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Abstract

The increasing complexity and demand for faster, energy-efficient
hardware designs necessitate innovative High-Level Synthesis (HLS)
methodologies. This paper explores the potential of Large Language
Models (LLMs) to streamline or replace the HLS process, leverag-
ing their ability to understand natural language specifications and
refactor code. We survey the current research and conduct exper-
iments comparing Verilog designs generated by a standard HLS
tool (Vitis HLS) with those produced by LLMs translating C code
or natural language specifications. Our evaluation focuses on quan-
tifying the impact on performance, power, and resource utilization,
providing an assessment of the efficiency of LLM-based approaches.
This study aims to illuminate the role of LLMs in HLS, identifying
promising directions for optimized hardware design in applications
such as Al acceleration, embedded systems, and high-performance
computing.
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1 Introduction

The increasing demand for custom hardware accelerators, driven by
applications ranging from artificial intelligence to high-performance
computing, necessitates innovative design methodologies to meet
the challenges of rapidly evolving technology. High-Level Synthesis
(HLS) has emerged as a valuable approach for designing, synthesiz-
ing, and optimizing hardware systems. HLS [8] enables designers to
define systems at a high abstraction level, independent of low-level
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circuit specifics, and utilize HLS tools to produce an optimized low-
level hardware description of the target system. With current HLS
tools (e.g., Vitis HLS, SmartHLS), designers can create application-
specific embedded systems using high-level languages like C/C++
and translate them into register-transfer level (RTL) implementa-
tions using hardware description languages (e.g., Verilog. VHDL),
thereby enhancing design productivity and reducing both design
time and cost. Despite the advantages of HLS, the tools can still be
time-consuming to use and demand considerable expertise, thus
creating the potential for substantial improvement, especially with
the integration of technologies like large language models (LLMs).

Recent advancements in LLMs [30] have showcased their ability
to automate various computational tasks, including code genera-
tion and software engineering. This presents a unique opportunity
to explore the potential of LLMs in streamlining the HLS process,
from high-level language specifications to efficient hardware im-
plementations [6]. The ability of LLMs to understand and generate
code, combined with the potential for natural language interaction,
can revolutionize the way we design hardware, making the process
more accessible and less time-consuming. This integration can lead
to significant improvements in design productivity and efficiency,
ultimately transforming the landscape of hardware development.

In this paper, we explore the burgeoning field of LLMs for HLS,
which has sparked growing interest. We first present a taxonomy of
LLM use cases for HLS, highlighting the various ways these models
can be integrated into the design flow. Building on this foundation,
we survey the state-of-the-art, highlighting the most promising
research and techniques. To assess the viability of LLMs in the HLS
design flow, we perform an experimental evaluation, comparing the
Verilog designs generated using a standard HLS tool, specifically
Vitis HLS, to those produced with LLM-based approaches. These
approaches include direct LLM translation of C benchmarks from
the PolyBench Suite [20] to Verilog using ChatGPT-40, and the
use of LLMs to interpret natural language specifications into both
benchmarks and Verilog. Our evaluation focuses on the quality
(performance, power, resource utilization) of designs produced by
each methodology.

This study seeks to answer several key questions: Can existing
LLMs generate Verilog code comparable in quality to that produced
by traditional HLS tools? What are the advantages and limitations
of using LLMs in this context? Could the natural language under-
standing capabilities of LLMs open up new avenues for hardware
design? By addressing these questions, we aim to provide valu-
able insights into the role of LLMs in HLS and their potential to
transform the future of hardware design.
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Figure 1: Taxonomy of LLM applications in HLS

2 Taxonomy of LLM for HLS

The application of LLMs to different stages of the HLS process has
emerged as a promising research direction. To provide a structured
overview of this evolving landscape, we present a taxonomy (illus-
trated in Figure 1) that categorizes LLMs based on their primary role
in HLS: specification generators, design space exploration assistants,
code generators, and hardware verification tools. This classification
provides a framework for understanding how LLMs can augment
HLS methodologies, as detailed in the following subsections.

2.1 LLM as Specification Generator

LLMs hold promise as specification generators in HLS, translating
natural language or higher-level code into HLS-compatible formats
(e.g., HLS-C) [7, 23, 29]. This allows for intuitive and accessible ex-
pression of hardware functionality. Challenges persist in mitigating
ambiguities inherent in natural language, which can lead to misin-
terpretations. Techniques like prompting, clarification dialogues,
and formal verification are crucial for ensuring the correctness of
LLM-generated specifications [15].

