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A central issue lying at the heart of online reinforcement learning (RL) is data efficiency. While a number
of recent works achieved asymptotically minimal regret in online RL, the optimality of these results is only
guaranteed in a “large-sample” regime, imposing enormous burn-in cost in order for their algorithms to
operate optimally. How to achieve minimax-optimal regret without incurring any burn-in cost has been an
open problem in RL theory.

We settle this problem for finite-horizon inhomogeneous Markov decision processes. Specifically, we prove
that a modified version of MVP (Monotonic Value Propagation), an optimistic model-based algorithm proposed
by Zhang et al. [82], achieves a regret on the order of (modulo log factors)

min{VSAH®K, HK},
{

where S is the number of states, A is the number of actions, H is the horizon length, and K is the total
number of episodes. This regret matches the minimax lower bound for the entire range of sample size K >

1, essentially eliminating any burn-in requirement. It also translates to a PAC sample complexity (i.e., the

3
number of episodes needed to yield e-accuracy) of S/:ZH up to log factor, which is minimax-optimal for the

full e-range. Further, we extend our theory to unveil the influences of problem-dependent quantities like
the optimal value/cost and certain variances. The key technical innovation lies in a novel analysis paradigm
(based on a new concept called “profiles”) to decouple complicated statistical dependency across the sample
trajectories — a long-standing challenge facing the analysis of online RL in the sample-starved regime.
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1 Introduction

In reinforcement learning (RL), an agent is often asked to learn optimal decisions (i.e., the
ones that maximize cumulative reward) through real-time “trial-and-error” interactions with an
unknown environment. This task is commonly dubbed as online RL, underscoring the critical role
of adaptive online data collection and differentiating it from other RL settings that rely upon pre-
collected data. A central challenge in achieving sample-efficient online RL boils down to how to
optimally balance exploration and exploitation during data collection, namely, how to tradeoff the
potential revenue of exploring unknown terrain/dynamics against the benefit of exploiting past
experience. While decades-long effort has been invested toward unlocking the capability of online
RL, how to fully characterize — and more importantly, attain — its fundamental performance limit
remains largely unsettled.

In this article, we take an important step toward settling the sample complexity limit of online
RL, focusing on tabular Markov Decision Processes (MDPs) with finite horizon and finite state-
action space. More concretely, imagine that one seeks to learn a near-optimal policy of a time-
inhomogeneous MDP with S states, A actions, and horizon length H, and is allowed to execute the
MDP of interest K times to collect K sample episodes each of length H. This canonical problem is
among the most extensively studied in the RL literature, with formal theoretical pursuit dating back
to more than 25 years ago (e.g., Kearns and Singh [34]). Numerous works have since been devoted
to improving the sample efficiency and/or refining the analysis framework [6, 7, 11, 17, 20, 26, 29, 32,
42, 49, 81, 82, 84]. As we shall elucidate momentarily, however, information-theoretic optimality
has only been achieved in the “large-sample” regime. When it comes to the most challenging
sample-hungry regime, there remains a substantial gap between the state-of-the-art regret upper
bound and the best-known minimax lower bound, which motivates the research of this article.

1.1 Inadequacy of Prior Art: Enormous Burn-in Cost

While past research has obtained asymptotically optimal (i.e., optimal when K approaches infinity)
regret bounds in the aforementioned setting, all of these results incur an enormous burn-in cost —
that is, the minimum sample size needed for an algorithm to operate sample-optimally — which
we explain in the sequel. For simplicity of presentation, we assume that each immediate reward
lies within the normalized range [0, 1] when discussing the prior art.

Minimax lower bound. To provide a theoretical benchmark, we first make note of the best-
known minimax regret lower bound developed by Domingues et al. [20], Jin et al. [29]':

(minimax lower bound) Q (min { VSAH3K, HK}) , (1)

et X = {S, A H, K, %} where 1 — § is the target success rate (to be seen shortly). The notation f(X) = O(g(X)) (or
f(X) < g(X)) indicates the existence of some universal constant ¢; > 0 such that f(X) < ¢1g(X); f(X) = Q(g(X)) (or
f(X) 2 g(X)) means that there exists some universal constant c; > 0 such that f(X) > c2g(X); and f(X) = ©(g(X)) (or
f(X) =< g(X)) means that f(X) < g(X) and f(X) 2 g(X) hold simultaneously. Moreover, O(+), Q(-) and © () are defined
analogously, except that all logarithmic dependency on the quantities of X are hidden.
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assuming that the immediate reward at each step falls within [0, 1] and imposing no restriction on
K. Given that a regret of O(HK) can be trivially achieved (as the sum of rewards in any K episodes
cannot exceed HK), we shall sometimes drop the HK term and simply write

(minimax lower bound) Q(VSAH?K) if K > SAH. (2)

Prior upper bounds and burn-in cost. We now turn to the upper bounds developed in prior
literature. For ease of presentation, we shall assume

K > SAH, (3)

in the rest of this subsection unless otherwise noted. Log factors are also ignored in the discussion
below.

The first article that achieves asymptotically optimal regret is Azar et al. [6], which came up
with a model-based algorithm called UCBVI that enjoys a regret bound O(VSAH3K + H3S?A). A
close inspection reveals that this regret matches the minimax lower bound (2) if and only if

(burn-in cost of Azar et al. [6]) K > S*AH®, (4)

due to the presence of the lower-order term H*S?A in the regret bound. This burn-in cost is clearly
undesirable, since the sample size available in many practical scenarios might be far below this
requirement.

In light of its fundamental importance in contemporary RL applications (which often have very
large dimensionality and relatively limited data collection capability), reducing the burn-in cost
without compromising sample efficiency has emerged as a central problem in recent pursuit of
RL theory [1, 18, 40, 42, 47, 49, 61, 81, 82, 87]. The state-of-the-art regret upper bounds for finite-
horizon inhomogeneous MDPs can be summarized below (depending on the size of K):

[49]  O(VSAH®K + SAH*), (52)
[82,87]  O(VSAH3K + S?AH?), (5b)

meaning that even the most advanced prior results fall short of sample optimality unless
(best burn-in cost in past works) K > min {SAHS, SSAH}. (6)

The interested reader is referred to Table 1 for more details about existing regret upper bounds
and their associated sample complexities.

In summary, no prior theory was able to achieve optimal sample complexity in the data-hungry
regime

SAH < K < min {SAH’, S’AH}, (7

suffering from a significant barrier of either a long horizon (as in the term SAH®) or a large state
space (as in the term S>AH). In fact, the information-theoretic limit is yet to be determined within
this regime (i.e., neither the achievability results nor the lower bounds had been shown to be tight),
although it has been conjectured by Ménard et al. [49] that the lower bound (1) reflects the correct
scaling for any sample size K.2

Comparisons with other RL settings and key challenges. In truth, the incentives to minimize
the burn-in cost and improve data efficiency arise in multiple other settings beyond online RL. For
instance, in an idealistic setting that assumes access to a simulator (or a generative model) — a
model that allows the learner to query arbitrary state-action pairs to draw samples — a recent

Note that the original conjecture in Ménard et al. [49] was é(\/ SAH®K + SAH?). Combining it with the trivial upper
bound HK allows one to remove the term SAH? (with a little algebra).
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Table 1. Comparisons between Our Result and Prior Works that Achieve Asymptotically Optimal Regret
for Finite-horizon Inhomogeneous MDPs (with All Log Factors Omitted), where S (respectively A) is the
Number of States (Respectively Actions), H is the Planning Horizon, and K is the Number of Episodes

. Range of K that Sample complexity
Algorithm Regret upper bound
& & PP attains optimal regret (or PAC bound)
MVP 3
. ~/ 3 SAH’
(this work, Theorem 1.1) i { S HK} (1, 00) &
U(Ea/ I min {VSAH?K + S2AH®, HK} [SAH?, o) SARL AR
O[F:'é]c min {VSAH?K + S2AH*, HK} [SPAHS, o) SAIL | SPAHL
e min {VSAFPK + SY2AH*(VS + V), HK} | [SPAH(VS + V), o0) | SAL 1 SAH NS
uca—gdv min {VSAH?K + SLAY2H3/4KY4, HK) [SSA*H? | o) SAID y SPAH)
F'ggp] min {VSAH?K + SAH?, HK} [S®AH, o) SAIE  SAR
U[CE]Q min {VSAH®K + SAH*, HK} [SAH?, o) SAID 4 SAH'
Q-Earlysettled-Adv min {VSAH?K + SAH®, HK} [SAH?, o) SAI? | SAHC
[42] ’ ’ 2 B
Lower bound . SAH®
(20] min { VSAH?K, HK } n/a A
The third column reflects the burn-in cost, and the sample complexity (or PAC bound) refers to the number of episodes

needed to yield ¢ accuracy. The results provided here account for all K > 1 or all € € (0, H]. Our article is the only one
that gives regret (respectively PAC) bound matching the minimax lower bound for the entire range of K
(respectively ¢).

work Li et al. [43] developed a perturbed model-based approach that is provably optimal without
incurring any burn-in cost. Analogous results have been obtained in Li et al. [47] for offline RL —
a setting that requires policy learning to be performed based on historical data — unveiling the
full-range optimality of a pessimistic model-based algorithm.

Unfortunately, the algorithmic and analysis frameworks developed in the above two works fail
to accommodate the online counterpart. The main hurdle stems from the complicated statistical
dependency intrinsic to episodic online RL; for instance, in online RL, the empirical transition
probabilities and the running estimates of the value function are oftentimes statistically depen-
dent in an intertwined manner (unless we waste data). How to decouple the intricate statistical
dependency without compromising data efficiency constitutes the key innovation of this work.
More precise, in-depth technical discussions will be provided in Section 4.

1.2 A Peek at Our Main Contributions

We are now positioned to summarize the main findings of this article. Focusing on time-
inhomogeneous finite-horizon MDPs, our main contributions can be divided into two parts: the
first part fully settles the minimax-optimal regret and sample complexity of online RL, whereas
the second part further extends and augments our theory to make apparent the impacts of certain
problem-dependent quantities. Throughout this subsection, the regret metric Regret(K) captures
the cumulative sub-optimality gap (i.e., the gap between the performance of the policy iterates and
that of the optimal policy) over all K episodes, to be formally defined in (17).

1.2.1  Settling the Optimal Sample Complexity with No Burn-in Cost. Our first result fully deter-
mines the sample complexity limit of online RL in a minimax sense, allowing one to attain the
optimal regret regardless of the number K of episodes that can be collected.
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THEOREM 1.1. For any K > 1 and any 0 < & < 1, there exists an algorithm (see Algorithm 1)
obeying

Regret(K) < min {\/SAH3K10g5 SAHTK,HK} (8)

with probability at least 1 — 6.

The optimality of our regret bound (8) can be readily seen given that it matches the minimax
lower bound (1) (modulo some logarithmic factor). One can also easily translate the above regret
bound into sample complexity or probably approximately correct (PAC) bounds: the proposed
algorithm is able to return an e-suboptimal policy with high probability using at most

~ (SAH?
(sample complexity) O( = ) episodes, 9)

(or equivalently, 9] ( S’g{ : ) sample transitions as each episode has length H). Remarkably, this result
holds true for the entire ¢ range (i.e., any ¢ € (0, H]), essentially eliminating the need of any burn-
in cost. It is noteworthy that even in the presence of an idealistic generative model, this order of
sample size is un-improvable [5, 43].

The algorithm proposed herein is a modified version of MVP: Monotonic Value Propagation. Orig-
inally proposed by Zhang et al. [82], the MVP method falls under the category of model-based
approaches, a family of algorithms that construct explicit estimates of the probability transition
kernel before value estimation and policy learning. Notably, a technical obstacle that obstructs
the progress in understanding model-based algorithms arises from the exceedingly large model
dimensionality: given that the dimension of the transition kernel scales proportionally with S?,
all existing analyses for model-based online RL fell short of effectiveness unless the sample size
already far exceeds 52 [6, 82]. To overcome this undesirable source of burn-in cost, a crucial step is
to empower the analysis framework in order to accommodate the highly sub-sampled regime (i.e.,
a regime where the sample size scales linearly with S), which we shall elaborate on in Section 4.
The full proof of Theorem 1.1 will be provided in Section 5.

1.2.2  Extension: Optimal Problem-dependent Regret Bounds. In practice, RL algorithms of-
ten perform far more appealingly than what their worst-case performance guarantees would
suggest. This motivates a recent line of works that investigate optimal performance in a
more problem-dependent fashion [19, 25, 30, 62, 66, 68, 69, 77, 79, 81, 86, 87]. Encourag-
ingly, the proposed algorithm automatically achieves optimality on a more refined problem-
dependent level, without requiring prior knowledge of additional problem-specific knowledge.
This results in several extended theorems that take into account different problem-dependent
quantities.

The first extension below investigates how the optimal value influences the regret bound.

THEOREM 1.2 (OPTIMAL VALUE-DEPENDENT REGRET). For any K > 1, Algorithm 1 satisfies
E[Regret(K)| < min { VSAH?Kv*, Kv* } log’(SAHK), (10)

where v* is the value of the optimal policy averaged over the initial state distribution (to be formally

defined in (43)).

Moreover, there is also no shortage of applications where the use of a cost function is preferred
over a value function [2, 4, 37, 72]. For this purpose, we provide another variation based upon the
optimal cost.
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THEOREM 1.3 (OPTIMAL COST-DEPENDENT REGRET). For any K > 1 and any 0 < § < 1,
Algorithm 1 achieves

Regret(K) < O (min {VSAH?Kc* + SAH2, K(H — c*)}) , (11)

with probability exceeding 1 — 8, where ¢* denotes the cost of the optimal policy averaged over the
initial state distribution (to be formally defined in (45)).

It is worth noting that: despite the apparent similarity between the statements of Theorem 1.2 and
Theorem 1.3, they do not imply each other, although their proofs are very similar to each other.

Finally, we establish another regret bound that reflects the effect of certain variance quantities
of interest.

THEOREM 1.4 (OPTIMAL VARIANCE-DEPENDENT REGRET). For any K > 1 and any 0 < § < 1,
Algorithm 1 obeys

Regret(K) < O (min {VSAHKvar + SAH?, KH}) , (12)
with probability at least 1 — §, where var is a quantity defined in (49).

As we shall see later in (49), var is a variance-type metric. Two remarks concerning the above
extensions are in order:

— In the worst-case scenarios, the quantities v*, ¢* and var can all be as large as the order
of H, in which case Theorems 1.2-1.4 readily recover Theorem 1.1. In contrast, the advan-
tages of Theorems 1.2-1.4 over Theorem 1.1 become more evident in those favorable cases
(e.g., the situation where v* < H or ¢* < H, or the case when the environment is nearly
deterministic (so that var ~ 0)).

— Interestingly, the regret bounds in Theorems 1.2-1.4 all contain a lower-order term SAH?,
and one might naturally wonder whether this term is essential. To demonstrate the unavoid-
able nature of this term and hence the optimality of Theorems 1.2-1.4, we will provide match-
ing lower bounds, to be detailed in Section 6.

1.3 Related Works

Let us take a moment to discuss several related theoretical works on tabular RL. Note that there
has also been an active line of research that exploits low-dimensional function approximation to
further reduce sample complexity, which is beyond the scope of this article.

Our discussion below focuses on two mainstream approaches that have received widespread
adoption: the model-based approach and the model-free approach. In a nutshell, model-based algo-
rithms decouple model estimation and policy learning, and often use the learned transition kernel
to compute the value function and find a desired policy. In stark contrast, the model-free approach
attempts to estimate the optimal value function and optimal policy directly without explicit esti-
mation of the model. In general, model-free algorithms only require O(SAH) memory — needed
when storing the running estimates for Q-functions and value functions — while the model-based
counterpart might require Q(S?AH) space in order to store the estimated transition kernel.

Sample complexity for RL with a simulator. As an idealistic setting that separates the consid-
eration of exploration from that of estimation, RL with a simulator (or generative model) has been
studied by numerous works, allowing the learner to draw independent samples for any state-action
pairs [1, 5,9, 14, 15, 23, 32, 33, 39, 40, 43, 53, 59-61, 70, 71]. While both model-based and model-free
approaches are capable of achieving asymptotic sample optimality [1, 5, 61, 71], all model-free al-
gorithms that enjoy asymptotically optimal sample complexity suffer from dramatic burn-in cost.
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Thus far, only the model-based approach has been shown to fully eliminate the burn-in cost for
both discounted infinite-horizon MDPs and inhomogeneous finite-horizon MDPs [43]. The full-
range optimal sample complexity for time-homogeneous finite-horizon MDPs in the presence of
a simulator remains open.

Sample complexity for offline RL. The subfield of offline RL is concerned with learning
based purely on a pre-collected dataset [38]. A frequently used mathematical model assumes
that historical data are collected (often independently) using some behavior policy, and the
key challenges (compared with RL with a simulator) come from distribution shift and incom-
plete data coverage. The sample complexity of offline RL has been the focus of a large strand
of recent works, with asymptotically optimal sample complexity achieved by multiple algo-
rithms [31, 41, 44, 54-56, 58, 74, 75, 78, 80]. Akin to the simulator setting, the fully optimal
sample complexity (without burn-in cost) has only been achieved via the model-based approach
when it comes to discounted infinite-horizon and inhomogeneous finite-horizon settings [41]. All
asymptotically optimal model-free methods incur substantial burn-in cost. The case with time-
homogeneous finite-horizon MDPs also remains unsettled.

Sample complexity for online RL. Obtaining optimal sample complexity (or regret bound) in
online RL without incurring any burn-in cost has been one of the most fundamental open problems
in RL theory. In fact, the past decades have witnessed a flurry of activity toward improving the
sample efficiency of online RL, partial examples including [3, 8, 11, 12, 16, 17, 20-22, 25-27, 29,
32, 34-36, 42, 45-47, 49-52, 57, 63-65, 67, 73, 76, 81-84]. Unfortunately, no work has been able to
conquer this problem completely: the state-of-the-art result for model-based algorithms still incurs
a burn-in that scales at least quadratically in S [82], while the burn-in cost of the best model-free
algorithms (particularly with the aid of variance reduction introduced in Zhang et al. [84]) still
suffers from highly sub-optimal horizon dependency [42].

