
Efficient System-Level Design Space Exploration for High-Level
Synthesis using Pareto-Optimal Subspace Pruning

Yuchao Liao, Tosiron Adegbija, and Roman Lysecky
Electrical and Computer Engineering

University of Arizona
Tucson, Arizona, USA

{yuchaoliao,tosiron,rlysecky}@arizona.edu

ABSTRACT
High-level synthesis (HLS) is a rapidly evolving and popular ap-
proach to designing, synthesizing, and optimizing embedded sys-
tems. Many HLS methodologies utilize design space exploration
(DSE) at the post-synthesis stage to find Pareto-optimal hardware
implementations for individual components. However, the design
space for the system-level Pareto-optimal configurations is orders
of magnitude larger than component-level design space, making
existing approaches insufficient for system-level DSE. This paper
presents Pruned Genetic Design Space Exploration (PG-DSE)—an ap-
proach to post-synthesis DSE that involves a pruning method to
effectively reduce the system-level design space and an elitist ge-
netic algorithm to accurately find the system-level Pareto-optimal
configurations. We evaluate PG-DSE using an autonomous driving
application subsystem (ADAS) and three synthetic systems with
extremely large design spaces. Experimental results show that PG-
DSE can reduce the design space by several orders of magnitude
compared to prior work while achieving higher quality results (an
average improvement of 58.1x).

KEYWORDS
System-level optimization, design space exploration, high-level
synthesis, subspace pruning, embedded system

ACM Reference Format:
Yuchao Liao, Tosiron Adegbija, and Roman Lysecky. 2023. Efficient System-
Level Design Space Exploration for High-Level Synthesis using Pareto-
Optimal Subspace Pruning. In 28th Asia and South Pacific Design Automation
Conference (ASPDAC ’23), January 16–19, 2023, Tokyo, Japan. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3566097.3567841

1 INTRODUCTION
High-level synthesis (HLS) has increased in popularity in recent
decades for its ability to significantly improve productivity in the
design of complex digital systems. HLS allows designers to spec-
ify systems at a high abstraction level, decoupled from low-level
circuit details, and use HLS tools to generate an optimized low-
level hardware description of the target system. Using existing
HLS tools, designers can develop application-specific embedded

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPDAC ’23, January 16–19, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9783-4/23/01.
https://doi.org/10.1145/3566097.3567841

systems using high-level languages (e.g., C/C++) and map them
to hardware register-transfer level (RTL) languages (e.g., Verilog,
VHDL), thereby improving design productivity and reducing the
design time/cost [8]. One of the most important features of HLS is
design automation and diversification, wherein system-level and
component-level synthesis directive options (e.g., target frequen-
cies, resource bindings, loop unrolling factors) can be provided at
the pre-synthesis (pre-HLS) stage based on the requirements of the
application-specific embedded system. HLS can then generate mul-
tiple alternative hardware implementations that can be explored
to satisfy different design constraints. As the number of synthesis
directives increases, the design space of the resulting hardware
implementations increases exponentially, raising new challenges
for the HLS design process [4].

Much prior work has focused on design space exploration (DSE)
in HLS [15]. Given the multi-objective and potentially conflict-
ing nature of the design criteria in complex digital systems (e.g.,
performance vs. power), DSE must often find Pareto-optimal con-
figurations, making the DSE process more challenging [13]. Many
HLS DSE methodologies aim to find Pareto-optimal configurations
at the pre-, post-, or both synthesis stages by combining different
synthesis directives. For example, DSE methodologies have been
proposed using heuristic-based [4] or machine learning-based [5]
algorithms to identify the Pareto-optimal fronts. However, a crucial
gap still remains in the state-of-the-art of HLS DSE. Current HLS
methodologies do not bridge the gap between pre-HLS DSE and
post-HLS multi-component system-level DSE. Importantly, none
of the current approaches focus on system-level DSE for complex,
timing-constrained, application-specific embedded systems. Cur-
rent HLS DSE methodologies target systems with only one or a few
components (e.g., encoder, neural networks) or multicycle compu-
tations (MCC) (e.g., matrix multiplication, median filter)[18].

To design complex embedded systems that satisfy their timing
constraints using HLS, DSE must follow a holistic system-level
approach that considers the individual system components and the
combinations of their different implementation alternatives. In this
work, we focus on embedded systems that may be comprised of sev-
eral components, each of which may consist of multiple multicycle
computations (MCCs). EachMCCmay have multiple design alterna-
tives with different implications for the system’s performance, area,
and energy. Individual exploration of the different components [3]
may be easier but would leave much optimization potential un-
tapped if interactions between the components, MCCs, and MCC
design alternatives are not explored. A system-level DSE, on the
other hand, results in a massive design space that necessitates new
approaches for tractable exploration. For instance, a 10-component

https://doi.org/10.1145/3566097.3567841
https://doi.org/10.1145/3566097.3567841


ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Liao et al.

Figure 1: The proposed PG-DSE methodology integrates a Pareto-optimal subspace pruning (PSP) algorithm and design space
exploration (DSE) using a Pareto-optimal elite genetic algorithm (PEGA) to find system-level Pareto-optimal configurations

autonomous driving subsystem—a sample target application of this
work—may have a design space with 7.12E+66 possible solutions.