2.2 LLM as Code Generator

LLMs can help with code generation, directly generating synthesiz-
able HDL from high-level specifications [4, 6, 26]. This automation
can boost productivity and reduce errors. The challenge lies in en-
suring generated code quality and providing designers control over
code structure and style [15]. Recent research demonstrates LLM
capabilities in generating functional HDL for various hardware com-
ponents, including arithmetic units [14], controllers, and simple
processors [4], suggesting a promising future for this approach.

2.3 LLM as Hardware Verification Assistant

LLMs can assist with hardware verification in HLS, by automating
the generation of test cases and identifying potential design flaws [1,
12]. This can lead to significant time savings and improved design
reliability. However, challenges persist in ensuring the accuracy of
LLM-generated test cases and their integration into existing HLS
workflows. Ongoing research [19] explores the potential of LLMs
in areas like formal verification, further highlighting their potential
in ensuring the correctness of complex designs.
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2.4 LLM as Design Space Exploration Assistant

Although receiving less attention than other applications, LLMs
are promising in aiding HLS design space exploration (DSE) by sug-
gesting optimizations and exploring design alternatives [13]. Their
ability to analyze design constraints and objectives can lead to faster
design cycles and innovative solutions. However, effective LLM DSE
assistance requires incorporating domain-specific knowledge and
addressing potential biases in suggestions. Recent research shows
LLMs can optimize hardware accelerators, explore neural network
architectures, and propose circuit-level optimizations, emphasizing
their transformative potential for DSE [25].

3 Survey of the State-of-the-Art in LLMs for
HLS

This section surveys the diverse applications of LLMs in HLS, span-
ning hardware design automation, software-hardware co-design,
and design of embedded systems. We examine key research ar-
eas such as natural language processing (NLP) to HDL translation,
code generation, optimization and verification, and multimodal
approaches. We also discuss input modalities used in the state-of-
the-art, like textual descriptions and pseudocode, and the output
modalities such as HDLs (VHDL, Verilog, SystemVerilog) and HLS-
compatible programs (e.g., HLS-C). Finally, we highlight current
approaches to benchmarking and evaluating LLM-driven HLS, em-
phasizing the need for standardized metrics and datasets to facilitate
fair comparisons and drive further advancements in this rapidly
evolving field.

3.1 LLMs Used for HLS

Recent advancements in LLMs such as ChatGPT, Gemini, Claude,
and LLAMA have great potential for use in HLS. While many cur-
rent works leverage the popular ChatGPT for their HLS experi-
mentation, both general-purpose and custom-tuned LLMs have
been utilized to automate and optimize synthesis processes [10]. As
expected, fine-tuning models on domain-specific data often yields
superior performance in generating desired outputs within the HLS
workflow. For instance, Nadim et al. [17] introduced a multi-expert
LLM architecture to address the challenges of design complexity. By
using specialized models and a complexity classifier, they achieved
an improvement of up to 23.9% in the pass@k metric. However, a
consistent theme emerging from both existing literature and our ex-
periments is the necessity of human-in-the-loop (HITL) approaches
for successful LLM integration in HLS. For example, Collini et al. [7]
highlighted the significant human expert guidance required for con-
verting a C-based QuickSort kernel to HLS-C. Similarly, Swaroopa
et al. [23] demonstrated a semi-automated approach for generat-
ing HLS-C from natural language using LLMs, acknowledging the
need for human intervention in the design process, though their
work did not evaluate the quality of the resulting designs. Such
a HITL approach leverages the computational strengths of LLMs
while retaining the nuanced understanding and decision-making
capabilities of human experts, to achieve superior HLS outcomes.

