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ABSTRACT
Dyadic data is often encountered when quantities of interest are associated with the edges of a network.
As such it plays an important role in statistics, econometrics and many other data science disciplines.
We consider the problem of uniformly estimating a dyadic Lebesgue density function, focusing on non-
parametric kernel-based estimators taking the form of dyadic empirical processes. Our main contributions
include the minimax-optimal uniform convergence rate of the dyadic kernel density estimator, along with
strong approximation results for the associated standardized and Studentized t-processes. A consistent
variance estimator enables the constructionof valid and feasible uniformconfidencebands for theunknown
density function. We showcase the broad applicability of our results by developing novel counterfactual
density estimation and inference methodology for dyadic data, which can be used for causal inference and
program evaluation. A crucial feature of dyadic distributions is that they may be “degenerate” at certain
points in the support of the data, a property making our analysis somewhat delicate. Nonetheless our
methods for uniform inference remain robust to the potential presence of such points. For implementation
purposes, we discuss inference procedures based on positive semidefinite covariance estimators, mean
squared error optimal bandwidth selectors and robust bias correction techniques.We illustrate the empirical
finite-sample performance of our methods both in simulations and with real-world trade data, for which we
make comparisonsbetweenobservedandcounterfactual tradedistributions indifferent years.Our technical
results concerning strong approximations and maximal inequalities are of potential independent interest.
Supplementary materials for this article are available online.
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1. Introduction

Dyadic data, also known as graphon data, plays an important
role in the statistical, social, behavioral and biomedical sci-
ences. In network settings, this type of dependent data captures
interactions between the units of study, and its analysis is of
interest in statistics (Kolaczyk 2009), economics (Graham2020),
psychology (Kenny, Kashy, and Cook 2020), public health (Luke
and Harris 2007) and many other data science disciplines. For
n ≥ 2, a dyadic dataset contains 1

2n(n−1) observed real-valued
random variables

Wn = (Wij : 1 ≤ i < j ≤ n), Wij = W(Ai,Aj,Vij),

where W is an unknown function, An = (Ai : 1 ≤ i ≤ n) are
iid latent random variables, and Vn = (Vij : 1 ≤ i < j ≤ n)
are iid latent random variables independent of An. A natural
interpretation of this data is as a complete undirected network
on n vertices, with the latent variable Ai associated with node i
and the observed variableWij associated with the edge between
nodes i and j. The data generating process above is justified
without loss of generality by the celebrated Aldous–Hoover
representation theorem for exchangeable arrays (Hoover 1979;
Aldous 1981).

Various distributional features of dyadic data are of inter-
est in applications. Most of the statistical literature focuses on
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parametric analysis, almost exclusively considering moments of
(transformations of) the identically distributed Wij. See Dav-
ezies, D’Haultfœuille, and Guyonvarch (2021), Gao and Ma
(2021), Matsushita and Otsu (2021), and references therein,
for contemporary contributions and overviews. More recently,
however, a few nonparametric procedures for dyadic data have
been proposed in the literature (Graham, Niu, and Powell 2021,
2023).

With the aim of estimating density-like functions associ-
ated with Wij using nonparametric kernel-based methods, we
investigate the statistical properties of a class of local stochastic
processes given by

w �→ f̂W(w) = 2
n(n − 1)

n−1∑
i=1

n∑
j=i+1

kh(Wij,w), (1)

where kh(·,w) is a kernel function that can change with the
n-varying bandwidth parameter h = h(n) and the evaluation
point w ∈ W ⊆ R. For each w ∈ W and with an appro-
priate choice of the kernel function (e.g., kh(·,w) = K((· −
w)/h)/h for an interior point w of W and a fixed symmet-
ric integrable kernel function K), the statistic f̂W(w) becomes
a kernel density estimator for the Lebesgue density function
fW(w) = E

[
fW|AA(w | Ai,Aj)

]
, where fW|AA(w | Ai,Aj)

denotes the conditional Lebesgue density of Wij given Ai and
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Aj. Setting kh(·,w) = K((·−w)/h)/h, Graham, Niu, and Powell
(2023) recently introduced the dyadic point estimator f̂W(w) and
studied its large sample properties pointwise in w ∈ W = R,
while Chiang and Tan (2023) established its rate of convergence
uniformly inw ∈ W for a compact intervalW strictly contained
in the support of the dyadic data Wij. Chiang, Kato, and Sasaki
(2023) obtained a distributional approximation for the supre-
mum statistic supw∈W

∣∣f̂W(w)
∣∣ over a finite collection W of

design points. More generally, as we discuss below, the estimand
fW(w) is useful in different applications because it forms the
basis for counterfactual distributional analysis (Section 7) and
other nonparametric and semiparametric methods (Section 8).
We remark that while we assume throughout that the network
is complete, our approach generalizes in a straightforward way
to networks with missing edges, as in Section 7.1. This can be
seen by setting Wij = −∞ whenever the edge {i, j} is not
present, so that the law of Wij is a mixture between a con-
tinuous distribution and a point mass at −∞. We then apply
our methodology to recover the continuous component of this
distribution, following Chiang, Kato, and Sasaki (2023).

We contribute to the emerging literature on nonparametric
smoothing methods for dyadic data with two main technical
results. First, we derive the minimax rate of uniform conver-
gence for density estimation with dyadic data and show that
the estimator f̂W in (1) is minimax-optimal under appropriate
conditions. Second, we present a set of uniform distributional
approximation results for the entire stochastic process

(
f̂W(w) :

w ∈ W). Furthermore, we illustrate the usefulness of our main
results with two distinct substantive statistical applications: (i)
confidence bands for fW (Section 5), and (ii) estimation and
inference for counterfactual dyadic distributions (Section 7).
Our main results also lay the foundation for studying the uni-
formdistributional properties of other nonparametric and semi-
parametric tests and estimators based on dyadic data (Sec-
tion 8). Importantly, our inference results cannot be deduced
from the existing U-statistic, empirical process and U-process
theory available in the literature (van der Vaart and Wellner
1996; Giné andNickl 2021) because, as explained in detail below,
f̂W(w) is not a standard U-statistic, nor is the stochastic process
f̂W Donsker in general, and the underlying dyadic data Wn
exhibits statistical dependence due to its network structure.

Section 2 outlines the setup and presents the main assump-
tions imposed throughout the article. We first discuss a
Hoeffding-type decomposition of the U-statistic-like f̂W which
is more general than the standard Hoeffding decomposition for
second-order U-statistics due to its dyadic data structure. In
particular, (2) shows that f̂W(w) decomposes into a sum of the
four terms Bn(w), Ln(w), En(w), and Qn(w), where En(w) is
not present in the classical second-order U-statistic theory. The
first term Bn(w) captures the usual smoothing bias, the second
term Ln(w) is akin to the Hájek projection for second-order U-
statistics, the third term En(w) is a mean-zero double average
of conditionally independent terms, and the fourth term Qn(w)

is a negligible totally degenerate second-order U-process. The
leading stochastic fluctuations of the process f̂W are captured
by Ln and En, both of which are known to be asymptotically
distributed as Gaussian random variables pointwise in w ∈ W
(Graham, Niu, and Powell 2023). However, the Hájek projection

term Ln will often be “degenerate” at some or possibly all
evaluation points w ∈ W .

Section 3 studies minimax convergence rates for point esti-
mation of fW uniformly over W and gives precise conditions
under which the estimator f̂W is minimax-optimal. First, in
Theorem 3.1 we establish the uniform rate of convergence of f̂W
for fW . This result improves upon the recent paper of Chiang and
Tan (2023) by allowing for compactly supported dyadic data and
generic kernel-like functions kh (including boundary-adaptive
kernels), while also explicitly accounting for possible degeneracy
of the Hájek projection term Ln at some or possibly all points
w ∈ W . Second, in Theorem 3.2we derive theminimax uniform
convergence rate for estimating fW , again allowing for possible
degeneracy, and verify that it is achieved by f̂W . This result
appears to be new to the literature, complementing recent work
on parametric moment estimation using graphon data (Gao and
Ma 2021) and on nonparametric kernel-based regression using
dyadic data (Graham, Niu, and Powell 2021).

Section 4 presents a distributional analysis of the stochastic
process f̂W uniformly in w ∈ W . Because f̂W is not asymp-
totically tight in general, it does not converge weakly in the
space of uniformly bounded real functions supported onW and
equipped with the uniform norm (van der Vaart and Wellner
1996), and hence is non-Donsker. To circumvent this problem,
we employ strong approximation methods to characterize its
distributional properties. Up to the smoothing bias term Bn and
the negligible term Qn, it is enough to consider the stochastic
process w �→ Ln(w) + En(w). Since Ln can be degenerate at
some or possibly all points w ∈ W , and also because under
some bandwidth choices both Ln and En can be of comparable
order, it is crucial to analyze the joint distributional properties
of Ln and En. To do so, we employ a carefully crafted con-
ditioning approach where we first establish an unconditional
strong approximation for Ln and a conditional-on-An strong
approximation for En. We then combine these to obtain a strong
approximation for Ln + En.

