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Abstract

This paper studies the problem of dynamical

system modeling, which involves the evolution

of multiple interacting objects. Recent data-

driven methods often utilize graph neural net-

works (GNNs) to learn these interactions by

optimizing the neural network in an end-to-

end fashion. Although large language mod-

els (LLMs) have shown superior zero-shot per-

formance in various applications, their poten-

tial for modeling dynamical systems has not

been extensively explored. In this work, we de-

sign prompting techniques for dynamical sys-

tem modeling and systematically evaluate the

capabilities of LLMs on two tasks, including

dynamic forecasting and relational reasoning.

An extensive benchmark LLM4DS across nine

datasets is built for performance comparison.

Our experimental results yield several key find-

ings: (1) LLMs demonstrate competitive per-

formance without training compared to state-of-

the-art methods in dynamical system modeling.

(2) LLMs effectively infer complex interactions

among objects to capture system evolution. (3)

Prompt engineering plays a crucial role in en-

abling LLMs to accurately understand and pre-

dict the evolution of systems.

1 Introduction

Dynamical system modeling is a critical field with

wide-ranging applications, from physical simula-

tions (Pfaff et al., 2021; Rajani et al., 2020) to

epidemiological tracking (Cury et al., 2021; Mu-

tuvi et al., 2020). These systems typically involve

multiple interacting agents. To model such systems,

researchers have developed various data-driven ap-

proaches (Kipf and Welling, 2017; Xu et al., 2019;

Zheng et al., 2022; Li et al., 2022a; He et al., 2022),

often leveraging graph neural networks (GNNs).

GNN-based methods commonly employ a message

passing mechanism to iteratively update node repre-

sentations, allowing them to predict the state of the

system at the next time step. By repeatedly feeding

the output back into the model as input, these ap-

proaches can generate entire system trajectories in

an autoregressive manner (Pfaff et al., 2021).

Despite significant progress in dynamical system

modeling, recent approaches often face serious lim-

itations. In particular, these methods (Pfaff et al.,

2021; Huang et al., 2020) typically require exten-

sive data for end-to-end training and struggle with

poor generalization performance when applied to

new scenarios. In contrast, large language models

(LLMs) have shown strong capabilities in zero-shot

and few-shot prompting scenarios across various

domains (Wu et al., 2024). For instance, Liang

et al. (2024) has shown the capacity of LLMs with

in-context learning in bioinformatics. Gruver et al.

(2024) have explored their zero-shot performance

in time series forecasting by considering time se-

ries as numerical digit strings. However, the evalu-

ation of LLMs specifically for dynamical system

modeling remains underexplored, which presents

a significant gap in our understanding of LLMs’

capabilities in this crucial field.

In comparison to time series analysis (Gruver

et al., 2024; Yu et al., 2023b; Jin et al., 2024), apply-

ing LLMs to dynamical system modeling consists

of three challenges. First, dynamical systems typ-

ically involve multiple agents whose interactions

have to be accurately understood to enable reliable

dynamic forecasting (Xu et al., 2023). Thus, it

is crucial to determine whether LLMs can effec-

tively capture these relationships for modeling pur-

poses. Second, dynamical systems often include

more complex data structures and edge information,

such as three-dimensional positional data, which

are significantly more challenging to handle com-

pared to simpler one-dimensional time series data.

Third, long-term prediction (Méndez et al., 2023;

Pfaff et al., 2021) is a major challenge in dynamical

system modeling, as it typically requires generating

intermediate states to forecast the evolution. Given

these three significant challenges, we expect care-
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ful design and evaluation for integrating LLMs into

dynamical system modeling.

In this paper, we introduce LLM for Dynamical

Systems (LLM4DS), an extensive benchmark for

comparing LLMs with existing non-LLM ap-

proaches for dynamical system modeling. To effec-

tively combine LLMs with dynamical systems, we

introduce prompt engineering beginning by defin-

ing the system and the task. Next, we convert the

adjacency matrix into a sequence of object pairs

and represent the historical observation matrix as

a string of tokens. For long-term predictions, we

adopt an iterative rollout strategy, where the output

of LLMs, i.e., the next-time-step state, is iteratively

fed back into the model. To further enhance perfor-

mance, we incorporate one example as a guidance

during in-context learning. Beyond dynamic fore-

casting, we also evaluate LLM performance on the

relational reasoning task, which involves predict-

ing whether two objects are interacting based on

historical trajectories. We conduct extensive exper-

iments with pre-trained parameters and supervised

fine-tuning on nine datasets across physical simu-

lations, pedestrian trajectories and opinion migra-

tion with three key observations. Firstly, without

additional training, LLMs can achieve competitive

performance in dynamical system modeling in com-

parison to state-of-the-art approaches, especially

for short-term predictions. Secondly, LLMs are

capable of inferring complex interactions between

different objects, which are crucial to understand-

ing the evolution of systems. Thirdly, prompt engi-

neering (e.g., one-shot prompting) is essential for

helping LLMs accurately comprehend and predict

the dynamics of systems. In addition, our work

highlights important characteristics and certain lim-

itations of LLMs in dynamical system modeling,

which can provide valuable direction for future re-

search in the related areas.

