STT-RAM-based Hierarchical In-Memory
Computing

Dhruv Gajaria, Member, IEEE, Kevin Antony Gomez, and Tosiron Adegbija, Senior Member, IEEE

Abstract—In-memory computing promises to overcome the
von Neumann bottleneck in computer systems by performing
computations directly within the memory. Previous research
has suggested using Spin-Transfer Torque RAM (STT-RAM) for
in-memory computing due to its non-volatility, low leakage
power, high density, endurance, and commercial viability. This
paper explores hierarchical in-memory computing, where different
levels of the memory hierarchy are augmented with processing
elements to optimize workload execution. The paper investigates
processing in memory (PiM) using non-volatile STT-RAM and
processing in cache (PiC) using volatile STT-RAM with relaxed
retention, which helps mitigate STT-RAM’s write latency and
energy overheads. We analyze tradeoffs and overheads associated
with data movement for PiC versus write overheads for PiM
using STT-RAMs for various workloads. We examine work-
load characteristics, such as computational intensity and CPU-
dependent workloads with limited instruction-level parallelism,
and their impact on PiC/PiM tradeoffs. Using these workloads,
we evaluate computing in STT-RAM versus SRAM at different
cache hierarchy levels and explore the potential of heteroge-
neous STT-RAM cache architectures with various retention times
for PiC and CPU-based computing. Our experiments reveal
significant advantages of STT-RAM-based PiC over PiM for
specific workloads. Finally, we describe open research problems
in hierarchical in-memory computing architectures to further
enhance this paradigm.

Index Terms—STT-RAM, relaxed retention time, in-memory
computing, in-cache computing.

I. INTRODUCTION

The exponential growth of data in recent years has created
a pressing need for efficient data processing in resource-
constrained systems, such as mobile devices, Internet of
Things (IoT) devices, and embedded systems. In-memory
computing, or processing in memory (PiM), has the potential
to meet this need, offering low-latency, high-throughput data
processing capabilities that can operate within the constraints
of these devices’ limited resources. In-memory computing in-
volves memory devices designed with processing units across
memory arrays [1], thereby preventing the need for costly data
transfers between the processor and memory.

In-memory computing has gained traction and has the po-
tential to significantly impact multiple domains, including sci-
entific computing, healthcare, machine learning, autonomous

Gajaria and Adegbija are with the Department of Electrical and
Computer Engineering, The University of Arizona, USA, email:
{dhruvgajaria} @arizona.edu, {tosiron}@arizona.edu. Gomez is with
the Department of Computer Science, University of Massachusetts, Amherst,
USA, email: {kantonygomez}@umass.edu This work was done when Kevin
Gomez was at the University of Arizona.

This work is partly supported by the National Science Foundation under
grant CNS-1844952.

driving, and more, thanks to its massive parallelism and re-
duced data movement. Previous studies have focused primarily
on using in-memory processing units as accelerators for kernel
execution. However, in many real-world applications, both the
processor and in-memory computing are required to complete
the necessary computations [2] effectively. This may result
in additional data movement overhead across the memory
hierarchy [3]. Address translation poses another challenge
for in-memory computing, as the address spaces of main
memories may exceed the translation lookaside buffer (TLB)
capacity, leading to frequent and costly page walks [4]. As
a result, the applicability of in-memory computing may be
limited in certain scenarios.

Previous studies have suggested using compute caches [3]
or implementing processing in cache (PiC) architectures.
Specifically, they explored bit-line computing, which involves
activating multiple word-lines in an SRAM cache to sense
the resulting voltage and perform computations on the data.
Bit-line computing allows the compute units to be placed in
subarrays. This results in faster access latencies and more
parallel units with simpler cache extensions than near-memory
or DRAM-based in-memory computing [5]. However, imple-
menting a PiC-based bit-line with SRAM may not always
be practical, given the high power and area requirements of
SRAM caches, along with the added overhead of integrating
processing units with the cache. This is particularly true
for resource-constrained systems. Furthermore, reducing the
word-line voltage to prevent data corruption in SRAM during
bit-line computing can increase the cache delay [3], [6].

Spin-Transfer Torque RAM (STT-RAM) is an emerging
non-volatile memory (NVM) technology that offers a promis-
ing alternative to SRAM for cache implementation. STT-RAM
boasts a much smaller area requirement (40% - 80% less area)
and negligible leakage power [7] compared to SRAM. STT-
RAM has also demonstrated commercial viability and superior
endurance compared to other NVM technologies, such as
ReRAM or SOT-RAM, positioning it as a leading candidate
to replace SRAM. Additionally, STT-RAM inherently has
a higher write current than read current, preventing data
corruption during bit-line computing [8]. Despite its promising
features, STT-RAM suffers from high write latency and energy
consumption due to its non-volatile nature. Researchers have
proposed mitigating this challenge by relaxing the retention
time—the duration for which data is retained in the cache
in the absence of power—to satisfy only the retention time
requirements of the cache blocks relevant to the executing
workloads [9]. To this end, the retention time can potentially
be reduced to less than 1s [7], [10], leading to substantial

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/TPDS.2024.3430853

https://doi.org/10.1109/TPDS.2024.3430853

latency and energy savings.

In this paper, we propose and explore the idea of hierar-
chical in-memory computing from the STT-RAM perspective.
Hierarchical in-memory computing (HiMC) is an in-memory
computing paradigm in which multiple levels of the memory
hierarchy are augmented to enable a combination of PiC and
PiM. As such, computations occur in the layer where it makes
the most sense concerning the design objectives (performance
or energy consumption), and data movement is minimized.
We propose and study an HiMC system in which PiC is
implemented using relaxed retention STT-RAM caches, and
PiM is implemented using non-volatile STT-RAM.

Unlike prior STT-RAM-based in-memory computing re-
search, which has only considered non-volatile STT-RAM PiM
implementations [8], [11], our work for the first time considers
the tradeoffs of computing across the memory hierarchy. Re-
laxed retention STT-RAMs introduce new considerations, like
the impact of cache block lifetimes, that must be considered to
maximize the energy benefits of STT-RAM caches. Our study
explores different types of workloads to reveal the implications
of various workload characteristics on computation efficiency.
These characteristics include CPU dependence (due to se-
quential executions and unsupported PiC/PiM computations),
temporal locality/data reuse, and write intensity, all of which
have important implications for the effectiveness of PiC vs.
PiM. We show the kinds of workloads best suited for PiC/PiM,
propose solutions to potential PiC design issues, and analyze
the latency and energy benefits of the proposed solutions
compared to the state-of-the-art. To gain the benefits of both
PiC and traditional CPU-based computing, we also explore for
the first time, heterogeneous retention times caches featuring
different retention times for PiC and CPU-based computing.

In summary, we make the following key contributions:

o For the first time, we study STT-RAM-based PiC with re-
laxed retention at different cache hierarchy levels (specif-
ically, L1 and L2).

o We investigate various types of workloads to assess the
tradeoffs associated with computing at different levels
of the memory hierarchy, including the cache hierarchy
and main memory, using STT-RAM. Our analysis takes
into account different workload characteristics that have
significant implications for the effectiveness of PiC/PiM.

o We compare the energy and latency advantages of PiC
using STT-RAM versus SRAM. The experimental results
indicate that STT-RAM achieves substantial area savings
(up to 79.86% compared to SRAM) and energy savings
(averaging 4.18x compared to CPU and up to 6% [up to
54.5%] compared to SRAM) while maintaining similar
latency to SRAM-based PiC (3x improvement over CPU).

« To enhance the execution of CPU-dependent workloads,
which face the most significant limitations with PiC/PiM,
we propose a simple optimization technique called “op-
eration chaining” that enhances the concurrency of exe-
cution between CPU and PiC/PiM units. This approach
yields an average latency improvement of 10.19% and
energy savings of 7.83% compared to the current state-
of-the-art.

Bitline (BL)

Barrier layer

u
Barrier layer

Free layer

Reference layer

Word line (WL)

Source line (SL)

High resistance state Low resistance state

Fig. 1: STT-RAM cell structure. The high resistance state is
anti-parallel, while the low resistance state is parallel.

+ To maximize the benefits of STT-RAM for both PiC and
traditional CPU-based computing, we explore a novel
heterogeneous cache design for PiC that uses lower
retention times for PiC computing and higher retention
times for CPU-based computing.

In the rest of the paper, Section II presents the background
information on the STT-RAM cell and then discusses the
relaxed retention STT-RAM caches and related work on
STT-RAM-based PiC/PiM computing. Section IV presents
the architecture for STT-RAM-based PiC caches, and their
operations and scalability. The section also discusses finding
the optimal retention time for PiC computing and introduces
operation chaining to optimize CPU-dependent workloads.
Section V introduces heterogeneous STT-RAM caches for PiC
and CPU-based computing. Finally, Section VI discusses our
experimental setup, and Section VII presents the results of our
experiments and the overhead of the explored designs.

II. BACKGROUND AND RELATED WORK

In this section, we first present an overview of the STT-
RAM cell. We then present the tradeoffs of STT-RAM caches
and discuss the previous work on STT-RAM caches. Following
this, we discuss the prior work on PiC implementations using
SRAMs, and an overview of the state-of-the-art PiC/PiM using
STT-RAMs.

A. Overview of the STT-RAM cell

The cell structure of STT-RAM comprises a transistor and a
magnetic tunnel junction (MTJ). The MTJ includes an oxide
layer positioned between two ferromagnetic layers: the free
layer and the hard (or fixed) layer. While passing a current
through the free layer can alter its magnetization, the magneti-
zation of the hard layer remains unchanged. The orientation of
magnetization between these ferromagnetic layers determines
the stored bit in the STT-RAM cell: ’0’ (in the parallel state
or low resistance state Rp) or 1’ (in the anti-parallel state
or high resistance state R4p), as illustrated in Figure 1.
Further insights into the characteristics of Rp and R4p and
the functioning of STT-RAM cells can be found in previous
research [12].

