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Abstract
Large LanguageModels (LLMs) have shown proficiency in question-

answering tasks but often struggle to integrate real-time knowl-

edge, leading to potentially outdated or inaccurate responses. This

problem becomes even more challenging when dealing with multi-

hop questions, since they require LLMs to update and integrate

multiple knowledge pieces relevant to the questions. To tackle

the problem, we propose the Retrieval-Augmented model Editing

(RAE) framework for multi-hop question answering. RAE first re-

trieves edited facts and then refines the language model through

in-context learning. Specifically, our retrieval approach, based on

mutual information maximization, leverages the reasoning abilities

of LLMs to identify chain facts that traditional similarity-based

searches might miss. In addition, our framework includes a pruning

strategy to eliminate redundant information from the retrieved

facts, which enhances the editing accuracy and mitigates the hal-

lucination problem. Our framework is supported by theoretical

justification for its fact retrieval efficacy. Finally, comprehensive

evaluation across various LLMs validates RAE’s ability in providing

accurate answers with updated knowledge. Our code is available

at: https://github.com/sycny/RAE.

CCS Concepts
• Information systems → Question answering; • Computing
methodologies→ Knowledge representation and reasoning.

Keywords
Model editing; question answering; retrieval-augmented generation

ACM Reference Format:
Yucheng Shi, Qiaoyu Tan, XuanshengWu, Shaochen Zhong, Kaixiong Zhou,

and Ninghao Liu. 2024. Retrieval-enhanced Knowledge Editing in Language

Models for Multi-Hop Question Answering. In Proceedings of the 33rd ACM
International Conference on Information and Knowledge Management (CIKM
’24), October 21–25, 2024, Boise, ID, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3627673.3679722

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CIKM ’24, October 21–25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0436-9/24/10

https://doi.org/10.1145/3627673.3679722

1 Introduction
Large language models (LLMs) excel in answering factual ques-

tions due to their pre-training on extensive corpora [27, 32, 34].

However, their dependence on pre-trained knowledge can lead to

outdated answers, which requires updates through model editing

techniques [19, 43, 49, 51]. Among them, editing for multi-hop
questions is particularly important, as real-world questions of-

ten require combining multiple knowledge pieces. For example, to

answer "Who is married to the British PrimeMinister?", onemust con-

nect several related facts, creating a fact chain, like "(United King-
dom, head of government, Theresa May ), "( Theresa May , spouse,

Philip May)". If we update " Theresa May " to " Rishi Sunak " to re-

flect real-world change [1], it requires adjusting the related facts

accordingly, resulting in a new fact chain: "(United Kingdom, head of
government, Rishi Sunak ), ( Rishi Sunak , spouse, Akshata Murty)".
Recent research shows that retrieval-augmented generation (RAG)

is effective in LLM editing formulti-hop question answering [36, 52],

surpassing other methods such as fine-tuning [53] and locate-and-

edit [19, 20] approaches. The RAG-based methods first retrieve

relevant facts related to the question and then feed these facts into

LLMs through in-context learning. Studies have shown that LLMs

are highly receptive to external knowledge, even when it contra-

dicts their internal pre-trained knowledge [16, 39]. Therefore, RAG

can effectively update knowledge within LLMs but also avoid prob-

lems such as catastrophic forgetting [12, 13] and hallucinations [10].

However, simply using multi-hop questions as queries in RAG of-

ten fails to retrieve pertinent facts due to the complexity of the

questions involved, as illustrated in Figure 1.

To address this, some methods [36, 52] propose breaking down

complex multi-hop questions into simpler, single-hop queries to

improve the effectiveness of the retrieval process. Despite enhance-

ments, critical issues persist: 1) Commonly used models with fewer

parameters (e.g., Llama2-7B [31]) exhibit significantly worse edit-

ing performance (more than 30% gap) compared to more powerful

models like GPT-3.5 or GPT-4 [52]; 2) The performance of existing

editing methods degrades as the number of editing cases increases,

making them impractical for large-scale editing tasks [36, 52]. The

possible reason behind their performance degradation is that their

editing effectiveness heavily relies on the quality of sub-questions
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Target facts within 
retrieved Top-2:

Retrieved facts: [1][4]
Answer fact: [1]

3. Naïve RAG for Model Editing

Top-2 Similarity Search

Single-Hop Question 2-Hop Question

Target facts not within 
retrieved Top-2.

Retrieved facts: [1][3]
Target fact:[1][2]
Missing fact: [2]

Edited 
Memory

Edited 
Memory

1. Edit for Real-world Changes

2. Naïve Retrieval

[1] (UK, head of government, Theresa May)
[3] (UK, net worth, £10.8 trillion) [4] (UK, head of state, Queen Elizabeth II)

[2] (Rishi Sunak, net worth, £529 million)
Original Knowledge:

Edited Facts Memory:

[3] (UK, net worth, £11.8 trillion)
[1] (UK, head of government, Rishi Sunak)

[4] (UK, head of state, King Charles III)
[2] (Rishi Sunak, net worth, £651 million)

[1] (UK, head 
of government, 
Rishi Sunak)

What is the net worth of UK’s Prime Minister?Who is UK’s Prime Minister?

[3] (UK, net 
worth, £11.8 
trillion)

[2] (Rishi Sunak, net 
worth, £651 million)

[4] (UK, head 
of state, King 
Charles III)

Given fact [1][4], who is UK’s Prime Minister?

Who is UK’s Prime Minister?

Given fact [1][3], what is the net worth of UK’s 
Prime Minister?

What is the net worth of UK’s Prime Minister?

Rishi Sunak

Theresa May

£11.8 trillion

$4.48 million

£651 million
Should be

Single-Hop Edit 
Succeeds

2-Hop Edit Fails

Figure 1: An example of the traditional similarity-based
search that fails to retrieve the correct facts for LLM editing.

generated for querying. Generating accurate sub-questions is chal-

lenging for models with less strong reasoning and planning capabil-

ities. Inaccurate sub-questions will result in irrelevant fact retrieval,

which may mislead the LLMs and reduce editing effectiveness [45].

Since successful multi-hop editing depends on accurate re-
trieval of the question-specific facts, instead of applying the

existing "generate then retrieve" approach, we propose to directly

fetch the required facts from the database by leveraging the next-

token prediction capabilities of LLMs. Below are the details of our

editing method.

1. The connection between edited facts helps retrieval: Each
edited fact can be represented as a triplet of "(head entity, relation,
tail entity)". The nearby facts in a fact chain are connected through

entities: the tail entity of one fact becomes the head entity of the

next. This observation inspires us to adopt a knowledge graph (KG)

for storing these triplets. In a KG, each entity has only a limited

number of neighboring entities, which narrows down the retrieval

choices to a feasible number, rather than having to search through

a vast database. Our method differs from existing approaches that

store edited facts as embeddings in a vector database, whose editing

performance decreases as the number of edits grows [36, 52].

2. Next-token prediction helps next-fact retrieval: LLMs

are inherently skilled at predicting the next token in a sequence.

In our study, we extend this capability to predict the next fact in a

fact chain. Our approach first feeds LLMs a sequence that includes

the question, any preceding fact, and the relevant entity. Then, the

model predicts this entity’s next possible logical relation within the

context of its input question. Finally, we retrieve the tail entity from

the KG, based on the head entity and relation, to complete the fact

chain. However, directly predicting the most probable next fact can

lead to biases toward frequently occurringwords [30, 37]. Therefore,

we predict facts that share the most relevant information with the

question and preceding facts, using mutual information (MI) as our

retrieval metric. We develop a technique to break down the MI into

conditional probabilities that LLMs can effectively approximate [27],

thus improving the accuracy of our predictions.

