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ABSTRACT
High-Level Synthesis (HLS) Design Space Exploration (DSE) is a
widely accepted approach for efficiently exploring Pareto-optimal
and optimal hardware solutions during the HLS process. Several
HLS benchmarks and datasets are available for the research commu-
nity to evaluate their methodologies. Unfortunately, these resources
are limited and may not be sufficient for complex, multi-component
system-level explorations. Generating new data using existing HLS
benchmarks can be cumbersome, given the expertise and time re-
quired to effectively generate data for different HLS designs and
directives. As a result, synthetic data has been used in prior work
to evaluate system-level HLS DSE. However, the fidelity of the
synthetic data to real data is often unclear, leading to uncertainty
about the quality of system-level HLS DSE. This paper proposes a
novel approach, called Vaegan, that employs generative machine
learning to generate synthetic data that is robust enough to sup-
port complex system-level HLS DSE experiments that would be
unattainable with only the currently available data. We explore and
adapt a Variational Autoencoder (VAE) and Generative Adversar-
ial Network (GAN) for this task and evaluate our approach using
state-of-the-art datasets and metrics. We compare our approach to
prior works and show that Vaegan effectively generates synthetic
HLS data that closely mirrors the ground truth’s distribution.

CCS CONCEPTS
• Hardware → Software tools for EDA; • Computing methodolo-
gies → Machine learning.
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1 INTRODUCTION
High-level synthesis (HLS) is a popular approach to designing, syn-
thesizing, and optimizing hardware systems. HLS is often used to
design embedded systems, such as medical devices, autonomous
vehicles, and, more generally, the Internet of Things (IoT). Using ex-
isting HLS tools (like Vitis HLS), designers can develop application-
specific embedded systems using high-level languages (e.g., C/C++)
and map them to hardware register-transfer level (RTL) languages
(e.g., Verilog, VHDL), thereby improving design productivity and
reducing the design time/cost [16, 20]. HLS tools allow designers to
select different directives such as loop unrolling factors, memory
binding, function inline, target frequency, etc. Each modification
of directives creates a different design configuration, leading to a
larger design space.

HLS design space exploration (DSE) [20] aims to identify the
Pareto-optimal or optimal design solutions, considering factors such
as performance, area, and power at both the system and component
levels. State-of-the-art HLS DSE approaches use machine learn-
ing (ML) or heuristic-based methods to identify component-level
[11, 21] or system-level (multi-component) [16] Pareto-optimal
configurations. Training ML models and evaluating each heuristic
requires extensive data. Several HLS benchmarks and datasets are
available to the community for evaluating these methodologies
[2, 4, 5, 8–10]. However, these existing benchmarks and datasets
focus on component/function-level computations without includ-
ing system characteristics (e.g., end-to-end timing constraints) that
may be required in real-world HLS usage scenarios. As such, these
datasets cannot meet all experimental conditions, particularly for
complex real-world embedded systems that require meeting timing
constraints and minimizing energy consumption. For instance, as
illustrated in Fig. 1, performing a system-level HLS DSE analysis of
a multi-component system (e.g., a wearable pregnancy monitoring
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Figure 1: Proposed Vaegan approach to generating synthetic
data for system-level HLS design space exploration compared
to the traditional approach

system or an autonomous braking system) requires extensive syn-
thesis, implementation, and validation of each component. These
systems, initially generated using an HLS tool (e.g., Vitis HLS), are
synthesized and implemented with an RTL tool (e.g., Xilinx Vivado)
targeting a specific Field-Programmable Gate Array (FPGA). Col-
lecting data for each system configuration is often prohibitively
time-consuming.

Despite researchers dedicating considerable time to data collec-
tion, datasets targeting only a few FPGA boards and a specific HLS
tool may prove insufficient for developing accurate ML models
or heuristics for DSE. These models and heuristics are crucial for
predicting hardware implementation results from HLS directives
(e.g., loop unrolling factor, loop pipeline, array partition) or eval-
uating heuristic algorithms across diverse HLS tools and FPGA
boards. Given the complexity of these unexplored conditions (e.g.,
embedded systems’ time constraints), previous works [16, 21] have
demonstrated that synthetic data can be effective in expanding the
design space and evaluating HLS DSE methodologies.

