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Abstract—Spiking Neural Networks (SNNs) have become pop-
ular for their more bio-realistic behavior than Artificial Neural
Networks (ANNs). However, effectively leveraging the intrinsic,
unstructured sparsity of SNNs in hardware is challenging,
especially due to the variability in sparsity across network
layers. This variability depends on several factors, including
the input dataset, encoding scheme, and neuron model. Most
existing SNN accelerators fail to account for the layer-specific
workloads of an application (model + dataset), leading to high
energy consumption. To address this, we propose a design-time
parametric hardware generator that takes layer-wise sparsity and
the number of processing elements as inputs and synthesizes
the corresponding hardware. The proposed design compresses
sparse spike trains using a priority encoder and efficiently shifts
the activations across the network’s layers. We demonstrate the
robustness of our proposed approach by first profiling a given
application’s characteristics followed by performing efficient
resource allocation. Results on a Xilinx Kintex FPGA (Field
Programmable Gate Arrays) using MNIST, FashionMNIST, and
SVHN datasets show a 3.14× improvement in accelerator effi-
ciency (FPS/W) compared to a sparsity-oblivious systolic array-
based accelerator. Compared to the most recent sparsity-aware
work, our solution improves efficiency by 1.72×.

Index Terms—Sparsity-aware SNN, FPGA, parametric hard-
ware design, neuromorphic computing.

I. INTRODUCTION

Spiking Neural Networks (SNN) are emerging as a com-
petitive alternative to traditional Artificial Neural Networks
(ANNs) due to the biologically plausible neuron model (i.e.
binary activation and multiplication-free) which operates on
sparse activations. However, most studies in SNN hardware
literature ignore this characteristic despite its significant im-
pact on hardware performance. As evidence of the potential
for optimization, prior work [1] improved training energy
by 5.58× compared to SNNs that did not exploit sparsity.
Similarly, Wang et. al. [2] improved inference delay by 2.1×
compared to sparsity-oblivious hardware.

To fully realize the efficiency benefits of SNNs, the hard-
ware implementations must match the SNN’s computation
needs. A key aspect of this involves determining the number of
processing elements (PEs) for deep learning (DL) accelerators,
as this significantly influences resource utilization and energy
consumption. This ongoing research challenge has prompted
various approaches [3], such as SCNN’s configuration of
1024 Multiply-and-Accumulate (MAC) units for HD video
processing [4] and Eyerissv2’s exploration of diverse models
with different layer shapes [5]. Additionally, it is crucial to

Fig. 1. Illustration of spike-based convolution operation flow. The “membrane
potential” of neurons with non-zero activation values is updated along with
the surrounding neurons determined by the filter weights.

effectively and explicitly exploit the sparsity characteristic of
SNNs. This requires rethinking traditional methods used in
conventional convolutional neural networks (CNNs), like the
shifting window-based approach [6], [7], due to the variable
sparsity across network layers, feature maps (fmaps), and
within each fmap’s timesteps. Addressing this complexity is
essential for meeting the latency, area, and memory require-
ments of complex SNNs like spiking CNNs.
Event-driven SNN hardware: Figure 1 illustrates the con-
cept of convolution (CONV) operations on sparse activations.
Unlike classical CONV operations where the filter is slid
over the input activations, the spike event addresses in the
input activations determine which neurons in the post-synaptic
layer will be updated. We argue that by specializing hardware
resource allocation to the sparsity of each layer, we can
reduce excessive resource demands and optimize the efficiency
of SNN accelerators. Recent studies [8]–[10] have shown
reductions in both hardware resources and inference time by
simply considering sparsity in the input layer in a two-layer
network with only input and output layers.

Prior sparsity-aware studies have two main limitations.
Firstly, works using systolic array-based hardware follow a
“one size fits all” approach to sparsity exploitation across
layers [11]. Consequently, while small layers under-utilize re-
sources, leaving PEs idle and causing increased leakage power,
larger layers overutilize resources causing latency overhead.
Drastically unbalanced sparsity across the layers necessitates a
layer-wise resource specialization. Secondly, network-on-chip
(NoC)-based event-driven designs [12], [13] face substantial
runtime overhead due to managing (routing and storing) large
spike trains, impacting the system’s energy efficiency. As a
result, the non-trivial problem of mapping the model onto
hardware [5] becomes even more cumbersome due to sparsity.