3. LLM internal state helps reduce redundancy: Irrelevant
facts to the editing will mislead LLMs. Thus, we propose to prune

redundant facts extracted by the retrieval step using the LLM’s

prediction uncertainty. The uncertainty is minimized when the LLM

is prompted with a correct fact chain, and increases when provided

with incomplete or excessive facts. We quantify this uncertainty

using the LLM’s output entropy. Unlike traditional methods that

either limit the number of retrieval attempts or simply ask the

model to identify redundant facts [36, 52], our approach provides a

more effective way to ensure accuracy in the editing process.

Overall, we name our approach as Retrieval-Augmented model

Editing (RAE), where we introduce a novel fact retrieval method for

multi-hop questions in model editing.We also propose a knowledge-

pruning strategy to reduce noise after the initial retrieval, mitigating

the hallucination problem. Additionally, we provide theoretical

analysis to justify our design for the retrieval objective.

2 Preliminary: Model Editing
2.1 Model Editing for Single-hop Questions
In LLMs, a single model edit refers to updating a specific piece of

factual knowledge [20, 21, 50]. Each knowledge is defined as a triplet
𝛿 := (ℎ, 𝑟, 𝑡), where ℎ, 𝑟 , and 𝑡 denote the head entity, the relation,

and the tail entity, respectively, such as (Misery, author, Stephen

King ). An edit is defined as changing the tail entity 𝑡 to a new

entity 𝑡 ′, i.e., 𝛿 → 𝛿 ′ := (ℎ, 𝑟, 𝑡) → (ℎ, 𝑟, 𝑡 ′), where 𝛿 ′ is the edited
knowledge. Let 𝑞 denote the language model’s input. The goal of

model editing is to modify a target model 𝑓𝜃 , so that the new model

𝑓 ′
𝜃
produces an output 𝑓 ′

𝜃
(𝑞) that follows the new fact 𝛿 ′, where

𝑓 ′
𝜃
(𝑞) ≠ 𝑓𝜃 (𝑞). Specifically, given 𝑞 = [ℎ; 𝑟 ], ℎ, 𝑟 ∈ 𝛿 ′, the model is

expected to output 𝑡 ′ = 𝑓 ′
𝜃
( [ℎ; 𝑟 ]), where [; ] is the concatenation

operator. However, if the input question is not relevant to the edit,

i.e., ℎ ∉ 𝛿 ′ or 𝑟 ∉ 𝛿 ′, the model should output 𝑡 = 𝑓 ′
𝜃
( [ℎ; 𝑟 ]) that

reflects the original knowledge of LLMs.

2.2 Model Editing for Multi-hop Questions
Answering multi-hop questions presents a greater challenge. A

multi-hop question seeks to identify a specific tail entity 𝑡𝑘 based

on a sequence of linked facts: {(ℎ1, 𝑟1, 𝑡1), (ℎ2, 𝑟2, 𝑡2), ..., (ℎ𝑘 , 𝑟𝑘 , 𝑡𝑘 )},
where each tail entity is the head entity of the next fact: 𝑡𝑖 = ℎ𝑖+1.
Answering each input question 𝑞 requires a fact chain𝐺𝑞 . A 𝑘-hop
question can be formulated using only the initial head entityℎ1, and

a series of relationships {𝑟1, 𝑟2, ..., 𝑟𝑘 }. An example of model editing

for a 3-hop question is shown in Table 1. Here, we use counterfactual

edits to simulate real-world updates. Different fact chains are used

to answer the question before and after editing. One key observation

is that fact chains represent connected knowledge graphs, where a

single entity is involved in two consecutive facts. Additionally, we

notice a "ripple effect" in these chains: An edit in the first fact 𝛿1
will lead to changes in the subsequent facts, forming a new chain
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Table 1: Answering a 3-hop question 𝑞 with counterfactual
model editing. The pre-edited and edited answer are 𝑡5 and
𝑡∗
3
, respectively. 𝑡5 and 𝑡∗

3
are the tail entity of 𝛿5 and 𝛿 ′

3
. 𝐺𝑞

and 𝐺∗
𝑞 denote the pre-edited and edited fact chain.

Edited Fact Bank Δ and Unedited Facts
(𝛿1 → 𝛿 ′

1
) Misery, author, Stephen King → Richard Dawkins #edit

(𝛿2 ) Richard Dawkins, citizen of, United Kingdom

(𝛿3 → 𝛿 ′
3
) United Kingdom, capital, London → Birmingham #edit

(𝛿4 ) Stephen King, citizen of, United States

(𝛿5 ) United States, capital, Washington, D.C.

A 3-hop Question 𝑞
(𝑞) Which city is the capital of the country where the author of Misery

held citizenship?

Pre-edited Answer 𝑡5 and Edited Answer 𝑡 ′
3

(𝑡5 ) Washington, D.C.

(𝑡 ′
3
) Birmingham

Pre-edited Fact Chain𝐺𝑞

(𝛿1 ) ( Misery , author, Stephen King )

(𝛿4 ) ( Stephen King , citizen of, United States )

(𝛿5 ) ( United States , capital, Washington, D.C. )

Edited Fact Chain𝐺∗
𝑞

(𝛿 ′
1
) ( Misery , author, Richard Dawkins ) #edited fact

(𝛿2 ) ( Richard Dawkins , citizen of, United Kingdom ) #unedited fact

(𝛿 ′
3
) ( United Kingdom , capital, Birmingham ) #edited fact

𝐺∗
𝑞 . In practice, knowledge editing is usually conducted in batches,

involving multiple fact changes simultaneously, resulting in an

edited fact bank Δ = {𝛿 ′
1
, 𝛿 ′

2
, ..., 𝛿 ′

𝑁
}, where𝑁 is a large number [20].

Locating the relevant edited facts for a question is non-trivial due

to the "ripple effect". To correctly answer multi-hop questions after

model editing, it is crucial to address the retrieval problem formally

defined as follows:

Problem 1 (Retrieval-Augmented Editing). Given an edited
fact bank Δ = {𝛿 ′

1
, 𝛿 ′

2
, ..., 𝛿 ′

𝑁
} with 𝑁 instances and a multi-hop

question 𝑞 whose answer requires model editing, we want to retrieve
its corresponding edited facts Δ𝑞 = {𝛿 ′

𝑖
, 𝛿 ′
𝑗
, ..., 𝛿 ′

𝑘
}. The goal is to

ensure that all the edited facts necessary for answering 𝑞 are retrieved,
i.e., Δ𝑞 ⊆ 𝐺∗

𝑞 and Δ\Δ𝑞 ⊄ 𝐺∗
𝑞 . Then, these facts are used to refine the

target model 𝑓𝜃 for editing.

3 Methodology
Our Retrieval-Augmented Editing (RAE) framework, as shown in

Figure 2, contains two key steps: (1) retrieving edited facts relevant

to the question, and (2) editing the language model using these

retrieved facts via in-context learning. We will first discuss step (2)

with the motivation of our design in the following section. The

details of step (1) are in Sections 3.2 and 3.3.

3.1 Retrieval-Augmented Editing
A naïve edit approach uses similarity-based search to retrieve edited

facts similar to target question 𝑞 [14, 35, 52]. These facts are then in-

tegrated into a prompt template for editing via in-context learning:

𝑓 ′
𝜃
(𝑞) = 𝑓𝜃 (𝑇𝑒 (𝑞, {𝛿 ′1, 𝛿

′
2
, ...𝛿 ′

𝐾
})), where 𝑇𝑒 is the editing template.