The contribution of this work is summarized as

follows: (1) We study the problem of integrating

LLMs in dynamical system modeling and attempt

extensive prompt engineering techniques to adapt

LLMs to different tasks in this domain. (2) We

build a comprehensive benchmark called LLM4DS

consisting of nine popular datasets for comparing

LLMs with existing non-LLM approaches on dy-

namical system modeling tasks. (3) Extensive ex-

periments on dynamic forecasting and relational

reasoning demonstrate that LLMs can achieve com-

petitive performance on dynamical system model-

ing. We further provide eight important observa-

tions as a guidance for future research.

2 Related Work

2.1 Dynamical System Modeling

Interacting dynamical system modeling (Cong

et al., 2023; Yu et al., 2023a; Huang et al., 2024;

Gastinger et al., 2024) has gained significant at-

tention across various fields, including computa-

tional fluid dynamics and molecular biology (Lan

et al., 2022; Li et al., 2022b; Bishnoi et al., 2022;

Sun et al., 2023; Yu et al., 2024). Early works in

this area employ convolutional neural networks to

model dynamics on regular grids (Peng et al., 2020).

Recent approaches (Wu et al., 2023; Deng et al.,

2023; Pfaff et al., 2021) typically use graph neural

networks (GNNs) to capture spatio-temporal rela-

tionships across multi-agent systems via the mes-

sage passing mechanism. In addition, several graph

ODE approaches (Luo et al., 2023; Huang et al.,

2020) have been developed to model dynamic sys-

tems in a continuous manner, which can be applied

to systems with missing observations. However,

these approaches generally require large amounts

of training data, which can be expensive to gener-

ate using simulation software (Pfaff et al., 2021).

Motivated by the advancements of LLMs in zero-

shot and few-shot learning scenarios (Gruver et al.,

2024; Kojima et al., 2022; Zhang et al., 2024a,c),

this paper explores the potential of LLMs for dy-

namical system modeling, which aims to close the

gap between two worlds.

2.2 Large Language Models

Among various foundation models (Feng et al.,

2024; Liu et al., 2024a), large language models

(LLMs) such as GPT (Achiam et al., 2023) and

LLaMA (Touvron et al., 2023) have shown effec-

tiveness across a variety of tasks, including ques-

tion answering (Kamalloo et al., 2023; Nguyen

et al., 2023), knowledge graphs (Yang et al., 2024)

and mathematical reasoning (Ahn et al., 2024; Sri-

vastava et al., 2024). To further improve perfor-

mance, several in-context learning techniques such

as chain-of-thought prompting (Wei et al., 2022)

and few-shot prompting (Ma et al., 2023) have been

developed. These prompt engineering methods en-

able LLMs to achieve strong performance without

additional training. While numerous studies have

focused on evaluating LLMs on different tasks

including time-series forecasting (Gruver et al.,

2024) and creative writing (Gómez-Rodríguez and
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Figure 1: An overview of our procedure for LLM-based dynamic forecasting. We feed the prompts into LLMs

and then require LLMs to output the predictions at the next timestamp in the matrix form. To generate long-term

predictions, we utilize an iterative rollout strategy. More details of prompts can be found in Appendix D.

Williams, 2023) and rule discovery (Liu et al.,

2024b), their capabilities in dynamical system mod-

eling remain underexplored. To address this gap,

we incorporate LLMs into dynamical system mod-

eling and introduce a comprehensive benchmark

LLM4DS that facilitates extensive comparisons

and demonstrates the effectiveness of LLMs for

dynamical system modeling.

3 Our Benchmark: LLM4DS

3.1 Problem Definition

In this work, we mainly consider two tasks of dy-

namical system modeling, i.e., dynamic forecasting

and relational reasoning.

Dynamic Forecasting. We first utilize graphs

to describe a multi-agent dynamical system, i.e.,

Gt = (V, E t,Xt), where V denotes the node

set and E t denotes the edge set at the times-

tamp t. X
t records the states of different ob-

jects at the timestamp t. Given the historical in-

formation G
1:Tobs = {G1, · · · , GTobs}, our target

is to predict the states in the future states, i.e.,

X
Tobs+1:Tend = {XTobs+1, · · · ,XTend}.

Relational Reasoning (Xu et al., 2023). Given

the trajectories of multi-agent dynamical systems,

i.e., X
1:T = {X1, · · · ,XTend}, we aim to in-

fer the relationship between different objects, i.e.,

E = {eij}i ̸=j∈V . where eij = 1 indicates the inter-

action between object i and object j. This task can

provide a direction evaluation on whether LLMs

can understand interaction across different objects.

3.2 Prompt Engineering

To incorporate LLMs into dynamical system mod-

eling, we aim to carefully design prompts with

extensive contexts. We first provide the context

to describe the dynamical system and then intro-

duce the goal of tasks. The historical observations

X
1:Tobs are converted into a tensor as the input.