STT-RAM exhibits several attributes, such as high area
density, extremely low leakage power, superior endurance
(in comparison to other non-volatile memories [13]), and
excellent scalability [7]. STT-RAM occupies around 40-80%
of the area required by SRAM, enabling the provision of

larger caches and accommodating smaller area constraints for
PiC computing within the same die footprint. Nevertheless,
deploying STT-RAM in caches presents challenges due to
its high write latency and energy requirements. These high
overheads make adaptation of STT-RAM difficult in caches.
To mitigate these overheads, Smullen et al. [10] proposed
the relaxation of retention time in STT-RAM caches. The
researchers discovered that the retention time of STT-RAM
is exponentially proportional to the energy associated with
magnetization stability, which can be expressed as:

V- Hy- M

T

Here, V' represents the activation volume for the writing
current of STT-RAM, H}, denotes the in-plane anisotropy field,
M indicates the saturation magnetization and 7" represents the
absolute temperature in Kelvin [10]. The following section will

explore how prior studies leveraged the relaxation of retention
time in STT-RAM caches.

A x

B. Relaxed-retention STT-RAM caches

Prior work by Smullen et al. [10] found that the retention
time can be relaxed by reducing the area of the cell to
mitigate the tasking write operations for STT-RAM caches.
However, this design is less efficient in high switching regions
(latency<3ns) [7]. Thus, prior work by Sun et al. [7] found that
the retention time can be relaxed by changing the thickness
of the free layer, magnetization saturation (M), and the
effective anisotropy field (Hy). Moreover, since the average
cache block lifetime is less than one second, the authors
explored relaxed retention time for different levels of cache
hierarchy. The authors also proposed a multi-level retention
time STT-RAM cache hierarchy that achieves average energy
savings of 73.8% over SRAM cache designs while maintaining
the same instructions per cycle (IPC) performance. Thus, a
relaxed retention STT-RAMs can achieve significant energy
benefits compared to SRAMs throughout the cache hierarchy.
In this study, we use a technique similar to [7] to model the
relaxed retention STT-RAM caches.

Kuan et al. [9] discovered that energy-efficient optimization
of relaxed retention STT-RAM caches can be achieved by
closely aligning the configuration of retention time with the
runtime execution demands of workloads. The researchers
introduced a logically adaptable retention STT-RAM (LARS)
L1 cache, which incorporates multiple units of retention time.
They utilized a sampling-based algorithm to determine the
most suitable retention times for different applications dynam-
ically. Similarly, Gajaria et al. [14] found that specializing
retention times of STT-RAM caches to the application needs
improved performance and energy savings by 20.34% and
29.12%, respectively. In our work, we explore how relaxed
retention STT-RAM can improve the efficiency of PiC opera-
tions. We also explore heterogeneous STT-RAM cache design
schemes for PiC and CPU-based computing.

C. STT-RAM-based processing in cache/memory (PiC/PiM)

Bit-line computing is more suitable for non-volatile mem-
ories and SRAM than DRAM-based memory due to frequent

refreshes required by DRAMs [5], [15]. To ensure reliable bit-
line operations the source operands need to be fully charged.
These prior works ensured that the source operands are
refreshed before any operations [16], [17]. Thus, previous
works by Seshadri et al. [16], and Gao et al. [17] proposed
copying source operands to reserved rows to perform bit-
line computing, ensuring that the source operands are always
refreshed. However, unlike DRAMSs, non-volatile memories do
not have to move the data to reserved rows.

Many previous studies have investigated processing in mem-
ory (PiM) utilizing non-volatile memories (NVM) [8], [18],
[19]. For instance, Fan et al. [19] proposed an in-memory
AES accelerator employing spintronic devices, demonstrat-
ing a 58.6% reduction in energy consumption compared to
CMOS circuits. Li et al. [18] explored bitwise PiM utilizing
NVMs like phase-change memory (PCM) and resistive RAM
(ReRAM) for data-intensive applications, achieving a 500x
speedup for bitwise operations and an overall speedup of 1.12x
for data-intensive graph applications.

Parveen et al. [11] proposed an STT-RAM-based in-memory
computing architecture that performed Boolean logic oper-
ations on any two cells of the same memory array. They
evaluated their work in-memory Boolean vector logic and
found optimization by 8x and 5x for energy and latency
over DRAM-based in-memory computing. Jain et al. proposed
using bit-line computing with STT-RAM memories featuring
a compute unit of AND, OR, NOR, NAND, NOT, XOR, and
ADD operations. They also evaluated a reliable PiM imple-
mentation under process variations with STT-RAMs. Their
architecture achieves system-level performance and energy
improvements by 3.93x and 3.83x, respectively. Their work,
which we leverage for our PiM implementation, features an
STT-RAM PiM design that performs addition and logical
operations.

Although PiC (Processing in Cache) has not received as
much attention as PiM (Processing in Memory), previous
research [3] has demonstrated that PiC can address data
transfer overheads that may arise in certain workload types
for PiIM. Aga et al. [3] proposed integrating computing units
within SRAM caches to mitigate data transfer overhead,
leading to performance improvements and energy reduction
by factors of 1.9x and 2.4x, respectively, compared to CPU-
only computing. Eckert et al. [20] introduced a Neural Cache
that transforms SRAM caches into parallel compute units
specifically designed for deep neural network inference. Nag
et al. [21] proposed GenCache, a method utilizing SRAM-
based in-cache computing to accelerate the genetic sequence
alignment task. Our work [22] is the first to explore PiC using
STT-RAM and analyze the tradeoffs associated with STT-
RAM-based computing at various memory hierarchy levels.

III. OVERVIEW OF HIERARCHICAL IN-MEMORY
COMPUTING

Before discussing the PiC architecture, we first present an
overview of hierarchical computing. Figure 2 illustrates the
system model considered in our work. The general idea of
hierarchical in-memory computing is to perform computations

PiC
‘ L2 cache ‘
[PiC |
PiM Memory
PiM

Fig. 2: The system model featuring processing in cache (PiC)
implemented in the L1 and L2 caches and processing in
memory (PiM) implemented in the main memory.

where it makes the most sense—as close to the data as
possible. As such, the relaxed retention STT-RAM L1 and L2
caches are augmented with computing circuits to enable PiC,
while the non-volatile STT-RAM main memory is augmented
to enable PiM. This paper focuses on the tradeoffs of comput-
ing at different levels of the memory hierarchy, considering
the data movement overheads.

The L1 cache is closest to the CPU and has the fastest access
and compute latency. But since L1 is smaller, it cannot feature
a large number of concurrent compute units without inducing
significant penalties on the CPU’s regular cache accesses.
On the other hand, PiC-based L2 caches will have longer
data access times but can have a larger number of compute
units than L1 caches. Similarly, PiM will have the highest
access latency but can have the highest number of compute
units due to its larger area. Furthermore, PiM comprises non-
volatile STT-RAMs with far greater write overheads than the
relaxed-retention STT-RAMs in the PiC. We will discuss the
architecture of the compute units in detail in Section IV-A.

Considering the data movement overheads, PiM and PiC
will have different tradeoffs depending on the location of
operands and the availability of compute units. PiM will gen-
erally have the lowest data overheads for computations on data
resident in the memory, allowing data to be processed without
having to communicate with the processor. Alternatively, PiC
is generally faster and will have the least data movement
overheads for the data that are either present in the cache
or originate from the CPUs (e.g., through stores). In general,
the choice between PiC and PiM will depend on the specific
application requirements and the underlying architecture of the
compute units. In this paper, we explore these tradeoffs with
respect to CPU-dependent workloads to evaluate CPU-based
data movement, workloads with high reuse data to evaluate
PiC vs PiM write overheads, and CPU-independent workloads.

IV. RELAXED RETENTION PROCESSING IN CACHE (P1C)

This section describes our PiC architecture, retention time
selection, optimization for CPU-dependent workloads, and
design choices for mitigating process variations.

A. Architecture

STT-RAM presents significant benefits over SRAM, particu-
larly for PiC applications. For instance, due to its higher write
current requirements than read currents, STT-RAM reduces

Iand Iand bl

1.0
I0-0 |0-1

|
i
I1-1 oand 0
(a) (b)

nand nor

|or IbI

O,, :o
(c)

Fig. 3: The sensing architecture used in our work (similar to
prior work [8]), which works for both relaxed retention and
non-volatile STT-RAM computing. (a) shows the sensed cur-
rent for multiple word-lines and the reference signal position;
(b) and (c) shows the logical compute circuits.

the likelihood of unintended writes when multiple word lines
are read for bit-line computing. Consequently, unlike SRAM,
multiple word-lines can be activated easily in STT-RAM
without corrupting the data, alleviating some complexities
associated with SRAM-based computing. For example, there is
no need to decrease the cache operating frequency, as required
in SRAM systems [6].

As discussed in Section II, bits 0’ or ’1°, stored in the
STT-RAM cell, can be represented as resistors with different
resistance values Rp for parallel state and Rap for the anti-
parallel state, respectively. The difference in Rp and Rup
between the stored bits is called the tunnel magneto-resistance
(TMR) ratio. While sensing, a bit-line will have different
current values based on the stored bit. Similarly, sensing the
currents for multiple word-lines will result in different output
current values, as shown in Figure 3a. Based on bits 1 or
0 in these cells, there are three possible current values: I,
I1.9, or Iy, and I;;. As such, reference currents can be used
to directly compute AND/NAND operations (Figure 3b) or
NOR/OR operations (Figure 3c).

PiC architecture. Figure 4 provides a high-level overview
of our PiC architecture with relaxed retention. As depicted
in Figure 4a, each cache block incorporates a retention time
counter to prevent data corruption caused by data expiration.
This counter ensures data stability by evicting the block or
writing it back to a lower memory level when the retention
time is about to expire. We employed an [V-state finite-state
machine (Figure 4b) to implement the counter, which starts in
the initial state upon block write, counts up until the retention
time is nearing expiration, and then raises a flag. In our study,
we assumed N = 4, resulting in a 2-bit overhead per block
(Figure 4b), and the counter operates with a clock period of
18.75us [9]. The area overhead of the monitor counter is only
0.78% per block. Designers can increase the counter size N
to achieve finer control precision using the same clock input
without significantly impacting the cache’s area, routing costs,
or critical path.

