Retrieval-enhanced Knowledge Editing in Language Models for
Multi-Hop Question Answering

Yucheng Shi Qiaoyu Tan Xuansheng Wu
University of Georgia New York University University of Georgia
Athens, Georgia, USA New York, USA Athens, Georgia, USA
yucheng.shi@uga.edu qiaoyu.tan@nyu.edu xuansheng. wu@uga.edu

Shaochen Zhong Kaixiong Zhou Ninghao Liu

Rice University
Houston, Texas, USA
shaochen.zhong@rice.edu

Abstract

Large Language Models (LLMs) have shown proficiency in question-
answering tasks but often struggle to integrate real-time knowl-
edge, leading to potentially outdated or inaccurate responses. This
problem becomes even more challenging when dealing with multi-
hop questions, since they require LLMs to update and integrate
multiple knowledge pieces relevant to the questions. To tackle
the problem, we propose the Retrieval-Augmented model Editing
(RAE) framework for multi-hop question answering. RAE first re-
trieves edited facts and then refines the language model through
in-context learning. Specifically, our retrieval approach, based on
mutual information maximization, leverages the reasoning abilities
of LLMs to identify chain facts that traditional similarity-based
searches might miss. In addition, our framework includes a pruning
strategy to eliminate redundant information from the retrieved
facts, which enhances the editing accuracy and mitigates the hal-
lucination problem. Our framework is supported by theoretical
justification for its fact retrieval efficacy. Finally, comprehensive
evaluation across various LLMs validates RAE'’s ability in providing
accurate answers with updated knowledge. Our code is available
at: https://github.com/sycny/RAE.

CCS Concepts

« Information systems — Question answering; « Computing
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1 Introduction

Large language models (LLMs) excel in answering factual ques-
tions due to their pre-training on extensive corpora [27, 32, 34].
However, their dependence on pre-trained knowledge can lead to
outdated answers, which requires updates through model editing
techniques [19, 43, 49, 51]. Among them, editing for multi-hop
questions is particularly important, as real-world questions of-
ten require combining multiple knowledge pieces. For example, to
answer "Who is married to the British Prime Minister?", one must con-
nect several related facts, creating a fact chain, like "(United King-

dom, head of government, Theresa May ), "( Theresa May , spouse,

Philip May)". If we update " Theresa May " to " Rishi Sunak " to re-
flect real-world change [1], it requires adjusting the related facts
accordingly, resulting in a new fact chain: "(United Kingdom, head of
government,  Rishi Sunak ), ( Rishi Sunak , spouse, Akshata Murty)".
Recent research shows that retrieval-augmented generation (RAG)
is effective in LLM editing for multi-hop question answering [36, 52],
surpassing other methods such as fine-tuning [53] and locate-and-
edit [19, 20] approaches. The RAG-based methods first retrieve
relevant facts related to the question and then feed these facts into
LLMs through in-context learning. Studies have shown that LLMs
are highly receptive to external knowledge, even when it contra-
dicts their internal pre-trained knowledge [16, 39]. Therefore, RAG
can effectively update knowledge within LLMs but also avoid prob-
lems such as catastrophic forgetting [12, 13] and hallucinations [10].
However, simply using multi-hop questions as queries in RAG of-
ten fails to retrieve pertinent facts due to the complexity of the
questions involved, as illustrated in Figure 1.

To address this, some methods [36, 52] propose breaking down
complex multi-hop questions into simpler, single-hop queries to
improve the effectiveness of the retrieval process. Despite enhance-
ments, critical issues persist: 1) Commonly used models with fewer
parameters (e.g., Llama2-7B [31]) exhibit significantly worse edit-
ing performance (more than 30% gap) compared to more powerful
models like GPT-3.5 or GPT-4 [52]; 2) The performance of existing
editing methods degrades as the number of editing cases increases,
making them impractical for large-scale editing tasks [36, 52]. The
possible reason behind their performance degradation is that their
editing effectiveness heavily relies on the quality of sub-questions
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[1] (UK, head of government, Theresa May) [2] (Rishi Sunak, net worth, £529 million)
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[3] (UK, net worth, £10.8 trillion) [4] (UK, head of state, Queen Elizabeth II) |
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Figure 1: An example of the traditional similarity-based
search that fails to retrieve the correct facts for LLM editing,.

generated for querying. Generating accurate sub-questions is chal-
lenging for models with less strong reasoning and planning capabil-
ities. Inaccurate sub-questions will result in irrelevant fact retrieval,
which may mislead the LLMs and reduce editing effectiveness [45].

Since successful multi-hop editing depends on accurate re-
trieval of the question-specific facts, instead of applying the
existing "generate then retrieve" approach, we propose to directly
fetch the required facts from the database by leveraging the next-
token prediction capabilities of LLMs. Below are the details of our
editing method.

1. The connection between edited facts helps retrieval: Each
edited fact can be represented as a triplet of "(head entity, relation,
tail entity)". The nearby facts in a fact chain are connected through
entities: the tail entity of one fact becomes the head entity of the
next. This observation inspires us to adopt a knowledge graph (KG)
for storing these triplets. In a KG, each entity has only a limited
number of neighboring entities, which narrows down the retrieval
choices to a feasible number, rather than having to search through
a vast database. Our method differs from existing approaches that
store edited facts as embeddings in a vector database, whose editing
performance decreases as the number of edits grows [36, 52].

2. Next-token prediction helps next-fact retrieval: LLMs
are inherently skilled at predicting the next token in a sequence.
In our study, we extend this capability to predict the next factin a
fact chain. Our approach first feeds LLMs a sequence that includes
the question, any preceding fact, and the relevant entity. Then, the
model predicts this entity’s next possible logical relation within the
context of its input question. Finally, we retrieve the tail entity from
the KG, based on the head entity and relation, to complete the fact
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chain. However, directly predicting the most probable next fact can
lead to biases toward frequently occurring words [30, 37]. Therefore,
we predict facts that share the most relevant information with the
question and preceding facts, using mutual information (MI) as our
retrieval metric. We develop a technique to break down the MI into
conditional probabilities that LLMs can effectively approximate [27],
thus improving the accuracy of our predictions.

