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ABSTRACT

Multiphase fluid flow in porous media is relevant to many fundamental scientific problems as well as numerous practical applications. With
advances in instrumentations, it has become possible to obtain high-resolution three-dimensional (3D) images of complex porous media and
use them directly in the simulation of multiphase flows. A prime method for carrying out such simulations is the color-fluid lattice
Boltzmann method with multirelaxation time (CFLB-MRT) collision operator. The simulations are, however, time consuming and intensive.
We propose a method to accelerate image-based computations with the CFLB-MRT method, in which the 3D image is preprocessed by
curvelet transforming it and eliminating those details that do not contribute significantly to multiphase flow. The coarsening is done by
thresholding the image. After inverting the coarser image back to the real space, it is utilized in the simulation of multiphase flow by the
CFLB-MRT approach. As the test of the method, we carry out simulation of a two-phase flow problem in which the porous media are
initially saturated by brine or water, which is then displaced by CO2 or oil, injected into the pore space. The simulations are carried out with
two types of sandstone. We show that the method accelerates the computations significantly by a factor of up to 35.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065857

I. INTRODUCTION

Porous media and materials are ubiquitous. They range any-
where from large-scale porous formations, such as soil, sandpiles, oil,
gas, and geothermal reservoirs, and groundwater aquifers, to those
that are present in everyday life, such as sponge, textile, printing paper,
biological tissues, wood, pavement, and asphalt. Practically all the nat-
ural porous media and a large class of man-made ones are heteroge-
neous, with the heterogeneity manifesting itself over a range of length
scales, from the pore to core and field scale. Of particular interest is
understanding how fluid flow and transport processes occur in the
pore space of porous media and materials. Aside from experimental
studies of such phenomena that have been undertaken for at least two
centuries, characterization of porous media and materials and model-
ing of various phenomena in them have also been studied for decades.

To carry out theoretical and computational studies of various
phenomena in a porous medium, one requires, as a first step, a

representative model of its pore space. The earliest theoretical studies
of fluid flow and transport in porous media were based on the
assumption1 that they could be represented as continua to which effec-
tive flow and transport properties, such as the permeability and diffu-
sivity were attributed and, thus, the governing equations describing
the phenomena of interest in such continua were solved. The effective
properties were either measured or estimated by simple models, such
as bundles of parallel capillary tubes.2 Since such models proved inade-
quate, beginning with the work of Meyer3 and Fatt,4,5 more advanced
models of pore space in the form of networks of interconnected pores
began to emerge. Although due to the computational limitations, early
pore-network models (PNMs) were relatively limited and provided
mostly qualitative insights into the phenomena under study, with
advances in computational power, the PNMs gradually became quan-
titative and are still used in the study of many phenomena in porous
media and materials.6–8
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However, even the most accurate PNMs are constructed based
on a number of assumptions, such as how the pore throats and pore
bodies are defined, the manner by which sizes are attributed to both,
and where a pore throat ends and a pore body begins. On the other
hand, with significant advances in instrumentation, one can obtain
high-resolution two- or three-dimensional (3D) images of porous
media that are important, not only for their characterization,9–16 given
the detailed information that they provide for the morphology, but
also for modeling of fluid flow and transport through them. The only
constraint for using the images in the computations is that their physi-
cal size must be larger than that of the representative elementary vol-
ume (REV), the minimum size of a porous medium whose properties
are independent of its dimensions. In other words, the REV is the
smallest volume of the porous medium over which a measurement
can be made that will yield a representative value of the entire porous
medium. Thus, use of high-resolution images in the numerical simula-
tions of fluid flow in porous media is becoming more common. They
have been used for computing the elastic properties of porous media,12

the permeability,11–17 simulation of two-phase flow,18,19 and adsorp-
tion and deformation20 in porous materials.

If an image is to be used in the numerical simulation of fluid flow
(and other phenomena for that matter), one must select a suitable
numerical method for solving the governing equations. One method
for doing so is based on solving the governing equations—the mass
conservation and Stokes’ equations—in the image by the finite-
element or finite-volume, and particularly the boundary singularity
method. A second popular approach is based on the lattice-Boltzmann
(LB) method21–24 that solves the discrete Boltzmann equations. The
method is based on streaming, collision, and relaxation of a set of fluid
particle distribution functions (PDFs) on a lattice. Provided that the
lattice has enough symmetry, the discrete equations reduce in the con-
tinuum limit to the Stokes’ or the Navier–Stokes equations.

Whether one solves the governing equations directly, or utilizes
the LB method, the computations are intensive, particularly when the
image is in 3D and has high resolution. Thus, one tries to coarsen the
image in order to reduce the computations times. Several methods
have been proposed25–27 by computer scientists for image coarsening.
In addition, when computational fluid dynamics is used to study fluid
flow in images of various types of systems, such as images obtained by

magnetic resonance techniques, the image is also coarsened, and then
the effect of the coarsening level on the accuracy of the results is
studied.28,29

In this paper, we propose a novel method for image-based
numerical simulation of two-phase flow in porous media using the LB
method, whereby the image is first processed with 3D curvelet trans-
forms (CTs) in order to develop a coarse, yet accurate image of the
pore space. We show that the results of numerical simulation of two-
phase flow in the coarsened image are as accurate as those obtained by
using the original high-resolution image, while the computations’ time
is reduced by one order of magnitude or better. To our knowledge, the
CTs have never been used for coarsening of complex images for use in
the study of fluid dynamical phenomena. While as discussed below,
wavelet transformations have been used for coarsening of computa-
tional grids, the images of heterogeneous porous media are highly
complex, with the pores and the interface between them and the solid
matrix of porous media being oriented in all directions, which cannot
be accounted for by the wavelet and similar transformations, nor by
almost all other coarsening methods. The CTs, having an orientational
variable (see below) h, can account for the orientation effect. We are
aware of no other method that has such a property.