3.2 Applications

The increasing interest in applying LLMs to HLS has led to promis-
ing developments across various domains. For example, LLMs have
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shown success in automating the generation of analog/mixed-signal
(AMS) circuit netlists from transistor-level schematics [24]. In the
domain of RTL generation, LLMs have demonstrated their capa-
bility to generate RTL code from natural language descriptions
[15] and, as explored in [4], have the potential to aid in writing
and debugging HDL code through conversational interactions with
existing LLM tools like ChatGPT. Additionally, LLMs are being inte-
grated into tools like MATLAB and Simulink to translate high-level
design specifications into synthesizable Verilog and VHDL code,
streamlining the HDL generation process. In the domain of code
security, Nair et al. [18] investigated the vulnerabilities in hard-
ware code generated by ChatGPT, specifically analyzing common
weaknesses enumerations (CWE) and proposing strategies to guide
secure hardware code generation.

Beyond these applications, LLMs are being explored for broader
roles in the HLS workflow. Recent work has explored the poten-
tial of LLMs to refactor existing C code into HLS-compatible for-
mats, bridging the gap between software and hardware design
[7, 11, 23, 29]. Models like ChatGPT have been leveraged to convert
high-level design specifications into synthesizable HDL, targeting
specific hardware components such as random number generators
[16]. They have been used for automated code repair and optimiza-
tion to improve the quality of HLS-C programs [29]. Furthermore,
LLMs have shown promise in generating HLS pragmas [11, 29],
which are compiler directives that can significantly impact the
quality of the generated hardware. Moreover, the use of LLMs for
automated testbench generation [3, 21] and hardware design verifi-
cation tasks [1, 12] further expands their potential applications in
HLS. The growing breadth of LLM applications in HLS underscores
their potential to enhance automation, efficiency, and accessibility
throughout the hardware design process.

3.3 Input and Output Modalities

The versatility of LLMs in HLS stems, in part, from their ability to
process and generate information across diverse modalities. Textual
descriptions, including high-level design specifications, natural lan-
guage explanations of functionality, and code snippets in languages
like C/C++ often serve as primary input modalities. LLMs can trans-
form these textual inputs into HDL such as Verilog or VHDL, as
seen in applications that convert natural language descriptions
directly to HDL [4, 15, 16]. Beyond text, advanced LLMs are increas-
ingly capable of handling multimodal inputs, which incorporate
images, schematics, or other data types [5]. This can allow for a
more nuanced understanding of design requirements by integrating
visual and textual information.

The output modalities of LLMs for HLS are equally diverse. Pri-
marily, LLMs can generate synthesizable HDL code from textual or
multimodal inputs [15]. Additionally, LLMs can optimize existing
code by automatically inserting and tuning pragmas to enhance
the synthesis process. Moreover, LLMs can generate testbenches
and verification scripts, which are vital to validate the functionality
and performance of the synthesized hardware.

3.4 Benchmarking and Evaluation

The evaluation and advancement of LLMs in HLS rely on robust
benchmarks and datasets. Several key initiatives have emerged to
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address this need, including the RTLLM benchmark [15], which
provides a framework for evaluating LLM performance in generat-
ing RTL from natural language instructions, encompassing syntax,
functionality, and code quality. The RTL-Repo benchmark [2] ex-
pands this evaluation by assessing LLM capabilities in generating
Verilog code autocompletions within large-scale and complex RTL
projects, reflecting real-world design scenarios. VerilogEval [14] is
a framework for evaluating the effectiveness of LLMs in generating
Verilog code, including tasks like module implementation, code
debugging, and testbench construction, to assess their potential in
hardware design automation. Similarly, VHDL-Eval [27] is a special-
ized framework designed to evaluate LLM performance specifically
in VHDL code generation. Wan et al. [28] explored using LLMs to
insert bugs into HLS code, and created a dataset including both
correct and injected buggy codes. These benchmarks and datasets,
along with other emerging efforts, are crucial in LLM-driven HLS
research, facilitating the evaluation of LLM capabilities and guiding
the development of more robust HLS solutions.

4 Experimental Methodology

This section details our experimental methodology for evaluating
the effectiveness of integrating LLMs into the HLS process. We aim
to assess both the design process and the quality of the hardware
generated using LLMs in comparison to solely using traditional
HLS tools. We investigate four approaches:

(1) Baseline: Generating Verilog using a standard HLS tool (Vitis
HLS) from C code.

(2) Direct LLM translation: Employing LLMs to translate C code
into Verilog.

(3) Natural language to Verilog: Directly generating Verilog code
from natural language specifications using LLMs.

(4) Natural language to code: Using LLMs to interpret natural
language specifications into HLS-C benchmarks, which are
then translated into Verilog using Vitis HLS.