The cache is organized into mats, which are further divided
into subarrays. The subarrays in each mat contain a group
of word-lines associated with a single sense amplifier, and
each word-line is connected to a stored array for paral-
lel computations. The architecture activates two word-lines
simultaneously to perform arithmetic or logical operations
using the combinational logic illustrated in Figure 4d. The
architecture supports addition and logical operations, while

Counter Tag Data

(a) (b)

EEEE

Bitlines (BL)

T

WL Decoder

=
NAND

NAND
AND —|
OR —|
NOR

Sel1

Sel2 Sel4

Sel3

(d)

Wordlines (WL)

] T |

|
e
BL decoder ‘

R £93
‘ Sense Amplifier ‘

Co \\ ‘

Bitout

\ BL Logic |
' C)

Fig. 4: (a) shows the high-level structure of a cache block (b) illustrates the cache block monitor counter implemented using a
finite state machine; (c) shows the subarray of a cache with computational logic block after the sense amplifier; and (d) shows

the computational logic.

the CPU handles more complex operations like multiplication
to maintain simplicity in the PiC implementation. Since the
implemented operations are associative, they can be executed
by sensing multiple word-lines, and the desired operation’s
output can be selected through multiplexers controlled by the
cache controller.

Supporting regular cache operations. Given a PiC-enabled
system, performing regular cache operations for CPU-based
computing may still be necessary. This paper explores two
types of PiC caches: homogeneous STT-RAM caches and het-
erogeneous STT-RAM caches. The homogeneous design fea-
tures a uniform retention time throughout the cache, whereas
the heterogeneous design is a multi-banked cache with high
and low retention time banks. The high retention time cache
banks cater to regular cache references from the CPU, and
low retention time banks are used for PiC operations. We
discuss the heterogeneous cache design in detail in Section V,
whereas in this section, we discuss regular cache operations
with homogeneous STT-RAM caches that feature the same
retention time for both CPU and PiC operations.

We present two design choices for a homogeneous STT-
RAM cache design for regular cache operations. The first
option involves employing additional sense amplifiers, in ad-
dition to the sense amplifiers described in Figure 3, to sense
bit ’0’ or ’1°. Although this increases the area overhead, it
results in lower access latency as the compute elements of
PiC operations can be bypassed during CPU cache references.
Alternatively, PiC sense amplifiers (Figure 3c) can be utilized,
which have a reference current tuned to read two cache word-
lines: one word-line is read during the cache operation, while
the second is set as bit ’0’. The sensed output from the
sense amplifier is obtained as an OR output in PiC-based
computation, compared to the reference Iog, and read through
the multiplexer’s OR output (Figure 3d). While this option may
reduce the area overhead, it can potentially slow down cache
read operations if the compute elements introduce significant
latency overhead. In our work, we adopted the latter design
choice as the compute elements utilized in this design are
simple and do not impose significant latency overhead that
would affect the cache access cycles. The write operations for
CPU-based computing and PiC utilize the same design circuits
since only one word-line is activated during cache block writes
or when storing the PiC computation results.

Scaling the parallel computations. To enhance the par-
allelism of the cache, modifications need to be made to
the number of subarrays and the cache geometry. This is a
straightforward process for SRAM caches, as the number of
subarrays and sense amplifiers can be easily increased [3].
However, in the case of relaxed retention STT-RAMs, the
cache block monitor counters must also be considered, as
they are reset during write operations. In PiC, the counter
is reset when the computed results are stored in the cache
block. If a cache block is partially updated, the unchanged
words within the block may expire without resetting the cache
block monitor counter. In such scenarios, it is necessary to
use a complete cache block to store the computed results in
order to avoid discrepancies in block monitor counter updates
and prevent data corruption caused by an elapsed retention
time. Consequently, the number of compute units in relaxed
retention STT-RAM PiC must be a multiple of the cache
block size. For instance, let’s consider a 64B block cache
capable of performing 16 parallel 32-bit integer computations.
To increase the number of parallel computations to 32, the
cache geometry can be adjusted to increase the number of
subarrays, enabling two cache blocks (128B) to be updated
simultaneously. This ensures the counter remains simple and
seamlessly integrated with relaxed retention caches for CPU
and PiC operations.

B. Determining the best retention time

One of the primary challenges in STT-RAM-based hierar-
chical in-memory computing (HiMC) is the trade-off between
retention time and energy consumption. A lower retention time
reduces the write energy consumption but may increase the
cache miss rates, impacting the overall system performance.
As such, it is imperative that the retention time be sufficient for
the cache block lifetimes of the executing workloads. A longer
retention time than necessary will incur write overheads. In
comparison, a shorter retention time will result in premature
expiry of data blocks, leading to high miss rates and data
movement overheads. Prior works mapped the retention time
to workloads® execution characteristics in traditional CPU-
based processing [9], [14]. However, we empirically found
that such a scheme is unnecessary for PiC. In traditional
computing, the retention time depends on an application’s
average cache block lifetime and how frequently the data

0.300

c
9o |
-] 0.250 AP-AP
2
=
s 0.200 s
T B 0.150 o
£ 5 Read i Lowest read
= ead margin
g = 0.100 ¢ margin
S 0050
o

0.000

70 120 170

Sensing current (UA)

Fig. 5: The probability distribution function of the sensing
current for PIC STT-RAM under 5% process variation for
10,000 samples.

blocks are accessed. For PiC, the cache begins processing as
soon as the data is made available in the cache. Thus, the
retention time requirement R7;.., can be expressed as:

RTreq = (Tp + Trp + Tmem + Tov) * ka

where T}, is the amount of time required to complete the
processing of data in the cache, 7., is the amount of time taken
for read and write operations, taking into account the reduced
retention time, T),,¢,, is the time taken to bring the data from
the lower-level of memories into the cache, T, is the time
spent for additional overheads, such as error correction, cache
management, and other miscellaneous operations, and k is the
time taken for a new data load before it can perform PiC
operations with the oldest cache block. That is, RT)..,for PiC
depends on the time taken to bring the required operands into
the cache for computation. For instance, given a computation
¢ = a + b, the block containing word a (say, blockA)
only needs to remain in the cache long enough to bring
blockB (containing word b) into the cache to complete the
computation. If it takes 100 cycles (or 50ns at 2GHz) to bring
blockB from memory to cache and 3ns for the 7}, and T,
and 2ns for T;., , then for a 32kB cache size, in the worst case,
assuming that the first cache block loaded from memory will
perform PiC computations with the last loaded cache block
(k=512), a 28.16us retention time is required.

To determine the appropriate retention times, we first ana-
lyzed the workloads to determine the average miss latency for
each level of the cache hierarchy. Based on this miss-latency,
we selected the retention time so data block expiration does
not occur during PiC computations. Based on our analysis, we
found that 75us sufficed for the L1 cache and 10ms sufficed
for the L2 cache in both PiC and CPU-based computing while
minimizing the premature expiry of data blocks. Note that
different retention times may be required for different sets of
workloads. For example, workloads with high data reuse may
require data to be fetched more frequently from the cache than
from the main memory. In such cases, a shorter retention time
might suffice for PiC. However, the choice of specific retention
times is orthogonal to the rest of our analysis.

C. Mitigating the effects of process variation

Another important challenge that arises in the design of
STT-RAM HiMC is the susceptibility of reduced retention
STT-RAM to process variations, which can lead to higher
error rates. Hence, we explored how to mitigate the impacts of
process variations in our HIMC architecture. When conducting

a read operation, bits 0 and 1 exhibit different resistance values
(TMR ratio), resulting in a change in the output current of
the sense amplifier. We simulated multiple retention times by
altering the STT-RAM cell parameters, such as the free layer
thickness and anisotropy constant (Hk), while maintaining
a constant TMR ratio. This approach allowed us to utilize
the same sense amplifier design for all retention times. For
PiC computations, the sense amplifier needs to sense three
levels: 1o, 110, or Ip.; and I}, as explained in Section IV-A.
Previous research [8] determined that a TMR ratio of 124%
was sufficient for bit-line computing in STT-RAM to ensure
reliable read operations across multiple word-lines. However,
in our study, we opted for a TMR ratio of 150% as it resulted
in a more distinct difference in the sensed current output
between bits 0 and 1, thereby enabling more reliable and
distinguishable current levels.

To analyze the impact of process variations, we conducted
Monte Carlo simulations [23] with 10,000 samples, consid-
ering varying STT-RAM cell resistance values using SPICE.
Figure 5 depicts our findings on the difference in current
levels for STT-RAM PiC under process variations. In our
experiments, we set the Rap and Rp under 5% process
variation, following a similar approach as prior studies [8].
As observed in the figure, Iap.ap passes through the highest
resistance, Rap.ap, resulting in a low sensing current. Iapap
exhibits a low standard deviation in the sensing current under
process variation, leading to a higher probability distribution.
Similarly, Ipp passes through the lowest resistance, Rpp, and
demonstrates a high standard deviation in the sensing current,
resulting in the lowest probability distribution function. Addi-
tionally, we observed that Iap.ap, Iap.p, Ip.ap, and Ipp remain
significantly distinct even under process variations. The read
margin between Iap.p and Ipp is smaller than the read margin
between Iop.p and Iap.ap. We utilized the smallest read margin
to adjust the TMR ratio, enhancing the sensing operation’s
reliability.

However, employing a high TMR ratio can increase the
energy required to switch the bit of the STT-RAM cell. Pre-
vious studies have utilized relaxed retention time to mitigate
the switching energy (write energy) of STT-RAM. When the
retention time is relaxed, the switching energy can be adjusted
by either reducing the write current or the write pulse [7],
[24]. In alignment with prior research [7], [24], we maintained
a constant write current while varying only the write pulse
for different retention times. This approach facilitates the
establishment of a lower read current than write current for
all retention times, thereby reducing read errors [25].

D. Operation chaining for CPU-dependent workloads

Considering the potential overhead associated with CPU-
dependent workloads, our objective was to enhance parallelism
in order to minimize the waiting time for CPU results. Previous
research [2] has demonstrated that traditional PiM divides
the program into PiM and CPU execution segments, with
PiM commencing only after CPU execution is complete. This
computational model is illustrated in Figure 6. Our workload
analysis identified the potential for optimizing CPU-dependent

CPU

PIM

CPU PIM

Controller

Multiplication ends ZLLCTRE DD
o

Addition

(a) CPU dependence

without optimization Time

S

[[[Serizn |

Operand, Address,; Addresss;

Operand, Address,, Addressg,

PiCIPIM ion table

(b) CPU dependence
with optimization

Fig. 6: Illustration of the program flow for traditional vs. operation chained PiC/PiM.

workloads to exploit better parallel processing between the
PiC/PiM and CPU execution units. This optimization, referred
to as operation chaining, draws inspiration from architectures
employing vector chaining [26]. As depicted in Figure 6,
operation chaining enables the utilization of interim CPU re-
sults for PiC/PiM computations without introducing additional
memory references. After each computation, the processor
stores the intermediate results in memory or cache for sub-
sequent PiC/PiM computations.

