

q,∗
x,n are bootstrap analogs of V̂

q
x,n, M

q
x,n, L̂

q
x,n, and Ẑ

q
x,n,

respectively. (The exact definitions of V̂
q,∗
x,n , M̂

q
x,n, L̂

q,∗
x,n, and Ẑ

q,∗
x,n are given in Appendix A.4.)

If (4) holds, then the following bootstrap counterpart thereof can also be expected to hold:

(6)
(
Ĝq,∗

x,n, L̂
q,∗
x,n, Ẑ

q,∗
x,n

)
�P (Gx,Lx,0).

On the other hand, unlike M
q
x,n the process M̂

q
x,n is (random and) nonsmooth, so the bootstrap

counterpart of (5) typically fails, implying in turn that the bootstrap is inconsistent; for details,
see Theorem A.1 (stated in Appendix A.3) and its proof.

In other words, the sole source of the bootstrap inconsistency is the failure of M̂
q
x,n to

replicate the salient properties of M
q
x,n. Recognizing this, our proposed estimator θ̃∗

n (x) has
been carefully constructed so that it differs from θ̂∗

n (x) only in terms of the implied estimator
of Mq

x . To be specific, θ̃∗
n (x) is similar to θ̂∗

n (x) insofar as it satisfies the following switch
relation: For any t ∈ R,

P∗
n

[
rn
(
θ̃∗
n (x) − θ̂n(x)

)≤ t
]= P∗

n

[
argmin
v∈V̂

q,∗
x,n

{
Ĝq,∗

x,n(v) + M̃q
x,n(v) − tL̂q,∗

x,n(v)
}≥ Ẑq,∗

x,n

]
,

where M̃
q
x,n is the following transformation of M̃x,n:

M̃q
x,n(v) = √

nanM̃x,n
(
va−1

n

)
.

As a consequence, if (6) holds and if M̃
q
x,n �P Mq

x , then it stands to reason that under mild
additional conditions θ̃∗

n (x) satisfies the following bootstrap counterpart of (2):

(7) rn
(
θ̃∗
n (x) − θ̂n(x)

)
�P

1

∂�0(x)
∂−GCMR

(
Gx +Mq

x

)
(0).

In words, our proposed bootstrap-assisted inference procedure can be explained as follows:
we employ the bootstrap to approximate the “fluctuations” of the process Gx, while we use
the estimator M̃

q
x,n to approximate Mq

x . It is an interesting question whether our approach
offers provably better distributional approximations than the plug-in procedure mentioned
previously, but it is beyond the scope of this paper to answer that question.
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3.2. Main result. Our heuristic derivation of (2) can be made rigorous by providing con-
ditions under which four properties hold. First, the switch relation(s) must be valid. Second,
the convergence properties (4) and (5) must hold. Third, to use (4) and (5) to obtain the result

argmin
v∈V̂

q
x,n

{
Ĝq

x,n(v) + Mq
x,n(v) − tL̂q

x,n(v)
}
� argmin

v∈R
{
Gx(v) +Mq

x(v) − tLx(v)
}

with the help of a suitable argmax continuous mapping theorem, tightness of the left-hand
side in the previous display must hold. Finally, to furthermore obtain the conclusion

lim
n→∞P

[
argmin
v∈V̂

q
x,n

{
Ĝq

x,n(v) + Mq
x,n(v) − tL̂q

x,n(v)
}≥ Ẑq

x,n

]
= P

[
argmin

v∈R
{
Gx(v) +Mq

x(v) − tLx(v)
}≥ 0

]
,

the cdf of argminv∈R{Gx(v) +Mq
x(v) − tLx(v)} must be continuous at zero.

Conditions under which the second and third properties hold can be formulated with the
help of well-known empirical process results. We base our formulations on van der Vaart
and Wellner (1996) and employ the generalized argmax continuous mapping theorem of Cox
(2022), which applies also to settings where the feasibility set varies with n. The first and
fourth properties, on the other hand, seem more difficult to verify. Regarding the first prop-
erty, it turns out that the generalization of the switch relation employed by Westling and
Carone (2020) requires additional conditions in order to be valid. To address this concern,
we present a modified generalized switch relation whose assumptions include a condition not
present in Lemma 1 of Westling and Carone (2020, Supplement). Thankfully, the condition
in question seems very mild and having imposed it we are able to preserve the main implica-
tion of Lemma 1 of Westling and Carone (2020, Supplement); for details, see Lemma A.1 in
Appendix A.1. In the special case where q = 1, the fourth property follows from well known
properties of the Chernoff distribution. More generally, however, we are unaware of exist-
ing results guaranteeing the requisite continuity property when q �= 1, but fortunately it turns
out that the continuity property of interest can be established; for details, see Lemma A.2 in
Appendix A.2.

The following assumption collects the conditions under which our verification of the four
above-mentioned properties will proceed.

ASSUMPTION B. For some δ > 0, the following are satisfied:

(B1) Ĝ
q
x,n � Gx and Ĝ

q,∗
x,n �P Gx, where Gx is a centered Gaussian process whose covari-

ance function is Cx(s, t) = C(|s| ∧ |t |)1(sign(s) = sign(t)) for some C > 0.
(B2) There exist β < q+ 1 and events An with limn→∞P[An] = 1,

sup
V ∈[1,anδ]

E
[
V −β sup

|v|∈[V,2V ]
∣∣Ĝq

x,n(v)
∣∣1An

]
= O(1)

and

sup
V ∈[1,anδ]

E
[
V −β sup

|v|∈[V,2V ]
∣∣Ĝq,∗

x,n(v)
∣∣1An

]
= O(1).

(B3) supx∈I |	̂n(x) − 	0(x)| = oP(1) and supx∈I |	̂∗
n(x) − 	̂n(x)| = oP(1).

(B4) supx∈I |�̂n(x)−�0(x)| = oP(1) and supx∈I |�̂∗
n(x)− �̂n(x)| = oP(1). In addition,

an sup
x∈I δ

x

∣∣�̂n(x) − �0(x)
∣∣= oP(1) and an sup

x∈I δ
x

∣∣�̂∗
n(x) − �̂n(x)

∣∣= oP(1).

(B5) For some u0 > �0(x), ûn ≥ u0 + oP(1) and û∗
n ≥ ûn + oP(1).
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(B6) �̂n and �̂∗
n are nonnegative, nondecreasing, and right-continuous on I . In addition,

{0, ûn} ⊆ �̂n(I ) and {0, û∗
n} ⊆ �̂∗

n(I ). Also, �̂n(I ) ∩ [0, ûn] and �̂∗
n(I ) ∩ [0, û∗

n] are closed.
(B7)

√
nan sup

x∈I δ
x

∣∣�̂n(x) − �̂n(x−)
∣∣= oP(1) and

√
nan sup

x∈I δ
x

∣∣�̂∗
n(x) − �̂∗

n(x−)
∣∣= oP(1).

Verification of the bootstrap parts of Assumption B will be discussed in Section 4.2 below.
When combined with Assumption A, Assumption B suffices in order to establish (2) and (6).
In addition, (7) can be shown to hold if M̃x,n satisfies the following.