This paper presents a new HLS DSE approach, called pruned
genetic design space exploration (PG-DSE), that targets complex
timing-constrained multi-component, multi-MCC embedded sys-
tems. PG-DSE combines a pruning algorithm called Pareto-optimal
subspace pruning (PSP)—to substantially reduce the system-level
design space—and a genetic search algorithm, called Pareto-optimal
elite genetic algorithm (PEGA) to accurately find the system-level
Pareto-optimal configurations. PEGA includes novel features, like
variable Pareto-optimal elitism and a genetic encoding approach
that ensures that high quality configurations are rapidly found dur-
ing the exploration process. We evaluate PG-DSE using a complex
autonomous driving application subsystem and three synthetic sys-
tems with different design spaces ranging in size from 2.61E+11
to 1.49E+104. On average, the PSP algorithm substantially reduced
the design space by 1.32E+44x without eliminating the best config-
urations from the design space. The proposed PG-DSE approach
(PEGA+PSP) rapidly, effectively, and accurately found the system-
level Pareto-optimal configurations, improving the quality of the
results by an average of 58.1x compared to a recent prior work that
used a genetic algorithm for DSE.

2 BACKGROUND AND RELATEDWORK
HLS tools usually enable system-level and component-level design
metrics in the behavioral descriptions to generate various hard-
ware implementations. To fully exploit the optimization benefits of
application-specific hardware, the design space of these synthesis
directives must be explored to determine the solutions that best
satisfy the target design constraints.

Existing HLS DSE approaches typically use either heuristics
(e.g., genetic algorithms [4]) or machine learning-based approaches
in the pre-HLS [5] or post-HLS stage [10] to find the optimal or
Pareto-optimal configurations in single- or multi-component sys-
tems. However, none of these current approaches explore the com-
plex design space of multi-component systems in which the combi-
nations of the components and their design alternatives can result
in extremely large design spaces. Furthermore, none of these works
consider a system with precise timing constraints that must be
accounted for in the DSE process. Some prior HLS approaches that

consider precise system-level timing constraints (e.g., [9, 10]) do
not include DSE for complex systems with large design spaces.

Our work addresses these gaps via a post-HLS DSE approach
that tightly incorporates the system’s timing information into the
DSE process. Our approach also incorporates the complexity of
multi-component systems whose individual components may have
different implementation alternatives with different impacts on the
resulting system-level designs.

To make the DSE process more tractable, pruning methods have
been used to reduce the design space. Some pruningmethods reduce
the design space before DSE [10, 19], while others apply pruning to
the resulting configurations after DSE [17]. Our work incorporates
an a priori pruning algorithm into the proposed DSE approach to
enable the rapid exploration of extremely large design spaces. In
addition, to prevent the violation of timing constraints, our pruning
algorithm explicitly incorporates precise timing information into
the pruning process to ensure that only suboptimal configurations
are eliminated from the design space.

3 PRUNED GENETIC DESIGN SPACE
EXPLORATION (PG-DSE)

Fig. 1 depicts a high-level overview of the proposed PG-DSE ap-
proach. PG-DSE is distinguished from existing methods by focus-
ing on timing-constrained complex multi-component embedded
systems, wherein the different components may have multiple mul-
ticycle computations (MCCs). To represent such systems and their
timing constraints, we use Periodic State Machines (PSMs) [7, 9] as
our modeling formalism. PSMs are similar to finite state machines
(FSM), which are common for modeling the behavior of computer
systems. However, PSMs modify FSMs to enable the specification
of time-triggered execution defined by a fixed period, global time,
clock constraints, and time-driven events. The fixed period is a
constraint that allows all the MCCs within a PSM to execute in one
clock cycle. As such, PSMs enable the high-level specification of
complex embedded systems with precise timing constraints, while
maintaining the state-based features of FSMs that allow for RTL
translation of system specifications.

The PSM specification can be written in a high-level language
(e.g., C, C++) and HLS can be used to generate the RTL imple-
mentation of the PSMs (in the form of FSMs coupled with custom



Efficient System-Level Design Space Exploration for High-Level Synthesis using Pareto-Optimal Subspace Pruning ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

Algorithm 1: Pareto-optimal subspace pruning (PSP)
Input: 𝑐 , 𝑡𝑐 , 𝑤, 𝑓𝑚𝑎𝑥 , and𝐴 for each MCC,𝑀 alternative, 𝑎𝑚, in each PSM 𝑃 , 𝐹𝑠𝑖𝑧𝑒 ,𝑇
Output: pruned PSM for each frequency combination 𝑓𝑐𝑜𝑚𝑏

1 𝐸, 𝑓 𝑠, 𝑠,← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 (𝑐, 𝑓𝑚𝑎𝑥 , 𝑡𝑐, 𝑤)
2 𝑓𝑐𝑜𝑚𝑏 = {(𝑓1, . . . , 𝑓𝐹𝑠𝑖𝑧𝑒 ), . . . , (𝑓1, . . . , 𝑓𝐹𝑠𝑖𝑧𝑒 ) } ← calculate a set of frequency

combinations
3 for 𝑖 ← 1 to 𝑠𝑖𝑧𝑒 (𝑓𝑐𝑜𝑚𝑏 ) do
4 for each 𝑎𝑚 in each𝑀 in each 𝑃 do
5 𝑓𝑎𝑚 ← closest frequency in 𝑓𝑐𝑜𝑚𝑏𝑖