Synthetic data offers numerous benefits for both ML-based and
heuristic-based HLS DSE. For instance, it is cost effective and time
efficient, and provides data diversity. Using both synthetic and real
data for training can enhance the robustness of ML models, among
other advantages [17]. However, creating synthetic HLS data and
achieving high fidelity (i.e., a similar data distribution between real
and synthetic data) is challenging. Current works that use synthetic
data for HLS DSE do not quantify the fidelity of the synthetic data
they use, thus calling into question the effectiveness of the DSE
evaluation. Existing approaches for generating synthetic data may
result in low-fidelity data. We address this critical challenge using
an innovative method for generating high-fidelity synthetic HLS
data to support HLS DSE research.

In this paper, we propose a novel approach, called Vaegan1, to
simplify the generation of synthetic data for system-level HLS DSE
(Fig. 1). Vaegan initially formulates and transforms diverse real
HLS data, sourced from HLS directives, HLS report estimation,
post-synthesis, and post-implementation data into a binary input
format. The approach then employs generative machine learning—
we explored Variational Autoencoder (VAE) [13] and Generative
Adversarial Network (GAN) [3])—to generate and analyze the syn-
thetic data. Vaegan allows designers to use and transform their own

1The code is available at https://github.com/yuchaoliao/VAEGAN.git.

ground truth data to generate synthetic data. We evaluate our work
using widely recognized metrics, and compare it both qualitatively
and quantitatively to real HLS data and two prior works involving
synthetic data [7, 16]. Experimental results show that, compared
to prior work, Vaegan effectively generates high-fidelity synthetic
data that improves the Maximum Mean Discrepancy (MMD) score
from real HLS data by 44.05%.We also demonstrate the practical use-
fulness of the Vaegan approach through a case study that involves
generating complex, synthetic HLS data for a wearable pregnancy
monitoring system. Our results indicate that this synthetic data ex-
pands the Pareto frontier, uncovering new Pareto-optimal solutions
that were not present in the original dataset, and extending both
the quality and the quantity of the original dataset for design space
exploration.

2 RELATEDWORK
State-of-the-art high-level synthesis (HLS) benchmarks feature
many low- and top-level kernels. Examples include Rosetta [9],
MachSuite [2], and Polybench [5]. While recent HLS datasets, such
as db4hls [4] andHLSDataset [10], are highly valuable, they partially
implement the above benchmarks and are limited in their diversity
of experimental scenarios. For instance, HLSDataset omits data for
execution cycles and post-implementation critical paths which are
essential for energy calculation, while db4hls lacks post-synthesis
and post-implementation results. Both datasets concentrate on a
limited set of workloads and devices, with none considering real-
world multi-component embedded systems. Consequently, HLS
DSE research has turned to using synthetic data (in addition to
real data) for evaluation [15, 16, 21]. For example, Liao et al. [16]
randomly generated post-implementation data based on real-world
systems for system-level HLS DSE andWu et al. [21] randomly gen-
erated data flow graphs (DFGs) during early-stage HLS exploration.
However, these works do not analyze the fidelity of the generated
synthetic data to real HLS data. Our examination of the approaches
employed in these works reveals a critical discrepancy between
the synthetic and real HLS data, highlighting the need for a novel
approach to generate and assess synthetic HLS data.