ASSUMPTION C. M̃
q
x,n �P Mq

x and, for some c > 0 and every K > 0,

lim inf
n→∞ P

[
inf

|v|>K−1
M̃x,n(v) ≥ cK−(q+1)

]
= 1.

Moreover, continuity of the cdf of ∂−GCMR(Gx +Mq
x)(0) can be shown with the help of

the arguments used to show that the cdf of argminv∈R{Gx(v)+Mq
x(v)− tLx(v)} is continuous

at zero. As a consequence, we obtain the following result.

THEOREM 1. Suppose Assumptions A, B, and C are satisfied. Then (2) and (7) hold, and

(8) sup
t∈R

∣∣P∗
n

[
θ̃∗
n (x) − θ̂n(x) ≤ t

]−P
[
θ̂n(x) − θ0(x) ≤ t

]∣∣= oP(1).

In an attempt to emphasize the rate-adaptive nature of the consistency property enjoyed by
the bootstrap-based distributional approximation based on θ̃∗

n (x), the formulation (8) deliber-
ately omits the rate term rn present in (2) and (7). Theorem 1 has immediate implications for
inference. For instance, it follows from (2) and (8) that for any α ∈ (0,1), we have

lim
n→∞P

[
θ0(x) ∈ CI1−α,n(x)

]= 1 − α,

where, defining Q∗
a,n(x) = inf{Q ∈ R : P∗

n[θ̃∗
n (x) − θ̂n(x) ≤ Q] ≥ a},

CI1−α,n(x) = [
θ̂n(x) − Q∗

1−α/2,n(x), θ̂n(x) − Q∗
α/2,n(x)

]
is the (nominal) level 1 − α bootstrap confidence interval for θ0 based on the “percentile
method” (in the terminology of van der Vaart (1998)).

4. Implementation. Suppose Assumption A is satisfied and suppose (	̂n, �̂n, ûn) sat-
isfies the nonbootstrap parts of Assumption B. Then, in order to compute the estimator
θ̃∗
n (x) upon which our proposed bootstrap-assisted distributional approximation is based,

two implementation issues must be addressed, namely the choice/construction of M̃x,n and
(	̂∗

n, �̂∗
n, û

∗
n), respectively. Section 4.1 demonstrates the plausibility of Assumption C by ex-

hibiting estimators M̃x,n satisfying it under Assumptions A and D, the latter being a high-level
condition that typically holds whenever the nonbootstrap parts of Assumption B hold. Then,
Section 4.2 exhibits easy-to-compute (	̂∗

n, �̂∗
n, û

∗
n) satisfying the bootstrap parts of Assump-

tion B under a random sampling assumption and other mild conditions.
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4.1. Mean function estimation. The ease with which an M̃x,n satisfying Assumption C
can be constructed depends in particular on whether q is known. To facilitate the subsequent
discussion, let D0(x) = 0 and for j = 1, . . . , 
s�, define (recursively)

Dj (x) = lim
x→x

ϒ0(x) − ϒ0(x) −∑j−1
k=0[(k + 1)!]−1Dk(x)(x − x)k+1

(x − x)j+1 ,

ϒ0 = 	0 − θ0(x)�0.

Noting that ∂	0(x) = θ0(x)∂�0(x) for x near x, we have D0(x) = · · · = Dq−1(x) = 0 and

Dj (x) = 1

(j + 1)!
j∑

k=q

(
j

k

)
∂kθ0(x)∂

j+1−k�0(x), j = q, . . . , 
s�.

In particular, Dq(x) = ∂qθ0(x)∂�0(x)/(q+ 1)! and therefore Mq
x(v) =Dq(x)vq+1.

4.1.1. Mean function estimation with known q. First, consider the (simpler) case where
q is known. In this case, if

(9) D̃q,n(x) →P Dq(x),

then Assumption C holds when

(10) M̃x,n(x) = D̃q,n(x)x
q+1.

Example-specific estimators D̃q,n(x) satisfying the consistency requirement (9) may be
readily available. For instance, in the case of the Grenander (1956) estimator described in
Example 1, we have Dq(x) = ∂qf0(x)/(q+ 1)!, a consistent estimator of which can be based
on any consistent estimator of ∂qf0(x), such as a standard kernel estimator or, if the evaluation
point x is near the boundary of the support of X, boundary adaptive versions thereof.

More generic estimators are also available. For specificity, the remainder of this section
focuses on estimators of Dj (x) obtained by applying numerical derivative-type operators to
the following (possibly) nonsmooth estimator of ϒ0:

ϒ̂n = 	̂n − θ̂n(x)�̂n.

The fact that Dj (x) = 0 for j < q implies that Dq(x) admits the “monomial approximation”
representation

Dq(x) = lim
ε→0

{
ε−(q+1)[ϒ0(x+ ε) − ϒ0(x)

]}
,

motivating the estimator

D̃MA
q,n(x) = ε−(q+1)

n

[
ϒ̂n(x+ εn) − ϒ̂n(x)

]
,

where εn > 0 is a tuning parameter. Similarly, the generic “forward difference” representation

Dq(x) = lim
ε→0

⎧⎨⎩ε−(q+1)
q+1∑
k=1

(−1)k+q+1
(
q+ 1

k

)[
ϒ0(x+ kε) − ϒ0(x)

]⎫⎬⎭
motivates the estimator

D̃FD
q,n(x) = ε−(q+1)

n

q+1∑
k=1

(−1)k+q+1
(
q+ 1

k

)[
ϒ̂n(x+ kεn) − ϒ̂n(x)

]
.
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For η > 0, let

Ĝx,n(v;η) =
√

nη−1
[
	̂n(x+ vη) − 	̂n(x) − 	0(x+ vη) + 	0(x)

]
− θ0(x)

√
nη−1

[
�̂n(x+ vη) − �̂n(x) − �0(x+ vη) + �0(x)

]
,

and

R̂x,n(v;η) = η−1[�̂n(x+ vη) − �̂n(x) − �0(x+ vη) + �0(x)
]
.

Using this notation, the first part of (B1) can be restated as

Ĝx,n
(·;a−1

n

)
� Gx

and the displayed condition of (B4) implies that

R̂x,n
(·;a−1

n

)= oP(1).

In the preceding displays, one can typically replace a−1
n = n−1/(1+2q) by any ηn > 0 with

ηn = o(1) and a−1
n η−1

n = O(1). As a consequence, validity of the following assumption usu-
ally follows as a by-product of the arguments used to justify (B1) and (B4).

ASSUMPTION D. For every ηn > 0 with ηn = o(1) and a−1
n η−1

n = O(1),

Ĝx,n(1;ηn) = OP(1) and R̂x,n(1;ηn) = OP(1).

In turn, Assumption D is useful for the purposes of analyzing D̃MA
j,n, and D̃FD

j,n.

LEMMA 1. Suppose Assumptions A and D are satisfied, that rn(θ̂n(x)− θ0(x)) = OP(1),
and that εn → 0 and nε

1+2q
n → ∞. If D̃q,n ∈ {D̃MA

q,n, D̃FD
q,n}, then (9) is satisfied and Assump-

tion C holds with M̃x,n in (10).

