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A central issue lying at the heart of online reinforcement learning (RL) is data eociency. While a number

of recent works achieved asymptotically minimal regret in online RL, the optimality of these results is only

guaranteed in a <large-sample= regime, imposing enormous burn-in cost in order for their algorithms to

operate optimally. How to achieve minimax-optimal regret without incurring any burn-in cost has been an

open problem in RL theory.

We settle this problem for onite-horizon inhomogeneousMarkov decision processes. Speciocally, we prove

that a modioed version of MVP (Monotonic Value Propagation), an optimistic model-based algorithm proposed

by Zhang et al. [82], achieves a regret on the order of (modulo log factors)

min
{√

SAH3K , HK
}
,

where S is the number of states, A is the number of actions, H is the horizon length, and K is the total

number of episodes. This regret matches the minimax lower bound for the entire range of sample size K ≥
1, essentially eliminating any burn-in requirement. It also translates to a PAC sample complexity (i.e., the

number of episodes needed to yield ε-accuracy) of SAH 3

ε2
up to log factor, which is minimax-optimal for the

full ε-range. Further, we extend our theory to unveil the innuences of problem-dependent quantities like

the optimal value/cost and certain variances. The key technical innovation lies in a novel analysis paradigm

(based on a new concept called <prooles=) to decouple complicated statistical dependency across the sample

trajectories — a long-standing challenge facing the analysis of online RL in the sample-starved regime.
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1 Introduction

In reinforcement learning (RL), an agent is often asked to learn optimal decisions (i.e., the
ones that maximize cumulative reward) through real-time <trial-and-error= interactions with an
unknown environment. This task is commonly dubbed as online RL, underscoring the critical role
of adaptive online data collection and diferentiating it from other RL settings that rely upon pre-
collected data. A central challenge in achieving sample-eocient online RL boils down to how to
optimally balance exploration and exploitation during data collection, namely, how to tradeof the
potential revenue of exploring unknown terrain/dynamics against the beneot of exploiting past
experience. While decades-long efort has been invested toward unlocking the capability of online
RL, how to fully characterize — and more importantly, attain — its fundamental performance limit
remains largely unsettled.
In this article, we take an important step toward settling the sample complexity limit of online

RL, focusing on tabularMarkov Decision Processes (MDPs) with onite horizon and onite state-
action space. More concretely, imagine that one seeks to learn a near-optimal policy of a time-
inhomogeneous MDP with S states,A actions, and horizon lengthH , and is allowed to execute the
MDP of interest K times to collect K sample episodes each of length H . This canonical problem is
among themost extensively studied in the RL literature, with formal theoretical pursuit dating back
to more than 25 years ago (e.g., Kearns and Singh [34]). Numerous works have since been devoted
to improving the sample eociency and/or reoning the analysis framework [6, 7, 11, 17, 20, 26, 29, 32,
42, 49, 81, 82, 84]. As we shall elucidate momentarily, however, information-theoretic optimality
has only been achieved in the <large-sample= regime. When it comes to the most challenging
sample-hungry regime, there remains a substantial gap between the state-of-the-art regret upper
bound and the best-known minimax lower bound, which motivates the research of this article.

1.1 Inadequacy of Prior Art: Enormous Burn-in Cost

While past research has obtained asymptotically optimal (i.e., optimal whenK approaches inonity)
regret bounds in the aforementioned setting, all of these results incur an enormous burn-in cost —
that is, the minimum sample size needed for an algorithm to operate sample-optimally — which
we explain in the sequel. For simplicity of presentation, we assume that each immediate reward
lies within the normalized range [0, 1] when discussing the prior art.

Minimax lower bound. To provide a theoretical benchmark, we orst make note of the best-
known minimax regret lower bound developed by Domingues et al. [20], Jin et al. [29]1:

(minimax lower bound) Ω

(
min

{√
SAH 3K , HK

})
, (1)

1Let X = {S, A, H, K, 1
δ
}, where 1 − δ is the target success rate (to be seen shortly). The notation f (X) = O

(
д(X)

)
(or

f (X) � д(X)) indicates the existence of some universal constant c1 > 0 such that f (X) ≤ c1д(X); f (X) = Ω
(
д(X)

)
(or

f (X) � д(X)) means that there exists some universal constant c2 > 0 such that f (X) ≥ c2д(X); and f (X) = Θ
(
д(X)