1.4 Notation

Before proceeding, let us introduce a set of notation to be used throughout. Let 1 and 0 indicate
respectively the all-one vector and the all-zero vector. Let e; denote the sth standard basis vector
(which has 1 at the sth coordinate and 0 otherwise). For any set X, A(X) represents the set of
probability distributions over the set X. For any positive integer N, we denote [N] = {1,...,N}.
For any two vectors x,y with the same dimension, we use {x,y) (or x"y) to denote the inner
product of x and y. For any integer S > 0, any probability vector p € A([S]) and another vector
v = [vi]1<i<s, we denote by

2

V(p,v) = (p,0%) = ((p,v))* = (p, (v = (p,)1)"), (13)

the associated variance, where v* = [0?];<;<s represents element-wise square of v. For any two
vectors a = [ajli<i<n and b = [b;]1<i<n, the notation a > b (respectively a < b) means a; >

b; (respectively a; < b;) holds simultaneously for all i. Without loss of generality, we assume
throughout that K is a power of 2 to streamline presentation.

2 Problem Formulation
In this section, we introduce the basics of tabular online RL, as well as some basic assumptions to
be imposed throughout.

Basics of finite-horizon MDPs. This article concentrates on time-inhomogeneous (or nonsta-
tionary) finite-horizon MDPs. Throughout the article, we employ S = {1,...,S} to denote the
state space, A = {1,..., A} the action space, and H the planning horizon. The notation P = {Pj, :
SxA — A(S)}1 <<p denotes the probability transition kernel of the MDP; for any current state s
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at any step h, if action a is taken, then the state at the next step h+1 of the environment is randomly
drawn from Ps 4 == Pp(-|s,a) € A(S). Also, the notation R = {Rs,a,h € A([O,H])}lsth,se&aeﬂ
indicates the reward distribution; that is, while executing action a in state s at step h, the agent
receives an immediate reward — which is non-negative and possibly stochastic — drawn from the
distribution R, 4 5. We shall also denote by r = {rh (s, a)} \<h<H.seS.acA the mean reward function,
so that rp(s,a) == Ep g, ,[r'] € [0, H] for any (s, a, h)-tuple. Additionally, a deterministic policy
7 ={m, : S —> A}i<nh<y stands for an action selection rule, so that the action selected in state
s at step h is given by my(s). The readers can consult standard textbooks (e.g., Bertsekas [10]) for
more extensive descriptions.

In each episode, a trajectory (si,ay,ry,S2,...,SH,aH, r;{) is rolled out as follows: the learner
starts from an initial state s; independently drawn from some fixed (but unknown) distribution p €
A(S); for each step 1 < h < H, the learner takes action ay,, gains an immediate reward r”l ~ Rs, ap hs
and the environment transits to the state sp,; at step h + 1 according to Ps, 4, . Note that both
the reward and the state transition are independently drawn from their respective distributions,
depending solely on the current state-action-step triple but not any previous outcomes. All of our
results in this article operate under the following assumption on the total reward.

AsSUMPTION 1. For any possible trajectory (sy,a1,r{,...,SH,aH, rI’{), one always has 0 <
H ’
h=1 T S H.

As can be easily seen, Assumption 1 is less stringent than another common choice that assumes

r; € [0, 1] for any h in any episode. In particular, Assumption 1 allows for sparse and spiky rewards
along an episode; more discussions can be found in [28, 73].

Value function and Q-function. For any given policy 7, one can define the value function V7" =
{V,} : S — R} and the Q-function Q" = {Qy : S X A — R} such that

[ =
Vi(s) = E Z ri

j=h

sp=s|, V(s,h) € S X [H], (14a)

[ H
Qy(s,a) = E, Z r]f ) (sh,apn) = (s,a)|, Y(s,a,h) € S X A X[H], (14b)
.j:h

where the expectation E[-] is taken over the randomness of an episode {(sh, ap, ri,z)}1<h<H gen-

erated under policy 7, that is, a; = 7j(s;) for every h < j < H (respectively h < j < H) is chosen

in the definition of V" (respectively Q7). Accordingly, we define the optimal value function and
the optimal Q-function respectively as

VX (s) = max Vi (s), V(s,h) € S X [H], (15a)

Q5 (s, a) :== max Q7 (s, a) V(s,a,h) € S x A x [H]. (15b)

Throughout this article, we shall often abuse the notation by letting both V,™ and V}* (respec-
tively Q7 and QJ) represent S-dimensional (respectively SA-dimensional) vectors containing all
elements of the corresponding value functions (respectively Q-functions). Two important prop-
erties are worth mentioning: (a) the optimal value and the optimal Q-function are linked by the
Bellman equation:

Qp(s.a) = (s, a) + (Prs.a Vi) Vi (s) = max Qj (s, @), V(s,a,h) € S x A x [H];
(16)
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(b) there exists a deterministic policy, denoted by 7*, that achieves optimal value functions and
Q-functions for all state-action-step tuples simultaneously, that is

V7 (s)=V () and  QF (s,a) = Qp(s,a),  V(s,a,h) € S x A x[H].

Data collection protocol and performance metrics. During the learning process, the learner
is allowed to collect K episodes of samples (using arbitrary policies it selects). More precisely, in
the kth episode, the learner is given an independently generated initial state sf ~ p, and exe-
cutes policy 7% (chosen based on data collected in previous episodes) to obtain a sample trajectory
{(s’; , aﬁ, r;f)}l <h<p With sﬁ , aﬁ and r’,: denoting the state, action, and immediate reward at step h
of this episode.

To evaluate the learning performance, a widely used metric is the (cumulative) regret over all K
episodes:

K
Regret(K) = Z (Vl*(sf) - Vl”lc (s{c ) , (17)

k=1
and our goal is to design an online RL algorithm that minimizes Regret(K) regardless of the allow-
able sample size K. It is also well-known (see, e.g., Jin et al. [29]) that a regret bound can often
be readily translated into a PAC sample complexity result, the latter of which counts the number
of episodes needed to find an ¢-optimal policy 7 in the sense that Eg ., [Vl*(sl) - Vl’? (sl)] <e¢
(note that the expectation here is taken not only over the randomness of the initial state, but
also over the randomness in selecting 7). For instance, the reduction argument in Jin et al. [29]
reveals that: if an algorithm achieves Regret(K) < f(S,A, H)K'™* for some function f and
some parameter & € (0,1), then by randomly selecting a policy from {7¥};<x<x as 7 one
achieves Ey, -, [Vl* (s1)— Vl’? (sl)] < f(S, A, H)K™%, thus resulting in a sample complexity bound of
(f(S,?,H))l/a'

3 A Model-based Algorithm: Monotonic Value Propagation

In this section, we formally describe our algorithm: a simple variation of the model-based algo-
rithm called Monotonic Value Propagation proposed by Zhang et al. [82]. We present the full pro-
cedure in Algorithm 1, and point out several key ingredients.

— Optimistic updates using upper confidence bounds (UCB). The algorithm implements the opti-
mism principle in the face of uncertainty by adopting the frequently used UCB-based frame-
work (see, e.g., UCBVI by Azar et al. [6]). More specifically, the learner calculates the opti-
mistic Bellman equation backward (from h = H, ..., 1): it first computes an empirical esti-
mate P = {ﬁh € RS4XSY, <y of the transition probability kernel as well as an empirical
estimate 7 = {7, € R%4},4<p of the mean reward function, and then maintains upper
estimates for the associated value function and Q-function using

Qn(s,a) «— min {Fu(s,a) + (Py.a.hr Vi) + bi(s, a), H}, (18a)
Vi(s) < max, Qx(s, a), (18b)

for all state-action pairs. Here, Qy, (respectively V},) indicates the running estimate for the
Q-function (respectively value function), whereas by (s, a) > 0 is some suitably chosen bonus
term that compensates for the uncertainty. The above opportunistic Q-estimate in turn al-
lows one to obtain a policy estimate (via a simple greedy rule), which will then be executed
to collect new data. The fact that we first estimate the model (i.e., the transition kernel and
mean rewards) makes it a model-based approach. Noteworthily, the empirical model (ﬁ,ﬂ

J. ACM, Vol. 72, No. 3, Article 22. Publication date: June 2025.



22:10

Z.Zhang et al.

ALGORITHM 1: Monotonic Value Propagation (MVP) [82]

1 input: state space S, action space A, horizon H, total number of episodes K, confidence parameter &,
c = ﬂ,CZ =2\/§,C3 = %

2 initialization: set §’ «

9

m, and for all (s,a,s’,h) € S X A X S X [H], set O,(s, a) « 0,

kp(s,a) < 0, NZ“(S, a,s’) « 0, Ny(s,a,s”) < 0, Np(s,a) < 0, Qp(s,a) « H, Vj(s) < H.
3 fork=1,2,...,Kdo

10

11

12

13

14

15
16
17
18

19

Set ¥ such that ;T;f(s) = argmax, Qp(s,a) forall s € S and h € [H]. /* policy update. */
forh=1,2,...,Hdo

Observe sz , take action aﬁ
’ k k .k
(s,a,8") (s, ap,sp 1)

Update N;l‘“(s, a) «— N;l‘”(s, a) + 1, Ny(s,a,s”) < Ny(s,a,s") + 1, 0y(s, a) < Op(s,a) + rllf,
Kn(s.@) — p(5, @) + (K2

— k : k k :
= arg maxg Qh(sh, a), receive s observe Sp.q- /% sampling.  x/

/* perform updates using data of this epoch. */
if N2(s,a) € {1,2,...,21°:K} then
Ny(s,a) < Y5 Np(s,a,5). // number of visits to (s,a,h) in this epoch.

71,(s,a) Z’;((SS'Z)) // empirical rewards of this epoch.
op(s,a) «— %A// empirical squared rewards of this epoch.
ﬁs,a,h@‘— %’S’“‘ﬁ)for alls€ S.// empirical transition for this epoch.

Set TRIGGERED = TRUE, and 0},(s, a) < 0, kj,(s, a) < 0, Ny(s,a,s) < 0 foralls € S.

/* optimistic Q-estimation using empirical model of this epoch. */
if TRIGGERED= TRUE then

Set TRIGGERED = FALSE, and Vi ,1(s) « O foralls € S.

forh=H,H-1,...,1do

for (s,a) e S X A do

V(Ps,a,h Vis1) log 3 (Gh(s. @) = (Fh(s. @)?) log
bp(s,a) « c1 2
max{Ny(s,a), 1} max{Ny(s, a), 1}
Hlog %
+03 —————,
max{Np(s, a), 1}
Qp(s,a) «— min {7,(s,a) + (ﬁs,a,h, Vis1) + bp(s, @), H}, Vy(s) — max On(s,a). (20)

(19)

shall be updated multiple times as new samples continue to arrive, and hence the updating
rule (18) will be invoked multiple times as well.

— An epoch-based procedure and a doubling trick. Compared to the original UCBVI [6], one dis-

tinguishing feature of MVP is to update the empirical transition kernel and empirical rewards
in an epoch-based fashion, as motivated by a doubling update framework adopted in Jaksch
etal. [26]. More concretely, the whole learning process is divided into consecutive epochs via
a simple doubling rule; namely, whenever there exits a (s, a, h)-tuple whose visitation count
reaches a power of 2, we end the current epoch, reconstruct the empirical model (cf. lines 11
and 13 of Algorithm 1), compute the Q-function and value function using the newly up-
dated transition kernel and rewards (cf. (20)), and then start a new epoch with an updated
sampling policy. This stands in stark contrast with the original UCBVI, which computes new
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estimates for the transition model, Q-function and value function in every episode. With
this doubling rule in place, the estimated transition probability vector for each (s, a, h)-tuple
will be updated by no more than log, K times, a feature that plays a pivotal role in signif-
icantly reducing some sort of covering number needed in our covering-based analysis (as
we shall elaborate on shortly in Section 4). In each epoch, the learned policy is induced by
the optimistic Q-function estimate — computed based on the empirical transition kernel of
the current epoch — which will then be employed to collect samples in all episodes of the
next epoch. More technical explanations of the doubling update rule will be provided in
Section 4.2.

— Monotonic bonus functions. Another crucial step in order to ensure near-optimal regret lies in
careful designs of the data-driven bonus terms {by(s, a)} in (18a). Here, we adopt the mono-
tonic Bernstein-style bonus function for MVP originally proposed in Zhang et al. [82], to be
made precise in (19). Compared to the bonus function in Euler [81] and UCBVI [6], the mono-
tonic bonus form has a cleaner structure that effectively avoids large lower-order terms. Note
that in order to enable variance-aware regret, we also need to keep track of the empirical
variance of the (stochastic) immediate rewards. For more details about “monotonicity” and
bonus functions, we refer the readers to Appendix C.1.

Remark 1. We note that a doubling update rule has also been used in the original MVP [82]. A
subtle difference between our modified version and the original one lies in that: when the visitation
count for some (s, a, h) reaches 2 for some integer i > 1, we only use the second half of the samples
(ie., the {271 + l}lz:l1 -th samples) to compute the empirical model, whereas the original MVP makes
use of all the 2! samples. This modified step turns out to be helpful in our analysis, while still
preserving sample efficiency in an orderwise sense (since the latest batch always contains at least

half of the samples).

4 Key Technical Innovations

In this section, we point out the key technical hurdles the previous approach encounters when
mitigating the burn-in cost, and put forward a new strategy to overcome such hurdles. For ease
of presentation, let us introduce a set of augmented notation to indicate several running iterates
in Algorithm 1, which makes clear the dependency on the episode number k and will be used
throughout all of our analysis.

— ﬁf an € RS: the latest update of the empirical transition probability vector ﬁs, . before the
kth episode.

— ’r}’f(s, a) € [0, H]: the latest update of the empirical reward 7} (s, a) before the kth episode.

— 3{1‘ (s,a) € [0, H?]: the latest update of the empirical squared reward oy,(s, a) before the kth
episode.

— bﬁ(s, a) > 0: the latest update of the bonus term by, (s, a) before the kth episode.

— N}]:’a”(s, a): the total visitation count of the (s, a, h)-tuple before the beginning of the kth
episode.

— N}I: (s, a): the visitation count N (s, a) of the (s, a, h)-tuple of the latest doubling batch used
to compute }/’\S a.n before the kth episode. When N}I:’a”(s, a) = 0, we define le(s, a) = 1 for
ease of presentation.

— V}f € RS: the value function estimate V}, before the beginning of the kth episode.

— Q’; € R54: the Q-function estimate Qj, before the beginning of the kth episode.

Another notation for the empirical transition probability vector is also introduced below:
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—For any j > 2 (respectively j = 1), let ﬁg’ )a , be the empirical transition probability vector
for (s, a, h) computed using the jth batch of data, i.e., the {2/72 + i}?i_lz-th samples (respec-
tively the 1st sample) for (s, a, h). For completeness, we take P A(O; = 1 for the 0th batch.

— Similarly, let Ag)(s, a) (respectively 0}(1”(5, a)) denote the empirical reward (respectively em-
pirical squared reward) w.r.t. (s, a, h) based on the jth batch of data.

4.1 Technical Barriers in Prior Theory for UCBVI

Let us take a close inspection on prior regret analysis for UCB-based model-based algorithms, in
order to illuminate the part that calls for novel analysis. To simplify presentation, this subsection
assumes deterministic rewards so that each empirical reward is replaced by its mean.

Let us look at the original UCBVI algorithm proposed by Azar et al. [6]. Standard decomposition
arguments employed in the literature (e.g., Azar et al. [6], Jaksch et al. [26], Zhang et al. [82])
decompose the regret as follows:

Dk, all
Regret(K) <Z (Ps aa b - P, k gk, h) el T Zbk sh,ah

k
+ (Ps;j,ai,h - es}’; )(Vh+1 V}ﬁ—l) (21)
k,h

see also the derivation in Section 5. Here, we abuse the notation by letting V}fH (respectively bﬁ )
be the value function estimate (respectively bonus term) of UCBVI before the kth episode, and in
the meantime, we let Pk all , represent the empirical transition probability for the (s, a, h)-tuple com-
puted using all samples before the kth episode (note that we add the superscript all to differentiate
it from its counterpart in our algorithm). In order to achieve full-range optimal regret, one needs
to bound the three terms on the right-hand side of (21) carefully, among which two are easy to

handle.

— It is known that the second term (i.e., the aggregate bonus) on the right-hand side of (21) can
be controlled in a rate-optimal manner if we adopt a suitably chosen Bernstein-style bonus;
see, e.g., Zhang et al. [82], which will also be made clear shortly in Section 5.

— In the meantime, the third term on the right-hand side of (21) can be easily coped with by
means of standard martingale concentration bounds (e.g., the Freedman inequality).

It then comes down to controlling the first term on the right-hand side of (21). This turns out

to be the most challenging part, owing to the complicated statistical dependency between Pkka[I £
and Vk . To see this, note that Pk’aII is constructed based on all previous samples of (s, a, h), Wthh

has non- neghglble influences upon V, h L, as Vh ., is computed based on previous samples. At least

two strategies have been proposed to circumvent this technical difficulty, which we take a moment
to discuss.

— Strategy 1: replacing th+1 with V¥, for large k. Most prior analysis for model-based algo-
rithms [6, 17, 81, 82] decomposes

k,all k
Z (P kal k h Ps,’:,aﬁ,h)vfﬁl
k,h
k 1] k,all k
- Z ( ka k h _Ps a h) h+1 Z (P ka k h ak h)(VhH Vh*+1) (22)

The rationale behind this decomposition is as follows:
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(i) given that V* | is fixed and independent from the data, the first term on the right-hand
side of (22) can be bounded easily using Freedman’s inequality;
(ii) the second term on the right-hand side of (22) would vanish as th+1 and Vh*+1
exceedingly close (which would happen as k becomes large enough).
Such arguments, however, fall short of tightness when analyzing the initial stage of the
learning process: given that V}ﬁr , — Vy,, cannot be sufficiently small at the beginning, this
approach necessarily results in a huge burn-in cost.
— Strategy 2: a covering-based argument. Let us discuss informally another potential strat-
egy that motivates our analysis. We first take a closer look at the relationship between

el and th+1' Abusing notation by letting N:’a”(s, a) be the total number of visits to

s,a,h

a (s, a, h)-tuple before the kth episode in UCBVI, we can easily observe that f’skaa”h and

>4,

thﬂ are statistically independent conditioned on the set {N;:’a”(s, a)} (s.ak)eSx AX[K]" Con-

sequently, if we “pretend” that {N ;f’a”(s, a)} are pre-fixed and independent of {ﬁf;“h} then
one can invoke standard concentration inequalities to obtain a high-probability bound on

become

Bk,all ko . .
Dk h (Ps,’j,aﬁ,h - Ps,’j,a’,f,h)Vhﬂ in a desired manner. The next step would then be to invoke

a union bound over all possible configurations of {N}]:’a”(s, a)}, so as to eliminate the above
independence assumption. The main drawback of this approach, however, is that there are
exponentially many (e.g., in K) possible choices of {N:’a”(s, a)}, inevitably loosening the
regret bound.