4.1 HLS Approach

The general HLS design flow, as illustrated in Figure 2a, transforms
a high-level language input to a synthesizable hardware descrip-
tion (e.g., in Verilog or VHDL). This process starts with describing
the desired hardware functionality in a high-level language like
C/C++/SystemC), followed by synthesis for a specific hardware
target, e.g., FPGAs like the Artix-7 or Zynq UltraScale+. We refer
to this process as C—HLS— Verilog.

HLS tools offer a range of directives to guide the synthesis pro-
cess, allowing designers to control various aspects of the design,
such as loop unrolling, pipelining, array partitioning, and perfor-
mance optimization. While these directives provide flexibility, the
resulting HDL code generated by HLS tools can often be complex
and challenging to interpret for designers who are primarily ac-
customed to higher-level programming languages. This limited
visibility into the generated HDL code is a key consideration that
motivates the exploration of LLMs in HLS, aiming to improve the
design process by providing higher-level abstractions or enhancing
code understandability.
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Figure 2: HLS-based (a) and LLM-based (b) approaches to generating hardware accelerators

Background:

I am a hardware engineer,

and I want to transfer a

C program to synthesizable Hardware Description Language (
RTL) in Verilog with a full module, including I1/0 and
functionalities from the C program. This Verilog module
should target a Xilinx FPGA board.

(a) Prompt

Sure, I can help with that. Please provide the C program you
want to translate to Verilog. Additionally, let me know if
there are any specific functionalities or constraints you
need to consider for the translation, such as the I/O pin
count or specific features of the Xilinx FPGA board you
are targeting.

(b) Feedback
Figure 3: Background, role, and constraints

4.2 LLM-Assisted HLS Approaches

Here, we describe the three LLM-assisted approaches explored
herein, showcasing the diverse ways in which LLMs can contribute
to hardware design. The direct LLM translation approach, denoted
as C—LLM— Verilog, and the natural language to Verilog approach,
denoted as NL— LLM— Verilog, demonstrate the capability of LLMs
to generate Verilog directly from either code or natural language de-
scriptions. The natural language to benchmark approach, denoted
as NL— LLM— HLS-C, on the other hand, highlights the potential
for LLMs to augment existing HLS tools by raising the level of ab-
straction to natural language input. Figure 2b illustrates the design
flow for each of these LLM-assisted HLS methodologies.

4.2.1 C—LLM— Verilog. The use of LLMs to directly generate syn-
thesizable hardware accelerators in Verilog requires a well-defined
procedure. This procedure involves the steps to generate Verilog
code from high-level specifications and subsequent steps to produce

a fully functional accelerator, from simulation to place-and-route.
For example, a testbench is necessary to validate the accelerator’s
functionality during simulation. A place-and-route-ready hardware
accelerator consists of Verilog code, TCL commands to automate
the assembly of the accelerator’s design (instantiating IP cores,
connecting them, and setting up the overall project structure), and
XDC files to specify the constraints of the accelerator such as clock
period and I/O delay.

Figures 3, 4, 5, 6, and 7 illustrate our C—LLM— Verilog process
for different components of the hardware design flow. The first step
defines the context of the generation process, including, but not
limited to, the designer’s role, the hardware background, and the
constraints that the LLM (ChatGPT-4o, in our case) should follow
to better identify the corresponding context and purpose of this
process. Figure 3 shows the context we used in our experiments.
We identify ourselves as hardware engineers and aim to translate a
C program to HDL in Verilog. We specify that this Verilog module
should target the Xilinx FPGA part xc7a200tfbg-484-1. Although
ChatGPT-4o records the part in its memory, the design is not guar-
anteed to meet the I/O or resource constraints unless we explicitly
instruct the LLM to meet the I/O constraints. If the specification of
the part does not exist or is incorrect in the LLM, we must manually
provide this information to the LLM.

After providing the role, background, and constraints of the de-
signer and hardware to the LLM, we provide the source code to the
LLM. It is important to be mindful of ChatGPT-40’s limitations: a
128k token limit for combined input and output, with a maximum
of 4k tokens for the output alone. If a larger program is needed,



(Invited Paper) Are LLMs Any Good for High-Level Synthesis?