)
(or

f (X) � д(X)) means that f (X) � д(X) and f (X) � д(X) hold simultaneously. Moreover, Õ (·), Ω̃ (·) and Θ̃ (·) are deoned
analogously, except that all logarithmic dependency on the quantities of X are hidden.
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assuming that the immediate reward at each step falls within [0, 1] and imposing no restriction on
K . Given that a regret ofO(HK) can be trivially achieved (as the sum of rewards in any K episodes
cannot exceed HK ), we shall sometimes drop the HK term and simply write

(minimax lower bound) Ω
(√
SAH 3K

)
if K ≥ SAH . (2)

Prior upper bounds and burn-in cost. We now turn to the upper bounds developed in prior
literature. For ease of presentation, we shall assume

K ≥ SAH , (3)

in the rest of this subsection unless otherwise noted. Log factors are also ignored in the discussion
below.
The orst article that achieves asymptotically optimal regret is Azar et al. [6], which came up

with a model-based algorithm called UCBVI that enjoys a regret bound Õ
(√
SAH 3K + H 3S2A

)
. A

close inspection reveals that this regret matches the minimax lower bound (2) if and only if(
burn-in cost of Azar et al. [6]

)
K � S3AH 3, (4)

due to the presence of the lower-order termH 3S2A in the regret bound. This burn-in cost is clearly
undesirable, since the sample size available in many practical scenarios might be far below this
requirement.
In light of its fundamental importance in contemporary RL applications (which often have very

large dimensionality and relatively limited data collection capability), reducing the burn-in cost
without compromising sample eociency has emerged as a central problem in recent pursuit of
RL theory [1, 18, 40, 42, 47, 49, 61, 81, 82, 87]. The state-of-the-art regret upper bounds for onite-
horizon inhomogeneous MDPs can be summarized below (depending on the size of K ):

[49] Õ
(√
SAH 3K + SAH 4), (5a)

[82, 87] Õ
(√
SAH 3K + S2AH 2), (5b)

meaning that even the most advanced prior results fall short of sample optimality unless(
best burn-in cost in past works

)
K � min

{
SAH 5, S3AH

}
. (6)

The interested reader is referred to Table 1 for more details about existing regret upper bounds
and their associated sample complexities.
In summary, no prior theory was able to achieve optimal sample complexity in the data-hungry

regime

SAH ≤ K � min
{
SAH 5, S3AH

}
, (7)

sufering from a signiocant barrier of either a long horizon (as in the term SAH 5) or a large state
space (as in the term S3AH ). In fact, the information-theoretic limit is yet to be determined within
this regime (i.e., neither the achievability results nor the lower bounds had been shown to be tight),
although it has been conjectured by Ménard et al. [49] that the lower bound (1) renects the correct
scaling for any sample size K .2

Comparisons with other RL settings and key challenges. In truth, the incentives to minimize
the burn-in cost and improve data eociency arise in multiple other settings beyond online RL. For
instance, in an idealistic setting that assumes access to a simulator (or a generative model) — a
model that allows the learner to query arbitrary state-action pairs to draw samples — a recent

2Note that the original conjecture in Ménard et al. [49] was Θ̃
(√
SAH 3K + SAH 2

)
. Combining it with the trivial upper

bound HK allows one to remove the term SAH 2 (with a little algebra).
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Table 1. Comparisons between Our Result and Prior Works that Achieve Asymptotically Optimal Regret

for Finite-horizon Inhomogeneous MDPs (with All Log Factors Omited), where S (respectively A) is the

Number of States (Respectively Actions), H is the Planning Horizon, and K is the Number of Episodes

Algorithm Regret upper bound Range of K that

attains optimal regret

Sample complexity

(or PAC bound)

MVP

(this work, Theorem 1.1)
min

{√
SAH 3K ,HK

}
[1,∞) SAH 3

ε2

UCBVI

[6]
min

{√
SAH 3K + S2AH 3, HK

}
[S3AH 3,∞) SAH 3

ε2
+

S 2AH 3

ε

ORLC

[18]
min

{√
SAH 3K + S2AH 4, HK

}
[S3AH 5,∞) SAH 3

ε2
+

S 2AH 4

ε

EULER

[81]
min

{√
SAH 3K + S3/2AH 3(

√
S +

√
H ), HK

} [
S2AH 3(

√
S +

√
H ),∞

)
SAH 3

ε2
+

S 2AH 3(
√
S+

√
H )