4.2 Our Approach

In light of the covering-based argument in Section 4.1, one can only hope that this analysis
strategy to work if substantial compression (i.e., a significantly reduced covering number) of
the visitation counts is plausible. This motivates our introduction of the doubling batches as
described in Section 3, so that for each (s, a, h)-tuple, the empirical model 1/53 «.n and its associated
visitation count Nj(s, a) (for the associated batch) are updated at most log, K times (see line 9
of Algorithm 1). Compared to the original UCBVI that recomputes the transition model in every
episode, our algorithm allows for significant reduction of the covering number of the visitation
counts, thanks to its much less frequent updates.
Similar to (21), we are in need of bounding the following term when analyzing Algorithm 1:

= "
Z (Psk,ak,h - Ps;lfsa:,h)VlHl' (23)
k,h

h>"h

In what follows, we present our key ideas that enable tight analysis of this quantity, which consti-
tute our main technical innovations. The complete regret analysis for Algorithm 1 is postponed to
Section 5.

4.2.1 Key Concept: Profiles. One of the most important concepts underlying our analysis for
Algorithm 1 is the so-called “profile”, defined below.

Definition 4.1 (Profile). Consider any combination {N:’a”(s, @)} (s, a,h, k)eSxAx|H]x[K]- For any k €
[K], define

jeN;:2/-1 SNk’a” ,a)t, if Nall ,a) > 0;
Vis,ah) e SXAx[H]: IF, =10 b psa) ) }L,au(s 9 -
0, Iho (s,a) = 0.
(24a)
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The profile for the kth episode (1 < k < K) and the total profile are then defined respectively as

k._ [7k
1" = {Is,a,h}(s,a,h)eSx:ﬂx[H]’ (24b)
and 1= {T5),. (24c)
Clearly, once a total profile 7 w.r.t. {N}]:’a”(s, a)} is given, one can write
Dk A(Iska h)
Pn=P 25" V(s,ahk) e SxAx[H]x[K]. (25)

In other words, a total profile specifies all the time instances and locations when the empirical
model is updated. Given that each N}]f(s, a) is recomputed only when the associated empirical
model is updated (see line 10 of Algorithm 1), the total profile also provides a succinct representa-
tion of the set {N,’f(s, a)}.

In order to quantify the degree of compression, Definition 4.1 offers when representing the
update times and locations, we provide an upper bound on the number of possible total profiles in
the lemma below.

LEMMA 4.2. Suppose that K > SAH log, K. Then the number of all possible total profiles w.r.t. Al-
gorithm 1 is at most
(4SAHK)SAH10g2 K+1 .

Proor. Define the following set (which will be useful in subsequent analysis as well)

C = {I =1t T8 ert <o < TK TR e {01, log, K} forall 1 < k < K}
(26)
Due to the monotonicity constraints, it is easily seen that the total profile of any set {N}IIC (s,a)}
must lie within C. It then boils down to proving that |C| < (4SAHK)SAH10%: K+1 which can
be accomplished via elementary combinatorial calculations. The complete proof is deferred to
Appendix B.1. ]

In comparison to using {N,’:’a”(s, a)} to encode all update times and locations — which might
have exponentially many (in K) possibilities — the use of doubling batches in Algorithm 1 allows
for remarkable compression (as the exponent of the number of possibilities only scales logarithmi-
cally in K).

4.2.2  Decoupling the Statistical Dependency. In this subsection, we discuss our approach to de-
coupling statistical dependency across the trajectories.

An expanded view of randomness w.r.t. state transitions. To facilitate analysis, we find it
helpful to look at a different yet closely related way to generate independent samples from a gen-
erative model.

Definition 4.3 (An Expanded Sample Set from a Generative Model). Let D®P3"d be a set of SAHK
independent samples generated as follows: for each (s, a, h) € S X A X [H], draw K independent

samples (s, a, b, s*) obeying s”() ind. s.ah (1 <i<K).
Crucially, D®P2"d can be viewed as an expansion of the original dataset — denoted by D°rsinal —

collected in online learning, as we can couple the data collection processes of D18 and Pexpand
as follows:

(i) generate D*Pa"d before the beginning of the online process;
(i) during the online learning process, whenever a sample needs to be drawn from (s, a, h), one
can take an unused sample of (s, a, h) from pexpand without replacement.
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Remarkably, this coupling allows one to conduct analysis alternatively based on the expanded
sample set DP2"d which is sometimes more convenient (as we shall detail momentarily). Unless
otherwise noted, all analyses in our proof assume that D°"&" and DPand are coupled through
the above simulation process

In the sequel, we let PY h (cf. the beginning of Section 4) denote the empirical probability vector

based on the jth batch of data (i.e., those samples associated with (s, a, h) indexed with 2/—2
1,...,2/71) from DOl and DPad interchangeably, as long as it is clear from the context.

A starting point: a basic decomposition. We now describe our approach to tackling the

» and V¥ . To begin with, take 7'™¢ =

{rhtrue .. pKtruey with phtrue — {Ik true} which denotes the total profile w.r.t. the true visi-
tation counts in the online learning process; let k; ; 5 o » denote the episode index of the sample
that visits (s, a, h) for the (2/~! + j)-th time in the online learning process; and we take Vthl =0
for any k > K. Then from relation (25) we can write

complicated statistical dependency between f’sk

K H (Ik true )

ZZ<Pkk ak,h P’f ak.h h+1> Zz<ﬁsl:agkh _Ps”f,az,h’v}f+l>

h’

=1 h=1 k=1 h=1
log, K K
! k,
= Z Z <A§ 21 h S a,h» Z {(sh’ah) = (S a) I true _ }V}ﬁ_l>
=0 s,a,h =1
log, K K
1 %
= Z Z <ﬁ£’31”’ = Pah Z I {(s,’j,a’;) = aﬂs,ifie - l} h+1> + SAH?
I=1 s,a,h =1
log, K 2!-1
= ph kij,s,a.h 2
B Z Z{ Z <Ps,a,h _PS’“’h’Vth >; +SAH". (27)
I=1 j=1 “s,a,h

Here, the third line makes use of the fact that 0 < Vk+1(s) < H for all s € S§. The decomposition
)
P

kljsah
s,ah v

(27) motivates us to first control the term 3’ , 1 ( sahs Viey ). leading to the following

3-step analysis strategy.

(1) For any given total profile 7 € C and any fixed 1 < [ < log, K, develop a high-probability
bound on a weighted sum taking the following form

Z (ﬁgfl’h - Ps,a,h)Xh+1,s,aa (28)

s,a,h

where each vector Xp41 5 4 is any deterministic function of 7 and the samples collected for

steps b’ > h + 1. Given the statistical independence between P p! )a , and those samples for

steps h’ > h + 1 (in the view of DPaY) we can bound (28) using standard martingale
concentration inequalities.

(2) Take the union bound over all possible 7 € C — with the aid of Lemma 4.2 — to obtain a
uniform control of the term (28), simultaneously accounting for all 7 € C and all associated
sequences {Xp+1.5.q}-

(3) We then demonstrate that the above uniform bounds can be applied to the decomposition
(27) to obtain a desired bound.

Remark 2. Note that in Step (1) of the above description, the estimate
for steps h’ > h are statistically independent for fixed profile 7.

}”\(f) , and those samples
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Main steps. We now carry out the above three steps.
Steps (1) and (2). Let us first specify the types of vectors {Xp, s o} mentioned above in (28). For

each total profile 7 € C (cf. (26)), consider any set {X}, 1 }1<n<m obeying: foreach 1 < h < H,

— Xp41, 1 is given by a deterministic function of 7 and

Ik ) kL) )
{P ST (s, @), 3, s, a)} ;
S,a h<h <H,(s,a,k)eSXAX[K]

— |IXll < H for each vector X € Xj, r;
— X, 7 is a set of no more than K + 1 non-negative vectors in R®, and contains the all-zero
vector 0.

Given such a construction of {Xh, I}, we can readily conduct Steps (1) and (2), with a uniform

concentration bound stated below.

LEMMA 4.4. Suppose that K > SAH log, K, and construct a set {Xh’f}mth foreach I € C
satisfying the above properties. Then with probability at least 1 — &',

0] o)
Z <Ps ah” s,a,h’Xthl,s,a) < max <Ps,a,h - Ps,a,h»Xh+1,s,a>,0
s,a,he SXAX[H] s,a,he SXAX[H]

ol-2

s,a,h

8 1
< J— Z V(P a.hs Xn+1.5.a) (6SAHlog§K+log 5)
H 1

holds simultaneously for all T € C, all2 < | < log, K + 1, and all sequences {Xp s a }(s,a, h)e SxAx[H]

obeying Xp .4 € Xn+1,7, VY(s,a,h) € S X A x [H]. Here, we recall that §’ = m.

Proor. We first invoke the Freedman inequality to bound the target quantity for any fixed
I € C, any fixed integer I, and any fixed feasible sequence {Xj s o}, before applying the union
bound to establish uniform control. See Appendix B.2 for details. ]

Step (3). Next, we turn to Step (3), which is accomplished via the following lemma. Note that we

also provide upper bounds for two additional quantities: 331 j, max{(P K ak - P k gk o V}ﬁrl), 0}

and ;. h(P k gk PSZ o e ( h+1) Y, which will be useful in subsequent analy51s
Spops 2dp»

LEMMA 4.5. Suppose that K > SAH log, K. With probability exceeding 1 — &', we have

K H K H
ZZ<Pk’° ok Pskakh, h+1> ZZmaX{< sk, ak Pskakh’v}{c+l> }

k=1 h=1 k=1 h=1

K H
< 4| 16(l0g, )ZZV Pyt ot Vi) (6SAHlog2K+log5)

=1 h=1

1
+ 49SAH? log) K + 8H(log, K) log 5
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and

K H
< 8H,|(log, K) D" D" V(Pye ot 4 Vi) (6SAH log2 K + log
k=1 h=1

1
+ 49SAH? log; K + 8H?(log, K) log 5
Proor. This result is proved by combining the uniform bound in Lemma 4.4 with the decompo-
sition (27). See Appendix B.3. O

Thus far, we have obtained high-probability bounds on the most challenging terms. The com-
plete proof of Theorem 1.1 will be presented next in Section 5.

5 Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1. For notational convenience, let B be a logarithmic
term

1
B = 4,000(log, K)* log(3SAH) log 5 (30)
where we recall that § is the confidence parameter in Algorithm 1 and ¢’ = m When
K < BSAH, the claimed result in Theorem 1.1 holds trivially since
K
Regret(K) = Z (Vl*(sf) - V’r (s} )) < HK = min { VBSAH3K, HK}
k=1
As a result, it suffices to focus on the scenario with
1
K > BSAH  with B = 4,000(log, K)* log(3SAH) log 5 (31)

Our regret analysis for Algorithm 1 consists of several steps described below.

Step 1: the optimism principle. To begin with, we justify that the running estimates of Q-
function and value function in Algorithm 1 are always upper bounds on the optimal Q-function
and the optimal value function, respectively, thereby guaranteeing optimism in the face of uncer-
tainty.

LEmMA 5.1 (OpTIMISM). With probability exceeding 1 — 4SAHKG', one has
Qﬁ(s, a) > Qy (s, a) and V,f(s) > VX (s), (32)
for all (s, a, h, k).
Proor. See Appendix C.1. O

Step 2: regret decomposition. In view of the optimism shown in Lemma 5.1, the regret can be
upper bounded by
K K
Regret(K) = > (V7*(sF) = V7™ (s) < D (ViF(GsF) = v (s])), (33)
k=1 k=1
with probability at least 1 —4SAHKJ'. In order to control the right-hand side of (33), we first make
note of the following upper bound on Vk (s1 ).
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LEMMA 5.2. Foreveryl < k < K, one has

H
ok k k k
VEGsy) < Z (<Psk akn Ps;:,a’;,h’vh+1> + bh(sh’ah) + rh(sh’ah) + <Psk ak.h T Esk ’Vh+1>

h=1 h>"h

Proor oF LEMMA 5.2. From the construction of V]f and Q’}f , it is seen that, foreach 1 < h < H,

Vk(sh) = Qh(sh,ah) < rh(s ah) + Pk ok ak hV}fﬂ + b,’i(s’;,aﬁ)

pk k k k k
= <Ps,’f,a£,h - Psf’all;’h’ h+1> +0b (S ah) + rh(sh,ah) + <P K.k h —e k| ’Vh+1> + Vh+1(sh+1)'
Applying this relation recursively over 1 < h < H gives
(51)

Bk k k k k ko (ok
52 <Psk ko Psk,ak,h’vh+1> + bh(sh’ah) Ty (3 say) + <Psk,ak,h = e Vi) + Vi (gr)s
RS h>%h h%h he+1

which combined with V¥

1741 = 0 concludes the proof. ]

Combine Lemma 5.2 with (33) to show that, with probability at least 1 — 4SAHK ',

K H K H
Regret(K)SZZ o€ ak s K ak po h+1>+ZZbﬁ(sz,aﬁ)

k=1 h=1 k=1 h=1
=T =T
K H K H
+ 2 0 P = e Vi) + [ DTG -V Gh | 69
k=1 h=1 k=1 \h=1
=T =T

leaving us with four terms to control. In particular, T; has already been upper bounded in
Section 4.2, and hence we shall describe how to bound Ty, . . ., Ty in the sequel.

Step 3.1: bounding the terms T3, T3, and Tj. In this section, we seek to bound the terms T3, T,
and Ty defined in the regret decomposition (34). To do so, we find it helpful to first introduce the
following quantities that capture some sort of aggregate variances:

K H

o= Y > V(P V) (35a)
k=1 h=1 e
K H

Toi= ) ) VPt at s Vikar): (35b)

>~
1l

1

=
1l

1

with T5 denoting certain empirical variance and T the true variance. With these quantities in place,
we claim that the following bounds hold true.
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LEMMA 5.3. With probability exceeding 1 — 15SAH?K?5’, one has

1 1 1
T, < 61\/ZSAH(log2 K)( log §)T5 + 8\/SAH3K(log2 K)log 5 + 151SAH?(log, K) log 5
(36a)
/ 1 1
|T3| < 8T lOg E +3H lOg 5, (36b)
1 1

|Ty| < 6\/ 2SAH3K (log, K) log 5+ 55SAH?(log, K) log 5 (36¢c)
Proor. See Appendix C.2. O

Step 3.2: bounding the aggregate variances T5 and Tg. The previous bounds on T, and T stated
in Lemma 5.3 depend respectively on the aggregate variance Ts and T (cf. (35a) and (35b)), which
we would like to control now. By introducing the following quantities:

K H
. Dk k \2
T7 - Z Z <Ps’g,aﬁ,h - Psﬁ,a,’;,h’ (Vh+1) >’ (37&)
k=1 h=1
K H
— Kk \2
Ts = Z Z <PS,’fsaﬁ,h sk \ >7 (37b)
k=1 h=1
K H
Ty = Z Z max {<Pf},:,a’,:’ n~ Pk ab o V,f+1>, 0}, (37¢)

we can upper bound Ts and Ty through the following lemma. As a remark, the proof of this lemma
makes use of the law of total variance, as in previous work like Azar et al. [6].

LEMMA 5.4. With probability at least 1 — 4SAHKS’,
Ts < Ty + Ty + 2HT, + 6KH?, (38a)

[ 1 1
Ty < 2HT, + 6KH* + /32H%T; log 5+ 3H? log 5 +2HT, (38b)
1 ,. 1
|Tg| < 32H2T6 IOg 5 +3H IOg 5 (38C)

Proor. See Appendix C.3. O

Step 3.3: bounding the terms Ti, T7, and Ty. Taking a look at the above bounds on Ty, . . ., Tg, we
see that one still needs to deal with the terms Ty, T7, and Ty (see (34), (37a), and (37c), respectively).
As it turns out, these quantities have already been bounded in Section 4. Specifically, Lemma 4.5
tells us that: with probability at least 1 — §”,

Ty < Ty < \|BSAH )" 3" V(P g 1 VE,,) + BSAH® = \BSAHT, + BSAH?, (392)
k=1 h=1
K H
Ty < Hy|BSAH )" > V(P g 1 VE,) + BSAH® = HYBSAHT, + BSAH®,  (3%b)
k=1 h=1

where we recall that B = 4,000(log, K)® log(3SAH) log %.
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Step 4: putting all the pieces together. The previous bounds (36), (38), and (39) indicate that:
with probability at least 1 — 100SAH2K?8’, one has

T, < BSAHT; + VBSAH3K + BSAH?, (40a)
Ty < v/BTs + HB, (40Db)
T, < VBSAH?K + BSAH?, (40c)
Ts < Ty + Ty + 2HT, + 6KH?, (40d)
Ty < \/BH2T, + 2HT, + 2HT, + BH? + 6KH?, (40e)
Ty < \/BH2T, + BHZ, (40f)
T, < \BSAHT, + BSAH?, (40g)
T, < H\BSAHT, + BSAH®, (40h)
Ty < /BSAHT, + BSAH?, (401)

where we again use B = 4,000(log, K)* log(3SAH) log 3.