As seen in the figure, the data is loaded in the CPU for
computations and the data is then stored in the respective
PiC/PiM location using the StorePIM(n). The data address is
also recorded in the memory/cache controller and is stored in
an instruction table. The CPU communicates via a PiC/PiM
controller using a Compute signal to start the PiC/PiM compu-
tations and receives a DONE signal indicating that the compu-
tations have been completed. During the Compute signal, the
PiC compute instruction is sent to the cache controller. The
specific PiC/PiM instruction starts executing on the addresses
recorded in the instruction table. When a Compute signal is
received, the controller checks to see if the instructions are
suitable for bit-line computing and start performing computa-
tions. More information on the cache controller management
can be found in Section V-B.

The size of the instruction table depends on how many
addresses are stored before a Compute instruction is issued.
A larger instruction table will have higher overheads, but a
smaller instruction table might result in low utilization of
compute units, leaving some idle. Thus, an ideal instruction
table size should be sufficient to ensure that all the compute
units are utilized while executing the Compute instruction. For
example, given a memory hierarchy with 16 32-bit compute
units, assuming 32-bit block addresses, the memory overhead
will be 128B.

Operation chaining is enabled by the compiler, which
detects the data dependencies and ensures the absence of
potential hazards. The programs are augmented with new
instructions: StorePIM_MEM (to store data in the appro-
priate PiC/PiM location specified by MEM) and Com-
pute_Inst_PIM_MEM (to initiate execution in the PiC/PiM
architecture in the respective memory hierarchy). Thus, using
operation chaining, the execution latency of the PiC/PiM is
effectively hidden behind the processor’s execution latency.

V. HETEROGENEOUS CACHE DESIGN

To optimize both CPU-based computing and PiC, in this
section, we explore a heterogeneous cache design that features

Cache
Contro| |er Low retention- High retention-
time bank Sel l Input time bank
Operand; Address,, Addressg, 0.
. U emux
: Block 1 Block 1
Operand, Address,, Addressg, Sel Input
PiC/PIM nstruction table | ("= | Block 2 W Block 2
Sel Input
Cache Management Block 3 Block 3
Block n 1:2 Demux Block n

Fig. 7: Heterogeneous retention time architecture with low and
high retention time cache blocks. The architecture has a latch
and a 1:2 demultiplexer for each cache block that determines
the bank to be used to access the specific cache block.

multi-retention time STT-RAM caches. The heterogeneous
cache consists of a high-retention time STT-RAM region for
CPU-based computing and a lower retention time for PiC
computing. A lower retention time region can reduce the write
overheads whereas a higher retention time will increase the
write overheads but will have fewer cache misses due to cache
blocks expiring [9], [14]. For CPU-based computing, the cache
block lifetime is much longer than in PiC-based computing,
since blocks must be held in the cache for much longer. For
PiC-based computing, on the other hand, intermediate results
are stored in the same level of the memory hierarchy, resulting
in shorter block lifetimes. Moreover, highly parallel execution
of the program also reduces the reuse distance of the data
blocks, thus requiring a lower retention time.

A heterogeneous cache design can be targeted for CPU-
dependent workloads. However, it also can be used for other
CPU-independent workloads if the program initialization will
be handled by the CPU i.e. the CPU initializes the program and
keeps track of the program counter, and PiC/PiM execution
acts as an accelerator that executes computations initiated by
the CPUs. In this section, we propose a heterogeneous cache
architecture and present a low-overhead heterogeneous cache
management technique.

A. Heterogeneous retention cache architecture

Heterogeneity in PiC and PiM can be achieved using two
cache designs. One design involves different retention time
cache banks, and the other involves subarrays of different
retention times, in which the subarrays share the H-tree and
routing wires. We find that heterogeneity at the bank level
results in a higher area overhead, as the routing resources

" Changein - Previous retention

N Write the block
> itv? | innew retention
Yes | . blockdirty? No | time bank

- ite? s
Read/Wite? ~_latch direction? -

‘ Write
Read | l No Yes | }
Read block from Write in the Read Store the block
the previously set active retention miss in lower memory
latch direction time bank level
[
(a) Latch control
Tag Set index Block offset

U S

~
Retention time Block Partition

Bank bits

(b) Address/bits information. The design of the bank bits and block
partition bits used in our work is similar to prior work [3].

Fig. 8: Latch control and cache address information.

within the cache bank are not shared. On the other hand,
heterogeneity at the subarrays results in a higher routing
overhead cost for the wires in the cache bank. It thus in-
creases the overall access latency of the cache, impacting
the performance of CPU-based computing as well. However,
since STT-RAMs are denser than SRAMs (by a factor of 3
to 9) [9], and we aim to minimize the latency overhead, we
consider the area overhead from bank-level heterogeneity to be
acceptable for this implementation. Despite the area overhead,
our approach still reduces the overall area compared to SRAM
implementations. Therefore, we employ heterogeneity at the
bank level for our work.

Our approach allows a switch between the different reten-
tion time regions, depending on whether PiC- or CPU-based
computing is being performed. Figure 7 illustrates the architec-
ture of the heterogeneous STT-RAM cache. The architecture
comprises two banks of retention time, in which each cache
block has its own latch along with a 1:2 demultiplexer, which
determines the retention-time region when a cache block is
accessed. At any given time, the data in a cache block is
only present in one retention time bank. The latch is a one-bit
memory that controls the select line of the demultiplexer and
thus selects which retention time bank to use for cache data
access. The decision on the retention time of the cache block
is driven by whether the code is to be run using the CPU or
PiC/PiM architectures, which we discuss in Section V-B. Note
that this configuration, with dual cache banks, does not result
in high static power consumption due to STT-RAM’s near-
zero leakage costs. We discuss the impact of having multiple
banks active on the overall energy consumption in detail in
Section VII-C.

B. Heterogeneous retention cache management

In this section, we present the heterogeneous retention
cache management strategy. For efficient cache operation, we
leverage the fact that the lower-retention time bank will remain
active during PiC computing, and the high retention time bank
will be during CPU-based computing. Therefore, we only
change the latch bit when a cache block is written. Figure 8a
shows the latch management. During the read operation, the

cache block is read from the retention time bank according to
the latch bit. During the write operation, the latch direction
is updated on the basis of the retention time information
that serves as input to the latch. The latch direction can be
either updated by the incoming address in case of StorePIM
instruction as seen in Section IV-D or by the cache controller
to bring the data from other levels of the memory.

The compiler can help greatly in determining the retention
time selection. For example, during the write operations, the
data can be automatically placed into the low-retention time
banks during operation chaining. The compiler can identify
whether the next set of instructions will be performed by the
CPU or by PiC compute units, as discussed in Section IV-D.
Thus, the data going into the cache for PiC computations can
be identified and directly placed into the low-retention time
banks. Moreover, if the data are not present in the cache in
case of a read miss, it can be fetched from the lower levels of
the memory and placed in the appropriate cache bank based
on whether the instruction is executed on the CPU or on PiC
and the latch direction is set accordingly. However, during the
read operation, if the data are already present in the cache,
regardless of the location of the bank, it can be fetched by
looking at the latch bit. Thus, a cache block would only switch
banks if a write operation occurs and thereby greatly reduces
the data transfer overhead between the low and high retention
time banks.

To facilitate the latch mechanism, we use the address bits
of the cache block which includes the retention time bit,
bank bits, and block partition. The retention time bit indicates
whether a low or a high retention time is needed and will
only be checked whenever a write operation (store or cache
miss) occurs in the cache. Whenever there is a cache write,
the retention bit is overwritten in the latch for the respective
cache block. Bank bits and block partitions operate similarly
to prior work [3]. The bank bits indicate the bank location
and the block partition indicates the subarray location for a
given bank for which the data to be computed are bit-line
aligned. Compiler modifications can be used to ensure that the
data are bit-line aligned, similar to prior works. For example,
Fujiki et.al. [27] proposed a cache architecture, called Duality
Cache, that adopts a single instruction multiple threads (SIMT)
execution model where the cache architecture acts as both
vector processing units and register file, and schedules VLIW
instructions for in-cache operations. The authors adopt the
CUDA/OpenACC compiler model to translate instructions to
their in-house Duality cache ISA to ensure bit-line alignment.
Wang et. al. [28] proposed using a novel execution and
intermediate representation compiler model that automatically
orchestrates data management and performs runtime layout
transformations for bit-serial execution. While both works
ensure bit-line alignment, we adopt the approach by Wang et.
al. [28] work for our STT-RAM-based HIMC due to higher
flexibility and lack of architectural assumptions required for
the duality cache, such as CUDA compiler, which are unavail-
able for efficient in-memory compute operations.

The overall execution of the heterogeneous retention PiC
system is given by Algorithm 1. At program initialization, the
latches default to pointing to a high retention time bank to

enable CPU computing during the initialization. Then, when
PiC-based instructions are ready to be executed, they are added
to the PiC instruction table maintained by the cache controller
(line 2). The instructions contain the operand and the address
of the entire block. The number of compute units is equivalent
to the block size (lines 6-7), which ensures that the data on
which PiC/PiM computing occurs is bit-line aligned, provided
that the data blocks are located in the same retention time
zone, bank, and subarray, as discussed in Section IV-A.