There are many related works on leveraging generative ML mod-
els for generating synthetic data in fields such as Natural Language
Processing (NLP), vision, healthcare, voice, etc. [17]. However, none
of them pertain to the generation of HLS data. Variational Autoen-
coder (VAE) [13] and Generative Adversarial Network (GAN) [3]
are the most common ML frameworks used for synthetic data gen-
eration. VAE is a type of generative model that uses a probabilistic
approach to compress data into a lower-dimensional space (en-
coding) and then generates new data by decoding from this latent
space. GAN is composed of two neural networks—a generator and a
discriminator—competing against each other, where the generator
attempts to produce synthetic data that can deceive the discrimi-
nator network into believing it is real. Both models are explained
in Section 3.2 along with how we tailor them for HLS data. To
our knowledge, ours is the first work that tackles the challenge of
generating high-fidelity system-level synthetic data for HLS DSE.

https://github.com/yuchaoliao/VAEGAN.git
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Figure 2: Vaegan comprises three stages: (A) formatting and transforming diverse input data (HLS directives, HLS report
estimation, post-synthesis, and post-implementation data) into a format readable by the network. (B) employing ML (here, a
Variational Autoencoder (VAE) or a Generative Adversarial Network (GAN)) to generate synthetic HLS data. (C) evaluating the
generated synthetic HLS data.

3 METHODOLOGY
Fig. 2 illustrates the overall design flow of Vaegan, which consists
of three stages. The first stage involves formalizing the input and
output. Diverse input data, such as clock, area, and power are trans-
formed into a format readable by the network. The second stage
employs a state-of-the-art generative network, specifically a Vari-
ational Autoencoder (VAE) or a Generative Adversarial Network
(GAN), fine-tuned to generate the desired synthetic HLS data. The
final stage evaluates the models and the generated synthetic data
using state-of-the-art metrics. Here, we elaborate on these stages.

3.1 Input Transformation
Fig. 2(A) shows the flow of input transformation. Vaegan begins by
constructing the appropriate input sets, a task complicated by the
intricate HLS process and the variety of data types. Our approach
aims to enable designers to generate their own synthetic HLS data.
As such, the first challenge in this step involves selecting critical
variables for data generation. A typical HLS design point might
comprise C/C++ source code, synthesis directives, Intermediate
Representation (IR) of the source code, HLS report estimation data,
post-synthesis data, and post-implementation data. Depending on
their specific focus, designers may select any subset of these data.
For instance, ML-based HLS DSE approaches often predict area and
performance from the synthesis directives and IR to either post-
synthesis or post-implementation data [11, 21]. To evaluate Vaegan,
we use HLS directives, HLS report estimation, post-synthesis, and
post-implementation data.

HLS synthesis directives usually consist of loop unrolling factors,
loop pipelining, array partitioning, memory type, function inlining,
target frequency, etc. HLS report estimation data includes estimated
synthesis results. These estimated results resemble actual imple-
mentation results from tools like Xilinx Vivado. Post-synthesis and

post-implementation data, derived from synthesis tool reports, in-
clude metrics for execution cycles, critical path, area, power, and
target frequency. Designer-selected data are combined into a sin-
gle model input. Given the limitations of existing benchmarks and
datasets, designers may need to manually generate real data as a
ground truth for the ML model.

The second challenge is transforming diverse input data, such as
resource usage (integers), power (floating-point numbers), and HLS
directives (options with integers), into a network-readable format.
Firstly, We propose converting each input variable to a binary fixed-
point format, with the precision determined by the real data. In our
experiments (Section 4), we used a 32-bit representation, with 20
and 12 bits for the integer and fractional portions, respectively. Each
HLS directive is represented using 32 bits, wherein each directive
option (unrolling factors, array partitions, etc.) is represented using
4 bits. The options are combined and zero-padded, if needed, to form
the 32-bit representation for the directive. Next, to prepare data for
a network input, the binary values of all variables and directives in a
solution are concatenated row-wise into a 2-D matrix. Advantages
of using a fixed-point binary representation include seamlessly
handling both continuous and discrete data types and achieving
high precision while maintaining a dynamic range, thanks to the
separation of integer and fractional values [12].