For example, 𝑇𝑒 (·) can be made as "Given fact: {𝛿 ′}, {𝑞} ?". The
Top-𝐾 nearest edited facts to question 𝑞 in the embedding space

are denoted as {𝛿 ′
1
, 𝛿 ′

2
, ...𝛿 ′

𝐾
} = Top-𝐾𝛿∈Δ sim(𝑔𝑧 (𝛿), 𝑔𝑧 (𝑞)), where

sim(·) denotes the similarity function and𝑔𝑧 is an embeddingmodel.

However, the edited facts Δ𝑞 needed to answer 𝑞 are difficult to re-

trieve by this approach since they usually contain entities different

from 𝑞, which will result in a low similarity score in a large bank Δ

(e.g., in Table 1, United Kingdom in 𝛿 ′
3
, but not in 𝑞).

To address this problem, we propose edited fact chain extrac-
tion to obtain𝐺∗

𝑞 . Inherently, each𝐺
∗
𝑞 forms a connected knowledge

graph (KG) [52]. Such KGs can be retrieved by iteratively traversing

links from one entity to another. Take 𝐺∗
𝑞 = {𝛿 ′

1
, 𝛿2, 𝛿

′
3
} in Table 1

as an example. It is composed of two edited facts 𝛿 ′
1
, 𝛿 ′

3
and one

unedited fact 𝛿2. We can observe that the question entity: ( Misery )

is the head entity ℎ1 in 𝛿
′
1
= {ℎ1, 𝑡1, 𝑡 ′

1
}, and the edited tail entity

𝑡 ′
1
: ( Richard Dawkins ) is also the head entity ℎ2 in the next fact

𝛿2 = {ℎ2, 𝑟2, 𝑡2}. Moreover, for each subsequent fact in the chain,

its head entity is always the tail entity of the previous fact. By

effectively retrieving the KG that represents the fact chain 𝐺∗
𝑞 , we

are able to capture all the edited factual triplets Δ𝑞 = {𝛿 ′
𝑖
, 𝛿 ′
𝑗
, ...𝛿 ′

𝑘
}.

In light of this, we define our retrieval-augmented editing as:

𝑓 ′
𝜃
(𝑞) = 𝑓𝜃 (𝑇𝑒 (𝑞,𝐺∗

𝑞)), (1)

where we give an example of such editing in Figure 2. In the next sec-

tion, we will introduce the detailed strategy of retrieving𝐺∗
𝑞 , where

we first propose a mutual information-based retrieval strategy to

extract facts needed to answer the target question (Section 3.2).

Then, we propose a pruning method to delete irrelevant facts from

the initial retrieval result (Section 3.3).

3.2 Edited Facts Retrieval via Maximizing MI
We first construct a knowledge graph that connects different facts.

Then, we introduce our proposed retrieval objective of extracting

relevant subgraphs given input questions.

3.2.1 External Knowledge Graph for Subgraph Retrieval. According
to our previous discussion, we aim to retrieve the fact chain 𝐺∗

𝑞

for model editing. Additionally, it is worth noting that 𝐺∗
𝑞 consists

of both edited and unedited facts. However, the unedited facts are

not included in our edited fact bank Δ by default. To effectively

incorporate both types of facts into our retrieval process, we pro-

pose integrating all edited facts into an external knowledge graph

G. By selecting a comprehensive KG such as WikiData [33], the

new graph G∗
will encompass both unedited and edited facts. It

complements our edited fact bank Δ and connects different enti-

ties. Besides, the external knowledge graph provides extra factual

knowledge that can enhance language to output correct answers.

Specifically, given the edits Δ = {𝛿 ′
1
, ..., 𝛿 ′𝑛} and an externalG, we

consider two types of operations to combine them. (1) Modifying
existing facts: If the original fact appears in G, i.e., (ℎ, 𝑟, 𝑡) ∈ G,
we will modify the KG according to the edits, so G∗ = (ℎ, 𝑟, 𝑡 ′) ∪
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Richard Dawkins, citizen of, U.K. Editing MemoryExternal Knowledge Graph
Edited Graph

Step 1.2: Mutual Information based retrieval

Retrieved Facts

What is the nationality of the author of “Misery”?

Misery, author, Richard Dawkins

Ellie Kemper, citizen of, Croatia

Moscow, continent, Africa

Reggie Miller, sport, basketball

Step 1.1: Knowledge 
insertion/edition

Subgraph with “Misery” in center

Question

Refined Facts

United Kingdom (U.K.)

Step 1.3: Redundant knowledge Pruning

Step 2: In-context learning for editing 

Misery, author, Stephen King

Editing
Template

Misery, author, Richard Dawkins
Fact 
Chain

Edited fact

Original fact

Multi-hop question

Richard Dawkins, citizen of, U.K.

Misery, author, Richard Dawkins

Knowledge Edit

Figure 2: The overall framework of our retrieval-augmented in-context model editing method.

G \ (ℎ, 𝑟, 𝑡). (2) Adding new facts: If the original fact does not
appear in G, i.e., (ℎ, 𝑟, 𝑡) ∉ G, then we append the modified fact to

the KG, so G∗ = (ℎ, 𝑟, 𝑡 ′) ∪ G. Next, given a question 𝑞, we retrieve

a subgraph 𝐺𝑆 from G∗
, so that 𝐺𝑆 ⊂ G∗

. Our goal is to ensure

that 𝐺𝑆 contains fact chains of 𝑞, i.e., 𝐺∗
𝑞 ⊆ 𝐺𝑆 .

3.2.2 Mutual Information based Retrieval Objective. For effective
editing, the retrieved subgraph𝐺𝑆 must share relevant information

with the question. Therefore, we define the objective of subgraph

retrieval as maximizing the mutual information (MI) between the

subgraph and a set of questions 𝑄 whose answers require edit-

ing. The objective is formalized as below, where the theoretical

justification is provided in Section 3.4:

max

𝐺𝑆

𝐼 (𝑄 ;𝐺𝑆 ) = 𝐻 (𝑄) − 𝐻 (𝑄 | 𝐺 = 𝐺𝑆 ) . (2)

Given a fixed question set𝑄 , its Shannon entropy 𝐻 (𝑄) is constant.
Therefore, maximizing the mutual information 𝐼 (𝑄 ;𝐺𝑆 ) is equiva-
lent to minimizing the conditional entropy 𝐻 (𝑄 | 𝐺 = 𝐺𝑆 ). Thus,
we optimize the following objective:

max

𝐺𝑆

𝐼 (𝑄 ;𝐺𝑆 ) = min

𝐺𝑆

𝐻 (𝑄 | 𝐺 = 𝐺𝑆 ) (3)

=max

𝐺𝑆

∑︁
𝑞∈𝑄

𝑝 (𝑞 |𝐺 = 𝐺𝑆 ) log2 𝑝 (𝑞 |𝐺 = 𝐺𝑆 ) . (4)

In practice, quantifying 𝑝 (𝑞 |𝐺 = 𝐺𝑆 ) is challenging due to its com-

putational complexity. This is because there are numerous sub-

graph candidates 𝐺𝑆 within the entire knowledge graph, making

it prohibitively expensive to exhaustively search for the optimal

one. To circumvent this issue, we first replace the intractable term

𝑝 (𝑞 |𝐺 = 𝐺𝑆 ) with
𝑝 (𝑞,𝐺=𝐺𝑆 )
𝑝 (𝐺=𝐺𝑆 ) . Then, suppose we consider one ques-

tion each time, where 𝑄 = 𝑞, the objective is reformulated as:

max

𝐺𝑆

𝑝 (𝑞,𝐺 = 𝐺𝑆 )
𝑝 (𝐺 = 𝐺𝑆 )

log
2

𝑝 (𝑞,𝐺 = 𝐺𝑆 )
𝑝 (𝐺 = 𝐺𝑆 )

. (5)

In the following, wewill discuss how to estimate probability 𝑝 (𝑞,𝐺 =

𝐺𝑆 ) and 𝑝 (𝐺 = 𝐺𝑆 ) efficiently.