To solve the inequalities (40), we resort to the elementary AM-GM inequality: if a < Vbc + d for
some b, ¢ > 0, then it follows that a < eb + éc + d for any € > 0. This basic inequality combined
with (40) gives

1 3,3 3, 10
HT;, < €Ts + |— + 1| BSAH” + —BSAH” + —KH",
2e 2 2
1
Ts < €Tg + 2HT, + 2HT, + (1 + 2—) BH? + 6KH?,
€
1
HTy < €T, + (2— + 1) BSAH®,
€

1
Ty < €Ty + (— + 1) BH?,
2e

1
T; < €Ty + (— + 1) BSAH®,
2€
which in turn result in

1
Ts < T + Tg + 2HT, + 6KH? < 2¢Ts + 2¢Ty + (- + z) BSAH® + 6KH?;
€

1 3
Ty < €Ty + 2HT, + 2HT, + (1 + 2—) BH? + 6KH? < 3€Ty + 2€Ts + (— + 8) BSAH?® + 7KH?.
€ €

By taking € = 1/20, we arrive at
Ts + Ty < BSAH® + KH? =< KH?, (41)

where the last relation holds due to our assumption K > SAHB (cf. (31)). Substituting this into (40)
yields

T S VBSAH3K, T, < VBSAH3K, T3 < VBKH? and T, S VBSAH3K, (42)
provided that K > SAHB. These bounds taken collectively with (34) readily give
Regret(K) < VBSAH?K.

J. ACM, Vol. 72, No. 3, Article 22. Publication date: June 2025.



Settling the Sample Complexity of Online Reinforcement Learning 22:21

Combining the two scenarios (i.e., K > BSAH and K < BSAH) reveals that with probability at
least 1 — 100SAH*K?¢,

SAHK
Regret(K) < min {VBSAH3K, HK} < min {\/BSAH3K log® T,HK}.

o)

The proof of Theorem 1.1 is thus completed by recalling that 6" = 557="tmr -

6 Extensions
In this section, we develop more refined regret bounds for Algorithm 1 in order to reflect the

role of several problem-dependent quantities. Detailed proofs are postponed to Appendix D and
Appendix F.

6.1 Value-based Regret Bounds

Thus far, we have not yet introduced the crucial quantity v* in Theorem 1.2, which we define now.
When the initial states are drawn from p, we define v* to be the weighted optimal value:

v* =By [Vl* (s)] . (43)

Encouragingly, the value-dependent regret bound we develop in Theorem 1.2 is still minimax-
optimal, as asserted by the following lower bound.

THEOREM 6.1. Consider anyp € [0, 1] and K > 1. For any learning algorithm, there exists an MDP
with S states, A actions and horizon H obeying v* < Hp and

]E[Regret(K)] > min {\/SAH3K , KHp}. (44)

In fact, the construction of the hard instance (as in the proof of Theorem 6.1) is quite simple.
Design a new branch with 0 reward and set the probability of reaching this branch to be 1 —p. Also,
with probability p, we direct the learner to a hard instance with regret Q(min{+/SAH3Kp, KpH})
and optimal value H. This guarantees that the optimal value obeys v* < Hp and that the expected
regret is at least

0 min {ySAH’Kp, KHp} ) 2 min {VSAH?Kv*, Kv*}.
See Appendix G for more details.

6.2 Cost-based Regret Bounds

Next, we turn to the cost-aware regret bound as in Theorem 1.3. Note that all other results except
for Theorem 1.3 (and a lower bound in this subsection) are about rewards as opposed to cost. In
order to facilitate discussion, let us first formally formulate the cost-based scenarios.

Suppose that the reward distributions {Rp s o }(s,o,n) are replaced with the cost distributions
{Ch,s,a}(s,a,h)> Where each distribution Cp, s , € A([0, H]) has mean cj(s, a). In the hth step of an
episode, the learner pays an immediate cost ¢, ~ Cp s, 4, instead of receiving an immediate reward
ry, and the objective of the learner is instead to minimize the total cost Zle ¢, (in an expected
sense). The optimal cost quantity ¢* is then defined as

H
¢* =minE, ., [ Z chl- (45)
Vs
h=1
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In this cost-based setting, we find it convenient to re-define the Q-function and value function
as follows:

H
Q7 (s, a) == By Z Chr ‘(Sh, ap) = (s, G)l , ¥(s,a,h) € S x A X [H],
W=h
H
Vh”’COSt(s) =E, Z Ciy ‘sh = sl , V(s,h) € S X X[H],
W=h

where we adopt different fonts to differentiate them from the original Q-function and value func-
tion. The optimal cost function is then define by

Q;’COSt(s, a) = mﬂin QZ ost(s, q) and V; costig) = mlin V}f cost).

Given the definitions above, we overload the notation Regret(K) to denote the regret for the cost-
based scenario as

K
Regret(K) = Z (Vlﬂk,cost(sic) _ Vl*’COSt(S{C)).
k=1
One can also simply regard the cost minimization problem as reward maximization with negative
rewards by choosing r;, = —cj. This way allows us to apply Algorithm 1 directly, except that (20)
is replaced by

On(s, a) — max {min {?h(s, @) + Py o nViss + ba(s, ), o}, —H} . (46)

Note that the proof of Theorem 1.3 closely resembles that of Theorem 1.2, which can be found in
Appendix E.

To confirm the tightness of Theorem 1.3, we develop the following matching lower bound, which
resorts to a similar hard instance as in the proof of Theorem 6.1.

THEOREM 6.2. Consider any p € [0,1/4] and any K > 1. For any algorithm, one can construct an
MDP with S states, A actions and horizon H obeying ¢* < Hp and

E[Regret(K)| 2 min {v/SAH?Kp + SAH?, KH(1 - p)} =< min {VSAH2Kc* + SAH?, KH}.
The proof of this lower bound can be found in Appendix G.2.

6.3 Variance-dependent Regret Bound

The final regret bound presented in Theorem 1.4 depends on some sort of variance metrics. Toward
this end, let us first make precise the variance metrics of interest:

(i) The first variance metric is defined as

H H
var; = mjglx]E,r ZV(PSh,ah»h’V}:;l) + ZVar(Rh(sh,ah)) , (47)
h=1 h=1

where {(sy, an)}1<n<pg represents a sample trajectory under policy 7. This captures the max-

imal possible expected sum of variance with respect to the optimal value function {V;* le.
(ii) Another useful variance metric is defined as
H
var, := max var, [ Z rulsi = s], (48)
T,S

h=1
where {rp}1<n<ny denotes a sample sequence of immediate rewards under policy 7. This
indicates the maximal possible variance of the accumulative reward.
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The interested reader is referred to Zhou et al. [87] for further discussion about these two metrics.
Our final variance metric is then defined as

var := min {Varl, Varg}. (49)

With the above variance metrics in mind, we can then revisit Theorem 1.4. As a special case,
when the transition model is fully deterministic, the regret bound in Theorem 1.4 simplifies to

Regret(K) < O(min {SAH?, HK}),

for any K > 1, which is roughly the cost of visiting each state-action pair. The full proof of
Theorem 1.4 is postponed to Appendix F.

To finish up, let us develop a matching lower bound to corroborate the tightness and optimality
of Theorem 1.4.

THEOREM 6.3. Consider any p € [0,1] and any K > 1. For any algorithm, one can find an MDP
instance with S states, A actions, and horizon H satisfying max{vary, var,} < H?p and

E[Regret(K)| > min {SAH3Kp + SAH?, KH}.

The proof of Theorem 6.3 resembles that of Theorem 6.1, except that we need to construct a
hard instance when K < SAH /p. For this purpose, we construct a fully deterministic MDP (i.e., all
of its transitions are deterministic and all rewards are fixed), and show that the learner has to visit
about half of the state-action-layer tuples in order to learn a near-optimal policy. The proof details
are deferred to Appendix G.

7 Discussion

Focusing on tabular online RL in time-inhomogeneous finite-horizon MDPs, this article has estab-
lished the minimax-optimal regret (respectively sample complexity) — up to log factors — for the
entire range of sample size K > 1 (respectively target accuracy level ¢ € (0, H]), thereby fully
settling an open problem at the core of recent RL theory. The MVP JAC studied herein is model-
based in nature. Remarkably, the model-based approach remains the only family of algorithms
that is capable of obtaining minimax optimality without burn-ins, regardless of the data collection
mechanism in use (e.g., online RL, offline RL, and the simulator setting). We have further unlocked
the optimality of this algorithm in a more refined manner, making apparent the effect of several
problem-dependent quantities (e.g., optimal value/cost, variance statistics) upon the fundamental
performance limits. The new analysis and algorithmic techniques put forward herein might shed
important light on how to conquer other RL settings as well.

Moving forward, there are multiple directions that anticipate further theoretical pursuit. To be-
gin with, is it possible to develop a model-free algorithm — which often exhibits more favorable
memory complexity compared to the model-based counterpart — that achieves full-range mini-
max optimality? As alluded to previously, existing paradigms that rely on reference-advantage
decomposition (or variance reduction) seem to incur a high burn-in cost [42, 84], thus calling
for new ideas to overcome this barrier. Additionally, multiple other tabular settings (e.g., time-
homogeneous finite-horizon MDPs, discounted infinite-horizon MDPs) have also suffered from
similar issues regarding the burn-in requirements [27, 82]. Take time-homogeneous finite-horizon
MDPs for example: in order to achieve optimal sample efficiency, one needs to carefully deal with
the statistical dependency incurred by aggregating data from across different time steps to estimate
the same transition matrix (due to the homogeneous nature of P), which results in more intricate is-
sues than the time-homogeneous counterpart. We believe that resolving these two open problems
will greatly enhance our theoretical understanding about online RL and beyond.
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Appendices
A Preliminary Facts

In this section, we gather several useful results that prove useful in our analysis. We use 1{&} to
denote the indicator of the event &E. The first result below is a user-friendly version of the celebrated
Freedman inequality [24], a martingale counterpart to the Bernstein inequality. See Zhang et al.
[85, Lemma 11] for the proof.

LEMMA A.1 (FREEDMAN’S INEQUALITY). Let (My,)n>0 be a martingale such that My = 0 and |M,, —
My_1| < ¢ (Vn > 1) hold for some quantity ¢ > 0. Define Var, = Y} _| E [(Mk - M_1)?| ﬂ_l] for
every n > 0, where Fy. is the o-algebra generated by (M, ..., My). Then for any integern > 1 and
anye€,d > 0, one has

1 1 1 2
P||[M,| > 2V2 Varnlog3+2\/elog3+2clog5 SZ(logz(%)+l)5.

Next, letting Var(X) represent the variance of X, we record a basic inequality connecting Var(X?)
with Var(X) for any bounded random variable X.

LEmMA A.2 (LEMMA 30 IN [13]). Let X be a random variable, and denote by Cyay the largest possible
value of X. Then we have Var(X?) < 4C%_ Var(X).

ax

Now, we turn to an intimate connection between the sum of a sequence of bounded non-
negative random variables and the sum of their associated conditional random variables (with
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each random variable conditioned on the past), which is a consequence of basic properties about
supermartingales.

LEmMMA A.3 (LEMMA 10 1N [83]). Let X1, X, ... be a sequence of random variables taking value
n [0,1]. For any k > 1, let Fi be the o-algebra generated by (X1, Xs, ..., Xx), and define Yy =
E[Xk | Fx-1]- Then for any § > 0, we have

n n 1
P an,ZXk232Yk+llog3 <6
k=1 k=1
n n 1
Plan, Y Ye>3) Xe+llog=| <86
nkzz; k ; K+ Ogal

The next two lemmas are concerned with concentration inequalities for the sum of i.i.d. bounded
random variables: the first one is a version of the Bennet inequality, and the second one is an
empirical Bernstein inequality (which replaces the variance in the standard Bernstein inequality
with the empirical variance).

LEMMA A.4 (BENNET’S INEQUALITY). Let Z,Z;,...,Z, be iid. random variables with values in
[0,1] and let & > 0. Define VZ = E [(Z - EZ)Z]. Then one has

§ \/m +log(z/5>] s
n n

LEMMA A5 (THEOREM 4 1IN MAURER AND PonNTIL [48]). Consider any§ > 0 and any integern > 2.
Let Z,Zy, .. Z be a collection of i.i.d. random varzables falling within [0, 1]. Define the empirical
r(Zi- Z)?. Then we have

n

E[Z]—%Zzi

i=1

mean Z = + 2i=1Zi and empirical variance Vi -

1< 2V, log(2/8)  7log(2/8)
E[Z]—Z;Zi>\/ 30D <6.

Moreover, we record a simple fact concerning the visitation counts {N}’lC (sz , a’;l)}.

LEMMA A.6. Recall the definition ofN;l‘(sZ, a’;l) in Algorithm 1. It holds that

K H
Z;Z ax{Nk(sh, o < 2SAHlog, K. (50)

h=1
ProoF. In view of the doubling batch update rule, it is easily seen that: for any given (s, a, h),

K 1

max{N,’lc (s}’i, ai), 1}

{(s a) = (sh,ah)} < 2log, K (51)
k=1

since each (s, a, h) is associated with at most log, K epochs. Summing over (s, a, h) completes the
proof. ]

As it turns out, Lemma A.6 together with the Freedman inequality allows one to control the
difference between the empirical rewards and the true mean rewards, as stated below.
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LEMMA A.7. With probability exceeding 1 — 2SAHK&’, it holds that

K H
1
Z Z |?,If(s,’:, alg) - rh(sz, aZ)| < 4\/25AH2(log2 K)log 5
k=1 h=1
1
+ 52SAH?(log, K) log 5

K H K H
1
DU TRk ak) <2 )0 > sk, af) + 60SAH(log, K) log .
6/
k=1 h=1 k=1 h=1
As an immediate consequence of Lemma A.7 and the basic fact 3} , rh(s]}i , a’;l) < KH, we have

K H K
PPN EAEEDY

k=1 h=1 k=1

M=

1
ru(sy, af) + 60SAH (log, K) log 5

=
I
—

< 2KH + 60SAH?(log, K) log — < 3KH, (52)

with probability exceeding 1 — 2SAHKS’, where the last inequality holds true under the
assumption 31.

ProoF oF LEMMA A.7. Inview of Lemma A.5 and the union bound, with probability 1-2SAHK§’
we have

—~ 2
(Gheh o) - Ghi b)) o d asmiog §
N,’:(s, a) 3N,’f(57 a)

?Z(s, a) — ru(s, a)| < 2\/5\

H?;;(s, a)log % 28H log %
+ b
N}’;(s, a) 3N}’f(s, a)

< 2\/5\

simultaneously for all (s, a, b, k) obeying N}’f (s,a) > 2, where we take advantage of the basic fact
5}’[‘ (SZ’ a';l) < H’r\’}:(s, a) (since each immediate reward is upper bounded by H). Solve the inequality

above to obtain
Hry(s, a) log + Hlog +
‘ﬁ(s,a)—rh(s,aﬂ <4 h(k Jlog 5 +24— il (53)
N, (s, a) N (s, a)

Hrp(sk, af)log & Hlog §
k(k k MR
Ny (sp»ay) Ny (s, ap)

Hlog & Hlog &+
< 4SAH? + 4 — 2 . / ru(sk, al) + 24 °
Z Nk(sh, k) é h Z Nk( k, k)

Here, the second inequality arises from Cauchy-Schwarz, whereas the term 4SAH? accounts for
those state-action pairs with N, ,’f (s,a) < 2 (since there are at most 2SAH such occurrences and it

It is then seen that

BEGE by st )| = a5 + Y] 44
k,h

k.h
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holds that |?;I:(SZ , a';l) - rh(s,’; , aﬁ)\ < 2H). This together with Lemma A.6 then leads to

1
Z ?}’:(slg, a’;) - rh(s,lj, alfl)) < 4SAH? + 4\/25AH2(10g2 K)log 5 Z rh(sz, aﬁ)
k,h k.h

1
+ 48SAH*(log, K) log 5

1 1
< 4\/ 25AH?(log, K)log /z ra(sk, ab) + 525 AH2(log, K) log 5
k,h

Moreover, the AM-GM inequality implies that

K H
1 1
~kck k k k Kk k
kz’; 7y (spsap,) — kz}; ra(sy, ap,) < ; }; rn(sy. ap) + 8SAH(log, K) log 5 + 52SAH*(log, K) log 5

- 1
Z?]}:(slfj, aﬁ) <2 Z rh(slﬁ, a’;l) + 60SAH?(log, K) log 5
k,h k.h
thus concluding the proof. a

B Proofs of Key Lemmas in Section 4
B.1 Proof of Lemma 4.2
It suffices to develop an upper bound on the cardinality of C (cf. (26)). Setting

M =log, K and N = SAH, (54)

we find it helpful to introduce the following useful sets:

cdistinet() = {J ={7,.. . Iy | ' < <117 e{0,1,--- MN and 77 # I (vf)};

(55a)
Cdistinct — UCdiStinCt(l). (55b)
1>1
In words, C9stint(1) can be viewed as the set of non-decreasing length-I paths in {0,1,--- , M}V,

with all points on a path being distinct; C45!"t thus consists of all such paths regardless of the
length.

We first establish a connection between |C| and |Cdi5“”d|. Define the operator Proj : C —
cdistinct that maps each I € C to 7distinct ¢ Cdistinct where 7distinct j5 composed of all distinct
elements in 7 (in other words, this operator simply removes redundancy in 1'). Let us looking at
the following set

B(Idistinct) — {f cC | PI‘OJ(I) — ]distinct}

for each T distinct ¢ gdistinct_Gince gdistinct j5 3 non-decreasing path with all its points being distinct,
there are at most MN + 1 elements in each 79"t Hence, the size of B(7951"t) is at most the
number of solutions to the following equations

MN+1
inzK and x; € Nforall1 <i < MN +1.
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Elementary combinatorial arguments then reveal that

K +MN

distinct
|B(7 nc)|s( MN

) < (K + MNYMN < K)MN |

for each 74istinct provided that K > MN = SAH log, K. We then arrive at
|C| < |Cdistinct| . (ZK)MN. (56)

Everything then boils down to bounding |CUst"|. To do so, let us first look at the set
CYstinct(MN + 1), as each path in C¥stI"t cannot have length more than MN + 1. For each
gdistinct — (71 72 TMN+1y ¢ odistinct(AfN 4 1), it is easily seen that

—I71=[0,0,...,0]" and TMN* = [M, M, ..., M]".
—Foreach1 <7 < MN, I7 and 77+ differ only in one element (i.e., their Hamming distance
is 1).