6 if no valid 𝑎𝑚 in𝑀 then
7 𝑖 ← 𝑖 + 1, continue
8 else
9 if all 𝑎𝑚 is valid then
10 𝐸𝑎𝑚 ← 𝑓𝑎𝑚 × 𝑠
11 sort all 𝑎𝑚 in each𝑀 based on Pareto-optimal 𝐸𝑎𝑚 and𝐴
12 end
13 end
14 end
15 if all 𝑎𝑚 in each𝑚 in each 𝑃 sorted then
16 output new PSM
17 end
18 𝑖 ← 𝑖 + 1
19 end

datapaths). Within each PSM, the MCCs are extracted to generate
their design alternatives through HLS. MCCs are computations (e.g.,
medium filter, matrix multiplication) that dominate the system’s
execution time, and whose designs have significant impacts on the
system-level design efficiency. The MCC’s hardware implemen-
tation alternatives are generated using state-of-the-art tools (e.g.,
Xilinx Vitis HLS) based on different features, like the critical path,
maximum frequency, loop unrolling factor, etc. The combination
of the different PSMs and their MCC alternatives forms the design
space that must be explored.

Given the design space, PG-DSE is then applied to identify Pareto-
optimal solutions that satisfy different design objectives. PG-DSE
involves a two-step process: first, the design space is significantly
reduced using the proposed Pareto-optimal subspace pruning (PSP)
algorithm. Thereafter, the pruned design space is explored using
the Pareto-optimal elite genetic algorithm (PEGA). The following
subsections describe these algorithms in detail.

3.1 Pareto-optimal subspace pruning (PSP)
The goal of the pruning process is to preemptively eliminate sub-
optimal solutions in the subspace of MCC design alternatives to
make DSE more tractable and less time consuming. By pruning the
design space, the DSE algorithm can focus on quickly identifying
system-level solutions that improve the target objective functions
(e.g., area/energy). For timing-constrained embedded systems, the
proposed PSP algorithm aims to prune solutions that do not satisfy
the timing constraints.

Algorithm 1 presents the pseudocode for the PSP algorithm.
The algorithm takes as input the execution cycles 𝑐 , maximum
frequency 𝑓𝑚𝑎𝑥 , critical path 𝑡𝑐 , power 𝑤 , and area 𝐴 for each
MCC alternative 𝑎𝑚. In addition, two critical input constraints
for PSP are the range of allowed clock frequencies 𝐹𝑠𝑖𝑧𝑒 for the
embedded system, constrained by the target hardware—we focus
on FPGAs—and the assigned period 𝑇 for each PSM (based on
the timing constraint). PSP outputs the pruned design space for
the input system. To prune the design space, PSP first calculates
the energy 𝐸, a scaled frequency 𝑓 𝑠 , and a scaling factor 𝑠 . The
scaled frequency is the minimum frequency at which an MCC
alternative can run under 𝑇 , and the scaling factor is calculated as:

𝑤
𝑓𝑚𝑎𝑥×𝑇 which is used to estimate the new energy when applying a
new frequency to an MCC alternative. Next, with 𝐹𝑠𝑖𝑧𝑒—the global
minimum and maximum frequency range for PSMs—PSP explores
a set of possible frequency combinations 𝑓𝑐𝑜𝑚𝑏 (lines 1 - 2) by
iterating through them. In each iteration 𝑖 , PSP goes through every
MCC alternative, finds the closest frequency in the 𝑓𝑐𝑜𝑚𝑏𝑖 to each
MCC alternative’s minimum frequency (lines 3 - 5), and assigns
the new frequency 𝑓𝑎𝑚 to the MCC. If any MCC alternative cannot
find a valid 𝑓𝑎𝑚 in 𝑓𝑐𝑜𝑚𝑏𝑖 , PSP jumps to the next 𝑓𝑐𝑜𝑚𝑏𝑖 (lines 6 - 7).
Otherwise, if 𝑓𝑎𝑚 is valid for every MCC alternative, PSP calculates
the current energy 𝐸𝑎𝑚 for each MCC alternative by multiplying
𝑓𝑎𝑚 and 𝑠 . Next, using 𝐸𝑎𝑚 and 𝐴, PSP prunes MCC alternatives to
find Pareto-optimal alternatives in each MCC (lines 8 - 13). Finally,
PSP outputs a set of pruned PSMs corresponding to each valid
frequency combination (lines 15 - 17). After the PSP process, the
Pareto-optimal elite genetic algorithm is then applied to identify
the system-level Pareto-optimal solutions.