3. LLM internal state helps reduce redundancy: Irrelevant
facts to the editing will mislead LLMs. Thus, we propose to prune
redundant facts extracted by the retrieval step using the LLM’s
prediction uncertainty. The uncertainty is minimized when the LLM
is prompted with a correct fact chain, and increases when provided
with incomplete or excessive facts. We quantify this uncertainty
using the LLM’s output entropy. Unlike traditional methods that
either limit the number of retrieval attempts or simply ask the
model to identify redundant facts [36, 52], our approach provides a
more effective way to ensure accuracy in the editing process.

Overall, we name our approach as Retrieval-Augmented model
Editing (RAE), where we introduce a novel fact retrieval method for
multi-hop questions in model editing. We also propose a knowledge-
pruning strategy to reduce noise after the initial retrieval, mitigating
the hallucination problem. Additionally, we provide theoretical
analysis to justify our design for the retrieval objective.

2 Preliminary: Model Editing

2.1 Model Editing for Single-hop Questions

In LLMs, a single model edit refers to updating a specific piece of
factual knowledge [20, 21, 50]. Each knowledge is defined as a triplet
d = (h,r,t), where h, r, and t denote the head entity, the relation,
and the tail entity, respectively, such as (Misery, author, Stephen
King ). An edit is defined as changing the tail entity ¢ to a new
entity ¢/, 1.e., 8 — & := (h,r,t) = (hr,t"), where & is the edited
knowledge. Let g denote the language model’s input. The goal of
model editing is to modify a target model fj, so that the new model
[y produces an output f; (q) that follows the new fact &', where
15(@) # fo(q). Specifically, given g = [h;r], h,r € &, the model is
expected to output ¢’ = fg’([h; r]), where [;] is the concatenation
operator. However, if the input question is not relevant to the edit,
ie,h ¢ & orr ¢ &, the model should output ¢ = fé([h; r]) that
reflects the original knowledge of LLMs.

2.2 Model Editing for Multi-hop Questions

Answering multi-hop questions presents a greater challenge. A
multi-hop question seeks to identify a specific tail entity ¢, based
on a sequence of linked facts: {(h1, r1, t1), (ha, 72, t2), ...y (A, T 1) 1,
where each tail entity is the head entity of the next fact: t; = hj41.
Answering each input question q requires a fact chain Gg. A k-hop
question can be formulated using only the initial head entity h1, and
a series of relationships {ry, r2, ..., 7. }. An example of model editing
for a 3-hop question is shown in Table 1. Here, we use counterfactual
edits to simulate real-world updates. Different fact chains are used
to answer the question before and after editing. One key observation
is that fact chains represent connected knowledge graphs, where a
single entity is involved in two consecutive facts. Additionally, we
notice a "ripple effect” in these chains: An edit in the first fact §;
will lead to changes in the subsequent facts, forming a new chain
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Table 1: Answering a 3-hop question g with counterfactual
model editing. The pre-edited and edited answer are ¢5 and
t3, respectively. ts and ¢ are the tail entity of J5 and 5}. G4
and G; denote the pre-edited and edited fact chain.

Edited Fact Bank A and Unedited Facts

(81 — 87) Misery, author, Stephen King — Richard Dawkins
(82) Richard Dawkins, citizen of, United Kingdom

(55 — 5;) United Kingdom, capital, London — Birmingham
(84) Stephen King, citizen of, United States

(85) United States, capital, Washington, D.C.

#edit

#edit

A 3-hop Question g
(q) Which city is the capital of the country where the author of ' Misery
held citizenship?

Pre-edited Answer t5 and Edited Answer ¢;
(t5) Washington, D.C.

(#;) Birmingham

Pre-edited Fact Chain G,

(61) ( Misery , author, Stephen King )

(84) ( Stephen King , citizen of, United States )
(85) ( United States , capital, Washington, D.C. )

Edited Fact Chain G(’;
(67) (Misery , author, | Richard Dawkins )
(62) ( Richard Dawkins |, citizen of, United Kingdom ) #unedited fact

#edited fact

(65) (' United Kingdom , capital, Birmingham ) #edited fact

G;;. In practice, knowledge editing is usually conducted in batches,
involving multiple fact changes simultaneously, resulting in an
edited fact bank A = {47, 7, ..., 5}, }, where N is a large number [20].
Locating the relevant edited facts for a question is non-trivial due
to the "ripple effect". To correctly answer multi-hop questions after
model editing, it is crucial to address the retrieval problem formally

defined as follows:

PROBLEM 1 (RETRIEVAL-AUGMENTED EDITING). Given an edited
fact bank A = {5],6,, ..., 51’\]} with N instances and a multi-hop
question q whose answer requires model editing, we want to retrieve
its corresponding edited facts Ag = {5, 5}, < 0p }. The goal is to
ensure that all the edited facts necessary for answering q are retrieved,
ie,Ag C G; and A\Ag ¢ GZ‘I. Then, these facts are used to refine the

target model fy for editing.

3 Methodology

Our Retrieval-Augmented Editing (RAE) framework, as shown in
Figure 2, contains two key steps: (1) retrieving edited facts relevant
to the question, and (2) editing the language model using these
retrieved facts via in-context learning. We will first discuss step (2)
with the motivation of our design in the following section. The
details of step (1) are in Sections 3.2 and 3.3.
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3.1 Retrieval-Augmented Editing

A naive edit approach uses similarity-based search to retrieve edited
facts similar to target question q [14, 35, 52]. These facts are then in-
tegrated into a prompt template for editing via in-context learning:
I5(@) = fo(Te(q. {87, 55, .5k })), where T is the editing template.
For example, T, (-) can be made as "Given fact: {8}, {q} ?". The
Top-K nearest edited facts to question g in the embedding space
are denoted as {37, 8}, ...0; } = Top-K 5¢  sim(gz(6), gz(q)), where
sim(-) denotes the similarity function and g, is an embedding model.
However, the edited facts Ay needed to answer q are difficult to re-
trieve by this approach since they usually contain entities different
from g, which will result in a low similarity score in a large bank A
(e.g., in Table 1, United Kingdom in &7, but not in q).

