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Studying phonon coherence with a
quantum sensor

Agnetta Y. Cleland 1, E. Alex Wollack 1 & Amir H. Safavi-Naeini 1

Nanomechanical oscillators offer numerous advantages for quantum tech-
nologies. Their integration with superconducting qubits shows promise for
hardware-efficient quantum error-correction protocols involving super-
positions of mechanical coherent states. Limitations of this approach include
mechanical decoherence processes, particularly two-level system (TLS)
defects, which have been widely studied using classical fields and detectors. In
this manuscript, we use a superconducting qubit as a quantum sensor to
perform phonon number-resolved measurements on a piezoelectrically cou-
pled phononic crystal cavity. This enables a high-resolution study of
mechanical dissipation and dephasing in coherent states of variable size
(�n ’ 1� 10 phonons). We observe nonexponential relaxation and state size-
dependent reduction of the dephasing rate, which we attribute to TLS. Using a
numerical model, we reproduce the dissipation signatures (and to a lesser
extent, the dephasing signatures) via emission into a small ensemble (N = 5) of
rapidly dephasing TLS. Our findings comprise a detailed examination of TLS-
induced phonon decoherence in the quantum regime.

In the field of quantum technology, nanomechanical oscillators offer a
host of useful properties given their compact size, long lifetimes, and
ability to detect force andmotion. These devices hold the potential to
serve as long-lived memories for computation1,2, transducers for
communication3–5, and high-precision quantum sensors6. Their ability
to interact with superconducting qubits through the piezoelectric
effect has allowedmechanical systems to be brought into the quantum
regime7–16. In order to fully realize the potential of this hybrid platform,
it is crucial to understanddecoherence processes affectingmechanical
oscillators in the quantum limit. For mechanical states with large
numbers of phonons (�n≫1), the established work has followed semi-
classical spectroscopic methods to detect time-averaged energy
loss17–19 and frequency noise20,21 in the resonator. More recent studies
of mechanical devices in the few-phonon regime have used a super-
conducting qubit to perform single-phonon characterization8,10,16,22.

One important loss channel affecting nanomechanical systems is
two-level system (TLS) defects, similar to those which exist in amor-
phous glasses and imperfect crystalline materials23. TLS can couple
to electromagnetic and elastic fields, creating a dissipation channel
for nearby modes24–26. The dynamics of TLS-induced decay and

decoherence at microwave frequencies have been the subject of
extensive study in both electromagnetic20,27–32 and nanomechanical
systems17–19,33–35. Their contribution to microwave loss has been shown
to depend on power and temperature, allowing the TLS-induced loss
tangent to be extracted from measurements of the resonator’s fre-
quency and quality factor19,27. In particular, TLS contribution to
dielectric loss is known to be saturable—it is suppressed when the
intra-cavity energy exceeds a critical threshold. In this regime, the TLS
spontaneous excitation and emission rates equilibrate as the TLS reach
a steady state in which they no longer absorb energy from the
resonator mode.

Many prior studies of TLS saturation have involved monitoring
the scattered response of a resonator for a range of drive
powers19,27,30–32. Superconducting qubits, with their accompanying
suite of readout and control techniques, offer an even more sensitive
probe of TLS behavior. This platform has enabled spectroscopy of a
TLS ensemble’s strain-dependent spectrum36–38, real-time tracking of
their shifting frequencies39, and even preparation of a single TLS as a
quantum memory, with direct measurement of its relaxation and
coherence times40.
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In this work, we aim to extend the flexibility of circuit QED mea-
surement techniques into the domain of mechanical devices to learn
about TLS behavior. In our approach, the qubit nonlinearity allows for
quantum nondemolition measurement of the mechanical state. We
use a Ramsey protocol with a superconducting qubit that allows us to
perform time- and phonon number-resolved measurements on the
mechanical resonator22,41. We leverage this approach to observe sig-
natures of TLS-induced dissipation in the timedomain. This technique,
which could easily be extended to other bosonic systems, affords us a
highly granular picture of how largermechanical states of an oscillator
evolve in time, shedding new light on the quantum nonlinear dissipa-
tion processes.