The rest of this paper is organized as follows. In Sec. II, we briefly
describe the 3D porous media that we use in the simulations. Section
III explains the 3D CTs and their properties. In Sec. IV, the LB method
used for simulating the two-phase flow problem is described.
Processing of the 3D image of the porous media by CTs is explained
in Sec. V. The results are presented and discussed in Sec. VI. Section
VII presents a summary of the paper.

II. THE POROUS MEDIA

We simulated two-phase flow in the 3D image of two porous
media. One was a Berea sandstone, a benchmark for testing accuracy
and efficiency of various computational approaches to numerical sim-
ulation of multiphase flows in porous media.30–32 The resolution of
the scan was 10.7lm, while the sample’s physical size was 2:143 mm3,
with the size of its digitized image being 2003 voxels. Since the porosity
of the sample is about 0.2, then, roughly speaking, about 1.6 � 106

voxels are present in the pore space; see Table I that also presents the
basic physical properties of the sandstone. The 3D image of the sand-
stone is shown in Fig. 1.

TABLE I. Comparison of the physical properties of three porous media before and after they are processed by curvelet transformation and their dependence on the threshold e.

Berea sandstone e Permeability (mD) Porosity (%) Pore surface area (nm2)

Original image � � � 1273 19.63 189.74
Curvelet-processed image 0.5 1356 20.54 196.31
Curvelet-processed image 0.9 1383 21 199.22
Regenerated sandstone
Original Image � � � 125 18.36 44.11
Curvelet-processed image 0.5 131 19.12 46.45
Curvelet-processed image 0.9 134 19.77 47.23
Carbonate
Original image � � � 5.54 43.00 1.94
Curvelet-processed image 0.5 5.74 44.13 2.01
Curvelet-processed image 0.9 5.78 44.54 2.06
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The second porous medium in which we simulated two-phase
flow was also a sandstone, originally developed by An et al.33,34 They
drilled a cylindrical core plug from a sample whose length and diame-
ter were, respectively, 4 cm and 10mm. Its image, obtained by x-ray,
was then digitized, and a section of it with 2563 voxels was used in
their simulations. An et al.33 showed that the size of the sample was
larger than the REV. Figure 2 presents its 3D image, while its basic
properties are also listed in Table I. Following An et al.,33,34 we refer to
this porous medium as the regenerated sandstone; see Table I.

The third image with a size of 5122 pixels was from a fossiliferous
outcrop carbonate, Mt. Gambier limestone in South Australia with
porosity of 0.43. The physical size of the image was 2.76mm2. Figure 3
shows the image. Its physical properties are listed in Table I. Since we
previously carried out simulation of two-phase flow in this image,19

we only analyzed its main properties under the CT and coarse-
graining, which will be described shortly.

III. THREE-DIMENSIONAL CURVELET TRANSFORMS

Although the original CTs that were developed for image proc-
essing were two dimensional,35,36 there are many scientific problems
and engineering applications, such as processing of 3D seismic and
medical images, which motivated the development of 3D CTs, particu-
larly because they preserve the important features of complex 3D sys-
tems, which is why their use is becoming more common.

Three-dimensional CTs are constructed in a manner similar to
their 2D counterparts.37,38 Thus, in continuous CTs, a frequency win-
dow Ûjðr;xÞ is constructed by introducing two other windows. One
is a radial windowW(r), defined by37,38

X1
j¼�1

W2ð2�jrÞ ¼ 1; (1)

which smoothly extracts the frequency near the wedge, f2j�1 � r
� 2jþ1g, with r being the polar coordinate. The second window VðhÞ
is defined by37,38

X1
j¼�1

V2ðh� 2jÞ ¼ 1; h 2 R; (2)

implying that for each scale j a unit sphere S2, representing all the ori-
entations in R3, is considered and is partitioned into Oð2j=2 � 2j=2Þ
¼ Oð2jÞ smooth angular windows VðhÞ with a circular support of
radius Oð2�j=2Þ, the squares of which form a partition of unity on S2.
The window Ujðr; hÞ is then defined by37,38

Ujðr; hÞ ¼
1
2p

23j=4Wð2�jrÞVð2 j=2½ �hÞ: (3)

Here, ½�� denotes the integer part of the number. Then, ÛjðxÞ is simply
the Fourier transform of Ujðr; hÞ.

The mother curvelet /iðxÞ, based on which all other curvelets
at scale 2�j, are constructed by rotation and translation of /iðxÞ, is
defined by, /̂iðxÞ ¼ ÛjðxÞ. The 3D curvelets are defined as a
function of x ¼ ðx1; x2; x3Þ at scale 2�j, orientation hj;l , and posi-

tion xðj;lÞk ¼ R�1hj;l
ðk1 � 2�j; k2 � 2�j=2; k3 � 2�j=2Þ, i.e., /j;l;kðxÞ

¼ /j½Rhj;l ðx � xðj;lÞk Þ�, where ðk1; k2; k3Þ are translation parameters,
and Rhj;l is the rotation by the angle hj;l ,

37,38

Rhj;l
¼

cos hj;l sin hj;l

�sin hj;l cos hj;l

 !
: (4)

Suppose that a 3D image of a porous medium, an n� n� n
array of voxels, is represented by IðxÞ. Then, its CT, usually referred
to as the curvelet coefficients (CCs) Cj;l;k of I , is defined by37

Cj;l;k ¼¼
ð
IðxÞ/j;l;kðxÞ dx; (5)

which, after using the Plancherel’s theorem, is rewritten in the fre-
quency space,37

Cj;l;k :¼ 1

ð2pÞ3
ð
Î ðxÞ ^/j;l;k ðxÞdx

¼ 1

ð2pÞ3
ð
Î ðxÞUjðRhlxÞ exp ðihxj;lk ;xiÞ dx; (6)

FIG. 1. The image of the Berea sandstone used in the simulations.