The stochastic process Ln is an empirical process indexed
by an n-varying class of functions depending only on the iid
random variables An. Thus, we use the celebrated Hungarian
construction (Komlós, Major, and Tusnády 1975), building on
ideas in Giné, Koltchinskii, and Sakhanenko (2004) and Giné
and Nickl (2010). The resulting rate of strong approximation
is optimal, and follows from a generic strong approximation
result of potential independent interest given in Section SA3
of the online supplemental appendix. Our main result for Ln is
given as Lemma 4.1, and makes explicit the potential presence
of degenerate points.

The stochastic process En is an empirical process depending
on the dyadic variablesWij and indexed by an n-varying class of
functions.When conditioning onAn, the variablesWij are inde-
pendent but not necessarily identically distributed (inid), and
thus we establish a conditional-on-An strong approximation for
En based on the Yurinskii coupling (Yurinskii 1978), leveraging
a recent refinement obtained by Belloni et al. (2019, Lemma 38).
This result follows from a generic strong approximation result
which gives a novel rate of strong approximation for (local)
empirical processes based on inid data, given in Section SA3
of the online supplemental appendix. Lemma 4.2 gives our
conditional strong approximation for En.
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Once the unconditional strong approximation for Ln and the
conditional-on-An strong approximation for En are established,
we show how to properly “glue” them together to deduce a final
unconditional strong approximation for Ln + En and hence also
for f̂W and its associated t-process. This final step requires some
additional technical work. First, building on our conditional
strong approximation for En, we establish an unconditional
strong approximation for En in Lemma 4.3. We then employ a
generalization of the celebrated Vorob’ev–Berkes–Philipp theo-
rem (Dudley 1999), given in Section SA3 of the online supple-
mental appendix, to deduce a joint strong approximation for
(Ln,En) and, in particular, for Ln + En. Thus we obtain our
main result in Theorem 4.1, which establishes a valid strong
approximation for f̂W and its associated t-process. This uni-
form inference result complements the recent contribution of
Davezies, D’Haultfœuille, and Guyonvarch (2021), which is not
applicable here because f̂W is non-Donsker in general.

We illustrate the applicability of our strong approximation
result for f̂W and its associated t-process by constructing valid
standardized uniform confidence bands for the unknown den-
sity function fW . Instead of relying on extreme value theory
(e.g., Giné, Koltchinskii, and Sakhanenko 2004), we employ anti-
concentration methods, following Chernozhukov, Chetverikov,
andKato (2014). This illustration improves on the recentwork of
Chiang, Kato, and Sasaki (2023), which obtained simultaneous
confidence intervals for the dyadic density fW based on a high-
dimensional central limit theorem over rectangles, following
prior work by Chernozhukov, Chetverikov, and Kato (2017).
The distributional approximation therein is applied to the Hájek
projection term Ln only, whereas our main construction leading
to Theorem 4.1 gives a strong approximation for the entire U-
process-like f̂W and its associated t-process, uniformly on W .
As a consequence, our uniform inference theory is robust to
potential unknown degeneracies in Ln by virtue of our strong
approximation of Ln + En and the use of proper standardiza-
tion, delivering a “rate-adaptive” inference procedure. Our result
appears to be the first to provide confidence bands that are valid
uniformly over w ∈ W rather than over some finite collection
of design points. Moreover, they provide distributional approxi-
mations for the whole t-statistic process, which can be useful in
applications where functionals other than the supremum are of
interest.

Section 5 addresses outstanding issues of implementation.
First, we discuss estimation of the covariance function of the
Gaussian process underlying our strong approximation results.
We present two estimators, one based on the plug-in method,
and the other based on a positive semidefinite regularization
thereof (Laurent and Rendl 2005). We derive the uniform con-
vergence rates for both estimators in Lemma 5.1, which we then
use to justify Studentization of f̂W and a feasible simulation-
based approximation of the infeasible Gaussian process under-
lying our strong approximation results. Second, we discuss inte-
grated mean squared error (IMSE) bandwidth selection and
provide a simple rule-of-thumb implementation for applications
(Wand and Jones 1994; Simonoff 2012). Third, we provide feasi-
ble, valid uniform inferencemethods for fW by employing robust
bias correction (Calonico, Cattaneo, and Farrell 2018, 2022).
Algorithm 1 summarizes our entire feasible methodology.

Section 6 reports empirical evidence for our proposed fea-
sible robust bias-corrected confidence bands for fW . We use
simulations to show that these confidence bands are robust to
potential unknown degenerate points in the underlying dyadic
distribution.

Section 7 presents novel results for counterfactual dyadic
density estimation and inference, offering an application of our
general theory to a substantive problem in statistics and other
data science disciplines. Counterfactual distributions are impor-
tant for causal inference and policy evaluation (DiNardo, Fortin,
and Lemieux 1996; Chernozhukov, Fernández-Val, and Melly
2013), and in the context of network data, such analysis can
be used to answer empirical questions such as “what would the
international trade distribution in one year have been if the gross
domestic product (GDP) of the countries had remained the
same as in a previous year?” We formally show how our theory
for kernel-based dyadic estimators can be used to infer the coun-
terfactual density function of dyadic data had some monadic
covariates followed a different distribution. We propose a two-
step semiparametric reweighting approach in which we first
estimate the Radon–Nikodym derivative between the observed
and counterfactual covariate distributions using a simple para-
metric estimator, and then use this to construct a weighted
dyadic kernel density estimator. We present uniform consis-
tency, strong approximation and feasible inference results for
this dyadic counterfactual density estimator. Finally, we also
illustrate our methods with a real dyadic dataset recording bilat-
eral trade between countries, using GDP as a covariate for the
counterfactual analysis.

Section 8 discusses further statistical applications of our
main results, including dyadic density hypothesis testing and
nonparametric and semiparametric dyadic regression. Section 9
concludes the article. The online supplemental appendix
includes other technical andmethodological results, proofs, and
additional details omitted here to conserve space. Section SA3
may be of independent interest, containing two generic strong
approximation theorems for empirical processes, a generalized
Vorob’ev–Berkes–Philipp theorem and a maximal inequality for
inid random variables.

1.1. Notation

The total variation norm of a real-valued function g of a single
real variable is ‖g‖TV = supn≥1 supx1≤···≤xn

∑n−1
i=1 |g(xi+1) −

g(xi)|. For an integer m ≥ 0, denote by Cm(X ) the space of all
m-times continuously differentiable functions on X . For β > 0
and C > 0, define the Hölder class on X to be Hβ

C(X ) = {
g ∈

Cβ(X ) : max1≤r≤β

∣∣g(r)(x)
∣∣ ≤ C and

∣∣g(β)(x) − g(β)(x′)
∣∣ ≤

C|x − x′|β−β , ∀x, x′ ∈ X }, where β denotes the largest integer
which is strictly less than β . For a ∈ R and b ≥ 0, we write
[a±b] for the interval [a−b, a+b]. For nonnegative sequences
an and bn, write an � bn or an = O(bn) to indicate that an/bn
is bounded for n ≥ 1. Write an � bn or an = o(bn) if an/bn →
0. If an � bn � an, write an 
 bn. For random nonnegative
sequences An and Bn, writeAn �P Bn orAn = OP(Bn) ifAn/Bn
is bounded in probability. Write An = oP(Bn) if An/Bn → 0 in
probability. For a, b ∈ R, define a ∧ b = min{a, b} and a ∨ b =
max{a, b}.
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2. Setup

We impose the following two assumptions throughout this
article.

Assumption 2.1 (Data generation). LetAn = (Ai : 1 ≤ i ≤ n) be
iid random variables supported on A ⊆ R and let Vn = (Vij :
1 ≤ i < j ≤ n) be iid random variables with a Lebesgue density
fV on R, with An independent of Vn. Let Wij = W(Ai,Aj,Vij)
and Wn = (Wij : 1 ≤ i < j ≤ n), where W is an
unknown real-valued function which is symmetric in its first
two arguments. LetW ⊆ R be a compact interval with positive
Lebesgue measure Leb(W). The conditional distribution ofWij
given Ai and Aj admits a Lebesgue density fW|AA(w | Ai,Aj).
For CH > 0 and β ≥ 1, take fW ∈ Hβ

CH
(W) where fW(w) =

E
[
fW|AA(w | Ai,Aj)

]
and fW|AA(· | a, a′) ∈ H1

CH
(W) for all

a, a′ ∈ A. Suppose supw∈W ‖fW|A(w | · )‖TV < ∞ where
fW|A(w | a) = E

[
fW|AA(w | Ai, a)

]
.