3.2 Pareto-optimal elite genetic algorithm
(PEGA)

Although the PSP algorithm substantially reduces the MCC sub-
space, the system-level design space remains very large. Using the
PSM formalism ensures that the pruned solutions have already been
determined to satisfy the timing constraints. But we still have a
multi-objective optimization problem, given the potentially conflict-
ing objective functions of energy and area. To address this challenge,
we employ a genetic algorithm in the PG-DSE approach.

Genetic algorithms, which are inspired by the process of natural
selection, have been commonly used for multi-objective HLS DSE
problems [4, 12]. In general, a genetic algorithm (GA) involves a pop-
ulation of candidate solutions that are iteratively evolved toward
better solutions by evaluating the fitness of individual solutions,
stochastically selecting more fit solutions, and randomly mutating
and combining solutions to form new generations. Genetic algo-
rithms are appropriate for our work given the multimodal search
space and the need to explore and exploit the tradeoffs between
solutions in the search space for conflicting objectives. Furthermore,
GAs, given their population-based search approach, can offer more
design flexibility by producing multiple designs that can satisfy
different user-specified design constraints.

Our proposed Pareto-optimal elite genetic algorithm (PEGA)
incorporates three important novel features to improve efficiency.
First, we use variable Pareto-optimal elitism, whereby Pareto-optimal
solutions in one generation are carried over to the next generation.
This eliminates the constraint of a static elite population size and
ensures that the quality of solutions does not decrease with sub-
sequent generations. Second, we use a genetic representation in
which the input structure contains important information that is
uniquely suited for the target systems’ complexity. We define each
MCC alternative with its assigned frequency from frequency combi-
nations (Section 3.1) as a gene; the MCC alternative forms the first
part of a chromosome𝐶𝑟 , and the frequency combination forms the
second part of 𝐶𝑟 . Third, we leverage the inherent parallelism of
GAs by separating the pruned design space according to the valid
frequency combinations for the target FPGA. When PSP prunes
the design space and generates new PSMs based on each frequency



ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Liao et al.

Algorithm 2: Pareto-optimal elite genetic algorithm
(PEGA)
Input: 𝑓𝑐𝑜𝑚𝑏 , 𝑠 , 𝑝𝑠 , 𝑝𝑐 , 𝑝𝑚 , 𝑘 , and 𝐸,𝐴 from pruned PSMs.
Output: Pareto-optimal system-level configurations

1 for each valid 𝑓𝑐𝑜𝑚𝑏 and corresponding pruned PSM do
2 𝑃𝑘 ← initial a population of 𝑘 randomly-generated individuals
3 while !terminate condition do
4 new 𝑃𝑘 ← 𝑃𝑎𝑟𝑒𝑡𝑜𝐸𝑙𝑖𝑡𝑒 (𝑃𝑘 , 𝑒𝑙𝑖𝑡𝑒𝑃𝑘 )
5 𝑆𝑘 ← 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝑃𝑘 )
6 𝑃𝑆𝑘 ← 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑃𝑘 , 𝑆𝑘 , 𝑝𝑠 )
7 𝑃𝐶𝑘 ← 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑃𝑆𝑘 , 𝑝𝑐 )
8 𝑃𝑀𝑘 ←𝑚𝑢𝑡𝑎𝑡𝑒 (𝑃𝐶𝑘 , 𝑝𝑚 )
9 end

10 𝑠𝑎𝑣𝑒𝑃𝑎𝑟𝑒𝑡𝑜 (𝑒𝑙𝑖𝑡𝑒𝑃𝑘 )
11 end
12 function 𝑃𝑎𝑟𝑒𝑡𝑜𝐸𝑙𝑖𝑡𝑒(𝑃𝑘 , 𝑒𝑙𝑖𝑡𝑒𝑃𝑘):
13 𝑃𝑘 ← Insert old 𝑒𝑙𝑖𝑡𝑒𝑃𝑘 into 𝑃𝑘
14 new 𝑒𝑙𝑖𝑡𝑒𝑃𝑘 ← find Pareto-optimal chromosome𝐶𝑟 in 𝐸 and𝐴 in 𝑃𝑘
15 return 𝑃𝑘

combination, each new PSM can be assigned to a different thread
during the DSE process, thereby reducing the execution time for
exploring large design spaces.

