How Do Large Language Models Perform in Dynamical System Modeling
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Abstract

This paper studies the problem of dynamical
system modeling, which involves the evolution
of multiple interacting objects. Recent data-
driven methods often utilize graph neural net-
works (GNNs) to learn these interactions by
optimizing the neural network in an end-to-
end fashion. Although large language mod-
els (LLMs) have shown superior zero-shot per-
formance in various applications, their poten-
tial for modeling dynamical systems has not
been extensively explored. In this work, we de-
sign prompting techniques for dynamical sys-
tem modeling and systematically evaluate the
capabilities of LLMs on two tasks, including
dynamic forecasting and relational reasoning.
An extensive benchmark LLM4DS across nine
datasets is built for performance comparison.
Our experimental results yield several key find-
ings: (1) LLMs demonstrate competitive per-
formance without training compared to state-of-
the-art methods in dynamical system modeling.
(2) LLMs effectively infer complex interactions
among objects to capture system evolution. (3)
Prompt engineering plays a crucial role in en-
abling LL.Ms to accurately understand and pre-
dict the evolution of systems.

1 Introduction

Dynamical system modeling is a critical field with
wide-ranging applications, from physical simula-
tions (Pfaff et al., 2021; Rajani et al., 2020) to
epidemiological tracking (Cury et al., 2021; Mu-
tuvi et al., 2020). These systems typically involve
multiple interacting agents. To model such systems,
researchers have developed various data-driven ap-
proaches (Kipf and Welling, 2017; Xu et al., 2019;
Zheng et al., 2022; Li et al., 2022a; He et al., 2022),
often leveraging graph neural networks (GNNss).
GNN-based methods commonly employ a message
passing mechanism to iteratively update node repre-
sentations, allowing them to predict the state of the
system at the next time step. By repeatedly feeding

the output back into the model as input, these ap-
proaches can generate entire system trajectories in
an autoregressive manner (Pfaff et al., 2021).

Despite significant progress in dynamical system
modeling, recent approaches often face serious lim-
itations. In particular, these methods (Pfaff et al.,
2021; Huang et al., 2020) typically require exten-
sive data for end-to-end training and struggle with
poor generalization performance when applied to
new scenarios. In contrast, large language models
(LLMs) have shown strong capabilities in zero-shot
and few-shot prompting scenarios across various
domains (Wu et al., 2024). For instance, Liang
et al. (2024) has shown the capacity of LLMs with
in-context learning in bioinformatics. Gruver et al.
(2024) have explored their zero-shot performance
in time series forecasting by considering time se-
ries as numerical digit strings. However, the evalu-
ation of LLMs specifically for dynamical system
modeling remains underexplored, which presents
a significant gap in our understanding of LLMs’
capabilities in this crucial field.

In comparison to time series analysis (Gruver
et al.,2024; Yu et al., 2023b; Jin et al., 2024), apply-
ing LLMs to dynamical system modeling consists
of three challenges. First, dynamical systems typ-
ically involve multiple agents whose interactions
have to be accurately understood to enable reliable
dynamic forecasting (Xu et al., 2023). Thus, it
is crucial to determine whether LLMs can effec-
tively capture these relationships for modeling pur-
poses. Second, dynamical systems often include
more complex data structures and edge information,
such as three-dimensional positional data, which
are significantly more challenging to handle com-
pared to simpler one-dimensional time series data.
Third, long-term prediction (Méndez et al., 2023;
Pfaff et al., 2021) is a major challenge in dynamical
system modeling, as it typically requires generating
intermediate states to forecast the evolution. Given
these three significant challenges, we expect care-
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ful design and evaluation for integrating LL.Ms into
dynamical system modeling.

In this paper, we introduce LLM for Dynamical
Systems (LLM4DS), an extensive benchmark for
comparing LLMs with existing non-LLM ap-
proaches for dynamical system modeling. To effec-
tively combine LLMs with dynamical systems, we
introduce prompt engineering beginning by defin-
ing the system and the task. Next, we convert the
adjacency matrix into a sequence of object pairs
and represent the historical observation matrix as
a string of tokens. For long-term predictions, we
adopt an iterative rollout strategy, where the output
of LLMs, i.e., the next-time-step state, is iteratively
fed back into the model. To further enhance perfor-
mance, we incorporate one example as a guidance
during in-context learning. Beyond dynamic fore-
casting, we also evaluate LLM performance on the
relational reasoning task, which involves predict-
ing whether two objects are interacting based on
historical trajectories. We conduct extensive exper-
iments with pre-trained parameters and supervised
fine-tuning on nine datasets across physical simu-
lations, pedestrian trajectories and opinion migra-
tion with three key observations. Firstly, without
additional training, LLMs can achieve competitive
performance in dynamical system modeling in com-
parison to state-of-the-art approaches, especially
for short-term predictions. Secondly, LLMs are
capable of inferring complex interactions between
different objects, which are crucial to understand-
ing the evolution of systems. Thirdly, prompt engi-
neering (e.g., one-shot prompting) is essential for
helping LLMs accurately comprehend and predict
the dynamics of systems. In addition, our work
highlights important characteristics and certain lim-
itations of LLMs in dynamical system modeling,
which can provide valuable direction for future re-
search in the related areas.

The contribution of this work is summarized as
follows: (1) We study the problem of integrating
LLMs in dynamical system modeling and attempt
extensive prompt engineering techniques to adapt
LLMs to different tasks in this domain. (2) We
build a comprehensive benchmark called LLM4DS
consisting of nine popular datasets for comparing
LLMs with existing non-LLM approaches on dy-
namical system modeling tasks. (3) Extensive ex-
periments on dynamic forecasting and relational
reasoning demonstrate that LLMs can achieve com-
petitive performance on dynamical system model-
ing. We further provide eight important observa-

tions as a guidance for future research.