ε

UCB-Adv
[84]

min
{√

SAH 3K + S2A3/2H 33/4K1/4, HK
}

[S6A4H 27,∞) SAH 3

ε2
+

S 8/3A2H 11

ε4/3

MVP

[82]
min

{√
SAH 3K + S2AH 2, HK

}
[S3AH ,∞) SAH 3

ε2
+

S 2AH 2

ε

UCBMQ

[49]
min

{√
SAH 3K + SAH 4, HK

}
[SAH 5,∞) SAH 3

ε2
+

SAH 4

ε

Q-Earlysettled-Adv
[42]

min
{√

SAH 3K + SAH 6, HK
}

[SAH 9,∞) SAH 3

ε2
+

SAH 6

ε

Lower bound
[20]

min
{√

SAH 3K ,HK
}

n/a SAH 3

ε2

The third column renects the burn-in cost, and the sample complexity (or PAC bound) refers to the number of episodes

needed to yield ε accuracy. The results provided here account for all K ≥ 1 or all ε ∈ (0, H ]. Our article is the only one

that gives regret (respectively PAC) bound matching the minimax lower bound for the entire range of K

(respectively ε ).

work Li et al. [43] developed a perturbed model-based approach that is provably optimal without
incurring any burn-in cost. Analogous results have been obtained in Li et al. [47] for onine RL —
a setting that requires policy learning to be performed based on historical data — unveiling the
full-range optimality of a pessimistic model-based algorithm.
Unfortunately, the algorithmic and analysis frameworks developed in the above two works fail

to accommodate the online counterpart. The main hurdle stems from the complicated statistical
dependency intrinsic to episodic online RL; for instance, in online RL, the empirical transition
probabilities and the running estimates of the value function are oftentimes statistically depen-
dent in an intertwined manner (unless we waste data). How to decouple the intricate statistical
dependency without compromising data eociency constitutes the key innovation of this work.
More precise, in-depth technical discussions will be provided in Section 4.

1.2 A Peek at Our Main Contributions

We are now positioned to summarize the main ondings of this article. Focusing on time-
inhomogeneous onite-horizon MDPs, our main contributions can be divided into two parts: the
orst part fully settles the minimax-optimal regret and sample complexity of online RL, whereas
the second part further extends and augments our theory to make apparent the impacts of certain
problem-dependent quantities. Throughout this subsection, the regret metric Regret(K) captures
the cumulative sub-optimality gap (i.e., the gap between the performance of the policy iterates and
that of the optimal policy) over all K episodes, to be formally deoned in (17).

1.2.1 Setling the Optimal Sample Complexity with No Burn-in Cost. Our orst result fully deter-
mines the sample complexity limit of online RL in a minimax sense, allowing one to attain the
optimal regret regardless of the number K of episodes that can be collected.
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Theorem 1.1. For any K ≥ 1 and any 0 < δ < 1, there exists an algorithm (see Algorithm 1)

obeying

Regret(K) � min

{√
SAH 3K log5

SAHK

δ
,HK

}
(8)

with probability at least 1 − δ .

The optimality of our regret bound (8) can be readily seen given that it matches the minimax
lower bound (1) (modulo some logarithmic factor). One can also easily translate the above regret
bound into sample complexity or probably approximately correct (PAC) bounds: the proposed
algorithm is able to return an ε-suboptimal policy with high probability using at most

(sample complexity) Õ

(
SAH 3

ε2

)
episodes, (9)

(or equivalently, Õ
(
SAH 4

ε2

)
sample transitions as each episode has lengthH ). Remarkably, this result

holds true for the entire ε range (i.e., any ε ∈ (0,H ]), essentially eliminating the need of any burn-
in cost. It is noteworthy that even in the presence of an idealistic generative model, this order of
sample size is un-improvable [5, 43].

The algorithm proposed herein is a modioed version of MVP:Monotonic Value Propagation. Orig-
inally proposed by Zhang et al. [82], the MVP method falls under the category of model-based
approaches, a family of algorithms that construct explicit estimates of the probability transition
kernel before value estimation and policy learning. Notably, a technical obstacle that obstructs
the progress in understanding model-based algorithms arises from the exceedingly large model
dimensionality: given that the dimension of the transition kernel scales proportionally with S2,
all existing analyses for model-based online RL fell short of efectiveness unless the sample size
already far exceeds S2 [6, 82]. To overcome this undesirable source of burn-in cost, a crucial step is
to empower the analysis framework in order to accommodate the highly sub-sampled regime (i.e.,
a regime where the sample size scales linearly with S), which we shall elaborate on in Section 4.
The full proof of Theorem 1.1 will be provided in Section 5.

