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Abstract
In Part I of this series, we presented a new theoretical approach for computing the effec-
tive permeability of porous media that are under deformation by a hydrostatic pressure P. 
Beginning with the initial pore-size distribution (PSD) of a porous medium before defor-
mation and given the Young’s modulus and Poisson’s ratio of its grains, the model used an 
extension of the Hertz–Mindlin theory of contact between grains to compute the new PSD 
that results from applying the pressure P to the medium and utilized the updated PSD in 
the effective-medium approximation (EMA) to estimate the effective permeability. In the 
present paper, we extend the theory in order to compute the electrical conductivity of the 
same porous media that are saturated by brine. We account for the possible contribution 
of surface conduction, in order to estimate the electrical conductivity of brine-saturated 
porous media. We then utilize the theory to update the PSD and, hence, the pore-conduct-
ance distribution, which is then used in the EMA to predict the pressure dependence of 
the electrical conductivity. Comparison between the predictions and experimental data for 
twenty-six sandstones indicates agreement between the two that ranges from excellent to 
good.

Keywords  Porous media · Hydrostatic pressure · Deformation · Formation factor · 
Effective-medium approximation

1  Introduction

This paper is the second part in a series devoted to theoretical analysis and computation 
of flow and transport properties of porous media that undergo deformation as a result of 
applying an external force or hydrostatic pressure. In the previous paper (Richesson and 
Sahimi under review), hereafter referred to as Part I, we analyzed the problem of estimating 
the effective permeability Ke of deforming porous media and presented a new formulation 
of the problem based on a modified Hertz–Mindlin theory of contacting grain (Hertz 1882; 
Mindlin 1949) and the effective-medium approximation (EMA) for transport properties of 
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heterogeneous materials. We demonstrated that the new formulation provides accurate esti-
mates of Ke by comparing its predictions with a large set of experimental data for a variety 
of sandstones. In the present paper, we analyze the problem of predicting the electrical 
conductivity of brine-saturated porous media and, in particular, in the same sandstones.

As is well known, in most porous materials, both natural and synthetic, pores have com-
plex shapes; they are interconnected with their connectivity being stochastically distributed 
and forming tortuous flow and transport paths. Characterization of such porous media has 
always been a problem of fundamental importance and has been studied for a long time. 
One way of gaining information on the structure of a pore space is by relating its flow 
and transport properties to the quantities that shed light on its morphology. In particular, 
consider a porous medium that is saturated by brine with electrical conductivity �f . If the 
effective conductivity of the saturated medium is �e , then

where F, the formation factor, is a geometrical characteristic of the pore space. In the limit 
of long times, the effective diffusion coefficient of a molecule probing the same pore space 
is given by

where � is the porosity of the porous medium, and D0 is the free diffusion coefficient out-
side the pore space. It is, therefore, clear that measurements of De and �e , or the ability 
to accurately predict them, provide valuable information on the morphology of the pore 
space (see, for example, Vanderborght et al. 2005; Crook et al. 2008; Ghanbarian and Berg 
2017). Thus, in addition to numerous measurements of the diffusivity and electrical con-
ductivity of a wide variety of porous media, various theoretical approaches have also been 
developed for predicting �e and De , beginning with Archie (1942) and Wyllie and Span-
gler (1952), and continuing with Woessner (1963); Stejskal and Tanner (1965), and Karger 
et al. (1981), all the way to the present time (Ghanbarian et al. 2014; Dashtian et al. 2015); 
for a review, see Cai et al. (2017). Moreover, short-time behavior of De , before it reaches 
its asymptotic value given by Eq. (2), has been linked with the ratio of surface Sp of the 
pores and their volume Vp , and has been exploited fruitfully to make progress on the gen-
eral problem of characterizing a porous medium (Mitra and Sen 1992; Mitra et al. 1992a, 
1993).

Almost all the progress that has been made over the past several decades relates to the 
electrical conductivity and diffusivity of rigid porous media. As discussed in Part I, flow 
and transport properties of porous media that deform as a result of being subjected to an 
external driving potential, either pressure or force, are also important and appear in many 
problems of fundamental scientific importance, as well as practical applications, particu-
larly in characterization of laboratory-scale porous media, as well as gaining information 
about the structure of field-scale porous media through their resistivity logs.

In the present paper, we study the problem of the pressure dependence of the static elec-
trical conductivity of the brine-saturated porous media. Woodruff et al. (2015) developed 
an experimental approach for simultaneous measurement of the stress dependence of ultra-
sonic wave velocities and the components of the elastic stiffness and of the complex con-
ductivity tensors over a wide range of frequency, from 100 mHz to 10 Hz. Their data indi-
cated strong stress dependence of the ultrasonic and complex conductivity measurements, 

(1)F =
�f

�e
,

(2)De =
D0

F�
,
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which they attributed to the opening and closing of cracks within the samples. In a more 
recent paper, Revil et al. (2019) reported extensive experimental data for the effect of the 
pressure on the complex conductivity of five sandstone core samples from outcrops, as 
well as a sandstone analog that they had constructed using sintered glass beads. Their data 
may be analyzed by a method similar to what we describe in the present paper, except 
that one must use the EMA for frequency-dependent conductivity of heterogeneous materi-
als (Odagaki and Lax 1981; Sahimi et al. 1983); see Sahimi (2003) for a comprehensive 
discussion).