The mechanical dissipation dynamics we observe are consistent
with emission into a bath of rapidly dephasing TLS. In ringdown mea-
surements of mechanical coherent states of variable size, we observe
an initial periodof fast decaywhich eventually givesway to significantly
slower dissipation. Thus, the mechanical dissipation rate changes with
the evolving phonon state size, and cannot be described by the simple
linear relation expected for a harmonic oscillator. We reproduce this
behavior using a simple numerical model incorporating a small
ensemble of TLS, where the initial fast decay shows the mechanical
mode decaying into the TLS, and slower decay emerges after the TLS
become saturated. We also perform mechanical dephasing measure-
ments using an interferometry protocol involving coherent displace-
ments of the mechanical state, which we also study numerically.

Results and discussion
Device description
Themechanical oscillators under study are one-dimensional phononic
crystal cavitiesmade of thin-film lithiumniobate (LN).While the device
contains two resonators, these experiments focus on only one cavity,
which supports the higher frequency mode (Fig 1a). The cavity is
formed from periodic structures, acting as acoustic mirrors, which
suspend a defect site from both ends42. The periodicity of the mirrors
gives rise to a full phononic bandgap which protects the localized
mode from phonon radiation channels (Supplementary Fig. 1 and
Supplementary Note 1). In addition to the large coupling rates arising
from the strong piezoelectric effect of LN, this design approach offers
a compelling platform for studies in quantum acoustics, because it
robustly removes the effects of clamping and other linear scattering
losses. Furthermore, the small mode volume of these cavities make
theman ideal candidate for studies of TLS asmechanical loss channels,
since it yields stronger coupling to fewer TLS.

We assemble our device in a hybrid flip-chip architecture. The
mechanical resonators are fabricated on the top chip, and the bottom
chip includes a superconducting qubit, control lines, and a coplanar
waveguide readout resonator (Fig. 1b). The qubit is a frequency-tunable
planar transmon, with an on-chip flux line providing capability for both
static and pulsed frequency control (Fig 1b, inset). The qubit fabrication
is described in prior work11,16 and follows methods developed in ref. 43.
As illustrated in Fig. 1c, the mechanics fabrication process begins with
thin-film LN on a silicon substrate. We thermally anneal the sample for
8 hours at 500 C before thinning the LN by argon ionmilling to a target
final thickness of 250 nm. The nanomechanical structures are then
patterned by electron-beam lithography and argon ion milling using a
hydrogen silesquioxane (HSQ) mask. We remove redeposited material
from the LN sidewalls in a heated bath of dilute hydrofluoric acid, fol-
lowed by a piranha etch. Next, we define metallic layers with a combi-
nation of electron-beam and photolithography, including bandages to
create the relevant galvanic connections.Weperformanoxygenplasma
descum before each deposition to minimize the presence of polymer
residues atmetallic interfaces. Finally, we undercut the nanomechanical
structures from the substratewith amaskedxenondifluoride (XeF2) dry
etch. This concludes the mechanical device fabrication, before the LN
chip is aligned and bonded to an accompanying qubit chip (Fig. 1d) in a

submicron die bonder16,44. The qubit is capacitively coupled to the
mechanical mode across a small vacuum gap, which is defined by the
flip-chip separation distance (Fig. 1e).

The completed flip-chip package is cooled to a temperature of 10
mK in a dilution refrigerator. As we bias the qubit away from its max-
imum frequencyωmax

ge =2π = 2.443 GHz, wemeasure the qubit T1 over a
wide tuning range to find ameanvalueT1 = 4.9 ± 2.3μs, with T2 = 1.4 μs
at the flux sweet spot. When the qubit is rapidly tuned into resonance
with the mechanical mode at ωm/2π = 2.339 GHz, the resulting Rabi
oscillations allow us to extract the coupling rate g/2π = 10.5 ± 0.1MHz.
Further details on basic device characterization can be found in a prior
manuscript16.