To alleviate these issues, we propose PULSE (Parametric
Hardware Units for Low-power Sparsity-Aware Convolution



Algorithm 1 Even-based Convolution Loop Flow
1: for each output channel do ▷ ▷ unrollable
2: for each time step do
3: for each input channel do
4: for each spike event do
5: for each kernel column do ▷ ▷ unrollable
6: for each kernel row do ▷ ▷ unrollable
7: Calculate affected neuron index
8: Update neuron membrane potential

with the corresponding filter weight
9: for each neuron’s membrane pot. in OFM do

10: Add filter bias to it
11: Perform comparison & thresholding on it
12: Apply leakage to it

Engine), a novel event-driven modular hardware design that
accelerates sparsely active convolution operations. PULSE
is a fully parametrized hardware design that can address
the flexibility and efficiency needs of different spiking CNN
models. We employ design time parameters to partition hard-
ware resources across network layers such that the layer-
wise workload (i.e., input activation sparsity, layer size) is
taken into account. Implementation results on a Xilinx Kintex
UltraScale FPGA (Field Programmable Gate Arrays) using
three datasets—MNIST, Fashion MNIST, and Street View
House Numbers (SVHN)—show that PULSE can achieve
1.73× and 3.14× better frames per second per watt (FPS/W)
accelerator efficiency compared to sparsity-aware [11] and
sparsity-oblivious [14] studies, respectively.

II. RELATED WORK

To contextualize our work with the state-of-the-art, we
briefly highlight two prior studies that provide sparse convolu-
tion engines. Sommer et al. [11] propose an FPGA-based SNN
accelerator with at least 9 PEs, each PE handling one filter
coefficient add operation, and utilized ”Memory Interlacing”
for parallel access to neurons’ membrane potentials. Their de-
sign also supports parallelization of output channels, allowing
deployment of multiple 9 PE clusters to handle various output
feature maps in a given CONV layer. Although we employ
output channel-wise parallelization, our approach differs by
not parallelizing filter coefficients to simplify memory man-
agement (details in Section III). Mauro et al. [13] propose
an ASIC implementation of a NoC-based hardware capable
of handling entire CNN layers on a single chip. Each PE in
their NoC handles 16 hardware neuron instances, with custom
packet routing logic for output spikes. While their results
show the NoC’s flexibility in exploiting SNN layers’ irregular
dataflow, it incurs significant routing delays of the encoded
spike packets and requires additional hardware logic in each
PE for packet handling, increasing the hardware complexity.

III. BALANCING SPARSE WORKLOAD

The primary challenge in implementing a parallelization
strategy in sparsity-aware SNN accelerators is maintaining the

continuous operation of hardware units to prevent the associ-
ated power overheads of idle units. Algorithm 1 shows the
convolution loop flow carried out in an event-based fashion.
The algorithm also identifies the loops that can be unrolled
without causing data hazards, like conflicts that arise when
multiple feature maps write to the same output channel.

To identify the best parallelization strategy for event-based
spiking convolution, we examine various options in Algorithm
1. Firstly, input channel-wise parallelization (lines 3 and 4) is
inefficient due to fluctuating activation sparsity in each input
feature map (IFM), leading to workload imbalance among the
PEs, and data hazards when IFMs contribute to the same
output feature map (OFM) with overlapping spike events.
Secondly, while kernel weight parallelization (lines 5 and
6) avoids these issues as it involves updating independent
neurons’ membrane potentials (see Figure 1), it requires on-
chip parallel memory access. Sommer et. al. [11] address this
challenge through memory interlacing, but at the cost of hard-
ware overheads. Lastly, output channel-wise parallelization
(line 1) appears most effective, as each PE can independently
process the same spike events and update its neurons.