The rest of this paper is organized as follows: In Sect. 2, we summarize the new the-
oretical approach to determining the change in the size of the pores when a hydrostatic 
pressure P is applied to a porous medium. The theory is then used in Sect. 3 to determine 
the evolution of the pore-conductance distribution (PCD) during deformation. Section  4 
describes the EMA for estimating the effective electrical conductivity of brine-saturated 
porous media. In Sect. 5, we describe how to estimate the contribution of surface conduc-
tion to the total conductivity of the pore space. Since the proposed theory involves three 
parameters, Sect. 6 describes their estimation. The computational procedure is described 
in Sect. 7, while Sect. 8 presents the theoretical predictions for the electrical conductivity 
of a wide variety of sandstones and compares them with the experimental data. Section 9 
discusses a few aspects of the theoretical approach and its limitations, while the paper is 
summarized in Sect. 10.

2 � Mean‑Field Theory of Deformation of Porous Media 
under a Hydrostatic Pressure

As mentioned in Introduction, we employ the EMA to predict the effective electrical con-
ductivity of porous media that deform as a result of applying an external force or hydro-
static pressure. The EMA represents a type of mean-field approximation (MFA) that 
replaces a heterogeneous porous medium by an uniform one in which all the pores have the 
same effective size re . Deriving the solution of the flow or transport problem in the uniform 
system is straightforward. Then, the radius re of a randomly selected pore in the effective 
medium is replaced by its actual value in the original heterogeneous pore space, with the 
remaining pores still having the same size re . The replacement gives rise to perturbation in 
the solution of the uniform porous medium, whose magnitude is the difference between the 
solution for the uniform medium and one that is uniform everywhere, except in that one 
pore. Since the single pore is selected at random and its actual size follows the pore-size 
distribution (PSD) of the pore space, one sets to zero the average of the perturbation, with 
the averaging taken over the PSD. In effect, what the EMA does is transforming a multi-
body system into a one-body problem by accounting for the interaction of only a single 
pore with the rest of the effective medium. The effect of the remaining part of the disor-
dered porous medium is represented by the far-field external pressure or potential gradient 
applied to the porous medium for inducing fluid flow or transport.

In the spirit of the EMA, and in order to develop a tractable theoretical approach con-
sistent with the mean-field nature of the EMA, we considered in Part I the interaction 
between only two grains and its influence on the pore between the two, subject to an exter-
nal force F or the corresponding hydrostatic pressure P applied to the porous medium. We 
then derived a formulation for determining how the deformation of the pore space changes 
the size of pore between the two grains. Similar to the EMA, the effect of the deformation 
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of the rest of the pore space was represented by the far-field applied pressure P or force F. 
The applied pressure P changes the PSD of the pore space, which in turn alters its effective 
permeability and electrical conductivity. The input to the EMA is the PSD or (PCD) of the 
pore space. Therefore, if the change in the PSD or PCD as a result of applying a pressure 
or force to the pore space is determined, the EMA may be used to estimate the effective 
permeability Ke and electrical conductivity �e of the porous medium at that pressure. In 
Part I, the idea was developed for computing Ke . In the present paper, we further extend the 
theory in order to compute �e.

Since the equation that describes the change in the PSD of a porous medium as a result 
of applying a hydrostatic pressure P was derived in Part I, we only present the final result 
here and refer the interested reader to Part I for complete details. In Part I, we showed that 
by applying a hydrostatic pressure to a porous medium, the closest distance between the 
surfaces of the aforementioned two grains decreases by u, given by

where Ee , Rg , R, and � are, respectively, the effective Young’s modulus, radius, radius of 
curvature, and the Poisson’s ratio of the grains. If the grains are roughly spherical, then 
Rg ≈ R , which we assume to be the case or that, at the minimum, we can define an effective 
radius for an equivalent spherical particle.

3 � Evolution of Pore‑Size and Pore‑Conductance Distributions 
as Functions of the Hydrostatic Pressure

Since the MFA neglects the interactions of two neighboring grains with other grains, 
the pore between them does not also interact with the pores farther away. Therefore, to a 
first-order approximation, the effective radius of the pore between two grains in a porous 
medium under an external hydrostatic pressure P decreases by u/2, where u is given by 
Eq. (3). In other words, the initial PSD distribution f0(r0) before any pressure is applied 
is transformed to a new PSD fP(rP) at pressure P where rP = r0 − u∕2 . If f0(r0) is given, 
either analytically or numerically, then, since, fP(rP) = f0(r0 − u∕2) , one either has an ana-
lytical expression for fP(rP) , or constructs it numerically for any pressure P.

Suppose that �P is the conductance of a pore when the pore space is under the pressure 
P. Then, since �P ∝ r2

P
 , given a PSD fP(rP) , one obtains the PCD by hP(�P)d�P = fP(rP)drP . 

That is, for any pressure P, the PSD fP(rP) , updated by using Eq. (3), yields the corre-
sponding PCD hP(�P) , which is then used in the EMA in order to determine the effective 
electrical conductivity �e of the porous medium.