4.1.2. Mean function estimation: Adaptation to unknown degeneracy. Next, consider the
somewhat more complicated case where q is unknown. In this case, we are able to obtain a
positive result under the (additional) assumption that there are known integers q̄ and s for
which q ≤ q̄ ≤ s < s. As the notation suggests, q̄ and s are upper and lower bounds on q and
s, respectively. The stated condition furthermore implies that s > q, a stronger smoothness
condition than the condition s≥ q of Assumption A.

For any q̄ ≥ q, noting that Dj (x) = 0 for j < q and that Dq(x) > 0 with q an odd integer,
Mq

x can be written as

Mq
x(v) =


(q̄+1)/2�∑
�=1

1(2� − 1 ≤ q)D2�−1(x)
+v2�.

Dropping the indicator function term from each summand, we obtain

M̄x(v) =

(q̄+1)/2�∑

�=1

D2�−1(x)
+v2�.

The majorant M̄x is an “adaptive” approximation to Mq
x in the sense that it does not depend

on q, yet satisfies the local approximation property

M̄q
x �Mq

x, M̄q
x(v) = √

nanM̄x
(
va−1

n

)
.

Moreover, the following (“global”) positivity property automatically holds: for some c > 0:

inf
|v|>K−1

M̄x(v) > cK−(q+1) for every K > 0.
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As a consequence, it seems plausible that a “plug-in” estimator of M̄x would satisfy As-
sumption C under reasonable conditions. Indeed, if

(11) aq−(2�−1)
n

(
D̃2�−1,n(x) −D2�−1(x)

)= oP(1), � = 1, . . . ,
⌊
(q̄+ 1)/2

⌋
,

then Assumption C is satisfied by

(12) M̃x,n(v) =

(q̄+1)/2�∑

�=1

D̃2�−1,n(x)
+v2�.

For “small” � (namely, for 2� − 1 < q), the precision requirement (11) is stronger than
consistency, but fortunately it turns out that the requirement can be met as long as s admits
an integer s satisfying the condition q̄ ≤ s < s. To describe estimators satisfying (11) under
this condition, let the constants c1, . . . , cs+1 be such that invertibility holds on the part of the
(s + 1) × (s + 1) matrix with element (k,p) given by c

p
k and let the defining property of

{λBRj (k) : 1 ≤ k ≤ s+ 1} be

s+1∑
k=1

λBRj (k)c
p
k = 1(p = j + 1), p = 1, . . . , s+ 1.

Then, for any j = 1, . . . , s, the “bias-reduced” estimator

D̃BR
j,n(x) = ε−(j+1)

n

s+1∑
k=1

λBRj (k)
[
ϒ̂n(x+ ckεn) − ϒ̂n(x)

]
is motivated by the fact that as ε → 0,

Dj (x) = ε−(j+1)
s+1∑
k=1

λBRj (k)
[
ϒ0(x+ ckε) − ϒ0(x)

]+ O
(
εmin(s+1,s)−j )

when s > j . Relative to D̃MA
j,n(x) and D̃FD

j,n(x), this is a distinguishing feature of D̃BR
j,n(x) and

as it turns out this feature will enable us to formulate sufficient conditions for (11).

LEMMA 2. Suppose Assumptions A and D are satisfied, that rn(θ̂n(x)− θ0(x)) = OP(1),
and that εn → 0. If q ≤ q̄≤ s < s, then

aq−j
n

(
D̃BR

j,n(x) −Dj (x)
)= O

(
aq−j
n εmin(s+1,s)−j

n

)+ OP
[
(anεn)

−(j+1/2) + (anεn)
−j ]

for j = 1, . . . , s, implying in particular that if also

nε(1+2q̄)min(s,s−1)/(q̄−1)
n → 0 and nε1+2q̄

n → ∞,

then (11) is satisfied and Assumption C holds with M̃x,n in (12) if D̃2�−1,n = D̃BR
2�−1,n.

As alluded to previously, the ability of D̃BR to satisfy (11) is attributable in large part
to its bias properties. In an attempt to highlight this, the first display of the lemma gives a
stochastic expansion wherein the O(a

q−j
n ε

min(s+1,s)−j
n ) term is a (possibly) negligible bias

term. For D̃ ∈ {D̃MA, D̃FD}, the analogous stochastic expansions are of the form

aq−j
n

(
D̃j,n(x) −Dj (x)

)= O
(
aq−j
n εq−j

n

)+ OP
[
(anεn)

−(j+1/2) + (anεn)
−j ],

the O(a
q−j
n ε

q−j
n ) term also being a bias term. When anεn → ∞ (as is required for the “noise”

term in the stochastic expansion to be oP(1)), this bias term is nonnegligible and the estima-
tors D̃MA and D̃FD therefore do not satisfy (11).
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Under additional assumptions (including s≥ s+1 and additional smoothness on �0), D̃BR

admits a Nagar-type mean squared error (MSE) expansion that can be used to select εn. The
resulting approximate MSE formula is of the form

ε2(s+1−j)
n BBR

j (x)2 + 1

nε
1+2j
n

VBR
j (x),

where the bias constant is

BBR
j (x) = Ds+1(x)

s+1∑
k=1

λBRj (k)c
s+2
k

and the variance constant is

VBR
j (x) =

s+1∑
k=1

s+1∑
l=1

λBRj (k)λBRj (l)Cx(ck, cl);

for details, see Section SA.1.7 in the Supplementary Material (Cattaneo, Jansson and Naga-
sawa (2024)). Assuming BBR

j (x) �= 0, the approximate MSE is minimized by

εBRj,n(x) =
(

1 + 2j

2(s+ 1 − j)

VBR
j (x)

BBR
j (x)2

)1/(3+2s)
n−1/(3+2s),

a feasible version of which can be constructed by replacing Ds+1(x) and Cx with estimators
in the expressions for BBR

j (x) and VBR
j (x), respectively.

4.2. Bootstrapping. Suppose inference is to be based on a random sample Z1, . . . ,Zn

from the distribution of some Z. In all examples of which we are aware, the bootstrap parts of
Assumption B are satisfied when (	̂∗

n, �̂∗
n, û

∗
n) is given by the nonparametric bootstrap analog

of (	̂n, �̂n, ûn). Nevertheless, computationally simpler alternatives are often available and in
what follows we will present one such alternative. To motivate our proposal, it is instructive
to begin by revisiting Example 1.

EXAMPLE 3 (Monotone Density Estimation, continued). In this example, Z= X. More-
over, defining γ0(x; z) = 1(z≤ x) and φ0(x; z) = x, we have the representations

	0(x) =E
[
γ0(x;Z)

]
and �0(x) = E

[
φ0(x;Z)

]
,

and the estimators 	̂n and �̂n are linear in the sense that they are of the form

	̂n(x) = 1

n

n∑
i=1

γ0(x;Zi ) and �̂n(x) = 1

n

n∑
i=1

φ0(x;Zi ),

respectively. Finally, ûn = max1≤i≤nZi ∨ x.
Letting Z∗

1,n, . . . ,Z
∗
n,n be a random sample from the empirical distribution of Z1, . . . ,Zn,

û∗
n = max1≤i≤nZ∗

i,n ∨ x is the nonparametric bootstrap analog of ûn, while

	̂∗
n(x) = 1

n

n∑
i=1

γ0
(
x;Z∗

i,n

)
and �̂∗

n(x) = 1

n

n∑
i=1

φ0
(
x;Z∗

i,n

)
are the nonparametric bootstrap analogs of 	̂n and �̂n, respectively.