2 Related Work

2.1 Dynamical System Modeling

Interacting dynamical system modeling (Cong
et al., 2023; Yu et al., 2023a; Huang et al., 2024;
Gastinger et al., 2024) has gained significant at-
tention across various fields, including computa-
tional fluid dynamics and molecular biology (Lan
et al., 2022; Li et al., 2022b; Bishnoi et al., 2022;
Sun et al., 2023; Yu et al., 2024). Early works in
this area employ convolutional neural networks to
model dynamics on regular grids (Peng et al., 2020).
Recent approaches (Wu et al., 2023; Deng et al.,
2023; Pfaff et al., 2021) typically use graph neural
networks (GNN5) to capture spatio-temporal rela-
tionships across multi-agent systems via the mes-
sage passing mechanism. In addition, several graph
ODE approaches (Luo et al., 2023; Huang et al.,
2020) have been developed to model dynamic sys-
tems in a continuous manner, which can be applied
to systems with missing observations. However,
these approaches generally require large amounts
of training data, which can be expensive to gener-
ate using simulation software (Pfaff et al., 2021).
Motivated by the advancements of LL.Ms in zero-
shot and few-shot learning scenarios (Gruver et al.,
2024; Kojima et al., 2022; Zhang et al., 2024a,c),
this paper explores the potential of LLMs for dy-
namical system modeling, which aims to close the
gap between two worlds.

2.2 Large Language Models

Among various foundation models (Feng et al.,
2024; Liu et al., 2024a), large language models
(LLMs) such as GPT (Achiam et al., 2023) and
LLaMA (Touvron et al., 2023) have shown effec-
tiveness across a variety of tasks, including ques-
tion answering (Kamalloo et al., 2023; Nguyen
et al., 2023), knowledge graphs (Yang et al., 2024)
and mathematical reasoning (Ahn et al., 2024; Sri-
vastava et al., 2024). To further improve perfor-
mance, several in-context learning techniques such
as chain-of-thought prompting (Wei et al., 2022)
and few-shot prompting (Ma et al., 2023) have been
developed. These prompt engineering methods en-
able LLMs to achieve strong performance without
additional training. While numerous studies have
focused on evaluating LLMs on different tasks
including time-series forecasting (Gruver et al.,
2024) and creative writing (Gémez-Rodriguez and
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Figure 1: An overview of our procedure for LLM-based dynamic forecasting. We feed the prompts into LLMs
and then require LLMs to output the predictions at the next timestamp in the matrix form. To generate long-term
predictions, we utilize an iterative rollout strategy. More details of prompts can be found in Appendix D.

Williams, 2023) and rule discovery (Liu et al.,
2024b), their capabilities in dynamical system mod-
eling remain underexplored. To address this gap,
we incorporate LLMs into dynamical system mod-
eling and introduce a comprehensive benchmark
LLMA4DS that facilitates extensive comparisons
and demonstrates the effectiveness of LLMs for
dynamical system modeling.

3 Our Benchmark: LLM4DS

3.1 Problem Definition

In this work, we mainly consider two tasks of dy-
namical system modeling, i.e., dynamic forecasting
and relational reasoning.

Dynamic Forecasting. We first utilize graphs
to describe a multi-agent dynamical system, i.e.,
Gt = (V,&' X"), where V denotes the node
set and &' denotes the edge set at the times-
tamp t. X records the states of different ob-
jects at the timestamp ¢. Given the historical in-
formation Gt Tors = {G1, .. | GTovs}, our target
is to predict the states in the future states, i.e.,
X Tobs+1:Tend — {XTobs+17 .. 7)(Tend}_
Relational Reasoning (Xu et al., 2023). Given
the trajectories of multi-agent dynamical systems,
ie, X = {X! ... XTend} we aim to in-
fer the relationship between different objects, i.e.,
& = {eij}izjev. where e;; = 1 indicates the inter-
action between object ¢ and object j. This task can
provide a direction evaluation on whether LLMs
can understand interaction across different objects.

3.2 Prompt Engineering

To incorporate LLMs into dynamical system mod-
eling, we aim to carefully design prompts with

extensive contexts. We first provide the context
to describe the dynamical system and then intro-
duce the goal of tasks. The historical observations
X 1Tobs are converted into a tensor as the input.
To enhance the understanding of LLMs, edge in-
formation is depicted using a list of positive pairs
for dynamic forecasting. Due to the limit of to-
ken lengths for LLMs, we utilize a rollout strategy,
which requires LLMs to output the state at the next
timestamp and include it in the input as historical
information in an iterative manner. An overview
of the framework can be seen in Figure 1. As for
relational reasoning, we feed the trajectories into
LLMs and require LLMs to generate binary outputs
for each pair, i.e., interact or isolate. To regularize
the output format of LLLMs, we adopt the one-shot
prompting strategy, which includes an example as
the guidance of output. The examples of prompts
for both tasks can be found in Appendix D.