To enhance the understanding of LLMs, edge in-

formation is depicted using a list of positive pairs

for dynamic forecasting. Due to the limit of to-

ken lengths for LLMs, we utilize a rollout strategy,

which requires LLMs to output the state at the next

timestamp and include it in the input as historical

information in an iterative manner. An overview

of the framework can be seen in Figure 1. As for

relational reasoning, we feed the trajectories into

LLMs and require LLMs to generate binary outputs

for each pair, i.e., interact or isolate. To regularize

the output format of LLMs, we adopt the one-shot

prompting strategy, which includes an example as

the guidance of output. The examples of prompts

for both tasks can be found in Appendix D.

3.3 Compared Models

We adopt two popular LLMs, i.e., GPT-

3.5 (Achiam et al., 2023) and Llama3-70B (Tou-

vron et al., 2023) for performance comparison.

GPT-3.5 is a closed-source pre-trained LLM from

OpenAI, and there we utilize its API to output

the results. Llama3-70B is an open-source pre-

trained LLM, which consists of 70 billion parame-

ters. For the dynamic forecasting task, we com-

pare LLMs with extensive state-of-the-art non-

LLM approaches including LSTM (Hochreiter and

Schmidhuber, 1997), GRU (Cho et al., 2014),

NODE (Chen et al., 2018), NRI (Kipf et al., 2018),

and EGNN (Satorras et al., 2021). We also include

LLMTime (Gruver et al., 2024) as the baseline,
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Dataset Method
2-step 4-step 6-step 8-step 10-step 12-step

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Springs

LSTM 12.928 2.584 13.169 2.672 13.393 2.755 13.627 2.843 13.868 2.937 14.114 3.033

GRU 9.477 1.388 10.008 1.529 10.507 1.670 10.931 1.795 11.304 1.907 11.645 2.012

NODE 10.051 1.531 10.344 1.607 10.639 1.684 10.940 1.764 11.247 1.848 11.553 1.936

NRI 0.890 0.036 1.832 0.069 2.835 0.163 3.897 0.304 5.024 0.497 6.216 0.747

EGNN 1.394 0.034 1.610 0.047 1.830 0.062 2.052 0.080 2.275 0.100 2.601 0.137

TimeLLM 24.811 3.855 24.989 3.867 25.072 3.878 25.558 3.981 27.690 4.393 29.635 4.737

GPT-3.5 2.589 1.391 4.355 1.509 6.383 1.692 7.925 1.889 9.293 2.074 10.639 2.473

GPT-3.5 (SFT) 1.421 0.396 3.023 1.329 4.551 1.512 5.993 1.629 7.361 1.894 8.707 1.993

Llama3-70B 0.368 0.040 0.915 0.057 1.550 0.498 2.360 1.016 3.296 1.236 4.352 1.453

Charged

LSTM 21.345 7.273 22.078 7.800 22.773 8.315 23.464 8.844 24.147 9.384 24.821 9.934

GRU 19.293 6.003 20.303 6.684 21.221 7.328 22.058 7.941 22.838 8.531 23.589 9.114

NODE 20.214 6.605 20.872 7.060 21.518 7.522 22.178 8.010 22.845 8.518 23.519 9.044

NRI 5.141 1.547 7.583 2.202 9.188 2.471 11.094 3.158 12.913 3.921 14.770 4.955

EGNN 8.517 1.504 9.072 1.623 9.393 1.680 9.636 1.735 9.837 1.792 10.500 2.085

TimeLLM 22.703 9.828 25.269 9.939 33.710 11.429 41.271 12.145 55.798 13.870 60.913 14.671

GPT-3.5 4.254 0.977 10.411 3.117 15.010 5.860 19.044 7.454 23.226 8.042 27.442 9.638

GPT-3.5 (SFT) 3.725 0.823 7.167 2.897 11.406 3.214 15.653 6.072 20.254 7.973 25.441 9.028

Llama3-70B 2.973 0.724 6.566 2.681 10.340 3.501 14.857 5.510 20.033 7.569 25.652 8.658

Table 1: The MSE and MAE (×10−2) of compared methods on Springs and Charged. Bold numbers indicate the

best results while underline numbers imply the second best performance.

Figure 2: Visualization of the compared methods on Charged. Semi-transparent paths represent observed trajectories

and solid paths indicate the predictions. From the results, we can find that without edge information, GPT-3.5 cannot

accurately predict the trajectory in red.

which considers each object independently. For

relational reasoning, we include a random baseline,

which selects one of the answers in a uniform fash-

ion. By comparing the performance with random

guessing to test whether LLMs have explicit rea-

soning ability for the interaction between objects.