FIG. 2. The image of the regenerated sandstone utilized in the simulations.
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where the overline denotes the complex conjugate.
Since the digitized images of porous media are discrete, we need

to rewrite the above formulation in discrete form. The 3D discrete CT
operates on a 3D Cartesian grid—the 3D image Iðn1; n2; n3Þ of the
medium with 0 � ðn1; n2; n3Þ � n—and generates a set of the CCs
CDðj; l; kÞ that are defined by37,38

CDðj; l; kÞ ¼
X
n1

X
n2

X
n3

Iðn1; n2; n3Þ/D
j;l;kðn1; n2; n3Þ; (7)

with ðj; lÞ 2 Z and k ¼ ðk1; k2; k3Þ. Since, as described below, by
curve-transforming of an image we obtain a new coarse-scale image,
we also need to consider the coarser scales. Thus,37 suppose that the
frequency window Û s0 at scale j ¼ s0 in a rectangular box of integer
size, L1;s0 � L2;s0 � L3;s0 , is defined by the usual relation, Û s0;0ðxÞ
¼ Ŵ s0ðxÞ. Then, the 3D discrete curvelets at the coarsest scale are
defined by their Fourier transform,37

/̂
D

s0;0;kðxÞ ¼
1
N
Û s0;0ðxÞ exp½�2piðk1x1=L1;s0

þ k2x2=L2;s0 þ k3x3=L3;s0Þ�; (8)

whereN is given by37

N ¼ ðL1;s0L2;s0L3;s0Þ
1=2; (9)

for 0 � k1 < L1;s0 ; 0 � k2 < L2;s0 , and 0 � k3 < L3;s0 .
On the other hand, for the fine scales s0 < j, every Cartesian

funnel-shaped region has six components, one for each face of the unit
cube and is partitioned into 2j=2 � 2j=2 ¼ 2j same-volume wedges. For
example, suppose that for the lth wedge in the first component,
ð1; al;blÞ indicates the direction of the centerline of the wedge. Then,
an angular window is defined by37

~V j;lðxÞ ¼ ~V 2j=2 � x2 � alx1

x1

� �
~V 2j=2 � x3 � blx1

x1

� �
; (10)

with V given by Eq. (2). Similar definitions hold for the other five com-
ponents by exchanging the roles of x1 with x2 or x3. Then, the

frequency window Û j;l is defined by Û j;lðxÞ ¼ Ŵ jðxÞV̂ j;lðxÞ, which
isolates the frequencies near the wedge fðx1;x2;x3Þ : 2j�1 � x1

� 2jþ1;�2�j=2�x2=x1�al � 2�j=2;�2�j=2�x3=x1�bl � 2�j=2g.
Then, /̂

D

j;l;kðxÞ, the discrete curvelet at the fine scales s0< j with index
k at scale j and angle l is defined in a manner similar to Eq. (8), but
with Li;s0 replaced by Li;j;l with i¼ 1;2; and 3.

Figure 4 summarizes the discussions. Figure 4(a) presents sche-
matically the 2D spatial Cartesian grid associated with a given scale
and orientation. Figure 4(b) shows the corresponding partitioning of
the frequency domain as a result of Cartesian grid shown in Fig. 4(a).
As shown, the 2D curvelets in the Fourier space are supported near a
“parabolic” wedge shown generically by the shaded area. Likewise,
Fig. 4(c) shows the schematically the frequency tiling of continuous
3D curvelets, while Fig. 4(d) depicts discrete frequency griding, with
x1, x2, and x3 being the three frequency axes. As described above, the
frequency window Û j;lðxÞ extracts the frequency content near the
shaded wedge that has center slope ðl; al; blÞ. Note that it is precisely
the ability of partitioning in the frequency domain along various orien-
tations that makes the curvelet the ideal tool for pre-processing of an
image with complex features that may be oriented stochastically in
space.

FIG. 3. The image of the carbonate porous medium analyzed by curvelet
transformation.

FIG. 4. (a) Schematic representation of the Cartesian grid associated with a given
scale j and orientation. (b) The corresponding partitioning of the frequency domain.
Shaded wedge indicates the region in which the 2D curvelets in Fourier space are
supported. The corresponding 3D structures are shown in (c) and (d), with (c)
showing the schematic representation of tiling of 3D continuous curvelets, whereas
(d) shows the discrete tiling in the frequency domain (after Ying et al.37).
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IV. THE LATTICE-BOLTZMANN METHOD

To simulate the two-phase flow problem, we used the color-fluid
lattice Boltzmann (CFLB) multiphase simulator developed by Chen
et al.,39 which is a variant of the original work of Gunstensen et al.40

and T€olke et al.41 The method produces a relatively sharp interface
between completely immiscible fluids, as well as being capable of sim-
ulating two-phase flows with large ratios of the two fluids’ viscosities,
which is a difficult problem since large viscosity ratios give rise to
unstable displacements and fingering phenomena. The ability of the
method for accurate simulation of such phenomena is due to the inde-
pendent control of the surface tension and viscosity, which is why it
has been widely adopted; see, for example, Ahrenholz et al.42