3.2 Generative Models
The second stage of Vaegan employs a generative model to create
synthetic data. We explored a Variational Autoencoder (VAE) and a
Generative Adversarial Network (GAN), but primarily use the VAE
as it proved to be more effective for our purposes. We note that
other state-of-the-art models like diffusion models can be used in
this stage, and we plan to explore additional models in future work.
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3.2.1 Variational Autoencoder (VAE). A VAE [13] is a probabilistic
directed graphical model defined by a joint distribution over a set
of latent random variables 𝑧 and observed variables 𝑥 , expressed
as 𝑝 (𝑥, 𝑧) = 𝑝 (𝑥 |𝑧)𝑝 (𝑧). Fig. 2(B) shows a sample VAE. In VAE,
an encoder network is leveraged to map the input variables to a
continuous latent space. The parameters of a variational distribu-
tion defined within this latent space can spawn multiple different
samples sharing the same underlying distribution. Typically, the
prior distribution over the latent random variables, 𝑝 (𝑧), is chosen
as a standard Gaussian distribution, and the data likelihood 𝑝 (𝑥 |𝑧)
is generally a Gaussian or Bernoulli distribution whose parameters
depend on 𝑧 through a deep neural network known as the decoder
network. This decoder is then employed to map the latent space
back to the input space, leading to the generation of data points.
The loss function (𝐿(𝑥)) of the encoder and decoder networks are
jointly trained to maximize the evidence lower bound (ELBO):

𝐿(𝑥) = E𝑥∼𝑞 (𝑧 |𝑥 ) [𝑙𝑜𝑔(𝑝 (𝑥 |𝑧))] − 𝐷𝐾𝐿 (𝑞(𝑧 |𝑥)∥𝑝 (𝑧))

where 𝐷𝐾𝐿 is the Kullback–Leibler (KL) divergence between the
latent distribution and standard normal distribution.

We employ a Multilayer Perceptron (MLP) network for both the
encoder and decoder (MLPVAE). MLPVAE has two hidden layers
and uses a ReLU activation function to provide non-linearity and
symmetry for the VAE. A sigmoid activation function is used to
reconstruct the input format for the decoder. MLPVAE encodes the
real HLS data to a latent distribution by the mean and standard
deviation and then decodes a sample from this distribution to recon-
struct a new synthetic HLS data. We trained the model using binary
cross entropy loss and Adam optimizer with an initial learning rate
𝛼 = 0.0001. A unique feature of the fixed-point input format used
here is that we modified the loss function to place additional weight
on changes to the most significant bit (MSB). This modification is
made to account for the fact that each modification of the MSB
causes a greater change in value compared to the lower bits.

3.2.2 Generative Adversarial Network (GAN). A GAN [3], exem-
plified in Fig. 2(B), comprises a generative model trained through
a competitive interplay between a generator and a discriminator
network. The generator function 𝐺 (𝑧) is typically initialized by
drawing the latent variable 𝑧 from a basic prior distribution such
as Gaussian, 𝑝 (𝑧). The discriminator network, 𝐷 (𝑥), outputs the
probability of a given sample originating from the actual data dis-
tribution. It aims to differentiate between samples generated by the
GAN and actual data. Concurrently, the generator endeavors to cre-
ate samples with a high degree of realism, intending to deceive the
discriminator into accepting these generated outputs as genuine.
This iterative process between the generator and discriminator
results in a zero-sum game, fostering an environment conducive
to unsupervised learning. This contest between the two networks
translates into a minimax problem where both networks strive to
optimize their performances:

min
𝐺

max
𝐷
E𝑥∼𝑝data (𝑥 ) [log𝐷 (𝑥)]

+ E𝑧∼𝑝z (𝑧 ) [1 − log𝐷 (𝐺 (𝑧))]

We employed Deep Convolutional Generative Adversarial Net-
work (DCGAN) [19] which generally demonstrates superior per-
formance over GAN in generating synthetic data. DCGAN uses
convolutional neural networks (CNN) for both the generator and
discriminator. The generator utilizes four deconvolution layers with
Batch normalization and ReLU activation for the first three layers.
A sigmoid activation function is used for the last layer to map to the
[0,1] range for binary inputs. The generator takes a latent vector 𝑧
of size 100 from normal distribution as input and generates output
matching the real data. The discriminator has four convolution
layers with Batch normalization and LeakyReLU activation for the
first three layers. Because the discriminator needs to output the
probability of whether the input data is real or fake, a sigmoid
activation function is also used in the last layer. Like MLPVAE,
the DCGAN uses the same loss function as MLPVAE and Adam
optimizer. We use the initial learning rate 𝛼 = 0.07 for the generator
and 𝛼 = 0.0001 for the discriminator.