3.3 Compared Models

We adopt two popular LLMs, ie., GPT-
3.5 (Achiam et al., 2023) and Llama3-70B (Tou-
vron et al., 2023) for performance comparison.
GPT-3.5 is a closed-source pre-trained LLM from
OpenAl, and there we utilize its API to output
the results. Llama3-70B is an open-source pre-
trained LLLM, which consists of 70 billion parame-
ters. For the dynamic forecasting task, we com-
pare LLMs with extensive state-of-the-art non-
LLM approaches including LSTM (Hochreiter and
Schmidhuber, 1997), GRU (Cho et al., 2014),
NODE (Chen et al., 2018), NRI (Kipf et al., 2018),
and EGNN (Satorras et al., 2021). We also include
LLMTime (Gruver et al., 2024) as the baseline,
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Dataset Method ‘ 2-step 4-step 6-step 8-step 10-step 12-step
| MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE
LSTM 12928 2.584 | 13.169 2.672 | 13393 2755 | 13.627 2.843 | 13.868 2.937 | 14.114 3.033
GRU 9477 1388 | 10.008 1529 | 10.507 1.670 | 10.931 1.795 | 11.304 1.907 | 11.645 2.012
NODE 10.051  1.531 | 10344 1.607 | 10.639 1.684 | 10.940 1.764 | 11.247 1.848 | 11.553 1.936
NRI 0.890 0.036 | 1.832 0.069 | 2.835 0.163 | 3.897 0304 | 5024 0497 | 6216 0.747
Springs EGNN 1394 0.034 | 1.610 0.047 | 1.830 0.062 | 2.052 0.080 | 2.275 0.100 | 2.601  0.137
TimeLLM | 24.811 3.855 | 24980 3.867 | 25.072 3.878 | 25558 3.981 | 27.690 4.393 | 29.635 4.737
GPT-3.5 2589 1391 | 4355 1509 | 6383 1.692 | 7.925 1.889 | 9.293 2.074 | 10.639 2473
GPT-3.5 (SFT) | 1421 0396 | 3.023 1329 | 4551 1512 | 5993 1.629 | 7.361 1.894 | 8.707 1.993
Llama3-70B | 0.368 0.040 | 0.915 0.057 | 1.550 0498 | 2360 1016 | 3296 1236 | 4352 1453
LSTM 21.345 7273 | 22.078 7.800 | 22.773 8315 | 23.464 8.844 |24.147 9.384 | 24.821 9.934
GRU 19293 6.003 | 20303 6.684 | 21.221 7328 | 22.058 7.941 | 22838 8.531 |23.589 9.114
NODE 20214 6.605 | 20.872 7.060 | 21.518 7.522 | 22.178 8.010 | 22.845 8518 | 23519 9.044
NRI 5141 1.547 | 7.583 2202 | 9188 2471 | 11.094 3.158 | 12913 3.921 | 14770 4.955
Charged EGNN 8517 1504 | 9.072 1.623 | 9.393  1.680 | 9.636 1.735 | 9.837 1792 | 10.500 2.085
TimeLLM | 22703 9.828 | 25269 9.939 | 33.710 11.429 | 41.271 12.145 | 55.798 13.870 | 60.913 14.671
GPT-3.5 4254 0977 | 10411 3.117 | 15010 5860 | 19.044 7.454 | 23226 8.042 | 27442 9.638
GPT-3.5(SFT) | 3.725 0.823 | 7.167 2.897 | 11406 3214 | 15653 6.072 | 20254 7973 | 25441 9.028
Llama3-70B | 2.973 0724 | 6.566 2.681 | 10.340 3.501 | 14.857 5510 | 20.033 7.569 |25.652 8.658

Table 1: The MSE and MAE (x10~2) of compared methods on Springs and Charged. Bold numbers indicate the
best results while underline numbers imply the second best performance.

Ground Truth GPT-3.5(w/o edge) GPT-3.5
>} N\ N\
[ /o N

Figure 2: Visualization of the compared methods on Charged. Semi-transparent paths represent observed trajectories
and solid paths indicate the predictions. From the results, we can find that without edge information, GPT-3.5 cannot

accurately predict the trajectory in red.

which considers each object independently. For
relational reasoning, we include a random baseline,
which selects one of the answers in a uniform fash-
ion. By comparing the performance with random
guessing to test whether LLMs have explicit rea-
soning ability for the interaction between objects.

3.4 Datasets

We adopt nine datasets based on physical simula-
tions, pedestrian trajectories and opinion migration
to evaluate the performance of LLMs in compar-
ison with competitive baselines. In detail, we in-
volve two physical simulation datasets, i.e., Springs
and Charged (Kipf et al., 2018). Springs contains
the dynamic trajectories of interconnected springs
following Hooke’s law. Charged is made up of
the trajectories of electronics in electromagnetic
phenomena. We also involve a pedestrian trajec-
tory benchmark ETH-UCY (Lerner et al., 2007;
Pellegrini et al., 2009) with five datasets, i.e., ETH,

HOTEL, UNIV, ZARAI, and ZARA2. The Social
dataset (Gu et al., 2017) models the opinion migra-
tion of different people in a social network. We
conduct dynamic forecasting on all nine datasets
and relational reasoning on Springs and Charged
following previous works.

4 Experiment

4.1 Experimental Settings

We utilize API to access GPT-3.5 and download
the weight of Llama3-70B for evaluation. The
prediction length varies among {2, 4,6, 8,10,12}
and both mean square error (MSE) and the mean
absolute error (MAE) are reported on these datasets.
For the LLLaMa-70B, we leverage 4-bit quantization
to perform different tasks on an A100 GPU. We
also fine-tune the two datasets Springs and Charged
on GPT-3.5, using the training data.