Algorithm 2 depicts the pseudocode of the Pareto-optimal elite
genetic algorithm (PEGA). PEGA takes as input the frequency com-
binations 𝑓𝑐𝑜𝑚𝑏 , select rate 𝑝𝑠 , crossover rate 𝑝𝑐 , mutation rate 𝑝𝑚 ,
population size 𝑘 , and energy 𝐸, area𝐴 from the pruned MCC alter-
natives𝑎𝑚 in each PSM 𝑃 . The algorithm outputs the Pareto-optimal
system-level configurations. PEGA starts by iterating through each
valid 𝑓𝑐𝑜𝑚𝑏 and its corresponding 𝑃 (line 1). In each 𝑃 , PEGA ran-
domly generates an initial population 𝑃𝑘 with size 𝑘 (line 2). Next,
PEGA iterates until a terminate condition is met. The terminate
condition can be a predefined number of generations, which we
use in this work, or a threshold of the quality of results (e.g., the dis-
tance from a reference set). In each generation, for the 𝑃𝑎𝑟𝑒𝑡𝑜𝐸𝑙𝑖𝑡𝑒
function, PEGA goes through the current population 𝑃𝑘 and the pre-
vious generation’s elite population 𝑒𝑙𝑖𝑡𝑒𝑃𝑘 (initially an empty set)
to find and save the current Pareto-optimal 𝐶𝑟 to the new 𝑒𝑙𝑖𝑡𝑒𝑃𝑘
set. Unlike typical elite functions with a fixed elite member size
[11], PEGA stores every Pareto-optimal 𝐶𝑟 . 𝑃𝑎𝑟𝑒𝑡𝑜𝐸𝑙𝑖𝑡𝑒 outputs
the new population 𝑃𝑘 . If the new 𝑃𝑘 exceeds size k, any 𝐶𝑟 with
the least fit score is discarded until the population size constraint
is satisfied (lines 12 - 15). We use a cost function comprising the
weighted sum of energy and area to calculate the fitness of the
population (line 5). The rest of PEGA contains selection, crossover,
and mutation (lines 6 - 8). PEGA uses the roulette-wheel method
for selection [16]; for crossover, PEGA generates children 𝐶𝑟 until
the population size equals 𝑘 ; and mutation randomly selects and
changes the selected MCC alternative. Finally, after a terminate
condition is met, 𝑠𝑎𝑣𝑒𝑃𝑎𝑟𝑒𝑡𝑜 function saves the last 𝑒𝑙𝑖𝑡𝑒𝑃𝑘 from
each 𝑃 (line 10). 𝑃𝑠 , 𝑝𝑐 , 𝑝𝑚 , and 𝑘 are hyperparameters that can be
tuned to improve the search process for the target design space. We
used 𝑝𝑠 = 0.5, 𝑝𝑐 = 0.7, 𝑃𝑚 = 0.5 in our experiments.

4 EXPERIMENTS
To evaluate PG-DSE, we used a complex autonomous driving ap-
plication subsystem (ADAS) [6] and three synthetic systems with
different design space sizes. Fig. 2 shows ADAS’ system-level block
diagram, which consists of five main parts: sensors, localization and
perception, method fusion, planning, and vehicle control. Apart from
the sensors, the rest of the subsystem is implemented using PSMs.

Figure 2: Block diagram of the autonomous driving applica-
tion subsystem (ADAS). Shaded blocks are the components
implemented as PSMs in our experiments.

In total, the ADAS comprises ten PSMs, 52 MCCs, and 244 MCC
alternatives.

Similarly, we generated three synthetic systems with different
characteristics to represent varying levels of complexity. We built a
PSM generator, a custom tool to randomly generate a combination
of implementation results and timing constraints for synthetic sys-
tems. The tool contains a database of essential implementation data
generated using HLS and implemented with Xilinx Vivado target-
ing an Artix-7 FPGA. These data include latency (ns), energy (mJ),
scaled frequency (MHz), etc. and are based on real complex multi-
component embedded systems like ECG biometric authentication
system [2], asthma monitoring system [14], wearable pregnancy
monitoring system [1], etc. Table 1 shows the system informa-
tion for the synthetic systems (𝑆𝑦𝑛𝑡ℎ1−3) and ADAS, depicted as:
<number of PSMs>-<total number of MCCs>-<total number of
MCC alternatives>-<number of frequency candidates>.

The PG-DSE approach is implemented in C++. We first evalu-
ate the design space reduction achieved by PSP. Next, we evaluate
the quality of results (QoR) for the solutions resulting from using
PG-DSE in comparison to the state-of-the-art, represented by a
genetic algorithm recently presented in [4]. For robust evaluation,
we created three variants of PG-DSE: 1) PG-DSE without PSP (PG-
DSE𝑢𝑛𝑝𝑟𝑢𝑛𝑒𝑑 ), to evaluate any performance loss resulting from a pri-
ori subspace pruning; 2) PG-DSE with serial PEGA (PG-DSE𝑠𝑒𝑟𝑖𝑎𝑙 );
and 3) PG-DSE with parallelized PEGA (PG-DSE𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 ).

To serve as a base for our experiments, we used different ref-
erence sets of Pareto-optimal configurations because exhaustive
search (ES) was prohibitive for some of the design spaces due to
their sizes. For instance, ES for 𝑆𝑦𝑛𝑡ℎ1 parallelized over 44 cores
took ∼12 hours, whereas ES for 𝑆𝑦𝑛𝑡ℎ2 or 𝑆𝑦𝑛𝑡ℎ3 would have taken
8.17E+34 and 2.56E+89 years, respectively. Instead, we used ES for
𝑆𝑦𝑛𝑡ℎ1; for 𝑆𝑦𝑛𝑡ℎ2, we applied PSP and used ES on the resulting
design space; for 𝑆𝑦𝑛𝑡ℎ3 and ADAS, we ran PG-DSE𝑢𝑛𝑝𝑟𝑢𝑛𝑒𝑑 for
longer than normal—two hours per run—and averaged the results
over five runs.
Table 1: Design space sizes before and after applying PSP
algorithm. PSP reduced the size by an average of 1.32E+44x.