1.2.2 Extension: Optimal Problem-dependent Regret Bounds. In practice, RL algorithms of-
ten perform far more appealingly than what their worst-case performance guarantees would
suggest. This motivates a recent line of works that investigate optimal performance in a
more problem-dependent fashion [19, 25, 30, 62, 66, 68, 69, 77, 79, 81, 86, 87]. Encourag-
ingly, the proposed algorithm automatically achieves optimality on a more reoned problem-
dependent level, without requiring prior knowledge of additional problem-specioc knowledge.
This results in several extended theorems that take into account diferent problem-dependent
quantities.
The orst extension below investigates how the optimal value innuences the regret bound.

Theorem 1.2 (Optimal Value-dependent Regret). For any K ≥ 1, Algorithm 1 satisoes

E
[
Regret(K)

]
� min

{√
SAH 2Kv�,Kv�

}
log5(SAHK), (10)

where v� is the value of the optimal policy averaged over the initial state distribution (to be formally

deoned in (43)).

Moreover, there is also no shortage of applications where the use of a cost function is preferred
over a value function [2, 4, 37, 72]. For this purpose, we provide another variation based upon the
optimal cost.
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Theorem 1.3 (Optimal Cost-dependent Regret). For any K ≥ 1 and any 0 < δ < 1,
Algorithm 1 achieves

Regret(K) ≤ Õ
(
min

{√
SAH 2Kc� + SAH 2, K(H − c�)

})
, (11)

with probability exceeding 1 − δ , where c� denotes the cost of the optimal policy averaged over the

initial state distribution (to be formally deoned in (45)).

It is worth noting that: despite the apparent similarity between the statements of Theorem 1.2 and
Theorem 1.3, they do not imply each other, although their proofs are very similar to each other.

Finally, we establish another regret bound that renects the efect of certain variance quantities
of interest.

Theorem 1.4 (Optimal Variance-dependent Regret). For any K ≥ 1 and any 0 < δ < 1,
Algorithm 1 obeys

Regret(K) ≤ Õ
(
min

{√
SAHKvar + SAH 2, KH

})
, (12)

with probability at least 1 − δ , where var is a quantity deoned in (49).

As we shall see later in (49), var is a variance-type metric. Two remarks concerning the above
extensions are in order:

— In the worst-case scenarios, the quantities v�, c� and var can all be as large as the order
of H , in which case Theorems 1.2–1.4 readily recover Theorem 1.1. In contrast, the advan-
tages of Theorems 1.2–1.4 over Theorem 1.1 become more evident in those favorable cases
(e.g., the situation where v� 	 H or c� 	 H , or the case when the environment is nearly
deterministic (so that var ≈ 0)).

— Interestingly, the regret bounds in Theorems 1.2–1.4 all contain a lower-order term SAH 2,
and one might naturally wonder whether this term is essential. To demonstrate the unavoid-
able nature of this term and hence the optimality of Theorems 1.2–1.4, wewill providematch-
ing lower bounds, to be detailed in Section 6.

1.3 Related Works

Let us take a moment to discuss several related theoretical works on tabular RL. Note that there
has also been an active line of research that exploits low-dimensional function approximation to
further reduce sample complexity, which is beyond the scope of this article.
Our discussion below focuses on two mainstream approaches that have received widespread

adoption: the model-based approach and the model-free approach. In a nutshell, model-based algo-
rithms decouple model estimation and policy learning, and often use the learned transition kernel
to compute the value function and ond a desired policy. In stark contrast, the model-free approach
attempts to estimate the optimal value function and optimal policy directly without explicit esti-
mation of the model. In general, model-free algorithms only require O(SAH ) memory — needed
when storing the running estimates for Q-functions and value functions — while the model-based
counterpart might require Ω(S2AH ) space in order to store the estimated transition kernel.

Sample complexity for RL with a simulator. As an idealistic setting that separates the consid-
eration of exploration from that of estimation, RL with a simulator (or generative model) has been
studied by numerousworks, allowing the learner to draw independent samples for any state-action
pairs [1, 5, 9, 14, 15, 23, 32, 33, 39, 40, 43, 53, 59–61, 70, 71]. While both model-based and model-free
approaches are capable of achieving asymptotic sample optimality [1, 5, 61, 71], all model-free al-
gorithms that enjoy asymptotically optimal sample complexity sufer from dramatic burn-in cost.
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Thus far, only the model-based approach has been shown to fully eliminate the burn-in cost for
both discounted inonite-horizon MDPs and inhomogeneous onite-horizon MDPs [43]. The full-
range optimal sample complexity for time-homogeneous onite-horizon MDPs in the presence of
a simulator remains open.