In the CFLB model, one labels the various fluids with color.
Thus, let red (r) and blue (b) represent the two fluids in a two-phase
system. The two fluids are represented by their own particle distribu-
tion functions (PDFs) f ri ðx; tÞ and f ibðx; tÞ in the ith direction of the
lattice. We used the 3D LB model with 19 discrete velocities, i.e., the
D3Q19 model. The overall PDF for the fluid system at position x at
time t is given by fiðx; tÞ ¼ f ri ðx; tÞ þ f bi ðx; tÞ, where

f ci ðx þ vciDt; t þ DtÞ ¼ f ci ðx; tÞ þ Xx
i ðx; tÞ; i ¼ 0; 1; 2; �…; 18:

(11)

Here, superscript c denotes the colors (c ¼ r; b), vci represents the dis-
crete velocities, and Xc

i ðx; tÞ is the usual collision operator, given
by43–45

Xc
i ¼ Xcð3Þ

i Xcð1Þ
i þ Xcð2Þ

i

h i
; (12)

where Xcð1Þ
i is the standard LB single relaxation time collision

operator,39,40

Xcð1Þ
i ¼ � 1

sc

� �
f ci � f c;eqi

� �
; (13)

with sc being the relaxation parameter.Xcð2Þ
i is the perturbation opera-

tor that generates surface tension, while Xcð3Þ
i represents the

“recoloring” that mimics the separation of the two fluids (recall that
the two fluids are represented by two distinct colors). The macroscopic
variables are given by the standard expressions, namely, qr ¼

P
i f

r
i ;

qb ¼
P

i f
b
i ; q ¼ qr þ qb, and qv

P
i fiei, for, respectively, the densi-

ties of the red and blue fluids, the overall density, and the momentum,
with v ¼ ðvx; vy; vzÞ being the fluid velocity vector. The pressure p is
then given by p ¼ jvj2q=3, where v ¼ Dx=Dt is the speed,

The operator Xcð2Þ
i is given by41

Xcð2Þ
i ¼ ArjCj

ðvci � CÞ
2

C2 � 5
9

� �
; (14)

with the free parameter Ar being proportional to the interfacial ten-
sion r. The same collision operator was used for both fluids. The color
gradient C is given in the Appendix. The recoloring collision step

redistributes f c;ð2Þi to achieve separation of the two fluids,43 where f c;ð2Þi
is the distribution function after applying the second operator. The
step is represented by the following maximization problem:41,46

max
f r;ð3Þi

C �
X
i

vri f
r;ð3Þ
i : (15)

In practice, this is done numerically.43

It is well-known47 that a barrier to the stability of the LB simula-
tion is the presence of oscillations in the vicinity of sharp gradients in
the flow, which may be caused by, for example, the no-slip boundary
condition on the solid surface. Such oscillations are common in dis-
crete approximations of continuous equations. This is particularly so
for two-phase flow in porous media. To address this issue, a multire-
laxation time (MRT) operator, proposed by d’Humieres et al.48 and
Lallemand and Luo49 is used, since it helps to suppresses the oscilla-
tions. Thus, we utilized the MRT collision operator in which the post-
collision bulk PDF is given by48

f pi ðx; tÞ ¼ fiðx; tÞ �M�1SðMf �meqÞ; i ¼ 0; 1;…; 18; (16)

where M is the matrix that transforms f to the momentum space, and
S is the diagonal matrix of the relaxation rates Sii. The size of both
matrices is 19� 19. The vector meq denotes the equilibrium state of
the moments m ¼ Mf of the PDF, with M given by d’Humieres
et al.,47 and presented in the Appendix for completeness. The nineteen
entries of meq, as well as the diagonal matrix S, which were also given
by d’Humieres et al.,47 are also quoted in the Appendix for
completeness.

Since the two fluids whose flow we simulate are immiscible, the
effect of the surface tension r, as well as the contact angle h, must be
taken into account. An order parameter u is defined by

u ¼ qr � qb

qr þ qb
: (17)

To include the effect of the contact angle, the value of the order
parameter u on the solid boundaries of the porous medium is set to
be50 u ¼ cos h. Then, additional terms ms are added to the stress-
related entries of the equilibrium moments meq. The nonzero entries
of ms are given in the Appendix. Finally, the effective viscosity le of
the mixture is taken to be

1
le
¼ 1þ u

2lr
þ 1� u

2lb
: (18)

One of the main characteristic quantities of any two-phase
flow is the relative permeabilities of the two fluids. The relative
permeability of a fluid phase a is the ratio of the permeability of
that part of the pore space occupied by a and the single-phase per-
meability Ke of the entire pore space. To begin the LB simulation
and compute the relative permeabilities, we utilized the steady-
state method6,7 in which a predefined fractional flow of both fluid
phases is injected into the pore space at constant flow rates, while
the pressure in the opposite face of the sample is constant. Steady
state is deemed to have been reached when the downstream and
upstream fractional flows are equal.

To specify the predefined fractional flow in the LB method, an
initial distribution of the two fluids in the pore space at a given value
of the saturation is imposed, after which the LB simulation determines
the actual spatial distribution of the two fluids at that saturation. The
input geometry is mirrored and periodic boundary conditions along
the direction of macroscopic flow are also imposed in order to allow
both fluid phases enter and exit the model smoothly. In addition, a
body force is applied to each fluid phase to achieve the same pressure
drop and avoid capillary end effects. The volume flow rates of both
phases are monitored in order to ensure that they converge to the true
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steady state, which are then used to compute the relative permeability
at the target saturation.