System Design space
Info Before PSP After PSP Improvement

𝑆𝑦𝑛𝑡ℎ1 : 4-11-27-5 2.61E+11 96 2.72E+09x
𝑆𝑦𝑛𝑡ℎ2 : 7-41-160-5 1.71E+49 3.85E+11 4.43E+37x
𝑆𝑦𝑛𝑡ℎ3 : 10-85-347-8 1.49E+104 9.88E+23 1.51E+80x
𝐴𝐷𝐴𝑆 : 10-52-244-10 7.12E+66 4.24E+17 1.68E+49x

Geo. mean 8.29E+57 6.27E+13 1.32E+44x



Efficient System-Level Design Space Exploration for High-Level Synthesis using Pareto-Optimal Subspace Pruning ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

(a) 𝑆𝑦𝑛𝑡ℎ1: 4-11-27-5 (b) 𝑆𝑦𝑛𝑡ℎ2: 7-41-160-5

(c) 𝑆𝑦𝑛𝑡ℎ3: 10-85-347-8 (d) 𝐴𝐷𝐴𝑆 : 10-52-244-10

Figure 3: Energy and area of the Pareto-optimal system-level configurations for three synthetic systems and autonomous
driving application subsystem using the reference set (exhaustive search or an approximation for intractable design spaces),
prior work’s genetic algorithm [4], PG-DSE𝑢𝑛𝑝𝑟𝑢𝑛𝑒𝑑 , PG-DSE𝑠𝑒𝑟𝑖𝑎𝑙 , and PG-DSE𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 .

5 RESULTS
5.1 Subspace pruning using PSP
Table 1 shows the design space for the three synthetic systems and
ADAS before and after we applied the PSP algorithm. The design
space before PSP is the exhaustive set of solutions in the search
space. One of the first things we observe is that as the complexity
of the design space increases, going from 𝑆𝑦𝑛𝑡ℎ1 to 𝑆𝑦𝑛𝑡ℎ3, PSP’s
pruning improves. PSP is able to prune a larger portion of the
subspace for larger input design spaces. For instance, although
𝑆𝑦𝑛𝑡ℎ3 and ADAS both have 10 PSMs, 𝑆𝑦𝑛𝑡ℎ3 has more MCCs and
MCC alternatives in each PSM, resulting in a larger design space.
As a result, PSP is able to prune more subspaces in each of 𝑆𝑦𝑛𝑡ℎ3’s
MCCs compared to the ADAS. Overall, PSP significantly reduced
the design space by an average of 1.32E+44 times. However, the true
quality of a pruning algorithm lies in its ability to reduce the design
space without eliminating potential high quality solutions from
the search space. Thus, in the following, we evaluate the quality
of results achieved using the PSP algorithm with respect to the
system-level Pareto-optimal configurations.

5.2 Design space exploration using PG-DSE
With the help of the PSP algorithm, the design space becomes more
tractable to find the Pareto-optimal system-level configurations
using PEGA. To evaluate PG-DSE and determine whether there is
any loss from the PSP method, we explored the three variants of the

Figure 4: Average distance to reference set (ADRS) score for
five runs of prior work, PG-DSE𝑢𝑛𝑝𝑟𝑢𝑛𝑒𝑑 , PG-DSE𝑠𝑒𝑟𝑖𝑎𝑙 , and
PG-DSE𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 .

Figure 5: Average execution time for five runs of prior work,
PG-DSE𝑢𝑛𝑝𝑟𝑢𝑛𝑒𝑑 , PG-DSE𝑠𝑒𝑟𝑖𝑎𝑙 , and PG-DSE𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 .

proposed algorithm (Section 4) for our experimental systems in com-
parison to prior work [4]. Fig. 3 shows the Pareto-optimal system-
level configurations resulting from prior work, PG-DSE𝑢𝑛𝑝𝑟𝑢𝑛𝑒𝑑 ,
PG-DSE𝑠𝑒𝑟𝑖𝑎𝑙 , and PG-DSE𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 . Each system is compared to its
reference set as described in Section 4.

Across the three variants, PG-DSE was able to generate identical
or close Pareto-optimal solutions to the reference sets for differ-
ent design space sizes. For a small design space like 𝑆𝑦𝑛𝑡ℎ1 (Fig.
3a), the pruned exhaustive search (pruned ES), PG-DSE𝑠𝑒𝑟𝑖𝑎𝑙 , and
PG-DSE𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 generated the same Pareto-optimal front as the ref-
erence set. The fact that pruned ES and PG-DSE achieved the same
Pareto-optimal front as exhaustive search shows that there was no
performance loss resulting from pruning using the PSP algorithm.
Prior work and PG-DSE𝑢𝑛𝑝𝑟𝑢𝑛𝑒𝑑 yielded a few Pareto-optimal con-
figurations with higher energy or larger area than the reference
set. For the larger design spaces (Fig. 3b, 3c, and 3d), the reference
set clearly yielded a lower Pareto-optimal curve (i.e., with lower
energy and area) than the DSE algorithms. However, in general,
PG-DSE consistently yielded better curves than prior work.