#define N 64

void syrk(float alpha, float beta,
float A[N][N], float B[N][N], float C_out[N][N]) {
int i, j, k;

float buff_AO0[N][N];
float buff_B1[N][N];
float buff_B[N][N];
float buff_C_out[N][N];

(a) Prompt

“timescale 1ns / 1ps
module syrk#(parameter N = 64) (
input [31:0] alpha,
input [31:0] beta,
integer i, j, k;
input [31:0] A[0:N-1][0:N-1],
input [31:0] B[0:N-1][0:N-1],
output reg [31:0] C_out[0:N-1][0:N-1]);
reg [31:0] buff A0O[0:N-1][0:N-1];
reg [31:0] buff A1[0:N-1][0:N-1];
reg [31:0] buff B[0:N-1][0:N-1];
reg [31:0] buff C_out[0:N-1]J[0:N-1];);

(b) Feedback

The inputs A, B, and C_out are not correct. We need an external
RAM to handle the 2D array. The width of the address and
the width of the data should be declared as module
parameters .

(c) Prompt2

module syrk#(parameter N = 64 ,DATA WIDTH = 32) (
input clk,
input rst,
input [DATA WIDTH-1:0] alpha,
input [DATA WIDTH-1:0] beta,
input [DATA WIDTH-1:0] A_data,
input [DATA WIDTH-1:0] B_data,
output reg [DATA WIDTH-1:0] C_out_data,
input [$clog2(N«N) -1:0] A_addr, B_addr,
C_out_addr,
input A_we, B_we, C_out_we);

(d) Feedback2

Figure 4: Inputs and error checking (I/0)

it should be divided accordingly. In our experiments, all C bench-
marks were within the 128k token limit, allowing us to input the
entire program at once. However, due to the 4k output constraint,
generating the complete Verilog accelerator required multiple iter-
ations. Once generated, the Verilog output undergoes syntax and
design error checking.

For designers proficient in hardware design, syntax and design
error checking can be performed directly within the LLM. Other-
wise, a validation tool like Vivado is necessary. Once an error is
identified, we describe the error in natural language to the LLM
and regenerate the Verilog code. This process is repeated until suc-
cessful simulation and implementation in Vivado. We encountered
some common errors in the process, such as incorrect data type
mapping in I/O (Figure 4), misrepresentation of sequential and
parallel execution (Figure 5), and state machine implementation
errors (figures omitted for brevity). The designer’s expertise level
significantly impacts the speed and efficiency of this iterative error
resolution process.

The final step in the LLM-assisted design flow is generating
TCL scripts for IP integration, XDC constraints, and testbench
content (Figures 6 and 7). This step faces similar challenges as
previous steps if the LLM lacks knowledge of the latest syntax or
specifications, leading to more errors in generated files. For example,
defining a proper clock period and calculating IEEE 754 standard
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Ipt: for (i = 0; i < N; i++) {
Ip2: for (j = 0; j < N; j++) {
if (j > i) continue;
Ip3: for (k = 0; k < N; k++) {
buff_C_out[i][j] += alpha =«
buff A0[i][k] « buff A1[j][k];

(a) Prompt

; 1 <N; i =1 + 1) begin
=0; j <N; j =)+ 1) begin
(j <= i) begin
for (k = 05 k < N; k =k + 1)
begin
buff_C_out[i][j] <= buff_C_out[i][j]
+ alpha « buff A0[i][k]
« buff A1[j][k];
end
buff_C_out[i][j] <= buff_C_out[i][j]
+ beta « buff B[i][j];
end else begin
C out[i][j] <= 0;
end
end
end

(b) Feedback

This looks wrong, A, B, C_out, are external BRAM, please update
this again.