In the case of ûn, the alternative bootstrap analog û∗
n = ûn is computationally trivial and

automatically satisfies the bootstrap parts of (B5) and (B6). As for 	̂n and �̂n, their nonpara-
metric bootstrap analogs admit the weighted bootstrap representations

	̂∗
n(x) = 1

n

n∑
i=1

Wi,nγ0(x;Zi ) and �̂∗
n(x) = 1

n

n∑
i=1

Wi,nφ0(x;Zi ),
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where, conditionally on Z1, . . . ,Zn, (W1,n, . . . ,Wn,n) is multinomial distributed with prob-
abilities (n−1, . . . , n−1) and number of trials n. (In turn, the weighted bootstrap interpreta-
tion of the nonparametric bootstrap analog of (	̂n, �̂n) in this example is interesting partly
because it can be used to embed the nonparametric bootstrap in a class of bootstraps also
containing the Bayesian bootstrap and the wild bootstrap.)

Looking beyond Example 1, finding a computationally trivial û∗
n satisfying the bootstrap

part of (B5) and (B6) is usually straightforward. On the other hand, although a weighted
bootstrap interpretation of the nonparametric bootstrap version of the estimators 	̂n and �̂n

is available whenever they are linear (e.g., in Example 2), there is no shortage of examples
for which linearity does not hold. Nevertheless, the weighted bootstrap representation of the
nonparametric bootstrap in Example 1 turns out be useful for our purposes, as it is suggestive
of computationally attractive alternatives to the nonparametric bootstrap in more complicated
examples.

When the nonbootstrap part of (B1) holds, the estimators 	̂n and �̂n are typically asymp-
totically linear in the sense that they admit (possibly) unknown functions γ0 and φ0 (satisfying
	0(x) = E[γ0(x;Z)] and �0(x) =E[φ0(x;Z)], respectively) for which the approximations

	̂n(x) ≈ 	̄n(x) = 1

n

n∑
i=1

γ0(x;Zi ) and �̂n(x) ≈ �̄n(x) = 1

n

n∑
i=1

φ0(x;Zi )

are suitably accurate. Assuming also that γ0 and φ0 admit sufficiently well behaved estimators
γ̂n and φ̂n (say), it then stands to reason that the salient properties of 	̂n and �̂n are well
approximated by those of the easy-to-compute exchangeable bootstrap-type pair

	̂∗
n(x) = 1

n

n∑
i=1

Wi,nγ̂n(x;Zi ) and �̂∗
n(x) = 1

n

n∑
i=1

Wi,nφ̂n(x;Zi ),

where W1,n, . . . ,Wn,n denote exchangeable random variable (independent of Z1, . . . ,Zn).
To give a precise statement, let

ψx(v; z) = γ0(x + v; z) − γ0(x; z) − θ0(x)
[
φ0(x + v; z) − φ0(x; z)]

and define

	̌n(x) = 1

n

n∑
i=1

γ̂n(x;Zi ) and �̌n(x) = 1

n

n∑
i=1

φ̂n(x;Zi ).

In addition, for any function class F, let NU(ε,F) denote the associated uniform covering
numbers relative to L2; that is, for any ε > 0, let

NU(ε,F) = sup
Q

N
(
ε‖F̄‖Q,2,F,L2(Q)

)
,

where F̄ is the minimal envelope function of F, ‖ · ‖Q,2 is the L2(Q) norm, N(·) is the cover-
ing number, and the supremum is over all discrete probability measure Q with ‖F̄‖Q,2 > 0.

ASSUMPTION E. For some δ > 0, the following are satisfied:

(E1) Z1, . . . ,Zn, are independent and identically distributed.
(E2) W1,n, . . . ,Wn,n are exchangeable random variables independent of Z1, . . . ,Zn, γ̂n,

and φ̂n. In addition, for some r> (4q+ 2)/(2q− 1),

1

n

n∑
i=1

Wi,n = 1,
1

n

n∑
i=1

(Wi,n − 1)2 →P 1, and E
[|W1,n|r]= O(1).
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(E3) supx∈I |	̂n(x) − 	̄n(x)| = oP(1) and

1

n

n∑
i=1

sup
x∈I

∣∣γ̂n(x;Zi ) − γ0(x;Zi )
∣∣2 = oP(1).

Also,

an

n

n∑
i=1

sup
x∈I δ

x

∣∣γ̂n(x;Zi ) − γ0(x;Zi )
∣∣2 = oP(1),

and there exist βγ ∈ [1/2,q + 1) and random variables Aγ,n = oP(1) and Bγ,n = oP(a
βγ
n )

such that, for V ∈ (0,2δ],
√

nan sup
|v|≤V

∣∣	̂n(x+ v) − 	̂n(x) − 	̄n(x+ v) + 	̄n(x)
∣∣≤ Aγ,n + V βγ Bγ,n,

√
nan sup

|v|≤V

∣∣	̌n(x+ v) − 	̌n(x) − 	̄n(x+ v) + 	̄n(x)
∣∣≤ Aγ,n + V βγ Bγ,n.

In addition, for some ργ ∈ (0,2),

lim sup
ε↓0

logNU(ε,Fγ )

ε−ργ
< ∞, E

[
F̄γ (Z)2]< ∞, lim sup

ε↓0

logNU(ε, F̂γ,n)

ε−ργ
= OP(1),

where Fγ = {γ0(x; ·) : x ∈ I }, F̄γ is its minimal envelope, and F̂γ,n = {γ̂n(x; ·) : x ∈ I }.
Also,

lim sup
η↓0

E[D̄η
γ (Z)2 + D̄

η
γ (Z)4]

η
< ∞,

where D̄
η
γ is the minimal envelope of {γ0(x; ·) − γ0(x; ·) : x ∈ I

η
x }.

(E4) supx∈I |�̂n(x) − �̄n(x)| = oP(1) and

1

n

n∑
i=1

sup
x∈I

∣∣φ̂n(x;Zi ) − φ0(x;Zi )
∣∣2 = oP(1).

Also, an|�̂n(x) − �̄n(x)| = oP(1), an|�̌n(x) − �̄n(x)| = oP(1),

an

n

n∑
i=1

sup
x∈I δ

x

∣∣φ̂n(x;Zi ) − φ0(x;Zi )
∣∣2 = oP(1),

and there exist βφ ∈ [1/2,q] and random variables Aφ,n = oP(1) and Bφ,n = oP(a
βφ
n ) such

that, for V ∈ (0,2δ],
√

nan sup
|v|≤V

∣∣�̂n(x+ v) − �̂n(x) − �̄n(x+ v) + �̄n(x)
∣∣≤ Aφ,n + V βφBφ,n,

√
nan sup

|v|≤V

∣∣�̌n(x+ v) − �̌n(x) − �̄n(x+ v) + �̄n(x)
∣∣≤ Aφ,n + V βφBφ,n.