For the non-LLM approaches, we set the number
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Dataset Method ‘ 2-step 4-step 6-step 8-step 10-step 12-step
‘ MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE
LSTM 3.492 3.166 | 6.749 10.377|10.536 25.087 | 14.251 44.475|17.685 66.342 |20.700 88.432
GRU 4420 4.355 | 8.940 16.403|11.832 28.167 |13.920 38.837|15.712 49.625 |17.429 61.298
NODE |3.153 2.804 | 4415 4.739 | 5748 8.128 | 7.117 13.019| 8.506 19.402 | 9.905 27.250
ETH NRI 2.744 2.861 | 5297 10.687| 7.694 22.234 | 9.929 36.404|11.992 52.566 |13.459 78.476
EGNN [1.119 0.216 | 1.884 0.629 | 2.782 1.463 | 3.815 2.763 | 4576 4.136 | 5494 6.184
TimeLLM |2.491 6.759 | 2.741 7.173 | 3.607 10.199 | 4.156 12.609 | 4.724 15.502 | 5.637 21.402
GPT-3.5 |[1.395 0.691 | 1.950 1.695 | 2.752 4.084 | 3.756 8.375 | 4746 14.483 | 5907 22.729
Llama3-70B | 1.175 0.495 | 2.037 1.606 | 2.794 2.602 | 3.463 3.441 | 4.295 4.881 | 5.523 7.892
LSTM |5.208 6.145 |10.386 22.768 | 14.419 42.689 |17.343 59.509 | 19.582 73.294 |21.455 85.512
GRU 4950 7.436 |10.926 19.554|15.983 33.668 |20.700 43.763| 24.97 54.839 |28.677 67.902
NODE |3.192 3.117 | 4458 4972 | 57798 8.281 | 7.178 13.083| 8.581 19.361 | 9.999 27.088
Hotel NRI 1.624 0.876 | 3.207 3.459 | 4752 7.687 | 6.274 13.541| 7.77 20916 | 9.274 29.235
EGNN [0.271 0.027 | 0.465 0.086 | 0.732 0.207 | 1.036 0.476 | 1.443 0.984 | 1.769 1.554
TimeLLM |0.649 0.132 | 0.805 0.196 | 0.967 0.294 | 1.090 0.389 | 1.194 0.439 | 1.351 0.537
GPT-3.5 [0.318 0.041 | 047 0.089 | 0.633 0.136 | 0.815 0.211 | 1.025 0.319 | 1.253 0.460
Llama3-70B [ 0.195 0.030 | 0.431 0.178 | 0.675 0.435 | 0.874 0.745 | 1.027 1.133 | 1.180 1.609
LSTM |6.201 8.698 |13.788 36.511|19.633 68.742 | 24.18 99.047|27.898 126.937|31.021 152.504
GRU 4366 5.206 | 8.405 16.792|11.164 27.673 | 13.49 39.012|15.627 51.319 |17.699 65.144
NODE |2.881 2.817 | 4206 4.812 | 5581 8373 | 6.981 13.541| 8.395 20.308 | 9.816 28.644
Univ NRI 3.357 2276 | 6.416 8.170 | 9.219 16.637 | 11.826 27.054|14.288 39.110 | 16.793 50.479
EGNN [0.705 0.103 | 1.186 0.318 | 1.864 0.822 | 2.609 1.483 | 3.518 2.994 | 4.335 4.776
TimeLLM |2.205 6.283 | 2.842 6.732 | 3.774 7.350 | 5.009 9.122 | 6.756 15.221 | 8.562 21.839
GPT-3.5 [0.278 0.022 | 0.664 0.136 | 1.014 0.322 | 1.404 0.625 | 1.832 1.099 | 2.696 5.526
Llama3-70B [0.014 0.173 | 0.101 0.491 | 0.290 0.835 | 0.575 1.234 | 1.039 1.711 | 1.787 2.24
LSTM |9.412 18.487|20.214 69.558|27.541 118.793|32.892 162.16|36.946 200.082 | 40.064 232.986
GRU 4736 497 | 8918 16.829|11.742 28.674 |13.964 40.275|15.853 51.785 |17.533 63.178
NODE |3.341 3.009 | 4295 4414 | 5319 6.857 | 6.387 10.398| 7479 15.036 | 8.586 20.748
Zaral NRI 2759 1.756 | 5396 6.859 | 7.929 15.112 |10.373 26.368 |12.736 40.51 |15.023 59.286
EGNN 1.976 0.791 | 1.951 0.687 | 2.974 1.710 | 3.297 2.509 | 3.944 3.529 | 5472 6.834
TimeLLM |4.123 10.866| 5.435 12.665| 7.334 18.187 | 9.47 25.554|11.784 34.877 | 1422 46.54
GPT-3.5 [0.230 0.021 | 0.590 0.122 | 0.949 0.360 | 1.340 0.775 | 1.785 1.405 | 2.253 2.203
Llama3-70B [0.239 0.022 | 0.627 0.129 | 0.954 0.308 | 1.275 0.534 | 1.632 0.806 | 2.013 1.164
LSTM |4.363 4.212 | 8.521 13.763|13.024 31.864 |17.096 54.053|20.468 75.553 |23.272 95317
GRU 4.664 5.603 | 8.862 18.114|11.785 31.088 | 14.003 43.309|15.864 55.223 |17.541 67.197
NODE |3.427 3222 | 4.687 5.099 | 6.02 8.188 | 7.387 12.552| 8.775 18.193 |10.175 25.098
Zarad NRI 1.715 1.101 | 3.414 4364 | 5.103 9.74 | 6.788 17.194| 8.474 26.682 |10.179 39.729
EGNN [0431 0.058 | 0.933 0.276 | 1.443 0.752 | 2.579 2.22 | 3.042 3.038 | 3.737 4.559
TimeLLM |5.572 18.151| 7.174 18.638|10.586 33.922 |13.895 48.17 |17.366 68.378 |21.068 94.65
GPT-3.5 ]0.533 0.089 | 1.131 0.424 | 1.695 0.895 | 2.221 1.487 | 2.702 2.198 | 3.142  3.02
Llama3-70B | 0.386 0.042 | 0.882 0.179 | 1.412 0.467 | 2.021 0974 | 2.683 1.742 | 3.365 2.74

Table 2: The MSE and MAE (x10~1) of compared methods on ETH, Hotel, Univ, Zaral and Zara2.

of samples for train/valid/test to a 1:1:1 ratio, train
50 epochs for every model, and set the learning
rate to 5e-4. For TimeLLLLM, since it only supports
input time-series data, we split the 2D data of mul-
tiple objects into multiple independent time-series
data for prediction. For example, the 2D data of
5 objects in a sample will be converted into 10
independent time-series data.

4.2 Performance Comparison

We first report the results of LLMs and competitive
non-LLM baselines on all nine datasets for the

dynamic forecasting task. The results on Springs
and Charged are reported in Table 1. The results on
ETH-UCY and Social are reported in Table 2 and
Table 3, respectively. From the results, we have the
following observations.