To address this problem, we propose edited fact chain extrac-
tion to obtain G";. Inherently, each G; forms a connected knowledge
graph (KG) [52]. Such KGs can be retrieved by iteratively traversing
links from one entity to another. Take G:; = {87, 82,65} in Table 1
as an example. It is composed of two edited facts 87, 6; and one
unedited fact §7. We can observe that the question entity: ( Misery )
is the head entity hy in 8] = {h1, 1, ]}, and the edited tail entity
t1: ( Richard Dawkins ) is also the head entity hy in the next fact
82 = {ha, rz, t2}. Moreover, for each subsequent fact in the chain,
its head entity is always the tail entity of the previous fact. By
effectively retrieving the KG that represents the fact chain G, we
are able to capture all the edited factual triplets Ag = {5/, 5}, Ot
In light of this, we define our retrieval-augmented editing as:

fo(@) = fo(Te(q,Gy)), (1)
where we give an example of such editing in Figure 2. In the next sec-
tion, we will introduce the detailed strategy of retrieving Gy, where
we first propose a mutual information-based retrieval strategy to
extract facts needed to answer the target question (Section 3.2).
Then, we propose a pruning method to delete irrelevant facts from
the initial retrieval result (Section 3.3).

3.2 Edited Facts Retrieval via Maximizing MI

We first construct a knowledge graph that connects different facts.
Then, we introduce our proposed retrieval objective of extracting
relevant subgraphs given input questions.

3.2.1 External Knowledge Graph for Subgraph Retrieval. According
to our previous discussion, we aim to retrieve the fact chain Gr*]
for model editing. Additionally, it is worth noting that G; consists
of both edited and unedited facts. However, the unedited facts are
not included in our edited fact bank A by default. To effectively
incorporate both types of facts into our retrieval process, we pro-
pose integrating all edited facts into an external knowledge graph
G. By selecting a comprehensive KG such as WikiData [33], the
new graph G* will encompass both unedited and edited facts. It
complements our edited fact bank A and connects different enti-
ties. Besides, the external knowledge graph provides extra factual
knowledge that can enhance language to output correct answers.
Specifically, given the edits A = {57, ..., §,,} and an external G, we
consider two types of operations to combine them. (1) Modifying
existing facts: If the original fact appears in G, i.e., (b, 1,t) € G,
we will modify the KG according to the edits, so G* = (h,r, ') U
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Misery, author, Stephenking Step 1.1: Knowledge . f
insertion/edition Misery, author, Richard Dawkins & Step 1.3: Redundant knowledge Pruning
%
Knowledge Edit <:] Ellie Kemper, citizen of, Croatia By -
Misery, author, Richard Dawkins ety it it ..n.'él@tm S S Richad Bjwkins
Fact - Reggie Miller, sport, basketball \ -
Chain e Edited Graph ) caigpirac o X
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y v L g Step 1.2: Mutual Information based retrieval ,@}I Step 2: In-context learning for editing \
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| )
‘\ Editing . Misery, author, Richard Dawkins
Template Question

Original fact Richard Dawkins, citizen of, U.K.

LLM > United Kingdom (U.K.) V

Edited fact

Multi-hop question

/
Figure 2: The overall framework of our retrieval-augmented in-context model editing method.

G\ (hr,t). (2) Adding new facts: If the original fact does not and n is the number of retrieved triplets. Thus, we can estimate

appear in G, i.e., (h,r,t) € G, then we append the modified fact to 2(q,G=Gs) as:

the KG, so G* = (h,r,t') U G. Next, given a question g, we retrieve p(G=Cs)

a subgraph Gg from G*, so that Gs ¢ G*. Our goal is to ensure p(q.G=Gs)  p(ri,t1,ha,r2,t2, ..., hn, ', talq, h1) .P(% h1) ©)

that Gs contains fact chains of g, i.e., G; C Gs. p(G =Gs) B p(ri,ti, ha,ro, to, s by o tnlh1) - p(hy)

Specifically, for the term p(ry, t1, ho, ra, t2, ...|q, h1), we can further

3.2.2  Mutual Information based Retrieval Objective. For effective
decompose it into following form:

editing, the retrieved subgraph Gs must share relevant information
with the question. Therefore, we define the objective of subgraph p(ri,t1, ho, 1o, ta, o, By, Py tnlq, Bi1)

retrieval as maximizing the rr}utual information (MI) betv&{een t}}e = p(t1, ha T2, b, oo By P tnlq Bt 71) - (Pl o). 7
subgraph and a set of questions Q whose answers require edit-

ing. The objective is formalized as below, where the theoretical This decomposition allows us to initially focus on estimating the

justification is provided in Section 3.4: p(rilg, h1). Specifically, the head entity h is determined if q is given,

since we assume h; is mentioned in question g. Candidate relations

‘%ﬁ“ (Q:Gs) =H(Q) ~H(Q | G =Gs). @) for rq can also be selected from the edited KG. Practically, we can

estimate the probability p(ri|g, h1) for each candidate relation using

Given a fixed question set Q, its Shannon entropy H(Q) is constant. an auto-regressive language model f; [27, 38];

Therefore, maximizing the mutual information I (Q; Gs) is equiva-

lent to minimizing the conditional entropy H (Q | G = Gs). Thus, p(rilg h) =
we optimize the following objective: r]
i) (1 1 h 1 i—1
max1(Q:Gs) = minH (Q | G = Gs) 3) [T 1w, gl T iV, a0 D aiD),

S S i=1

8

=max )" p(q|G = Gs) log, p(IG = Gs). @) ®

$ qe0 where fy is the predicted word probability, and wg, wy,, wr, denote

the words in question g, head entity h1, and relation rq, respectively.
We can employ open-source LLMs like GPT-2 [27] for this estima-
tion. Please note that, the model fp being edited does not need to
be the same model used for probability estimation, making our
method applicable even for editing proprietary LLMs. With a spe-
cific input context {q, b1}, the language model will assign different
probabilities to each relation based on its contextual understanding
and reasoning ability.