In addition, for some ρφ ∈ (0,2),

lim sup
ε↓0

logNU(ε,Fφ)

ε−ρφ
< ∞, E

[
F̄φ(Z)2]< ∞, lim sup

ε↓0

logNU(η, F̂φ,n)

ε−ρφ
= OP(1),

where Fφ = {φ0(x; ·) : x ∈ I }, F̄φ is its minimal envelope, and F̂φ,n = {φ̂n(x; ·) : x ∈ I }.
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Also,

lim sup
η↓0

E[D̄η
φ(Z)2 + D̄

η
φ(Z)4]

η
< ∞,

where D̄
η
φ is the minimal envelope of {φ0(x; ·) − φ0(x; ·) : x ∈ I

η
x }.

(E5) For every ηn > 0 with anηn = O(1),

sup
v,v′∈[−ηn,ηn]

E[|ψx(v;Z) − ψx(v
′;Z)|]

|v − v′| = O(1)

and, for all v,u ∈R, and for some Cx (as defined in (B1)),

E[ψx(ηnv;Z)ψx(ηnu;Z)]
ηn

→ Cx(v, u).

LEMMA 3. Suppose Assumptions A and E are satisfied. Then (B1)-(B4) are satisfied.

5. Examples. We apply our main results to two distinct sets of examples, both previ-
ously analyzed in Westling and Carone (2020) and Westling, Gilbert and Carone (2020),
and references therein. In the Supplementary Material, we also consider two other set of
examples, namely monotone hazard estimation (Huang and Wellner (1995)) and monotone
distribution estimation (van der Vaart and van der Laan (2006)). All the proofs are found in
the Supplementary Material.

For future reference, we collect the conditions on the bootstrap weights in an assumption.

ASSUMPTION BW. The bootstrap weights W1,n, . . . ,Wn,n are exchangeable, indepen-
dent of the random sample Z1, . . . ,Zn, and satisfy, for some r > 6,

1

n

n∑
i=1

Wi,n = 1,
1

n

n∑
i=1

(Wi,n − 1)2 →P 1, and E
[|W1,n|r]= O(1).

5.1. Monotone density estimation. Consider the problem of estimating the density of
a nonnegative, continuously distributed random variable, possibly with censoring. Let
Z1, . . . ,Zn be i.i.d. copies of Z = (X̌,�)′, with X̌ = X ∧ C and � = 1(X ≤ C). Assuming
that f0, the density of X, (exists and) is nondecreasing on I = [0, u0] where u0 is some point
in the support of X, the parameter of interest is θ0(x) for some x ∈ (0, u0), where θ0 = f0.
This setup generalizes Example 1. We take �0(x) = x and therefore have 	0 = F0, where F0
is the cdf of X.

The canonical case of no censoring (i.e., P[C ≥ X] = 1) has been considered in Exam-
ple 1. Assumptions under which this example is covered by our general theory is given in the
following result.

COROLLARY 1. Let u0 be the supremum of the support of X. Suppose x is in the interior
of I , θ0 satisfies (A2), and Assumption BW holds. Then, Assumptions A, B, and D hold with

	̂n(x) = 1

n

n∑
i=1

1(Xi ≤ x), 	̂∗
n(x) = 1

n

n∑
i=1

Wi,n1(Xi ≤ x),

�̂n(x) = �̂∗
n(x) = x, ûn = û∗

n = max
1≤i≤n

Xi ∨ x,

Cx(s, t) = f0(x)
(|s| ∧ |t |)1(sign(s) = sign(t)

)
, Dq(x) = ∂qf0(x)

(q+ 1)! .
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Under the assumptions of Corollary 1, it follows from Theorem 1 that the bootstrap con-
sistency result (8) holds for any M̃x,n satisfying Assumption C. In particular, any pointwise
consistent estimator of ∂qf0(x) could be used to estimate Dq(x). Alternatively, since Assump-
tion D also holds, M̃x,n in (10) with D̃q,n ∈ {D̃MA

q,n, D̃FD
q,n, D̃BR

q,n} can also be used, provided that

εn → 0 and nε
1+2q
n → ∞.

Suppose now that censoring occurs completely at random; that is, suppose X ⊥⊥ C (e.g.,
Huang and Wellner (1995), and references therein). Let Ŝn and Ĝn be the Kaplan-Meier
estimators of the survival functions S0(·) = P[X > ·] and G0(·) = P[C > ·], and define
F̂n = 1 − Ŝn and �̂n(x) = ∫ x

0 Ŝn(u)−1 dF̂n(u). In anticipation of the following result, we
note that 	0(x) = F0(x) = E[γ0(x;Z)], where

γ0(x;Z) = F0(x) + S0(x)

[
�1(X̌ ≤ x)

S0(X̌)G0(X̌)
−
∫ X̌∧x

0

�0(du)

S0(u)G0(u)

]
,

with �0(x) = ∫ x
0 S0(u)−1 dF0(u).

COROLLARY 2. Let u0 be an interior point in the support of X. Suppose x is in the
interior of I , θ0 satisfies (A2), C ⊥⊥ X, C is absolutely continuous on I with bounded density,
and S0(u0)G0(u0) > 0. Then, Assumptions A, B, and D hold with

	̂n(x) = F̂n(x), 	̂∗
n(x) = 1

n

n∑
i=1

Wi,nγ̂n(x;Zi ),

γ̂n(x;Z) = F̂n(x) + Ŝn(x)

[
�1(X̌ ≤ x)

Ŝn(X̌)Ĝn(X̌)
−
∫ X̌∧x

0

d�̂n(u)

Ŝn(u)Ĝn(u)

]
,

�̂n(x) = �̂∗
n(x) = x, ûn = û∗

n = u0,

Cx(s, t) = f0(x)

G0(x)

(|s| ∧ |t |)1(sign(s) = sign(t)
)
, Dq(x) = ∂qf0(x)

(q+ 1)! .

Theorem 1 implies that inference based on our proposed bootstrap-assisted method is
asymptotically valid for this example as well. Additionally, Assumption D also holds under
the above conditions, and we can use one of the numerical derivative estimators discussed in
Section 4.1.

In the Supplementary Material, we also consider estimation of monotone density under
conditionally independent right-censoring, where covariates are present. We do not discuss
this example here because it involves additional notation and technicalities.

5.2. Monotone regression estimation. Consider now the problem of regression estima-
tion, possibly with covariate adjustment. We assume that Z1, . . . ,Zn are i.i.d. copies of
Z= (Y,X,A′)′, where X is continuous on its support I with density f0 and cdf F0. Defining
μ0(x,a) = E[Y |X = x,A= a], the parameter of interest is θ0(x) for some x in the interior of
I , where θ0(·) =E[μ0(·,A)] is assumed to be nondecreasing on I . (If there are no covariates
A, then θ0(·) = μ0(·) =E[Y |X = ·].) We take �0 = F0 and set u0 = 1.

The classical monotone regression estimator has been considered in Example 2. Assump-
tions under which this example is covered by our general theory is given in the following
result. To state it, let ε = Y −E[Y |X] and define σ 2

0 (x) =E[ε2|X = x].