In other words, we can view 79"t a5 an MN-step path from [0,0,...,0] to [M,M, ..., M]T,
with each step moving in one dimension. Clearly, each step has at most N directions to choose
from, meaning that there are at most N~ such paths. This implies that

|Cdistinct(MN+ 1)| < NMN

To finish up, we further observe that for each Tdistinct ¢ Cdistinct there exists some 7 distinct ¢
CIstinct(MN + 1) such that 7distinct ¢ pdistinct This observation together with basic combinatorial
arguments indicates that

iCdistinct| < 2MN+1|Cdistinct(MN + 1)| < (2N)MN+1,
which taken collectively with (56) leads to the advertised bound
|C| < (ZK)MN|CdiStinCti < (4KN)MN+1 < (4KN)MN+1.

B.2 Proof of Lemma 4.4

Let us begin by considering any fixed total profile 7 € C, any fixed integer ! obeying 2 < [ <
log, K + 1, and any given feasible sequence {X} s a}(s,a,h)eSxasx[H]- Recall that (i) Pgllh is com-
puted based on the Ith batch of data comprising 2! independent samples from D®P2" (see Defi-
nition 4.3); and (ii) each Xp 41 s 4 is given by a deterministic function of 7 and the empirical models
for steps h’ € [h + 1, H]. Consequently, Lemma A.1 together with Definition 4.3 tells us that: with
probability at least 1 — §’, one has

Z <ﬁ_(9,lzz,h - PS,a,h’Xh+1,s,a>

s,a,h

K K
< 4_ 3 P X ) og B SATK) | S SlogsSAMK)
s,a,h

where we view the left-hand side of (57) as a martingale sequence from h = H back to h = 1.

Moreover, given that each X}, s , has at most K + 1 different choices (since we assume |Xp, 7| <
K + 1), there are no more than (K + 1)54H < (2K)54H possible choices of the feasible sequence
{Xh,s,a(s,a,neSxax(m]- In addition, it has been shown in Lemma 4.2 that there are no more than
(4SAHK)*SAH log: K yossibilities of the total profile 7. Taking the union bound over all these choices
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and replacing &’ in (57) with §"/((4SAHK)*S4H e K(2K)SAH Jog, K), we can demonstrate that
with probability at least 1 — &7,

Z <§£,131,h - Ps,a,thh+1,s,a>

s,a,h

3log;(SAHK)
2l-2 5’

s,a,h

8
< J— Z V(Ps,a.hs Xn+1.5.a) (ZSAHlogZKlog(4SAHK) + SAH log(2K) + log

4H
+ — (ZSAH log, K log(4SAHK) + SAH log(2K) + log

3logi(SAHK)
2172

5!

8 1 4H 1
< J Y Z V(Ps,a.hs Xn+1.5.a) (65AH10g§ K +log 5) o (6SAHlog§K +log 5) . (58)

s,a,h

holds simultaneously for all 7 € C, all 2 < [ < log,K + 1, and all feasible sequences

{Xh,s,a}(s,a,h)ESXﬂx[H]-
Finally, recalling our assumption 0 € X4, 7, we see that for every total profile 7 and its associ-
ated feasible sequence {Xp, 5.4},

Z max {(ﬁgfl’h_Ps,a,h, Xh+1,s,a>, 0} € { Z <ﬁ£f31’h_Ps,a,h: jzh+1,s,a>

s,a,h

jZ}‘H—l,s,a eXh+1,Is V(S, a, h)};

s,a,h

holds true. Consequently, the uniform upper bound on the right-hand side of (58) continues to be
a valid upper bound on ¥’ , , max {(1’5(1)

s,ah

- P a,thh+1,s,a>s O}. This concludes the proof.
B.3 Proof of Lemma 4.5
We begin by making the following claim, which we shall establish toward the end of this

subsection.

Cram 1. With probability exceeding 1 — &',

) kij,s,a.h
Z <Ps,a,h - PS’“’h’ Vh+l >

s,a,h

8 kl, j.s,a,h 2 1 4H 2 1
< J pY Z V(Ps,an: V] )(6SAHlog2K+log 5) o 6SAHlog2K+log§ ;

s,a,h

(59)

holds simultaneously for alll = 1,...,log,K and allj = 1,..., 211 \where ki js,a,n stands for the
episode index of the sample that visits (s, a, h) for the (2!=" + j)-th time in the online learning process.
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Assuming the validity of Claim 1 for the moment, we can combine this claim with the decom-
position (27) and applying the Cauchy—-Schwarz inequality to reach

K H
Dk k pl) kijs.an 2
Z Z <Ps}]§,a’}j,h - Ps;’i,a}’f,h’ Vh+1> < Z ' Z <Ps,a,h - PS’“’h’ Vh+{ > +SAH

h+1

8 Kijs.a 1
< )\ 72 Z V(Ps, a1, V, 17 ")(6SAHlog§K+log§)

+ —_— (6SAHlog2K +log — 5 ) + SAH?

g
g

) 1
V(Ps, q hs Vk”“’“"') (6SAH logZ K +log 5)

h+1

1
+ > 8H (6SAH log? K + log 5) + SAH?
=1

log, K 21-1

16(log, K) Z Z Z P ansV, :if sah) (6SAHlog§K+log%)

=1 Jj=1s,a,h

IA

—

1
- (485AH2 log; K + 8H(log, K) log 5) + SAH®

IA

K
\ 16(log, K) ) >V (Pyk g 4o Vi) (6SAH log? K +log — )

k=1 h=1

1
+49SAH? log) K + 8H(log, K) log 5

Here, the last inequality is valid due to our assumption V}fﬂ = 0 (Vk > K) and the identity

>

H
ZV Sp ak h’ h+1)
k=1 h=1
log, K 2l-1 K H
kzjsa,h NFeal k
Z ZV Sah’ h+1 )+Zzﬂ{ (h’ h)_o} (Ps;;,aﬁ,h’vhﬂ)
I1=1 s,a,h j=1 k=1 h=1

), provided that Claim 1 is

This establishes our advertised bound on ¥ , <l3kk’ kn Psé’a;}:’h, Vh+1

valid.
Before proceeding to the proof of Claim 1, we note that the other two quantities

k pk
Zkhmax{< o ok Pk ak, h’Vh+1>’O} and X <Ps,’j,a’;,h P, k gk o h+1 > can be upper

bounded using exactly the same arguments, which we omit for the sake of brevity. In particular,
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ALGORITHM 2: Monotonic Value Propagation for a given total profile 7 € C (MVP(Z))

Il(s)HHforallseSandlskSK.

1 initialization: set VH "
fork=1,2,...,Kdo

forh=HH-1,..., 1 do
for (s,a) € S Xx A do

Gaos W

: k j—2
j (_Is,a,h’ nee2°,

j k, T ~(j j
v(EY | vET)log L 6 6.0 - s a))log L Hlog &
byp(s,a) « c1 — c2

+ )
max{n, 1} max{n, 1} e max{n, 1}
QI;,I(S, a) < min {’r‘g)(s, a) + (1’52{)&}[, V/;’_{) + by (s, a),H},

V:’I(s) «— max Q:’I(s, a).
a

the latter quantity further satisfies

K H
1
< J 16(log, K) D D"V (Pye ot o (VE,)°) (6SAH log2 K + log 5)

1
+ 49SAH? log) K + 8H?(log, K) log 5

K H

1
< 8H,|(log, K) Z Z V(Psﬁ,a’;;h, V) (6SAH logs K + log 5)
k=1 h=1

1
+49SAH? log, K + 8H*(log, K) log 5
where the last inequality follows from Lemma A.2 and the fact that 0 < th+1(s) < Hforalls e S.

Proor oF Craim 1. To invoke Lemma 4.5 to prove this claim, we need to choose the set
{&Xn. 1} properly to include the true value function estimates {V}f}. To do so, we find it help-
ful to first introduce an auxiliary algorithm tailored to each total profile. Specifically, for each
I € C (cf (26)), consider the following updates operating upon the expanded sample set

Dexpand.
If we construct
X1 = {th’j l1<k< K} U{0}, Vhe[H|andT €C, (60)
then it can be easily seen that {X}, s} satisfies the properties stated right before Lemma 4.4. As a

consequence, applying Lemma 4.4 yields
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1
Z <E§,21,h - S,a,h’Xh+1,s,a>

s,a,h

8 1 4H 1
< J Y Z V(Ps,a.ns Xn+1.5.a) (65AH10g§K +log 5) t o (65AHlog§K + log 5

s,a,h
(61)

simultaneously for all [ = 1,...,log, K, all 7 € C, and all sequences {Xp, s o} obeying X} 5, €
Xh,], V(s, a, h)

To finish up, denote by 7' the true total profile resulting from the online learning process.
Given the way we couple D24 and Dorignal (see the beginning of Section 4.2.2), we can easily
see that the true value function estimate {V}iC } obeys

VE =V e Xy pe, 1<k <K. (62)
The claimed result then follows immediately from (62) and the uniform bound (61). O

C Proofs of Auxiliary Lemmas in Section 5
C.1 Proof of Lemma 5.1
To begin with, we find it helpful to define the following function

V(p,v)log & 400 Hlog &
flp.o,n) = (p.v) +max{§\/m’ ? o }
n n

for any vector p € A®, any non-negative vector v € RS obeying ||v|lc < H, and any positive
integer n. We claim that

f(p, v, n) is non-decreasing in each entry of v. (63)

To justify this claim, consider any 1 < s < S, and let us freeze p, n and all but the sth entries of v. It
then suffices to observe that (i) f is a continuous function, and (ii) except for at most two possible

. [V(p,v)log & Hlog % .
choices of v(s) that obey % % = 4%%, one can use the properties of p and v to
calculate

af(p.v,n) 20, |20 V(p,v)log % 400 Hlog 3 p(s)(v(s) = (p, v)){[log
ORI A =9 g NATT)
2 1 _
=p(s) + ]l{‘ [nV(p,v)log l, > @Hlog i/} il 5 ) p)(v(s) ~ . 0))
6 3 g A/MV(p,v)log % H

(v(s) —H(P, v)) ’p(s)}

= min {p(s) +p(s)

H +v(s) = {p,v) 1} S0

> p(s) min { o

thus establishing the claim (63).
We now proceed to the proof of Lemma 5.1. Consider any (h, k, s, a), and we divide into two

cases.
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Case 1: N }’: (s,a) < 2. In this case, the following trivial bounds arise directly from the update rule
(19):
k _ * k _ *
Q,(s,a)=H > Q;(s,a) and V, (s)=H 2 V) (s).
Case 2: N}’l‘(s, a) > 2. Suppose now that Q,’jﬂ > Q},,, which also implies that V}ﬁl > Vo I
Q’; (s,a) = H, then QZ (s,a) > Q;:(S, a) holds trivially, and hence it suffices to look at the case with
Q’}i (s,a) < H. According to the update rule in (19), it holds that

Qh(s. @)
% Sk k
=73,(5.0) + (P 4 - Viir)
V(PE VK )log & (E,’l‘(s, a) — (ri(s, a))z) log 3 Hlog 1
ta = +e +c3
N,’:(s, a) N,’f(s, a) N}’f(s, a)

(650 - (@) ) log 3 aghlog &
+
N}]l‘(s, a) SN;f(s, a)

+f (ﬁk vr

s,a,h’ "h+1°

N,’f (s,a))

(650 = (@) ) log 3 ashlog &
+
NK(s, a) 3N/ (s, a)

+f (ﬁk %

s,a,h? "h+1°

Nf(s,a)), (64)

for any (s, a), where the last inequality results from the claim (63) and the property th+1 >V

Moreover, applying Lemma A.5 and recalling the definition of 3]’; (s, a), we have

pk *
P ‘<Ps,a,h _Ps,a,h’ Vh+1

| %Wﬁmmm%élwmé
> = +
k k
Ny (s, a) 3N, (s, a)

JW@WmN%% THlog
e,

<P |ﬁ’“ =Py an VX + <28, (652
< s.a.h s.ah h+1> N}’l‘(s, a)—1 3N}Il‘(s, a)—1 (652)
and
P 2
. (550~ (Fhs.0)")log & asrr10 4
P |rh(s, a) — ru(s, a)| > 2 <28, (65b)

+
N}Il‘(s, a) 3N}]:(S, a)

These two inequalities imply that with probability exceeding 1 — 48",

- 2
(6k.0) = (@) ) log 3 asH10g 2
+ ;
NK(s. a) 3Ny (s.a)
Sk k _ Bk
f(Ps,a,h’ Vh*+1’Nh (s’ a)) - <Ps,a,h7 Vh*+1> + <Ps,a,h - Ps,a,l’u Vh*+l>
20 | VP, Vi) o8 5 400 Hlog &
+ max { — p s T k
3 \ Nh(s, a) 9 Nh(s, a)
2 <P5’“’h’ Vh*+1>'

ru(s,a) < 'r}]f(s, a) + 2\/5\
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Substitution into (64) gives: with probability at least 1 — 45”,

Qh(s a) 2 rp(s, a)+< sah’Vh+1> Qh(s a).

Putting all this together. With the above two cases in place, one can invoke standard induction
arguments to deduce that: with probability at least 1 — 4SAHKS’, one has Q}’i(s, a) > Q}’l‘(s, a)
and V,f = max, Qﬁ(s, a) > max, Qy(s,a) = V7(s) for every (s,a, h k). The proof is thus
completed.

C.2 Proof of Lemma5.3

C.2.1 Bounding T,. We first establish the bound (36a) on T,. To begin with, T, can be decom-
posed using the definition (19) of the bonus term:

K H
T, = Z Z b:(s]}i, a’;l

k=1 h=1

pk k 1 —~
460 VP i Vi) o8 3 2y (G;’f(s ay) — (7 (s a)) )logé
T 9 k(ck K k

oy Ny (sy» ap) k.h Ny (sh-a})
544 « Hlog 3
+ 2= Z E3 (66)
9 45 NEGh.ab)
Applying the Cauchy-Schwarz inequality and invoking Lemma A.6, we obtain
460 log 3 gy p
BT\ L Wk et )
log L o\ 544Hlog % 1
+2V2 Z — oo Z (b:k(sk ak) — (?k(sk ak)) ) + ° Z
k(k k h\"h>"h h*"h> "h k
k.h Nh(sh’ah)\/k,h ? Ny (sy» @)
460
ZSAH(logZK)(log )ZV ok ak 1 h+1)
k.h
~ 1,088 1
+ 4\/SAH(10g2 K)log — \/Z ( ;f(s’g,a];) - (rh(s}lj, ﬁ ) ) TSAHZ(log2 K)log 5
k.h
(67)

Using the basic fact 3,’1‘ (SZ , aﬁ) < H’r\}’: (s, a) (since each immediate reward is at most H) and the
definition (35a) of Ts, we can continue the bound in (67) to derive

460 1
T, < T\/zSAH(log2 K)(log §)T5

+4\/SAH2(logzK)log 5 /Z*(sh, ay + 1 0885AH2(10g2K)log5 (68)
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Applying Lemma A.7 to bound X4 ?’}:(sﬁ, aﬁ) and using the basic fact 35 j, rh(s,’;, a’,;) < KH, we
can employ a little algebra to deduce that

1 1 1
T, < 61\/ 2SAH(log, K)( log E)E + 8\/SAH3K(log2 K) log ; + 155SAH?(log, K)log =
with probability exceeding 1 — 2SAHKS’.

C.2.2 Bounding Ts. Next, let us prove the bound (36b) on |T3|. Recall that V,fﬂ(s) denotes the
value function estimate of state s before the kth episode, which corresponds to the value estimate
computed at the end of the previous epoch. This important fact implies that conditional on (sﬁ , aﬁ),

the vector e« ) is statistically independent of V}fﬂ and has conditional mean Psﬁ, ok allowing us to

h+

invoke the Freedman inequality for martingales (see Lemma A.1) to control the sum of <Psk kT
h>"h>

ek > th+1>. Recalling the definition of T in (35b), we can see from Lemma A.1 that
+1

T3] < 2V2 - 4| T log% +10g§ + 2Hlog(% <2V2-4|T, 1og§ + 3Hlog§ (69)

with probability at least 1 — 10SAH?K?25".

C.2.3 Bounding Ty. We now turn attention to the bound (36¢) on |Ty|. Recall that

K H K H x
T, = (?E(sz,alf) - rh(slﬁ,alﬁ)) + Z (Z rh(sy. ay) = V" (Sf)) ; (70)

k=1 h=1 k=1 \h=1
and we shall bound the two terms above separately.

— Regarding the first term on the right-hand side of (70), we can apply Lemma A.7 and the fact
YknTh(sy.ak) < KH to show that

K H

ok k Kk
Z (7 (sh-ap) = sy @)
k=1 h=1

holds with probability at least 1 — 2SAHK§’.
— With regards to the second term on the right-hand side of (70), we note that conditional on

1 1
< 4\/25AH3K(log2 K)log 5+ 52SAH?(log, K) log 5 (71)

7k, Ep := ZI;:I rh(s}’:, a’g) - Vl”k (s{‘) is a zero-mean random variable bounded in magnitude
by H. According to Lemma A.1,

K
2B
=1

K

1 1

<2V2- J Z Var(Ey)log 5t 3H?log 5
k=1

[ 1 1
< 24[2KH?log 5+ 3H? log 5 (72)

holds with probability exceeding 1—46" log,(KH), where Var(Ey) denotes the variance of Ej
conditioned on what happens before the kth episode, and the last inequality follows since
|Ex| < H always holds.