In Assumption 2.1 we require the density fW be in a β-
smooth Hölder class of functions on the compact interval W .
Hölder classes are well-established in the minimax estimation
literature (Giné andNickl 2021), with the smoothness parameter
β appearing in the minimax-optimal rate of convergence. If the
Hölder condition is satisfied only piecewise, then our results
remain valid provided that the boundaries between the pieces
are known and treated as boundary points.

Assumption 2.2 (Kernels and bandwidth). Let h = h(n) > 0 be
a sequence of bandwidths satisfying h log n → 0 and log n

n2h → 0.
For eachw ∈ W , let kh(·,w) be a real-valued function supported
on [w ± h] ∩ W . For an integer p ≥ 1, let kh belong to a family
of boundary bias-corrected kernels of order p, that is,∫

W
(s − w)rkh(s,w) ds⎧⎨
⎩

= 1 for all w ∈ W if r = 0,
= 0 for all w ∈ W if 1 ≤ r ≤ p − 1,
�= 0 for some w ∈ W if r = p.

Also, for CL > 0, suppose kh(s, ·) ∈ H1
CLh−2(W) for all s ∈ W .

This assumption allows for all standard compactly supported
and possibly boundary-corrected kernel functions (Wand and
Jones 1994; Simonoff 2012). Assumption 2.2 implies that if h ≤ 1
then kh is uniformly bounded by Ckh−1 where Ck := 2CL + 1+
1/Leb(W).

2.1. Hoeffding-Type Decomposition andDegeneracy

The estimator f̂W(w) is akin to a U-statistic and thus admits a
Hoeffding-type decomposition which is the starting point for
our analysis. We have

f̂W(w) − fW(w) = Bn(w) + Ln(w) + En(w) + Qn(w) (2)

with Bn(w) = E
[
f̂W(w)

]− fW(w) and

Ln(w) = 2
n

n∑
i=1

li(w),

En(w) = 2
n(n − 1)

n−1∑
i=1

n∑
j=i+1

eij(w),

Qn(w) = 2
n(n − 1)

n−1∑
i=1

n∑
j=i+1

qij(w),

where li(w) = E[kh(Wij,w) | Ai] − E[kh(Wij,w)], eij(w) =
kh(Wij,w) − E[kh(Wij,w) | Ai,Aj] and qij(w) = E[kh(Wij,w) |
Ai,Aj]−E[kh(Wij,w) | Ai]−E[kh(Wij,w) | Aj]+E[kh(Wij,w)].
The nonrandom term Bn captures the smoothing (or misspeci-
fication) bias, while the three stochastic processes Ln, En andQn
capture the variance of the estimator. These processes are mean-
zero with E[Ln(w)] = E[Qn(w)] = E[En(w)] = 0 for all w ∈
W , and mutually orthogonal in L2(P) since E[Ln(w)Qn(w′)] =
E[Ln(w)En(w′)] = E[Qn(w)En(w′)] = 0 for all w,w′ ∈ W .

The stochastic process Ln is akin to the Hájek projection of
a U-process, which can (and often will) exhibit degeneracy at
some or possibly all points w ∈ W . To characterize different
types of degeneracy, we introduce the following nonnegative
lower and upper degeneracy constants:

Dlo
2 := inf

w∈W Var
[
fW|A(w | Ai)

]
and

Dup
2 := sup

w∈W
Var
[
fW|A(w | Ai)

]
.

The following lemma describes the stochastic order of different
terms in the Hoeffding-type decomposition, explicitly account-
ing for potential degeneracy.

Lemma 2.1 (Bias and variance). Suppose that Assumptions 2.1
and 2.2 hold. Then the bias term satisfies supw∈W

∣∣Bn(w)
∣∣ �

hp∧β and the variance terms satisfy

E

[
sup
w∈W

|Ln(w)|
]
�

Dup√
n
,

E

[
sup
w∈W

|En(w)|
]
�
√
log n
n2h

,

E

[
sup
w∈W

|Qn(w)|
]
� 1

n
.

Lemma 2.1 captures the potential total degeneracy of Ln
by showing that if Dup = 0 then Ln = 0 everywhere on
W almost surely. The following lemma captures the potential
partial degeneracy of Ln, where Dup > Dlo = 0. For w,w′ ∈
W , define the covariance function of the dyadic kernel density
estimator as

�n(w,w′) = E

[(
f̂W(w) − E

[
f̂W(w)

])(
f̂W(w′) − E

[
f̂W(w′)

])]
.

Lemma 2.2 (Variance bounds). Suppose that Assumptions 2.1
and 2.2 hold. Then for sufficiently large n,

Dlo
2

n
+ 1

n2h
inf
w∈W fW(w)

� inf
w∈W �n(w,w) ≤ sup

w∈W
�n(w,w) �

Dup
2

n
+ 1

n2h
.
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Combining Lemmas 2.1 and 2.2, we have the following tri-
chotomy for degeneracy of dyadic distributions based on Dlo
and Dup: (i) total degeneracy if Dup = Dlo = 0, (ii) par-
tial degeneracy if Dup > Dlo = 0, (iii) no degeneracy if
Dlo > 0. In the case of no degeneracy, it can be shown that
infw∈W Var[Ln(w)] � n−1, while in the case of total degeneracy,
Ln(w) = 0 for all w ∈ W almost surely. When the dyadic
distribution is partially degenerate, there exists at least one point
w ∈ W such that Var

[
fW|A(w | Ai)

] = 0 and Var[Ln(w)] �
hn−1, and there also exists at least one point w′ ∈ W such that
Var
[
fW|A(w′ | Ai)

]
> 0 and Var[Ln(w′)] � 1

n . We say w is a
degenerate point if Var

[
fW|A(w | Ai)

] = 0, and otherwise say it
is a nondegenerate point.

As a simple example, consider the family of dyadic distri-
butions Pπ indexed by π = (π1,π2,π3) with

∑3
i=1 πi = 1

and πi ≥ 0, generated by Wij = AiAj + Vij, where Ai
equals −1 with probability π1, equals 0 with probability π2
and equals +1 with probability π3, and Vij is standard Gaus-
sian. This model induces a latent “community structure” where
community membership is determined by the value of Ai for
each node i, and the interaction outcome Wij is a function
only of the communities which i and j belong to and some
idiosyncratic noise. Unlike the stochastic blockmodel (Kolaczyk
2009), our setup assumes that community membership has no
impact on edge existence, as we work with fully connected
networks; see Section 7.1 for a discussion of how to handle
missing edges in practice. Also note that the parameter of inter-
est in this article is the Lebesgue density of a continuous ran-
dom variable Wij rather than the probability of network edge
existence, which is the focus of graphon estimation literature
(Gao and Ma 2021).

In line with Assumption 2.1, An and Vn are iid sequences
independent of each other. Then fW|AA(w | Ai,Aj) = φ(w −
AiAj), fW|A(w | Ai) = π1φ(w+Ai)+π2φ(w)+π3φ(w−Ai) and
fW(w) = (π2

1 +π2
3 )φ(w−1)+π2(2−π2)φ(w)+2π1π3φ(w+1),

where φ denotes the probability density function of the standard
normal distribution. Note that fW(w) is strictly positive for all
w ∈ R. Consider the parameter choices:

(i) π = ( 12 , 0, 12): Pπ is degenerate at all w ∈ R,
(ii) π = ( 14 , 0, 34): Pπ is degenerate only at w = 0,
(iii) π = ( 15 , 15 , 35): Pπ is nondegenerate for all w ∈ R.

Figure 1 demonstrates these phenomena, plotting the uncon-
ditional density fW and the standard deviation of the condi-
tional density fW|A over W = [−2, 2] for each choice of the
parameter π .

The trichotomy of total/partial/no degeneracy is useful for
understanding the distributional properties of the dyadic kernel
density estimator f̂W(w). Crucially, our need for uniformity inw
complicates the simpler degeneracy/no degeneracy dichotomy
observed previously in the literature (Graham, Niu, and Powell
2023). More specifically, from a pointwise-in-w perspective,
partial degeneracy causes no issues, while it is a fundamen-
tal problem when conducting inference uniformly over w ∈
W . We develop inference methods that are valid uniformly
over w ∈ W , regardless of the presence of partial or total
degeneracy.

3. Point Estimation Results

Using Lemma 2.1, the next theorem establishes the uniform
convergence rate of f̂W .

Theorem 3.1 (Uniform convergence rate). Suppose that Assump-
tions 2.1 and 2.2 hold. Then

E

[
sup
w∈W

∣∣f̂W(w) − fW(w)
∣∣] � hp∧β + Dup√

n
+
√
log n
n2h

.

The constant in Theorem 3.1 depends only on W , β , CH
and the choice of kernel. We interpret this result in light of the
degeneracy trichotomy.