3.2.3 Probabilities Estimation. We propose to compute probabili-

ties by leveraging the next-word prediction capability of LLMs.
Given that the fact chain forms a tail-to-head connected knowl-

edge graph, our extracted subgraph 𝐺𝑆 can be represented as 𝐺𝑆 =

(ℎ1, 𝑟1, 𝑡1, ..., ℎ𝑛, 𝑟𝑛, 𝑡𝑛), where ℎ𝑖 and 𝑡𝑖 are nodes, 𝑟𝑖 is the edge,

and 𝑛 is the number of retrieved triplets. Thus, we can estimate

𝑝 (𝑞,𝐺=𝐺𝑆 )
𝑝 (𝐺=𝐺𝑆 ) as:

𝑝 (𝑞,𝐺 = 𝐺𝑆 )
𝑝 (𝐺 = 𝐺𝑆 )

=
𝑝 (𝑟1, 𝑡1, ℎ2, 𝑟2, 𝑡2, ..., ℎ𝑛, 𝑟𝑛, 𝑡𝑛 |𝑞, ℎ1)
𝑝 (𝑟1, 𝑡1, ℎ2, 𝑟2, 𝑡2, ..., ℎ𝑛, 𝑟𝑛, 𝑡𝑛 |ℎ1)

· 𝑝 (𝑞, ℎ1)
𝑝 (ℎ1)

. (6)

Specifically, for the term 𝑝 (𝑟1, 𝑡1, ℎ2, 𝑟2, 𝑡2, ...|𝑞, ℎ1), we can further

decompose it into following form:

𝑝 (𝑟1, 𝑡1, ℎ2, 𝑟2, 𝑡2, ..., ℎ𝑛, 𝑟𝑛, 𝑡𝑛 |𝑞, ℎ1)
=𝑝 (𝑡1, ℎ2, 𝑟2, 𝑡2, ..., ℎ𝑛, 𝑟𝑛, 𝑡𝑛 |𝑞, ℎ1, 𝑟1) · 𝑝 (𝑟1 |𝑞, ℎ1) .

(7)

This decomposition allows us to initially focus on estimating the

𝑝 (𝑟1 |𝑞, ℎ1). Specifically, the head entityℎ1 is determined if𝑞 is given,

since we assume ℎ1 is mentioned in question 𝑞. Candidate relations

for 𝑟1 can also be selected from the edited KG. Practically, we can

estimate the probability 𝑝 (𝑟1 |𝑞, ℎ1) for each candidate relation using
an auto-regressive language model 𝑓𝜙 [27, 38]:

𝑝 (𝑟1 |𝑞, ℎ1) ≈
|𝑟1 |∏
𝑖=1

𝑓𝜙 (𝑤
(𝑖 )
𝑟1 |𝑤 (1)

𝑞 , ...,𝑤
( |𝑞 | )
𝑞 ,𝑤

(1)
ℎ1
, ...,𝑤

( |ℎ1 | )
ℎ1

,𝑤
(1)
𝑟1 , ...,𝑤

(𝑖−1)
𝑟1 ),

(8)

where 𝑓𝜙 is the predicted word probability, and𝑤𝑞,𝑤ℎ1 ,𝑤𝑟1 denote

the words in question 𝑞, head entity ℎ1, and relation 𝑟1, respectively.

We can employ open-source LLMs like GPT-2 [27] for this estima-

tion. Please note that, the model 𝑓𝜃 being edited does not need to

be the same model used for probability estimation, making our

method applicable even for editing proprietary LLMs. With a spe-

cific input context {𝑞, ℎ1}, the language model will assign different

probabilities to each relation based on its contextual understanding

and reasoning ability.

Then, 𝑝 (𝑡1, ℎ2, 𝑟2, 𝑡2, ...|𝑞, ℎ1, 𝑟1) can be further decompose into

𝑝 (ℎ2, 𝑟2, 𝑡2, ...|𝑞, ℎ1, 𝑟1, 𝑡1) · 𝑝 (𝑡1 |𝑞, ℎ1, 𝑟1). In our case, we assume

𝑝 (𝑡1 |𝑞, ℎ1, 𝑟1) = 1, since one relation usually only corresponds to

one tail entity. When there are multiple tail entities, we find the as-

sumption still works well empirically. So, 𝑝 (ℎ2, 𝑟2, 𝑡2, ...|𝑞, ℎ1, 𝑟1, 𝑡1)
can be decomposed into 𝑝 (𝑟2, 𝑡2, ...|𝑞, ℎ1, 𝑟1, 𝑡1, ℎ2) ·𝑝 (ℎ2 |𝑞, ℎ1, 𝑟1, 𝑡1).
Additionally, since the tail entity in one fact becomes the head entity

in the subsequent fact, we can also have 𝑝 (ℎ2 |𝑞, ℎ1, 𝑟1, 𝑡1) = 1. Thus,

we can have 𝑝 (𝑡1, ℎ2, 𝑟2, 𝑡2, ...|𝑞, ℎ1, 𝑟1) = 𝑝 (𝑟2, 𝑡2, ...|𝑞, ℎ1, 𝑟1, 𝑡1, ℎ2).
This is a nice property that helps us iteratively decompose this
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intractable probability term. By iteratively applying the aforemen-

tioned step for 𝑛 times, we can compute the conditional probability

of all subgraphs within an 𝑛-hop distance from the question entity.

The final estimation can be expressed as:

𝑝 (𝑟1, 𝑡1, ℎ2, 𝑟2, 𝑡2, ..., ℎ𝑛, 𝑟𝑛, 𝑡𝑛 |𝑞, ℎ1)
= 𝑝 (𝑟𝑛 |𝑞, ℎ1, 𝑟1, 𝑡1, ..., ℎ𝑛−1, 𝑟𝑛−1, 𝑡𝑛−1, ℎ𝑛)·
𝑝 (𝑟𝑛−1 |𝑞, ℎ1, 𝑟1, 𝑡1, ..., ℎ𝑛−2, 𝑟𝑛−2, 𝑡𝑛−2, ℎ𝑛−1)·
...·
𝑝 (𝑟2 |𝑞, ℎ1, 𝑟1, 𝑡1, ℎ2) · 𝑝 (𝑟1 |𝑞, ℎ1) .

(9)

Till now, we have decomposed 𝑝 (𝑟1, 𝑡1, ℎ2, ...|𝑞, ℎ1) in Equation (6)

into the product of conditional probabilities of predicting different

relations within the 𝑛-hop subgraph. This nice property ensures

the selection of the subgraph will only be determined by relation

probability, which is free from the interference of any potential

edited tail entity. Similarly, we can decompose the denominator

term 𝑝 (𝑟1, 𝑡1, ℎ2, ...|ℎ1) into:

𝑝 (𝑟1, 𝑡1, ℎ2, 𝑟2, 𝑡2, ..., ℎ𝑛, 𝑟𝑛, 𝑡𝑛 |ℎ1)
= 𝑝 (𝑟𝑛 |ℎ1, 𝑟1, 𝑡1, ..., ℎ𝑛−1, 𝑟𝑛−1, 𝑡𝑛−1, ℎ𝑛)·
𝑝 (𝑟𝑛−1 |ℎ1, 𝑟1, 𝑡1, ..., ℎ𝑛−2, 𝑟𝑛−2, 𝑡𝑛−2, ℎ𝑛−1) · ... · 𝑝 (𝑟1 |ℎ1).