However, output channel-wise parallelization comes at the
expense of additional on-chip memory since each PE needs an
OFM-sized memory to keep track of neuron membrane poten-
tials. Furthermore, additional comparator and subtraction logic
are needed for the activation phase of the leaky integrate-and-
fire (LIF) neuron. The latter can be efficiently circumvented
by employing low-cost OR gates instead of a full 32-bit fixed
point comparison (see Section IV). We argue that the former
can be addressed by further chunking the OFM and assigning
a fraction of activations to each parallel PE. Once each PE
completes all time steps and all spikes, it moves on to the
next spatial chunk of the OFM. As a result, we can reduce
the on-chip memory required for membrane potential storage,
while maintaining the parallelization degree and, most notably,
avoiding the hardware cost of managing interlacing.

The characteristics of the LIF neuron, used in this work, are
shown in Equations 1 and 2.

uj [t+ 1] = βuj [t] +
∑
i

wijsi[t]− sj [t]θ (1)

sj [t] =

{
1, if uj [t] > θ

0, otherwise
(2)

where, uj [t+1] represents the membrane potential for previous
and current time steps, β is the decay, and θ is the threshold
value that the membrane potential must surpass to trigger a
firing event, as indicated by a spike sj [t].

IV. PULSE ARCHITECTURE

Figure 2 depicts PULSE’s hardware architecture, which has
two main components: Event Control Unit (ECU) and Neural
Core (NC). This design unrolls the output channels by a
factor of N , defined at design time, to determine the number
of NC instances. Within the ECU, the controller submodule
implements lines 1-6 in Algorithm 1, striding through output
channels by N . The controller’s signals are connected to all



Fig. 2. The proposed layer architecture for a CONV/FC layer hardware.
PENC stands for Priority Encoder routine. F. weight stands for Filter weights

parallel NCs and interpreted by the NCs as a base address.
This base address is then paired with an offset parameter with
which each NC is instantiated to calculate the OFM index. For
instance, an NC with an offset of 2 and N=8, will process
OFMs with indices 1, 9, 17, etc.

The controller fetches a spike train from the input Spike
RAM, then initiates the Priority Encoder (PENC) routine. This
routine compresses the spike train by eliminating the non-
spiking (i.e., ‘0’) bits, translating an n-bit spike train into a
register array, SpikeEvents (see Figure 2). PENC processes
n bits in each cycle, and outputs the address of the first set bit
to the SpikeEvents array. The ECU’s bit reset component
then resets the bit value of 1 to 0 for this address in the
previous cycle’s version of the spike train, enabling the PENC
to identify the next set bit in the spike train. After compres-
sion, the controller begins the accumulation phase, reading
from the SpikeEvents register set and iterating through the
filter coefficients (see Figure 1). For each coefficient, the
Address Generation routine calculates the (row, col) addresses
of neurons associated with that spike event and filter sizes
(i.e., for spike event at (row, col), all 9 affected neurons
are from (row − 3, col − 3) to (row, col)). These (row, col)
signals are connected to the NCs. Importantly, the PENC
and accumulation phases are overlapped, allowing PENC to
process new spike trains simultaneously with the accumulation
phase handling the previously compressed spike events.

With the (row, col) pairs provided, the Accum routine
within each NC then performs the accumulation phase of the
LIF neuron. It reads the membrane potential value from the
Block RAM (BRAM), adds the weight coefficient to it, and
writes back the result to the BRAM (line 8, Algorithm 1).
Both the Address Generation and Accum routines are fully
pipelined and can update one neuron per cycle. We store the
filter weights of the CONV layer in flip flops (FFs). For fully-
connected (FC) weight storage, we use Ultra RAMs (URAMs),
which have a higher density than BRAMs, enabling a larger
storage space and better energy efficiency. Unlike BRAMs,
URAMs are fixed in size (e.g., each URAM tile is fixed to
72-bit width and 4K depth). Therefore, we concatenate two
FC neuron weights (each weight is 32 bits) in a single row to
efficiently utilize the URAM rows.