(i) Partial or no degeneracy:Dup > 0. Any bandwidths satisfy-
ing n−1 log n � h � n− 1

2(p∧β) yield

E
[
sup
w∈W

∣∣f̂W(w) − fW(w)
∣∣] � 1√

n
,

the “parametric” bandwidth-independent rate noted by
Graham, Niu, and Powell (2023).

(ii) Total degeneracy: Dup = 0. Minimizing the bound in

Theorem 3.1 with h 

(
log n
n2

) 1
2(p∧β)+1 yields

E
[
sup
w∈W

∣∣f̂W(w) − fW(w)
∣∣] � ( log n

n2
) p∧β
2(p∧β)+1 .

These results generalize Chiang and Tan (2023, Theorem 1)
by allowing for compactly supported data and more general
kernel-like functions kh(·,w), enabling boundary-adaptive den-
sity estimation.

3.1. MinimaxOptimality

We establish the minimax rate under the supremum norm for
density estimation with dyadic data. This implies minimax opti-
mality of the kernel density estimator f̂W , regardless of the
degeneracy type of the dyadic distribution.

Theorem 3.2 (Uniform minimax rate). Fix β ≥ 1 and CH > 0,
and letW be a compact interval with positive Lebesguemeasure.
Define P = P(W ,β ,CH) as the class of dyadic distributions
satisfying Assumption 2.1. Define Pd as the subclass of P con-
taining only those dyadic distributions which are totally degen-
erate on W in the sense that supw∈W Var

[
fW|A(w | Ai)

] = 0.
Then inf f̃W sup

P∈P EP

[
supw∈W

∣∣̃fW(w) − fW(w)
∣∣] 
 1√

n and

inf f̃W sup
P∈Pd

EP

[
supw∈W

∣∣̃fW(w) − fW(w)
∣∣] 
 ( log n

n2
) β
2β+1 ,

where f̃W is any estimator depending only on the data Wn =
(Wij : 1 ≤ i < j ≤ n) distributed according to the dyadic
distribution P. The constants underlying 
 depend only onW ,
β and CH.

Theorem 3.2 shows that the uniform convergence rate of
n−1/2 obtained in Theorem 3.1 (coming from the Ln term) is
minimax-optimal in general. When attention is restricted to
totally degenerate dyadic distributions, f̂W also achieves the
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Figure 1. Density fW and standard deviation of fW|A for the family of distributions Pπ .

minimax rate of uniform convergence (assuming a kernel of suf-

ficiently high order p ≥ β), which is on the order of
(
log n
n2

) β
2β+1

and is determined by the bias Bn and the leading variance term
En in (2).

Combining Theorems 3.1 and 3.2, we conclude that the
estimator f̂W(w) achieves the minimax-optimal rate of uniform

convergence for estimating fW(w) if h 

(
log n
n2

) 1
2β+1 and

p ≥ β , whether or not there are any degenerate points in
the underlying data generating process. This result appears
to be new to the literature on nonparametric estimation with
dyadic data. See Gao and Ma (2021) for a contemporaneous
review.

4. Distributional Results

We investigate the distributional properties of the standardized
t-statistic process

Tn(w) = f̂W(w) − fW(w)√
�n(w,w)

, w ∈ W ,

which is not necessarily asymptotically tight. Therefore, to
approximate the distribution of the entire t-statistic process,
as well as specific functionals thereof, we rely on a novel strong
approximation approach outlined in this section. Our results
can be used to perform valid uniform inference irrespective of
the degeneracy type.

This section is largely concerned with distributional proper-
ties and thus frequently requires copies of stochastic processes.
For succinctness of notation, we will not differentiate between a
process and its copy, but details are available in Section SA3 of
the supplemental appendix.

4.1. Strong Approximation

By the Hoeffding-type decomposition (2) and Lemma 2.1, it
suffices to consider the distributional properties of the stochastic
process (Ln(w) + En(w) : w ∈ W). Our approach combines
the Kómlos–Major–Tusnády (KMT) approximation (Komlós,
Major, and Tusnády 1975) to obtain a strong approximation of
Ln with a Yurinskii approximation (Yurinskii 1978) to obtain

a conditional (on An) strong approximation of En. The lat-
ter is necessary because En is akin to a local empirical pro-
cess of inid random variables, conditional on An, and therefore
the KMT approximation is not applicable. These approxima-
tions are then combined to give a final (unconditional) strong
approximation for Ln + En, and thus for the t-statistic process
(Tn(w) : w ∈ W).

The following lemma is an application of our generic
KMT approximation result for empirical processes, given
in Section SA3 of the online supplemental appendix, which
builds on earlier work by Giné, Koltchinskii, and Sakhanenko
(2004) and Giné and Nickl (2010) and may be of independent
interest.

Lemma 4.1 (Strong approximation of Ln). Suppose that Assump-
tions 2.1 and 2.2 hold. For each n there exists a mean-zero Gaus-
sian processZL

n indexed onW satisfyingE
[
supw∈W

∣∣√nLn(w)−
ZL
n(w)

∣∣] � Dup log n√
n , whereE[ZL

n(w)ZL
n(w′)] = nE[Ln(w)Ln(w′)]

for all w,w′ ∈ W . The process ZL
n is a function only of An and

some random noise independent of (An,Vn).

The strong approximation result in Lemma 4.1 would be
sufficient to develop valid and even optimal uniform inference
procedures whenever (i) Dlo > 0 (no degeneracy in Ln) and
(ii) nh � log n (Ln is leading). In this special case, the recent
Donsker-type results of Davezies, D’Haultfœuille, and Guyon-
varch (2021) can be applied to analyze the limiting distribution
of the stochastic process f̂W . Alternatively, again only when
Ln is nondegenerate and leading, standard empirical process
methods could also be used. However, even in the special case
when f̂W(w) is asymptotically Donsker, our result in Lemma 4.1
improves upon the literature by providing a rate-optimal strong
approximation for f̂W as opposed to only a weak convergence
result. See Theorem 4.2 and the subsequent discussion below.

More importantly, as illustrated above, it is common in the
literature to find dyadic distributions which exhibit partial or
total degeneracy, making the process f̂W non-Donsker. Thus,
approximating only Ln is in general insufficient for valid uni-
form inference, and it is necessary to capture the distributional
properties of En as well. The following lemma is an application
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of our strong approximation result for empirical processes based
on the Yurinskii approximation, which builds on a refinement by
Belloni et al. (2019).

Lemma 4.2 (Conditional strong approximation of En). Suppose
Assumptions 2.1 and 2.2 hold and take any Rn → ∞. For
each n there exists Z̃E

n which is a mean-zero Gaussian process
conditional onAn satisfying supw∈W

∣∣√n2hEn(w)− Z̃E
n(w)

∣∣ �P

(log n)3/8Rn
n1/4h3/8 , where E[̃ZE

n(w)̃ZE
n(w′)

∣∣ An] = n2hE[En(w)En(w′)
∣∣

An] for all w,w′ ∈ W .

The process Z̃E
n is a Gaussian process conditional onAn but is

not in general aGaussian process unconditionally. The following
lemma further constructs an unconditional Gaussian processZE

n
that approximates Z̃E

n .

Lemma4.3 (Unconditional strong approximation of En). Suppose
that Assumptions 2.1 and 2.2 hold. For each n there exists a
mean-zero Gaussian process ZE

n satisfyingE
[
supw∈W

∣∣̃ZE
n(w)−

ZE
n(w)

∣∣] � (log n)2/3
n1/6 , where ZE

n is independent of An and
E[ZE

n(w)ZE
n(w′)] = E[̃ZE

n(w)̃ZE
n(w′)] = n2hE[En(w)En(w′)]

for all w,w′ ∈ W .

Combining Lemmas 4.2 and 4.3, we obtain an unconditional
strong approximation for En. The resulting rate of approxima-
tion may not be optimal, due to the Yurinskii coupling, but to
the best of our knowledge it is the first in the literature for the
process En, and hence for f̂W and its associated t-process in the
context of dyadic data. The approximation rate is sufficiently fast
to allow for optimal bandwidth choices; see Section 5 for more
details. Strong approximation results for local empirical pro-
cesses (e.g., Giné andNickl 2010) are not applicable here because
the summands in the non-negligible En are not (conditionally)
iid. Likewise, neither standard empirical process and U-process
theory (van der Vaart and Wellner 1996; Giné and Nickl 2021)
nor the recent results in Davezies, D’Haultfœuille, and Guyon-
varch (2021) are applicable to the non-Donsker process En.

The previous lemmas showed that Ln is
√
n-consistent while

En is
√
n2h-consistent (pointwise in w), showcasing the impor-

tance of careful standardization (see Studentization in Section 5)
for the purpose of rate adaptivity to the unknown degeneracy
type. In other words, a challenge in conducting uniform infer-
ence is that the finite-dimensional distributions of the stochastic
process Ln + En, and hence those of f̂W and its associated t-
processTn,may converge at different rates at different pointsw ∈
W . The following theorem provides an (infeasible) inference
procedure which is fully adaptive to such potential unknown
degeneracy.