V. PROCESSING OF THE THREE-DIMENSIONAL
IMAGES OF POROUS MEDIA

The morphology of natural porous media is not completely ran-
dom, but contains extended spatial correlations even at the pore and
grain scale.51 Thus, the voxels in a 3D image of a porous medium are
also correlated with the same type of correlation function. If the corre-
lations are positive, which they usually are, then the images contain
regions with similar properties. As a result, one does not need resolved
lattice structure in such regions, and use of a coarser lattice would not
distort the accuracy of the simulations. As we demonstrate shortly,
this is indeed the case.

To implement the pre-processing of the image prior to the two-
phase flow simulation, we exploit the fact that52 the CCs represent a
measure of the local complexity of an image of a porous medium
between the pores, as well as between them and the solid matrix
through the pores’ rough surface, such that the larger the CCs, the
more significant are the correlations and the local complexity of the
pore space, as well as their contribution to the image-based simulation
of multiphase flow. Thus, by preserving only the most important parts
of the pore space based on the CCs, a coarser computational grid
should suffice for the simulations.

To coarsen the image we use a simple approach, which is used
widely in image processing and is referred to as thresholding. It con-
sists of the following steps:

(i) The image of the porous medium is first curvelet-
transformed and the CCs are computed.

(ii) The largest CC is identified and all the computed CCs are
normalized with respect to the largest value, so that they are
all in the interval (0,1].

(iii) A threshold 0 � e < 1 is introduced, and all the CCs are
examined one by one. If a CC Cj;l;k is smaller than e, the set
threshold, it is set to zero. Thus, the pre-processing gener-
ates a sparser representation of the image in the curvelet
space because many of the CCs of the original image are set
to zero.

(iv) After step (iii) is completed, the CT of the image in which
many of the CCs are zero is inverse curvelet-transformed
and is brought back to the real space. The result is a coars-
ened image of the original image.

Other methods of compression to develop a coarser image with
the CTs have also been developed.25,27,53

Before presenting the results, we point out that there are very
good o pen-source toolbox for image processing with the CTs,54 which
can be used in the type of problems that we discuss in the present
paper.

VI. RESULTS AND DISCUSSION

We simulated two-phase flow in which the porous medium was
initially saturated by brine or water, and CO2 or oil was injected into
the pore space at one face with a constant injection speed v to displace
the brine or water, while the pressure was specified on the opposite
face. No-flow boundary condition was used in the remaining four
faces of the 3D images. The capillary number in both simulations was

Ca ¼ lv=r ¼ 10�4, corresponding to slow, capillary-dominated dis-
placement, with l and r being, respectively, the viscosity and interfa-
cial tension. The ratio of viscosities of the two fluids was 10,
corresponding to an unstable displacement. For the CO2-brine system,
the interfacial tension was assumed to be r ¼ 30mN/m; see below for
the second two-phase flow system. The two sandstones in which the
two-phase flow problem was simulated are brine- or water-wet; there-
fore, the contact angle for CO2 and oil was assumed to be 180�,
although, as described earlier, any other contact angle can be imple-
mented. All the computations were carried out on a HP Specter x360
laptop with speed of 2GHz and 16 GB of memory.

In what follows, we present and discuss the results.

A. Properties of porous media under curvelet
transformation

To see how the essential features of the porous media are pre-
served after being processed by the CTs, consider, first, the image
shown in Fig. 5(a), which is that of a tight porous medium dominated
by fractures.55 The image was processed by the CT with a threshold,
e ¼ 0:8. The resulting image is shown in Fig. 5(b). All the essential fea-
tures of the medium, including the connectivity of the fractures that
plays the most important role in fluid flow in the porous medium, are
preserved, even though the threshold is very large.

Although Fig. 5 indicates clearly that the essential features of the
image are preserved after coarsening, we also address the question of
whether any important physical property of the porous media that we
process, such as the porosity, pore surface area, and others, are also
preserved under curvelet thresholding. To address this issue, we com-
puted the porosity, single-phase permeability, and pore surface area of
the original two sandstones, as well as those of the carbonate sample.
After thresholding their images by the CT, we recomputed the same
properties. To compute the pore surface area, we utilized the open-
source Fiji software. First, we input the image into the software and
converted it to a binary image. Next, we applied a threshold such that
only the pores were shown and the solid matrix was covered. We then
used the analysis tool of the software to compute the pore space inter-
nal surface area. The results are listed in Table I.

In the case of the Berea sandstone, even with a threshold as high
as e ¼ 0:9 (recall that the maximum value of e is 1), the effective per-
meability Ke differs from that of the original porous medium by only

FIG. 5. Comparison of the original rock sample (a) with its thresholded version (b),
obtained with a threshold e ¼ 0:8. Observe that all the essential features are pre-
served under thresholding.
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8% (see Sec. VI B below for the details of computing Ke). The corre-
sponding differences for the porosity and pore surface area are, respec-
tively, 6.9% and 5%. As we describe below, such a high threshold
results in tremendous reduction in the overall computation time. The
same type of observations may be made regarding the other two
porous media that we consider. For example, with a threshold,
e ¼ 0:9, the permeabilities of the curvelet-processed images of the
regenerated sandstone and the carbonate sample differ from their orig-
inal values by, respectively, only 6.4% and 4.3%.

We also computed a multiple-point connectivity function
pðh;mÞ that quantifies the long-range connectivity of a porous mate-
rial. pðh;mÞ is the probability of having a sequence of m connected
points in the pore space of a porous material in a specific direction h
and is defined by

pðr;mÞ ¼ Prob IðxÞ ¼ 1; Iðx þ hÞ ¼ 1;…Iðx þmhÞ ¼ 1½ �; (19)

where IðxÞ is the indicator function, i.e., IðxÞ ¼ 1 if x is in the pore
space, and IðxÞ ¼ 0, otherwise. Note that pðh;mÞ accounts for curvi-
linearity and complexity of a microstructure since it represents the
probability of finding multiple connected points in such complex
media. As such, it provides a stringent test of preserving the essential
features of the image under CTs.