Observation 1. LLMs have competitive capac-
ities in dynamical forecasting. With one-shot
prompting, Llama3-70B generally performs better
than non-LLM approaches when prediction lengths
are small (e.g., 2 and 4). In particular, the perfor-
mance increasement of Llama3-70B on Springs
(prediction length < 7) is 71.2% in terms of MAE
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Dataset 2-step 4-step 6-step 8-step 10-step 12-step
MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE
LSTM 22.508 40.540|22.704 40.702|22.896 40.849|23.081 40.985|23.264 41.115|23.447 41.242
GRU 38.199 19.703 |38.724 20.274|39.206 20.821|39.585 21.268 |39.886 21.638 |40.134 21.956
NODE 38.919 20.400|38.911 20.428|38.960 20.523|39.030 20.643|39.115 20.781|39.210 20.932
NRI 0.925 0.014 | 1.813 0.056 | 2.673 0.122 | 3.511 0.211 | 4322 0.322 | 5.114 0.454
EGNN 2.704 0.121 | 2.887 0.140 | 3.052 0.158 | 3.200 0.176 | 3.337 0.193 | 3.463 0.209

TimeLLM 25.791 19.942]26.083 20.746|27.063 21.278 |27.698 21.647|28.024 23.064 |28.926 23.847

GPT-3.5 21.808 16.557|21.051 15.758|20.999 15.527|21.126 15.449|22.745 16.576|24.482 17.813
Llama3-70B 1.535 1.194 | 1.902 1.275 | 2.220 1.364 | 2.451 1.365 | 2.702 1.369 | 3.033 1.405

Table 3: The MSE and MAE (x10~2) of compared methods on the Social dataset.
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Figure 3: (a), (b) The performance of EGNN and Llama with respect to different numbers of nodes on Springs and
Charged. (c), (d) The performance with respect to different training samples on Springs and Charged at different

prediction lengths (6 and 12).

when compared with NRI, which demonstrates the
potential ability of LLMs on dynamical system
modeling. Note that non-LLM approaches are
trained using a large number of samples, while
LLMs achieve the performance with only one ex-
ample to provide the format, which validates the
high generalization ability of LLMs on dynami-
cal system modeling. With supervised fine-tuning
(SFT), LLMs can achieve even better performance
on Springs and Charged.

Observation 2. Relation information is the key
of LLMs to dynamical system modeling. Although
TimeLLM has a competitive performance com-
pared with state-of-the-art time-series forecasting
approaches (Gruver et al., 2024), it performs much
worse than Llama3-70B and GPT-3.5. In addition,
TimeLLM performs much worse than non-LLM
approaches. Note that TimeLLLM only considers
the trajectories of each agent individually, which
can validate that relation information is crucial for
LLMs to understand the system with accurate dy-
namic forecasting. We also conduct visualization
of generated trajectories on Charged. The results
are shown in Figure 2. From the results, we can ob-
serve that our LLM implementation can generate
worse trajectories when removing edge informa-

tion, which validates the importance of incorporat-
ing relation information.

Observation 3. The long-term forecasting per-
Jormance of LLMs could be limited without any
training in some cases. Both Llama3-70B and
GPT-3.5 generally perform worse than EGNN
when the prediction length is over 7 on Charged.
The potential reason is that long-term forecasting
through rollout could suffer from serious error ac-
cumulation. In contrast, EGNN does not need iter-
ative rollout with extensive training signals, which
can achieve less prediction error compared with
training-free LLMs in some cases.

Observation 4. LLMs perform better when the
number of objects is limited. Figure 3 (a) and (b)
record the performance of Llama and EGNN with
respect to different numbers of objects on Springs
and Charged, respectively. From the results, we can
find that when the number of objects is 4, Llama3-
70B performs better than EGNN. However, when
the number of objects is over 6, EGNN performs
much better. The potential reason is that more
objects bring in a more complicated graph structure,
which is hard to understand for LLMs without any
training.

Observation 5. LLMs suffer less performance
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Dataset  Method ‘ 2-step 4-step 6-step 8-step 10-step 12-step
‘ MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE
LSTM 12.563 2.443 112916 2.572|13.213 2.684 |13.495 2.792 |13.769 2.898 |14.038 3.004
GRU 9.100 1.278] 9.760 1.456|10.331 1.621 |10.807 1.763 |11.218 1.888 |11.586 2.003
NODE 9.860 1.472|10.137 1.541|10.423 1.614 |10.717 1.691 |11.016 1.772 |11.318 1.858
Springs NRI 1.550 0.062| 2941 0.192| 4.260 0.358 | 5.557 0.560 | 6.858 0.807 | 8.176 1.108
EGNN 12.646 2.493|12.936 2.638|13.204 2.811 |13.474 2970 |13.798 3.188 | 15.004 3.852
TimeLLM |24.811 3.855|24.989 3.867(25.072 3.878 |25.558 3.981 |27.690 4.393 |29.635 4.737
GPT-3.5 2.889 1.437| 4.658 1.678| 6.848 1.962 | 9.920 2.065 | 9.649 2.302 | 12.060 3.116
Llama3-70B | 0.542 0.049| 1.273 0.365| 1.706 0.887 | 2.132 1.566 | 2.899 1.812 | 4300 1.842
LSTM 21.638 7.477122.290 7.949|22.930 8.426 |23.585 8.930 [24.243 9.452 |24.900 9.990
GRU 20.235 6.594121.041 7.164|21.803 7.718 |22.533 8.263 [23.241 8.804 |23.939 9.350
NODE 20.538 6.809|21.201 7.276|21.850 7.743 |22.506 8.237 |23.170 8.749 |23.840 9.279
Charged NRI 4976 1.859| 8.543 2.617|13.600 4.029 |18.829 7.540 |24.559 12.481]30.319 18.811
EGNN 10.637 2.002|10.888 2.079|11.056 2.124 |11.191 2.164 |11.305 2.205 | 12.072 2.609
TimeLLM |22.703 9.828 |25.269 9.939(33.710 11.429|41.271 12.145|55.798 13.870|60.913 14.671
GPT-3.5 | 4.072 1.804|10.891 4.100|15.007 6.089 [19.253 7.782 |23.205 8.628 |28.061 9.740
Llama3-70B | 3.766 1.010| 7.138 3.420|11.131 3.891 |15.555 6.057 [20.429 8.170 [25.943 9.085
Table 4: The MSE and MAE (x 10~2) of compared methods in the cross-domain settings.
Dataset Method ‘ Precision Recall precision and recall are shown in Table 5. From the
Random 0.500 0.500 res;ll:s, we h.ave ;he TE}(:;Vlnhg observatlon.. .
Springs GPT3.5 0.579 0.800 : .ser})atwn 0. s -ave c.ompetttzve -ca-
GPT-3.5 (SFT) 0.973 0.914 pacztzetv in relat.wnal reasoning with ﬁne-tu.mng.
In particular, with fine-tuning, GPT-3.5 achieves
Random 0.500 0.500 much better performance in comparison to random
Charged GPT-3.5 0.520 0.480 guessing, which validates that LLMs have the abil-
GPT-3.5 (SFT) 0.975 0.811 ity of inferring the interaction in dynamical sys-