COROLLARY 3. Suppose that x is in the interior of I , θ0 satisfies (A2), �0 satisfies
(A3), and Assumption BW holds. If σ 2

0 (x) is continuous and positive at x, E[ε2] < ∞, and if
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supx∈I δ
x
E[ε4|X = x] < ∞ for some δ > 0, then Assumptions A, B, and D hold with

	̂n(x) = 1

n

n∑
i=1

Yi1(Xi ≤ x), 	̂∗
n(x) = 1

n

n∑
i=1

Wi,nYi1(Xi ≤ x),

�̂n(x) = 1

n

n∑
i=1

1(Xi ≤ x), �̂∗
n(x) = 1

n

n∑
i=1

Wi,n1(Xi ≤ x), ûn = û∗
n = 1,

Cx(s, t) = f0(x)σ
2
0 (x)

(|s| ∧ |t |)1(sign(s) = sign(t)
)
, Dq(x) = f0(x)∂qμ0(x)

(q+ 1)! .

Under the assumptions of Corollary 3, it follows from Theorem 1 that the bootstrap consis-
tency result (8) holds for any M̃x,n satisfying Assumption C. In this example, any pointwise
consistent estimators of f0(x) and ∂qμ0(x) could be used to estimate Dq(x). Alternatively,
instead of using two distinct estimators, we can use the numerical derivative-type estimators
since Assumption D also holds.

Next, consider the case of monotone regression estimation with covariate-adjustment. In-
troducing covariates A, let fX|A(·|a) denote the conditional Lebesgue density of X given
A= a and define g0(x,a) = fX|A(x|a)/f0(x). Noting that 	0(x) = E[γ0(x;Z)], where

γ0(x;Z) = 1(X ≤ x)

[
Y − μ0(X,A)

g0(X,A)
− θ0(X)

]
,

we assume that 	̂n is of the form 	̂n(x) = n−1∑n
i=1 γ̂n(x;Zi ), where

γ̂n(x;Z) = 1(X ≤ x)

[
Y − μ̂n(X,A)

ĝn(X,A)
+ 1

n

n∑
j=1

μ̂n(X,Aj )

]
,

with μ̂n and ĝn being preliminary estimators of μ0 and g0 based on Z1, . . . ,Zn. As discussed
by Westling, Gilbert and Carone (2020), there are a number of candidates for μ̂n and ĝn. To
accommodate a relatively wide class of estimators, the following assumption employs high-
level conditions on μ̂n and ĝn. To state the assumption, let ε = Y − E[Y |X,A] and define
σ 2

0 (x,a) = E[ε2|X = x,A= a].
ASSUMPTION MRC. For some δ > 0, the following are satisfied:

(i) E[g0(x,A)−1σ 2
0 (x,A)] > 0, E[ε2] < ∞, and supx∈I δ

x
E[ε4|X = x] < ∞.

(ii) fX|A is bounded and g0 is bounded away from zero.

(iii) There exist random variables An = oP(1) and Bn = OP(a
1/2
n ) such that

√
nan sup

|v|≤V

∣∣	̂n(x+ v) − 	̂n(x) − 	̄n(x+ v) + 	̄n(x)
∣∣≤ An + V Bn, V ∈ (0,2δ].

In addition,

an

n

n∑
i=1

∣∣μ̂n(Xi,Ai) − μ0(Xi,Ai)
∣∣2 = oP(1),

an

n2

n∑
i=1

n∑
j=1

∣∣μ̂n(Xi,Aj ) − μ0(Xi,Aj )
∣∣2 = oP(1),

and

an

n

n∑
i=1

ε2
i

∣∣ĝn(Xi,Ai) − g0(Xi,Ai)
∣∣2 = oP(1).
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(iv) E[μ̄(A)2] < ∞, where

μ̄(A) = sup
|x−x′|≤δ

|μ0(x,A) − μ0(x
′,A)|

|x − x′| .

(v) E[σ̄ 2(A)] < ∞, where, for some function ω with limη↓0 ω(η) = 0,∣∣∣∣σ 2
0 (x,A)f0(x)

g0(x,A)
− σ 2

0 (x,A)f0(x)

g0(x,A)

∣∣∣∣≤ ω
(|x − x|)σ̄ 2(A), x ∈ I δ

x .

Part (iii) of the assumption contains high-level conditions. In the Supplementary Material,
we provide primitive sufficient conditions using nonparametric estimators based on sample
splitting.

COROLLARY 4. Suppose that x is in the interior of I , θ0 satisfies (A2), �0 satisfies (A3),
and Assumption BW holds. If Assumption MRC holds, then Assumptions A and B hold with

	̂∗
n(x) = 1

n

n∑
i=1

Wi,nγ̂n(x;Zi ),

�̂n(x) = 1

n

n∑
i=1

1(Xi ≤ x), �̂∗
n(x) = 1

n

n∑
i=1

Wi,n1(Xi ≤ x), ûn = û∗
n = 1,

Cx(s, t) = f0(x)E
[
σ 2

0 (x,A)

g0(x,A)

](|s| ∧ |t |)1(sign(s) = sign(t)
)
, Dq(x) = f0(x)∂qθ0(x)

(q+ 1)! .

As a consequence, if M̃x,n satisfies Assumption C, then the “reshaped” bootstrap estimator
θ̃∗
n (x) = ∂−GCM[0,1](	̃∗

n ◦ �̂∗−
n ) ◦ �̂∗

n(x) gives a bootstrap-assisted distributional approxima-
tion satisfying (8). In this example, the covariance kernel contains E[g0(x,A)−1σ 2

0 (x,A)]
and the plug-in procedure discussed in Section 3 would involve estimating this nuisance pa-
rameter, which in turn requires estimation of σ 2

0 (x, ·). When A is of moderate dimension,
this would introduce a challenging estimation problem on top of estimating μ0 and g0. Our
bootstrap-assisted procedure circumvents estimation of this additional nuisance parameter.

6. Simulations. We consider the canonical case of monotone regression (i.e., Exam-
ple 2). We estimate the nondecreasing regression function θ0(·) = E[Y |X = ·] at an inte-
rior point x using a random sample of observations. Three distinct data generating processes
(DGPs) are considered. For each DGP, we let X be a uniform (0,1) random variable and we
let Y = θ0(X) + σ0(X)̃ε, where ε̃ is a standard normal random variable independent of X.
DGP 1 sets θ0(x) = 2 exp(x − 0.5) and σ0 = 1, DGP 2 sets θ0(x) = 2 exp(x − 0.5) and
σ0 = exp(x), and DGP 3 sets θ0(x) = 24 exp(X − 0.5) − 24(X − 0.5) − 12(X − 0.5)2 and
σ0 = 0.1. In all three cases, we set x = 0.5. The second DGP exhibits heteroskedastic regres-
sion errors, and the third DGP features a regression function whose first derivative equals
zero at the evaluation point x; that is, DGP 3 exhibits a degree of degeneracy and if inference
is conducted without knowledge of the fact that q = 3, then this feature makes the inference
problem more challenging.