We computed pðh;mÞ for the two sandstones. Figure 6 shows
the results for the Berea sandstone, and its curvelet-processed
images. As can be seen, there is hardly any difference between the
original image and the processed ones. Similar results were
obtained for the regenerated sandstone. We conclude, therefore,
that all the essential properties of the pore space are preserved
under curvelet transformation.

B. Berea sandstone

We first determined the minimum lattice size for the CFLB simu-
lations that would yield an effective single-phase permeability Ke that
will not change if the resolution of the lattice was increased and a

larger number of lattice nodes were used. To do so, we computed the
dependence of Ke on the lattice size. Figure 7 presents the results, indi-
cating that the Q19 lattice with about 1:69� 106 lattice points produ-
ces effective permeability that is independent of the size. The same
lattice was then used in the simulation of two-phase flow. To estimate
the speed-up in the computations, we carried out the same detailed
simulations in the original image and in two coarser ones obtained by
thresholding the image with e ¼ 0:5 and 0.9.

In Fig. 8, we compare the spatial distribution of CO2 and brine in
the original image of the sandstone with those obtained with the CT-
processed images with the two thresholds. The brine saturation is
Sb ¼ 0:5. All the important features of three distributions are
completely similar.

To make a quantitative comparison between the results obtained
with the three images, we compare in Fig. 9 the saturation profile of
CO2 along the macroscopic direction x of the flow of CO2 at its break-
through time tB, i.e., the time at which CO2-filled pores form a
sample-spanning cluster across the image. In Fig. 9, X ¼ x=L, where L
is the linear size of the image, and the saturation SCO2ðXÞ was com-
puted in the planes perpendicular to the macroscopic direction at X.
The agreement between the three sets of results is excellent.

We make another quantitative comparison between the three
sets of results in Fig. 10, where we show the time-dependence of CO2

saturation SCO2 in the original image of the porous medium and those
computed with the thresholded images. In Fig. 10, tD ¼ t=ts, where t

FIG. 6. The connectivity function pðh;mÞ computed for the Berea sandstone, and its
two coarsened versions, with m¼ 100.

FIG. 7. Dependence of the permeability of the Berea sandstone on the number of
the lattice nodes N in the LB simulation.

FIG. 8. CO2 invasion patterns in the Berea sandstone. (a) The original image; (b)
in the thresholded image with e ¼ 0:5 image, and (c) in thresholded image with
e ¼ 0:9 with brine saturation Sb ¼ 0:50. CO2 is shown in blue and brine in red.
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is the actual time, and ts is the time at which the flow system has
reached steady state. Saturation increases linearly with the time as
more CO2 is injected into the pore space, and after the system reaches
steady state, it reaches a constant value. More importantly, not only
are the three profiles completely similar, the maximum difference

between the profile computed in the coarser image with the threshold
e ¼ 0:9, and the original image is also practically negligible. The very
small differences are due to coarsening and smoothing out some
minor pores.

Next, we compare the relative permeabilities, the most important
quantity in two-phase flow in porous media. The relative permeability
Kr;a of fluid a at saturation Sa is given by the generalized Darcy’s law,

va ¼ �
Kr;aðSaÞKe

la

DPa

Dx
; (20)

where va is the Darcy velocity of fluid phase a, DPa is the pressure
drop in phase a over a distance Dx, and la is the viscosity of phase a.
Figure 11 compares the relative permeabilities of brine and CO2, com-
puted for the original (uncoarsened) image of the porous medium,
with two sets of results computed for the two coarsened images
obtained with two distinct thresholds, e ¼ 0:5 and 0.9. The agreement
between the three sets of results is excellent.

The high accuracy of the computed relative permeabilities for the
thresholded results provided the motivation for making another quan-
titative comparison between the three sets of results. We show in
Fig. 12 the distribution of local CO2 velocities in the original image
and compare it with those computed with the thresholded images. All
the velocities were normalized by their maximum value. For flow
velocities up to the maximum of the distributions, the agreement
between the three sets of results is perfect. For flow velocities larger
than the maximum, the agreement is good, with all the distributions
having the same shape and eventually the same tail.

From a practical viewpoint, the most important quantity in two-
phase flow in porous media, in addition to the relative permeability, is
the residual saturation Sr of the displaced fluid (here, brine) at CO2

breakthrough point. We compare in Table II the three computed
residual saturations. The maximum difference, computed with
e ¼ 0:9, is about 7%.

FIG. 9. Saturation profile of CO2 along the direction x of macroscopic flow at the
breakthrough time in the original images of Berea sandstone, as well as two thresh-
olded ones, where X ¼ x=L is the normalized distance of the interface from the
inlet, with L being the sample’s length in the x direction.

FIG. 10. Comparison of time-dependence of saturation of CO2, where tD ¼ t=ts,
with ts being the time at which the system reaches steady state, in the original
image of the Berea sandstone and its curvelet-transformed images.

FIG. 11. Relative permeabilities of CO2 and brine in the Berea sandstone as func-
tions of the brine saturation Sb in the sandstone’s original image, as well as its
curvelet-thresholded images.
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C. The regenerated sandstone

We simulated two-phase flow of water and oil in the regener-
ated sandstone. Once again, water was the wetting fluid. The inter-
facial tension between the two fluids was 20mN/m. Oil was
injected into the pore space from one face to displace the water
that had initially saturated the medium, and the pressure at the
opposite face was held constant. Periodic boundary conditions
were used in the other four faces.