Then, p(t1, hp, r2, ta, ...|q, h1,r1) can be further decompose into
p(ha,ra, to, ...|q, h1,r1, 1) - p(t1lg, b1, r1). In our case, we assume
p(tilg, h1,r1) = 1, since one relation usually only corresponds to
one tail entity. When there are multiple tail entities, we find the as-
sumption still works well empirically. So, p(hg, ra, t2, ...|q, h1, 71, t1)

In practice, quantifying p(q|G = Gg) is challenging due to its com-
putational complexity. This is because there are numerous sub-
graph candidates Gs within the entire knowledge graph, making
it prohibitively expensive to exhaustively search for the optimal
one. To circumvent this issue, we first replace the intractable term
p(q|G = Gs) with IL(ZZGGTZGC:)) Then, suppose we consider one ques-
tion each time, where Q = g, the objective is reformulated as:
tmay 226 =Gs) log p(¢.G=Gs)
Gs p(G=Gs) * p(G=Gs)
In the following, we will discuss how to estimate probability p(g, G =
Gs) and p(G = Gg) efficiently.

®)

3.2.3 Probabilities Estimation. We propose to compute probabili- can be decomposed into p(rz, to, ...|q, h1, 11, t1, h2) - p(hz2|q, h1, 11, t1).
ties by leveraging the next-word prediction capability of LLMs. Additionally, since the tail entity in one fact becomes the head entity
Given that the fact chain forms a tail-to-head connected knowl- in the subsequent fact, we can also have p(hz|q, hy,r1, t1) = 1. Thus,
edge graph, our extracted subgraph Gg can be represented as Gs = we can have p(t1, ha, r2, ta, ...|q, h1,r1) = p(ra, ta, ...|q, h1, 11, t1, h2).
(h1,71,t1, ... hn, 7o, tn), where h; and t; are nodes, r; is the edge, This is a nice property that helps us iteratively decompose this
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intractable probability term. By iteratively applying the aforemen-
tioned step for n times, we can compute the conditional probability
of all subgraphs within an n-hop distance from the question entity.
The final estimation can be expressed as:
p(r1, t1, ha, 12, ta, oo, i, T, tnlq. h1)
= p(rnlg, h1, 71,81, o Bn—1,Tn—1, tn—1, hn)-
p(rn-1lg. h1, 71, t1, .o An—2, 'n—2, tn—2, An—1)-

©

p(ralg, ha,r1, t1, ho) - p(rilg, ha).

Till now, we have decomposed p(r1, t1, ha, ...|q, h1) in Equation (6)
into the product of conditional probabilities of predicting different
relations within the n-hop subgraph. This nice property ensures
the selection of the subgraph will only be determined by relation
probability, which is free from the interference of any potential
edited tail entity. Similarly, we can decompose the denominator
term p(ry, t1, ha, ...|h1) into:

p(ri,t1, ha,ro, to, .., hn, , talhy)
=p(rnlhi, ri, t1, oo Bn—1, rn—1, th—1, hn)-
p(rn—1lhi,ri, 1, oo hn—2, tn—2, th—2, hn—1) - ... - p(r1|h1).

(10)

Then, for the last term p(q, h1)/p(h1) in Equation (6), based on
Bayes’ theorem, we can transform it into p(q, h1)/p(h1) = p(q|h1),
which is a constant value given a specific question q. We can also
apply model f; to estimate this conditional probability. Now, since
we are able to estimate every term in Equation (5) and (6), we
can effectively identify the subgraph that yields the maximum
Mutual Information. Additionally, we utilize beam search [29] to
expedite the computational process, eliminating the necessity for
exhaustively traversing all connected nodes. In this work, we treat n
as a hyperparameter since the number of hops required to answer a
question is unknown in advance. To ensure thorough exploration, n
is assigned a large value. However, this approach will also introduce
irrelevant information in the retrieved subgraph Gg, which can
potentially mislead the language model to hallucinate and generate
undesired answers [17, 18]. In the next section, we will discuss how
to mitigate this problem.

3.3 Uncertainty-based Redundant Fact Pruning

This section introduces a pruning method, which utilizes model
output uncertainty, to eliminate redundant facts from Gg.

3.3.1 Editing Uncertainty. We define editing uncertainty as the
uncertainty of the output generated by large language models.
Formally, the output uncertainty is quantified by Shannon entropy:

H(YIX =x) = = ) p(ylx) log, p(ylx), (1)
)

where y represents each possible answer generated by the language
model, and x = {q, Gs} is the model input composed of the ques-
tion g and facts Gs. A higher entropy value H(Y|X = x) means
less confidence in the answer, reflecting greater uncertainty. In
contrast, a lower entropy value indicates higher confidence and
less uncertainty. Ideally, if input facts Gs are exactly the edited
question fact chain Gfl, ie., Gg = Gfl, then the model output should
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(a) Fact chain G;, with redundant knowledge.
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Z
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(b) Random fact chain without useful knowledge.
Figure 3: Distribution of normalized model editing entropy
with different fact subsets as input. A lower normalized en-
tropy indicates that the model is more confident in answering
the question with the given facts. "Subset 1" includes the first
fact {51}, "Subset 2" includes the first two facts {61, 52}, and
so on. Figure 3a shows that the entropy is significantly lower
if the subset contains exactly the entire fact chain of the
question (e.g., Subset 2 has low entropy for 2-hop questions).

exhibit maximum confidence with minimal entropy, since G,’; con-
tains the precise knowledge to answer question g. In the next part,
we conduct empirical experiments to verify this assumption.