4 � Effective‑Medium Approximation for the Effective Conductivity

The morphology of any porous medium consists of pore throats that are connected 
together via the pore bodies. The effective sizes of both pore throats and pore bod-
ies are distributed according to statistical distributions ft(rt) and fb(rb) . But, whereas 
experimental measurement of ft(rt) is straightforward (see, for example, Sahimi 2011; 
Blunt 2017 for discussions of various measurement methods), measuring fb(rb) is not 

(3)u = Rg

(
Rg

R

)1∕3[
3P(1 − �2)

Ee

]2∕3
,
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straightforward. On the other hand, both macroscopic permeability and electrical con-
ductivity of porous media are controlled by the pore throats, which, for convenience, 
are referred to as pores, and their distribution f(r) as the PSD. Since in the EMA a 
heterogeneous pore space is represented by a uniform medium in which the size of all 
the pores is re , which we assume to be cylindrical, then its electrical conductivity is, 
�P ∝ r2

P
 . One can, of course, consider other pore shapes. The EMA predicts that the 

macroscopic electrical conductivity �e is given by Doyen (1988); David et al. (1990)

where � is the porosity, and � is the tortuosity for which various theories, as well as empiri-
cal and semi-empirical relations, have been developed (for a review, see Ghanbarian-Ala-
vijeh et al. 2013). Since the distribution fb(rb) of the size of the pore bodies is typically not 
available, David et al. (1990) suggested that one should use,

with rm and rM being, respectively, the minimum and maximum pore radii. We assume the 
same in this paper. In the EMA, an effective conductance ge is computed by

Here, ge and gM are, respectively, the minimum and maximum conductances, D is the 
dimensionality of space ( D = 3 ), and h(g) is the pore-conductance distribution. Since 
ge ∝ r2

e
 , g ∝ r2 , and h(g)dg = f (r)dr , so that h(g) = f (r2)dr∕dg = f (r2)(1∕2r) , we obtain an 

alternative formulation directly in terms of f(r):

As for the tortuosity factor � , we used � = �1−m . The review by Ghabbarian et al. (2013) 
indicates that 1.2 ≤ m ≤ 4.4 for a wide variety of porous media. After some preliminary 
simulations by which we tested the accuracy of various values of m, we set m = 4 , which is 
for tortuous porous media.

Mukhopadhyay and Sahimi (2000) derived an EMA for predicting direction-
dependent macroscopic conductivity of anisotropic porous media, while Stroud (1975) 
presented a continuum EMA for anisotropic media in which the local conductivity was 
a tensor. Other applications of the EMA were pointed out in Part I, to which the inter-
ested reader is referred.

(4)�e =

�
�

�

r2
e

⟨r2
b
⟩

�
�f ,

(5)⟨r2
b
⟩ ≃ ⟨r2⟩ =

rM

∫
rm

r2f (r)dr ,

(6)

gM

∫
gm

ge − g

g + (D − 1)ge
h(g)dg = 0 .

(7)

r2
M
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r2
e
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f (r2)

2r
dr = 0 .
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5 � Accounting for Surface Conduction

The experimental data for the electrical conductivity of porous media that we com-
pare with the predictions of the model are in terms of the formation resistivity factor 
F, reported by Yale (1984). Equation (1) that defines F is based on the effective con-
ductivity of the saturated pore space and does not include possible contribution by con-
duction across the pores’ surface. Depending on the chemical composition of a porous 
medium, however, particularly in a clay-bearing one, surface conduction may contribute 
significantly to the overall measured conductivity, since the clay grains’ surface allows 
for a layer of counterions that facilitates the development of a significant negative sur-
face charge (Waxman and Smits 1968; Clavier et al. 1984). In fact, Revil et al. (2019) 
reported that the conductivity of the sandstones that they measured was dominated by 
their surface conductivity, since pore water salinity was low in their experiments. They 
interpreted their data using the Stern layer polarization model (Stern 1924). The Stern 
layer represents the inner part of the electrical double layer that coats the grains’ sur-
face. The data reported by Yale (1984) are for a broad variety of sandstones, which do 
have significant clay content (see also below). Therefore, it is imperative to account for 
surface conduction, before comparing the predictions of the theory, which does not take 
into account the effect of surface conduction, with the data.

Revil et  al. (1998) derived the following equation for the total conductivity �t of a 
pore space, including the contribution by surface conductivity, which is saturated by a 
fluid with a pH between 5 and 8:

where tf
(+)

 is the Hittorf transport number of cations in the free electrolyte (brine in pores), 
and � is known as the Dukhin number (Lyklema 1993), which is the ratio of surface and 
fluid conductivities. Equation (8) reduces to Eq. (1) in the limit � → 0 . The brine used 
in the experiments of Yale (1984) was NaCl, for which tf

(+)
≈ 0.38 . Thus, if the second 

parameter of Eq. (8), namely � , is also known, then, for every measured �t one can use it to 
compute the corresponding formation factor F.

Revil et al. (1998) derived the following equation for the Dukhin number,

Here, �g is the density of the solid matrix, C is the cation exchange capacity, and � is the 
equivalent mobility for surface conduction. Equation (9) provided accurate predictions for 
clay-rich sediments (Daigle et al. 2015). Because the grains’ density and the exact chemical 
compositions of the sandstones that we consider were not given by Yale (1984), we cannot 
determine the Dukhin number for them. Thus, since � is independent of the hydrostatic 
pressure, we use one data point for the conductivity of every sandstone that we consider in 
order to estimate the Dukhin number using the above equation. This point was selected in 
the middle of the experimental pressure range.

(8)�t =
��f
F
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6 � Computational Procedure

Given the theoretical formulation for predicting the effective electrical conductivity �e 
of deforming porous media, the following computational procedure was used to calcu-
late �e . 