Theorem 4.1 (Strong approximation of Tn). Suppose that
Assumptions 2.1 and 2.2 hold and fW(w) > 0 on W , and take
any Rn → ∞. Then for each n there exists a centered Gaussian
process ZT

n such that

sup
w∈W

∣∣Tn(w) − ZT
n (w)

∣∣ �P

Nn

Dlo/
√
n + 1/

√
n2h

,

Nn = n−1 log n + n−5/4h−7/8(log n)3/8Rn

+ n−7/6h−1/2(log n)2/3 + hp∧β ,

where E[ZT
n (w)ZT

n (w′)] = E[Tn(w)Tn(w′)] for all w,
w′ ∈ W .

The first term in the numerator corresponds to the strong
approximation error for Ln in Lemma 4.1 and the error intro-
duced by Qn. The second and third terms correspond to the
conditional and unconditional strong approximation errors for
En in Lemmas 4.2 and 4.3, respectively. The fourth term is from
the smoothing bias result in Lemma 2.1. The denominator is the
lower bound on the standard deviation �n(w,w)1/2 formulated
in Lemma 2.2.

In the absence of degenerate points (Dlo > 0) and if nh7/2 �
1, Theorem 4.1 offers a strong approximation of the t-process
at the rate (log n)/

√
n+ √

nhp∧β , which matches the celebrated
KMT approximation rate for iid data plus the smoothing bias.
Therefore, our novel t-process strong approximation can achieve
the optimal KMT rate for nondegenerate dyadic distributions
provided that p ∧ β ≥ 3.5. This is achievable if a fourth-
order (boundary-adaptive) kernel is used and fW is sufficiently
smooth.

In the presence of partial or total degeneracy (Dlo = 0),
Theorem 4.1 provides a strong approximation for the t-process
at the rate

√
h log n+n−1/4h−3/8(log n)3/8Rn+n−1/6(log n)2/3+

nh1/2+p∧β . If, for example, nhp∧β � 1, then our result can
achieve a strong approximation rate of n−1/7 up to log n terms.
Theorem 4.1 appears to be the first in the dyadic literature which
is also robust to the presence of (unknown) degenerate points in
the underlying dyadic distribution.

4.2. Application: Confidence Bands

Theorem 4.2 constructs standardized confidence bands for fW
which are infeasible as they depend on the unknown population
variance �n. In Section 5 we will make this inference proce-
dure feasible by proposing a valid estimator of the covariance
function�n for Studentization, as well as developing bandwidth
selection and robust bias correction methods. Before presenting
our result on valid infeasible uniform confidence bands, we
first impose in Assumption 4.1 some extra restrictions on the
bandwidth sequence, which depend on the degeneracy type of
the dyadic distribution, to ensure the coverage rate converges in
large samples.

Assumption 4.1 (Rate restriction for uniform confidence bands).
Assume that one of the following holds:

(i) Nodegeneracy (Dlo > 0):n−6/7 log n� h� (n log n)−
1

2(p∧β) ,
(ii) Partial or total degeneracy (Dlo = 0): n−2/3(log n)7/3 �

h � (n2 log n)−
1

2(p∧β)+1 .

We now construct the infeasible uniform confidence bands.
For α ∈ (0, 1), let q1−α be the quantile satisfying P

(
supw∈W∣∣ZT

n (w)
∣∣ ≤ q1−α

) = 1 − α. The following result employs
the anti-concentration idea due to Chernozhukov, Chetverikov,
and Kato (2014) to deduce valid standardized confidence bands,
where we approximate the quantile of the unknown finite sam-
ple distribution of supw∈W |Tn(w)| by the quantile q1−α of
supw∈W |ZT

n (w)|. This approach offers a better rate of conver-
gence than relying on extreme value theory for the distributional
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approximation, hence, improving the finite sample performance
of the proposed confidence bands.

Theorem 4.2 (Infeasible uniform confidence bands). Suppose that
Assumptions 2.1, 2.2, and 4.1 hold and fW(w) > 0 onW . Then

P

(
fW(w) ∈

[
f̂W(w) ± q1−α

√
�n(w,w)

]
for all w ∈ W

)
→ 1 − α.

By Theorem 3.1, the asymptotically optimal choice of band-
width for uniform convergence is h 
 ((log n)/n2)

1
2(p∧β)+1 . As

discussed in the next section, the approximate IMSE-optimal
bandwidth is h 
 (1/n2)

1
2(p∧β)+1 . Both bandwidth choices

satisfy Assumption 4.1 only in the case of no degeneracy. The
degenerate cases in Assumption 4.1(ii), which require p∧β > 1,
exhibit behavior more similar to that of standard nonparametric
kernel-based estimation and so the aforementioned optimal
bandwidth choices will lead to a nonnegligible smoothing bias
in the distributional approximation for Tn. Different approaches
are available in the literature to address this issue, including
undersmoothing or ignoring the bias (Hall and Kang 2001),
bias correction (Hall 1992), robust bias correction (Calonico,
Cattaneo, and Farrell 2018, 2022) and Lepskii’s method (Lepskii
1992; Birgé 2001), among others. In the next section we develop
a feasible uniform inference procedure, based on robust bias
correctionmethods, which amounts to first selecting an optimal
bandwidth for the point estimator f̂W using a pth-order kernel,
and then correcting the bias of the point estimator while also
adjusting the standardization (Studentization) when forming
the t-statistic Tn.

Importantly, regardless of the specific implementation
details, Theorem 4.2 shows that any bandwidth sequence
h satisfying both (i) and (ii) in Assumption 4.1 leads to
valid uniform inference which is robust and adaptive to the
(unknown) degeneracy type.

5. Implementation

We address outstanding implementation details to make our
main uniform inference results feasible. In Section 5.1 we pro-
pose a covariance estimator alongwith amodified versionwhich
is guaranteed to be positive semidefinite. This allows for the
construction of fully feasible confidence bands in Section 5.2.
In Section 5.3 we discuss bandwidth selection and formalize our
procedure for robust bias correction inference.

5.1. Covariance Function Estimation

Define the following plug-in covariance function estimator of
�n: for w,w′ ∈ W ,

�̂n(w,w′) = 4
n2

n∑
i=1

Si(w)Si(w′)

− 4
n2(n − 1)2

∑
i<j

kh(Wij,w)kh(Wij,w′)

− 4n − 6
n(n − 1)

f̂W(w)f̂W(w′),

where Si(w) = 1
n−1
(∑i−1

j=1 kh(Wji,w) + ∑n
j=i+1 kh(Wij,w)

)
is

an “estimator” of E[kh(Wij,w) | Ai]. Though �̂n(w,w′) is con-
sistent in an appropriate sense as shown in Lemma 5.1, it is not
necessarily positive semidefinite, even in the limit. We therefore
propose a modified covariance estimator which is guaranteed
to be positive semidefinite. Specifically, consider the following
optimization problem where Ck and CL are as in Section 2.

minimize sup
w,w′∈W

∣∣∣∣∣∣∣
M(w,w′) − �̂n(w,w′)√
�̂n(w,w) + �̂n(w′,w′)

∣∣∣∣∣∣∣
overM : W × W → R

subject to M is symmetric and positive semidefinite,∣∣M(w,w′) − M(w,w′′)
∣∣ ≤ 4

nh3
CkCL|w′ − w′′|

for all w,w′,w′′ ∈ W . (3)

Denote by �̂+
n any (approximately) optimal solution to (3).

The following lemma establishes uniform convergence rates for
both �̂n and �̂+

n . It allows us to use these estimators to construct
feasible versions of Tn and its associated Gaussian approxima-
tion ZT

n defined in Theorem 4.1.

Lemma 5.1 (Consistency of �̂n and �̂+
n ). Suppose that Assump-

tions 2.1 and 2.2 hold and that nh � log n and fW(w) > 0 on
W . Then

sup
w,w′∈W

∣∣∣∣∣ �̂n(w,w′) − �n(w,w′)√
�n(w,w) + �n(w′,w′)

∣∣∣∣∣ �P

√
log n
n

.

Also, the optimization problem (3) is a semidefinite program
(SDP, Laurent and Rendl 2005) and has an approximately opti-
mal solution �̂+

n satisfying

sup
w,w′∈W

∣∣∣∣∣ �̂+
n (w,w′) − �n(w,w′)√
�n(w,w) + �n(w′,w′)

∣∣∣∣∣ �P

√
log n
n

.

In practice we take w,w′ ∈ Wd where Wd is a finite subset
of W , typically taken to be an equally spaced grid. This yields
finite-dimensional covariance matrices, for which (3) can be
solved in polynomial time in |Wd| using a general-purpose SDP
solver (e.g., by interior pointmethods, Laurent and Rendl 2005).
The number of points in Wd should be taken as large as is
computationally practical in order to generate confidence bands
rather thanmerely simultaneous confidence intervals. It is worth
noting that the complexity of solving (3) does not depend on the
number of vertices n, and so does not influence the ability of our
methodology to handle large and possibly sparse networks.