Substituting (71) and (72) into (70) reveals that with probability at least 1 — 3SAHK&’,

1 1
|Ty| < 6\/ 2SAH3K (log, K) log >+ 55SAH?(log, K) log 5 (73)
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C.3 Proof of Lemma 5.4

Regarding the term Ts, direct calculation gives

Sy
k=1 h=1 k
K H K H
_ pk k \2 k \2
_ZZ< sk,akh Psk ak h’(Vh+1) >+ZZ<PS;: ak.h es;’f ’(Vh+1) >
k=1 h=1 h>"h k=1 h=1
=Ty =T

K H
(Viicﬂ(s}]iﬂ))z - Z Z (<sz,a’,;,h’ Viic+1>)2

K H
<Ty+Ty+2H |y max VEGH = (P50 V). 0)
k=1 h=1 hen
K H K
STy +Ty+2H ) ) bf(sy, af) + 2H ) " 7K(sk, af), (74)
k=1 h=1 k=1 h=1
< T, + Ty + 2HT, + 6KH?, (75)

with probability at least 1 — 35’ log(KH?). Here, the third line utilizes the fact that VI]; 4+ = 0, the
first inequality holds since

K k)2 Dk k \\2 _ (vkok Bk k kg k Dk k
(Vh (Sh)) - ((Ps;:,a;;,h’ Vh+1>) = (Vh (sp) + (Ps},:,a,}:’h, Vh+1>) (Vh (sp) = <Psf}:,az,h’ Vh+1>)
ko k pk k
< 2H max {Vh (Sh) - <Psﬁ,aﬁ,h’ Vh+1>’ 0} s
the penultimate line makes use of the property V}f (sﬁ) = Q,’j(s}’i, a’,i) and the update rule (20),

whereas the last line applies property (52) and the definition (36a) of T,.
Akin to the above bound on T5, we can show that with probability at least 1 — 3SAHK¢’,

==
I
—_
=
1l
—-
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K H
<Ty+2H ) Y max {VEGE) = (P gt 1o Vi) 0f
k=1 h=1
K H
k
+2HZZmaX{ o ak Pkakh,Vh+1> }
=1
K H
< Ty +2HZZbk(sh,ah)+2HZ D FR(s. af) + 2HTs, (76)
k=1 h=1 k=1 h=1
< Ty + 2HT, + 6KH? + 2HTy. (77)

Finally, note that the above bounds on T5 and Ty both depend on the term T (cf. (37b)), which
we would like to cope with now. Using Freedman’s inequality (cf. Lemma A.1) and the fact that
Var(X?) < 4H?Var(X) for any random variable X with support on [-H, H] (cf. Lemma A.2), we
reach

1 1 1
|Tg| < 2\/_\/2 k ok h+1) )log(s— +3H? log§ < 1/32H2T610g§ + 3H? 10g§ (78)

with probability at least 1 — 36" log(KH?). Substitution into (75) and (77) establishes (38).

D Proof of the Value-based Regret Bound (Proof of Theorem 1.2)

Recall that . s
_ 3 - . ’_
B = 4,000(log, K)’ log(3SAH) log 5 with § O0SAIEKE (79)

< BSAH : the regret bound can be upper bounded by

Consider first the scenario where K

K
E[Regret(K)] =E Z (Vl*(sf) - Vﬂ (s1 )) <E Z V*(sl l KEs~y [Vl*(sl)]
k=1
= Ko* = min {\/BSAHZKU*, Kv*}. (80)
As a result, the remainder of the proof is dedicated to the case with
BSAH?
K> — (81)
v
To begin with, recall that the proof of Theorem 1.1 in Section 5 consists of bounding the
quantities Ti, ..., Ty (see (34), (35), and (37)) and recall that § = m. In order to establish

Theorem 1.2, we need to develop tighter bounds on some of these quantities (i.e., T, T4, T5, and
Tg) to reflect their dependency on v* (cf. (43)).

Bounding T,. Recall that we have shown in (68) that

460 1
T, < T\/2SAH(Iog2 K)(logg)Ts

1 1088 1
+ 4\/SAH2(1og2 K)log 5 /Z TF(sk,ak) + TSAHZ(log2 K)log 5
k,h

In view of the definition of T, (cf. (34)) as well as the fact that ZIk(:l A (si‘) < 3Kv*+Hlog % holds
with probability at least 1 — §” (see Lemma A.3), we arrive at

Z sk, ab) < Ty + Zv”k(sf) <Ti+ ZV*(sl) < T, + 3Kv* + Hlog — 5 (82)
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which in turn gives

T, < —\/ZSAH(logz K)(log 5,)

1
+ 4\/SAH2(Iog2 K)log 5\/T4 + 3Kv* + 130SAH?(log, K) log 5

Bounding T;. When it comes to the quantity Ty (cf. (34)), we make the observation that

K H X
] Z (Z T (sh» ap) = ra(sy, a’D) Z (Z ru(sy.ay) - v (sh).
=1

h=1 k=1 \h=

=T

Il
el

Repeating the arguments for (82) yields

Zrh(sz,alg) <T+ ZVlﬂk(sf) <T+ Z V*(sl) < T, + 3Kv* +Hlog
k,h k k o’

with probability at least 1 — §’. Combining this with Lemma A.7, we see that

_ 1
T < 4\/25AH2 log, K log Z Z ra(sk, ab) + 52SAH2(log, K) log — 5

k=1 h=1

1 [x 1
< 4\/25‘AH2 log, K log 5\”2 + 3Kv* + 60SAH?(log, K) log 5

with probability exceeding 1 — 3SAHK$’. In addition, Lemma A.1 tells us that

K H 2
o 1 1
T, < 2\ ZZEnk,s1~u (Z rh(sh,ah)) log§ + 3H? log§
=1 h=1

K H

1 1

< 2\ ZHZEﬂk’Sl~I_’ [Z rn(sh, ah)l log 5 + 3H log 5
k=1 h=1

1 1
< 24/2KHv* log 5 + 3H log 5

1
< 2Kv* + 5H log 5

22:41

(83)

(84)

(85)

(86)

(87)

(88)

with probability at least 1 —2SAHK$’, where the expectation operator E « , _,[-] is taken over the

randomness of a trajectory {(s,a;)} generated under policy 7% and initial state s; ~ y, the last
line arises from the AM-GM inequality, and the penultimate line makes use of Assumption 1 and

the fact that

H
k
E”k S1~p [Z rh(sh’ ah) = Esl~y [Vlﬂ (51)] < Esl~p [‘/1*(31)] =v*.

h=1
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Taking (86), (87), and (88) together, we can demonstrate that with probability exceeding 1 —

55AHKS’,

T, < 13\/SAH2Kv*(log2 K)log % + 80SAH?(log, K) log %,

< 1 1
T, < 2+[2KHov* log§ + 3H log 5

Substitution into (84) reveals that: with probability exceeding 1 — 5SAHKJ’,

1 1
T, < 15\/SAH2KU*(log2 K)log 5t 83SAH?(log, K) log 5

Bounding Ts. Recall that we have proven in (74) that

~ .k _k
(sp»ay).

K H
=1

Ts < Ty + T +2HT2+2HZ
k=1h

With (85) and (88) in place, we can deduce that, with probability at least 1 — 3SAHKS’,

~ 1 1
Z rn(sk,af) < T + 3Kv* + Hlog 5 < 5Kv* + 6H log 5
k,h

Moreover, under the assumption (81), we can further bound (89a) as

T, < VBSAH?Kv* + BSAH? < 2Kv*,

(89a)

(89b)

(90)

(01)

(92)

with probability exceeding 1-3SAHK$’, which combined with (92) and the assumption (81) results

m

o 1
Z?s(sﬁ,ai) = Z rh(sz,alg) +T; < 7Kv* + 6H log 5 < 8Kv*.
k.h k.h

Substitution into (91) indicates that: with probability exceeding 1 — 6SAHK{’,

Ts < T; + Tg + 2HT, + 16HKv*.

Bounding Ts. Making use of our bounds (76), (38¢c), and (93), we can readily derive

K H
To < Ty + 2HT, + 2HTy + 2H ) 3" Fy(sf, ak)
k=1 h=1

[ 1 1
< 4[32T; log 5 +2HD + 16HKv* + 3H* log 5 +2HD,

with probability at least 1 — 16SAH?K?5’.
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Putting all the pieces together. Recalling our choice of B (cf. (79)), we can see from (83), (36b),
(90), (94), (95), (38¢), (39a), and (39b) that

T, < YBSAHT; + BSAH(T, + 3Kv*) + BSAH?, (96a)

T; < /BT, + BH, (96b)

T, < VBSAH?Kv* + BSAH?, (96¢)

Ts < Ty + Tg + 2HT, + 16HKv™, (96d)

Ty < \/BT, + 2HTy + 16HKv* + BH? + 2HT;, (96€)

Ty < VBH?T, + BH?, (96f)

T, < Ty < /BSAHT, + BSAH?, (96g)

T, < H\/BSAHT, + BSAH". (96h)
Solving (96) under the assumption K > £ Slf\*H ® allows us to demonstrate that

Ts < BHKv™, (97a)

T, < T, < VB2.SAH?K0*, (97b)

T; + Ty < VB2SAH*Kv*, (97¢)

Ts < BHKv*, (97d)

T, < VB2SAHZKv*, (97e)

T, < VB?HKv*, (97f)

Ty < VBSAH?Kuv*, (97g)

with probability exceeding 1 — 200SAH?K?2§’. Putting these bounds together with (34), we arrive
at

Regret(K) < Ty + T, + T; + Ty < BVSAH?Kv*,
1

with probability exceeding 1 — 200SAH2K?25’. Replacing 8’ with zoosjw and taking § = 77
give

E[Regret(K)| < (1 - §)BVSAH2Kv* + §Kv* < BVSAH?Kv* + 1 < BVSAH2Kv*
= min {B VSAH2Kv*, BKU*} = min { VSAH2Kv*, Kv*} log’(SAHK),
provided that K > %}HZ. Taking this collectively with (80) concludes the proof.

E Proof of the Cost-based Regret Bound (Proof of Theorem 1.3)

We now turn to the proof of Theorem 1.3. For notational convenience, we shall use r to denote the
negative cost (namely, r, = —cp, 7, = —¢p,, and so on) throughout this section. We shall also use
the following notation (and similar quantities like QZ, V}f Sees)

Qn(s, @) max {min {7i(5, @) + Py Vs + bi(s. 0),0, ~H}

Vils) = max Qs(s.a)

in order to be consistent with the reward-based setting.
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Akin to the proof of Theorem 1.2, we need to bound the quantities T, . . ., Ty introduced previ-
ously (see (34), (35), and (37)). We note that the analysis for Tj, T3, T7, Tg, and Ty in Appendix D
readily applies to the negative reward case herein. Thus, it suffices to develop bounds on T3, Ty, Ts,
and Ty to capture their dependency on ¢*, which forms the main content of the remainder of this
section.

Bounding T,. Recall from (66) that

V(ﬁk V}fﬂ) log &

T 460 s,’:,ai,h’
2= 79 Kok ok
E Ny (sp,» ap)
~kik k\_ (ki kY2 1
(ah(sh,ah)— (Fy(sy.ay)) )logy 544 Hlog L
2\/52 Nk( P k) + T Z —Nk( P k)' (98)
kR B \Spo @y Kk Vh\Spe Gy

In what follows, let us bound the three terms on the right-hand side of (98) separately.

— For the first and the third terms on the right-hand side of (98), invoking the Cauchy-Schwarz
inequality and Lemma A.6 gives

V(ﬁk V}fﬂ) log %

Z i1 < [2SAH(log K)(log 1) V(PX VE )
k.h N;’f(sﬁ’alf,) - ’ & &k o’
1
- \/2SAH(10g2 K)( log §)T5, (99)
with Ts defined in (35a), and in addition,
Hlog % 1
Z Wgsk < 2SAH%(log, K) log 5 (100)
7 Ny (s ap)

— Let us turn to the second term on the right-hand side of (98). Observing the basic fact that
~ 2
oy~ P I < -H7E

we can combine it with Lemma A.6 to derive

(O'k(sk ak) — (r’f(sk ak))z) log 4
h\"h>"h h\"h>"h o’ 1 ~
< +/2SAH(log, K)log — fH E —7*(sk, ak
N}/f(si,a’;l) J ( gz ) g 5, £ h( h h)

K K
1
< \/ZSAHZ(Iogz K)log 3| ~Ti + 3Ke* + > ( — v (sky + Vl*(sf)) £y ( —Vr(sk) - 30*),
k=1 k=1

(101)
where the last inequality invokes the definition of Ty (see (34)). By virtue of Lemma A.3 and
the definition (45) of ¢*, one can show that

K

1
Z —Vl*(sf) < 3Kc* + Hlog 5
k=1
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with probability exceeding 1 — §’. In addition, we note that

K
D ( — VI (sR) + v (sk )) — Regret(K) =T, + Ty + Ts + Ta. (102)
k=1
Taking these properties together with (101) yields
(G sk af) - (k. af)°) log
N;l‘(sh, a’;l)

1 1
< \/ZSAHZ(IOgZ K) IOg 5\/]11 + T, + T3 + 2|T4| + 3Kc* + HlOg 5

Putting the above results together, we can deduce that, with probability exceeding 1 — &,

1
T, < 90\/SAH(log2 K)(log §)T5

1 1 1
+ 4\/SAH2(logz K)log 5\/T1 + T, + T5 + 2|Ty| + 3Kc* + Hlog 5 + 130SAH*(log, K) log 5

(103)
Bounding T;. When it comes to the quantity Ty, we recall that
K K (H .
= Z (Z?g(sh,ah)—rh(sh,ah)) Z (Z rh(sz,ai)_vlﬂ (sf) . (104)
k=1 \h=1
=T =T

To control Ty, we first make note of the following result that bounds the empirical reward (for the
case with negative rewards), which assists in bounding the term T;.

LemmA E.1. With probability at least 1 — 2SAHKS’, it holds that

K H
~k .k Kk k _k
PN GORARCRD

k=1 h=1

K H

1

< 4\/25AH2(log2 K)log < - JZ Z — ri(sk, ab)) + 52SAH?(log, K) log — 5
k=1 h=1

Proor. The proof basically follows the same arguments as in the proof of Lemma A.7, except
that r is now replaced with —r. O

Lemma E.1 tells us that with probability at least 1 — 3SAHKJ’,

T | <4\/25AH2(log2K)log 5 JZZ (= ra(sk.ab) +525AH2(log2K)log %
k=1 h=1

K
o 1
< 4,[2SAH2(log, K) - J —T, + 3Kc* + Z (= V*(s5) = 3¢*) + 52SAH?(log, K) log 5
k=1
- 1
< 4,[2SAH2(log, K) - \T, + 3Kc* + 60SAH?(log, K) log 5 (105)
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Here, the last line uses the fact (see Lemma A.3) that, with probability exceeding 1 — &,

K
1
Z (- Vl*(sf)) < 3Kc* + Hlog 5 (106)
k=1
In addition, the Freedman inequality in Lemma A.1 combined with (106) implies that, with prob-
ability at least 1 — 3SAHKS,

K H 2
-~ 1 1
ITz| < Z\ZZEﬂk (Z rh(sh,ah)) s1 = sf Iogg +3Hlog5
k=1 h=1
K H 1 1
_ _ ok Z Z
< 2\ ZHZ;E,[ ; rh(Sh, = sy | log 5 + 3H log 5

>

k
K 1 1
ﬂk
= 2\ ZH( §1 —V7 (sk) + Vl*(sf)) + k; (—=V*(sk) = 3¢*) + 3Kc* | log 5t 3H log 5 (107)

1
s3Kc*+T1+T2+T3+T4+9Hlog5. (108)

Combining (105), (107), with (108) reveals that, with probability at least 1 — 4SAHK?,

~ 1 1
|T1| < 16\/SAH2(KC* + T] + Tg + T3 + T4)(10g2 K) lOg S + ZOOSAHZ(lng K) log 3

~ 1 1
|T2| < 2\/2H(3KC* +Th+1L+T5+ T4)10g g + 9H10g 5

As a result, substitution into (104) leads to

1 1
|T4| < 22\/SAH2(KC* + T1 + Tz + T3 + T4)(10g2 K) log S + 2095AH2(10g2 K) log 3 (109)

Bounding Ts. Invoking the arguments in (38a) and recalling the update rule (46), we obtain

K H

D 2
Is < <Pfk’ak’h Psk ak h’ h+1 > ZZ< Sh ak,h es}’f 1’ (th+1) > (110)
k=th=1 " k=1 h=1
K
+ ZHZ Z [ - rh(s’,j, aﬁ)].
k=1 h=1

Moreover, we recall that

ZZ — r(sf.ad)] ——TZ—ZV” (s1) < TZ+ZV*(5{<) (111)

By virtue of (106), one sees that with probability at least 1 — 5SAHKS,

K H
1 1
Z Z [ - ra(sk,ab)] < 2\/2H(3Kc* +Ty+ Ty + Ty + Ty)log = +3Ke* + 10Hlog 5. (112)
k=1 h=1
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Consequently, we arrive at

1 1
Ts < T; + Ty + 2HT, + 4\/2H3(3Kc* +T1+ T+ T+ 1y)log 5 + 6HKc* + 20H? log 5 (113)

with probability exceeding 1 — 5SAHKS.
Bounding Tg. Invoking the arguments in (38a), (106) and (111), and recalling the update rule (46),

we can demonstrate that

K H
T, < 24/8T¢1 og + 3H? log +2H )" > max {(P g Vi) = Vi (), 0}

k=1 h=1

w/8T610g +3H210g + 2HT, + 2H
,/8Tﬁlog +3H210g + 2HT,

+2H

h°

K H
Z Z [—rh(sz, aﬁ)]

k=1 h=1

1 * 1
2 2H(3KC* +T1+ T, +T5 + T4) 10g 3 +3Kc™ + 10H10g S (114)

with probability at least 1 — 3SAHKS.

Putting all this together. Armed with the preceding bounds, we are ready to establish the claimed
regret bound. By solving (103), (36b), (109), (113), (114), (38c), (39a), and (39b), we can show that,
with probability exceeding 1 — 100SAH2KS,

Tg
T
T + Ty
Ts

< HKc* + BSAH?,
< VBSAH?Kc* + BSAH?,
< VBSAH*Kc* + BSAH?,

< HKc* + BSAH?,

T, s VBSAH?Kc* + BSAH?,
Ty < VBHKc* + BSAH?.
We then readily conclude that the total regret is bounded by
O(VBSAH2Kc* + BSAH?).
In addition, the regret bound is trivially upper bounded by O(K(H — c*)) The proof is thus com-
pleted by combining these two regret bounds and replacing §” with

IOOSAHZK

F Proof of the Variance-dependent Regret Bounds (Proof of Theorem 1.4)

In this section, we turn to establishing Theorem 1.4. The proof primarily contains two parts, as
summarized in the following lemmas.