The controller, after processing all input feature maps,
enables the Activ. unit within the NCs to start the LIF neuron’s
spiking phase. This triggers each NC to perform lines 9-12
in Algorithm 1 on the output features. Our design uses a

simple, low-cost comparator to avoid full 32-bit fixed-point
comparisons. We set the threshold value to a constant 1.0
during training and employ a Q3.29 fixed-point representation
in our hardware, with the most significant bit (MSB) as the
sign bit. As such, for efficiency, we only check the first 3
bits. If the MSB (bit 31) is 1, then the number is less than
1.0, while a 1 in the second or third bits indicates a value of
1.0 or greater, signaling a spiked neuron. Then, thresholding
is performed by subtracting 1.0 from its membrane potential.
The architecture also features max pooling, which is effective
in SNNs for computer vision datasets. Its implementation on
binary feature maps only requires sliding an OR gate over an
N ×N input area, where N is the downsampling ratio [11].

V. IMPLEMENTATION RESULTS

1) Experimental Setup: We used the Xilinx Kintex® Ul-
traScale+™ FPGA to implement the proposed hardware due
to its higher logic resources than Artix and lower power
than the Virtex FPGAs. We used snntorch1 [15] for training
our models using surrogate gradient learning [16]. We used
MNIST, Fashion MNIST (FMNIST), and Street View House
Numbers (SVHN) datasets as the driving applications. We
set the beta hyperparameter to 0.15 for all datasets and
training batch size to 64. We used two different networks
with the following architectures: (1) 32C3-32C3-10C3-MP3-
10 and (2) 32C3-P2-32C3-MP2-256-10 (where XCY stands
for X filters with size Y × Y and MPZ for max pooling
with size of Z × Z)2. We evaluated our accelerator with
respect to throughput and efficiency (FPS/W) in comparison
to two state-of-the-art (SOTA) SNN accelerators representing
sparsity-aware [11] and regular sparsity-oblivious [14] designs.

We used standard rate coding due to its ability to achieve
SOTA accuracy. However, rate codes are known to require
lengthy spike trains to achieve high accuracy, and population
coding in the classification layer is often effective in reducing
the length, at the expense of increased neuron count in the
classification layer [17]. As such, each class gets mapped to 2
or more neurons (instead of a single neuron) which effectively
increases the firing rate of neurons with shorter time steps.
This method fits particularly well with our design scheme
since the output layer is the most passive in the network.
That is, although the neuron count is increased by employing
a population of neurons in the classification layer, the highly
sparse nature of this layer incurs negligible hardware overhead.

2) Results: Table I shows the comparison results. It also
shows the sparsity range in the dataset images, indicating how
sparsity varies even within the same dataset. To determine
hardware configurations for each comparison, we calculate
the application workload distribution using Equation 3. Let
the workload of a spiking convolutional and fully-connected
neural network layer (WCONV and WFC) be defined as:

WCONV = F × Cout ×
N∑
i=1

Si, WFC = N × S (3)

1Available online at https://github.com/jeshraghian/snntorch
2Pre-trained models available at https://github.com/githubofaliyev/model zoo



Fig. 3. Per-layer workload distribution for each application (model+dataset).
The superscripts represent the network used for the dataset, shown below
Table I.

where F is the number of filter coefficients (e.g., 9 for 3× 3),
C out is the number of output channels, and S i is the number
of spikes for input feature map i. PULSE is equipped with
network-specific performance counters and provides layer-
wise execution statistics like the average number of spikes,
latency cycles, etc. Therefore, we obtain S i by first naively
mapping the network onto PULSE with one neural core per
layer to reveal each layer’s total workload. Then, we refine the
hardware to better align with the workload needs.

Figure 3 shows the layer workload distributions for each
application scenario. We observe that the second CONV
layer’s latency dominates the overall network latency in all
three applications due to 32 input features. The most notable
gap can be seen in MNIST1 because, unlike others, there
is no max pooling applied to the CONV2 input. On the
other hand, the weight of both CONV1 and CONV2 becomes
identical in SVHN3 because SVHN images have 3 channels.
Based on this analysis, we partitioned the hardware resources
to 8, 32, 4, 2 NCs, 16, 32, 8, 8, and 32, 32, 3, 3 NCs for the
four consecutive layers in MNIST1, FMNIST2, and SVHN3,
respectively. This partitioning provides the top throughput with
the highest utilization.