Phonon number measurements
In the following experiments, we statically bias the qubit near the
mechanical mode and use it as a probe to study dissipation and
dephasing of mechanical coherent states. We extract information
about the mechanical state through the qubit spectrum by means of
their dispersive coupling. The qubit and mechanics are coupled
through the piezoelectric effect to give an interaction Hamiltonian
Ĥint = gðb̂+ b̂

yÞσ̂x , with b̂ corresponding to the mechanics and Pauli
operators σ̂ corresponding to the qubit. When the two modes are far
detuned, the effective Hamiltonian for the system is given by45

Ĥeff =ωmb̂
y
b̂+

1
2

ωge + 2χb̂
y
b̂

� �
σ̂z : ð1Þ

Fig. 1 | Device and fabrication. a False-color scanning electron micrograph of the
mechanical resonators. Lithium niobate (LN) phononic crystal cavities (red) are
patterned with aluminum electrodes (orange) and undercut from the silicon sub-
strate (blue). Inset shows an optical micrograph of the coupling capacitor pad,
which is galvanically connected to the mechanical electrodes. The resonators are
too small to be seen in this image, but their location is indicated in red. b Optical
micrograph of the bottom chip, showing the superconducting qubit, control lines,
and readout resonator. Inset shows the qubit’s SQUID and flux line. c Mechanical
device fabrication. Cross-sectional illustration of the patterning, cleaning, metalli-
zation, and release etching steps. Bandages create electrical contact between the
active mechanics electrode and the coupling capacitor pad, as well as between the
ground electrode and the chip’s ground plane. d Photograph of the composite flip-
chip assembly. Control lines on the qubit (bottom) chip are visible, as well as the
polymer adhesive which fixes the top chip in place. e Approximate location of the
cross-chip coupling capacitor. The illustration shows the twohalves of the coupling
capacitor (orange) aligned vertically and separated by approximately 1 μm.
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In this limit, the qubit spectrum acquires a frequency shift 2χ for each
populated energy level in the mechanical oscillator. The magnitude of
this shift depends on the qubit anharmonicity αq, mechanical coupling
rate g, and detuning Δ =ωge −ωm as

χ = � g2

Δ

αq

Δ� αq
: ð2Þ

Since this value varies with the qubit frequency, it is important to
choose an operating point which yields a large χ while keeping the
system in the strong dispersive limit. In this regime, χ exceeds all
decoherence rates of the system, but the detuning is sufficiently large
to prevent significant linear coupling between the twomodes. For our
experiments, we statically bias the qubit to ωge/2π = 2.262 GHz, which
corresponds to ∣Δ∣ ≈ 8g and a measured dispersive shift 2χ/
2π = − 1.48 ±0.05 MHz.

When the mechanical mode is populated, we can perform a
Ramsey measurement on the qubit to resolve the array of dispersive
shifts and thus obtain the full phonon number distribution of the
mechanical state. The Ramsey signal S(t) takes the form of a sum of
oscillating terms whose frequencies differ by integer multiples of 2χ,
indexed by the Fock number n, with an exponentially decaying
envelope:

SðtÞ=
Xnmax

n =0

Ane
�κt cos ðω0 + 2χnÞt +φn

� �
: ð3Þ

We fit the Ramsey signal to Eq. (3) with fit parameters An, κ, and χ.
We extract the phonon number distribution from the normalized
amplitudes, P(n) =An/∑nAn. In contrast to previous work16 where the
exponential decay rate in Eq. (3) was taken to depend linearly on n, we
choosehere tomodel decay as independent of the phononoccupation
number (Supplementary Note 2).

Phonon-resolved decay
We use the Ramsey protocol to study decay of mechanical coherent
states. We first apply a displacement pulse D̂α at the mechanical fre-
quency to the qubit’s XY line (Fig. 2a), which drives the mechanical
mode into a coherent state. After a variable delay τ, we perform a
Ramsey measurement on the qubit to extract the mechanical P(n), as
described above (Fig. 2b,c). From this, we calculate the average num-
ber of phonons, �n =

P
n =0n � PðnÞ. Repeating this sequence for a range

of τ values constitutes a phonon-number resolved ringdown measure-
ment of a mechanical coherent state (Fig. 2d). The measurement
provides a high degree of resolution, revealing not only the decaying
mean phonon number in the resonator, but also how the distribution
evolves in time (Fig. 2e and Supplementary Fig. 2).