3.4 Datasets

We adopt nine datasets based on physical simula-

tions, pedestrian trajectories and opinion migration

to evaluate the performance of LLMs in compar-

ison with competitive baselines. In detail, we in-

volve two physical simulation datasets, i.e., Springs

and Charged (Kipf et al., 2018). Springs contains

the dynamic trajectories of interconnected springs

following Hooke’s law. Charged is made up of

the trajectories of electronics in electromagnetic

phenomena. We also involve a pedestrian trajec-

tory benchmark ETH-UCY (Lerner et al., 2007;

Pellegrini et al., 2009) with five datasets, i.e., ETH,

HOTEL, UNIV, ZARA1, and ZARA2. The Social

dataset (Gu et al., 2017) models the opinion migra-

tion of different people in a social network. We

conduct dynamic forecasting on all nine datasets

and relational reasoning on Springs and Charged

following previous works.

4 Experiment

4.1 Experimental Settings

We utilize API to access GPT-3.5 and download

the weight of Llama3-70B for evaluation. The

prediction length varies among {2, 4, 6, 8, 10, 12}
and both mean square error (MSE) and the mean

absolute error (MAE) are reported on these datasets.

For the LLaMa-70B, we leverage 4-bit quantization

to perform different tasks on an A100 GPU. We

also fine-tune the two datasets Springs and Charged

on GPT-3.5, using the training data.

For the non-LLM approaches, we set the number

869



Dataset Method
2-step 4-step 6-step 8-step 10-step 12-step

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ETH

LSTM 3.492 3.166 6.749 10.377 10.536 25.087 14.251 44.475 17.685 66.342 20.700 88.432

GRU 4.420 4.355 8.940 16.403 11.832 28.167 13.920 38.837 15.712 49.625 17.429 61.298

NODE 3.153 2.804 4.415 4.739 5.748 8.128 7.117 13.019 8.506 19.402 9.905 27.250

NRI 2.744 2.861 5.297 10.687 7.694 22.234 9.929 36.404 11.992 52.566 13.459 78.476

EGNN 1.119 0.216 1.884 0.629 2.782 1.463 3.815 2.763 4.576 4.136 5.494 6.184

TimeLLM 2.491 6.759 2.741 7.173 3.607 10.199 4.156 12.609 4.724 15.502 5.637 21.402

GPT-3.5 1.395 0.691 1.950 1.695 2.752 4.084 3.756 8.375 4.746 14.483 5.907 22.729

Llama3-70B 1.175 0.495 2.037 1.606 2.794 2.602 3.463 3.441 4.295 4.881 5.523 7.892

Hotel

LSTM 5.208 6.145 10.386 22.768 14.419 42.689 17.343 59.509 19.582 73.294 21.455 85.512

GRU 4.950 7.436 10.926 19.554 15.983 33.668 20.700 43.763 24.97 54.839 28.677 67.902

NODE 3.192 3.117 4.458 4.972 5.798 8.281 7.178 13.083 8.581 19.361 9.999 27.088

NRI 1.624 0.876 3.207 3.459 4.752 7.687 6.274 13.541 7.77 20.916 9.274 29.235

EGNN 0.271 0.027 0.465 0.086 0.732 0.207 1.036 0.476 1.443 0.984 1.769 1.554

TimeLLM 0.649 0.132 0.805 0.196 0.967 0.294 1.090 0.389 1.194 0.439 1.351 0.537

GPT-3.5 0.318 0.041 0.47 0.089 0.633 0.136 0.815 0.211 1.025 0.319 1.253 0.460

Llama3-70B 0.195 0.030 0.431 0.178 0.675 0.435 0.874 0.745 1.027 1.133 1.180 1.609

Univ

LSTM 6.201 8.698 13.788 36.511 19.633 68.742 24.18 99.047 27.898 126.937 31.021 152.504

GRU 4.366 5.206 8.405 16.792 11.164 27.673 13.49 39.012 15.627 51.319 17.699 65.144

NODE 2.881 2.817 4.206 4.812 5.581 8.373 6.981 13.541 8.395 20.308 9.816 28.644

NRI 3.357 2.276 6.416 8.170 9.219 16.637 11.826 27.054 14.288 39.110 16.793 50.479

EGNN 0.705 0.103 1.186 0.318 1.864 0.822 2.609 1.483 3.518 2.994 4.335 4.776

TimeLLM 2.205 6.283 2.842 6.732 3.774 7.350 5.009 9.122 6.756 15.221 8.562 21.839

GPT-3.5 0.278 0.022 0.664 0.136 1.014 0.322 1.404 0.625 1.832 1.099 2.696 5.526

Llama3-70B 0.014 0.173 0.101 0.491 0.290 0.835 0.575 1.234 1.039 1.711 1.787 2.24

Zara1

LSTM 9.412 18.487 20.214 69.558 27.541 118.793 32.892 162.16 36.946 200.082 40.064 232.986

GRU 4.736 4.97 8.918 16.829 11.742 28.674 13.964 40.275 15.853 51.785 17.533 63.178

NODE 3.341 3.009 4.295 4.414 5.319 6.857 6.387 10.398 7.479 15.036 8.586 20.748

NRI 2.759 1.756 5.396 6.859 7.929 15.112 10.373 26.368 12.736 40.51 15.023 59.286

EGNN 1.976 0.791 1.951 0.687 2.974 1.710 3.297 2.509 3.944 3.529 5.472 6.834

TimeLLM 4.123 10.866 5.435 12.665 7.334 18.187 9.47 25.554 11.784 34.877 14.22 46.54