Comparison to previous work: Compared to the sparsity-
aware prior work [11], PULSE achieved 1.73× efficiency
improvement for MNIST. Prior work outperformed our work
in throughput and latency because they utilized TTFS coding,
whereas we used the Poisson-based rate coding. However, their
power usage is worse due to high frequency, DSP usage, and
idle PEs, leading to increased leakage power. Despite a slightly
higher area footprint in our work, we achieved a power advan-
tage due to the utilization of URAMs instead of BRAMs. Note
that we report power without any power optimizations such as
power/clock gating. Compared to [14], which ignored sparsity,
PULSE achieved 3.14× better efficiency for FMNIST2. For
SVHN3, which has lower sparsity (54% median sparsity),
PULSE achieved 2× improvement.

While PULSE outperformed prior work in efficiency in
all cases, it lagged in latency. The latency degraded because
each layer needed to finish processing an entire image be-
fore moving on to the next layer. Therefore, PULSE favors
high-throughput and low-power scenarios. Furthermore, by
employing population coding, we significantly reduced the

TABLE I
COMPARISON TO PRIOR WORK. THE SUPERSCRIPTS REPRESENT THE
NETWORKS DEPICTED BELOW THE TABLE. IN THE platform ROW, K.

STANDS FOR KINTEX, AND Z. STANDS FOR ZYNQ.

Dataset MNIST1 FMNIST2 SVHN3

Work PULSE [11] PULSE [14] PULSE [14]
Latency 131.7K 13.3K 163K 120K 214K 121K[#cycles]

Through- 10.8K 21.4K 2907 833 2155 826put [FPS]
LUT 43.3K 33K 47.5K 80K 49.2 80K
FF 32.6 21 38.7K 138K 40.3 138K

BRAM 42 125 34 246 52 246
URAM 50 0 53 0 56 0

DSP 0 64 0 0 0 0
Power 0.92 2.9 1.09 0.98 1.28 0.98[W]

Efficiency 12.5K 7.2K 2667 848 1684 841[FPS/W]
Eff. Gain 1.73× 3.14× 2×

Input high=95 high=76 high=78
Sprs.[%] low=83 low=68 low=51

Input time step=3 time step=8 time step=18
Coding. pop. size=500 pop. size=600 pop. size=400

FMax 125 333 125 100 125 100[MHz]
Plat- K. U+ Z. U+ K. U+ K. 7 K. U+ K. 7form

Acc. [%] 98.5 98.2 88.32 90.04 82.68 80.24
128x28-32C3-32C3-P3-10C3-10, 228x28-32C3-MP2-32C3-MP2-256-10,

332x32x3-32C3-P2-32C3-P2-256-10

number of time steps without degrading the model accuracy
and hence balanced the intensive spiking characteristics of the
rate coding for MNIST and FMNIST. For SVHN, we observed
accuracy degradations below 18 time steps. Overall, PULSE’s
innovative hardware design improves efficiency while enabling
flexibility for further performance-power tradeoffs.

VI. CONCLUSION

This paper proposes PULSE, an event-driven, layer-wise,
and flexible hardware design for spiking neural networks.
The proposed design mitigates latency overhead by em-
ploying spike-based processing and an output-channel-wise
parallelization strategy. It also reduces power consumption
by balancing hardware resources in a layer-wise manner,
specializing resources to individual layers’ sparsity character-
istics. Implementation results on a Kintex FPGA show that
PULSE achieves better efficiency (FPS/W) than both sparsity-
aware and sparsity-oblivious prior works. Moreover, the paper
highlights the challenges inherent in existing SNN hardware
designs by analyzing the variability in the sparsity of input
datasets, the length of time steps, and the impact of these
factors on network latency and hardware efficiency. Although
the factors affecting network latency arise primarily from
training, their influence on hardware performance mirrors that
of the hardware’s design.
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