In terms of their accuracy, all the results for the regenerated sand-
stone are completely similar to those for the Berea sandstone.
Therefore, we present only two main results. Figure 13 presents the
saturation of oil vs the dimensionless time tD, defined earlier. The
agreement between the three profiles is excellent.

Figure 14 presents the calculated relative permeabilities to oil and
water. Once again, similar to the Berea sandstone, the agreement
between the relative permeabilities, computed for the original image,
and those for the two coarser images, is excellent.

D. Efficiency of the computation

It took 196 CPU seconds to compute the CT of the 3D image of
the Berea sandstone, while inverse transforming of the coarse images
took 203 CPU seconds. The computation time for thresholding the
image is insignificant. The corresponding times for the regenerated
sandstone, the carbonate medium, and the fractured sample were,
respectively, 641, 23, and 8 CPU second. In Table II, we compare the
total computation times, including the processing of the images, for all
the cases, as well as the speed-up factor of the computations.

Table II indicates that the computations with the coarse image of
the Berea sandstone that was obtained with the very high threshold of
e ¼ 0:9 still produce very accurate results, with a speed-up factor of 35,
while those with the thresholds e ¼ 0:5 are accelerated by a factor of 25.

On the other hand, the speed-up factor for the regenerated sand-
stone is between 8 and 11, still very significant. There are two reasons

FIG. 12. The probability distribution function (PDF) of the local velocity of CO2 in
the Berea sandstone, normalized by its maximum, in the curvelet-transformed
images of the sandstone with two thresholds e, and its comparison with that of the
original image.

TABLE II. Comparison of the number of the lattice nodes M, the computation times
(in CPU seconds), the speed-up factor S of the computations, and the brine residual
saturation Sr, computed with the original and thresholded images.

Berea sandstone M Threshold e Sr Time S

Original image 1 691 443 � � � 0.410 140 422 � � �
Curvelet-transformed
image

72 978 0.5 0.433 5546 25

Curvelet-transformed
image

58 421 0.9 0.441 3953 35

Regenerated
sandstone
Original image 4 140 157 � � � 0.149 197 969 � � �
Curvelet-transformed
image

609 748 0.5 0.152 25 183 8

Curvelet-transformed
image

396 901 0.9 0.153 18 114 11

FIG. 13. Comparison of time-dependence of saturation of oil, where tD ¼ t=ts, with
ts being the time at which the system reaches steady state, in the original image of
the regenerated sandstone and its curvelet-transformed images.

FIG. 14. Relative permeabilities of oil and water in the regenerated sandstone as
functions of the brine saturation Sb in the sandstone’s original image, as well as its
curvelet-thresholded images.
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for a smaller speed-up factor for this porous medium. One is that even
though the porosities of the two porous media are virtually the same,
the regenerated sandstone is more tortuous, hence necessitating larger
number of lattice cells to accurately represent the pore space. The sec-
ond reason is the size of the lattice in the original image of the sand-
stone, which is roughly 2.5 times larger than that of the Berea sample.
Indeed, the speed-up factor for the regenerated sandstone is also by a
factor of roughly 3, close to ratio of the sizes of the two lattices.

VII. SUMMARY

Lattice-Boltzmann simulation of multiphase flow in heteroge-
neous porous media, represented by their high-resolution images, has
become practical, but the computations are still intensive and take a
long time to carry out. Thus, one must address the issue of high com-
putational cost of such simulations. We proposed a method by which
one preprocesses the 3D image and coarsen it by taking it to the curve-
let transform space and eliminating those details that do not contrib-
ute significantly to multiphase fluid flow. The coarsening is done by
thresholding the curvelet coefficients, such that if they are less than a
pre-set threshold, their value is set to zero. The resulting sparser repre-
sentation of the image is then inverse curvelet-transformed and is uti-
lized in the simulation of multiphase flow by the CFLB-MRT
approach. We demonstrated that the method accelerates the computa-
tions very significantly by a speed-up factor of up to 35.

In a recent paper56 in which we solved the Stokes’ and the diffusion
equations in the images of porous media in order to compute their effec-
tive permeability and diffusivity, as well as the flow and concentration
fields, we showed that if the two equations are curvelet-transformed and
solved in the curvelet-transformed image of the porous medium, one
obtains a speed-up factor of four or better, without preprocessing and
thresholding the image. The reason is that a coarser computational grid
suffices in the curvelet space because many of the CCs of the image are
either very small and, thus, do not contribute significantly to simulation
of fluid flow, or, due to the aforementioned correlations between the
voxels, the CCs are close to those of their neighbors, hence giving rise to
a relatively smooth local environment in the curvelet space that makes it
possible to use larger lattice blocks.

The same approach may be taken for the LB simulation of fluid
flow and transport in the images of porous media. One first determines
the CT of the Boltzmann equation that, for example, for a single compo-
nent in the Bhatnagar, Gross, and Krook approximation57 is given by58

@f
@t
þ v � rf þ 1

s
f ¼ 1

s
g; (21)

and similarly for the multicomponent version of the same equation. Here, s
is the relaxation time due to particle collision, and g is the
Maxwell–Boltzmann distribution function that, in the 3D space, is given by

g ¼ q

ð2pRTÞ3=2
exp �ðv � uÞ2

2RT

� �
; (22)

with R and T being, respectively, the gas constant and the temperature.
The discretized Boltzmann equations used in the simulations can also
be curvelet transformed. The curvelet-transformed equation(s) are
then solved numerically in the curvelet space, and the numerical
results are then inverted back to the real space. Work in this direction
will be reported in the near future.