LEmMA F.1. With probability exceeding 1 — 6/2, Algorithm 1 obeys

Regret(K) < 5( min {\/SAHKvarl + SAHZ,KH}).

LEmmA F.2. With probability at least 1 — §/2, Algorithm 1 satisfies

Regret(K) < O( min {ySAHKvar, + SAH?, KH}).
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Putting these two regret bounds together and rescaling 6 to §/2, we immediately conclude the
proof of Theorem 1.4. The remainder of this section is thus devoted to establishing Lemma F.1 and
Lemma F.2.

F.1 Proof of Lemma F.1

Before proceeding, we recall that

and that
1)

200SAH2K?"
F.1.1  Bounding T,. Recall that when proving (36a), we have demonstrated that (see (67))

1
B = 4,000(log, K)* log(3SAH) log 5 and &' =

460 1
T, < T\/ZSAH(logz K)(log §)T5

+4\/SAH(log2K)log Z(A"(sh, ay) = (7 (s a h)z) ﬂSAHz(logzK)logé,

(115)

This motivates us to bound the sum ;. ;, (cF (sh, h) (A}’: (s}I:, ai))z), which we accomplish via the
following lemma.

LemmMma F.3. With probability at least 1 — 4SAHKS’, one has
~ 1
D (a,’j(s,’j,a’,j) - (?,’j(s’,;,a’,j))z) < 6Kvar, + 2425AH"(log, K) log . (116)
k.h

Combining Lemma F.3 with (115), we can readily derive

1
T, < —\/ZSAH(log2 K)(log 5,)T5 + 12\/SAH(10g2 K)log = 2Kvar,
1
+ 157SAH?(log, K) 10g§ (117)
with probability at least 1 — 4SAHKS'.
Proor or LEMMA F.3. For notational convenience, let us define the variance of Ry(s,a) as
vn(s, a).

Firstly, we control each 8}’1‘(3’}:, aﬁ) - (’r\’g(s’}:, aﬁ))2 with ovy(s,a). Fix (s,a, h,k). Applying
Lemma A.3 shows that, with probability at least 1 — 2§’

—~ 1
N,’f(s, a) (0,]:(511;, aﬁ) - (?;:(s}]j, aﬁ))2> < BN}]:Uh(s, a) + H? log 5 (118)
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This allows us to deduce that, with probability exceeding 1 — 2SAHK ',

2 1
Z (Ef(sz,ai) - (7,’?(8 ah) ) < 3th(sh’ah) N Z H*log Hlog 5

k
oh Nf(sy.af)
1
<3 Z on(sk, ak) + 2SAH? (log, K) log =" (119)
k,h

It then suffices to bound the sum }}; vh(s’}: s aﬁ). Toward this end, let

H
Z op (Sp,aw) | Sp = Sl ,

h'=h

th (s) =E «

be the value function with rewards taken to be {v},(s, @)} and the policy selected as 7¥. It is clearly
seen that

V,f (s,a) < H%.
In view of Lemma A.1, we can obtain

H
Z Z vn(sy, af) - Z TAEH) Z (Z (et =Pt ko Viin)

1
=1 h=1 k=1 \h=1

1
2
;;V Pyt ot o Vi) log 5— +3Hlog 5. (120)

with probability at least 1 — 2SAHK{’. Moreover, invoking Lemma A.1 once again reveals that

Z Z V(Ps;i,ak h’ V%ﬁl)

k=1 h=1
K H

:ZZ<PS}’:,a£h ek ’( +1)>
k=1 h=1

Mm

K
((V}fﬂ(s}éﬂ)) Vk(sh) ) + Z

k=1

(VE6D)* = (P ap e Vi)

>
Il
—

1

ZH:
h=1
K H
<2 8H4ZZV(PSL"“§ v log— +2sz vh(sh,ah)+3H4log—
k=1 =1 h=
H

1
on(sf, ak) + 42H* log 3 (121)

with probability at least 1 — 2SAHK’. Combine (120) and (121) to yield

K K
k _k k 2
Zth(sh,ah) < ZV (31)+2 8H2220h(sh, h)log—+84H4log 5 +3H log5

k=1 h=1 k=1 k=1 h=1

IA

Do
M=

<

- 1
F(sk) + 80H? log 5
k=1

1
< 2Kvar; + 80H? log 5 (122)
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with probability exceeding 1 — 4SAHKS’. ]

F.1.2  Bounding Ty. We now move on to the term Ty, which can be written as Ty = fl + TZ with

K
L=) ( sk af) - mGsf, b))
k=

1 h=1

K
Z( D rusk af) = v (s} >)
=1

k=1

This leaves us with two quantities to control.

To begin with, let us look at YV"I. In view of Lemma A.4 and the union bound over (s, a, h, k), we
see that, with probability at least 1 — 2SAHK¢’,

20u(s,a)log &  Hlog L
(s, a) — ru(s, a) < A - Jlog 5 +— Sy (123)
Ny (s, a) Ny (s, a)
As a result, we obtain

o K H 20p,(sk. a¥) log L Hlog &
| < ZZ n(sy> @) log 5 N g5
Nk(s Nk(s

h’ h) h’ h)

K H 1
ZZ h(sﬁ,aﬁ)+25AH2(log2K)log§. (124)

1
k=1 h=1

In view of (122), with probability exceeding 1 — 4SAHKS’ we have

K H 1
Z Z vh(sl}f, a’hc) < 2Kvar; + 80H? log 5 (125)
k=1 h=1
Consequently, we arrive at
o 1 1
|Ty| < \/SSAHKvarl(log2 K)log 5 + 20SAH?(log, K) log 5 (126)

Next, we proceed to bound ]v"z. Toward this, we make the observation that

K H

> (e, -

Shet

s aﬁ,h’ th+1> (127)
k=

Applying Lemma A.1 shows that, with probability at least 1 — 2SAHK§’,

<~ 1 1
ITy| < 2\ 2 V(Pyk gk Vi) Log 5 *3Hlog

<2

1 1
\ (Vg gt Vi) + VPt a1 Vi, = Vi) log S t3Hlog . (128)
k=1 h=1

J. ACM, Vol. 72, No. 3, Article 22. Publication date: June 2025.



Settling the Sample Complexity of Online Reinforcement Learning 22:51

Continue the calculation to derive

K H
V(Ps,’f ak, h’Vh+1 +1)

k=1 h=1

K H
— * T
- ZZ ((Ps,’;,a,’; h’( h+1 +1) > < sk.ak. Vie1 ~ Vh+1>) )

k=1 h=1

K H .

* T N\2

< Z Z <Ps;;,a£,h - es}’fﬂ’ (Vh+1 - Vh+l) >

k=1 h=1

K H
+2H Z Z max {(V;(s,’:) — ru(sy,ak) - <Ps,’j,a’;,h’ V,::l))

k=1 h=1
k
= (Vi) = mGsfs @) = (P g o Vi) 0}

K H
1
< 2\[8H ) > V(P g e Vit = Vi) log

K H
1
+ ZHZ Z (Vh*(s,lj) — ru(sy,ak) - (Ps;;’aﬁ’h, Vh*+1>) +3H%log 5 (129)
k=1 h=1

Here, (129) holds with probability at least 1 — 2SAHK¢’, a consequence of Lemma A.1 and
Lemma A.2.

To further bound the right-hand side of (129), we develop the following upper bound:

K H
DoV E) = rulsks af) = (Pt o Vi)
k=1

h=1
K K . H K H

= > (W EH =V h) + 20 6 = D kb)) + D0 D ek = Pyt Vi)
k=1 k=1 h=1 k=1 h=1

(130)

Note that the first term on the right-hand side (130) is exactly Regret(K) = Ty + T + T3 + Ty,

the second term on the right-hand side (130) corresponds to —T4, whereas the third term on the
right-hand side (130) can be bounded by

K H K H
DD e = Po gk Vit <2 ZZV(PS o V> )log — 5 +3Hlog — 5 (13)
=1

k=1 h=1 h=1

with probability at least 1 — 2SAHKS’. It then implies the validity of the following bound with
probability exceeding 1 — 8SAHK{’:

Z Z (V*(sh rh(s}1§9 alhc) - <Ps}’i,a£,h’ Vh*+1>)

=1 h=1

M=

K
ST1+T2+T3+2|T4|+2 22

2. V(Ps ko thl)log§ + 55Hlog 5 (132)

=
1l

1
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Combining these bounds with (129), we can use a little algebra to further obtain

V*

skak e Vhet T h+1)

M=

K
SAH|Ti + T+ Ts + 2|Ta| + 2 ZZ

1
V(Ps a Jh? h+1) log + 262H* log < (133)
k=1 é

>
1l

1

with probability at least 1 — 8SAHKS'. If we define Typ = Zkal f,l V(Pgk gk p» Vi), then substi-
= = h%h
tuting (133) into (128) yields: with probability exceeding 1 — 10SAHK &',

~ / 1 / 1 1 1
|T2| < 24/8Kvar; log 5 +84|H (Tl + 1, + T3 + 2|T4| +2 2T10 log E) log 5 + 107H10g 5
/ 1 1 1
< 114/ Tyo lOg 5 + 16\/H(T1 +T,+T5 + 2|T4|)10g 5 + 115H10g 5 (134)

Combining the above bound on IIV"2| with (126), with probability exceeding 1 — 10SAHK S’

Tl < |Ti] + T3

IA

IA

1 1 1
18\/SAHT10(10g2 K) log 5 + 16\/H(Tl + T, +T5 + 2|T4|)10g 5 + 1355A_H2(10g2 K) log 5,

which together with a little algebra yields

1 1 1
|T4| < 36\/SAHT10(lOg2 K) lOg 5 + 32\/H(Tl + T, + Tg) IOg ; + 306SAH2(10g2 K) lOg 5 (135)

F.1.3  Bounding Ts and Ts. We now turn attention to the terms T5 and T;. Toward this, we start
with the following lemma.

LemMA F.4. With probability at least 1 — 2SAHK ', one has
Ts < 5T, + 8BSAH". (136)

Proor or LEMMA F.4. Direct computation gives

ZV(Pk kh’ k+1)
= Z( sk,ak h’( +1) > < K, ak, h h+1>)2)
< Z (<Pkk k h’( +1)2> (<Psz,a’;,h’ h+1 ) + < s a h T h aﬁ h’( +1)2> (137)
k,h k,h
+ ZHZ <ﬁsﬁ,az,h - Ps}'f,az,h’ Vh+1>
k,h

k D 2 k
<ZV(Pk kh’ +1)+;<Ps,'f,az,h_Pkak h’( +1) +2HZ E Z }’f,a’h‘,h’VhH)

= T5 +T; + 2HT;. (138)
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Invoking Lemma 4.5 to bound T; and T;, we obtain

ZV(P ¢ g Vi) < ZV(P ¢ Vi) 6 D V(P gt s VI, DBSAH? + 3BSAH
k,h
<5 ZV(P e V) + 8BSAH?, (139)

with probability exceeding 1 — 2SAHK§’. O

In view of Lemma F.4, it suffices to bound Ts = >4 j, V(Psfk!’a}kl’h, h+1) Given that Var(X + Y) <

2(Var(X) + Var(Y)) holds for any two random variables X, Y, we have

Té—ZV k gk o V) o <ZZV kak o Vi +ZZV k gk o V) e = Vi)

< 3Kvary + Z

To further upper bound the right-hand side of (140), we make note of the following lemmas.

*
ZV Sy ak h> h+1 3var1)+22V Sh ak h> h+1 Vh+1) (140)

LEmMmA F.5. With probability at least 1 — 4SAHK', it holds that

K
T10 - 2Kvar1 = Z

1
2
§ V(Pyk a0 Via) = Zvarl) < 80H" log . (141)

LemMmA F.6. With probability at least 1 — 26’, it holds that

D V(P o Vil = Vi) < 4 BHZZV( ak e Vi) + 4H ) bE(sF, af) + 3BSAH’.
k.h

Combining Lemma F.5 and Lemma F.6 with (140), we see that with probability at least 1 —
6SAHKS’,

k
Ts = ; V(Ps’;,aﬁ,h’ Vh+1)

< 4Kvar, + 8y BSAH3T, + 8HT, + 7BSAH?,
and as a result,
T, < 8Kvar; + 16HT, + 78BSAH". (142)
This taken collectively with Lemma F.4 yields, with probability at least 1 — 8SAHK’,

D k
Is = Z; V(Ps,’:,az,h’ Vh+1) < 40Kvar, + 80HT, + 398BSAHS. (143)

To finish our bounds on Ts and T, it remains to establish Lemma F.5 and Lemma F.6.

Proor oF LEMMA F.5. Let E;(s, a) = V(P a.n, thl) and define
—k g
Vi(s) =E Z Rh’(sh',ah’)|3h = Sl .
h=h
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—k

Then V,(s) < var; < H? It then follows that
H
ZV( £ ak ho thl) var; = ZRh(sh,ah) var
h=1

* —k

h(oho @) = Vi (st)

a —k
= > (e, =Pyt n) Vo (144)

Note that Vk depends only on 7%, which is determined before the beginning of the kth episode.
Consequently, applying Lemma A.1 reveals that, with probability at least 1 — 2SAHKS’,

IA
M= ]
|

l —k
ZV( k.akh +1) V1(5{<)
=1

K
—k 1 1
<24(2) ) > V(P ke Vi) log = + 3H log . (145)
k=1 h=1

Regarding the sum of variance terms on the right-hand side of (145), one can further bound

K H "
V(Ps’;,aﬁ,h’ Vh+1)
k=1 h=1
K H )
= Z Z (<Psk ak,h> (Vhﬂ) 2) = ((Psk ko Vi) )
k=1 h=1
K H
= Z Z <Psk ak.n ~ €sk (Vh+1)2>
k=1 h=1

Mm

K
(VheaCsh ) = (Tas)?) + >

H
k=1 h=1 k=1
K

( Vh(sﬁ) (<Psl,:,aﬁ,h’v:+1>)2)

h=1
H K H _ 1
<2,[8H Y Y V(Pyk a1 7 ) log = + 2H’ >0 Ru(sf.af) + 3H* log 5 (146)
k=1 h=1 k=1 h=1

with probability at least 1 — 2SAHKS’. Here, the last inequality arises from Lemmas A.1 and A.2

—k = —k
as well as the fact that V h(s,’; )= Rh(s’;, a’h‘) + Ps,’;,a’;, 4V h41- It then follows from elementary algebra
that

K H K H

7 (kK 1
; ; V(Pye ot po Vier) < 4H? kZ hZRh(sh, a¥) + 42H" log 5 (147)
=1 h=1 =1 h=1

Substituting (147) into (145) gives

K H H K H
D D VP o Vi) < D V() + 24 [8H2 7 S VPt i h+1)log5 +21H log — 5

k=1 h=1 k=1 k=1 h=1

J. ACM, Vol. 72, No. 3, Article 22. Publication date: June 2025.



Settling the Sample Complexity of Online Reinforcement Learning 22:55

thus indicating that

K H
ZZV( K ak, h’Vh+1) < ZZV (sf)+84H2 loga— < 2Kvar; + 84H? log 5

k=1 h=1 k=1
The proof of Lemma F.5 is thus completed. O
Proor or LEmMA F.6. We make the observation that
ZV K ak.h h+1 Vh*+1)
2 k 2
Z (<P Kk ak.h ( h+1 Vh*+1) > - ((Ps,’j,a,’j,hs Vi1 ~ Vh*+1>) )
kb
2
= (<Psllj,aﬁ h~ 6 k ’ ( h+1 Vl:-l) >)
k,h
+ Z (( +1(sh+1) +1(sh+1)) (<Ps,’:,a’;,h’ h+1 ™ +1> )
k,h
= D ((Puan = e O = Vi )+ D (VEGE) = ViR 65D = (Pt Vi = Vi)’
k,h k,h
(148)
According to Lemmas A.1 and A.2, we see that with probability exceeding 1 — &,
2
Z(Pskakh_el; ’(h+1 Vh*+1)>
k. h
2
< 2V2_[4H? ZV P ok o Ve = Vity) logé— 4 3H log — 5 (149)
In addition, with probability at least 1 — &’ one has
Z (( (sh) V*(Sh) ((Py K ak.h> h+1 = Vi) )
k,h
k(.k k k
< ZHZ max {V (s;) - <Ps,’i,a;’f,h’vh+1> = (Vi sp) = Py Vi) 0}
k,h
< ZHZ max {Vk(sk) - <P K ok, VE > — (s, a%) O}
= h \°h Spaap.h> Thtl h>“h’>
k
<2HZmax{< kakp a:,h’ h+1 +2H2b
k kok k 3
< 2\/BSAH3 D V(P gt o V) + 2H ) B(sf, af) + BSAH?. (150)
k.h k.h
It then follows that, with probability at least 1 — 24”,
ZV ko Vi = Vi) < 4\/BSAH3 D V(P gt e Vi) + 4HZbk(sh,ah) + 3BSAH?,
N
(151)
thereby concluding the proof. O
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F.1.4  Putting All This Together. To finish up, let us rewrite the inequalities (40g)—(40f) as follows,
with (40a), (40c), (40d), and (40e) replaced by (117), (135) (143), and (142), respectively:

T, < \/128BSAHT, + 24BSAH?,

T, < H+/512BSAHT; + 24BSAH?,

Ty < \/128BSAHT, + 24BSAH?,

T, < 1004/BSAHT; + 140BSAH?,

3BT, + 3H log 5i

T, < VBSAHTy, + 32y/BH(Ty + T, + T;) + BSAH?,
Ts < 40Kvar; + 80HT, + 398BSAH",

T, < 8Kvar; + 16HT;, + 78BSAH®,

Ty < \/32BH?T; + 3BH?,

where we recall that B = 4,000(log, K)* log(3SA) log % In addition, it follows from Lemma F.5
that

A

IA

T3

Tip < 2Kvar; + 80BH?.
Solving the inequalities above reveals that, with probability exceeding 1 — 200SAH?K?2§’,

Regret(K) =Ty + Ty + Ts + Ty < O (\/BSAHKvarl + BSAHZ) . (152)

; — o)
One can thus conclude the proof by recalling that §" = St -

F.2 Proof of LemmaF.2

Following similar arguments as in the proof of Lemma F.1, we focus on bounding T, Ty, T5, and T
in terms of vars,.