In our experiments, we choose GPT-J (6B) [34] as the base lan-
guage model. We select 1000 instances for each of the 2, 3 and
4-hop questions from the MQUAKE-CF dataset [52] for testing. The
MQUAKE-CF dataset comprises multi-hop questions that are based
on real-world facts, where the edited facts are counterfactual, mean-
ing they do not exist in actual real-world scenarios. An example of
such a question with an edit is provided in Table 1.

Our experiment seeks to identify the fact set G; that, when
used as model input, yields the lowest output entropy (i.e., minimal
editing uncertainty). Our first step is to construct different fact set
candidates. We begin with the first fact §; in the fact chain G; as our
initial fact set G,

S
until the G; encompasses the entire fact chain G;. After that, we

. Then, we add each subsequent fact from the chain

insert unrelated facts & into the set. In this experiment, the process
is repeated until G contains six elements, where we build a prefix
set Gg with all the six subsets G. For example, for a 4-hop question,
we have Gg = {{61}, {61, 82}, {81, 62,83}, ..., {81, 62, 63, 84, 55, 5 } .
where 81, 82, 03,04 € G; and 55, 56 are two irrelevant facts. Finally,
we conduct in-context editing using each subset G¢ from Ggq with
editing template Te:"Given fact: {Gé}, {q}?". In our experiment, we
consider model output y to be each of the next predicted word.
We report the entropy over all the words in the vocabulary as the
editing uncertainty.

The editing uncertainty with different subsets is listed in Fig-
ure 3a. For comparison, we also report the editing uncertainty with
random facts selected from Wikidata, as shown in Figure 3b. Our
observations reveal a phenomenon: the language model produces
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answers with much lower entropy when Gg is equal to the ground-
truth fact chain G,’;. If G presents redundant facts or insufficient
facts, the entropy will increase. Meanwhile, if the LLM is fed with
random facts, the entropy level also remains consistently high. This
observation justifies the use of entropy as the indicator of
whether G; contains the correct facts for LLM inference.

3.3.2  Knowledge Pruning with Editing Uncertainty. Since incorpo-
rating the most relevant facts will result in the lowest entropy, we
propose to utilize this finding for knowledge pruning. Specifically,
we first follow Section 3.2 to retrieve a knowledge graph Gs con-
taining n triplets for question ¢: Gs = {81, 82, ..., O }, where n is a
sufficiently large number, and Gg could contain redundant knowl-
edge. Then, to remove redundant knowledge, we first build the
prefix sets G4 for target question g based on the retrieved graph
Ggs. Then, we can obtain the pruned fact set G5 using the objective:

Gy = argmin— > p(ylTe(¢,G§)) logy (p(y|Te(¢.GF))).  (12)
GseGq y

Finally, we can apply G; as our retrieved fact chain for the in-
context learning introduced in Section 3.1 to conduct editing.

3.4 Theoretical Justification

In this subsection, we theoretically justify that the facts collected
by our retrieval objective Eq. (2) are effective in performing model
editing with in-context learning. To begin with, we discuss what
kinds of input can effectively activate in-context learning. Then,
we explore how to build such effective input for model editing.

Our proposed editing method relies on the in-context learning
ability of LLMs. In the following, we provide an analysis of how
in-context learning can be effectively triggered. Theoretically, the
text generation process of a language model can be understood
as a Hidden Markov Model [3, 40]. The model initially selects a
concept 0. € O from a set of underlying concepts denoted as
O, and then samples a sequence of words based on the chosen
concept. Based on that, the in-context learning can be written as
p(ylS,x) = /QCe@p(y|S, x,0c)p(6c|S, x)dO., where S denotes in-
context prompt and x denotes query. Existing research has theo-
retically proven that the condition to activate in-context learning
is when there is a shared latent concept 6. between prompt text S
and the input query x. More discussions can be found in [40].

Motivated by the above analysis, as in-context prompt S is the
edited knowledge in our design, we seek to include the edited
knowledge that shares the same latent concept 6. as question q.
Ideally, this will activate in-context learning for effective model
editing. Formally, we can define such knowledge graph as

Gg = argmax I(G; 0.),
Geg

(13)

where 6, is the latent concept used to generate question g, and we
use mutual information I(G; 6,) to quantify the share information.
However, this is a non-trivial task since concept 6, is an intractable
hidden variable. To address this issue, we propose obtaining the
target knowledge graph that maximizes the lower bound of such
an objective. Specifically, we can have the following theorem:

THEOREM 1. Given retrieved graph Gs € G, the latent concept 0,
and the question q sampled conditioned on concept 6., there exists a
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mutual information inequality:

I(Gs; 0c) > I(Gs; q). (14)

Theorem 1 shows that we can maximize the mutual information
between the selected knowledge graph Gs and question concepts 6,
by maximizing the mutual information between the selected graph
Gs and the question g itself. In this way, the in-context learning
ability of LLMs would be effectively triggered. When we apply such
knowledge as the prompt, we can effectively conduct the in-context
editing. The proof of Theorem 1 is in Appendix A.

4 Experiments

We conduct experiments to answer the following questions. Q1:
How effective is RAE in editing LLM output? Q2: How does our
retrieval strategy perform compared to other retrieval methods?
Q3: Does our proposed pruning technique remove redundant facts
from the retrieved facts? Q4: Does RAE work for propriety LLMs?

4.1 Experiment Settings

4.1.1 Language Models. We evaluate RAE across various kinds of
language models in different sizes and families, including GPT-2
(1.5B) [27], GPT-J (6B) [34], Falcon (7B) [2], Vicuna (7B) [5], and
Llama2-chat (7B) [31]. Among them, GPT-2, GPT-], and Falcon are
pre-trained language models without instruction tuning [6, 26],
while Vicuna is an instruction-tuned variation of Llamal [32] and
Llamaz2-chat is the instruction-tuned version of Llama2. Instruction-
tuned models (Vicuna and Llama2-chat) are expected to better fol-
low the instructions in the prompt compared to native pre-trained
models (GPT-2, GPT-J, and Falcon). We include both kinds of models
to verify the effectiveness of the proposed methods.