Table 5: The relational reasoning performance of GPT-
3.5 and random guessing on Springs and Charged. SFT
denotes supervised fine-tuning.

degradation when it comes to zero-shot scenarios.
Table 4 reports the zero-shot performance of dif-
ferent approaches. In particular, we first train the
model in one domain and test the performance on a
different domain. For LLMs, their one-shot exam-
ple is from the different domains accordingly. From
the results, we can observe that LLM methods al-
ways rank first or second among all the compared
methods, which can validate the zero-shot capacity
of LLMs. In addition, we compare the performance
of Llama with EGNN with different numbers of
systems during training. The results are shown in
Figure 3 (c¢) and (d). From the results, we can find
that when there is limited training data, LLMs can
achieve better performance in some cases. With
the increasing training data, data-driven non-LLM
models would fit the data better.

Then, we study the performance of relational
reasoning. In particular, the results of compared
approaches on Springs and Charged in terms of

tems. However, without fine-tuning, the perfor-
mance increasement of GPT-3.5 in comparison to
random guessing is limited, which validates that
supervised fine-tuning can basically improve the
performance of LLMs.

4.3 Ablation Study of Prompt Engineering

We further conduct ablation studies of prompt engi-
neering in our implementation of LLMs. In partic-
ular, we introduce six model variants: (1) GPT w/o
Context, which removes the context information re-
lated to the background; (2) GPT w/o Edge, which
removes the edge information in our prompts; (3)
GPT w/o Rollout, which skips the rollout process
and directly outputs the target samples; (4) GPT
w/o Example, which removes the example in the
prompt; (5) GPT w/ One, which include one exam-
ple in the prompts; (6) GPT w/ Two, which include
two examples in the prompts. The compared re-
sults are recorded in Table 6. From the results, we
have the following observation.

Observation 7. Prompt engineering is crucial
Jor LLMs to tackle dynamical system modeling.
Firstly, by comparing the performance between
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Dataset  Method ‘ 2-step 4-step 6-step 8-step 10-step 12-step
‘MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE
No-Context | 8.489 1.899|17.888 2.867|21.899 3.074 |24.957 3.742|27.548 3.926 |29.982 4.325
No-Edge 3.821 1.645| 5.685 1.727| 7.936 2.047|10.268 2.279|12.651 2.62 |15.051 3.042
Sprines No-Rollout | 3.698 1.432| 5298 1.664| 8.925 2.156|11.772 2.489|15.673 3.215 |21.623 3.822
prings No-Example | 14.037 2.529{22.981 3.525|25.156 3.748|33.644 4.679|38.725 4.894 |50.519 5.726
1-Example | 2.589 1.391| 4.355 1.509| 6.383 1.692| 7.925 1.889| 9.293 2.074 |10.639 2.473
2-Example | 3.275 1.449| 4.513 1.513| 6.414 1.614| 7.534 1.734| 8.540 2.040 | 10.822 2.822
No-Context | 11.322 2.245]14.967 3.899 |18.687 5.458|22.679 6.828|26.766 8.125 |30.858 9.769
No-Edge |15.136 4.027|18.566 5.328|22.523 6.417|27.255 8.367|32.858 9.875 |38.349 10.872
Chareed No-Rollout | 6.278 1.367|12.346 3.526|17.782 4.670(23.929 7.017|30.527 9.214 |36.251 10.021
& No-Example | 23.677 6.728 |28.866 8.672|33.543 9.884 | 37.75 10.27|42.009 11.387|46.384 12.672
1-Example | 4.254 0.977|10.411 3.117|15.010 5.860|19.044 7.454|23.226 8.042 |27.442 9.638
2-Example | 5.434 1.105| 9.144 2.088|13.093 3.788|17.665 4.192|22.014 7.253 |26.606 9.121

Table 6: Ablation study on Springs and Charged (10~2) with varying prediction length.

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
+— Ground Truth i A 6 H 1 751 + ¥ 1 ¥
Prediction \ | \‘ ‘
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Figure 4: The comparison of predictions from GPT-3.5 and ground truth on periodicity-related dynamical systems

GPT w/ One and GPT w/o Context, we can find that
context information is indispensable for the fore-
casting ability of LLMs. Secondly, GPT w/ One
outperforms GPT w/o Edge consistently, which
validates that relation information can be under-
stood by LLMs to enhance dynamical system mod-
eling. Thirdly, GPT w/o Rollout performs much
worse than GPT w/ One. The potential reason is
that it is challenging to generate long-term predic-
tions directly without supervised training. Fourthly,
without the one-shot prompting, GPT w/o Exam-
ple cannot achieve reliable performance. However,
one more example cannot bring the performance
increasement as well from the comparison between
GPT w/ One and GPT w/ Two.