F.2.1 Bounding T;. Recall that §” is defined as §’ = MSW’ and that we have demonstrated
in (67) that
460 1
T, < T 25AHT5(10g2 K) log 5
1 — 1088 1
+ 4\/SAH(Iog2 K)log = \/Z (a;;(s,’;, ak) — (FE(sk, a’;))z) + —5—SAH"(log, K) log .
k.h
(153)
To bound the right-hand side of (153), we resort to the following lemma.
LemmMma F.7. With probability at least 1 — 4SAHKS’, one has
—~ 1
> (a,’;(s’,;, ak) - (Fr(sk, a’;))z) < 6Kvar; + 242H(log, K) log . (154)

k,h

Proor. Recall that in Lemma F.3, we have shown that with probability at least 1 — 4SAHKS’,

K H K
—~ =~ 1
> > (Ghskeab) = (Fhskab)’) <33 VEGH + 2541 (log, K)log ;. (155)
k=1 h=1 k=1
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We then complete the proof by observing that

VEGSK) < VEGR) + Bk

q K
_ ok
Z Psy,ap.h> h+1) S1=95

h=1

H
= Var .« Z rn(sh,
h=1

= sfl < var,. (156)

Combining Lemma F.7 with (153) gives: with probability at least 1 — 4SAHK’,

1
T, < _\/ZSAHT5(10g2 K) log —+ 12\/SAH(logZ K)log 5\/2Kvar2

1
+ 157SAH?(log, K) log 5 (157)

F.2.2  Bounding Ts. Recall that Ty = fl + Yv“z, where

K
T, = Z Z (ﬁf(sl,ﬁ, af) = ru(sk, a’,ﬁ)) :
k=1 h=1
K H .
DN PR <sf>) .
k=1 \h=1

Repeating similar arguments employed in the proof of Lemma F.3 and using (124), we see that with
probability exceeding 1 — 6SAHKS’,

K H 1
Z Z h(s,’i, ai) + ZSAHz(log2 K)log 5

o 1
k=1 h=1

1 1
< \/ 8SAHKvar,(log, K) log 5t 20SAH?(log, K) log 5
In addition, from Lemma A.1 and the definition of vary, we see that

~ 1 1
|T;| < 24/2Kvar; log 5t 3H log 5 (158)

with probability at least 1 — 2SAHK§’. Therefore, with probability at least 1 — 8SAHK§’, it holds
that

1 1
Ty < 4\/25AHKvar2(log2 K)log 5 + 23SAH?(log, K) log 5 (159)
F.2.3  Bounding Ts and Ts. Recall that Lemma F.4 asserts that with probability exceeding 1—26’,
Ts < 5T, + 8BSAH".

Hence, it suffices to bound Tg.
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From the elementary inequality Var(X + Y) < 2Var(X ) + 2Var(Y), we obtain

Tézzv(Ps’;,a’;,h’Vlfﬂ) SZZV(Psf,az,h’ h+1 +22V sy ak h? h+1 V};T-e-l)

< 3Kvary + Z

H
ZV Sh ak h> h+1) 3var2) + ZZV(PSI’:,af,h’thJrl VIZH) (160)
h=1 k.h

To bound the right-hand side of (160), we resort to the following two lemmas.
LemmMma F.8. With probability at least 1 — 4SAHKS', it holds that

K
k=1

LemMmaA F.9. With probability exceeding 1 — 4SAKHE’, it holds that

H
k 2 1
Z V(Ps’;:,ai,h, Vi) - Zvarz) < 80H*log 5 (161)

ZV ot i Vi = Vity) <4 [BH? 3"V (Pye e 1 VE,) +4H ) b (K, af) + 3BSAH?,
h k.h
With Lemmas F.8 and F.9 in place, we can demonstrate that with probability at least 1-6SAHKS’,
T6<2ZV e akh’ h+1 +ZZV e akh’ h+1 V}ﬁ—l)
< 4Kvar, + 8y BSAH3T, + 8HT, + 7BSAH®,

= Ts < 8Kvar, + 16HT, + 78BSAH>. (162)
Taking this result together with Lemma F.4 gives, with probability exceeding 1 — 8SAHK{’,
Ty = Z V(P k) < 40Kvar, + 80HT; + 398BSAH®. (163)

To finish establishing the above bounds on T5 and Tg, it suffices to prove Lemmas F.8 and F.9, which
we accomplish in the sequel.

Proor orF LEmMa F.8. For notational convenience, define

he k ~
RE(s,a) = V(P on, V)  and  Vi(s)=E

Z Rh,(sh/ ah/)’sh = sl
e

It is easily seen that 17,1‘(3) < var, < H%
We also make the observation that

H H
k Bk k k
Z V(Ps,’;,aﬁ,h’ Vi) —var; = Z Ry, (s, a,) — var,
=1
Bk k k
< ) RE(sf, af) =V (sh)
h=
H
_ k
- Z <esk - Psk,a}’i h> Vh+1> (164)
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Note that V¥ only depends on 7%, which is determined before the kth episode starts. Lemma A.1
then tells us that, with probability at least 1 — 2SAHK¢’,

K H g
Z ZV(Psk ak h’Viﬁ—l) Vlk(s{<

k=1 \h=1
< 1

<2412 )7 > V(P ok Vi) log 5— +3H"log . (165)
k=1 h=1

Further, it is observed that with probability at least 1 — 2SAHKS’,

H
Z (< ak h’( +1)2> (<Ps,’j,a£,h"7}f+l>)z)

M:

H H - K
Py ((v,i:l(s,il)) IACYREDY
h=1

k=1

- 2
( Vk(s (<Ps}’;,aﬁ,h’vhk+l>) )

=
Il
—

K H K H
1 2 =k Kk 4 1
<2 4kzhzv ke Vi) log 5 + 2H ;;Rh(sh,ah)+3H log . (166)
=1 h=1 =1 h=1

Here, the last inequality results from Lemmas A.1, A.2 and the fact that vhk(sZ) = IV?h(sk , a’;l) +
<PSIZ’ & n Vi +1> It then follows that

K K H
~ 1
ZZV(PS;’}“Z”” h+1 <4 ZZZRh(sZ,alfl)+42H4log§. (167)

k=1 h=1 k=1 h=1

Taking (165) and (167) together leads to

m

K H K H
ZZV(PS,’: ak h’ h+1 Z k(sf)-{_z SHZZZV(Psﬁ,a:,h’ h+1)10g§+21H210g 5/

k=1 h=1 =1 k=1 h=1

which further implies that

K H
ZZV(Psﬁ,a,’;,h’ h+l <2

k=1 h=1

\MN

1 1
s¥) + 84H? log 5 < 2Kvar; + 84H* log 5

This concludes the proof.
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Proor oF LEmMMa F.6. A little algebra gives
ZV sK.ak.h h+1 Vhﬂﬂ)

((P K ak.h ( h+1 Viﬁkl)2> - (<Ps,’j,a,’j,h’vif+1 Vi;:—l)) )

§M

k2
(<Ps}’f,aﬁ,h €s k ’( h+1 V}ﬁ—l) ))

h

=~

k 2 k\\2
+ ((V}ﬁ-l(slgﬂ) - Vhﬁl(szﬂ)) - (<Ps,’j,a§,h’ th+1 Vlﬁ1>) )
kh

= ((Ps;f,aﬁ,h Esk ’( h+1 Vlﬁkl)2>)+ ( (sh)_V” (sh)) ((Py sk a’,j,h’ h+1 +1> )

k.h Kh
(168)
From Lemmas A.1 and A.2, we can show that with probability 1 — 2SAKHJ’,
”k
2 Putatn = e Vi = Vi) (169)
k.h
2
<2vV2 4H?§:V ko Vi = hﬂ)bg6,+3H’bg5F (170)
Additionally, with probability at least 1 — 2SAKHJ’,
k(K 7k ky)2
Z {(Vh (s3,) = Vi (sp) " — ((Ps;j,a’,;,h’ ht1 ~ +1>) }
k.h
k
< 2HZ max {Vk(sh) sk.ak.h> Vi) = (Vi () = (PR V, +1> }
— k k _k
ZHZmax {V ( aﬁ’h,Vthl) —rh(sh,ah),o}
B k
< ZH; max {<Ps§,a’;,h - Pszaaﬁsh’ Vh+1 } + ZHZ b (Sh, ah)
k kik Kk
< 2\/BSAH3 D V(P ot o Vi) + 2H Y bE(sk, af) + BSAH’. (171)
k.h Kh

It then follows that

k k k 3
kzl; V(Ps;};’az’h, Vil — V}fﬂ) < 4\/BSAH3 kz}; V(Ps;}:’az’h, h+1) + 4sz}; b (sh, ah) + 3BSAH",

(172)
with probability at least 1 — 4SAKHJ’. The proof is thus complete. ]

F.2.4  Putting All Pieces Together. Recall that B = 4,000(log, K)* log(3SA) log 3. The last step
is to rewrite the inequalities (40g) — (40f) as follows with (40a), (40c), (40d), and (40e) replaced by
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(157),(159), (163), and (162) respectively:

Ty < \128BSAHT, + 24BSAH?,

T, < H+/512BSAHT, + 24BSAH?,

Ty < \128BSAHT, + 24BSAH?,

T, < 1004/BSAHT; + 140BSAH?,
1

T3 < +/8BTs + 3H log 5,

T, < \/BSAHKvar, + BSAH?;
Ts < 40Kvar, + 80HT, + 398BSAH?>,
T, < 8Kvars + 16HT, + 78BSAH?,

Ty < \/32BH?T; + 3BH?,

which are valid with probability at least 1 — 200SAH2K?§’. Solving the inequalities listed above,
we can readily conclude that

IAN A

A

Regret(K) =Ty + Ty + T; + Ty < O (\/BSAHKvarz + BSAHQ) . (173)
This finishes the proof by recalling that §" = m.

G Minimax Lower Bounds

In this section, we establish the lower bounds advertised in this article.

G.1 Proof of Theorem 6.1
Consider any given (S, A, H). We start by establishing the following lemma.

LeEmMA G.1. Consider any K’ > 1. For any algorithm, there exists an MDP instance with S states,
A actions, and horizon H, such that the regret in K’ episodes is at least

Regret(K') = Q(f(K)) = Q (min {\/SAH3K’,K’H}) .

Proor or LEMMA G.1. Our construction of the hard instance is based on the hard instance JAO-
MDP constructed in Jaksch et al. [26], Jin et al. [29]. In Jin et al. [29, Appendix.D], the authors
already showed that when K’ > CySAH for some constant Cy > 0, the minimax regret lower bound
is Q(VSAH3K”). Hence, it suffices for us to focus on the regime where K’ < CoSAH. Without loss
of generality, we assume S = A = 2, and the argument to generalize it to arbitrary (S, A) is standard
and hence omitted for brevity.

Recall the construction of JAO-MDP in Jaksch et al. [26]. Let the two states be x and y, and the
two actions be a and b. The reward is always equal to x in state 1 and 1/2 in state y. The probability
transition kernel is given by

Px,a: x,b:[l_g’a]’ Py,a:[l_&a]’ Py,b:[1_6_636+6]3

where we choose § = C;/H and € = 1/H. Then the mixing time of the MDP is roughly O(H).
By choosing C; large enough, we can ensure that the MDP is C5-mixing after the first half of the
horizons for some proper constant Cs € (0, 1/2).

It is then easy to show that action b is the optimal action for state y. Moreover, whenever action
a is chosen in state y, the learner needs to pay regret Q(eH) = Q(1). In addition, to differentiate

J. ACM, Vol. 72, No. 3, Article 22. Publication date: June 2025.



22:62 Z.Zhang et al.

action a from action b in state y with probability at least 1 — 11—0, the learner needs at least Q(7) =

Q(H) rounds — let us call it C4H rounds for some proper constant C4 > 0. As a result, in the case
where K’ < C,H, the minimax regret is at least Q(K’H%¢) = Q(K’H). When C,H < K’ < CySAH =
4CoH, the minimax regret is at least Q(C4H?) = Q(K’H). This concludes the proof. O

With Lemma G.1, we are ready to prove Theorem 6.1. Let M be the hard instance for K’ =
max {1—10Kp, 1} constructed in the proof of Lemma G.1. We construct an MDP M’ as below.
— In the first step, for any state s, with probability p, the leaner transitions to a copy of M, and
with probability 1 — p, the learner transitions to a dumb state with 0 reward.
It can be easily verified that v* < pH.Let X = X; + X, + - - - + X), where {Xi}fil are i.i.d. Bernoulli
random variables with mean p. Let g(X, K’) denote the minimax regret on the hard instance M in
X episodes. Given that g(X, K”) is non-decreasing in X, one sees that

Regret(K) > E [g(X, K')] .

— In the case where Kp > 10, Lemma A.3 tells us that with probability at least 1/2, X > %Kp =
K’, and then it holds that

1 1 1
Blg(X.K")] = Sg(K'.K) = Zf(K) = 2Q (min {\/SAHS»K/,K’H}) = Q(+/SAHKp, KHp).
— In the case where Kp < 10, with probability exceeding 1 — (1 — p)X > (1 - e KP) > %, one
has X > 1. Then one has

’ K ’ K
Blg0¢ K] 2 22 g0k = 22 901 = op).
The preceding bounds taken together complete the proof.

G.2 Proof of Theorem 6.2
Without loss of generality, assume that S = A = 2 (as in the proof of Theorem 6.1), and recall
the assumption that p < 1/4. In what follows, we construct a hard instance for which the learner
needs to identify the correct action for each step.
Let S = {s1, 52}, and take the initial state to be s;. The transition kernel and cost are chosen as
follows.
— Select aj € {ay,a,} for every h € [H].
— For each action a and each step h, set Ps, 4 = es, and cp(s2,a) = 0.
— For each step h and each action a # aZ, set P, 4.0 = €5, and cp(s1,a) = 1.
—Set Py, g+ p = €, and cy(s1, ay) = p.
It can be easily checked that ¢c* = Hp (the cost obtained by choosing action a}, for each step h).
Note that in the above construction, the a}’s are selected independently across different steps.
Thus, to identify the optimal action a} for at least half of the H steps, we need at least Q(H)
episodes. This implies that: there exists a constant Cs > 0 such that in the first K < CsH episodes,
the cost of the learner is at least Q(H(1 — p)). As a result, the minimax regret is at least

Q(K(H - ¢*) = Q(KH(1 - p)).
when K < CsH. Similarly, in the case where CsH < K < %, the minimax regret is at least
QH(H - ¢*) = Q(HA(1 - p)).
We then turn to the case where K > 1% Tet M be the hard instance having the same transition

as the instance constructed in the proof of Lemma G.1, and set the cost as 1/2 (respectively 1) for
state x (respectively state y), with respect to K’ = Kp/10 > 10H (a quantity defined therein). Let
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M’ be the MDP such that: in the first step, with probability p, the learner transitions to a copy
of M, and with probability 1 — p, the learner transitions to a dumb state with 0 cost. Then we
clearly have ¢* = ©(Hp). It follows from Lemma A.3 that, with probability exceeding 1/2, one has
X > 31Kp —log2 > :Kp, where X is again defined in the proof of Lemma G.1. Then one has

Regret(K) > %Q (min {VEFK", K'H} ) = Q(VEKp).

The proof is thus completed by combining the above minimax regret lower bounds for the three
regimes K € [1,CsH), K € (CsH, %} and K € (%, o]

G.3 Proof of Theorem 6.3

When K > SAH /p, the lower bound in Theorem 6.1 readily applies because the regret is at least
Q(+/SAH?*Kp) and the variance var is at most pH?. When SAH < K < SAH/p, the regret is at
least Q(SAH?) = Q(min{y/SAH?*Kp + SAH?,KH}). As a result, it suffices to focus on the case
where 1 < K < SAH, Toward this end, we only need the following lemma, which suffices for us
to complete the proof.

LEMMA G.2. Consider any 1 < K < SAH. There exists an MDP instance with S states, A actions,
horizon H, and var; = var, = 0, such that the regret is at least Q(KH).

Proor. Let us construct an MDP with deterministic transition; more precisely, for each (s, a, h),
there is some s” such that Ps , ¢ = 1 and Ps 4 5 s = 0 for any s” # s’. The reward function is also
chosen to be deterministic. In this case, it is easy to verify that var; = var, = 0.

We first assume S = 2. For any action a and horizon h, we set Ps, o n = €5, and r(sz,a) = 0. For
any action a # a* and h, we also set P, , » = es, and rp(sz, a) = 0. At last, we set P, o = €5, and
ri(s1,a*) = 1. In other words, there are a dumb state and a normal state in each step. The learner
would naturally hope to find the correct action to avoid the dumb state. Obviously, V*(s;) = H. To
find an %-optimal policy, the learner needs to identify a* for the first % steps, requiring at least
Q(HA) rounds in expectation. As a result, the minimax regret is at least Q(KH) when K < cHA
for some proper constant ¢ > 0.

Let us refer to the hard instance above as a hard chain. For general S, we can construct d := g
hard chains. Let the two states in the ith hard chain be (s{(i), s2(i)). We set the initial distribution
to be the uniform distribution over {sl(i)}le. Then V*(s1(i)) = H holds for any 1 < i < d. Let
Regret;(K) be the expected regret resulting from the ith hard chain. When K > 1005, Lemma A.3

tells us that with probability at least 1, s;(i) is visited for at least % > 10 times. As a result, we
have
1 KH
Regret;(K) > 2 Q (T) .

Summing over i, we see that the total regret is at least Zle Regret,;(K) = Q(KH). When K < 1008,
with probability at least 1 — (1 — é)K > 0.0001%, we know that s;(i) is visited for at least one time.
Therefore, it holds that Regret;(K) > Q(%). Summing over i, we obtain

K
Regret(K) = Z Regret,(K) = Q(KH)
i=1

as claimed. |
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