GPT-3.5 0.230 0.021 0.590 0.122 0.949 0.360 1.340 0.775 1.785 1.405 2.253 2.203

Llama3-70B 0.239 0.022 0.627 0.129 0.954 0.308 1.275 0.534 1.632 0.806 2.013 1.164

Zara2

LSTM 4.363 4.212 8.521 13.763 13.024 31.864 17.096 54.053 20.468 75.553 23.272 95.317

GRU 4.664 5.603 8.862 18.114 11.785 31.088 14.003 43.309 15.864 55.223 17.541 67.197

NODE 3.427 3.222 4.687 5.099 6.02 8.188 7.387 12.552 8.775 18.193 10.175 25.098

NRI 1.715 1.101 3.414 4.364 5.103 9.74 6.788 17.194 8.474 26.682 10.179 39.729

EGNN 0.431 0.058 0.933 0.276 1.443 0.752 2.579 2.22 3.042 3.038 3.737 4.559

TimeLLM 5.572 18.151 7.174 18.638 10.586 33.922 13.895 48.17 17.366 68.378 21.068 94.65

GPT-3.5 0.533 0.089 1.131 0.424 1.695 0.895 2.221 1.487 2.702 2.198 3.142 3.02

Llama3-70B 0.386 0.042 0.882 0.179 1.412 0.467 2.021 0.974 2.683 1.742 3.365 2.74

Table 2: The MSE and MAE (×10−1) of compared methods on ETH, Hotel, Univ, Zara1 and Zara2.

of samples for train/valid/test to a 1:1:1 ratio, train

50 epochs for every model, and set the learning

rate to 5e-4. For TimeLLM, since it only supports

input time-series data, we split the 2D data of mul-

tiple objects into multiple independent time-series

data for prediction. For example, the 2D data of

5 objects in a sample will be converted into 10

independent time-series data.

4.2 Performance Comparison

We first report the results of LLMs and competitive

non-LLM baselines on all nine datasets for the

dynamic forecasting task. The results on Springs

and Charged are reported in Table 1. The results on

ETH-UCY and Social are reported in Table 2 and

Table 3, respectively. From the results, we have the

following observations.

Observation 1. LLMs have competitive capac-

ities in dynamical forecasting. With one-shot

prompting, Llama3-70B generally performs better

than non-LLM approaches when prediction lengths

are small (e.g., 2 and 4). In particular, the perfor-

mance increasement of Llama3-70B on Springs

(prediction length < 7) is 71.2% in terms of MAE
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Dataset
2-step 4-step 6-step 8-step 10-step 12-step

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

LSTM 22.508 40.540 22.704 40.702 22.896 40.849 23.081 40.985 23.264 41.115 23.447 41.242

GRU 38.199 19.703 38.724 20.274 39.206 20.821 39.585 21.268 39.886 21.638 40.134 21.956

NODE 38.919 20.400 38.911 20.428 38.960 20.523 39.030 20.643 39.115 20.781 39.210 20.932

NRI 0.925 0.014 1.813 0.056 2.673 0.122 3.511 0.211 4.322 0.322 5.114 0.454

EGNN 2.704 0.121 2.887 0.140 3.052 0.158 3.200 0.176 3.337 0.193 3.463 0.209

TimeLLM 25.791 19.942 26.083 20.746 27.063 21.278 27.698 21.647 28.024 23.064 28.926 23.847

GPT-3.5 21.808 16.557 21.051 15.758 20.999 15.527 21.126 15.449 22.745 16.576 24.482 17.813

Llama3-70B 1.535 1.194 1.902 1.275 2.220 1.364 2.451 1.365 2.702 1.369 3.033 1.405

Table 3: The MSE and MAE (×10−2) of compared methods on the Social dataset.

Figure 3: (a), (b) The performance of EGNN and Llama with respect to different numbers of nodes on Springs and

Charged. (c), (d) The performance with respect to different training samples on Springs and Charged at different

prediction lengths (6 and 12).

when compared with NRI, which demonstrates the

potential ability of LLMs on dynamical system

modeling. Note that non-LLM approaches are

trained using a large number of samples, while

LLMs achieve the performance with only one ex-

ample to provide the format, which validates the

high generalization ability of LLMs on dynami-

cal system modeling. With supervised fine-tuning

(SFT), LLMs can achieve even better performance

on Springs and Charged.

Observation 2. Relation information is the key

of LLMs to dynamical system modeling. Although

TimeLLM has a competitive performance com-

pared with state-of-the-art time-series forecasting

approaches (Gruver et al., 2024), it performs much

worse than Llama3-70B and GPT-3.5. In addition,

TimeLLM performs much worse than non-LLM

approaches. Note that TimeLLM only considers

the trajectories of each agent individually, which

can validate that relation information is crucial for

LLMs to understand the system with accurate dy-

namic forecasting. We also conduct visualization

of generated trajectories on Charged. The results

are shown in Figure 2. From the results, we can ob-

serve that our LLM implementation can generate

worse trajectories when removing edge informa-

tion, which validates the importance of incorporat-

ing relation information.