Before executing a particular PiC instruction, the cache
controller checks whether the data block satisfies the bit-
line alignment criteria described above. This step is important
when PiC computations have to be done on data that was pre-
viously stored by the CPU in the high-retention-time region.
If the criteria are not met for a PiC instruction, the controller
moves data present in the high retention time bank to the low
retention time bank and places it in the same bank and subarray
(line 11). This is done by issuing a write operation to the other
retention time bank and also by setting the change in latch
direction flag in the latch control (in Figure 8a) to TRUE. If
the data is not present in the cache due to a read miss, the cache
controller fetches it from other memory levels and places it in
the appropriate cache bank based on whether the instruction is
executed on the CPU or PiC. Until then, the controller checks
if other sets of instructions stored in the PiC/PiM instruction
table are bit-line aligned and executable (line 7) to reduce the
stalls caused by the data movement. However, this requires
the availability of more instructions in the instruction table,
which will increase the instruction table size. The instruction
table size can depend on the number of parallel compute units
present in the memory, as discussed in Section IV-D.

VI. EXPERIMENTS

In this section, we first discuss the workloads that we used
for our analysis. Then, we describe our experimental setup for
the energy and latency access for STT-RAM memory, STT-
RAM, and SRAM caches.

A. Workloads

To simulate the behavior of real-world applications, we
utilized a set of eight workloads with varying characteristics.
The workloads and their corresponding input sizes are pre-
sented in Table I. For our analysis, we classified the workloads
into three distinct groups. The first group consists of CPU-
dependent workloads, which predominantly exhibit character-
istics that make them more efficiently executed by the CPU.
These characteristics include low instruction-level parallelism,
operations involving pointers, complex branching conditions,
or computationally intensive tasks that are not well-suited for
in-memory computing designs (e.g., multiplication operations
in our study). The second group comprises CPU-independent
workloads, which are simpler kernels that can be executed
entirely using PiC/PiM. Previous research on in-memory com-
puting has primarily focused on these types of workloads [3],
[11]. Within the CPU-independent workload group, we further
categorized them based on high data reuse and low data reuse,
allowing us to evaluate the trade-offs associated with data

Algorithm 1: Cache controller management
Data List of instructions to be executed in PiC,
T = [t1,to, ...,)
List of latch state table,
L =1l,ls,...,L,], where [; € 0,1 and m is the
number of cache blocks
Result: Heterogeneous cache PiC execution

1 V L = high retention time

2 for instructions € program do

3 (RetentionTime, Bank), g «— Address,, g

4 (Read/Write) s, g <— Instructiony, g

5 LatchControl(Read/write)

6 if instructions = PiC then

7 for each PiC instruction do

8 if RetentionTime, =

RetentionTimep and Bank, = Bankg then

9 Execute the instruction.

10 end

11 else

12 Transfer the cache block to a low

retention time bank.
13 if CacheMiss, or CacheMissg then
14 Fetch the data from the lower level
of memory.
15 Move to other PiC instructions to
avoid stalls.

16 end

17 end

18 end

19 end
20 end

TABLE I: Workloads used in our experiments

Category Kernel Input size
Kmeans nearest neighbor (KNN) 10° nodes
_ 2D convolution (conv) 108 samples
CPU-dependent Histogram (hist) 106 samples
Root-mean square error (rmse) 106 samples
e G
CPU-independent, Bmarlzfed neulrz'ﬂ network (bnn) 106 samples
high data reuse Matrix addition (mat_add) 10° samples
String Comparison (string) 2,409,780 letters
CPU-independent, Carryless multiplication (cmul) 10% samples
low data reuse

movement overheads for relaxed retention STT-RAM PiC and
non-volatile STT-RAM PiM. These selected workloads are
commonly encountered in applications such as image/signal
processing, data querying, etc.

B. Experimental methodology

The study of bit-line computing is quite nascent (currently in
the exploration phase), and thus, it is very difficult to come up
with a real hardware testbed to study the benefits of PiC/PiM
architectures using STT-RAM. Therefore, we have used state-
of-the-art simulation infrastructure, just like prior works (e.g.,
[3], [8]), to study the benefits of PiC/PiM computing. To model
the PiC/PiM computation logic, we used SPICE simulations
with 22nm CMOS libraries. We used NVSim [29] to obtain
the STT-RAM/SRAM cache and STT-RAM memory access

TABLE II: Cache and memory configurations
Memory hierarchy L1 cache 32kB-64B-4 L2 cache IMB-64B-8 Memory 512MB size
Memory Device SRAM STT-RAM SRAM STT-RAM STT-RAM
Retention time — T5us — T5us 10ms Syears
Read latency (cycles) 1 1 2 2 2 32
Write latency (cycles) 1 2 2 3 4 56
Logical operation (cycles) 3 3 4 5 6 88
Add operation (cycles) 18 15 19 15 16 97
Read energy per bit (in pJ) 0.125 0.086 1.77 0.75 0.75 24.55
Write energy per bit (in pJ) 0.19 4.69 0.62 9.647 15.604 640.89
Logical computation energy per bit (in pJ) 0.915 5.376 2.997 10997 16.954 666.045
Add computation energy per bit (in pJ) 1.355 5.816 3.437 11.437 17.394 666.49
Leakage power (mW) 43.95 17.63 1168.95 182.8 182.2 222.36

latency and energy. The NVSIM simulator presents a robust
and efficient way to evaluate STT-RAM cache and memories
since it has been validated against real STT-RAM cells. We
modified gem5 [30] to implement relaxed retention STT-RAM
caches and to model SRAM caches. The gem5 statistics were
then integrated with McPAT [31] to obtain the total system
power. We modeled a processor like ARM Cortex A72 with a
2GHz clock and 8GB memory, of which 512MB is used for
PiM.

Table II presents the cache and memory configurations,
along with the read, write, and computation latencies for each
operation at various levels of the memory hierarchy. Logical
operations are completed in a single cycle, as they require
approximately 120ps to execute bitwise logical operations. To
optimize area and energy for ADD operations, we employed a
Ripple Carry Adder design, which performs one bit computa-
tion at a time and propagates the carry bit to higher significant
bits. STT-RAM requires fewer cycles than SRAM for ADD
operations due to the longer slack within each STT-RAM read
cycle, allowing for more bit operations per cycle. The energy
figures are calculated by considering the energy required to
access the subarrays, bit-lines, and memory cells. The energy
for logical and ADD computations includes the access energy
for the cache, the computation energy, and the energy needed
to store the results in a subarray. Consistent with prior work
[3], we assumed that the execution unit of the processor is
powered off during PiC/PiM to conserve power.

VII. RESULTS AND ANALYSIS

In this section, we first compare operation chaining to
previous PiC/PiM computing approaches and then analyze the
tradeoffs of PiC using STT-RAM vs. SRAM. Subsequently,
we contrast STT-RAM-based PiC with PiM and discuss the
associated overheads. Additionally, we present results com-
paring heterogeneous and homogeneous STT-RAM caches for
PiC. Lastly, we examine the overheads of PiC and PiM to
understand the tradeoffs of the two approaches.

The results of STT-RAM vs. SRAM and PiC vs. PiM are
normalized to a traditional CPU with STT-RAM caches similar
to [32]. The traditional CPU does not have any PiC/PiM
optimization but features a relaxed retention STT-RAM cache
of 75us at L1 and 10ms at L2. Many prior works have
indicated several energy and area benefits of replacing SRAM
caches with STT-RAMs in different memory levels of tradi-
tional CPU-based computing [7], [14], [32], [33]. Thus, using
STT-RAM caches with the base CPU allows us to robustly
evaluate the added benefits of PiC/PiM architecture using STT-
RAMs. Comparisons are performed with respect to execution

SKNN ®@Conv GHistogram BRMSE @ Average
20.00%

1

Latency i Energy
S 15.00% :
T 10.00% : i
N
‘€ 5.00% % m \ i HT
§ 0.00% & i ! i 4 ’_F‘LHT
o -5.00% !
) L1 L2 Memory L1 L2 Memory

cache cache cache cache

Fig. 9: Latency and energy savings of CPU-dependent work-
loads using operation chaining for PiC/PiM at various memory
hierarchy compared to prior work (no operation chaining).

latency, energy consumption, and area. It is important to note
that the presented results account for the system components
remaining active during PiC-based computing, reflecting the
overall system energy.

A. Comparison between operation chained and conventional
PiC/PiM (prior work)

Firstly, we compare the optimized method for CPU-
dependent workloads, which utilizes operation chaining (Fig-
ure 6), with the traditional PiM approach as done in previous
studies [2]. This comparison is conducted at different levels
of the memory hierarchy, employing STT-RAMs for the cache
hierarchy (L1 and L2) and memory. The L2 cache is a
homogeneous cache design with a long retention time of 10ms.
We assume that the processor can operate concurrently with
PiC/PiM elements to fully leverage the advantages of operation
chaining. Although PiC has previously been implemented
exclusively in SRAM [3], [20], we utilized an STT-RAM PiC
implementation to assess the benefits of operation chaining.
In contrast to conventional PiC/PiM computing, the execution
unit of the processor remains active while utilizing operation
chaining.

Figure 9 demonstrates the comparisons of latency and
energy savings between operation-chained and conventional
PiC/PiM for L1 cache, L2 cache, and memory. On aver-
age, operation chaining improved overall latency for CPU-
dependent workloads in L1 cache, L2 cache, and memory
by 10.19%, 5.02%, and 5.82%, respectively. Conventional
PiC involved substantial data write-backs to lower memory
levels, necessitating cache reloads, whereas operation chaining
reduced data movement by up to 10.21% and increased the
utilization of compute units. The most significant latency
enhancements were observed for RMSE (16.98%, 10.13%,
and 10.43% for L1, L2, and memory, respectively), which
involved multiple data transfers to the processor for complex
computations (e.g., square and square root operations). In
the worst-case scenario, operation chaining provided minimal

Olatency SEnergy O Static Overhead

< 10.00% 20.00%
o 9o
5 800% 16.00%
E 6.00% 12.00% €
S 4.00% 8.00% &
§‘ 2.00% 400% B
2 0.00% 0.00% o
E B ‘0 B ‘0 ('D
® X

Fig. 10: Latency and energy savings for STT-RAMjy,.; at the
L2 cache for all the workloads compared to a homogeneous
STT-RAM cache design with 10ms retention time (STT-
RAM10m8)~

savings for histogram as the majority of the application was
executed on the CPU due to complex or sequential operations,
resulting in savings of 0.02%, 0.005%, and 0.01% for L1, L2,
and memory, respectively.