3.3 Model Evaluation
Fig. 2(C) illustrates the evaluation process to verify the model’s
performance and the fidelity of the generated synthetic data to real
data. The generated synthetic HLS data 𝑥 is assessed relative to
the real input data 𝑥 using a variety of state-of-the-art metrics to
ensure a robust evaluation. These metrics include the Maximum
Mean Discrepancy (MMD) [1], Sum of the Square of the Distances
(SSD), Percentage Root-mean-square Difference (PRD), and Cosine
Similarity (COSS) [14, 18]. We found the Fréchet Inception Distance
(FID) [6], which is commonly used for evaluating GANs with 3-
channel image inputs, to be incompatible with the 1-channel binary
data format used in our work. Except for COSS, where higher values
mean greater fidelity, smaller values in all other metrics indicate
that the generated synthetic data closely resembles the real data.

4 EXPERIMENTS
We performed experiments with input datasets from HLSDataset
[10] as the original HLS data and used the MLPVAE and DCGAN
models (Section 3.2) to generate synthetic HLS data. We compared
the Vaegan-generated data to the original data and synthetic data
generated using two prior works. The first prior work [16] (called
‘Gaussian’ herein) randomly generated synthetic HLS data sepa-
rately from all samples in each benchmark and variable based on
a normal distribution. The second [7] (called ‘ABC’ herein) gen-
erated genetic data using an approximate Bayesian computation
(ABC) procedure. While this work did not generate HLS data, we
found the approach used instructive for evaluating our work. We
performed the experiments on an Intel i7 11700k @3.6GHz CPU
with an NVIDIA RTX 3080 Ti GPU.

4.1 Input
We selected the HLSDataset due to its inclusion of partial post-
implementation data, offering more diverse input data than db4hls
[4]. HLSDataset targets two FPGA parts: xc7v585tffg1157-3 and
xczu9eg-ffvb1156-2-i. We leveraged both parts to evaluate our ap-
proach’s ability to generate distinct synthetic data for specific parts.
HLSDataset provides several hardware configurations comprising
HLS directives, HLS report estimation, post-synthesis, and partial
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Table 1: Example input configuration with 20 variables from HLSDataset. The variables are generated from the HLS report and
synthesis results and include statistics like the number of digital signal processors (DSPs), block RAMs (BRAM), lookup tables
(LUTs), flip-flops (FF), dynamic power (DP), shift register LUTs (SRL), etc.

Project Clk-estimated(ns) BRAM DSP FF LUT c-num-arith
io1-l2n1n1-l4n1n1 8.419 32 5 727 1231 22
c-num-logic rtl-num-arith rtl-num-logic input-port output-port DP(mW) Total LUTs

10 19 10 128 32 17.103 654
Logic LUTs LUTRAMs SRLs FFs RAMB36 RAMB18 DSP48

654 0 0 498 16 0 5

Table 2: Hyperparameters for MLPVAE and DCGAN training

Model MLPVAE DCGAN-Generator DCGAN-Descriminator
Learning Rate 1e-4 7e-2 1e-4
Feature Map 16 32 32
Batch Size 20 20 20