4.1.2 Editing Baselines. For comparison, we consider three kinds
of model editing methods: (1) Model weight updating methods:
Fine-tuning [53] edits the model weights by language modeling the
edited knowledge. ROME [19] and MEMIT [20] focus on identifying
and updating particular neurons associated with the knowledge that
needs editing. (2) Auxiliary models methods: SEARC [22] trains an
extra language model to store updated knowledge, and it switches
to the auxiliary model when answering questions relevant to the
edited facts. (3) RAG-based methods: Mello [52] and DeepEdit [36]
represent cutting-edge editing methods for multi-hop questions,
employing multi-round conversations to edit model outputs. Addi-
tionally, the Subgraph Retriever (SR) [47] introduces an advanced
knowledge retrieval approach for multi-hop question-answering
tasks. We adapt their retrieval method as a baseline.

4.1.3 Implementation Details. We evaluate our editing method on
the MQUAKE-CF and MQUAKE-T datasets from [52] and Popular
datasets from [7]. The MQUAKE-CF (M-CF) comprises counterfac-
tual editing instances in 2, 3, and 4-hop questions, totaling 3000 edits.
The MQUAKE-T dataset (M-T) features temporal editing examples
in 2 and 3-hop questions, with a total of 1868 edits. Additionally,
the Popular dataset contains counterfactual editing in 2-hop ques-
tions, comprising 274 edits. Following previous work [50, 52], we
leverage relevant cases from the MQUAKE-CF-9k dataset to craft
prompt templates for both baselines and our method. We evaluated
our editing method using the multi-hop edited accuracy metrics
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Table 2: Edited accuracy (%) on multi-hop question editing datasets.

Editing Methods
. .. | Subgraph
Language Models Datasets | Fine Tune | ROME | MEMIT | SEARC | Mello | DeepEdit Retriever RAE(ours)
M-CF 3.8 1.7 2.3 4.0 0.0 0.0 21.9 62.8
GPT-2 (1.5B) M-T 5.8 6.4 1.6 2.7 0.0 0.0 20.3 61.8
Popular 6.2 4.3 2.9 1.1 0.0 0.0 26.7 47.1
M-CF 7.7 7.6 8.1 6.8 15.3 9.3 36.2 69.3
GPT-]J (6B) M-T 3.1 4.1 10.6 2.8 36.7 19.6 51.2 63.9
Popular 6.8 7.5 4.4 1.3 12.8 6.6 45.8 49.6
M-CF 5.6 1.7 2.3 7.9 10.7 10.8 40.1 66.8
Falcon (7B) M-T 17.2 7.3 1.6 4.5 51.5 31.7 56.1 61.6
Popular 2.1 4.0 1.1 3.0 8.1 9.5 43.0 50.0
M-CF 4.8 8.4 7.6 7.9 10.2 114 39.4 67.2
Vicuna (7B) M-T 23.1 5.0 1.7 4.5 51.7 40.4 58.6 63.2
Popular 4.0 3.8 2.4 3.0 7.7 8.2 29.5 36.1
Llama2 M-CF 5.4 6.3 3.8 7.9 20.7 11.2 45.7 69.1
(chat) (7B) M-T 17.1 8.7 1.7 4.5 49.4 37.9 63.1 66.2
Popular 5.2 13.8 4.9 3.0 13.5 11.1 419 514

Table 3: Multi-hop facts retrieval precision (%) comparison.

MQUAKE-CF
Question Type 2-hops 3-hops 4-hops

Category [ Retrieval P@1 [ P@2 | P@1 | P@3 | P@1 | P@4
KG Link 52.7 28.7 18.2 3.7 14.0 0.0

Embedding QR 62.3 7.7 14.7 0.0 12.3 0.0
Mello(Llama2) 84.3 80.0 80.7 42.3 83.3 25.7

Probability SR(GPT-2) 77.7 50.3 67.3 253 65.0 20.0
SR(Llama2) 78.3 55.7 79.7 37.0 69.3 28.7

RAE(GPT-2) 83.0 66.3 77.3 41.0 80.3 43.7

Mutual RAE(GPT-)) 83.0 69.7 81.3 53.7 82.7 54.0
Information RAE(Fz?lcon) 82.3 70.7 72.3 443 81.7 473
RAE(Vicuna) 81.0 66.7 79.3 50.3 85.0 50.0
RAE(Llamaz2) 82.7 69.3 84.0 49.3 82.0 47.0

from [36, 52]. The results, which reflect the accuracy when all edits
are applied in one batch, are reported in Table 2.

4.2 Editing Performance Evaluation

To answer Q1, we assess our model editing method across various
language models, compared against different baseline methods. Our
key observations from Table 2 are: (1) Our RAE outperforms all
others in three datasets across five language models when conduct-
ing thousands of edits at the same time. This superior performance
primarily stems from our novel MI-based retrieval objective and an
effective pruning strategy. Our design can also seamlessly integrate
an external knowledge graph, which effectively links all edited facts,
thereby facilitating the multi-hop editing process. (2) RAG-based
methods generally show better performance than other methods.
Specifically, Mello and DeepEdit demonstrate good performance
on the M-T dataset with models larger than 6B. However, they un-
derperform on the M-CF and popular datasets and fail with GPT-2,
likely due to GPT-2’s inability to follow their complex prompts,
resulting in no output. Additionally, the subgraph retriever ranks
second in performance. However, its probability-driven retrieval
method occasionally fails to fetch relevant facts, leading to reduced
effectiveness. (3) Other methods generally show lower performance
across all language models, which aligns with the findings from [52].
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4.3 Retrieval Performance Evaluation

To answer Q2, we assess the effectiveness of our mutual information-
based retrieval method for multi-hop question-answering tasks.

4.3.1 Retrieval Baselines. We consider three embedding-based and

one probability-based methods as baselines.