Operation chaining reduced energy consumption by 7.83%,
3.45%, and 2.62% for L1 cache, L2 cache, and memory, re-
spectively, compared to traditional PiC/PiM. Similar to latency,
the most substantial energy improvement was observed for
RMSE at 14.52%, 9.11%, and 5.78%, respectively. However,
operation chaining slightly increased the energy consumption
for histogram by 2.02%, 1.68%, and 0.11%, respectively.
This increase in energy was due to the simultaneous activity of
the CPU and PiC/PiM execution units, and the latency savings
did not fully compensate for the additional power consumption
of the PiC/PiM execution units. Given the overall superiority
of the operation-chained PiC/PiM over the traditional PiC/PiM
approach, we subsequently perform an analysis of computing
across the memory hierarchy using the operation-chained
PiC/PiM.

B. Heterogeneous vs. homogeneous STT-RAM PiC architec-
tures

For our work, we do not use heterogeneous configurations
for L1 caches. As seen in Section V, using heterogeneous
configurations allows us to reduce the retention time for PiC-
based operations thereby reducing the write cycles and energy,
and reducing write overheads. However, we empirically found
that for L1 caches, reducing the write cycles from 2 (for
75us as seen in Table II) to 1 requires a retention time
< 1ps, which significantly increases the miss rates for PiC-
based computing, resulting in high latency and energy costs.
Therefore, the heterogeneous design is only used in the L2
cache. We performed a design space exploration of average
cache block lifetimes as seen in Section IV-B to determine
that 75us sufficed for the low-retention time bank for PiC-
based computing and 10 ms sufficed for the high-retention
time bank for CPU accesses. The homogeneous STT-RAM
L2 cache will have 10ms of retention time.

Figure 10 presents the latency and energy savings of STT-
RAMy,;+ compared to STT-RAM;¢,,,s. The figure also presents
the percentage of static energy overhead incurred by the extra
active bank (keeping both high and low retention time bank on)
for STT-RAM},.; as seen in Section V. For brevity, the results

only show the optimizations achieved for PiC computations
since both STT-RAM},.; and STT-RAMg,,, s execute the CPU-
based operations using 10ms retention time. As seen from the
figure, STT-RAM}y,.; achieved latency and energy optimiza-
tions for all the workloads. The average latency improvement
across all the workloads was 5.86% and up to 8.78% for
CMU L. The latency benefits result from lower write latencies
achieved by reducing the data movement and shorter compute
cycles for 75us retention time, as seen in Table II. The highest
latency improvement was observed for CMUL because it
comprises entirely of logical operations, and the STT-RAM}, ¢,
reduced the latency of logical operations from 6 to 5 cycles. On
the other hand, the other workloads also feature add operations
for which STT-RAMj,; reduced the latency from 16 to 15. As
a result, the overall benefits are less for workloads featuring
add operations.

For energy optimization, STT-RAM},.; only achieved av-
erage savings of 2. 66%, with savings of up to 16. 88%
for Conv. The highest energy savings were observed for
workloads that exhibited high data reuse because they stored
more intermediate results in the cache without incurring cache
misses. The STT-RAMy,.; architecture is especially suited for
these workloads due to a 38.46% reduction in write energy per
bit over STT-RAMi¢,,,s as seen in Table II. For example, the
highest energy savings were observed for String, and Conv at
13.07% and 16.88%, respectively. String compares new data
with previously stored results, while Conwv stores intermediate
results and performs accumulation operations on these results.
Moreover, the power consumption of the extra bank did
not result in significant energy overhead for STT-RAMy,.;.
On average, the power overhead was only 0.34% across all
the workloads. The highest power overhead was 2.36% for
String which had high data movements that increased the
latency and static energy overhead of the extra active bank
of the heterogeneous architecture. Despite this static energy
overhead, STT-RAMjy,; still resulted in higher energy savings,
as seen in Figure 10 for all the workloads. These results reveal
the superiority of STT-RAM for PiC and also indicate that
a shorter retention time in the L2 cache suffices for PiC,
unlike CPU-based computing, which requires longer retention
times in the L2 cache. Therefore, considering the optimization
potential of the heterogeneous STT-RAM cache, we use STT-
RAMy,; for L2 caches for the rest of our experiments.

C. Comparison of different PiC candidates

In this subsection, we compare different candidates for PiC,
including relaxed retention STT-RAM, an SRAM design used
in prior work with a low-voltage word-line (SRAM;,) [6],
and a theoretical ideal SRAM cache model (SRAM;4.;) that
achieves the least data corruption during bit-line computing.
SRAM;,, has 50% more delay than SRAM;4.,; and requires
20% lower dynamic energy for its operations. The compar-
isons between SRAM and STT-RAM are presented for L1
and L2 caches, with a homogeneous L1 and heterogeneous
L2 STT-RAM. The results presented are normalized to the
traditional CPU with STT-RAM caches with retention time of
75us at L1 and 10ms at L2 cache.

OBNN CMUL ©Mat_Add @ String B KNN
@ Conv D Histogram ORMSE @ Geomean
’>212 Latency E Energy
£ ;
g i
B T I e
& ikl et o o]]
STT-RAM SRAM SRAM Iv E STT-RAM SRAM SRAM Iv

ideal ideal

(a) L1 cache

OBNN
@Conv

CMUL 0 Mat_Add
@ Histogram 0ORMSE

@ String BKNN

@ Geomean

a
S

Latency Energy

X)

N
S

Optimization (in

o MA ﬂnnmﬂ ﬂjﬂnnmﬂ ﬂﬁHHmnmﬂ‘Eﬂlﬂ Hﬂﬂnnﬂ 1 Hﬂﬂnmﬂ I Hﬂﬂnnﬂ

STT-RAM SRAMideal SRAMIv ' STT-RAM SRAMideal SRAM Iv
het het

(b) L2 cache

Fig. 11: L1/L2 STT-RAM, ideal SRAM (SRAM,4,;) and low voltage word-line SRAM (SRAM;,) compared to CPU.

1) LI cache: For the L1 cache, we use a homogeneous
STT-RAM with a 75 ps retention time. Figure 11a depicts the
optimization achieved using different L1 PiC implementations
compared to CPU-only computing for all the workloads. On
average, STT-RAM, SRAM,4.,; and SRAM;, reduced the
latency by 2.27x, 2.3x, and 2.22x, respectively, compared to
the CPU. For all of our applications, SRAM,4.,; had the
best execution time due to low write overheads compared
to STT-RAM. Although the add operations in STT-RAM had
fewer cycles than SRAM;4.,;, as seen in Table II, it was not
enough to offset the write overheads caused by STT-RAMs.
Note, however, that SRAM, 4. is a theoretical design and not
realistic in practice due to data corruption issues in SRAM
[6]. We observed that the highest latency optimizations were
achieved for Mat_add on L1 caches by STT-RAM (6.59x),
SRAM;geqr (6.82x), and SRAM;,, (5.79x). Compared to STT-
RAM, SRAMy, slightly increased the latency by an average of
1.95% and by up to 12% for Mat_add due to longer access
latencies of SRAM,,.

STT-RAM PiC performed much better with respect to en-
ergy. STT-RAM, SRAM; 4cq1, and SRAM,,, reduced the energy
by 2.84x, 2.72x, and 2.68x, respectively, compared to CPU.
STT-RAM outperformed SRAM;4cq; by 4.56%. Although
SRAM;, had a lower dynamic power than SRAM,4¢,;, it had
higher total energy because it ran slower. We observed the
highest improvement for matrix addition (M at_add), which
exhibited high data reuse—and more computations per data
movement—during sum accumulation. The L1 cache reduced
the latency of Mat_add by 6.58x, 6.819x, and 5.79x, and
reduced the energy by 10.19x, 7.76x, and 6.59x using STT-
RAM, SRAM; 4cqi, and SRAM,,, respectively. However, CPU-
dependent workloads had the lowest optimizations due to high
amounts of data movement (55% - 75% of total execution) and
smaller workload portions running on PiC/PiM. The latency
improved for the CPU-dependent workloads by an average of
1.43x, 1.44x, and 1.42x, and energy was reduced by 1.73x,
1.78x, and 1.84x using STT-RAM, SRAM ;g4eq1, and SRAMy,
respectively.

2) L2 cache: As mentioned earlier, the STT-RAM},; is
used in the L2 cache and features a 10ms retention time
for CPU-based computing and 75us retention time for PiC-
based computing. When comparing L1 and L2 caches, we
observed higher optimization in L2 PiC than in L1 PiC due to
more parallel units and lower data movement overhead from
memory. As seen in Figure 11b, STT-RAMy.¢, SRAM;gcal
and SRAM;, reduced the latency by 3x, 2.96x, and 2.889x, re-
spectively, compared to the CPU. STT-RAMs achieved higher

speedup than SRAM for ADD operations due to faster read
operations, enabling longer slack to perform more bit additions
per cycle. SRAM, 4.q; achieved the fastest speedup for logical
instructions, as seen in BNN, CMUL, and String applica-
tions due to SRAM’s faster write operations. For these appli-
cations, STT-RAM},.; only degraded performance by 0.68%,
0.35% and 1.15%, respectively. However, STT-RAM,.; had
better latency for ADD operation than SRAM due to better
hit-latency slack. This allowed STT-RAM ADD operations
to ripple-carry more bits and thus have better latency than
SRAMs. This resulted in overall performance benefits of
1.52% over SRAM;4eqi- SRAM;, achieved a low speedup for
logical and ADD instructions. Compared to SRAM,,, STT-
RAMy,.; reduced the average latency by 4.21% and up to
35.26% for Mat_add application.

The energy savings from L2 PiC were similarly quite
substantial, as seen in Figure 11b. Energy savings compared
to CPU-only computing for STT-RAMy,c¢, SRAM;4eq; and
SRAM;, were 4.16x, 4.12x, and 4.05x, respectively. The
energy savings were highest for Mat_add: 37.9x, 30.19x,
and 25.18x with STT-RAMp.t, SRAM,4eq;, and SRAMy,,
respectively. SRAM; 4¢q; outperformed STT-RAMy,; for CPU-
dependent workloads by 8.4$ on average because of the high
write energy overheads incurred by the STT-RAM due to
a high amount of data movements from the L2 cache to
the CPU and vice-versa. However, in general, STT-RAM},¢,
resulted in better optimization than SRAM,4.,; by an average
of 1.14% and achieved the highest optimization for Mat_add
by 25.85%.