The Monte Carlo experiment employs a sample size n = 1000 with 2000 bootstrap repli-
cations and 4000 simulations, and compares four types of bootstrap-based inference pro-
cedures: the standard nonparametric bootstrap, m-out-of-n bootstrap, the “plug-in method”
which simulates the limit law with estimated nuisance parameters, and our proposed
bootstrap-assisted inference method implemented using the bias-reduced numerical deriva-
tive estimator discussed in Section 4.1. For the plug-in method, we estimate the covariance
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TABLE 1
Simulations, Monotone Regression Estimator, 95% Confidence Intervals

DGP 1 DGP 2 DGP 3

D̃1,n D̃3,n Coverage Length D̃1,n D̃3,n Coverage Length D̃1,n D̃3,n Coverage Length

Standard 0.828 0.373 0.838 0.519 0.912 0.029

m-out-of-n
m = �n1/2� 0.896 0.413 0.915 0.583 0.939 0.031
m = �n2/3� 0.868 0.400 0.884 0.557 0.928 0.029
m = �n4/5� 0.851 0.393 0.864 0.545 0.918 0.029

Plug-in 1.053 0.000 0.950 0.399 1.052 0.000 0.946 0.553 0.000 1.003 0.936 0.028

Reshaped
Oracle 1.000 0.000 0.941 0.395 1.000 0.000 0.951 0.550 0.000 1.000 0.946 0.029
ND known q 1.053 0.000 0.949 0.398 1.052 0.000 0.945 0.547 0.000 1.003 0.936 0.028
ND robust 1.053 0.599 0.950 0.401 1.052 0.938 0.954 0.559 0.014 1.003 0.960 0.030

Notes: (i) Panel Standard refers to standard nonparametric bootstrap, Panel m-out-of-n refers to m-out-of-n non-
parametric bootstrap with subsample m, Panel Plug-in refers to the plug-in method, Panel Reshaped refers to our
proposed bootstrap-assisted procedure.
(ii) Columns “D̃1,n” and “D̃3,n” report the averages of the estimated D1, D3 across simulations, and Columns
“Coverage” and “Length” report empirical coverage and average length of bootstrap-based 95% percentile confi-
dence intervals, respectively.
(iii) “Oracle” corresponds to the infeasible version of our proposed procedure using the true value of Dq, “ND
known q” corresponds to our proposed procedure using the bias-reduced numerical derivative estimator with a
correct specification of q, and “ND robust” corresponds to our proposed procedure only assuming q ∈ {1,3}. The
step size choice for the numerical derivative estimator is described in the Supplementary Material.
(iv) The sample size is 1000, the number of bootstrap iterations is 2000, and the number of Monte Carlo simula-
tions is 4000.

kernel and the nuisance parameter ∂�0(x) using local linear kernel estimators, and we es-
timate the mean function by the same numerical derivative estimator as for our bootstrap-
assisted procedure. For m-out-of-n bootstrap and the plug-in method, researchers need to
specify the characteristic exponent q, and we use the true (infeasible) value. For the numeri-
cal derivative estimator, we developed a rule of thumb for the step size εn to operationalize the
procedure. For further details, see Section SA.6 of Cattaneo, Jansson and Nagasawa (2024).
For our proposed method, we report results for three implementations: (i) (infeasible) pro-
cedure using the true value of D0(x) (referred to as “oracle”), (ii) implementation using the
numerical derivative estimator with a correct specification of q (referred to as “known q”),
and (iii) “robust” implementation only assuming q ∈ {1,3} (referred to as “robust”).

Table 1 presents the numerical results. We report empirical coverage for nominal 95%
confidence intervals and their average interval length. For all of the DGPs considered, our
proposed bootstrap-assisted inference method leads to confidence intervals with excellent
empirical coverage and average interval length. The infeasible “oracle” procedure attains
empirical coverage very close to the nominal 95%, which aligns with our theoretical results,
and feasible procedures using the numerical derivative estimators perform almost identical to
the infeasible oracle version.

In DGPs 1 and 2, our procedures outperform both the standard nonparametric bootstrap
(which is inconsistent) and the m-out-of-n bootstrap (which is consistent) in empirical cov-
erage and average length. In DGP 3, the m-out-of-n with the subsample size m = �n1/2�
performs comparable to our procedure, but two caveats should be noted. First, the m-out-
of-n bootstrap performance is sensitive to the choice of the subsample size. Therefore, to
operationalize the m-out-of-n bootstrap procedure, one needs to develop a reliable procedure
to choose the subsample size. Another caveat, arguably more important in this context, is
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that the m-out-of-n bootstrap procedure requires the knowledge of the convergence rate of
the estimator. In our simulation, we use the true convergence rate for m-out-of-n bootstrap,
but in practice, one needs to assume or estimate from data the convergence rate. Since the
convergence rate and the limit distribution of the generalized Grenander-type estimator cru-
cially hinge on unknown q, this feature of the m-out-of-n bootstrap may be unappealing. In
contrast, our proposed bootstrap-based procedure only requires specifying an upper bound
on q and it automatically adapts to the unknown convergence rate.

The plug-in method performs on par with our method, which is not unexpected because
(i) the covariance kernel in this setting takes a relatively simple form and estimating it is not
challenging with sample size n = 1000 and (ii) we use the true q to simulate the limit law. In
other examples where covariates are present, estimating covariance kernels typically involves
nonparametric estimation of additional, possibly high-dimensional, nuisance functions. Our
proposed method reduces the number of nuisance parameters that need to be estimated. More-
over, the good performance of the plug-in method for DGP 3 crucially depends on correctly
specifying q, whereas our “robust” procedure only requires specifying an upper bound on q,
and this is another desirable feature of our proposed method.

APPENDIX: TECHNICAL RESULTS AND OMITTED DETAILS

This appendix collects several technical results and details omitted from the main paper
to improve exposition. First, in Section A.1 we present a corrected version of the general-
ization of the switch relation stated by Westling and Carone (2020, Supplement). Second, in
Section A.2 we present a lemma that can be used to establish continuity of the cdf of the
maximizer of a Gaussian process whose covariance kernel is that of two-sided Brownian mo-
tion. Both lemmas are used in the proof of Theorem 1 and may be of independent interest as
well. Third, in Section A.3 we establish inconsistency of the plug-in nonparametric bootstrap
for a large class of Generalized Grenander-type Estimators, following early work by Kosorok
(2008) and Sen, Banerjee and Woodroofe (2010). Finally, in Section A.4 we report omitted
formulas from Section 3.1.

A.1. Generalized switch relation. For a real-valued function f defined on a set X ⊂
R, argmaxx∈X{f (x)} denotes the (possibly empty) set of maximizers of f over X. If
argmaxx∈X{f (x)} is nonempty and contains a largest element, we denote that element by
max argmaxx∈X{f (x)}.

In their analysis of generalized Grenander-type estimators, Westling and Carone (2020)
relied on a generalization of the switch relation (Groeneboom (1985)). Their generalized
switch relation is given in Lemma 1 of Westling and Carone (2020, Supplement). For the
purposes of comparing it with Lemma A.1 below, it is convenient to restate that lemma as
follows:

Statement GSR (Westling and Carone (2020)). Let � and 	 be real-valued functions de-
fined on an interval I ⊆ R and suppose that � is nondecreasing and right-continuous. Fix
l, u in �(I) with l < u and let θ = ∂−GCM[l,u](	 ◦ �−) ◦ �. If I is closed, �(I) ⊆ [l, u],
and if 	 and 	 ◦ �− are lower semicontinuous, then

(13) θ(x) > t ⇐⇒ sup argmax
x∈�−([l,u])

{
t�(x) − 	(x)

}
< �−(�(x)

)
for any t ∈R and any x ∈ I with �(x) ∈ (l, u).