To further evaluate PG-DSE, we quantified each algorithm’s QoR
using the average distance to reference set (ADRS). A similar metric
has been used in prior work [15] as it represents the quality of the re-
sults compared to the reference set. A lower ADRS score means that
the estimated Pareto-optimal configurations are closer to the refer-
ence set. Fig. 4 shows the average ADRS score for five runs of prior
work, PG-DSE𝑢𝑛𝑝𝑟𝑢𝑛𝑒𝑑 , PG-DSE𝑠𝑒𝑟𝑖𝑎𝑙 , and PG-DSE𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 for the



ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Liao et al.

three synthetic systems and ADAS. For 𝑆𝑦𝑛𝑡ℎ1, PG-DSE𝑠𝑒𝑟𝑖𝑎𝑙 and
PG-DSE𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 achieved an ADRS score of zero, meaning that the
algorithms achieved the same Pareto-optimal front as the refer-
ence set, as observed in Fig. 3. Prior work and PG-DSE𝑢𝑛𝑝𝑟𝑢𝑛𝑒𝑑
achieved ADRS scores of 0.29% and 0.081%, respectively. For the
larger design spaces, PG-DSE significantly outperformed prior
work. PG-DSE𝑢𝑛𝑝𝑟𝑢𝑛𝑒𝑑 , PG-DSE𝑠𝑒𝑟𝑖𝑎𝑙 , and PG-DSE𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 , on av-
erage, improved over prior work by 40.2x, 58.1x, and 66.2x, respec-
tively. Compared to PG-DSE𝑢𝑛𝑝𝑟𝑢𝑛𝑒𝑑 ’s score, PG-DSE𝑠𝑒𝑟𝑖𝑎𝑙 and PG-
DSE𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 were an average of 1.45x and 1.65x better, respectively.
PG-DSE𝑠𝑒𝑟𝑖𝑎𝑙 and PG-DSE𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 outperformed PG-DSE𝑢𝑛𝑝𝑟𝑢𝑛𝑒𝑑
because the PSP algorithm successfully eliminated sub-optimal
configurations, enabling PEGA to rapidly explore more accurate
Pareto-optimal system-level configurations.

5.3 Runtime overhead
We evaluate the overhead of PG-DSE by quantifying the execution
time to find the system-level Pareto-optimal front compared to prior
work [4]. Fig. 5 shows the average execution time for five runs of
prior work, PG-DSE𝑢𝑛𝑝𝑟𝑢𝑛𝑒𝑑 , PG-DSE𝑠𝑒𝑟𝑖𝑎𝑙 , and PG-DSE𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
for the different systems. For all four systems, prior work slightly
outperformed the PG-DSE𝑢𝑛𝑝𝑟𝑢𝑛𝑒𝑑 ’s and PG-DSE𝑠𝑒𝑟𝑖𝑎𝑙 ’s execution
time by an average of 3.97% and 0.15%, respectively. On the other
hand, PG-DSE𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 reduced the execution time by an average of
82.6% compared to prior work. The longer execution time of PG-
DSE𝑢𝑛𝑝𝑟𝑢𝑛𝑒𝑑 and PG-DSE𝑠𝑒𝑟𝑖𝑎𝑙 in the larger systems was a tradeoff
for the significantly improved performance in accurately finding
the Pareto-optimal front.

6 CONCLUSION AND FUTURE WORK
High-level synthesis DSE can be challenging in complex multi-
component embedded systems with extremely large design spaces.
This paper proposes a post-HLS pruned genetic design space ex-
ploration (PG-DSE) approach for timing-constrained complex em-
bedded systems. PG-DSE integrates a Pareto-optimal pruning (PSP)
algorithm and a Pareto-optimal genetic algorithm (PEGA) to accu-
rately and rapidly find system-level Pareto-optimal configurations
for complex embedded systems. To quantify the benefits of PG-DSE
in comparison to exhaustive search and prior work, we used three
synthetic systems and an autonomous driving application subsys-
tem (ADAS) with very large design spaces, ranging in size from
2.61E+11 to 1.49E+104 possible solutions. Experimental results re-
veal that PG-DSE successfully found Pareto-optimal configurations
that were close to the reference set. Compared to the the state-of-
the-art in multi-objective HLS DSE, PG-DSE improved the quality
of the results by an average of 58.1x, demonstrating PG-DSE’s
effectiveness.

A current limitation of PG-DSE is that it targets homogeneous
PSM-level timing constraints. Future work involves incorporating
variable timing constraints into PG-DSE to support systems in
which different components or MCCs may be subject to different
timing requirements. In addition, we plan to explore and extend PG-
DSE tomore complex and variedmulti-accelerator systems inwhich
the interactions between complex subsystems must be considered
in DSE, while satisfying the system-level timing constraints.

ACKNOWLEDGMENTS
This work is supported in part by the National Science Foundation
under grant CNS-1563652. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES
[1] Emmanuel Abidemi Adeniyi, Roseline Oluwaseun Ogundokun, and

Joseph Bamidele Awotunde. 2021. IoMT-based wearable body sensors
network healthcare monitoring system. In IoT in healthcare and ambient assisted
living. Springer, 103–121.