STT-RAM}y,.; performed better than SRAM;,,, by an av-
erage of 2.70%, indicating that the static energy overhead of
slower SRAM,,,, is higher than the dynamic energy overhead
of STT-RAMs. Moreover, using a reliable SRAM;,,, for PiC
computations will also degrade the standard cache operations
for CPU-based computing due to their slower latency while
simultaneously increasing the area compared to STT-RAMs.

D. PiC vs. PiM

We explore the best level of the hierarchy for STT-RAM-
based PiC/PiM. For these experiments, we compare PiC with
75us retention time for L1 cache, heterogeneous STT-RAM
configuration for L2 cache, referred to as L2;¢;, and non-
volatile PiM. The L1 cache supports 16 32-bit computations,
L2 supports 64 32-bit computations, and we explored memory
with the capability for 256 or 512 32-bit computations (called
Mem-256 and Mem-512, respectively). Similar to prior sub-

oLt BL2 het

>
&

&

0Mem-256 OMem-512

= N »
o EN N

Optimization (in X)
©

H ”HHH MAnn FEM menn c@ER0 I'Iﬂﬂl_l

O NS Q < S
IO g

o [A

NI v
&
S

& o

(a) Latency <

oLt BL2 het 0 Mem-256 OMem-512

IS
=)

3

£30

c

i)

4‘%’20

£10 H .

Q i

o 0 ﬂﬂrﬂ mEN H Hﬂ-n AN Wem mEAn mEcn READ

S N4 » RS > Q & & S
@$ 0“ 'b\?“ B ‘13; <Y \°<§b Q}& oe'
S 32 [cd

(b) Energy <

Fig. 12: Relaxed retention STT-RAM PiC and non-volatile STT-RAM PiM compared to CPU. The memory that does 256 and

512 integer computations is called Mem-256 and Mem-512.

sections, the results are normalized to CPU-based computing
featuring STT-RAM caches at L1 and L2 levels.

Figure 12 presents the latency and energy results for com-
puting across the memory hierarchy. As seen in Figure 12a, L1
cache, L2y, Mem-256, and Mem-512 improved the latency
by 2.26x, 3x, 3.90x, and 5.53x, respectively, compared to
CPU-only computing. A closer look at the workloads showed
that different parts of the hierarchy were preferred for different
types of workloads. The average improvement for CPU-
dependent workloads was 1.46x, 1.58x, 1.45x, and 1.49x for
the L1 cache, L2, Mem-256, and Mem-512, respectively.
L2 PiC achieved the highest optimization for CPU-dependent
workloads due to the reduced data movement overhead from
the processor and a large number of parallel units. However,
for CPU-independent workloads, PiM had the fastest execution
due to low data movement and a large number of parallel units.
We observed a speedup of 3.58, 5.72x, 10.52x, and 20.59x
for CPU-independent workloads, respectively. This shows that
PiC works best for CPU-dependent workloads, whereas PiM
works best for CPU-independent workloads despite having
high access latency costs, as seen in Table II.

Contrary to latency, the L2 PiC outperformed the PiM in
energy savings (Figure 12b). On average, the L1 cache, L2,
Mem-256, and Mem-512 reduced the energy by 2.86x, 4.16x,
2.2x, and 2.69x, respectively, compared to CPU. Thus, L2
caches are more energy-efficient than Mem-256 and Mem-
512 due to reduced data movement and lower access latencies
and write overheads. For CPU-dependent workloads L1 cache,
L2et, L210ms, Mem-256, and Mem-512 improved energy by
1.73x, 2.05x, 1.28x, and 1.34x, respectively, and by 4.72x,
8.45x, 8.07x, 3.77x, and 5.39x for CPU-independent work-
loads.

We also observed that even though PiM’s and PiC’s exe-
cution latencies could be hidden behind operation chaining,
the number of computations that are performed remained the
same. This puts PiM at a disadvantage due to very high
write-energy overheads. Furthermore, high data reuse work-
loads also require additional writes within the same memory
hierarchy level, which greatly increases the dynamic energy
for the non-volatile memory and favors PiC by increasing the
computations per data transferred. PiM only achieved better
energy savings for two applications, BN N and CMU L, both
of which mainly perform logical operations and feature few
write operations. Compared to L2, Mem-256 and Mem-512
optimized energy by 5.94% and 25.08% for BN N and 2.90%
and 14.07% for CMU L.

E. Overhead

The implemented PiC/PiM compute units had a critical path
duration of 120ps and did not introduce any additional latency
to cache access. The energy consumed per bit for logical
and ADD operations were 0.6pJ and 1.04pJ, respectively. In
the case of STT-RAM L1, STT-RAM L2, and STT-RAM
memory, the compute elements accounted for only 11.16%,
3.54%, and 0.55% of the total energy consumption. For a
512x512 subarray of 6T SRAM, the compute unit occupied
3.7% of the total area. With STT-RAMs being twice as dense
as SRAM, our compute units required 6.37% of the subarray
area. In terms of cache area, the STT-RAM cache was 43.47%
and 79.86% smaller than SRAM for L1 and homogeneous
L2 cache, respectively. The heterogeneous L2 architecture
required approximately 90% more area than the homogeneous
L2 cache design but still consumed 61.75% less area than an
SRAM L2 cache.

These area savings achieved by STT-RAMs provide more
flexibility to incorporate more complex computational units
in systems with limited resources. Moreover, PiC based on
SRAM incurs additional performance overheads to mitigate
data corruption issues [6], which can also slow down CPU-
based computing. In general, STT-RAMs offer a more robust
and low-overhead solution for PiC implementations, charac-
terized by lower area requirements and minimal overheads in
preventing data corruption issues.

VIII. OPEN RESEARCH CHALLENGES

Bit-line computing situates compute units within memories
to increase parallelism and reduce data movement overhead.
Despite advancements in this computing paradigm, several
research challenges persist in bit-line computing, which also
applies to hierarchical in-memory computing as described in
this paper. Bit-line computing currently presents limitations
due to its focus on domain-specific problems and the necessity
for careful data alignment. To perform computations, data
must be bit-aligned within the memory array. This specializa-
tion favors array-based workloads such as matrix operations
commonly found in machine learning and image processing.
Consequently, bitline computing excels in domain-specific
architectures equipped with specialized compute units tailored
for these aligned computations. Additionally, chiplet-based
computing solutions can adopt bit-line computing accelera-
tors as modularized PiC/PiM chiplets. These chiplets can be
optimized for the specific bit-aligned workloads where this
technique would be most impactful.

Another prominent challenge is the exploration of an in-
struction set architecture for PiC/PiM to enable more compu-
tations per instruction. For instance, the instruction table in
Figure 7 stores the addresses of 32-bit instructions and can be
further optimized to store the address of an entire block within
the subarray, facilitating specific bit-aligned operations. Thus,
a single entry in the instruction table can point to two cache
blocks to perform 16 32-bit computations (assuming a cache
block size of 64B) on bit-aligned data.

Compiler capabilities need to be enhanced to identify the
regions of code that are PiC/PiM friendly. This will allow
users to run legacy code with PiC/PiM optimization without
modifying the code. Such modifications can be inspired by the
compiler handling of SIMD instructions, where the compiler
first scans the code to determine its vectorizability and then
computes a cost function to estimate the benefits of running
the code on a SIMD architecture. If the conditions are met, the
code is converted into SIMD executable code. Similarly, for
PiC/PiM computing, compilers can check if the code offers
parallelism and will not have significant data movements to
diminish the advantages of PiC/PiM computing. Furthermore,
the management of the cache and memory controller capa-
bilities in handling non-bit-aligned data or rearranging data
within different sub-arrays needs exploration. One solution
could be employing larger subarray sizes, but this would
increase overall cache access latency to accommodate more
data within the same sub-array. Alternatively, enhancing cache
controller capabilities to manage data transfer within the cache
and conceal data movement with the cache as much as possible
would be beneficial.

Hardware exploration should include error correction tech-
niques for STT-RAM-based PiC/PiM computing, tradeoff
analysis of sub-array size, cache access latencies, number
of compute units, and the overall speedup offered by PiC
computing. Additionally, automating the PiC/PiM compute
unit design flow to optimize complex compute unit designs
with low area, latency, and power overheads on the cache
and memories is crucial. However, larger compute units would
result in higher routing overheads in the caches and memories,
necessitating a cache/memory-aware compute unit design pro-
cess. Finally, increasing the number of compute units in the
cache leads to a higher number of cache reads/writes, signif-
icantly increasing cache power consumption. Thus, studying
the impact of thermal constraints arising from PiC/PiM com-
puting to establish limitations on the number of active compute
units is essential.

IX. CONCLUSION

In this article, we conducted the first study of the STT-
RAM cache as a candidate for processing in cache (PiC).
We compared relaxed retention STT-RAM PiC to SRAM.
Also, we compared STT-RAM PiC with non-volatile STT-
RAM processing in memory (PiM) to analyze the tradeoffs
of computing at different levels of the memory hierarchy.
Additionally, we analyzed homogeneous and heterogeneous
STT-RAM cache architectures featuring different retention
times for CPU and PiC computing. For our analysis, we

explored three types of workloads: CPU-dependent, CPU-
independent with low data reuse, and CPU-independent with
high data reuse. Our analysis revealed that STT-RAM offers
an excellent opportunity for energy- and area-efficient PiC,
providing latency benefits similar to those of SRAM. We also
found that the characteristics of the executing workloads influ-
ence the choice between PiC and PiM. For instance, STT-RAM
PiC outperforms PiM regarding latency optimization for CPU-
dependent workloads with low instruction-level parallelism
(ILP). This study demonstrates the significant promise of STT-
RAM-based PiC and calls for further research to effectively
implement it in emerging resource-constrained systems.