The main purpose of the following example is to show that without further restrictions,
the argmax in (13) can be empty and the relation (13) can be violated (if we interpret
sup argmaxx∈X{f (x)} as infX when argmaxx∈X{f (x)} is empty). In other words, Statement
GSR can fail to hold.
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EXAMPLE A.1. Let I = [l, u] = [0,1], 	(x) = γ x (for some γ ∈R), and let

�(x) =
{
x if 0 ≤ x < 1/2,

1 if 1/2 ≤ x ≤ 1.

Then

t�(x) − 	(x) =
{
(t − γ )x if 0 ≤ x < 1/2,

t − γ /2 if 1/2 ≤ x ≤ 1,

so argmaxx∈�−([l,u]){t�(x) − 	(x)} is empty when 0 > t > γ .
In particular, if 0 > t > γ and if x ∈ (0,1/2), then

sup argmax
x∈�−([l,u])

{
t�(x) − 	(x)

}= 0 < x = �−(�(x)
)
,

whereas θ(x) = ∂−GCM[l,u](	 ◦ �−) ◦ �(x) = γ < t , so (13) is violated.
For future reference, we note that �(I) = �(I) ∩ [l, u] = [0,1/2) ∪ {1} in this example.

The problems highlighted by the example are attributable to the fact that �(I) ∩ [l, u] is
not closed. Fortunately, it turns out that one can obtain a result in the spirit of (13) as long as
�(I) ∩ [l, u] is closed. The following lemma gives a precise statement.

LEMMA A.1 (Generalized Switch Relation). Let � and 	 be real-valued functions de-
fined on an interval I ⊆ R and suppose that � is nondecreasing and right-continuous. Fix
l, u ∈ �(I) with l < u and let θ = ∂−GCM[l,u](	 ◦ �−) ◦ �. If �(I) ∩ [l, u] is closed, then

(14) θ(x) > t ⇐⇒ max argmax
x∈�−([l,u])

{
t�(x) − LSC�(	)(x)

}
< �−(�(x)

)
for any t ∈ R and any x ∈ I with �(x) ∈ (l, u), where

LSC�(	)(x) = LSC
(
	 ◦ �−) ◦ �(x),

and where LSC(·) denotes the greatest lower semicontinuous minorant.

The assumptions of the lemma seem mild. In particular, the assumption that �(I) ∩ [l, u]
is closed is satisfied not only in the examples of Section 5, but in all examples of which we
are aware.

The lemma does not assume lower semicontinuity of 	 or 	 ◦ �−. Instead, the conclusion
involves the function LSC�(	). As the notation suggests, LSC�(·) = LSC(·) when � is the
identity. More generally, LSC�(·) = LSC(·) when � is continuous and strictly increasing and
whether or not these properties hold it follows from Lemma 4.3 of van der Vaart and van der
Laan (2006) that LSC�(	) admits the following characterization:

LSC�(	)(x) = lim inf
y→�(x)

(
	 ◦ �−)(y).

A.2. Continuity of argmax. Let {G(v) : v ∈R} be a Gaussian process with E[G(v)] =
μ(v) and Cov[G(v),G(u)] = C(|v| ∧ |u|)1(sign(v) = sign(u)) for some C > 0, i.e. G is
a scalar multiple of two-sided Brownian motion with mean shift. Under conditions on μ

stated below, there exists a unique maximizer of G(v) over v ∈ R with probability one (Kim
and Pollard (1990)). We complement this known fact with a result showing that the cdf of
argmaxv∈R{G(v)} is continuous.
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LEMMA A.2. Suppose that for each v ∈ R, limδ↓0[μ(v + δ) − μ(v)]/√δ = 0 and that
lim sup|v|→∞ μ(v)/|v|c = −∞ for some c > 1/2. Then x �→ P[argmaxv∈R{G(v)} ≤ x] is
continuous.

Under Assumptions A and B of the main text, −Mq
x + tLx satisfies the hypothesis of

Lemma A.2 for any t ∈ R. It therefore follows from the lemma that the function

x �→P
[
argmin

v∈R
{
Gx(v) +Mq

x(v) − tLx(v)
}≥ x

]
is continuous at x = 0 for any t ∈ R. We utilize that fact in our proof of (2) and note in passing
that most of the existing literature on monotone function estimators seems to implicitly utilize
a similar continuity result.

A.3. Bootstrap inconsistency. Employing the exchangeable bootstrap setup introduced
in Section 4.2, we show the inconsistency of the plug-in bootstrap-based distributional ap-
proximation. More precisely, we consider the “naïve” (plug-in) bootstrap estimator

θ̂∗
n (x) = ∂−GCM[0,û∗

n]
(
	̂∗

n ◦ �̂∗−
n

) ◦ �̂∗
n(x)

with

	̂∗
n(x) = 1

n

n∑
i=1

Wi,nγ̂n(x;Zi ), �̂∗
n(x) = 1

n

n∑
i=1

Wi,nφ̂n(x;Zi ),

and establish the following negative result.

THEOREM A.1. Suppose Assumptions A, (B5)–(B7), and E hold. Then

sup
t∈R

∣∣P∗
n

[
θ̂∗
n (x) − θ̂n(x) ≤ t

]−P
[
θ̂n(x) − θ0(x) ≤ t

]∣∣ �= oP(1).

Theorem A.1 accommodates exchangeable bootstrap schemes and a wide class of gen-
eralized Grenander-type estimators and contains as a special case the the well-known fact
that the nonparametric bootstrap approximation to the distribution of the classical Grenander
estimator is inconsistent (e.g., Kosorok (2008), Sen, Banerjee and Woodroofe (2010)).

A.4. Omitted formulas. The objects V̂
q
x,n, Mq

x,n, L̂q
x,n, and Ẑ

q
x,n appearing in Section 3.1

are defined as follows:

V̂ q
x,n = {

an(x − x) : x ∈ �̂−
n

([
0, ûn

])}
,

Mq
x,n(v) = √

nan

[
	0
(
x+ va−1

n

)− 	0(x)
]− θ0(x)

√
nan

[
�0

(
x + va−1

n

)− �0(x)
]
,

and

L̂q
x,n(v) = an

[
�̂n

(
x+ va−1

n

)− �̂n(x)
]
, Ẑq

x,n = an

[(
�̂−

n ◦ �̂n

)
(x) − x

]
.

Similarly, the bootstrap analogs of V̂
q
x,n, M

q
x,n, L̂

q
x,n, and Ẑ

q
x,n are given by

V̂ q,∗
x,n = {

an(x − x) : x ∈ �̂∗−
n

([
0, û∗

n

])}
,

M̂q
x,n(v) = √

nan

[
	̂n

(
x+ va−1

n

)− 	̂n(x)
]− θ̂n(x)

√
nan

[
�̂n

(
x+ va−1

n

)− �̂n(x)
]
,

and

L̂q,∗
x,n(v) = an

[
�̂∗

n

(
x+ va−1

n

)− �̂∗
n(x)

]
, Ẑq,∗

x,n = an

[(
�̂∗−

n ◦ �̂∗
n

)
(x) − x

]
,

respectively.
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