Sample complexity for ofline RL. The suboeld of onine RL is concerned with learning
based purely on a pre-collected dataset [38]. A frequently used mathematical model assumes
that historical data are collected (often independently) using some behavior policy, and the
key challenges (compared with RL with a simulator) come from distribution shift and incom-
plete data coverage. The sample complexity of onine RL has been the focus of a large strand
of recent works, with asymptotically optimal sample complexity achieved by multiple algo-
rithms [31, 41, 44, 54–56, 58, 74, 75, 78, 80]. Akin to the simulator setting, the fully optimal
sample complexity (without burn-in cost) has only been achieved via the model-based approach
when it comes to discounted inonite-horizon and inhomogeneous onite-horizon settings [41]. All
asymptotically optimal model-free methods incur substantial burn-in cost. The case with time-
homogeneous onite-horizon MDPs also remains unsettled.

Sample complexity for online RL. Obtaining optimal sample complexity (or regret bound) in
online RLwithout incurring any burn-in cost has been one of themost fundamental open problems
in RL theory. In fact, the past decades have witnessed a nurry of activity toward improving the
sample eociency of online RL, partial examples including [3, 8, 11, 12, 16, 17, 20–22, 25–27, 29,
32, 34–36, 42, 45–47, 49–52, 57, 63–65, 67, 73, 76, 81–84]. Unfortunately, no work has been able to
conquer this problem completely: the state-of-the-art result for model-based algorithms still incurs
a burn-in that scales at least quadratically in S [82], while the burn-in cost of the best model-free
algorithms (particularly with the aid of variance reduction introduced in Zhang et al. [84]) still
sufers from highly sub-optimal horizon dependency [42].

1.4 Notation

Before proceeding, let us introduce a set of notation to be used throughout. Let 1 and 0 indicate
respectively the all-one vector and the all-zero vector. Let es denote the sth standard basis vector
(which has 1 at the sth coordinate and 0 otherwise). For any set X, ∆(X) represents the set of
probability distributions over the set X. For any positive integer N , we denote [N ] = {1, . . . ,N }.
For any two vectors x ,y with the same dimension, we use 〈x ,y〉 (or x
y) to denote the inner
product of x and y. For any integer S > 0, any probability vector p ∈ ∆([S]) and another vector
v = [vi ]1≤i≤S , we denote by

V(p,v) � 〈p,v2〉 − (〈p,v〉)2 =
〈
p,

(
v − 〈p,v〉1

)2〉
, (13)

the associated variance, where v2
= [v2

i ]1≤i≤S represents element-wise square of v . For any two
vectors a = [ai ]1≤i≤n and b = [bi ]1≤i≤n , the notation a ≥ b (respectively a ≤ b) means ai ≥
bi (respectively ai ≤ bi ) holds simultaneously for all i . Without loss of generality, we assume
throughout that K is a power of 2 to streamline presentation.

2 Problem Formulation

In this section, we introduce the basics of tabular online RL, as well as some basic assumptions to
be imposed throughout.

Basics of onite-horizon MDPs. This article concentrates on time-inhomogeneous (or nonsta-
tionary) onite-horizon MDPs. Throughout the article, we employ S = {1, . . . , S} to denote the
state space, A = {1, . . . ,A} the action space, and H the planning horizon. The notation P =

{
Ph :

S×A → ∆(S)
}
1≤h≤H denotes the probability transition kernel of the MDP; for any current state s
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at any steph, if action a is taken, then the state at the next steph+1 of the environment is randomly
drawn from Ps,a,h � Ph(· | s,a) ∈ ∆(S). Also, the notation R =

{
Rs,a,h ∈ ∆([0,H ])

}
1≤h≤H,s ∈S,a∈A

indicates the reward distribution; that is, while executing action a in state s at step h, the agent
receives an immediate reward — which is non-negative and possibly stochastic — drawn from the
distribution Rs,a,h . We shall also denote by r =

{
rh(s,a)