(10)

Then, for the last term 𝑝 (𝑞, ℎ1)/𝑝 (ℎ1) in Equation (6), based on

Bayes’ theorem, we can transform it into 𝑝 (𝑞, ℎ1)/𝑝 (ℎ1) = 𝑝 (𝑞 |ℎ1),
which is a constant value given a specific question 𝑞. We can also

apply model 𝑓𝜙 to estimate this conditional probability. Now, since

we are able to estimate every term in Equation (5) and (6), we

can effectively identify the subgraph that yields the maximum

Mutual Information. Additionally, we utilize beam search [29] to

expedite the computational process, eliminating the necessity for

exhaustively traversing all connected nodes. In this work, we treat𝑛

as a hyperparameter since the number of hops required to answer a

question is unknown in advance. To ensure thorough exploration, 𝑛

is assigned a large value. However, this approach will also introduce

irrelevant information in the retrieved subgraph 𝐺𝑆 , which can

potentially mislead the language model to hallucinate and generate

undesired answers [17, 18]. In the next section, we will discuss how

to mitigate this problem.

3.3 Uncertainty-based Redundant Fact Pruning
This section introduces a pruning method, which utilizes model

output uncertainty, to eliminate redundant facts from 𝐺𝑆 .

3.3.1 Editing Uncertainty. We define editing uncertainty as the

uncertainty of the output generated by large language models.

Formally, the output uncertainty is quantified by Shannon entropy:

𝐻 (𝑌 |𝑋 = 𝑥) = −
∑︁
𝑦

𝑝 (𝑦 |𝑥) log
2
𝑝 (𝑦 |𝑥), (11)

where𝑦 represents each possible answer generated by the language

model, and 𝑥 = {𝑞,𝐺𝑆 } is the model input composed of the ques-

tion 𝑞 and facts 𝐺𝑆 . A higher entropy value 𝐻 (𝑌 |𝑋 = 𝑥) means

less confidence in the answer, reflecting greater uncertainty. In

contrast, a lower entropy value indicates higher confidence and

less uncertainty. Ideally, if input facts 𝐺𝑆 are exactly the edited

question fact chain𝐺∗
𝑞 , i.e.,𝐺𝑆 = 𝐺∗

𝑞 , then the model output should
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(a) Fact chain𝐺∗
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(b) Random fact chain without useful knowledge.

Figure 3: Distribution of normalized model editing entropy
with different fact subsets as input. A lower normalized en-
tropy indicates that themodel ismore confident in answering
the question with the given facts. "Subset 1" includes the first
fact {𝛿1}, "Subset 2" includes the first two facts {𝛿1, 𝛿2}, and
so on. Figure 3a shows that the entropy is significantly lower
if the subset contains exactly the entire fact chain of the
question (e.g., Subset 2 has low entropy for 2-hop questions).

exhibit maximum confidence with minimal entropy, since 𝐺∗
𝑞 con-

tains the precise knowledge to answer question 𝑞. In the next part,

we conduct empirical experiments to verify this assumption.

In our experiments, we choose GPT-J (6B) [34] as the base lan-

guage model. We select 1000 instances for each of the 2, 3 and

4-hop questions from the MQUAKE-CF dataset [52] for testing. The

MQUAKE-CF dataset comprises multi-hop questions that are based

on real-world facts, where the edited facts are counterfactual, mean-

ing they do not exist in actual real-world scenarios. An example of

such a question with an edit is provided in Table 1.

Our experiment seeks to identify the fact set 𝐺 ′
𝑆
that, when

used as model input, yields the lowest output entropy (i.e., minimal

editing uncertainty). Our first step is to construct different fact set

candidates. We begin with the first fact 𝛿1 in the fact chain𝐺
∗
𝑞 as our

initial fact set𝐺 ′
𝑆
. Then, we add each subsequent fact from the chain

until the 𝐺 ′
𝑆
encompasses the entire fact chain 𝐺∗

𝑞 . After that, we

insert unrelated facts
ˆ𝛿 into the set. In this experiment, the process

is repeated until 𝐺 ′
𝑆
contains six elements, where we build a prefix

set𝐺𝑞 with all the six subsets𝐺
′
𝑆
. For example, for a 4-hop question,

we have 𝐺𝑞 = {{𝛿1}, {𝛿1, 𝛿2}, {𝛿1, 𝛿2, 𝛿3}, ..., {𝛿1, 𝛿2, 𝛿3, 𝛿4, ˆ𝛿5, ˆ𝛿6}},
where 𝛿1, 𝛿2, 𝛿3, 𝛿4 ∈ 𝐺∗

𝑞 and
ˆ𝛿5, ˆ𝛿6 are two irrelevant facts. Finally,

we conduct in-context editing using each subset 𝐺 ′
𝑆
from𝐺𝑞 with

editing template 𝑇𝑒 :"Given fact: {𝐺 ′
𝑆
}, {𝑞}?". In our experiment, we

consider model output 𝑦 to be each of the next predicted word.

We report the entropy over all the words in the vocabulary as the

editing uncertainty.

The editing uncertainty with different subsets is listed in Fig-

ure 3a. For comparison, we also report the editing uncertainty with

random facts selected from Wikidata, as shown in Figure 3b. Our

observations reveal a phenomenon: the language model produces
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answers with much lower entropy when𝐺 ′
𝑆
is equal to the ground-

truth fact chain 𝐺∗
𝑞 . If 𝐺

′
𝑆
presents redundant facts or insufficient

facts, the entropy will increase. Meanwhile, if the LLM is fed with

random facts, the entropy level also remains consistently high. This
observation justifies the use of entropy as the indicator of
whether 𝐺 ′

𝑆
contains the correct facts for LLM inference.

3.3.2 Knowledge Pruning with Editing Uncertainty. Since incorpo-
rating the most relevant facts will result in the lowest entropy, we

propose to utilize this finding for knowledge pruning. Specifically,

we first follow Section 3.2 to retrieve a knowledge graph 𝐺𝑆 con-

taining 𝑛 triplets for question 𝑞: 𝐺𝑆 = {𝛿1, 𝛿2, ..., 𝛿𝑛}, where 𝑛 is a

sufficiently large number, and 𝐺𝑆 could contain redundant knowl-

edge. Then, to remove redundant knowledge, we first build the

prefix sets 𝐺𝑞 for target question 𝑞 based on the retrieved graph

𝐺𝑆 . Then, we can obtain the pruned fact set𝐺∗
𝑆
using the objective:

𝐺∗
𝑆 = argmin

𝐺 ′
𝑆
∈𝐺𝑞

−
∑︁
𝑦

𝑝 (𝑦 |𝑇𝑒 (𝑞,𝐺 ′
𝑆 )) log2 (𝑝 (𝑦 |𝑇𝑒 (𝑞,𝐺

′
𝑆 ))). (12)

Finally, we can apply 𝐺∗
𝑆
as our retrieved fact chain for the in-

context learning introduced in Section 3.1 to conduct editing.