4.4 Case Study

In the end, we provide a case study with periodicity-
related dynamical systems. In particular, each
agent has a basic underlying periodic function such
as trigonometric functions, and their values are
influenced by the neighbors from the predefined
graph. Given the observation of different agents
at the first 10 steps, we aim to predict the state at
the next 10 steps. The predictions of GPT-3.5 and
ground truth can be found in Figure 4. From the

results, we can have the following observation.

Observation 8. LLMs have the ability to learn
Jfrom periodicity-related dynamical systems. GPT-
3.5 can successfully model periodicity-related dy-
namical systems. In particular, we can observe that
LLMs can not only capture the periodic nature of
the signal and approximate the general trend, even
when the patterns are highly complicated for agents
4 and 5. In addition, GPT-3.5 identifies the peaks of
agents accurately, which validates the strong ability
of LLMs in dynamical system modeling.

5 Conclusion

In this paper, we show that LLMs can achieve com-
parable performance to non-LLM methods, which
demonstrates the potential of LLMs in dynamical
system modeling. Surprisingly, LLMs can effec-
tively understand the relation to improve perfor-
mance in dynamic forecasting tasks. Moreover,
prompt engineering is crucial for LLMs to tackle
dynamical system modeling tasks and the combi-
nation of context, edge information, and few-shot
examples would benefit LLMs. We believe that
our work provides an extensive benchmark to test
more ways of blending LL.Ms and dynamical sys-
tem modeling, e.g., LLM alignment in physics and
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multi-agent collaboration for dynamic forecasting.

6 Limitations

Despite the extensive progress, we should note that
our benchmark does not involve complicated sci-
entific scenarios with extensive domain knowledge
such as molecular dynamical simulation scenarios.
In future work, we will try to incorporate more
external knowledge with domain-based prompting
engineering to solve more realistic scientific prob-
lems. In addition, due to the limitations of com-
putation resources, we do not utilize more LLMs
such as Claude, which we leave in our future work.
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A Details of Datasets

In this paper, we include nine datasets, and their
details are shown as follows:

» Springs (Kipf et al., 2018) simulates the system
containing a range of interconnected springs. The
whole system is driven by Hooke’s law, which in-
dicates the situation of forces from springs. Each
object has an initial position and its movement is
influenced by its connected objects. Interaction
strength can determine the force from its neigh-
boring objects. Different systems could have dif-
ferent initial positions and interaction patterns.

* Charged (Kipf et al., 2018) is a popular dataset
in electromagnetic. It studies the movement of
charged particles within a box, which could at-
tract or repel one other by Coulomb’s law. There
are equal probabilities for attraction and repul-
sion. This dataset can be applied to understand
plasma physics and astrophysics.

e ETH-UCY (Lerner et al., 2007; Pellegrini et al.,
2009) is a benchmark collected by ETH Zurich
and the University of Cyprus, which contains five
datasets. These datasets aim to study how people
move in public spaces in different scenarios such
as urban hotels and the University of Cyprus. The
datasets have been popular in computer vision
and autonomous driving.
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* Social (Gu et al., 2017) is a dataset that models
the opinion migration of people based on the so-
cial network. It simulates how people’s opinions
evolve along with time because of the interaction
and influence of people nearby. Here, each node
denotes a person and an edge is constructed if
two people are related.

B Details of Compared Methods

In this paper, we compare nine approaches, which
are introduced in detail as below:

¢ LSTM (Hochreiter and Schmidhuber, 1997) is a
popular RNN for sequence prediction and model-
ing. It consists of three important gates, i.e., the
forget gate, the input gate, and the output gate,
which jointly contribute to capturing long-term
dependency in the system.

¢ GRU (Cho et al., 2014) is a different version of
RNN, which is comprised of two gates, i.e., the
update gate and the reset gate. Through removing
one gate, GRU is known to have better efficiency
compared with LSTM.

* NODE (Chen et al., 2018) is a continuous neu-
ral network approach to model sequence data,
which models the derivates of hidden states using
a learnable function.

* NRI (Kipf et al., 2018) is a graph neural network
method, which follows a variational encoder-
decoder architecture. The encoder conducts the
message passing mechanism to update node rep-
resentations and the decoder is adopted to output
the position change.

* EGNN (Satorras et al., 2021) is a graph neural
network which considers the equivalence of the
system on 3-dimensional space and contains a
well-designed updating rule for the message pass-
ing procedure.

e LLMTime (Gruver et al., 2024) is a recent
method for incorporating LL.Ms into time series
forecasting. It directly encodes digits into tokens
and considers the forecasting tasks as extrapola-
tion.

¢ GPT-3.5 (Achiam et al., 2023) is a closed-source
large language model released by OpenAl, which
has shown effectiveness on a wide variety of
tasks such as text generation and text summa-
rization.

e Llama3-70B (Touvron et al., 2023) is an open-
source large language model designed by Meta,
which contains 70 billion parameters. From the
previous works (Zhang et al., 2024b), Llama3-
70B usually outperforms GPT-3.5 on most
language-based tasks.

C More Visualization

In the section, we provide additional visualization
results of compared methods. The compared per-
formance on Charged and ZARAI are shown in
Figure 5 and Figure 7, respectively. From the re-
sults, we can validate the competitive performance
of LLMs on dynamical system modeling. Besides,
we notice that LLMs perform poorly in some com-
plicated cases as in Figure 6. The potential reason
is that the system is highly complicated and thus
LLMSs cannot fully model it without any tuning.

D Examples of Prompts

We provide the full prompts in our benchmark.
The prompts for dynamic forecasting on Springs,
Charged, ETC-ETH and Social are shown in Figure
8, Figure 9, Figure 10, and Figure 11, respectively.
The prompts for relational reasoning on Springs
and Charged are shown in Figure 12 and Figure 13,
respectively.
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Figure 5: Visualization of the compared methods on Charged. Semi-transparent paths represent observed trajectories
and solid paths indicate the predictions.