Observation 3. The long-term forecasting per-

formance of LLMs could be limited without any

training in some cases. Both Llama3-70B and

GPT-3.5 generally perform worse than EGNN

when the prediction length is over 7 on Charged.

The potential reason is that long-term forecasting

through rollout could suffer from serious error ac-

cumulation. In contrast, EGNN does not need iter-

ative rollout with extensive training signals, which

can achieve less prediction error compared with

training-free LLMs in some cases.

Observation 4. LLMs perform better when the

number of objects is limited. Figure 3 (a) and (b)

record the performance of Llama and EGNN with

respect to different numbers of objects on Springs

and Charged, respectively. From the results, we can

find that when the number of objects is 4, Llama3-

70B performs better than EGNN. However, when

the number of objects is over 6, EGNN performs

much better. The potential reason is that more

objects bring in a more complicated graph structure,

which is hard to understand for LLMs without any

training.

Observation 5. LLMs suffer less performance
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Dataset Method
2-step 4-step 6-step 8-step 10-step 12-step

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Springs

LSTM 12.563 2.443 12.916 2.572 13.213 2.684 13.495 2.792 13.769 2.898 14.038 3.004

GRU 9.100 1.278 9.760 1.456 10.331 1.621 10.807 1.763 11.218 1.888 11.586 2.003

NODE 9.860 1.472 10.137 1.541 10.423 1.614 10.717 1.691 11.016 1.772 11.318 1.858

NRI 1.550 0.062 2.941 0.192 4.260 0.358 5.557 0.560 6.858 0.807 8.176 1.108

EGNN 12.646 2.493 12.936 2.638 13.204 2.811 13.474 2.970 13.798 3.188 15.004 3.852

TimeLLM 24.811 3.855 24.989 3.867 25.072 3.878 25.558 3.981 27.690 4.393 29.635 4.737

GPT-3.5 2.889 1.437 4.658 1.678 6.848 1.962 9.920 2.065 9.649 2.302 12.060 3.116

Llama3-70B 0.542 0.049 1.273 0.365 1.706 0.887 2.132 1.566 2.899 1.812 4.300 1.842

Charged

LSTM 21.638 7.477 22.290 7.949 22.930 8.426 23.585 8.930 24.243 9.452 24.900 9.990

GRU 20.235 6.594 21.041 7.164 21.803 7.718 22.533 8.263 23.241 8.804 23.939 9.350

NODE 20.538 6.809 21.201 7.276 21.850 7.743 22.506 8.237 23.170 8.749 23.840 9.279

NRI 4.976 1.859 8.543 2.617 13.600 4.029 18.829 7.540 24.559 12.481 30.319 18.811

EGNN 10.637 2.002 10.888 2.079 11.056 2.124 11.191 2.164 11.305 2.205 12.072 2.609

TimeLLM 22.703 9.828 25.269 9.939 33.710 11.429 41.271 12.145 55.798 13.870 60.913 14.671

GPT-3.5 4.072 1.804 10.891 4.100 15.007 6.089 19.253 7.782 23.205 8.628 28.061 9.740

Llama3-70B 3.766 1.010 7.138 3.420 11.131 3.891 15.555 6.057 20.429 8.170 25.943 9.085

Table 4: The MSE and MAE (×10−2) of compared methods in the cross-domain settings.

Dataset Method Precision Recall

Springs

Random 0.500 0.500

GPT-3.5 0.579 0.800

GPT-3.5 (SFT) 0.973 0.914

Charged

Random 0.500 0.500

GPT-3.5 0.520 0.480

GPT-3.5 (SFT) 0.975 0.811

Table 5: The relational reasoning performance of GPT-

3.5 and random guessing on Springs and Charged. SFT

denotes supervised fine-tuning.

degradation when it comes to zero-shot scenarios.

Table 4 reports the zero-shot performance of dif-

ferent approaches. In particular, we first train the

model in one domain and test the performance on a

different domain. For LLMs, their one-shot exam-

ple is from the different domains accordingly. From

the results, we can observe that LLM methods al-

ways rank first or second among all the compared

methods, which can validate the zero-shot capacity

of LLMs. In addition, we compare the performance

of Llama with EGNN with different numbers of

systems during training. The results are shown in

Figure 3 (c) and (d). From the results, we can find

that when there is limited training data, LLMs can

achieve better performance in some cases. With

the increasing training data, data-driven non-LLM

models would fit the data better.

Then, we study the performance of relational

reasoning. In particular, the results of compared

approaches on Springs and Charged in terms of

precision and recall are shown in Table 5. From the

results, we have the following observation.

Observation 6. LLMs have competitive ca-

pacities in relational reasoning with fine-tuning.

In particular, with fine-tuning, GPT-3.5 achieves

much better performance in comparison to random

guessing, which validates that LLMs have the abil-

ity of inferring the interaction in dynamical sys-

tems. However, without fine-tuning, the perfor-

mance increasement of GPT-3.5 in comparison to

random guessing is limited, which validates that

supervised fine-tuning can basically improve the

performance of LLMs.