3.4 Theoretical Justification
In this subsection, we theoretically justify that the facts collected

by our retrieval objective Eq. (2) are effective in performing model

editing with in-context learning. To begin with, we discuss what

kinds of input can effectively activate in-context learning. Then,

we explore how to build such effective input for model editing.

Our proposed editing method relies on the in-context learning

ability of LLMs. In the following, we provide an analysis of how

in-context learning can be effectively triggered. Theoretically, the

text generation process of a language model can be understood

as a Hidden Markov Model [3, 40]. The model initially selects a

concept 𝜃𝑐 ∈ Θ from a set of underlying concepts denoted as

Θ, and then samples a sequence of words based on the chosen

concept. Based on that, the in-context learning can be written as

𝑝 (𝑦 |𝑆, 𝑥) =
∫
𝜃𝑐 ∈Θ 𝑝 (𝑦 |𝑆, 𝑥, 𝜃𝑐 )𝑝 (𝜃𝑐 |𝑆, 𝑥)𝑑𝜃𝑐 , where 𝑆 denotes in-

context prompt and 𝑥 denotes query. Existing research has theo-

retically proven that the condition to activate in-context learning

is when there is a shared latent concept 𝜃𝑐 between prompt text 𝑆

and the input query 𝑥 . More discussions can be found in [40].

Motivated by the above analysis, as in-context prompt 𝑆 is the

edited knowledge in our design, we seek to include the edited

knowledge that shares the same latent concept 𝜃𝑐 as question 𝑞.

Ideally, this will activate in-context learning for effective model

editing. Formally, we can define such knowledge graph as

𝐺𝑆 = argmax

𝐺∈G
𝐼 (𝐺 ;𝜃𝑐 ), (13)

where 𝜃𝑐 is the latent concept used to generate question 𝑞, and we

use mutual information 𝐼 (𝐺 ;𝜃𝑐 ) to quantify the share information.

However, this is a non-trivial task since concept 𝜃𝑐 is an intractable

hidden variable. To address this issue, we propose obtaining the

target knowledge graph that maximizes the lower bound of such

an objective. Specifically, we can have the following theorem:

Theorem 1. Given retrieved graph 𝐺𝑆 ∈ G, the latent concept 𝜃𝑐 ,
and the question 𝑞 sampled conditioned on concept 𝜃𝑐 , there exists a

mutual information inequality:

𝐼 (𝐺𝑆 ;𝜃𝑐 ) ≥ 𝐼 (𝐺𝑆 ;𝑞) . (14)

Theorem 1 shows that we can maximize the mutual information

between the selected knowledge graph𝐺𝑆 and question concepts 𝜃𝑐
by maximizing the mutual information between the selected graph

𝐺𝑆 and the question 𝑞 itself. In this way, the in-context learning

ability of LLMs would be effectively triggered. When we apply such

knowledge as the prompt, we can effectively conduct the in-context

editing. The proof of Theorem 1 is in Appendix A.

4 Experiments
We conduct experiments to answer the following questions. Q1:
How effective is RAE in editing LLM output? Q2: How does our

retrieval strategy perform compared to other retrieval methods?

Q3: Does our proposed pruning technique remove redundant facts

from the retrieved facts? Q4: Does RAE work for propriety LLMs?

4.1 Experiment Settings
4.1.1 Language Models. We evaluate RAE across various kinds of

language models in different sizes and families, including GPT-2

(1.5B) [27], GPT-J (6B) [34], Falcon (7B) [2], Vicuna (7B) [5], and

Llama2-chat (7B) [31]. Among them, GPT-2, GPT-J, and Falcon are

pre-trained language models without instruction tuning [6, 26],

while Vicuna is an instruction-tuned variation of Llama1 [32] and

Llama2-chat is the instruction-tuned version of Llama2. Instruction-

tuned models (Vicuna and Llama2-chat) are expected to better fol-

low the instructions in the prompt compared to native pre-trained

models (GPT-2, GPT-J, and Falcon). We include both kinds of models

to verify the effectiveness of the proposed methods.

4.1.2 Editing Baselines. For comparison, we consider three kinds

of model editing methods: (1) Model weight updating methods:

Fine-tuning [53] edits the model weights by language modeling the

edited knowledge. ROME [19] andMEMIT [20] focus on identifying

and updating particular neurons associatedwith the knowledge that

needs editing. (2) Auxiliary models methods: SEARC [22] trains an

extra language model to store updated knowledge, and it switches

to the auxiliary model when answering questions relevant to the

edited facts. (3) RAG-based methods: Mello [52] and DeepEdit [36]

represent cutting-edge editing methods for multi-hop questions,

employing multi-round conversations to edit model outputs. Addi-

tionally, the Subgraph Retriever (SR) [47] introduces an advanced

knowledge retrieval approach for multi-hop question-answering

tasks. We adapt their retrieval method as a baseline.

4.1.3 Implementation Details. We evaluate our editing method on

the MQUAKE-CF and MQUAKE-T datasets from [52] and Popular

datasets from [7]. The MQUAKE-CF (M-CF) comprises counterfac-

tual editing instances in 2, 3, and 4-hop questions, totaling 3000 edits.

The MQUAKE-T dataset (M-T) features temporal editing examples

in 2 and 3-hop questions, with a total of 1868 edits. Additionally,

the Popular dataset contains counterfactual editing in 2-hop ques-

tions, comprising 274 edits. Following previous work [50, 52], we

leverage relevant cases from the MQUAKE-CF-9k dataset to craft

prompt templates for both baselines and our method. We evaluated

our editing method using the multi-hop edited accuracy metrics
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Table 2: Edited accuracy (%) on multi-hop question editing datasets.

Editing Methods

Language Models Datasets Fine Tune ROME MEMIT SEARC Mello DeepEdit

Subgraph

Retriever

RAE(ours)

GPT-2 (1.5B)

M-CF 3.8 1.7 2.3 4.0 0.0 0.0 21.9 62.8
M-T 5.8 6.4 1.6 2.7 0.0 0.0 20.3 61.8
Popular 6.2 4.3 2.9 1.1 0.0 0.0 26.7 47.1

GPT-J (6B)

M-CF 7.7 7.6 8.1 6.8 15.3 9.3 36.2 69.3
M-T 3.1 4.1 10.6 2.8 36.7 19.6 51.2 63.9
Popular 6.8 7.5 4.4 1.3 12.8 6.6 45.8 49.6

Falcon (7B)

M-CF 5.6 1.7 2.3 7.9 10.7 10.8 40.1 66.8
M-T 17.2 7.3 1.6 4.5 51.5 31.7 56.1 61.6
Popular 2.1 4.0 1.1 3.0 8.1 9.5 43.0 50.0

Vicuna (7B)

M-CF 4.8 8.4 7.6 7.9 10.2 11.4 39.4 67.2
M-T 23.1 5.0 1.7 4.5 51.7 40.4 58.6 63.2
Popular 4.0 3.8 2.4 3.0 7.7 8.2 29.5 36.1

Llama2

(chat) (7B)

M-CF 5.4 6.3 3.8 7.9 20.7 11.2 45.7 69.1
M-T 17.1 8.7 1.7 4.5 49.4 37.9 63.1 66.2
Popular 5.2 13.8 4.9 3.0 13.5 11.1 41.9 51.4

Table 3: Multi-hop facts retrieval precision (%) comparison.
MQUAKE-CF

Question Type 2-hops 3-hops 4-hops

Category Retrieval P@1 P@2 P@1 P@3 P@1 P@4

Embedding

KG Link 52.7 28.7 18.2 3.7 14.0 0.0

QR 62.3 7.7 14.7 0.0 12.3 0.0

Mello(Llama2) 84.3 80.0 80.7 42.3 83.3 25.7

Probability

SR(GPT-2) 77.7 50.3 67.3 25.3 65.0 20.0

SR(Llama2) 78.3 55.7 79.7 37.0 69.3 28.7

Mutual

Information

RAE(GPT-2) 83.0 66.3 77.3 41.0 80.3 43.7

RAE(GPT-J) 83.0 69.7 81.3 53.7 82.7 54.0

RAE(Falcon) 82.3 70.7 72.3 44.3 81.7 47.3

RAE(Vicuna) 81.0 66.7 79.3 50.3 85.0 50.0

RAE(Llama2) 82.7 69.3 84.0 49.3 82.0 47.0

from [36, 52]. The results, which reflect the accuracy when all edits

are applied in one batch, are reported in Table 2.