Number of Epochs 150 150 150
Optimizer Adam Adam Adam
Layer Type Linear CNN CNN

Number of Layers 4 4 4

post-implementation data. We separated the data into two cate-
gories: with and without HLS directives. This separation was neces-
sary because each benchmark exhibited a different total number of
loops and arrays, resulting in a varying number of HLS directives.
Initially, we combined the data from the HLS report, post-synthesis,
and post-implementation that did not include HLS directives. Of
the 23 variables available per configuration, we selected 20 vari-
ables and eliminated 3 variables—target clock period of 10𝑛𝑠 , clock
uncertainty of 1.25𝑛𝑠 , and frequency of 100𝑀𝐻𝑧—that were fixed
across all samples (see Table 1 for the details of variables). For the
data with HLS directives, we used three directive options (loop
pipeline, loop unrolling, and array partition) and eliminated the
two (interface and resource) that were fixed for all benchmarks.

We collected a total of 9557 samples without HLS directives
from two FPGA parts and 3717 samples with HLS directives for
FPGA part xc7v585tffg1157-3 for Polybench. Of the 9 Polybench
benchmarks, only 7 have directive files available and the directives
are the same for both FPGA parts, hence the smaller number of
samples. After selecting the variables from the dataset, we used a
Python script2 to convert each variable to the 32-bit input format.

Table 3: Evaluation of DCGAN andMLPVAE usingMMD, SSD,
PRD, and COSS for two FPGA parts without HLS directives.
Larger numbers are better for COSS, while smaller are better
for all other metrics. Results depict the mean over 5 runs of
each model and the standard deviation (±).

Model MMD SSD PRD% COSS
FPGA part: xc7v585tffg1157-3

Gaussian [16] 0.666 ± 0.001 99.697 ± 0.087 116.752 ± 0.102 0.390 ± 0.001
ABC [7] 0.667 ± 0.002 99.714 ± 0.082 116.754 ± 0.033 0.390 ± 0.001
DCGAN 0.614 ± 0.002 86.623 ± 0.098 110.707 ± 0.055 0.458 ± 0.001
MLPVAE 0.370 ± 0.002 47.721 ± 0.185 82.830 ± 0.302 0.698 ± 0.002

FPGA part: xczu9eg-ffvb1156-2-i
Gaussian [16] 0.662 ± 0.001 98.405 ± 0.081 116.320 ± 0.155 0.393 ± 0.001

ABC [7] 0.663 ± 0.003 98.420 ± 0.177 116.207 ± 0.106 0.394 ± 0.001
DCGAN 0.660 ± 0.001 87.215 ± 0.100 114.031 ± 0.095 0.436 ± 0.001
MLPVAE 0.374 ± 0.004 47.641 ± 0.166 82.953 ± 0.252 0.696 ± 0.001

2https://github.com/yuchaoliao/VAEGAN/blob/main/DataTransformation.py

(a) real data

(b) Gaussian

(c) ABC

(d) DCGAN

(e) MLPVAE

Figure 3: Visualized HLS data comparison between (a) real
data, (b) Gaussian [16], (c) ABC [7], (d) DCGAN, and (e) MLP-
VAE for part xc7v585tffg1157-3 without HLS directives

4.2 Model Configuration & Training Parameters
Table 2 presents the hyperparameters used for the MLPVAE model,
as well as for the generator and discriminator components of the
DCGAN model. Without HLS directives, both models were trained
separately on two FPGA parts, and synthetic HLS data was gener-
ated to match the real data size of 20 variables, each with 32 bits
(20x32). Results (Section 4.3) revealed the superiority of MLPVAE
over both DCGAN and prior works. Thus, with HLS directives, for
brevity, we report results for MLPVAE for part xc7v585tffg1157-3,
with input widths of the number of directives (ranging from 19 to 35)
plus 20 variables. The initial learning rate was the same 𝛼 = 0.0001
for both the generator and discriminator in DCGAN. We slowly
increased the learning rate of the generator [6] to 𝛼 = 0.07 until
we found the balance between the generator and the discrimina-
tor. In each training epoch, we evaluated the model and generated
synthetic HLS data using the MMD, SSD, PRD, and COSS metrics.