We observe that the mechanical dissipation follows a double-
exponential trajectory, with an initial fast decay followed by sig-
nificantly slower relaxation. Similar multi-exponential behavior
appears in single-phonon measurements in a prior study of the same
device16. By varying the duration and amplitude of the initial dis-
placement pulse, we study how the energy decay and saturation
dynamics depend on the size of the initial mechanical state (Fig. 2d).
We fit each decay curve to a double-exponential form:

�nðτÞ=a1e
�κ1τ +a2e

�κ2τ : ð4Þ

We examine the behavior of the fast decay κ1/2π≃ 30 − 70 kHz, slow
decay κ2/2π≃ 1 − 3 kHz, and their corresponding weights a1, a2 as we
vary the initial mean phonon number �n0 = �nðτ =0Þ.

Nonexponential decayhasbeenobserved in graphenemechanical
resonators operated in a strongly nonlinear regime46. It has also been
known to occur in superconducting qubits due to fluctuations in
quasiparticle population47 and, more recently, due to interactions with

TLS48,49. Neither quasiparticles nor mechanical nonlinearity can plau-
sibly lead to the nonexponential decay observed in our experiments.
We argue that the multi-exponential energy decay in our system is
caused by resonant interaction of the mechanics with a handful of
rapidly dephasing TLS. The initial fast decay occurs as the mechanical
mode emits energy into the TLS, and we note that we do not observe
any coherent oscillations between the two coupled systems. As the TLS
become populated, they lose their ability to absorb more phonons,
thus becoming saturated. Consequently, the rapid decay ends and
slower decay emerges, causedby either energy relaxation of the TLSor
other dissipation processes affecting the resonator. We perform

Fig. 2 | Energy decaymeasurement. a Pulse sequence showing a displacement D̂α

which prepares a mechanical coherent state (left) and mechanical state readout
using a Ramsey measurement (right) after a variable delay τ. The Ramsey mea-
surement consists of two π/2 rotations of the qubit state, separated by a variable
delay t. bRepresentative timedomain trace from a Ramseymeasurement. The data
(points) and a fit to Eq. (3) (solid line) are shown, along with the fitted exponential
decay envelope (dashed line). c Phonon number distribution extracted from the
time domain data in b. This is used to calculate the mean phonon number, �n. All
error bars represent one standard deviation. d Sample ringdown measurements
�nðτÞ with varied initial state sizes, �n0 = �nð0Þ. Inset shows an expanded view of the
early-time data, τ ≤ 3 μs. e Evolution of phonon number distribution for an initial
state size �n0 = 3:89 (red data set in d). The color plot indicates the population in
each Fock level at each point in time.
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numerical modeling to reproduce the salient features of this process,
described later in this paper.

Phonon-resolved dephasing
A modification of our measurement protocol allows us to extract the
mechanical dephasing time T2m using coherent states of motion with
varying amplitude. As shown in Fig. 3a, we now displace the mechan-
ical state twice: once to initialize the measurement with a coherent
state, and again after a variable delay τ. The two displacement pulses
have identical amplitude and duration, but the second pulse has a
programmedphaseϕ that is swept from0 to 2π for eachvalueof τ. The
protocol concludes with a Ramsey measurement to characterize the
final mechanical state.

We illustrate the principle behind this displacement inter-
ferometry protocol in Fig. 3b. The first displacement initializes a
coherent state (Fig. 3b,i). After the second displacement, the resulting
mechanical states lie on a circle in the complex plane. In the absence of
dephasing (τ≪ T2m), maximal displacement 2α occurs atϕ = 0, and the
final state is returned to the origin when the pulses are out of phase by
ϕ =π (Fig. 3b, ii). In the presence of dephasing (τ ≳ T2m), this resulting
path is shifted in the complex plane and no longer intersects the origin
(Fig. 3b, iii). In these measurements, the final state size �n depends
sinusoidally on ϕ, and the effect of dephasing can be seen in the
reduced oscillation amplitude for larger delays (Fig. 3c). These
amplitudes decay exponentially in time at a rate γ2m= 1/T2m (Supple-
mentary Note 3). We fit the interference data to the following form to
extract the amplitude C and offset �noff :

�nðϕÞ=C cosðϕ+ϕ0Þ+ �noff : ð5Þ

The phase offsetϕ0 is dependent on the delay τ, and could arise due to
frequency uncertainty.