4.2 Editing Performance Evaluation
To answer Q1, we assess our model editing method across various

language models, compared against different baseline methods. Our

key observations from Table 2 are: (1) Our RAE outperforms all

others in three datasets across five language models when conduct-

ing thousands of edits at the same time. This superior performance

primarily stems from our novel MI-based retrieval objective and an

effective pruning strategy. Our design can also seamlessly integrate

an external knowledge graph, which effectively links all edited facts,

thereby facilitating the multi-hop editing process. (2) RAG-based
methods generally show better performance than other methods.

Specifically, Mello and DeepEdit demonstrate good performance

on the M-T dataset with models larger than 6B. However, they un-

derperform on the M-CF and popular datasets and fail with GPT-2,

likely due to GPT-2’s inability to follow their complex prompts,

resulting in no output. Additionally, the subgraph retriever ranks

second in performance. However, its probability-driven retrieval

method occasionally fails to fetch relevant facts, leading to reduced

effectiveness. (3)Other methods generally show lower performance

across all languagemodels, which aligns with the findings from [52].

4.3 Retrieval Performance Evaluation
To answerQ2, we assess the effectiveness of ourmutual information-

based retrieval method for multi-hop question-answering tasks.

4.3.1 Retrieval Baselines. We consider three embedding-based and

one probability-based methods as baselines.

(1) Embedding-based methods mostly utilize dense retrieval to

fetch relevant corpus from vector databases. Here, we adapt them

to fit our multi-hop knowledge graph retrieval task. We employ a

cutting-edge retriever, the Contriever [15], to encode all edited facts

into embeddings, and then cache these embeddings for similarity

search. In addition to Mello, we include two representative multi-

hop retrieval methods as follows:

• KG Link [9, 41] is a straightforward strategy, which identifies

the query entity and its linked entities as candidates to find the

one that is the most similar to the original question. This process

is repeated 𝐾 times to retrieve the entire fact chain.

• Question Reform (QR) [23, 42] appends the retrieved entity

to the previous query for the next hop retrieval. This design is

motivated by simulating a reasoning path where the retrieved

fact at each hop is viewed as an intermediate reasoning result.

(2) Probability-based method (i.e., subgraph retriever [47]) re-

trieves the subgraph𝐺𝑆 ∈ G∗
that maximizes the conditional prob-

ability 𝑝 (𝐺𝑆 |𝑞), where 𝑞 is the input multi-hop question.

4.3.2 Implementation Details. Following [28], we select 300 cases
for each of the 2, 3, and 4-hop questions from the M-CF dataset.

For each type, we report the retrieval precision scores in Table 3.

Specifically, we use the metric 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 , which calculates the

proportion of relevant facts within the top 𝐾 results [28]. Here,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 = |{relevant facts}|/𝐾 × 100%, abbreviated as 𝑃@𝐾 .

For this study, a 𝑘-hop question has 𝑘 facts as its fact chain. A fact

is considered relevant if it is part of the fact chain used to answer a

multi-hop question.

4.3.3 Results. We have the following observations: (1) Our pro-
posed mutual information-based retrieval method demonstrates
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Table 4: Edited accuracy (%) with (w) orwithout (w/o) pruning.

Dataset MQUAKE-CF

Type Strategy GPT-2 GPT-J Falcon Vicuna

Llama2

(chat)

2-hops

w/o Pruning 63.0 63.7 65.2 63.8 70.1

w/ Pruning 73.3 75.5 74.5 73.5 75.8

Gain 16.3%↑ 18.5%↑ 14.3%↑ 15.2%↑ 8.1%↑

3-hops

w/o Pruning 43.1 53.8 55.6 55.0 60.3

w/ Pruning 53.2 65.4 62.1 62.7 65.8

Gain 23.4%↑ 21.6%↑ 11.7%↑ 14.0%↑ 9.1%↑

4-hops

w/o Pruning 49.9 58.8 55.2 61.5 61.6

w/ Pruning 61.9 66.9 62.9 65.5 65.8

Gain 24.0%↑ 13.8%↑ 13.9%↑ 6.5%↑ 6.8%↑

excellent performance across various LLMs in multi-hop fact ex-

traction. We also find its success with relatively small language

models, such as GPT-2, showing strong generalization ability. (2)
In contrast, traditional embedding-based methods (KG Link and

Question Reform) underperform in this multi-hop fact retrieval

challenge. Their limitation mainly lies in failing to comprehend the

complex interplay between multiple relations in a question. Thus, it

hinders the extraction of target facts from the extensive knowledge

base. (3) Mello demonstrates the efficacy of decomposing multi-

hop questions into single-hop questions for this multi-hop facts

retrieval task. Notably, its performance drops significantly with

an increasing number of hops, probably because it becomes much

more challenging for language models to perform question decom-

posing. (4) Probability maximization-based methods outperform

traditional embedding methods, while there is still a gap compared

to ours, probably because the predicted most probable fact may not

be the most necessary one for answering a specific question.

4.4 Ablation Studies on Pruning Strategy
To answer Q3, we verify that our proposed pruning strategies

are beneficial to multi-hop editing tasks. To simulate the situation

where the retrieved facts contain redundant information, we con-

duct our experiment by always retrieving 2 additional facts over

the facts needed by the original question. That is, given a 𝑘-hop

question, we set the total number of retrieved facts as 𝑛 = 𝑘 + 2.

Table 4 reports the edited accuracy of RAE working with or with-

out the pruning strategy, and we draw the following conclusions:

(1) The proposed pruning technique significantly enhances the per-

formance of model editing, demonstrated by achieving an average

accuracy improvement of 14.5% across various language models.

(2)We observe a more profound improvement for smaller language

models on complex questions, while this benefit to larger language

models is relatively less significant. In particular, the performance

improvement of GPT-2 on the 4-hop questions reaches 24.0%, while

for Llama-2 it is just 6.8%. This observation suggests that larger

models are more robust to redundant information.

4.5 Editing Performance on Proprietary LLMs
To answer Q4, we apply the proposed RAE to edit proprietary

languagemodels, wherewe can only access themodel via APIs, such

as ChatGPT [24]. In such cases, RAE utilizes a different lightweight

language model to perform relevant facts retrieval and pruning as

introduced in Section 3.2 and Section 3.3. Then, the obtained facts
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Figure 4: Editing performance and inference cost over differ-
ent proprietary models.

will be fed into the proprietarymodels to perform in-context editing.

We evaluate our proposed editing method on GPT-babbage-002,
GPT-3.5-turbo-0613, GPT-3.5-instruct, and GPT-4-0613 models [25].