}
1≤h≤H,s ∈S,a∈A the mean reward function,

so that rh(s,a) � Er ′∼Rs,a,h [r ′] ∈ [0,H ] for any (s,a,h)-tuple. Additionally, a deterministic policy
π = {πh : S → A}1≤h≤H stands for an action selection rule, so that the action selected in state
s at step h is given by πh(s). The readers can consult standard textbooks (e.g., Bertsekas [10]) for
more extensive descriptions.
In each episode, a trajectory (s1,a1, r ′1, s2, . . . , sH ,aH , r ′H ) is rolled out as follows: the learner

starts from an initial state s1 independently drawn from some oxed (but unknown) distribution μ ∈
∆(S); for each step 1 ≤ h ≤ H , the learner takes actionah , gains an immediate reward r ′

h
∼ Rsh,ah,h ,

and the environment transits to the state sh+1 at step h + 1 according to Psh,ah,h . Note that both
the reward and the state transition are independently drawn from their respective distributions,
depending solely on the current state-action-step triple but not any previous outcomes. All of our
results in this article operate under the following assumption on the total reward.

Assumption 1. For any possible trajectory (s1,a1, r ′1, . . . , sH ,aH , r ′H ), one always has 0 ≤∑H
h=1 r

′
h
≤ H .

As can be easily seen, Assumption 1 is less stringent than another common choice that assumes
r ′
h
∈ [0, 1] for anyh in any episode. In particular, Assumption 1 allows for sparse and spiky rewards

along an episode; more discussions can be found in [28, 73].

Value function and Q-function. For any given policy π , one can deone the value functionV π
=

{V π
h

: S → R} and the Q-function Qπ
= {Qπ

h
: S × A → R} such that

V π
h (s) � Eπ

£¤¤¤¤¥
H∑
j=h

r ′j

��� sh = s
§̈̈
¨̈©
, ∀(s,h) ∈ S × [H ], (14a)

Qπ
h (s,a) � Eπ

£¤¤¤¤¥
H∑
j=h

r ′j

��� (sh ,ah) = (s,a)
§̈̈
¨̈©
, ∀(s,a,h) ∈ S × A × [H ], (14b)

where the expectation Eπ [·] is taken over the randomness of an episode
{
(sh ,ah , r ′h)

}
1≤h≤H gen-

erated under policy π , that is, aj = πj (sj ) for every h ≤ j ≤ H (respectively h < j ≤ H ) is chosen
in the deonition of V π

h
(respectively Qπ

h
). Accordingly, we deone the optimal value function and

the optimal Q-function respectively as

V�
h (s) � max

π
V π
h (s), ∀(s,h) ∈ S × [H ], (15a)

Q�
h (s,a) � max

π
Qπ
h (s,a) ∀(s,a,h) ∈ S × A × [H ]. (15b)

Throughout this article, we shall often abuse the notation by letting both V π
h

and V�
h

(respec-

tively Qπ
h
and Q�

h
) represent S-dimensional (respectively SA-dimensional) vectors containing all

elements of the corresponding value functions (respectively Q-functions). Two important prop-
erties are worth mentioning: (a) the optimal value and the optimal Q-function are linked by the
Bellman equation:

Q�
h (s,a) = rh(s,a) +

〈
Ph,s,a ,V

�
h+1

〉
, V�

h (s) = max
a′

Q�
h (s,a

′), ∀(s,a,h) ∈ S × A × [H ];
(16)

J. ACM, Vol. 72, No. 3, Article 22. Publication date: June 2025.



Setling the Sample Complexity of Online Reinforcement Learning 22:9

(b) there exists a deterministic policy, denoted by π�, that achieves optimal value functions and
Q-functions for all state-action-step tuples simultaneously, that is

V π�

h (s) = V�
h (s) and Qπ�

h (s,a) = Q�
h (s,a), ∀(s,a,h) ∈ S × A × [H ].

Data collection protocol and performance metrics. During the learning process, the learner
is allowed to collect K episodes of samples (using arbitrary policies it selects). More precisely, in
the kth episode, the learner is given an independently generated initial state sk1 ∼ μ, and exe-

cutes policy πk (chosen based on data collected in previous episodes) to obtain a sample trajectory{
(sk
h
,ak

h
, rk
h
)
}
1≤h≤H , with s

k
h
, ak

h
and rk

h
denoting the state, action, and immediate reward at step h

of this episode.
To evaluate the learning performance, a widely used metric is the (cumulative) regret over all K

episodes:

Regret(K) �
K∑
k=1

(
V�
1 (sk1 ) −V π k

1 (sk1 )
)
, (17)

and our goal is to design an online RL algorithm that minimizes Regret(K) regardless of the allow-
able sample size K . It is also well-known (see, e.g., Jin et al. [29]) that a regret bound can often
be readily translated into a PAC sample complexity result, the latter of which counts the number

of episodes needed to ond an ε-optimal policy π̂ in the sense that Es1∼μ
[
V�
1 (s1) − V π̂

1 (s1)
]
≤ ε

(note that the expectation here is taken not only over the randomness of the initial state, but
also over the randomness in selecting π̂ ). For instance, the reduction argument in Jin et al. [29]
reveals that: if an algorithm achieves Regret(K) ≤ f (S,A,H )K1−α for some function f and
some parameter α ∈ (0, 1), then by randomly selecting a policy from {πk }1≤k≤K as π̂ one

achieves Es1∼μ
[
V�
1 (s1) −V π̂

1 (s1)
]
� f (S,A,H )K−α , thus resulting in a sample complexity bound of( f (S,A,H )

ε

)1/α
.

3 A Model-based Algorithm: Monotonic Value Propagation

In this section, we formally describe our algorithm: a simple variation of the model-based algo-
rithm called Monotonic Value Propagation proposed by Zhang et al. [82]. We present the full pro-
cedure in Algorithm 1, and point out several key ingredients.

—Optimistic updates using upper conodence bounds (UCB). The algorithm implements the opti-
mism principle in the face of uncertainty by adopting the frequently used UCB-based frame-
work (see, e.g., UCBVI by Azar et al. [6]). More speciocally, the learner calculates the opti-
mistic Bellman equation backward (from h = H , . . . , 1): it orst computes an empirical esti-

mate P̂ = {P̂h ∈ RSA×S }1≤h≤H of the transition probability kernel as well as an empirical
estimate r̂ = {r̂h ∈ RSA}1≤h≤H of the mean reward function, and then maintains upper
estimates for the associated value function and Q-function using

Qh(s,a) ← min
{
r̂h(s,a) + 〈P̂s,a,h ,Vh+1〉 + bh(s,a),H

}
, (18a)

Vh(s) ← maxa Qh(s,a), (18b)

for all state-action pairs. Here, Qh (respectively Vh ) indicates the running estimate for the
Q-function (respectively value function), whereasbh(s,a) ≥ 0 is some suitably chosen bonus
term that compensates for the uncertainty. The above opportunistic Q-estimate in turn al-
lows one to obtain a policy estimate (via a simple greedy rule), which will then be executed
to collect new data. The fact that we orst estimate the model (i.e., the transition kernel and

mean rewards) makes it a model-based approach. Noteworthily, the empirical model (P̂ , r̂ )
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ALGORITHM 1: Monotonic Value Propagation (MVP) [82]

1 input: state space S, action space A, horizon H , total number of episodes K , conodence parameter δ ,

c1 =
460
9 , c2 = 2

√
2, c3 =

544
9 .

2 initialization: set δ ′ ← δ
200SAH 2K 2 , and for all (s,a, s ′,h) ∈ S × A × S × [H ], set θh (s,a) ← 0,

κh (s,a) ← 0, N all
h
(s,a, s ′) ← 0, Nh (s,a, s ′) ← 0, Nh (s,a) ← 0, Qh (s,a) ← H , Vh (s) ← H .

3 for k = 1, 2, . . . ,K do

4 Set πk such that πk
h
(s) = argmaxa Qh (s,a) for all s ∈ S and h ∈ [H ]. /* policy update. */

5 for h = 1, 2, . . . ,H do

6 Observe sk
h
, take action ak

h
= argmaxa Qh (skh ,a), receive r

k
h
, observe sk

h+1
. /* sampling. */

7 (s,a, s ′) ← (sk
h
,ak

h
, sk
h+1

).
8 Update N all

h
(s,a) ← N all

h
(s,a) + 1, Nh (s,a, s ′) ← Nh (s,a, s ′) + 1, θh (s,a) ← θh (s,a) + rkh ,

κh (s,a) ← κh (s,a) + (rkh )
2.

/* perform updates using data of this epoch. */

9 if N all
h
(s,a) ∈ {1, 2, . . . , 2log2 K } then

10 Nh (s,a) ←
∑
s̃ Nh (s,a, s̃). // number of visits to (s,a,h) in this epoch.

11 r̂h (s,a) ←
θh (s,a)
Nh (s,a) . // empirical rewards of this epoch.