4.3 Results
Fig. 3 depicts a visualization of the real HLS data without directives
(for part xc7v585tffg1157-3) compared to the synthetic HLS data
generated by our DCGAN and MLPVAE models and prior works

https://github.com/yuchaoliao/VAEGAN/blob/main/DataTransformation.py
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Table 4: Evaluation of MLPVAE using MMD, SSD, PRD, and
COSS for part xc7v585tffg1157-3 with HLS directives for
seven benchmarks.

Benchamrk MMD SSD PRD% COSS(Directives)
syrk(23) 0.528 ± 0.004 57.009 ± 0.193 74.764 ± 0.147 0.745 ± 0.001
syr2k(36) 0.489 ± 0.006 61.353 ± 0.213 70.074 ± 0.163 0.777 ± 0.001
k3mm(35) 0.532 ± 0.005 58.597 ± 0.315 69.191 ± 0.191 0.781 ± 0.001
k2mm(35) 0.516 ± 0.004 60.837 ± 0.296 70.027 ± 0.186 0.776 ± 0.001

gesummv(24) 0.535 ± 0.007 52.539 ± 0.282 71.623 ± 0.252 0.765 ± 0.001
gemm(24) 0.528 ± 0.011 57.643 ± 0.304 73.201 ± 0.186 0.757 ± 0.001
bicg(19) 0.579 ± 0.008 55.230 ± 0.219 78.418 ± 0.254 0.723 ± 0.001
Average 0.529 57.601 72.471 0.761

(Gaussian and ABC). As can be inferred from the visualization, both
GAN and VAE are superior to the prior works in generating realistic
synthetic data. A similar visualization with HLS directives (the
figure is omitted for brevity) showed Vaegan’s ability to generate
data resembling the real data. However, we conducted additional
quantitative assessments to more accurately evaluate the models.

Table 3 provides a detailed evaluation of MLPVAE, DCGAN,
and prior works (Gaussian and ABC) using MMD, SSD, PRD, and
COSS metrics for data without HLS directives across both FPGA
parts. MLPVAE consistently outperforms both DCGAN and prior
methods across all metrics. The two prior works (Gaussian and
ABC) generally perform similarly across all metrics. Specifically,
regarding MMD, which represents the distribution score between
real and synthetic data, MLPVAE generates synthetic HLS data that
is on average 44.0%, 44.1%, and 41.6% superior to that of Gaussian,
ABC, and DCGAN for both FPGA parts. Considering the SSD, PRD,
and COSS metrics, MLPVAE outperforms Gaussian by an average
of 51.9%, 28.9%, and 78%, respectively, and outperforms DCGAN by
an average of 45.1%, 26.2%, and 56%, respectively.

DCGAN underperforms MLPVAE primarily due to the inherent
challenges of fine-tuning. This stems from the sensitivity of DC-
GAN’s convolutional layers to architectural choices (number of
layers, filter sizes, strides), requiring extensive experimentation for
optimal results. As a result, finding the right set of hyperparameters
that leads to convergence can be less intuitive than with MLPVAE.
To achieve high-fidelity synthetic HLS data, we fine-tuned our
DCGAN’s convolutional layers and hyperparameters significantly
more often than our VAE’s—over a hundred iterations for DCGAN
compared to less than twenty for VAE, to achieve high-fidelity
synthetic HLS data. On average, each experiment using DCGAN
ran for 31 minutes and 46 seconds, whereas MLPVAE experiments
ran for 11 minutes and 25 seconds. As such, compared to DCGAN,
MLPVAE achieves better results while taking less time.