Ground Truth LLMTime GPT-3.5 Llama-3-70B
v \ \ \
Figure 6: Visualization of a bad example on Charged.
Ground Truth LLMTime GPT-3.5 Llama-3-70B
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Figure 7: Visualization of the compared methods on ZARA 1. Semi-transparent paths represent observed trajectories
and solid paths indicate the predictions.

System Prompt
{6} You are a helpful Al assistant. You are asked to predict the next state of all balls. ]
3

User Prompt

G‘here are N balls with the ball numbers ranging from 0 to N — 1. You have the 2D trajectory information and N
edges information of all the balls. The trajectory information is a Observation Length x 2 X N vector, the first
dimension is the number of frames, the second dimension is the number of coordinates, and the third dimension
is the number of balls. The edges information is represented by a list of tuples, each tuple contains two ball
numbers of the edge. This edge is attractive force. Based on the given trajectory and edges information, predict
the next state of all balls. Only predict coordinates of following 1 frames. Return only a vector of 2 X N and
retain four decimal places, the first dimension is the number of coordinates, and the second dimension is the

Y\ | number of balls. The format must be exactly the same as the example array! Here is an example:
Input: trajectory of all the balls: <Example Trajectory>, edges information: <Example Edge>
Output: <Example Prediction>.
Now I give you the trajectory of all the balls: <Input Trajectory>, edges information: <Input Edge>.
\Output:

LLM Response

[<Prediction Matrix> )

Figure 8: An example of prompts for dynamic forecasting on Springs.
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System Prompt

{6} You are a helpful Al assistant. You are asked to predict the next state of all balls. )
=3

User Prompt

G here are N balls with the ball numbers ranging from 0 to N — 1. You have the 2D trajectory information and N
edges information of all the balls. You have the 2D trajectory information and edges information of all the balls.
The trajectory information is a Observation Length X 2 X N vector, the first dimension is the number of
frames, the second dimension is the number of coordinates, and the third dimension is the number of balls. The
edges information is represented by a list of tuples, each tuple contains three elements: the first two elements are
the ball numbers of the edge, and the third element is the edge type. There are two types of edges: 1 represents
the repulsive force, and -1 represents the attractive force. Based on the given trajectory and edges information,
predict the next state of all balls. Only predict coordinates of following 1 frames. Return only a vector of 2 X N
and retain four decimal places, the first dimension is the number of coordinates, and the second dimension is the
number of balls. The format must be exactly the same as the example array! Here is an example:

Input: trajectory of all the balls: <Example Trajectory>, edges information: <Example Edge>
Output: <Example Prediction>.
Now I give you the trajectory of all the balls: <Input Trajectory>, edges information: <Input Edge>.

\Output: )
LLM Response

[<Prediction Matrix> )

Figure 9: An example of prompts for dynamic forecasting on Charged.

System Prompt
@ You are a helpful Al assistant. You are asked to predict the next state of pedestrians. )
=

User Prompt

/There are N pedestrian. You have the 2D trajectory information of the N pedestrians. The trajectory information h
is a Observation Length X 2 X N vector, the first dimension is the number of frames, the second dimension is
the number of coordinates, and the third dimension is the number of pedestrians. Based on the given trajectory
information, predict the next state of the pedestrians. Only predict coordinates of following 1 frames. Return
only a vector of 2 X N and retain four decimal places, the first dimension is the number of coordinates. Don't

N\ | give any text or return nothing! The format must be exactly the same as the example array! Here is an example:

Input: trajectory of all the pedestrians: : <Example Trajectory>.

Output: <Example Prediction>. Now I give you the trajectory of all the pedestrians: <Input Trajectory>.

\Output:

LLM Response

<Prediction Matrix> )

Figure 10: An example of prompts for dynamic forecasting on ETC-ETH.
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System Prompt

{é} You are a helpful Al assistant. You are asked to predict the next state of all people. )
r-=-n

User Prompt

Ghere are N person with the numbers ranging from 0 to N — 1 in a social network. You have the 2D trajectory

information and popularity information of all the person. The trajectory information is a Observation Length X
2 X N vector, the first dimension is the number of frames, the second dimension is the number of coordinates,
and the third dimension is the number of person. Popularity information represents the degree of popularity of a
person in a social network. Based on the given trajectory and popularity information, predict the next state of all
person. Only predict coordinates of following 1 frames. Return only a vector of 2 X N and retain four decimal
places, the first dimension is the number of coordinates, and the second dimension is the number of person. The
format must be exactly the same as the example array! Here is an example:

Input: trajectory of all the person: <Example Trajectory>, popularity information: <Example Popularity>
Output: <Example Prediction>.

Now I give you the trajectory of all the person: <Input Trajectory>, popularity information: <Popularity>.

\Output: )
LLM Response

(<Prediction Matrix>

Figure 11: An example of prompts for dynamic forecasting on Social.

System Prompt
@ You are a helpful Al assistant for physical simulation. )
r-=-n

User Prompt

You have 3D trajectory and velocity information of two balls. Based on the given trajectory, Infer the interaction
‘@, relationship between the two balls.
C Input: trajectory of ball 0: <Trajectory 0>, velocity of ball 0: <Velocity 0>. trajectory of ball 1: <Trajectory 1>,
— velocity of ball 1: <Velocity 1>. Are ball 0 and ball 1 interact?

LLM Response

[True/False )

Figure 12: An example of prompts for relational reasoning on Springs.

System Prompt
@ You are a helpful AT assistant for physical simulation. )
r-=-n

User Prompt

You have 3D trajectory and velocity information of two charges. Based on the given trajectory, infer the
‘@, interaction relationship between the two charges.
C Input: trajectory of charge 0: <Trajectory 0>, velocity of charge 0: <Velocity 0>. trajectory of charge 1:
— <Trajectory 1>, velocity of charge 1: <Velocity 1>. Are charge 0 and charge 1 the same type?

LLM Response

A [True/False )

Figure 13: An example of prompts for relational reasoning on Charged.
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