4.3 Ablation Study of Prompt Engineering

We further conduct ablation studies of prompt engi-

neering in our implementation of LLMs. In partic-

ular, we introduce six model variants: (1) GPT w/o

Context, which removes the context information re-

lated to the background; (2) GPT w/o Edge, which

removes the edge information in our prompts; (3)

GPT w/o Rollout, which skips the rollout process

and directly outputs the target samples; (4) GPT

w/o Example, which removes the example in the

prompt; (5) GPT w/ One, which include one exam-

ple in the prompts; (6) GPT w/ Two, which include

two examples in the prompts. The compared re-

sults are recorded in Table 6. From the results, we

have the following observation.

Observation 7. Prompt engineering is crucial

for LLMs to tackle dynamical system modeling.

Firstly, by comparing the performance between
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Dataset Method
2-step 4-step 6-step 8-step 10-step 12-step

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Springs

No-Context 8.489 1.899 17.888 2.867 21.899 3.074 24.957 3.742 27.548 3.926 29.982 4.325

No-Edge 3.821 1.645 5.685 1.727 7.936 2.047 10.268 2.279 12.651 2.62 15.051 3.042

No-Rollout 3.698 1.432 5.298 1.664 8.925 2.156 11.772 2.489 15.673 3.215 21.623 3.822

No-Example 14.037 2.529 22.981 3.525 25.156 3.748 33.644 4.679 38.725 4.894 50.519 5.726

1-Example 2.589 1.391 4.355 1.509 6.383 1.692 7.925 1.889 9.293 2.074 10.639 2.473

2-Example 3.275 1.449 4.513 1.513 6.414 1.614 7.534 1.734 8.540 2.040 10.822 2.822

Charged

No-Context 11.322 2.245 14.967 3.899 18.687 5.458 22.679 6.828 26.766 8.125 30.858 9.769

No-Edge 15.136 4.027 18.566 5.328 22.523 6.417 27.255 8.367 32.858 9.875 38.349 10.872

No-Rollout 6.278 1.367 12.346 3.526 17.782 4.670 23.929 7.017 30.527 9.214 36.251 10.021

No-Example 23.677 6.728 28.866 8.672 33.543 9.884 37.75 10.27 42.009 11.387 46.384 12.672

1-Example 4.254 0.977 10.411 3.117 15.010 5.860 19.044 7.454 23.226 8.042 27.442 9.638

2-Example 5.434 1.105 9.144 2.088 13.093 3.788 17.665 4.192 22.014 7.253 26.606 9.121

Table 6: Ablation study on Springs and Charged (10−2) with varying prediction length.

Figure 4: The comparison of predictions from GPT-3.5 and ground truth on periodicity-related dynamical systems

GPT w/ One and GPT w/o Context, we can find that

context information is indispensable for the fore-

casting ability of LLMs. Secondly, GPT w/ One

outperforms GPT w/o Edge consistently, which

validates that relation information can be under-

stood by LLMs to enhance dynamical system mod-

eling. Thirdly, GPT w/o Rollout performs much

worse than GPT w/ One. The potential reason is

that it is challenging to generate long-term predic-

tions directly without supervised training. Fourthly,

without the one-shot prompting, GPT w/o Exam-

ple cannot achieve reliable performance. However,

one more example cannot bring the performance

increasement as well from the comparison between

GPT w/ One and GPT w/ Two.

4.4 Case Study

In the end, we provide a case study with periodicity-

related dynamical systems. In particular, each

agent has a basic underlying periodic function such

as trigonometric functions, and their values are

influenced by the neighbors from the predefined

graph. Given the observation of different agents

at the first 10 steps, we aim to predict the state at

the next 10 steps. The predictions of GPT-3.5 and

ground truth can be found in Figure 4. From the

results, we can have the following observation.

Observation 8. LLMs have the ability to learn

from periodicity-related dynamical systems. GPT-

3.5 can successfully model periodicity-related dy-

namical systems. In particular, we can observe that

LLMs can not only capture the periodic nature of

the signal and approximate the general trend, even

when the patterns are highly complicated for agents

4 and 5. In addition, GPT-3.5 identifies the peaks of

agents accurately, which validates the strong ability

of LLMs in dynamical system modeling.

5 Conclusion

In this paper, we show that LLMs can achieve com-

parable performance to non-LLM methods, which

demonstrates the potential of LLMs in dynamical

system modeling. Surprisingly, LLMs can effec-

tively understand the relation to improve perfor-

mance in dynamic forecasting tasks. Moreover,

prompt engineering is crucial for LLMs to tackle

dynamical system modeling tasks and the combi-

nation of context, edge information, and few-shot

examples would benefit LLMs. We believe that

our work provides an extensive benchmark to test

more ways of blending LLMs and dynamical sys-

tem modeling, e.g., LLM alignment in physics and
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multi-agent collaboration for dynamic forecasting.