A few representative interferometry traces are shown in Fig. 3d for
an initial state �n0 = 2:29. Each interferogram is plotted relative to its
offset �noff for visual clarity. We note that the offsets also decay in time
at a rate γ1m = 1/T1m, but the timescale of the interferometry data is
insufficient to accurately determine this value. In Fig. 3e we plot the
extracted offsets �noff (inset), amplitudes C and exponential fit for this
data set, from which we extract T2m= 2.2 ± 0.2 μs.

The effect of dephasing is also visible in the phonon number
distribution of the mechanical oscillator. In principle, a coherent state
undergoing amplitude decay should remain a coherent state and
thereforemaintain a Poisson distribution. However, in the presence of
dephasing, the state evolves into something other than a coherent
state whose P(n) may deviate significantly from the Poissonian form.
This effect is evident in Fig. 3f, where we examine P(n) extracted from
data for two representative states: one with τ =0 (top) and another
with τ = 5.0μs (bottom). Each distribution is compared to a coherent
state ∣β

�
whose P(n) is given by a Poisson distribution with the same

average phonon number as the data, jβj2 = �n. The top panel shows
good agreement between the data (red bars) and the coherent state
distribution (shaded blue), while the bottom panel shows a pro-
nounced divergence between the two. We observe a similar effect in a
simulation of the dephasing process (Fig. 4f).

We repeat the dephasing measurement for three distinct initial
states and find, perhaps surprisingly, that the dephasing rate is
reduced for larger phonon states (Fig. 4e). In a naivemodel, we expect
the mechanical frequency jitter to be either primarily due to fluctuat-
ing off-resonant TLS, which would not be saturated by weakly driving
the mechanics, or from excitation and relaxation of resonant TLS,
which occur even when they are saturated. Saturation implies that the
rates of phonon emission and absorption into the TLS bath are roughly
equal, canceling their effect on energy decay and leading to longer T1m
as we observe. However, dephasing should still occur if emission and

Fig. 3 | Displacement interferometry. a Pulse sequence for the dephasing mea-
surement showing interferometry protocol (left) and mechanical state readout
(right). We apply two displacement pulses D̂α separated by a variable delay τ and
with a programmed relative phase ϕ. Last, we perform a Ramsey measurement to
characterize the resulting mechanical state for each value of ϕ and τ. b Illustration
of the measurement principle. i The initial displacement D̂α excites a coherent
state. ii The resulting states after the second displacement trace a circular path in
phase space. In the absence of dephasing (τ≪ T2m), this path intersects the origin
whenϕ =π. iii In the presence of dephasing (τ ≳ T2m), this circular path is shifted in
phase space. c Illustrated measurement result, showing pure dephasing in the
absence of relaxation. For each value of τ, the average phonon number �n depends
sinusoidally on ϕ. The case with no dephasing (b, ii) is plotted in dark blue, while
the dephased case (b, iii) is shown in light blue. d Experimental results. We plot the

extracted phonon number (points) and corresponding fit to Eq. (5) (line) for a few
values of τ with a common initial state size. e Sample dephasing ringdown mea-
surement. We plot the decaying amplitudes (points) extracted from the inter-
ference fringes and fit them to an exponential decay function (line) to extract the
mechanical dephasing rate γ2m = 1/T2m. f Dephasing effects in phonon distribution.
Red bars indicate the Fock level occupations extracted from Ramsey data. Each
panel corresponds to one data point �n in (d). The shaded blue curve shows the P(n)
distribution of the coherent state with the same mean phonon number. The top
panel (τ =0 and �n= 6:97) shows amechanical state which closely follows a coherent
state distribution, while the state in the bottom panel (τ = 5.0 μs and �n= 3:06)
diverges notably from this distribution due tomechanical dephasing. All error bars
represent one standard deviation.
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absorption of phonons are occurring incoherently. An increase in T2m
may thereforepoint to coherenceof theTLSbathwith thedrivingfield.
We note that a power-dependent reduction of TLS-induced dephasing
processes is predicted by the tunneling model proposed by Faoro and
Ioffe50. The predictions of thismodel have found good agreementwith
experimental studies of superconducting resonators which cannot be
described by the standard tunneling model.