The bias-corrected variance estimator in Matsushita and
Otsu (2021, Section 3.2) takes a similar form to our estimator
�̂n but in the parametric setting, and is therefore also not
guaranteed to be positive semidefinite in finite samples. Our
approach addresses this issue, ensuring a positive semidefinite
estimator �̂+

n is always available.
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5.2. Feasible Confidence Bands

Given a choice of the kernel order p and a bandwidth h, we con-
struct a valid confidence band that is implementable in practice.
Define the Studentized t-statistic process

T̂n(w) = f̂W(w) − fW(w)√
�̂+

n (w,w)

, w ∈ W .

Let ẐT
n (w) be a process which, conditional on the data Wn, is

mean-zero and Gaussian, whose conditional covariance struc-
ture is E

[
ẐT
n (w)ẐT

n (w′)
∣∣ Wn

] = �̂+
n (w,w′)√

�̂+
n (w,w)�̂+

n (w′,w′)
. For

α ∈ (0, 1), let q̂1−α be the conditional quantile satisfying
P
(
supw∈W

∣∣ẐT
n (w)

∣∣ ≤ q̂1−α

∣∣ Wn
) = 1 − α, which is shown

to be well-defined in Section SA5 of the online supplemental
appendix.

Theorem 5.1 (Feasible uniform confidence bands). Suppose that
Assumptions 2.1, 2.2, and 4.1 hold and fW(w) > 0 onW . Then

P

(
fW(w) ∈

[
f̂W(w) ± q̂1−α

√
�̂+

n (w,w)

]

for all w ∈ W
)

→ 1 − α.

Recently, Chiang, Kato, and Sasaki (2023) derived high-
dimensional central limit theorems over rectangles for exchange-
able arrays and applied them to construct simultaneous
confidence intervals for a sequence of design points. Their
inference procedure relies on the multiplier bootstrap, and
their conditions for valid inference depend on the number of
design points considered. In contrast, Theorem 5.1 constructs
a feasible uniform confidence band over the entire domain of
inference W based on our strong approximation results for
the whole t-statistic process and the covariance estimator �̂+

n .
The required rate condition specified in Assumption 4.1 does
not depend on the number of design points. Furthermore, our
proposed inference methods are robust to potential unknown
degenerate points in the underlying dyadic data generating
process.

In practice, suprema overW can be replaced bymaxima over
sufficiently many design points in W . The conditional quantile
q̂1−α can be estimated by Monte Carlo simulation, resampling
from the Gaussian process defined by the law of ẐT

n | Wn.
The bandwidth restrictions in Theorem 5.1 are the same as

those required for the infeasible version given in Theorem 4.2,
namely those imposed in Assumption 4.1. This follows from the
rates of convergence obtained in Lemma 5.1, coupled with some
careful technical work given in the supplemental appendix to
handle the potential presence of degenerate points in �n.

5.3. Bandwidth Selection and Robust Bias-Corrected
Inference

We give some practical suggestions for selecting the bandwidth
parameter h. Let ν(w) be a nonnegative real-valued function on
W and suppose we use a kernel of order p < β of the form
kh(s,w) = K

(
(s − w)/h

)
/h. Then the ν-weighted asymptotic

IMSE (AIMSE) is minimized by

h∗
AIMSE

=
⎛
⎜⎝p!(p − 1)!

( ∫
W fW(w)ν(w) dw

)( ∫
R
K(w)2 dw

)
2
( ∫

W f (p)W (w)2ν(w) dw
)( ∫

R
wpK(w) dw

)2
⎞
⎟⎠

1
2p+1

×
(
n(n − 1)

2

)− 1
2p+1

.

This is akin to the AIMSE-optimal bandwidth choice for tra-
ditional monadic kernel density estimation with a sample size
of 1

2n(n − 1). The choice h∗
AIMSE is slightly undersmoothed (up

to a polynomial log n factor) relative to the uniform minimax-
optimal bandwidth choice discussed in Section 3, but it is easier
to implement in practice.

To implement the AIMSE-optimal bandwidth choice, we
propose a simple rule-of-thumb (ROT) approach based on Sil-
verman’s rule. Suppose p ∧ β = 2 and let σ̂ 2 and ˆIQR be the
sample variance and sample interquartile range respectively of
the dataWn. Then ĥROT = C(K)

(
σ̂ ∧ ˆIQR

1.349
)(n(n−1)

2
)−1/5, where

C(K) = 2.576 for the triangular kernel K(w) = (1 − |w|) ∨ 0,
and C(K) = 2.435 for the Epanechnikov kernel K(w) = 3

4 (1 −
w2) ∨ 0.

The AIMSE-optimal bandwidth selector h∗
AIMSE 
 n− 2

2p+1

and any of its feasible estimators only satisfy Assumption 4.1
in the case of no degeneracy (Dlo > 0). Under partial or total
degeneracy, such bandwidths are not valid due to the usual lead-
ing smoothing (or misspecification) bias of the distributional
approximation. To circumvent this problem and construct fea-
sible uniform confidence bands for fW , we employ the following
robust bias correction approach.

Firstly, estimate the bandwidth h∗
AIMSE 
 n− 2

2p+1 using a ker-
nel of order p, which leads to an AIMSE-optimal point estimator
f̂W in an L2(ν) sense. Then use this bandwidth and a kernel of
order p′ > p to construct the statistic T̂n and the confidence
band as detailed in Section 5.2. Importantly, both f̂W and �̂+

n
are recomputed with the new higher-order kernel. The change
in centering is equivalent to a bias correction of the original
AIMSE-optimal point estimator, while the change in scale cap-
tures the additional variability introduced by the bias correction
itself. As shown formally in Calonico, Cattaneo, and Farrell
(2018, 2022) for the case of kernel-based density estimationwith
iid data, this approach leads to higher-order refinements in the
distributional approximation whenever additional smoothness
is available (p′ ≤ β). In the present dyadic setting, this procedure
is valid so long as n−2/3(log n)7/3 � n− 2

2p+1 � (n2 log n)−
1

2p′+1 ,
which is equivalent to 2 ≤ p < p′. For concreteness, we
recommend taking p = 2 and p′ = 4, and using the rule-of-
thumb bandwidth choice ĥROT defined above. In particular, this
approach automatically delivers a KMT-optimal strong approx-
imation whenever there are no degeneracies in the underlying
dyadic data generating process.

Our feasible robust bias correction method based on
AIMSE-optimal dyadic kernel density estimation for con-
structing uniform confidence bands for fW is summarized in
Algorithm 1.



2704 M. D. CATTANEO, Y. FENG, ANDW. G. UNDERWOOD

Figure 2. Typical outcomes for three different values of the parameter π .

Algorithm 1: Feasible uniform confidence bands for
dyadic kernel density estimation
1 Choose a kernel kh of order p ≥ 2 satisfying

Assumption 2.2.
2 Select a bandwidth h ≈ h∗

AIMSE for kh as in Section 5.3,
perhaps using h = ĥROT.

3 Choose another kernel k′
h of order p

′ > p satisfying
Assumption 2.2.

4 For d ≥ 1, choose a set of d distinct evaluation points
Wd.

5 For each w ∈ Wd, construct the density estimate f̂W(w)

using k′
h as in Section 1.

6 For w,w′ ∈ Wd, construct the covariance estimate
�̂n(w,w′) using k′

h as in Section 5.1.
7 Construct the d × d positive semidefinite covariance

estimate �̂+
n as in Section 5.1.

8 For B ≥ 1, let (ẐT
n,r : 1 ≤ r ≤ B) be iid Gaussian vectors

from ẐT
n as in Section 5.2.

9 For α ∈ (0, 1), set q̂1−α = infq∈R{q : #{r :
maxw∈Wd |ẐT

n,r(w)| ≤ q} ≥ B(1 − α)}.
10 Construct

[
f̂W(w) ± q̂1−α�̂+

n (w,w)1/2
]
for each

w ∈ Wd.

6. Simulations

We investigate the empirical finite-sample performance of the
kernel density estimator with dyadic data using simulations. The
family of dyadic distributions defined in Section 2.1, along with
its three parameterizations, is used to generate datasets with
different degeneracy types.

We use two different boundary bias-corrected Epanechnikov
kernels of orders p = 2 and p = 4 respectively, on the inference
domainW = [−2, 2].We select an optimal bandwidth for p = 2
as recommended in Section 5.3, using the rule-of-thumb with
C(K) = 2.435. The semidefinite program in Section 5.1 is solved
with the MOSEK interior point optimizer (ApS 2021), ensuring
positive semidefinite covariance estimates. Gaussian vectors are
resampled B = 10,000 times.