(c) Prompt2

COMPUTE: begin
A_read <= 0;
B_read <= 0;
reg_ A <= A_data_in;
reg B <= B_data_in;
reg C <= reg C + alpha » reg A « reg B;

k <= k + 1;
if (k == N) begin
k <= 0;

state <= WRITE_C;
end
else begin
state <= LOAD_A;
end
end

(d) Feedback2

Figure 5: Inputs and error checking (loop)

Please write a tcl code to create a bram IP with properties
like this

-vendor xilinx .com

-version 8.4

-module_name blk_mem_gen_0

-Write_Depth A {4096}

-Write_Width_A {32}

(a) Prompt

# Create BRAM IP with specific properties
create_ip -name blk_mem_gen -vendor xilinx.com -library ip
-version 8.4 -module_name blk_mem_gen_0

# Set properties for BRAM IP

set_property -dict [list \
CONFIG.Enable_A {Always_Enabled} \
CONFIG.Register_PortA_Output_of Memory_Primitives
{false} \
CONFIG.Write_Depth_A {4096} \
CONFIG.Write Width_A {32} \

] [get_ips blk_mem_gen 0]

(b) Feedback

Figure 6: Inputs and error checking (IP)
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Please write a testbench for this Verilog code, with
instantiated BRAM. Use the 32-bit IEEE-754 format and set
all initial values of the inputs to be between 0 and 1,
where N = 64 and the period is 10ns. The float_to_ieee754
function is provided. Stop when done, and use fixed input
values do not use random values. For input A, set A[i][j]
= ((i +j) % 100) / 100.0; and x[i] = (i % 100) / 100.0.
The initial integer should be declared outside the initial

block .
(a) Prompt
'Inslantiute the syrk module
syrk #(.N(N), .DATA_WIDTH(DATA WIDTH)) syrk_inst (
cclk(clk),

.rst(rst),
.start_computation (start_computation),
.alpha(alpha),
.beta(beta),
.A_data_in(A_data_in),
.B_data_in(B_data_in),
.C_data_out(C_data_out),
.A_addr_out(A_addr_out),
.B_addr_out(B_addr_out) ,
.C_addr_out(C_addr_out),
.A_read(A_read),
.B_read(B_read),
.C_write (C_write) ,
.done(done)

(b) Feedback

Figure 7: Inputs and error checking (Testbench)

floating-point values require the latest specifications. To address
this problem, we manually provided the necessary information to
the LLM, which learns and adapts over time, potentially reducing
errors in future iterations.

4.2.2 NL—LLM—> Verilog. The second approach is similar to C—
LLM— Verilog but uses natural language descriptions (or pseu-
docode) of the program’s functionality as input to the LLM, instead
of a programming language like C/C++. We described details such
as input/output, variable types, loops, and operations. The number
of prompts required in this approach depends on the complexity
of the program and the designer’s preferences, with LLMs like
ChatGPT-4o potentially accommodating the entire program in a
single prompt, as in our experiments.

4.23 NL—LLM—HLS-C. The third approach differs from the pre-
vious two by leveraging the strengths of both LLMs and traditional
HLS tools. Instead of generating Verilog directly, it utilizes an LLM
to translate natural language descriptions into HLS-compatible in-
put (HLS-C), which is then processed by the HLS tool to produce the
synthesizable Verilog output. This approach combines the expres-
siveness of natural language with the power and completeness of
existing HLS tools, ultimately lowering the barrier to entry for hard-
ware design by minimizing the need for proficiency in high-level
programming languages.

5 Experimental Setup

To evaluate the three LLM-based approaches and compare them
with the baseline HLS approach, we used nine benchmarks (syrk,
syr2k, mvt, k3mm, k2mm, gesummv, gemm, bicg, and atax) from
the Polybench suite [20], specifically designed for evaluating the
performance of HLS tools and compiler technologies. These bench-
marks encompass computational kernels common in scientific and
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Table 1: The number of Prompts for LLM-based approaches

Benchmark HLS-C Verilog TCL Testbench XDC

syrk 4 50 9 12 5
syr2k 1 20 3 7 3
mvt 1 36 3 7 2
k3mm 1 21 3 5 2
k2mm 1 29 3 6 3
gesummyv 1 23 3 7 3
gemm 1 22 3 6 3
bicg 1 16 3 6 3
atax 1 11 3 8 3

engineering applications, such as matrix multiplication, 2D convo-
lution, and Cholesky decomposition. We employed ChatGPT-40 as
our LLM model, Vitis HLS 2023.2 as our HLS tool, and Vivado 2023.2
for implementation targeting a Xilinx xc7a200tfbg484-1 FPGA. For
each benchmark, we generated designs using all four approaches
and collected data on resource utilization, power consumption, ex-
ecution cycles, and critical path delay from Vitis HLS and Vivado.
Note that the NL—LLM— Verilog approach yielded an initial Ver-
ilog design with an equivalent structure to the initial Verilog design
generated using the C—LLM— Verilog approach. As such, these
approaches share the same steps after the initial input stage, and
thus have the same evaluation data. We tracked the number of
prompts used to generate HLS-C, Verilog, TCL, XDC, and testbench
content for the LLM-based approaches. For a fair comparison, we
disabled automatic optimizations like pipelining in Vitis HLS. For
LLM-based approaches, we used LLMs to generate all necessary
content (Verilog code, TCL scripts, IPs, testbenches, XDC files) to
form a complete project.