1.	 Given the initial PSD f0(r0) and, therefore, an initial conductance distribution h0(g0) 
of an undeformed porous medium, its electrical conductivity was computed using Eqs. 
(4), (5), and (7).

2.	 For a given hydrostatic pressure P, the corresponding PSD fP(rP) was constructed by 
selecting the pore sizes from f0(r0) , calculating their updated values using Eq. (1) and 
rP = r0 − u∕2 , and repeating it for a large number of pore sizes selected from f0(r0) , so 
that an accurate fP(rP) was obtained.

3.	 The PSD fP(rP) and Eq. (5) were then utilized to determine ⟨r2
b
(P)⟩ = ⟨r2

P
⟩ . The result 

was used together with fP(rP) in Eqs. (4) and (7) to compute �e(P) at pressure P.
4.	 To compare the predictions in (3) with the experimental data for a given porous medium, 

we utilized the experimental value of the total conductivity �t on the left side of Eq. 
(8) at a single pressure and determined the parameter � , using as the formation factor F 
its theoretical prediction. In effect, for every sandstone we used a single experimental 
point to estimate � . Since � is independent of P, we used the same estimate in Eq. (8) 
and solved for the formation factor F at various pressures P, given that the left side of 
Eq. (8) is the experimental value of the total conductivity.

5.	 The resulting values of F at various pressures P represent the true values of the forma-
tion factor over the pressure range for a given porous medium, which are then compared 
with the theoretical predictions.

Note that if all the parameters of Eq. (9) are known, it can be utilized to estimate � directly, 
without any need for step (4). In that case, the estimate of � and the experimental data for �t 
for a given porous medium are used directly in Eq. (8) and the resulting nonlinear equation 
is solved numerically for the true formation factors F. Note also that if the PSD f0(r0) is 
expressed by an analytical expression, fP(rP) will also be determined analytically, in which 
case the computations will be very fast.

7 � The Parameters of the Model

The parameters of the model are the Poisson’s ratio � and the Young’s modulus Ee of the 
grains (not the porous medium) that appear in Eq. (3), the PSD, and the Dukhin number 
� . If experimental data for the parameters are available, they can be used directly in the 
theory, but they are not available for the sandstones that we analyze.

We already described how we estimate � . As discussed in Part I, the predictions of the 
model are sensitive to the value of the Young’s modulus. In Part I, we explained how we 
estimate Ee . Since the experimental data that we compare with the theoretical predictions 
are for the same sandstones as those in Part I, we use the same values of Ee.

As for the Poisson’s ratio, in Part I we demonstrated that if all the parameters but � are 
fixed, the Poisson’s ratio is varied by a factor of 4, and the model is used to predict the 
dependence on the applied pressure of the permeability of the sandstones, the predictions 
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vary by at most 2 percent. Thus, we fix the Poisson’s ratio at � ≈ 0.3 , the same value that 
we used in Part I, which is in the middle of the range reported for sandstones.

The sensitivity of the predictions to the PSD was also studied in Part I. To do so, we 
used the following theoretical PSD distribution,

where r0 is a parameter related to the average pore size ra through ra = (r0rm)
√
pi∕2 + rm . 

We held the minimum pore size rm constant at 0.18 � m, the lowest pore sizes that we iden-
tified in the published PSDs for sandstones and varied r0 over about two orders of magni-
tude. Figure 1a presents the PSD that Eq. (10) generates. The distribution corresponding to 
the lowest r0 in Fig. 1a is completely similar to the PSD reported by Fredrich et al. (1993) 
for a Fontainebleau sandstone, while those generated by other values of r0 are qualitatively 
similar to those reported by others for other types of sandstone. As we demonstrated in 
Part I, the predicted effective pressure-dependent permeabilities of the sandstones that we 
analyzed in Part I were not greatly sensitive to the PSD. Therefore, similar to Part I, in 
the absence of any experimental data for each of the PSDs of the sandstones that we ana-
lyze below, we used in all cases described below the distribution presented in Fig. 1b as 
the initial PSD, f0(r0) , which was reported by Lindquist et al. (2000) for a Fontainebleau 
sandstone, which is also similar qualitatively to those for many other sandstones reported 
by others (see, for example, Cheung et al. 2012 for the Bleurswiller and Boise sandstones).

Table 1 summarizes the parameters Ee and � , as well as the initial porosity �0 of all the 
sandstone that we analyze in the following section.

(10)f (r) =

[
r − rm

(r0 − rm)
2

]
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[
−
1
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Fig. 1   a The PSDs generated by Eq. (10) for various average pore sizes r
a
 . b The PSD used in all the calcu-

lations
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8 � Theoretical Predictions and Comparison with Experimental Data

Before we present the predictions of the theory and compare them with the experimental 
data; three points are worth mentioning.

1.	 First, we emphasize that the model presented in Sects. 2–5 is a MFA that, similar to 
any MFA, neglects the fluctuations in the local properties, hence making it possible to 
analyze the behavior of a heterogeneous porous medium based on only a single pore 
between two grains, the minimum number for a meaningful analysis. This also implies 
that only an average grain size is required. As such, similar to all the MFAs, the approach 
has its limitations and strengths.

2.	 Second, for at least some of the sandstones that we analyze below, if we plot �e(P)∕�e(0) 
versus a suitably selected rescaled P, we obtain a more or less single universal master 
curve. The master curve represents essentially the dimensionless response of the porous 
media under study to the changes in the pressure, since the initial PSD, the Poisson’s 
ratio, and the exponent m are all set to constant values. A clue to the proper rescaling 
of P is provided by Eq. (3), since it implies that the quantity u∕Rg is a function only of 
P∕Ee.

