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Abstract—The highly sparse activations in Spiking Neural
Networks (SNNs) can provide tremendous energy efficiency
benefits when carefully exploited in hardware. The behavior
of sparsity in SNNs is uniquely shaped by the dataset and
training hyperparameters. This work reveals novel insights into
the impacts of training on hardware performance. Specifically,
we explore the trade-offs between model accuracy and hardware
efficiency. We focus on three key hyperparameters: surrogate
gradient functions, beta, and membrane threshold. Results
on an FPGA-based hardware platform show that the fast
sigmoid surrogate function yields a lower firing rate with
similar accuracy compared to the arctangent surrogate on
the SVHN dataset. Furthermore, by cross-sweeping the beta and
membrane threshold hyperparameters, we can achieve a 48%
reduction in hardware-based inference latency with only 2.88%
trade-off in inference accuracy compared to the default setting.
Overall, this study highlights the importance of fine-tuning model
hyperparameters as crucial for designing efficient SNN hardware
accelerators, evidenced by the fine-tuned model achieving a 1.72×
improvement in accelerator efficiency (FPS/W) compared to the
most recent work.

Index Terms—Surrogate Gradient Learning, Sparsity-aware
SNN, Neuromorphic Computing.

I. INTRODUCTION

Recent studies have demonstrated significant benefits to
considering sparsity in improving hardware efficiency in Spik-
ing Neural Networks (SNNs) [1], [2]. For example, Yin et al.
[1] showed that by explicitly exploiting the sparse gradients (as
high as 93% for some datasets) in hardware, training SNNs
can consume up to 5.58× less energy compared to training
on the same hardware without considering sparsity. Similarly,
Wang et al. [2] achieved a 2.1× improvement in inference
efficiency by exploiting sparsity in hardware compared to
sparsity-oblivious hardware. The primary driving factor in the
formation of the sparsity characteristic is the input coding
scheme of the dataset. Recognizing that this is an active
area of research and various encoding approaches are being
proposed to reduce the firing rate of the network, in this study,
we explore, for the first time, how training hyperparameters
can influence the sparsity of SNN models and, in effect, the
hardware performance of SNN accelerators.

Surrogate gradients [3] are typically employed to train SNN
models due to their ability to overcome the non-linear nature of
spiking neurons (i.e., binary activations/spikes instead of linear
continuous activations). The surrogate gradient approximates
the true derivative, thereby effectively providing state-of-the-
art accuracy in classification-oriented machine learning (ML)

tasks. Nonetheless, the choice of a surrogate function (or the
scaling factor of its derivative) is not standardized. This raises
the question of how its implementation affects the network’s
classification accuracy and firing intensity.

To investigate our hypothesis, we systematically study two
well-known surrogate functions: arctangent and fast
sigmoid, empirically evaluating each function’s optimal
trade-off points for learning performance versus sparsity under
a range of derivative factors. We also rigorously evaluate
the impact of two critical hyperparameters: beta (β) and
threshold (θ). We leverage our in-house hardware platform
to conduct these hardware experiments. This platform allows
efficient “model-to-hardware” mapping by accounting for the
model’s layer-wise workload characteristics. To the best of our
knowledge, this work is the first to present a holistic evaluation
of SNN hardware from a training perspective.

II. BACKGROUND

A. Spiking Neuron Model

The spiking neuron model used is a leaky integrate-and-fire
(LIF) neuron, whose characteristics are shown in Equations 1
and 2.

uj [t+ 1] = βuj [t] +
∑
i

wijsi[t]− sj [t]θ (1)

sj [t] =

{
1, if uj [t] > θ

0, otherwise
(2)

Here, β represents the decay or leak factor of the neuron’s
membrane potential, typically ranging between 0 and 1. This
parameter influences how the previous potential uj [t] affects
the current potential uj [t+ 1]. A higher β value implies less
decay, enabling the neuron to retain more of its previous
state, which can increase the likelihood of firing. θ, on the
other hand, represents the threshold value that the neuron’s
membrane potential must surpass to trigger a firing event,
as indicated by a spike sj [t]. A lower θ value reduces the
potential required for firing, thereby increasing the neuron’s
firing frequency.