6 Results and Analysis

Table 1 presents the number of prompts required for each file type
(HLS-C, Verilog, TCL, testbench, and XDC) to construct a complete
hardware accelerator from C benchmarks. As demonstrated in Sec.
5, the C—LLM— Verilog and NL—LLM— Verilog approaches share
the same prompts after the initial input, leading to identical place-
and-route results. For the NL—LLM— HLS-C approach, we also
include the number of prompts needed to generate the HLS-C
code. Since we targeted the same functionality as the C benchmark,
the NL— LLM— HLS-C and C— HLS— Verilog approaches share the
same place-and-route outcomes.

Notably, generating the Verilog code generally required the most
prompts compared to other file types. But the number of prompts
required varied significantly depending on the benchmark, as well
as our growing familiarity with the LLM’s behavior with Verilog
generation. The syrk benchmark, for example, required consider-
ably more interaction with the LLM compared to atax (the last
benchmark we worked on). The syrk kernel exhibits a higher level
of complexity, containing four nested loops with multiple multi-
plications in a single operation and three 2D arrays for inputs and
outputs. Conversely, atax only comprises two nested loops and one
2D array for input. This suggests that the inherent complexity of the
benchmark code, as well as our initial learning curve to effectively
prompt the LLM to minimize errors, heavily influenced the number
of prompts needed for accurate Verilog generation. As we gained
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Table 2: Place & routing results for C—LLM— Verilog and C— HLS— Verilog approaches

Benchmark Approach Executioncycles FF LUT Slice DSP BRAM Power (W) CP
LLM 1859983 954 5300 1649 6 8 0.164 9.934
syrk HLS 3744260 662 521 221 5 32 0.350 8.191
LLM 2125846 542 472 197 2 12 0.181 9.446
syr2k HLS 9028229 1042 960 1649 5 56 0.383 6.872
o LLM 4499 8628 2663 4404 2 4 0.197 9312
HLS 119492 713 991 342 5 12 0.332 6.55
. LLM 2371593 623 328 236 2 28 0.207 9.924
HLS 10277509 927 956 1649 5 56 0.398 6.646
o LLM 1863816 537 311 202 2 20 0.189 9.967
HLS 7963269 929 659 313 5 56 0.400 6.814
gesummy LLM 65991 437 288 170 2 16 0.176 9.253
HLS 148805 795 561 228 5 20 0316 6.855
gemm LLM 1601739 488 332 200 2 16 0.178 9.697
HLS 4542980 807 505 238 5 32 0.359 6.551
bicg LLM 46478 505 194 198 2 20 0.196 9.251
HLS 119492 711 429 223 5 12 0.333 6.599
o LLM 57669 453 257 164 2 16 0.167 9.952
HLS 119492 741 428 209 5 11 0.309 6.573

experience and refined our prompting strategies, we were able to
consolidate prompts, leading to faster generation for subsequent
benchmarks. In contrast, the number of prompts for TCL generation
remained relatively consistent across all benchmarks, implying that
this task is less sensitive to the specific characteristics of the input
code. The complexity of the benchmark and the designer’s growing
familiarity with LLM interaction are key factors in determining
the number of prompts needed for successful Verilog generation,
although prior design experience can also play a role.

Table 2 presents the simulation and implementation results for
both LLM-based and HLS-based approaches. For each benchmark,
LLM refers to the C—LLM— Verilog and NL— LLM— Verilog ap-

proaches, while HLS refers to NL—LLM— HLS-C and C— HLS— Verilog

approaches. To determine the quality of a resulting hardware accel-
erators, the evaluation metrics include execution cycles, resource
utilization (FFs, LUTs, Slices, DSPs, and BRAMs), total power con-
sumption, and critical path delay.