	   The existence of such a master curve implies that it can predict the measurements by 
rescaling the pressure axis to generate a dimensionless form based on the input data—
the initial porosity and an experimental data point that provides an estimate for the 
effective Young’s modulus Ee . Other mechanical models than the HM theory of point 
contact may provide a different master curve. A master curve for another important 
property of large-scale porous media was proposed by Rassamdana et al. (1996).

3.	 We point out that, in principle, there is no rigorous theoretical relation between the per-
meability—essentially the square of a relevant length scale of a pore space and, hence, 
a static property—and electrical conductivity, which is a dynamic property. Therefore, 
aside from their sharing the same flow and transport paths, one cannot necessarily draw 
any conclusion for one based on the behavior of the other one. This is particularly true 

Table 1   Estimates of the Young’s modulus E
e
 (in GPa), the initial porosity �

0
 , and the Dukhin number � of 

the sandstones

Sandstone E
e

�
0

� × 10
3 Sandstone E

e
�
0

� × 10
3

Fontainebleau 40 0.052 0.0 Beaver 2.7 0.076 3.3
Berea 100H 25 0.165 18.9 Berea 500 13 0.2 2.6
Boise 38.5 0.26 16.2 Cambrian 6 10 0.08 2.3
Cambrian 14 12 0.11 6.1 Cambrian 16 2 0.13 1.3
Fahler 142 0.12 0.08 4 Fahler 154 0.15 0.044 3.4
Fahler 162 0.11 0.03 1.3 Fahler 189 0.17 0.02 ≈ 0.0

Indiana DH 30 0.27 49.5 Massillon DH 9.5 0.161 17.3
Miocene 7 5 0.083 1.2 Pliocene 35 4 0.2 4.1
Tensleep 2.6 0.146 29.6 Gulf Coast 6.4 0.22 22.7
Torpedo 3 0.202 8.6 Triassic 26 8 0.18 31.6
Triassic 27 6.5 0.18 29.9 Triassic 34 83 0.2 37.1
Triassic 38 40 0.2 33.1 Triassic 41 2.8 0.21 3.3
Branford 0.7 0.11 4.2 Kirkwood 0.5 0.13–0.18 12.7
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for porous media, such as the almost all the sandstones that we analyze, which contain 
a significant volume fraction of clays, and therefore, surface conduction may play a 
significant role in electrical conduction.

We used the theory to predict the pressure dependence of the effective electrical con-
ductivity �e(P) of a large number of sandstones and to compare the predictions with the 
experimental data, almost all of which are given by Yale (1984). He did not provide the 
sandstones’ initial PSD, and therefore, as mentioned earlier, we used in all the cases 
described below the PSD presented in Fig.  1b. In Part I, we described the geological 
characteristics of each sandstone, and therefore, they will not be repeated here.

Yale (1984) stated that in all the cases that he experimented on, the pore pressure PP 
was constant. Thus, in what follows the pressure P may be replaced by P − PP.

8.1 � Fontainebleau Sandstone

We first present the predictions for a Fontainebleau sandstone, for which Farid (2016) 
reported measurements of the pressure dependence of its conductivity. The initial poros-
ity �0 of the sandstone, before deformation, was 0.052. Farid (2016) also stated that the 
clay content of the sandstone was negligible. Therefore, we took the Dukhin number 
� = 0 . Figure 2 compares the predictions, normalized by the initial conductivity, with 
the experimental data. Note that since � = 0 , no fitting parameter was used. The agree-
ment between the two sets is very good, with the maximum difference being no more 
than 7 percent.
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Fig. 2   Comparison of the predicted conductivities with the experimental data for the Fontainebleau sand-
stone



621Flow and Transport Properties of Deforming Porous Media. II.…

1 3

8.2 � Beaver River Sandstone

The Beaver River sandstone is a formation on the west side of the Athabasca River near 
Mildred Lake and the Beaver River (in Alberta, Canada), with an initial porosity (before 
deformation) of �0 ≈ 0.076 . Figure 3 compares the predicted pressure dependence of the 
sandstone’s electrical conductivity, normalized by its value before deformation, with the 
experimental data of Yale (1984) who also presented all of his data in normalized fashion. 
The agreement between the two is excellent, with the largest difference between the predic-
tions and the data being about 8 percent at the highest pressure.

We note that, at high pressures, there is a qualitative difference between the dependence 
of the conductivity of the Beaver sandstone and its permeability, shown in Fig. 6 of Part I. 
The theory predicts faster decay of the conductivity than the experimental data, whereas its 
predictions for the permeability are highly accurate at all pressures. This may be due to the 
inadequacy of Eq. (8) for accounting for the effect of surface conduction; the inadequacy of 
the way we accounted for it by fitting the parameter � to a single data point, or both, since 
slower decay of the conductivity, and the absence of the same trends in the permeability 
clearly point toward the significance of surface conduction.

8.3 � Berea Sandstones

The electrical conductivities of two Berea sandstones were reported by Yale (1984). 
One was Berea 100H, a sandstone whose bedding was horizontal, with an initial poros-
ity of 0.165. Figure 4 compares the predictions with the experimental data. Although 
the maximum difference between the predictions and the data is about 2.5 percent, the 
theory predicts continuous decline of the conductivity with increasing pressure, whereas 
the experimental data indicate that at the highest pressures the conductivity levels off, 
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Fig. 3   Comparison of the predicted conductivities with the experimental data for the Beaver sandstone
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hence indicating that either the morphology of the sandstone did not change at the high-
est pressure, or we did not account for the effect of surface conduction properly.