(1) Embedding-based methods mostly utilize dense retrieval to
fetch relevant corpus from vector databases. Here, we adapt them
to fit our multi-hop knowledge graph retrieval task. We employ a
cutting-edge retriever, the Contriever [15], to encode all edited facts
into embeddings, and then cache these embeddings for similarity
search. In addition to Mello, we include two representative multi-
hop retrieval methods as follows:

e KG Link [9, 41] is a straightforward strategy, which identifies
the query entity and its linked entities as candidates to find the
one that is the most similar to the original question. This process
is repeated K times to retrieve the entire fact chain.

e Question Reform (QR) [23, 42] appends the retrieved entity
to the previous query for the next hop retrieval. This design is
motivated by simulating a reasoning path where the retrieved
fact at each hop is viewed as an intermediate reasoning result.
(2) Probability-based method (i.e., subgraph retriever [47]) re-

trieves the subgraph Gs € G* that maximizes the conditional prob-

ability p(Gs|q), where g is the input multi-hop question.

4.3.2 Implementation Details. Following [28], we select 300 cases
for each of the 2, 3, and 4-hop questions from the M-CF dataset.
For each type, we report the retrieval precision scores in Table 3.
Specifically, we use the metric Precision@K, which calculates the
proportion of relevant facts within the top K results [28]. Here,
Precision@K = |{relevant facts}|/K X 100%, abbreviated as P@K.
For this study, a k-hop question has k facts as its fact chain. A fact
is considered relevant if it is part of the fact chain used to answer a
multi-hop question.

4.3.3 Results. We have the following observations: (1) Our pro-
posed mutual information-based retrieval method demonstrates
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Table 4: Edited accuracy (%) with (w) or without (w/o) pruning.

Dataset MQUAKE-CF

. Llama2

Type Strategy GPT-2 | GPT-J | Falcon | Vicuna (chat)

w/o Pruning 63.0 63.7 65.2 63.8 70.1

2-hops w/ Pruning 73.3 75.5 74.5 73.5 75.8
Gain 16.3%7T | 18.5%1 | 14.3%7 | 15.2%T | 8.1%7

w/o Pruning 43.1 53.8 55.6 55.0 60.3

3-hops w/ Pruning 53.2 65.4 62.1 62.7 65.8
Gain 23.4%7 | 21.6%7 | 11.7%7 | 14.0%T | 9.1%7T

w/o Pruning 49.9 58.8 55.2 61.5 61.6

4-hops w/ Pruning 61.9 66.9 62.9 65.5 65.8
Gain 24.0%T | 13.8%7 | 13.9%7 | 6.5%7 6.8%1

excellent performance across various LLMs in multi-hop fact ex-
traction. We also find its success with relatively small language
models, such as GPT-2, showing strong generalization ability. (2)
In contrast, traditional embedding-based methods (KG Link and
Question Reform) underperform in this multi-hop fact retrieval
challenge. Their limitation mainly lies in failing to comprehend the
complex interplay between multiple relations in a question. Thus, it
hinders the extraction of target facts from the extensive knowledge
base. (3) Mello demonstrates the efficacy of decomposing multi-
hop questions into single-hop questions for this multi-hop facts
retrieval task. Notably, its performance drops significantly with
an increasing number of hops, probably because it becomes much
more challenging for language models to perform question decom-
posing. (4) Probability maximization-based methods outperform
traditional embedding methods, while there is still a gap compared
to ours, probably because the predicted most probable fact may not
be the most necessary one for answering a specific question.

4.4 Ablation Studies on Pruning Strategy

To answer Q3, we verify that our proposed pruning strategies
are beneficial to multi-hop editing tasks. To simulate the situation
where the retrieved facts contain redundant information, we con-
duct our experiment by always retrieving 2 additional facts over
the facts needed by the original question. That is, given a k-hop
question, we set the total number of retrieved facts as n = k + 2.

Table 4 reports the edited accuracy of RAE working with or with-
out the pruning strategy, and we draw the following conclusions:
(1) The proposed pruning technique significantly enhances the per-
formance of model editing, demonstrated by achieving an average
accuracy improvement of 14.5% across various language models.
(2) We observe a more profound improvement for smaller language
models on complex questions, while this benefit to larger language
models is relatively less significant. In particular, the performance
improvement of GPT-2 on the 4-hop questions reaches 24.0%, while
for Llama-2 it is just 6.8%. This observation suggests that larger
models are more robust to redundant information.

4.5 Editing Performance on Proprietary LLMs

To answer Q4, we apply the proposed RAE to edit proprietary
language models, where we can only access the model via APIs, such
as ChatGPT [24]. In such cases, RAE utilizes a different lightweight
language model to perform relevant facts retrieval and pruning as
introduced in Section 3.2 and Section 3.3. Then, the obtained facts
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Figure 4: Editing performance and inference cost over differ-
ent proprietary models.

will be fed into the proprietary models to perform in-context editing.
We evaluate our proposed editing method on GPT-babbage-002,
GPT-3.5-turbo-0613, GPT-3.5-instruct, and GPT-4-0613 models [25].
We use GPT-2 (1.5B) as our retrieval model. We report the edited
accuracy and total editing cost of our method for 300 randomly
selected cases (MQUAKE-CF) in Figure 4. The editing cost includes
the total fees of calling APIs and the cost of running GPT-2 for
knowledge retrieval on rented GPUs. We also report the results of
Mello [52] for comparison, where only API fees are counted.

In Figure 4, we first observe that Babbage has 0.0% edited ac-
curacy by using Mello, showing its ineffectiveness in editing the
un-instruction tuned proprietary language model. This is expected
since Mello relies on the conversational ability of language models
to decompose multi-hop questions. In contrast, RAE is effective in
editing all these proprietary models with a remarkably lower cost
than Mello. In particular, RAE improves Mello for editing GPT-4
with almost 20% edited accuracy by only costing around its 15%
budget. This highlights the benefit of utilizing the inherent lan-
guage modeling ability instead of the instruction following ability
to perform knowledge retrieval for multi-hop question answering.