[2] Renato Cordeiro, Dhruv Gajaria, Ankur Limaye, Tosiron Adegbija, Nima Karim-
ian, and Fatemeh Tehranipoor. 2020. ECG-based authentication using timing-
aware domain-specific architecture. IEEE transactions on computer-aided design
of integrated circuits and systems 39, 11 (2020), 3373–3384.

[3] Lorenzo Ferretti, Giovanni Ansaloni, and Laura Pozzi. 2018. Lattice-traversing
design space exploration for high level synthesis. In 2018 IEEE 36th International
Conference on Computer Design (ICCD). IEEE, 210–217.

[4] Yiheng Gao and Benjamin Carrion Schafer. 2021. Effective High-Level Synthesis
Design Space Exploration through a Novel Cost Function Formulation. In 2021
IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 1–5.

[5] Quentin Gautier, Alric Althoff, Christopher L Crutchfield, and Ryan Kastner.
2022. Sherlock: A Multi-Objective Design Space Exploration Framework. ACM
Transactions on Design Automation of Electronic Systems (TODAES) 27, 4 (2022),
1–20.

[6] Kichun Jo, Junsoo Kim, Dongchul Kim, Chulhoon Jang, and Myoungho Sunwoo.
2015. Development of autonomous car—Part II: A case study on the implementa-
tion of an autonomous driving system based on distributed architecture. IEEE
Transactions on Industrial Electronics 62, 8 (2015), 5119–5132.

[7] HermannKopetz, Christian El-Salloum, BernhardHuber, and RomanObermaisser.
2007. Periodic finite-state machines. In 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC’07).
IEEE, 10–20.

[8] Sakari Lahti, Panu Sjövall, Jarno Vanne, and Timo D Hämäläinen. 2018. Are we
there yet? A study on the state of high-level synthesis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 38, 5 (2018), 898–911.

[9] Yuchao Liao, Tosiron Adegbija, and Roman Lysecky. 2022. A high-level synthesis
approach for precisely-timed, energy-efficient embedded systems. Sustainable
Computing: Informatics and Systems 35 (2022), 100741.

[10] Hung-Yi Liu, Michele Petracca, and Luca P Carloni. 2012. Compositional system-
level design exploration with planning of high-level synthesis. In 2012 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 641–646.

[11] Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli,
and Oriol Vinyals. 2019. Reinforced genetic algorithm learning for optimizing
computation graphs. arXiv preprint arXiv:1905.02494 (2019).

[12] Christian Pilato, Daniele Loiacono, Antonino Tumeo, Fabrizio Ferrandi, Pier Luca
Lanzi, and Donatella Sciuto. 2010. Speeding-up expensive evaluations in high-
level synthesis using solution modeling and fitness inheritance. In Computational
intelligence in expensive optimization problems. Springer, 701–723.

[13] Andy D Pimentel. 2016. Exploring exploration: A tutorial introduction to embed-
ded systems design space exploration. IEEE Design & Test 34, 1 (2016), 77–90.

[14] A Raji, P Kanchana Devi, P Golda Jeyaseeli, and N Balaganesh. 2016. Respiratory
monitoring system for asthma patients based on IoT. In 2016 Online International
Conference on Green Engineering and Technologies (IC-GET). IEEE, 1–6.

[15] Benjamin Carrion Schafer and Zi Wang. 2020. High-Level Synthesis Design
Space Exploration: Past, Present, and Future. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 39, 10 (2020), 2628–2639. https:
//doi.org/10.1109/TCAD.2019.2943570

[16] Anupriya Shukla, Hari Mohan Pandey, and Deepti Mehrotra. 2015. Comparative
review of selection techniques in genetic algorithm. In 2015 international confer-
ence on futuristic trends on computational analysis and knowledge management
(ABLAZE). IEEE, 515–519.

[17] Sufian Sudeng and Naruemon Wattanapongsakorn. 2015. Post Pareto-optimal
pruning algorithm for multiple objective optimization using specific extended
angle dominance. Engineering Applications of Artificial Intelligence 38 (2015),
221–236.

[18] Zi Wang and Benjamin Carrion Schafer. 2022. Learning from the Past: Efficient
High-level Synthesis Design Space Exploration for FPGAs. ACM Transactions on
Design Automation of Electronic Systems (TODAES) 27, 4 (2022), 1–23.

[19] Sotirios Xydis, Christos Skouroumounis, Kiamal Pekmestzi, Dimitrios Soudris,
and George Economakos. 2010. Efficient high level synthesis exploration method-
ology combining exhaustive and gradient-based pruned searching. In 2010 IEEE
Computer Society Annual Symposium on VLSI. IEEE, 104–109.

https://doi.org/10.1109/TCAD.2019.2943570
https://doi.org/10.1109/TCAD.2019.2943570

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Pruned Genetic Design Space Exploration (PG-DSE)
	3.1 Pareto-optimal subspace pruning (PSP)
	3.2 Pareto-optimal elite genetic algorithm (PEGA)

	4 Experiments
	5 Results
	5.1 Subspace pruning using PSP
	5.2 Design space exploration using PG-DSE
	5.3 Runtime overhead

	6 Conclusion and Future Work
	Acknowledgments
	References