Berea 500, with an initial porosity of 0.2, was the second sandstone whose conduc-
tivity was reported by Yale (1984). Figure  4 also compares the predictions with the 
experimental data with the same level of accuracy as the predictions for Berea 100H, 
except that in this case the measured electrical conductivity decays a bit faster than the 
predictions at the highest pressures.

A clue to this is obtained from Fig. 8 of Part I in which we compare the theoretical 
predictions with the experimental data for the permeability of the same sandstones. That 
figure indicates excellent agreement between the predictions and the data at all the pres-
sures. Since the porous media in both cases are the same, it may imply that the model 
may underestimate the contribution of surface conduction in case of Berea 100H, but 
overestimates it in the case of Berea 500.

8.4 � Boise Sandstone

The Boise sandstone had an initial porosity of 0.26. Figure 5 compares the predictions 
with the experimental data. At lower pressures, the measured electrical conductivity 
seems to decay a bit faster than the predictions, while the opposite trends develop at the 
highest pressures. Note, however, that the percentage difference between the two sets is 
no more than 4 percent, well within the measurements’ uncertainties.

8.5 � Cambrian Sandstone

Cambrian sandstones are low-porosity formations from the Cambrian era. Yale reported 
their electrical conductivity for three samples, referred to as Cambrian 6, 14, and 16, 
with initial porosities of 0.08, 0.11, and 0.13, respectively. Figure 6 compares the pre-
dicted pressure dependence of the effective conductivity with the experimental data. In 
all cases, the agreement between the predictions and the data is excellent.

Fig. 4   Comparison of the predicted conductivities with the experimental data for two Berea sandstones
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Fig. 5   Comparison of the predicted conductivities with the experimental data for the Boise sandstone

Fig. 6   Comparison of the predicted conductivities with the experimental data for the three Cambrian sand-
stones
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8.6 � Fahler Sandstones

Pressure dependence of the electrical conductivities of four samples of Fahler sandstones, 
from Fahler strata in Spirit River formation (in Grande Cache in Alberta, Canada), were 
reported by Yale (1984). They were referred to as Fahler 142, 154, 162, and 189, with their 
geological characteristics described in Part I. Their initial porosities were, respectively, 
�0 ≈ 0.08, 0.044, 0.03, and 0.02. Figure 7 compares the predictions with the experimental 
data, with the agreement between the two being generally excellent for three of the sand-
stones, namely Fahler 142, 154, and 189.

In the case of Fahler 162, the agreement between the data and the predictions is good 
at higher pressures, but the difference between the two sets for the three smallest pres-
sures is relatively large, although their trends are completely similar. Note that, among the 
four Fahler sandstones, the largest deformation-induced decline in the porosity belongs to 
Fahler 162, whose porosity was reduced by about 20 percent over the intermediate values 
of the applied pressure. Given that the initial porosity of the sandstone was only 0.03, its 
corresponding value at such pressures is about 0.022, which is very low. The EMA does 
not usually provide accurate predictions for such low-porosity materials. But the decline 
in the porosity is only one aspect of the problem. The other, more important, aspect is how 
the porosity is distributed in the porous medium, as well as the grains’ chemical composi-
tion. This point is well demonstrated by the data for Fahler 189. Even though its porosity is 
very low, the predictions are still accurate.

Fig. 7   Comparison of the predicted conductivities with the experimental data for the four Fahler sandstones
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Fahler 162 is a fine-to-medium grained sandstone that consists of 46 percent quartz, 
8 percent various lithics, and 6 percent chert, with the rest being other types of rock 
materials. Its cement contains 25 percent quartz overgrowth, 8 percent Fe oxide, and 
8 percent clay. On the other hand, Fahler 189 is a medium-grained sandstone with 27 
percent quartz, 27 percent chert, 11 percent various lithics, and 3 percent feldspar, with 
its cement consisting of 13 percent quartz overgrowth, 9 percent carbonate, 4 percent 
chalcedony, and 2 percent clay. Thus, Fahler 162 contains far more quartz, an extremely 
hard material, than Fahler 189, implying that the mechanism of porosity reduction in the 
two sandstones may be different.

8.7 � Indiana Dark Sandstone

Indiana dark DH sandstone, with DH indicating that the sample was taken after drilling 
horizontally (parallel to bedding), had a relatively high initial porosity of 0.27. Figure 8 
compares the predictions with the experimental data of Yale (1984). The agreement is 
excellent over much of the pressure range, with the largest difference between the pre-
diction and data being about 5 percent at the highest pressure.