In Figure 2 we plot a typical outcome for each of the three
degeneracy types (total, partial, none), using the Epanechnikov

kernel of order p = 2, with sample size n = 100 (so N = 4950
pairs of nodes) and with d = 100 equally-spaced evaluation
points. Each plot contains the true density function fW , the
dyadic kernel density estimate f̂W and two different approximate
95% confidence bands for fW . The first is the uniform confi-
dence band (UCB) constructed using one of our main results,
Theorem 5.1. The second is a sequence of pointwise confidence
intervals (PCI) constructed by finding a confidence interval for
each evaluation point separately. We show only 10 pointwise
confidence intervals for clarity. In general, the PCIs are too
narrow as they fail to provide simultaneous (uniform) coverage
over the evaluation points. Note that under partial degeneracy
the confidence band narrows near the degenerate point w = 0.

Next, Table 1 presents numerical results. For each degeneracy
type (total, partial, none) and each kernel order (p = 2, p =
4), we run 2000 repeats with sample size n = 3000 (giving
N = 4,498,500 pairs of nodes) and with d = 50 equally-spaced
evaluation points. We record the average rule-of-thumb band-
width ĥROT and the average root integrated mean squared error
(RIMSE). For both the uniform confidence bands (UCB) and
the pointwise confidence intervals (PCI), we report the coverage
rate (CR) and the average width (AW). The lower-order kernel
(p = 2) ignores the bias, leading to good RIMSE performance
and acceptable UCB coverage under partial or no degeneracy,
but gives invalid inference under total degeneracy. In contrast,
the higher-order kernel (p = 4) provides robust bias correction
and hence improves the coverage of the UCB in every regime,
particularly under total degeneracy, at the cost of increasing
both the RIMSE and the average widths of the confidence bands.
As expected, the pointwise (in w ∈ W) confidence intervals
(PCIs) severely undercover in every regime. Thus our simulation
results show that the proposed feasible inference methods based
on robust bias correction and proper Studentization deliver
valid uniform inference which is robust to unknown degenerate
points in the underlying dyadic distribution.

7. Application: Counterfactual Dyadic Density
Estimation

To further showcase the applicability of our main results, we
develop a kernel density estimator for dyadic counterfactual
distributions. The aim of such counterfactual analysis is to



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 2705

Table 1. Numerical results for three values of the parameter π .

π Degeneracy type ĥROT p RIMSE UCB PCI

CR AW CR AW(
1
2 , 0,

1
2

)
Total 0.161 2 0.00048 87.1% 0.0028 6.5% 0.0017

4 0.00068 95.2% 0.0042 9.7% 0.0025(
1
4 , 0,

3
4

)
Partial 0.158 2 0.00228 94.5% 0.0112 75.6% 0.0083

4 0.00234 94.7% 0.0124 65.3% 0.0087(
1
5 ,

1
5 ,

3
5

)
None 0.145 2 0.00201 94.2% 0.0106 73.4% 0.0077

4 0.00202 95.6% 0.0117 64.3% 0.0080

estimate the distribution of an outcome variable had some
covariates followed a distribution different from the actual one,
and it is important in causal inference and program evaluation
settings (DiNardo, Fortin, and Lemieux 1996; Chernozhukov,
Fernández-Val, and Melly 2013).

For each r ∈ {0, 1}, let Wr
n, Ar

n and Vr
n be random variables

as defined in Assumption 2.1 and Xr
n = (Xr

1, . . . ,Xr
n) be some

covariates. We assume that (Ar
i ,X

r
i ) are independent over 1 ≤

i ≤ n and that Xr
n is independent of Vr

n, that Wr
ij | Xr

i ,X
r
j has a

conditional Lebesgue density f rW|XX( · | x1, x2) ∈ Hβ
CH

(W), that
Xr
i follows a distribution function FrX on a common support X ,

and that (A0
n,V0

n,X0
n) is independent of (A1

n,V1
n,X1

n).
We interpret r as an index for two populations, labeled 0 and

1. The counterfactual density of the outcome of population 1 had
it followed the same covariate distribution as population 0 is

f 1�0W (w) = E

[
f 1W|XX

(
w | X0

1,X
0
2
)]

=
∫
X

∫
X
f 1W|XX(w | x1, x2)ψ(x1)ψ(x2) dF1X(x1) dF1X(x2),

where ψ(x) = dF0X(x)/dF1X(x) for x ∈ X is a Radon–
Nikodym derivative. If X0

i and X1
i have Lebesgue densities,

it is natural to consider a parametric model of the form
dFrX(x) = f rX(x; θ) dx for some finite-dimensional parameter θ .
Alternatively, if the covariatesXr

n are discrete and have a positive
probability mass function prX(x) on a finite support X , the
object of interest becomes f 1�0W (w) = ∑x1∈X

∑
x2∈X f 1W|XX(w |

x1, x2)ψ(x1)ψ(x2)p1X(x1)p1X(x2), where ψ(x) = p0X(x)/p1X(x)
for x ∈ X . We consider discrete covariates for simplicity, and
hence the counterfactual dyadic kernel density estimator is

f̂ 1�0W (w) = 2
n(n − 1)

n−1∑
i=1

n∑
j=i+1

ψ̂(X1
i )ψ̂(X1

j )kh(W
1
ij ,w),

where ψ̂(x) = p̂ 0
X(x)/p̂ 1

X(x) and p̂ r
X(x) = 1

n
∑n

i=1 I{Xr
i = x},

with I the indicator function.
Section SA2.10 of the online supplemental appendix provides

technical details: we show how an asymptotic linear representa-
tion for ψ̂(x) leads to amodifiedHoeffding-type decomposition
of f̂ 1�0W (w), which is then used to establish that f̂ 1�0W is uni-
formly consistent for f 1�0W (w) and also admits a Gaussian strong
approximation, with the same rates of convergence as for the
standard density estimator. Furthermore, define the covariance
function of f̂ 1�0W (w) as �1�0

n (w,w′) = Cov
[
f̂ 1�0W (w), f̂ 1�0W (w′)

]
,

which can be estimated as follows. First let κ̂(X0
i ,X

1
i , x) =

I{X0
i =x}−p̂0X(x)
p̂1X(x) − p̂0X(x)

p̂1X(x)
I{X1

i =x}−p̂1X(x)
p̂1X(x) be a plug-in estimate of the

influence function for ψ̂(x) and define the leave-one-out condi-
tional expectation estimators

S1�0i (w) = 1
n − 1

( i−1∑
j=1

kh(W1
ji ,w)ψ̂(X1

j )

+
n∑

j=i+1
kh(W1

ij ,w)ψ̂(X1
j )

)

and

S̃1�0i (w) = 1
n − 1

n∑
j=1

I{j �= i}κ̂(X0
i ,X

1
i ,X

1
j )S

1�0
j (w).

Then define the covariance estimator

�̂1�0
n (w,w′) = 4

n2
n∑

i=1

(
ψ̂(X1

i )S
1�0
i (w)

+ S̃1�0i (w)
)(

ψ̂(X1
i )S

1�0
i (w′) + S̃1�0i (w′)

)
− 4

n3(n − 1)
∑
i<j

kh(W1
ij ,w)kh(W1

ij ,w
′)ψ̂(X1

i )
2ψ̂(X1

j )
2

− 4
n
f̂ 1�0W (w)f̂ 1�0W (w′).

We use a positive semidefinite approximation to �̂1�0
n , denoted

by �̂+,1�0
n , as in Section 5.1. To construct feasible uni-

form confidence bands, define a process ẐT,1�0
n (w) which is

conditionally mean-zero and conditionally Gaussian given
the data W1

n, X0
n and X1

n and whose conditional covari-
ance structure is E

[
ẐT,1�0
n (w)ẐT,1�0

n (w′)
∣∣ W1

n,X0
n,X1

n
] =

�̂
+,1�0
n (w,w′)√

�̂
+,1�0
n (w,w)�̂

+,1�0
n (w′,w′)

. For α ∈ (0, 1), define q̂ 1�0
1−α as the

conditional quantile satisfyingP
(
supw∈W

∣∣ẐT,1�0
n (w)

∣∣ ≤ q̂ 1�0
1−α

∣∣
W1

n,X0
n,X1

n
) = 1 − α. Then, assuming that the covariance

estimator is appropriately consistent,

P

(
f 1�0W (w) ∈

[
f̂ 1�0W (w) ± q̂ 1�0

1−α

√
�̂

+,1�0
n (w,w)

]

for all w ∈ W
)

→ 1 − α,

giving feasible uniform inference methods, which are robust to
unknown degeneracies, for counterfactual distribution analysis
in dyadic data settings.
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Table 2. Summary statistics for the DOTS trade networks.