A key observation is the significant variation in results across
different benchmarks. For the syrk and mvt benchmarks, the LLM-
based approaches consume more resources (except DSPs and BRAMs)
compared to HLS. This is attributed to the use of LUT RAM for the
inner matrix in the LLM-generated designs.

However, for the remaining seven benchmarks, LLM-based ap-
proaches consistently outperformed the HLS-based approaches
across all metrics. This includes a notable reduction in resource
utilization (with an average decrease of 38.67%), a significant im-
provement in execution cycles (average reduction of 64%), and
a substantial reduction in total power consumption (average re-
duction of 38.67%). For the critical path, the HLS-based approach
outperformed LLM-based approaches by an average of 28.82%.

Overall, the results in Table 2 demonstrate the potential of LLMs
in optimizing various aspects of hardware design. While the LLM-
based approaches did not outperform in every metric for all bench-
marks, their consistent success in the majority of cases, particularly

in resource utilization, power consumption, and often execution
cycles, highlights the promise of this technology for HLS. Further re-
search is needed to refine and expand these capabilities, and explore
them in a wider variety of usage scenarios, but the current results
are encouraging and suggest that LLMs could play a significant role
in the future of hardware design automation.

7 The Energy Elephant in the LLM-HLS Room

While the initial excitement surrounding the integration of LLMs
into the HLS workflow has spurred significant research, a critical
aspect has been conspicuously absent from most discussions: the
energy implications. The majority of studies have focused on the
potential of LLMs to streamline the design process, enhance au-
tomation, and improve the quality of generated hardware. However,
they have largely overlooked the energy consumption associated
with both the training and inference of these models.

LLMs, particularly large-scale models like GPT-3 and GPT-4, are
notorious for their computational demands. Training LLMs can
consume hundreds of megawatt-hours to several gigawatt-hours of
electricity [22]. Even inference, the process of generating responses
to prompts, can be computationally intensive, requiring substantial
energy resources. The Electrical Power Research Institute (EPRI)
estimates that a single ChatGPT query can consume approximately
2.9 W-hours of energy—nearly 10 times the power of a single Google
search [9]—a considerable amount when numerous queries are
needed for HLS tasks. This raises concerns about the overall energy
efficiency of incorporating LLMs into the HLS flow. Given that a
primary goal of HLS is to design hardware accelerators that are
more energy efficient than general-purpose computers, the energy
overhead of utilizing LLMs could outweigh the intended benefits.

Furthermore, the process of fine-tuning LLMs for specific HLS
tasks can exacerbate the issue of energy consumption. Fine-tuning
involves retraining the model on domain-specific data, which is
computationally expensive. If the energy cost of fine-tuning and
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utilizing an LLM is greater than the energy saved across all resulting
hardware designs, then employing LLMs in this way would be
counterproductive for energy efficiency.

The lack of attention to power/energy implications in current
research raises concerns about the sustainability and practicality
of LLM-driven HLS. As the field progresses, it is imperative to thor-
oughly investigate and quantify the energy costs associated with
LLM utilization. This will enable a more comprehensive evaluation
of the trade-offs between design efficiency and power consump-
tion, ultimately leading to more informed decisions regarding the
appropriate use of LLMs in HLS.

8 Conclusion

This paper has explored the application of Large Language Models
(LLMs) in High-Level Synthesis (HLS), evaluating their potential
to transform hardware design workflows. Through a survey and
experimental evaluations, we assessed the ability of LLMs to gen-
erate Verilog code from high-level specifications, including both
C benchmarks and natural language descriptions. Our findings
reveal that LLM-based approaches can significantly enhance the
efficiency of the HLS process, demonstrating notable improvements
in resource utilization, execution cycles, and power consumption
for most benchmarks compared to traditional HLS tools. How-
ever, challenges remain in ensuring the quality and optimization
of LLM-generated code, particularly regarding critical path delays
and the complexity of initial prompt interactions. Additionally, the
substantial energy consumption associated with training and uti-
lizing LLMs raises concerns about the overall energy efficiency of
their integration into HLS workflows. Despite these challenges, the
promising results suggest that with further refinement and research,
LLMs could play a pivotal role in the future of hardware design
automation, offering a powerful tool to streamline and optimize
the HLS process.
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