Note, however, that, similar to the Beaver and Berea sandstones, there is a qualitative 
difference between the behavior of the conductivity of Indiana DH sandstone and its 
permeability counterpart, shown in Fig. 12 of Part I. In the case of the permeability, the 
agreement between the theoretical predictions and the data is excellent at all the pres-
sures. Since the only difference between the two cases appears to be the contribution of 
the surface conductivity, the fact that the theory predicts a faster decay of the conductiv-
ity at the highest pressures may imply that the model does not account adequately for 
the effect of surface conduction.
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Fig. 8   Comparison of the predicted conductivities with the experimental data for the Indiana DH sandstone
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8.8 � Massillon Dark Sandstone

Massillon DH sandstone (from Massillon, Stark County, Ohio) is of quatzarenite type 
with an initial porosity of 0.161 and medium-size and well-sorted grains. Figure 9 com-
pares the predictions with the experimental data of Yale (1984). Although the largest 
difference between the two sets is only about 3.5 percent at a pressure of 17.5 MPa, 
the trends in the two sets are somewhat different. The data indicate that the porosity at 
lower pressures reduced more strongly and, then, it leveled off, because 60 percent of 
the sandstone is quartz, which means it is difficult to reduce the porosity further even 
at 50 MPa. On the other hand, the EMA does not take into account the deformation 
mechanism and assumes simply that the porosity is reduced randomly.

8.9 � Miocene Sandstone

The Miocene formation is a low-porosity sandstone of the feldspathic arenite type with 
an initial porosity of 0.083. It is known that due to high roundness and sorting of its 
grains, the sandstone contains long flow and transport paths over large distances (Saitoh 
and Masuda 2004). Figure 10 presents the comparison between the predictions with the 
pressure dependence of the electrical conductivity data of Yale (1984). The agreement 
is excellent. The well-connected and long transport and flow paths of the sandstone 
practically guarantee accurate predictions, because it is precisely under such conditions 
that the EMA is accurate.
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Fig. 9   Comparison of the predicted conductivities with the experimental data for the Massillon DH sand-
stone
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8.10 � Pliocene Sandstone

Pliocene is the second and terminal epoch of Neogene period. The Pliocene formations 
are found in both marine form found in the Indian Ocean and western part of Yemen, 
and in the form of nonmarine sedimentary rock in the continental United States in, for 
example, Washington State (Walsh et al. 1987) and Oklahoma (Heran and et al. 2003). 
The initial porosity of the sample, referred to as Pliocene 35 by Yale (1984), was 0.2. 
Figure 11 compares the predictions with the data. The experimental data are somewhat 
scattered, but the largest difference between the data and predictions is about 9 percent 
at 25 MPa.

8.11 � Tensleep Sandstone

Tensleep sandstone is from a geological formation in the entire Pennsylvanian sequence 
in central and northern Wyoming in the very early Permian age (Branson and Bran-
son 1941) and represents crossbedded sandstone with thin limestone and dolomite beds 
(Kerr et al. 1986). The initial porosity of the sandstone was 0.146. In Fig. 12, we com-
pare the predictions with the experimental data reported by Yale (1984). The agreement 
is very good over much of the range of the applied pressure. Note that after initially 
declining, the porosity remains unchanged over a range of pressure and then declines 
again, which explains the slower decline of the measured conductivity than the predic-
tions at the highest pressures.
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Fig. 10   Comparison of the predicted conductivities with the experimental data for the Miocene 7 sandstone
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8.12 � Gulf Coast Sandstone

Yale (1984) referred to the sandstone as Tertiary 807. Tertiary rocks were formed dur-
ing part of the Cenozoic era. The initial porosity of the sample was 0.22. Figure  13 
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Fig. 11   Comparison of the predicted conductivities with the experimental data for the Pliocene 35 sand-
stone
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Fig. 12   Comparison of the predicted conductivities with the experimental data for the Tensleep 35 sand-
stone
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Fig. 13   Comparison of the predicted conductivities with the experimental data for the Tertiary 807 sand-
stone
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Fig. 14   Comparison of the predicted conductivities with the experimental data for the Torpedo sandstone
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compares the theoretical predictions with the experimental data. The agreement between 
the predictions and the data is excellent.

8.13 � Torpedo Sandstone

The Torpedo sandstone was from Kansas with an initial porosity of 0.202. As Fig. 14 indi-
cates, the predicted electrical conductivity closely matches the measured data.

8.14 � Triassic Sandstones

Triassic rocks were formed in the Triassic period, between 200 and 251 million years ago, 
with the morphology of such sandstones varying greatly, from very fine- to very coarse-
grained. Although, generally speaking, they are porous formations with low- or ultra-low 
flow properties, they often have both tectonic and diagenetic fractures that provide flow 
paths. Yale (1984) reported the data for five samples of such sandstones, referred to as Tri-
assic 26, 27, 34, 38, and 41, with their initial porosities being, respectively, 0.18, 0.18, 0.2, 
0.2, and 0.21. Figure 15 compares the predictions for the conductivities with the experi-
mental data. The agreement between the predictions and the data is uniformly very good 
for all samples.

8.15 � Branford Sandstone

Figure  16 compares the predicted pressure dependence of the electrical conductivity of 
Branford (Connecticut) sandstone with the experimental data of Yale (1984). The initial 
porosity �0 of the sandstone, which is of sublitharenite type with medium-size and well-
sorted grains made mostly of quartz, carbonate, and clay cement, is 0.11 (Bernabé 1989). 
Except for pressures P > 30 MPa, the agreement between the two is excellent. We shall 
return to the issue of the tail of the curve in Sect. 9.