Edge Average Clustering
Year Nodes Edges density degree coefficient

1995 207 11,603 0.5442 112.1 0.7250
2000 207 12,528 0.5876 121.0 0.7674
2005 207 12,807 0.6007 123.7 0.7745

7.1. Application to Trade Data

We illustrate the performance of our estimation and inference
methodswith a real-world dataset.We use international bilateral
trade data from the International Monetary Fund’s Direction
of Trade Statistics (DOTS), previously analyzed by Head and
Mayer (2014) and Chiang, Kato, and Sasaki (2023). This dataset
contains information about the yearly trade flows among n =
207 economies (N = 21,321 pairs), and we focus on the years
1995, 2000, and 2005.

We define the trade volume between countries i and j as the
logarithm of the sum of the trade flow (in billions of US dollars)
from i to j and the trade flow from j to i. In each year several
pairs of countries did not trade directly, yielding trade flows of
zero and hence a trade volume of −∞. We therefore assume
that the distribution of trade volumes is a mixture of a point
mass at −∞ and a Lebesgue density on R. The local nature of
our estimator means that observations taking the value of −∞
can simply be removed from the dataset. Table 2 gives summary
statistics for these trade networks, and shows how the networks
tend to become more connected over time, with edge density,
average degree and clustering coefficient all increasing.

For counterfactual analysis we use the gross domestic prod-
uct (GDP) of each country as a covariate, using 10%-percentiles
to group the values into 10 different levels for ease of estimation.
This allows for a comparison of the observed distribution of
trade at each year with, for example, the counterfactual distri-
bution of trade had the GDP distribution remained as it was in
1995. As such we can measure how much of the change in trade
distribution is attributable to a shift in the GDP distribution.

To estimate the trade volume density function we use Algo-
rithm 1 with d = 100 equally-spaced evaluation points in
[−10, 10], using the rule-of-thumb bandwidth selector ĥROT
from Section 5.3 with p = 2 and C(K) = 2.435. For inference
we use an Epanechnikov kernel of order p = 4 and resample

the Gaussian process B = 10, 000 times. We also estimate the
counterfactual trade distributions in 2000 and 2005, respectively,
replacing the GDP distribution with that from 1995. For each
year, Figure 3 plots the real and counterfactual density estimates
along with their respective uniform confidence bands (UCB) at
the nominal coverage rate of 95%. Our empirical results show
that the counterfactual distribution drifts further from the truth
in 2005 compared with 2000, indicating a more significant shift
in the GDP distribution. In the online supplemental appendix
we repeat the procedure using a parametric (log-normal maxi-
mum likelihood) preliminary estimate of the GDP distribution,
and observe that the results are qualitatively similar.

8. Other Applications and FutureWork

To emphasize the broad applicability of our methods to network
science problems, we present three application scenarios. The
first concerns comparison of networks (Kolaczyk 2009), while
the second and third involve nonparametric and semiparametric
dyadic regression, respectively.

First, consider the setting where there are two independent
networks with continuous dyadic covariates W0

n and W1
m,

respectively. Practitioners may wish to test if these two dyadic
distributions are the same, that is, whether their density
functions f 0W and f 1W are equal on their common support
W ⊆ R. We present a family of hypothesis tests for this scenario
based on dyadic kernel density estimation. Let f̂ 0W(w) and
f̂ 1W(w) be the associated (bias-corrected) dyadic kernel density
estimators. Consider the test statistics τp for 1 ≤ p ≤ ∞ where

τp =
(∫ ∞

−∞

∣∣∣f̂ 1W(w) − f̂ 0W(w)

∣∣∣p dw
)1/p

for p < ∞, and

τ∞ = sup
w∈W

∣∣∣f̂ 1W(w) − f̂ 0W(w)

∣∣∣ . (4)

Clearly we should reject the null hypothesis that f 0W = f 1W
whenever the test statistic τp is sufficiently large. To estimate the
critical value, let �̂+,0

n (w,w′) and �̂+,1
m (w,w′) be the positive

semidefinite estimators defined in Section 5.1 and let Ẑ0
n(w)

and Ẑ1
m(w) be zero-mean Gaussian processes with covariance

structures �̂+,0
n (w,w′) and �̂+,1

m (w,w′), respectively, which are
independent conditional on the data. Define the approximate

Figure 3. Real and counterfactual density estimates and confidence bands for the DOTS data.
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null test statistic τ̂p by replacing f̂ 0W(w) and f̂ 1W(w) with Ẑ0
n(w)

and Ẑ1
m(w), respectively in (4). For a significance levelα ∈ (0, 1),

the critical value is Ĉα where P
(
τ̂p ≥ Ĉα

∣∣ W0
n,W1

n
) = α. This

is estimated by Monte Carlo simulation, resampling from the
conditional law of Ẑ0

n(w) and Ẑ1
m(w) and replacing integrals and

suprema by sums and maxima over a finite partition ofW .
While our focus has been on density estimation with dyadic

data, our uniform dyadic estimation and inference results are
readily applicable to the settings of nonparametric and semi-
parametric dyadic regression. For our second example, suppose
that Yij = Y(Xi,Xj,Ai,Aj,Vij), where only Xn and Yn are
observed and Vn is independent of (Xn,An), with Xn = (Xi :
1 ≤ i ≤ n), An = (Ai : 1 ≤ i ≤ n), Yn = (Yij : 1 ≤ i < j ≤ n)
and Vn = (Vij : 1 ≤ i < j ≤ n). A parameter of interest
is the regression function μ(x1, x2) = E[Yij | Xi = x1,Xj =
x2], which can be used to analyze average or partial effects of
changing the node attributes Xi and Xj on the edge variable
Yij. This conditional expectation could be estimated using local
polynomial methods: suppose that Xi takes values inR

m and let
r(x1, x2) be a monomial basis up to degree γ ≥ 0 on R

m × R
m.

Then, for some bandwidth h > 0 and a kernel function kh on
R
m×R

m, the local polynomial regression estimator ofμ(x1, x2)
is μ̂(x1, x2) = eT1β̂(x1, x2) where e1 is the first standard unit
vector in R

q for q = (2m+γ
γ

)
and

β̂(x1, x2) = argmin
β∈Rq

n−1∑
i=1

n∑
j=i+1

(
Yij − r(Xi − x1,Xj − x2)Tβ

)2
× kh(Xi − x1,Xj − x2)

=
⎛
⎝n−1∑

i=1

n∑
j=i+1

kijrijrTij

⎞
⎠−1⎛⎝n−1∑

i=1

n∑
j=i+1

kijrijYij

⎞
⎠ , (5)

with kij = kh(Xi − x1,Xj − x2) and rij = r(Xi − x1,Xj − x2).
Graham, Niu, and Powell (2021) established pointwise distribu-
tion theory for the special case of the dyadic Nadaraya–Watson
kernel regression estimator (γ = 0), but no uniform analogues
have yet been given. It can be shown that the “denominator”
matrix in (5) converges uniformly to its expectation, while the
U-process-like “numerator”matrix can be handled the sameway
as we analyzed f̂W(w) in this article, through a Hoeffding-type
decomposition and strong approximation methods, along with
standard bias calculations. Such distributional approximation
results can be used to construct valid uniform confidence bands
for the regression function μ(x1, x2), as well as to conduct
hypothesis testing for parametric specifications or shape con-
straints.

As a third example, we consider applying our results to semi-
parametric semi-linear regression problems. The dyadic semi-
linear regression model is E[Yij | Wij,Xi,Xj] = θTWij +
g(Xi,Xj) where θ is the finite-dimensional parameter of interest
and g(Xi,Xj) is an unknown function of the covariates (Xi,Xj).
Local polynomial (or other) methods can be used to estimate θ

and g, where the estimator of the nonparametric component g
takes a similar form to (5), that is, a ratio of two kernel-based
estimators as in (1). Consequently, our strong approximation
techniques presented in this article can be appropriately mod-
ified to develop valid uniform inference procedures for g and

E[Yij | Wij = w,Xi = x1,Xj = x2], as well as functionals
thereof.

9. Conclusion

We studied the uniform estimation and inference properties of
the dyadic kernel density estimator f̂W given in (1), which forms
a class of U-process-like estimators indexed by the n-varying
kernel function kh on W . We established uniform minimax-
optimal point estimation results and uniform distributional
approximations for this estimator based on novel strong approx-
imation strategies. We then applied these results to derive valid
and feasible uniform confidence bands for the dyadic density
estimand fW , and also developed a substantive application
of our theory to counterfactual dyadic density analysis. We
gave some other statistical applications of our methodology as
well as potential avenues for future research. From a technical
perspective, the online supplemental appendix contains several
generic results concerning strong approximation methods and
maximal inequalities for empirical processes that may be of
independent interest.

Supplemental Materials

A supplemental appendix containing technical and methodological details
as well as proofs and additional empirical results is available at https://arxiv.
org/abs/2201.05967. Replication files for the empirical studies are provided
at https://github.com/wgunderwood/DyadicKDE.jl.
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