4.6 Performance with Different Batch Sizes

In this section, we evaluate editing performance with different
editing batch sizes. Specifically, we set the editing instances in
sizes of 1, 10, 100, and 1000 cases for 2-hop questions. We choose
Mello [52] as our baseline. The result is presented in Figure 5. We
can observe that, in both the Vicuna and Llama2 models, RAE’s
accuracy remains stable across different editing instances, whereas
Mello’s accuracy significantly declines with increasing instances.

Vicuna-7B Llama2-7B

80 80
> >
o o
g e
g 6o e Melo | 36 @ Mello
g RAE | I RAE
g 40 @ o... 2 40 @ ......... °....
= e, A DR ® ... °

20 : 20

°
1 10 100 1000 1 10 100 1000

Editing Instance Editing Instance

Figure 5: Edited accuracy with different edit batch sizes.

4.7 Case Study

In Figure 6, we present two cases from the M-CF dataset to demon-
strate the retrieval process on a knowledge graph and the pruning
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process of the retrieved facts. For visualizations, the red, black, and
dotted lines represent the final, candidate, and discarded paths in
the knowledge graph with beam search, reflecting the decision-
making process of our retrieval design. In Figure 6a, a potential
path Misery—language—>English—country—>UK. is discarded even
though it can lead to the correct answer (UK. in this case). This
is because it does not share the information that is needed to an-
swer the target question, resulting in a low MI score. In Figure 6b,
even though this question is associated with three edited facts, our
method can successfully locate all of them, demonstrating robust-
ness over multi-hop questions. In both cases, our pruning strategy
successfully truncates the retrieved fact chain to only contain nec-
essary facts relying on the normalized model editing entropy.

LWhat is the nationality of the author of (Misery ?
. r

P9 Retrieval
United Kingdom of
English ) Great Britain an
o N ) oo ireland /7
& Cog, oS T
\? N o
Mise Richard 4 UK
Misery ) —rotror™ | _awkins ) ~Tzen o7 « )%
% (Edited) London
G O (e \ e, ietyofl) - - on
AR NFee ' 7S, Royal Society of at
% % e “ip Literature ) \o¢
Stephen =—p Final path
; — X
King ) us. =—p Candidate path

e B — + Discarded path

3¢ -» Original path

———————————————— Pruning - = = = === === == — -~
Misery—author— Richard Dawkins — citizen of—U.K— capital—London
l& ) > >| >

Normalized Model 1.0 0.0 0.31

- _ [dtngEntropy: _ _ _ _ _ ____ Truncate here!

(a) A two-hop question example (CaseID 2).
Which country does the spouse of the performer of
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] r
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& \'x‘iﬁg?rl\ls ’ ,tv,‘\o 1',2}‘0.,1 ------ + Discarded path
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i Jamie *
Bangerz vt
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;S . ()
€, s, L/ o,
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S, Miley PI’ISCII”a %
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rupee
_______________ [ Pruning | — — = = = - - — - - -
_ _ Elis _ _Jamie_ .. _ o
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(b) A three-hop question (CaselD 1143).

Figure 6: Case studies for edited facts retrieval and prun-
ing. The retrieval process involves the beam search, starting
from the query entity and navigating through the knowledge
graph with two beams. At each entity hop, the two primary
candidate edges are highlighted in bold, while others are
discarded and marked with dashed lines. The beam search
result with the highest MI score is emphasized in red.
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5 Related Work: Model Editing

Existing editing methods can be categorized into the following
kinds: First, methods that alter model parameters, including fine-
tuning [53], locate-then-edit [19, 20], and meta-learning [21, 48],
are prone to catastrophic forgetting issue [7, 8, 46], where the pre-
viously encoded knowledge could be lost after editing. They also
struggle with using updated language for knowledge reasoning,
which can lead to severe hallucinations. [4, 10, 52]. While these
methods perform well in single-hop editing, they are less effec-
tive in multi-hop scenarios. [52]. Second, methods that depend on
training auxiliary models also fall short in these scenarios. The aux-
iliary models are usually smaller language models, which lack the
necessary reasoning capability to infer correct answers [22]. In con-
trast, a third category of methods, based on Retrieval-Augmented
Generation (RAG), modifies model outputs in a more effective man-
ner [11, 36, 44, 52]. These methods integrate updated knowledge
directly into the model input and edit LLMs through an editing
prompt. [7, 50]. RAG-based approaches offer notable benefits as
they are resistant to catastrophic forgetting, and allow for on-the-fly
editing. [14, 35]. For multi-hop editing, existing RAG-based meth-
ods perform well on powerful proprietary LLMs like GPT-3.5, but
show significant degradation on less robust LLMs such as Llamaz2-
7b, particularly as the number of editing instances increases. In
contrast, our RAE can maintain good editing performance even
with relatively small LLMs and large editing batch sizes.

6 Conclusion

We propose a novel LLM editing framework for multi-hop QA that
employs mutual information maximization for fact retrieval and a
self-optimizing technique to prune redundant data. This effectively
tackles the integration of real-time knowledge updates in LLMs. Our
extensive evaluations confirm the framework’s ability to enhance
the accuracy of LLM responses, marking significant progress in
model editing and dynamic knowledge integration research.
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A Theoretical Justification

THEOREM 1. Given retrieved graph Gs € G, the latent concept 0.,
and the question q sampled conditioned on concept 0., there exists a
mutual information inequality: I(Gs; 6¢) > I(Gs;q).

Proor. Consider latent concepts 6, is inferred from a knowledge
graph Gg, and a question q is then generated based on this concept.
The following Markov chain: Gs — 6, — q exists, indicating that
q is conditionally independent to Gs. According to the chain rule
for mutual information, we can have:

I(Gs: 0c. q) = 1(Gs; q) +1(Gs; Oclq) = 1(Gs; 0c) +1(Gs; ql0c). (15)

Given that the question q is conditionally independent of the graph
Gg, the term I(Gg; q|0.) equals zero. Therefore, we are left with:
I(Gs;0.:) = I(Gs; q). Equality holds precisely when I(Gs; q|0.) is
zero, meaning that the graph Ggs provides no additional information
about g once 6, is known. O
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