Fig. 15   Comparison of the predicted conductivities with the experimental data for the Triassic sandstone
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8.16 � Kirkwood Sandstone

Finally, we show in Fig. 17 the predictions for the conductivity of the Kirkwood sandstone 
and compare them with the data. The sandstone is a fairly clean orthoquartzite (Wyllie and 
Spangler 1952) with a porosity varying between 0.13 and 0.19. Once again, except for the 
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Fig. 16   Comparison of the predicted conductivities with the experimental data for the Branford sandstone
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Fig. 17   Comparison of the predicted conductivities with the experimental data for the Kirkwood sandstone
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tail of the curve (to which we shall return in the next section), the agreement between the 
predictions and the data is essentially perfect, hence demonstrating the accuracy of the pro-
posed model. Note that we showed in a previous paper (Richesson and Sahimi 2019) that 
the theory provides highly accurate predictions for the pressure dependence of the effective 
permeability of both Branford and Kirkwood sandstone.

9 � Discussion

Several aspects of the predictions deserve to be considered in more details. In what fol-
lows, we discuss each aspect.

9.1 � Limits of Accuracy of the Effective‑Medium Approximation

The range of the validity of the EMA, as well as the MFA that we have developed for 
the deformation, are important issues. Sahimi (2003) and Hunt and Sahimi (2017) pro-
vide comprehensive discussions of the strengths and shortcomings of the EMA. As is well 
known, the EMA is (1) more accurate for two-dimensional (2D) media than for 3D, and 
(2) not very accurate in the critical region, i.e., the region near the critical porosity or the 
percolation threshold. In random media, the critical region is defined roughly by Sahimi 
(1994), � − �c ≤ 1∕Z , where Z is the mean pore connectivity, and �c is the critical poros-
ity. (3) If there are extended correlations between the pores’ sizes, then the EMA is less 
accurate than in completely random porous media, although Mukhopadhyay and Sahimi 
(2000) suggested ways of taking into account the effect of such correlations.

9.2 � The Reduction of the Conductivity at High Pressures

As described earlier, in some of the sandstones that we analyzed, the measured effective 
conductivity at high pressures decreases a bit more slowly than the theoretical predictions. 
One possible reason for this is that high pressures change the morphology of the porous 
media by mechanism(s) that the MFA and the EMA do not account for, such as opening up 
new cracks that provide new transport paths for the fluid and, hence, arrest to some extent 
the decline in the conductivity. Accounting for such effects would require modifications of 
the deformation theory that is beyond the scope of the present work. As discussed earlier, 
another possible reason for this behavior could be the inadequacy of the way we account 
for the effect of surface conduction.

9.3 � Effect of the Boundary Conditions

We recall that deformation of geological formations is often caused by uniaxial stress, 
whereas in the experimental system and the present theoretical modeling the confining 
pressure is applied hydrostatically. Needless to say, the deformations that result from the 
two types of the boundary conditions are different, because the spatial distributions of the 
applied pressure in the two systems are different. But, when, for example, the overburden 
pressure exerts itself uniaxially in an oil reservoir, the surrounding rock limits the result-
ing lateral deformation. This implies that one obtains mostly vertical compaction, which 
represents smaller changes in the pore sizes than what is caused by hydrostatic pressure. 
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We already demonstrated that the theory provides accurate predictions for the macroscopic 
conductivity (and the permeability, as reported in Part I) as a function of the hydrostatic 
pressure that deforms the pore space much more extensively than a uniaxial stress would. 
Therefore, a slightly modified theory would be at least equally accurate for the case in 
which a uniaxial stress is exerted on a porous medium.

9.4 � Effect of the Contact Law for the Grains

The theory that was developed in Part I and utilized in the present paper for determining 
the change in the size of a pore as a result of deforming a porous medium was based on the 
Hertz–Mindlin theory of contacting grains in unconsolidated porous media. The experi-
mental data that were compared with the theoretical predictions were, however, for mostly 
consolidated sandstones that have been cemented. As shown by Dvorkin and Yin (1995), 
the cementation influences strongly the contact laws. This could provide an explanation as 
to why the fitted Young’s moduli of various sandstones did not agree with what one might 
expect for such porous media, which contain a significant amount of quartz.

One way of addressing the theoretical shortcoming is to use the Hertz–Mindlin theory 
for cemented sandstones, rederive the expression for the change in the effective size of the 
pores, and recompute everything. An alternative, and perhaps simpler, approach would be 
to determine the change in the radius of a hollow cylinder (a pore throat), embedded in a 
solid material of a given Young’s modulus, as a result of exposing the entire system to a 
hydrostatic pressure, which would indeed represent a mean-field approximation. The result 
can then be used to update the PSD for a given pressure and, hence, the effective conduc-
tivity. We will report on both approaches in a future paper.

10 � Summary

This paper, the second a in series, presented a new theoretical approach for predicting 
the electrical conductivity �e of brine-saturated porous media that deform as a result of a 
hydrostatic pressure applied to them. The theory, a mean-field approximation, determines 
the change in the size of a pore between two grains that deform when the hydrostatic pres-
sure is applied to them. Given the initial PSD of a porous medium before deformation, 
the Young’s modulus, and the Poisson’s ratio of the grains as the input, the theory deter-
mines the PSD of the pore space at pressure P. The updated PSD is used to determine the 
pore-conductance distribution, which is then used in the effective-medium approximation 
to predict the effective conductivity of the porous medium at the same pressure. Exten-
sive comparison between the theoretical predictions and experimental data for the pressure 
dependence of �e of twenty-six sandstones indicated agreement between the two in almost 
all cases, ranging from very good to excellent.

The same type of approach can be used to estimate the effect of deformation on the dis-
persion coefficients in flow through deforming porous media. Work in this direction is in 
progress and will be reported in the future.
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