Table 4 shows the evaluation of MLPVAE on HLS data with
HLS directives, using four metrics for the part xc7v585tffg1157-3
across seven benchmarks in Polybench. For brevity, we focus on
MLPVAE due to its superiority over DCGAN and prior works. We
found that MLPVAE not only reduces training time (by up to 48×)
compared to DCGAN but also significantly improves the quality
of results. MLPVAE generates synthetic data that resembles the
real data, achieving average MMD, SSD, PRD, and COSS scores of
0.529, 57.601, 72.471, and 0.761, respectively. These results show
the promise of the proposed approach for generating high-fidelity
synthetic data for HLS DSE. Furthermore, we observed that the
results were benchmark-dependent because of variabilities in each
benchmark’s number of loops and loop levels, necessitating careful

Figure 4: Pareto-optimal design points for the area (FF+LUT)
and energy of the original three-component wearable preg-
nancy monitoring system compared with prior work (ABC
and Gaussian) and Vaegan (MLVPAE and DCGAN).

model tuning for each benchmark to optimize the synthetic data
generation process.

5 CASE STUDY: WEARABLE SYSTEMS
We briefly demonstrate and compare the use of Vaegan to gener-
ate synthetic data for a complex wearable pregnancy monitoring
(WPM) device using real data with prior approaches. This case study
involves a system-level DSE using a genetic algorithm to determine
the Pareto-optimal energy and area under a constraint of the num-
ber of frequencies available on the target FPGA board. The WPM
device comprises three components to monitor and process data for
maternal heart rate, blood oxygen saturation, and abdomen contrac-
tion electromyography. Each component runs with its period con-
straint, and communication is required between each component’s
controller and computation for each algorithm. The system-level
design space comprises a combination of component design alter-
natives and their latencies, HLS directives to generate these design
alternatives, and the interactions between the different components,
resulting in a complex system-level DSE challenge. For the input
HLS data, we used 69manually generated post-implementation data
points for the three-component WPM device. The design points
are from different design alternatives (e.g., clock frequencies, la-
tency constraints) yielding 1.92e+10 solutions, evaluated with four
metrics: execution cycles, area (FF+LUT), critical path, and power.

Due to space constraints, we omit the detailed description of
the genetic algorithm, but it is modeled after a recent HLS DSE
algorithm in [16]. We use Vaegan, ABC, and Gaussian to generate
four synthetic systems with the same size for the design alterna-
tives. Fig. 4 presents the system-level Pareto-optimal configurations
after applying the genetic algorithm to the original and synthetic
systems using MLPVAE, DCGAN, ABC, and Gaussian. As seen in
the figure, Vaegan generates a Pareto-optimal frontier that is much
closer to the original system than ABC and Gaussian. We quantified
the quality of the generated solutions using the Average Distance
to Reference Set (ADRS) [20]. Compared to the original system,
MLPVAE, DCGAN, ABC, and Gaussian achieved ADRS scores of
122.6%, 124.1%, 950.8%, and 1353.6%, respectively. A higher ADRS
score implies a greater disparity from the original system in the
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Pareto frontier. MLPVAE modestly improved the ADRS over DC-
GAN by 1.23%, and significantly outperformed ABC and Gaussian
by 87.1% and 90.9%, respectively.

6 CONCLUSION
Existing benchmarks and datasets cannot cover all experimental
conditions for system-level High-Level Synthesis (HLS) design
space exploration (DSE). Consequently, utilizing synthetic data
has emerged as a solution to this challenge. This paper proposes
a novel approach—Vaegan—for generating realistic synthetic HLS
data using generative machine learning models. To this end, we
explored two kinds of models—a Multilayer Perception Variational
Autoencoder (MLPVAE) and Deep Convolutional Generative Adver-
sarial Networks (DCGAN)—and adapted them to generate synthetic
HLS data. Experimental results show that Vaegan generates syn-
thetic HLS data that closely mimics the ground truth distribution.
Compared to prior work, Vaegan produced a Pareto front with su-
perior design points, achieving energy and area values significantly
closer to the original dataset. This demonstrates the effectiveness
of our approach for improved design space exploration in complex
systems.

Future work will explore the use of Vaegan as a machine learn-
ing predictor to bypass the High-Level Synthesis (HLS) process.
Additionally, we will explore the integration of models such as the
diffusion model into Vaegan for generating synthetic HLS data.
This work will also be extended to accommodate various inputs,
such as data flow graphs, for early-stage HLS exploration.
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