We use GPT-2 (1.5B) as our retrieval model. We report the edited

accuracy and total editing cost of our method for 300 randomly

selected cases (MQUAKE-CF) in Figure 4. The editing cost includes

the total fees of calling APIs and the cost of running GPT-2 for

knowledge retrieval on rented GPUs. We also report the results of

Mello [52] for comparison, where only API fees are counted.

In Figure 4, we first observe that Babbage has 0.0% edited ac-

curacy by using Mello, showing its ineffectiveness in editing the

un-instruction tuned proprietary language model. This is expected

since Mello relies on the conversational ability of language models

to decompose multi-hop questions. In contrast, RAE is effective in

editing all these proprietary models with a remarkably lower cost

than Mello. In particular, RAE improves Mello for editing GPT-4

with almost 20% edited accuracy by only costing around its 15%

budget. This highlights the benefit of utilizing the inherent lan-

guage modeling ability instead of the instruction following ability

to perform knowledge retrieval for multi-hop question answering.

4.6 Performance with Different Batch Sizes
In this section, we evaluate editing performance with different

editing batch sizes. Specifically, we set the editing instances in

sizes of 1, 10, 100, and 1000 cases for 2-hop questions. We choose

Mello [52] as our baseline. The result is presented in Figure 5. We

can observe that, in both the Vicuna and Llama2 models, RAE’s

accuracy remains stable across different editing instances, whereas

Mello’s accuracy significantly declines with increasing instances.
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Figure 5: Edited accuracy with different edit batch sizes.

4.7 Case Study
In Figure 6, we present two cases from the M-CF dataset to demon-

strate the retrieval process on a knowledge graph and the pruning
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process of the retrieved facts. For visualizations, the red, black, and

dotted lines represent the final, candidate, and discarded paths in

the knowledge graph with beam search, reflecting the decision-

making process of our retrieval design. In Figure 6a, a potential

path Misery–language–>English–country–>U.K. is discarded even

though it can lead to the correct answer (U.K. in this case). This

is because it does not share the information that is needed to an-

swer the target question, resulting in a low MI score. In Figure 6b,

even though this question is associated with three edited facts, our

method can successfully locate all of them, demonstrating robust-

ness over multi-hop questions. In both cases, our pruning strategy

successfully truncates the retrieved fact chain to only contain nec-

essary facts relying on the normalized model editing entropy.

What is the nationality of the author of  Misery  ? 

Misery

English

Richard
Dawkins

Thriller Royal Society of 
Literature

U.K.

Anglic
United Kingdom of 
Great Britain and 

Ireland

London

Stephen
King U.S.

Misery—author– Richard Dawkins – citizen of—U.K– capital—London

Normalized Model 
Editing Entropy:

1.0 0.0
Truncate here!

0.31
|                                                           |                            |                               |

Pruning

Retrieval

Final path

Candidate path

Discarded path

Original path

(a) A two-hop question example (CaseID 2).

|                                             |                          |                       |                           |

Bangerz—performer — —spouse—           —citizen—Nepal — capital—Kathmandu

Normalized Model 
Editing Entropy:

1.0 0.0
Truncate here!

0.33

Pruning

Retrieval

Which country does the spouse of the performer of 
Bangerz  belong to? 

Bangerz

Pharrell 
Williams

Elvis 
Presley

Jamie 
Hewlett

U.S.

Nepal

Miley 
Cyrus

Final path

Candidate path

Discarded path

Priscilla
Presley

U.K.

Kathmandu

Nepalese 
rupee

Original path

Jamie
Hewlett

Elvis 
Presley

0.84

(b) A three-hop question (CaseID 1143).

Figure 6: Case studies for edited facts retrieval and prun-
ing. The retrieval process involves the beam search, starting
from the query entity and navigating through the knowledge
graph with two beams. At each entity hop, the two primary
candidate edges are highlighted in bold, while others are
discarded and marked with dashed lines. The beam search
result with the highest MI score is emphasized in red.

5 Related Work: Model Editing
Existing editing methods can be categorized into the following

kinds: First, methods that alter model parameters, including fine-

tuning [53], locate-then-edit [19, 20], and meta-learning [21, 48],

are prone to catastrophic forgetting issue [7, 8, 46], where the pre-

viously encoded knowledge could be lost after editing. They also

struggle with using updated language for knowledge reasoning,

which can lead to severe hallucinations. [4, 10, 52]. While these

methods perform well in single-hop editing, they are less effec-

tive in multi-hop scenarios. [52]. Second, methods that depend on

training auxiliary models also fall short in these scenarios. The aux-

iliary models are usually smaller language models, which lack the

necessary reasoning capability to infer correct answers [22]. In con-

trast, a third category of methods, based on Retrieval-Augmented

Generation (RAG), modifies model outputs in a more effective man-

ner [11, 36, 44, 52]. These methods integrate updated knowledge

directly into the model input and edit LLMs through an editing

prompt. [7, 50]. RAG-based approaches offer notable benefits as

they are resistant to catastrophic forgetting, and allow for on-the-fly

editing. [14, 35]. For multi-hop editing, existing RAG-based meth-

ods perform well on powerful proprietary LLMs like GPT-3.5, but

show significant degradation on less robust LLMs such as Llama2-

7b, particularly as the number of editing instances increases. In

contrast, our RAE can maintain good editing performance even

with relatively small LLMs and large editing batch sizes.

6 Conclusion
We propose a novel LLM editing framework for multi-hop QA that

employs mutual information maximization for fact retrieval and a

self-optimizing technique to prune redundant data. This effectively

tackles the integration of real-time knowledge updates in LLMs. Our

extensive evaluations confirm the framework’s ability to enhance

the accuracy of LLM responses, marking significant progress in

model editing and dynamic knowledge integration research.
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A Theoretical Justification
Theorem 1. Given retrieved graph 𝐺𝑆 ∈ G, the latent concept 𝜃𝑐 ,

and the question 𝑞 sampled conditioned on concept 𝜃𝑐 , there exists a
mutual information inequality: 𝐼 (𝐺𝑆 ;𝜃𝑐 ) ≥ 𝐼 (𝐺𝑆 ;𝑞).

Proof. Consider latent concepts 𝜃𝑐 is inferred from a knowledge

graph𝐺𝑆 , and a question 𝑞 is then generated based on this concept.

The following Markov chain: 𝐺𝑆 → 𝜃𝑐 → 𝑞 exists, indicating that

𝑞 is conditionally independent to 𝐺𝑠 . According to the chain rule

for mutual information, we can have:

𝐼 (𝐺𝑆 ;𝜃𝑐 , 𝑞) = 𝐼 (𝐺𝑆 ;𝑞) + 𝐼 (𝐺𝑆 ;𝜃𝑐 |𝑞) = 𝐼 (𝐺𝑆 ;𝜃𝑐 ) + 𝐼 (𝐺𝑆 ;𝑞 |𝜃𝑐 ) . (15)
Given that the question 𝑞 is conditionally independent of the graph

𝐺𝑆 , the term 𝐼 (𝐺𝑆 ;𝑞 |𝜃𝑐 ) equals zero. Therefore, we are left with:
𝐼 (𝐺𝑆 ;𝜃𝑐 ) ≥ 𝐼 (𝐺𝑆 ;𝑞) . Equality holds precisely when 𝐼 (𝐺𝑆 ;𝑞 |𝜃𝑐 ) is
zero, meaning that the graph𝐺𝑆 provides no additional information

about 𝑞 once 𝜃𝑐 is known. □
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