6 Limitations

Despite the extensive progress, we should note that

our benchmark does not involve complicated sci-

entific scenarios with extensive domain knowledge

such as molecular dynamical simulation scenarios.

In future work, we will try to incorporate more

external knowledge with domain-based prompting

engineering to solve more realistic scientific prob-

lems. In addition, due to the limitations of com-

putation resources, we do not utilize more LLMs

such as Claude, which we leave in our future work.
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A Details of Datasets

In this paper, we include nine datasets, and their

details are shown as follows:

• Springs (Kipf et al., 2018) simulates the system

containing a range of interconnected springs. The

whole system is driven by Hooke’s law, which in-

dicates the situation of forces from springs. Each

object has an initial position and its movement is

influenced by its connected objects. Interaction

strength can determine the force from its neigh-

boring objects. Different systems could have dif-

ferent initial positions and interaction patterns.

• Charged (Kipf et al., 2018) is a popular dataset

in electromagnetic. It studies the movement of

charged particles within a box, which could at-

tract or repel one other by Coulomb’s law. There

are equal probabilities for attraction and repul-

sion. This dataset can be applied to understand

plasma physics and astrophysics.

• ETH-UCY (Lerner et al., 2007; Pellegrini et al.,

2009) is a benchmark collected by ETH Zurich

and the University of Cyprus, which contains five

datasets. These datasets aim to study how people

move in public spaces in different scenarios such

as urban hotels and the University of Cyprus. The

datasets have been popular in computer vision

and autonomous driving.
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• Social (Gu et al., 2017) is a dataset that models

the opinion migration of people based on the so-

cial network. It simulates how people’s opinions

evolve along with time because of the interaction

and influence of people nearby. Here, each node

denotes a person and an edge is constructed if

two people are related.

B Details of Compared Methods

In this paper, we compare nine approaches, which

are introduced in detail as below:

• LSTM (Hochreiter and Schmidhuber, 1997) is a

popular RNN for sequence prediction and model-

ing. It consists of three important gates, i.e., the

forget gate, the input gate, and the output gate,

which jointly contribute to capturing long-term

dependency in the system.

• GRU (Cho et al., 2014) is a different version of

RNN, which is comprised of two gates, i.e., the

update gate and the reset gate. Through removing

one gate, GRU is known to have better efficiency

compared with LSTM.

• NODE (Chen et al., 2018) is a continuous neu-

ral network approach to model sequence data,

which models the derivates of hidden states using

a learnable function.

• NRI (Kipf et al., 2018) is a graph neural network

method, which follows a variational encoder-

decoder architecture. The encoder conducts the

message passing mechanism to update node rep-

resentations and the decoder is adopted to output

the position change.

• EGNN (Satorras et al., 2021) is a graph neural

network which considers the equivalence of the

system on 3-dimensional space and contains a

well-designed updating rule for the message pass-

ing procedure.

• LLMTime (Gruver et al., 2024) is a recent

method for incorporating LLMs into time series

forecasting. It directly encodes digits into tokens

and considers the forecasting tasks as extrapola-

tion.

• GPT-3.5 (Achiam et al., 2023) is a closed-source

large language model released by OpenAI, which

has shown effectiveness on a wide variety of

tasks such as text generation and text summa-

rization.

• Llama3-70B (Touvron et al., 2023) is an open-

source large language model designed by Meta,

which contains 70 billion parameters. From the

previous works (Zhang et al., 2024b), Llama3-

70B usually outperforms GPT-3.5 on most

language-based tasks.

C More Visualization

In the section, we provide additional visualization

results of compared methods. The compared per-

formance on Charged and ZARA1 are shown in

Figure 5 and Figure 7, respectively. From the re-

sults, we can validate the competitive performance

of LLMs on dynamical system modeling. Besides,

we notice that LLMs perform poorly in some com-

plicated cases as in Figure 6. The potential reason

is that the system is highly complicated and thus

LLMs cannot fully model it without any tuning.

D Examples of Prompts

We provide the full prompts in our benchmark.

The prompts for dynamic forecasting on Springs,

Charged, ETC-ETH and Social are shown in Figure

8, Figure 9, Figure 10, and Figure 11, respectively.

The prompts for relational reasoning on Springs

and Charged are shown in Figure 12 and Figure 13,

respectively.
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Figure 5: Visualization of the compared methods on Charged. Semi-transparent paths represent observed trajectories

and solid paths indicate the predictions.

Figure 6: Visualization of a bad example on Charged.

Figure 7: Visualization of the compared methods on ZARA1. Semi-transparent paths represent observed trajectories

and solid paths indicate the predictions.

Figure 8: An example of prompts for dynamic forecasting on Springs.

878



Figure 9: An example of prompts for dynamic forecasting on Charged.

Figure 10: An example of prompts for dynamic forecasting on ETC-ETH.
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Figure 11: An example of prompts for dynamic forecasting on Social.

Figure 12: An example of prompts for relational reasoning on Springs.

Figure 13: An example of prompts for relational reasoning on Charged.
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