Numerical model of mechanics-TLS interaction
To better understand these decay and decoherence signatures, we
develop and study numerically51 a highly simplified model of a
mechanical mode interacting with a small number of TLS52. Our model
includes a collection of N identical two-level oscillators, with annihi-
lation operators âk , coupled at a rate gTLS to a harmonic oscillator
(Fig. 4a). The TLS have intrinsic decay and dephasing rates γ1 and γ2,
respectively, and are detuned from the mechanical frequency by ΔTLS.
We consider only near-resonant TLS, and we assume there is no TLS-
TLS coupling. In the frame of the TLS, the system Hamiltonian is given
by:

Ĥ =ΔTLSb̂
y
b̂+

XN

k = 1

gTLSðây
k b̂+ b̂

y
âkÞ: ð6Þ

We initialize the mechanics and TLS in thermal states, each
populated to a level nth = 0.05. Next, we prepare themechanical mode
in a coherent state with an instantaneous displacement D̂α with vari-
able amplitude. We then allow the system to freely evolve under the
action of the Hamiltonian in Eq. (6) for a total duration of 50 μs, with
collapse operators acting on the TLS. The operators

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1ðnth + 1Þ

p
âk and

ffiffiffiffiffiffiffiffiffiffiffi
γ1nth

p
ây
k account for spontaneous emission and absorption in the

TLS, while
ffiffiffiffiffiffiffiffiffiffi
γ2=2

p
ây
kâk accounts for their dephasing. Dissipation and

decoherence of the phononmode are induced by interactionswith the
TLS; we do not include collapse operators for the mechanical mode
itself.

The numerical solution to this Lindblad master equation returns
the density matrix of the total system for every point in time. We
examine the evolution of the mechanical mode’s P(n) and state size �n.
Similar to the experiment, the model shows approximately double-
exponential energy decay in Fig. 4b, with weights and rates that
depend on the initial state size. We fit each simulated decay profile to
Eq. (4); to constrain the fit, we fix κ1 to the mean of the experimentally
observed values while allowing a1, a2 and κ2 to vary.

Although the measurements are insufficient to precisely deter-
mine the system parameters N, gTLS, ΔTLS, γ1 and γ2, they provide gui-
dance in our choice of values, and the resulting model helps to
qualitatively understand the experimental data. It is possible to esti-
mate the microscopic Hamiltonian parameters of the TLS from prop-
erties of the host material and the mechanical eigenmode
(Supplementary Note 4 and Supplementary Fig. 3). From the expected
distribution of these parameters, the model produces reasonable
agreement with experiments for a range of values. In Fig. 4b, c we plot
the results for N = 5, gTLS/2π = 33 kHz and ΔTLS/2π = 100 kHz. The lack
of evidenceof coherentmechanics-TLS energy exchange suggests that
theTLS are rapidlydephasing, γ2/gTLS≃ 20 − 30. For this simulation,we
use γ2/2π = 660 kHz and γ1/2π = 4.0 kHz. In Fig. 4b we plot the simu-
lated energy decay trajectories (black) and corresponding fits (red) for
a few initial states, and Fig. 4c shows good agreement between the fit
metrics extracted from these simulations (lines) and the experimental

Fig. 4 | Modeling dissipation and decoherence. a Schematic of the simulation
showing a collection of N two-level oscillators coupled at a rate gTLS to the
mechanical mode. The TLS are detuned from the mechanical mode by ΔTLS and
have an intrinsic decay rate γ1 and dephasing rate γ2. b Simulated mechanical state
evolution showing TLS-induced dissipation for a range of initial state sizes. The
mechanical energy decay, given by the average phononnumber �n (black), follows a
double-exponential trajectory, which we fit to Eq. (4) (red). c Energy decay fit
metrics from experimental data (points) and simulation (line) corresponding to the
fast initial decay (red) and slow secondary decay (blue) are shown for a range of
initial state sizes �n0. The left panel shows the exponential weights a1 (red) and a2
(blue). The middle panel shows the experimentally observed fast decay rates κ1
(points) and their mean value (line). The right panel shows the fit results from
experiment (points) and simulation (line) for the slow decay rate κ2. All error bars