ACKNOWLEDGMENTS

A.A. is grateful to the Public Authority for Applied Education
and Training of Kuwait for a Ph.D. scholarship. The authors thank the
National Science Foundation for partial support of this work through
Grant No. CBET 2000968. We thank Amir Kohanpur and Yu Chen
for providing us with the LB code; Senyou An and Vahid Joekar
Niasar for providing us with the complete information for the image
of the regenerated sandstone and Fig. 2, and Pejman Tahmasebi for
helping us to compute the multiple-point connectivity functions. We
also thank the anonymous referees whose critical comments
contributed significantly to improving the quality of the paper.

AUTHOR DECLARATIONS

Conflict of Interest

The authors declare that they have no conflict of interest.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article. The data that support the findings of this study are
available from the corresponding author upon reasonable request.

APPENDIX: PARAMETERS OF THE
MULTIRELAXATION TIME LATTICE-BOLTZMANN
SCHEME

We partition the 19� 19 matrixM into four submatrices,

M ¼ M1 M2

M3 M4

� �
: (A1)

Then, the four submatrices are given by

M1 ¼

1 1 1 1 1 1 1 1 1

�30 �11 �11 �11 �11 �11 �11 8 8

12 �4 �4 �4 �4 �4 �4 1 1

0 1 �1 0 0 0 0 1 �1
0 �4 4 0 0 0 0 1 �1
0 0 0 1 �1 0 0 1 1

0 0 0 �4 4 0 0 1 1

0 0 0 0 0 1 �1 0 0

0 0 0 0 0 �4 4 0 0

0 2 2 �1 �1 �1 �1 1 1

2
66666666666666666664

3
77777777777777777775

; (A2)

M2 ¼

1 1 1 1 1 1 1 1 1 1

8 8 8 8 8 8 8 8 8 8

1 1 1 1 1 1 1 1 1 1

1 �1 1 �1 1 �1 0 0 0 0

1 �1 1 �1 1 �1 0 0 0 0

�1 �1 0 0 0 0 1 �1 1 �1
�1 �1 0 0 0 0 1 �1 1 �1
0 0 1 1 �1 �1 1 1 �1 �1
0 0 1 1 �1 �1 1 1 �1 �1
1 1 1 1 1 1 �2 �2 �2 �2

2
66666666666666666664

3
77777777777777777775

; (A3)
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M3 ¼

0 �4 �4 2 2 2 2 1 1

0 0 0 1 1 �1 �1 1 1

0 0 0 �2 �2 2 2 1 1

0 0 0 0 0 0 0 1 �1
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 �1
0 0 0 0 0 0 0 �1 �1
0 0 0 0 0 0 0 0 0

2
6666666666666664

3
7777777777777775

; (A4)

and

M4 ¼

1 1 1 1 1 1 �2 �2 �2 �2
1 1 �1 �1 �1 �1 0 0 0 0

1 1 �1 �1 �1 �1 0 0 0 0

�1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 �1 �1 1

0 0 1 �1 �1 1 0 0 0 0

1 �1 �1 1 �1 1 0 0 0 0

1 1 0 0 0 0 1 �1 1 �1
0 0 1 1 �1 �1 �1 �1 1 1

2
6666666666666664

3
7777777777777775

:

(A5)

Deleting the superscript eq for convenience and brevity, the
nineteen entries of the equilibrium moments meq are given by

m0 ¼ q; m1 ¼ �11qþ 19q0jvj2; m2 ¼ 3q� 11q0jvj2=2; (A6)

m3 ¼ q0vx; m4 ¼ �2m3=2; m5 ¼ q0vy; (A7)

m6 ¼ �2m5=3; m7 ¼ q0vz; m8 ¼ �2m7=3; (A8)

m9 ¼ q0ð2v2x � v2y � v2zÞ; m10 ¼ �3m9=2; m11 ¼ q0ðv2y � v2zÞ;
(A9)

m12 ¼ �m11=2; m13 ¼ q0vxvy; m14 ¼ q0vyvz; (A10)

m15 ¼ q0vzvx; m16 ¼ m17 ¼ m18 ¼ 0; (A11)

with q0 being the mean fluid density in the system, which is taken
to be unity in simulations.

Since the relaxation rates matrix S is diagonal, we set Sii ¼ Si
for brevity. Then, the nineteen entries of S are given by S1 ¼ S2
¼S9¼S10¼S11¼S12¼S13¼S14¼S15¼�S�; S4¼S6¼S8¼S16¼S17
¼S18¼�Sm, and S0 ¼ S3 ¼ S5 ¼ S7 ¼ 0, with

1
S�
¼ 3�

jvj2Dt
þ 0:5; (A12)

where � is the kinematic viscosity. Sm is given by59,60

Sm ¼ 8
2� S�
8� S�

: (A13)

The color gradient C, mentioned in the main text, is defined by

C ¼ 3

jvj2Dt
X
i

xiuðx þ viDt; tÞ; (A14)

where xi are the weight coefficients in the D3Q19 LB model,43

which are given by

xi ¼
1=3; i ¼ 0;
1=18; i ¼ 1; 2;…; 6;
1=36; i ¼ 7; 8;…; 18:

8<
: (A15)

Defining a vector n by n ¼ ðnx; ny; nzÞ ¼ C=jCj, the nonzero
entries of ms added to the stress-related entries of equilibrium
moments meq are given by34

ms
1 ¼ �19rjCj; ms

9 ¼ 0:5rjCjð2n2z � n2y � n2zÞ;
ms

11 ¼ rjCjðn2y � n2zÞ;
(A16)

ms
13 ¼ rjCjðnxnyÞ; ms

14 ¼ rjCjðnynzÞ; ms
15 ¼ rjCjðnznzÞ:

(A17)
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