B. Surrogate Approximation Functions

Surrogate gradients have emerged as a competitive solu-
tion to effectively approximate the step function [3]. Equa-
tions 4 and 3 show the approximation formulas used for
arctangent and fast sigmoid, respectively.



Fig. 1: Cross-comparison results for arctangent and fast
sigmoid surrogate functions over varying derivative scaling
factors
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where U is the membrane potential and α and k are
derivative scaling factors for each surrogate gradients.

III. SURROGATE GRADIENT FINE-TUNING AND
HYPERPARAMETER SEARCH RESULTS

A. Experimental Setup

We used snnTorch [4] to construct the spiking neuron
models and PyTorch for training the network using the Street
View House Numbers (SVHN) dataset. The network is a
convolutional SNN with the following structure: 32C3-P2-
32C3-MP2-256-10 (where XCY stands for X filters with size
Y × Y and MPZ for maxpooling with size of Z × Z). We
employ cosine annealing [5] for the learning rate scheduler
(with epochs set to 25) during training due to its ability
to rapidly converge to optimal accuracy. The trained model
was mapped to an in-house hardware platform1, developed in
SystemVerilog, and implemented on a Xilinx Kintex® Ultra-
Scale+™ FPGA. This hardware efficiently allocates platform
resources for the model by leveraging the model’s layer sizes
and layer-wise sparsity characteristics to achieve an ultra-low
power resource allocation scheme. In addition, the hardware
operates in a layer-wise lock-step manner to save memory
resources and achieve high throughput.

B. Results

Surrogate functions: To systematically evaluate each sur-
rogate function, we performed a parameter sweep over the
derivative scaling factors k and α while leaving both β and
θ set to their default values (0.25 and 1.0 respectively).
Figure 1 shows the variation in accuracy and accelerator
efficiency (FPS/W) for each surrogate gradient. We set both
k and αto the value range of 0.5 to 32, beyond which the
accuracy for the arctangent surrogate drops below 20%.
We observe that while both surrogate gradients follow a
similar trend in accuracy and efficiency, the fast sigmoid
yields lower firing activity (i.e., higher sparsity) compared to
the arctangent, resulting in higher accelerator efficiency.
Moreover, in both surrogate gradients, through hyperparameter
tuning, our network yields higher accuracy than previous work
[6] (as highlighted by the horizontal green line in Figure 1),

1Publicly available at https://github.com/githubofaliyev/SNN-DSE

Fig. 2: Cross-sweep results for β and θ parameters.

using the same network architecture and dataset, while the
fast sigmoid achieves 11% better accelerator efficiency.
Beta-threshold cross sweep: Given its high sparsity, we
chose the fast sigmoid surrogate with a slope scaling
factor of 0.25 for the following experiments. In Figure 2,
we cross-sweep β (leakage factor) and θ (threshold potential).
Our analysis identifies the optimal balance at a β value of
0.5 and a θ value of 1.5. This configuration significantly
reduced the inference latency by 48%, while only incurring a
minor accuracy loss of 2.88%, compared to the best accuracy
configuration. Compared to prior work [6], this fine-tuning—
with β set to 0.7 and θ to 1.5— achieved 1.72× greater
hardware efficiency without degrading the accuracy.

IV. CONCLUSION

This study sheds new light on a previously unexplored
aspect of SNN hardware accelerator design. While previous
research has primarily focused on non-hardware-related factors
like dataset encoding, our work pioneers the evaluation of
the training hyperparameter space in relation to hardware
efficiency. We show that fine-tuning surrogate gradient hy-
perparameters can provide significant benefits to hardware
efficiency and should be considered carefully in the design of
efficient SNN accelerators. In future work, we aim to broaden
our analysis by exploring additional datasets and the hardware
efficiency impacts of other hyperparameters like loss functions.
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