represent one standard deviation. d Representative result of the interferometry
protocol for displacement amplitude α = 1.30. The simulated phonon states
(points) are fit to Eq. (5) (lines) for a range of delays in the time-evolvedmechanical
state. Inset shows the extracted amplitudes (points) and fit to exponential decay
(line) from which we extract γ2m. e The experimentally observed dephasing rates
(points) are compared to simulation results (lines) computed using two different
coupling strengths gTLS. The weak coupling limit (gTLS/2π = 33 kHz) corresponding
to the results in (b, c) is shown in blue, while a larger coupling rate (gTLS/
2π =0.33MHz) corresponding to (d, f) is shown in green. f Effect of dephasing on
P(n). The simulated phonon distribution (red) is compared to the corresponding
coherent state distribution (blue) at short delays (top, τ =0) and long delays
(bottom, τ = 7.0 μs).
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data (points). See Supplementary Fig. 3 for the corresponding TLS
behavior.Moreover, the trend in theweightsa1 anda2 suggests that for
a sufficiently large initial state size, the contribution of the fast initial
decay (a1) saturates while the slow secondary decay (a2) continues to
increase. This indicates that above a certain threshold, the physics
would eventually be described by single-exponential decay with the
slower decay rate κ2, as we would intuitively expect once the TLS
defects become saturated. This behavior is qualitatively different from
the double-exponential decay model that has been used to capture
effects due to quasiparticles47.

To model the dephasing experiment, we apply a second dis-
placement operation with phase ϕ∈ [0, 2π] at a range of delays in the
time-evolved mechanical state trajectory. Following the same proce-
dure as before, we extract the sinusoidal amplitudes from the phonon
interference fringes (Fig. 4d) and determine the TLS-induced γ2m from
the decaying amplitudes (Fig. 4d, inset). The results shown in Fig. 4d, f
are computedwith a stronger coupling rate (gTLS/2π =0.33MHz,N = 5,
γ1/2π = 4.0 kHz, γ2 = 20gTLS andΔTLS = 3gTLS). In Fig. 4e,we compare the
extracted γ2m for these parameters to the experimental data, as well as
to the weakly-coupled simulation results. For the weak-coupling
parameters which match the energy decay experiments well, we find
that the extracted γ2m (blue line) is significantly lower than the
experimentally observed values (points). With the stronger coupling
rate, gTLS/2π =0.33 MHz, the extracted γ2m values (green line) fall
within the range of our experimental observations. We note that for
both values of gTLS, the model predicts a reduced dephasing rate for
larger phonon states. Finally, in Fig. 4f we show the simulated P(n) for a
short delay (top) and longer delay (bottom), where the dephasing
effects can be seen as a deviation from the coherent state distribution.

The discrepancy in optimal simulation parameters suggests that
our model provides an incomplete picture of the decoherence pro-
cesses. For instance, it is possible that the mechanical mode suffers
from additional dephasing channels, such as thermal excitation of low
frequency TLS. It is also possible that more complicated bath
dynamics, such as a distribution of non-identical defects with TLS-TLS
interactions, are necessary to more accurately describe our data.

In conclusion, we have applied a dispersive phonon number
measurement to study coherent states in a phononic crystal resonator.
We have examined how the energy decay and dephasing of these
states depend on the initial phonon state size, and have reproduced
some of these signatures using a simple model incorporating an
ensemble of saturable TLS. Future studies would benefit from a more
complex computational model, as well as additional measurements to
probe the saturation dynamics, such as spectral hole burning35. Our
results have direct relevance for bosonic error-correction schemes
involving coherent states of phonons2, and highlight the need for
improved fabrication and materials processing techniques to mitigate
the presence of TLS. Furthermore, thismeasurement technique builds
a foundation for further explorations of fundamental physics in
quantum acoustic systems, including observing quantum jumps in
mechanical states53.

Data availability
The datasets generated and analyzed for the current study are avail-
able from the corresponding author upon request.
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