Future work involves exploring solutions to some of the
open research challenges in the area of hierarchical in-
memory computing. For instance, we plan to explore data-
flow-like computer architectures using STT-RAM hierarchical
computing, where different levels of the memory hierarchy
have distinct sets of compute units. This approach allows the
entire computer system to leverage a wider range of compute
capabilities to enhance the system’s overall performance and
energy efficiency. Additionally, we plan to explore design
space exploration strategies for these architectures. Using
effective exploration strategies will enable the systematic
evaluation of various architectural configurations to identify
Pareto-optimal solutions that balance multiple objectives, such
as performance, data movement overhead minimization, power
consumption, and area efficiency.

Furthermore, we plan to explore the automation of the
PiC/PiM compute unit design flow to optimize the compute
unit design for low area, latency, energy, and energy-delay
product. Given that the architectures explored herein are
domain-specific, such a design automation will lead to more
efficient and effective designs, reducing the time and effort
required for development. We would also like to explore
instruction set architecture for PiC/PiM, focusing on streamlin-
ing the bit-line alignment of data, thereby easing the burden
on the cache and memory controllers. Optimizing the data
alignment process will make the proposed PiC/PiM systems
more viable for a wide range of computing applications.

ACKNOWLEDGMENT

This work was partly supported by the National Science
Foundation (NSF) under grant CNS-1844952. Any views
expressed in this material are those of the authors and not
necessarily of the NSE.

REFERENCES

[11 A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
nanotechnology, vol. 15, no. 7, pp. 529-544, 2020.

[2] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan et al., “Google
workloads for consumer devices: Mitigating data movement bottle-
necks,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2018, pp. 316-331.

[3] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute caches,” in 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 1EEE, 2017, pp.
481-492.

[4]

[51
[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

J. Picorel, D. Jevdjic, and B. Falsafi, “Near-memory address translation,”
in 2017 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT). leee, 2017, pp. 303-317.

R. Das, “Blurring the lines between memory and computation,” /[EEE
Micro, vol. 37, no. 6, pp. 13-15, 2017.

S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28 nm con-
figurable memory (tcam/bcam/sram) using push-rule 6t bit cell enabling
logic-in-memory,” IEEE Journal of Solid-State Circuits, vol. 51, no. 4,
pp.- 1009-1021, 2016.

Z. Sun, X. Bi, H. Li, W.-FE. Wong, Z.-L. Ong, X. Zhu, and W. Wu, “Multi
retention level stt-ram cache designs with a dynamic refresh scheme,”
in proceedings of the 44th annual IEEE/ACM international symposium
on microarchitecture, 2011, pp. 329-338.

S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory
with spin-transfer torque magnetic ram,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 26, no. 3, pp. 470483,
2017.

K. Kuan and T. Adegbija, “Energy-efficient runtime adaptable 11 stt-
ram cache design,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 6, pp. 1328-1339, 2019.
C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan,
“Relaxing non-volatility for fast and energy-efficient stt-ram caches,”
in 2011 IEEE 17th International Symposium on High Performance
Computer Architecture. 1EEE, 2011, pp. 50-61.

F. Parveen, Z. He, S. Angizi, and D. Fan, “Hielm: Highly flexible in-
memory computing using stt mram,” in 2018 23rd Asia and South Pacific
Design Automation Conference (ASP-DAC). 1EEE, 2018, pp. 361-366.
K. C. Chun, H. Zhao, J. D. Harms, T.-H. Kim, J.-P. Wang, and C. H.
Kim, “A scaling roadmap and performance evaluation of in-plane and
perpendicular mtj based stt-mrams for high-density cache memory,”
IEEE journal of solid-state circuits, vol. 48, no. 2, pp. 598-610, 2012.
K. Wang, J. Alzate, and P. K. Amiri, “Low-power non-volatile spintronic
memory: Stt-ram and beyond,” Journal of Physics D: Applied Physics,
vol. 46, no. 7, p. 074003, 2013.

D. Gajaria, K. Kuan, and T. Adegbija, “Scart: Predicting stt-ram cache
retention times using machine learning,” in 2019 Tenth International
Green and Sustainable Computing Conference (IGSC). 1IEEE, 2019,
pp- 1-7.

A. Ankit, I. Chakraborty, A. Agrawal, M. Ali, and K. Roy, “Circuits
and architectures for in-memory computing-based machine learning
accelerators,” IEEE Micro, vol. 40, no. 6, pp. 8-22, 2020.

V. Seshadri, K. Hsieh, A. Boroum, D. Lee, M. A. Kozuch, O. Mutlu,
P. B. Gibbons, and T. C. Mowry, “Fast bulk bitwise and and or in dram,”
IEEE Computer Architecture Letters, vol. 14, no. 2, pp. 127-131, 2015.
F. Gao, G. Tziantzioulis, and D. Wentzlaff, “Computedram: In-memory
compute using off-the-shelf drams,” in Proceedings of the 52nd annual
IEEE/ACM international symposium on microarchitecture, 2019, pp.
100-113.

S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in emerg-
ing non-volatile memories,” in Proceedings of the 53rd Annual Design
Automation Conference, 2016, pp. 1-6.

D. Fan, S. Angizi, and Z. He, “In-memory computing with spintronic
devices,” in 2017 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). 1EEE, 2017, pp. 683-688.

C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaaauw, and R. Das, “Neural cache: Bit-serial in-cache acceleration
of deep neural networks,” in 2018 ACM/IEEE 45Th annual international
symposium on computer architecture (ISCA). 1EEE, 2018, pp. 383-396.
A. Nag, C. Ramachandra, R. Balasubramonian, R. Stutsman, E. Gi-
acomin, H. Kambalasubramanyam, and P.-E. Gaillardon, “Gencache:
Leveraging in-cache operators for efficient sequence alignment,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 334-346.

D. Gajaria, K. A. Gomez, and T. Adegbija, “A study of stt-ram-based
in-memory computing across the memory hierarchy,” in 2022 IEEE 40th
International Conference on Computer Design (ICCD). IEEE, 2022,
pp. 685-692.

R. L. Harrison, “Introduction to monte carlo simulation,” in AIP con-
ference proceedings, vol. 1204, no. 1. American Institute of Physics,
2010, pp. 17-21.

A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer, and C. R.
Das, “Cache revive: Architecting volatile stt-ram caches for enhanced
performance in cmps,” in DAC Design Automation Conference 2012.
IEEE, 2012, pp. 243-252.

E. Chen, D. Apalkov, Z. Diao, A. Driskill-Smith, D. Druist, D. Lottis,
V. Nikitin, X. Tang, S. Watts, S. Wang et al., “Advances and future

[26]

(27]

(28]

[29]

[30]

(31]

[32]

[33]

prospects of spin-transfer torque random access memory,” IEEE Trans-
actions on Magnetics, vol. 46, no. 6, pp. 1873-1878, 2010.

J. J. Dongarra, F. G. Gustavson, and A. Karp, “Implementing linear
algebra algorithms for dense matrices on a vector pipeline machine,”
Siam Review, vol. 26, no. 1, pp. 91-112, 1984.

D. Fujiki, S. Mahlke, and R. Das, “Duality cache for data parallel
acceleration,” in Proceedings of the 46th International Symposium on
Computer Architecture, 2019, pp. 397-410.

Z. Wang, C. Liu, and T. Nowatzki, “Infinity stream: enabling transparent
and automated in-memory computing,” IEEE Computer Architecture
Letters, vol. 21, no. 2, pp. 85-88, 2022.

X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 7, pp. 994-1007, 2012.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp- 1-7, 2011.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proceedings of
the 42nd annual ieee/acm international symposium on microarchitecture,
2009, pp. 469-480.

Z. Sun, X. Bi, H. Li, W.-F. Wong, and X. Zhu, “Stt-ram cache hierarchy
with multiretention mtj designs,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 6, pp. 1281-1293, 2013.

K. Kuan and T. Adegbija, “Halls: An energy-efficient highly adaptable
last level stt-ram cache for multicore systems,” IEEE Transactions on
Computers, vol. 68, no. 11, pp. 1623-1634, 2019.

Dhruv Gajaria received his M.S. and Ph.D. in
Electrical and Computer Engineering from the Uni-
versity of Arizona in 2019 and 2023, respectively,
and his B.Eng in Electronics Engineering from the
University of Mumbai, India, in 2017. He is a
Post-Doctoral Research Associate with the High
Performance Computing Group at Pacific Northwest
National Lab, USA. His research interests include
hardware-software co-design, computer architecture,
simulation and performance analysis, and domain-
specific architectures.

Kevin Antony Gomez received his B.S in Electrical
and Computer Engineering from the University of
Arizona in 2022. He is currently an M.S. student
of Computer Science at the University of Mas-
sachusetts, Amherst. His research interests include
in-cache/in-memory computing and ML tools for
domain-specific architectures.

Tosiron Adegbija received his M.S and Ph.D. in
Electrical and Computer Engineering from the Uni-
versity of Florida in 2011 and 2015, respectively
and his B.Eng in Electrical Engineering from the
University of Ilorin, Nigeria in 2005. He is currently
an Associate Professor of Electrical and Computer
Engineering at the University of Arizona, USA. His
research interests are in computer architecture, with
an emphasis on brain-inspired computing, adapt-
able computing, low-power embedded systems de-
sign and optimization methodologies, and domain-

specific architectures. He received the CAREER Award from the National
Science Foundation in 2019. He currently serves as an Associate Editor for
the IEEE Transactions on Computers and Embedded Systems Letters. He is
a Senior Member of the IEEE.

	Introduction
	Background and Related Work
	Overview of the STT-RAM cell
	Relaxed-retention STT-RAM caches
	STT-RAM-based processing in cache/memory (PiC/PiM)

	Overview of hierarchical in-memory computing
	Relaxed Retention Processing in Cache (PiC)
	Architecture
	Determining the best retention time
	Mitigating the effects of process variation
	Operation chaining for CPU-dependent workloads

	Heterogeneous cache design
	Heterogeneous retention cache architecture
	Heterogeneous retention cache management

	Experiments
	Workloads
	Experimental methodology

	Results and Analysis
	Comparison between operation chained and conventional PiC/PiM (prior work)
	Heterogeneous vs. homogeneous STT-RAM PiC architectures
	Comparison of different PiC candidates
	L1 cache
	L2 cache

	PiC vs. PiM
	Overhead

	Open research challenges
	Conclusion
	References
	Biographies
	Dhruv Gajaria
	Kevin Antony Gomez
	Tosiron Adegbija