12 σ̂h (s,a) ←
κh (s,a)
Nh (s,a) . // empirical squared rewards of this epoch.

13 P̂s,a,h (̃s) ←
Nh (s,a, s̃)
Nh (s,a) for all s̃ ∈ S. // empirical transition for this epoch.

14 Set TRIGGERED = TRUE, and θh (s,a) ← 0, κh (s,a) ← 0, Nh (s,a, s̃) ← 0 for all s̃ ∈ S.

/* optimistic Q-estimation using empirical model of this epoch. */

15 if TRIGGERED= TRUE then

16 Set TRIGGERED = FALSE, and VH+1(s) ← 0 for all s ∈ S.
17 for h = H ,H − 1, . . . , 1 do

18 for (s,a) ∈ S × A do

19

bh (s,a) ← c1

√
V(P̂s,a,h ,Vh+1) log 1

δ ′

max{Nh (s,a), 1}
+ c2

√ (
σ̂h (s,a) − (̂rh (s,a))2

)
log 1

δ ′

max{Nh (s,a), 1}

+c3
H log 1

δ ′

max{Nh (s,a), 1}
, (19)

Qh (s,a) ← min
{
r̂h (s,a) + 〈P̂s,a,h ,Vh+1〉 + bh (s,a),H

}
, Vh (s) ← max

a
Qh (s,a). (20)

shall be updated multiple times as new samples continue to arrive, and hence the updating
rule (18) will be invoked multiple times as well.

— An epoch-based procedure and a doubling trick. Compared to the original UCBVI [6], one dis-
tinguishing feature of MVP is to update the empirical transition kernel and empirical rewards
in an epoch-based fashion, as motivated by a doubling update framework adopted in Jaksch
et al. [26]. More concretely, the whole learning process is divided into consecutive epochs via
a simple doubling rule; namely, whenever there exits a (s,a,h)-tuple whose visitation count
reaches a power of 2, we end the current epoch, reconstruct the empirical model (cf. lines 11
and 13 of Algorithm 1), compute the Q-function and value function using the newly up-
dated transition kernel and rewards (cf. (20)), and then start a new epoch with an updated
sampling policy. This stands in stark contrast with the original UCBVI, which computes new
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estimates for the transition model, Q-function and value function in every episode. With
this doubling rule in place, the estimated transition probability vector for each (s,a,h)-tuple
will be updated by no more than log2 K times, a feature that plays a pivotal role in signif-
icantly reducing some sort of covering number needed in our covering-based analysis (as
we shall elaborate on shortly in Section 4). In each epoch, the learned policy is induced by
the optimistic Q-function estimate — computed based on the empirical transition kernel of
the current epoch — which will then be employed to collect samples in all episodes of the
next epoch. More technical explanations of the doubling update rule will be provided in
Section 4.2.

—Monotonic bonus functions.Another crucial step in order to ensure near-optimal regret lies in
careful designs of the data-driven bonus terms {bh(s,a)} in (18a). Here, we adopt the mono-
tonic Bernstein-style bonus function for MVP originally proposed in Zhang et al. [82], to be
made precise in (19). Compared to the bonus function in Euler [81] and UCBVI [6], the mono-
tonic bonus form has a cleaner structure that efectively avoids large lower-order terms. Note
that in order to enable variance-aware regret, we also need to keep track of the empirical
variance of the (stochastic) immediate rewards. For more details about <monotonicity= and
bonus functions, we refer the readers to Appendix C.1.

Remark 1. We note that a doubling update rule has also been used in the original MVP [82]. A
subtle diference between ourmodioed version and the original one lies in that: when the visitation
count for some (s,a,h) reaches 2i for some integer i ≥ 1, we only use the second half of the samples

(i.e., the {2i−1+l}2i−1
l=1

-th samples) to compute the empirical model, whereas the original MVPmakes

use of all the 2i samples. This modioed step turns out to be helpful in our analysis, while still
preserving sample eociency in an orderwise sense (since the latest batch always contains at least
half of the samples).

4 Key Technical Innovations

In this section, we point out the key technical hurdles the previous approach encounters when
mitigating the burn-in cost, and put forward a new strategy to overcome such hurdles. For ease
of presentation, let us introduce a set of augmented notation to indicate several running iterates
in Algorithm 1, which makes clear the dependency on the episode number k and will be used
throughout all of our analysis.

— P̂k
s,a,h

∈ RS : the latest update of the empirical transition probability vector P̂s,a,h before the

kth episode.
— r̂k

h
(s,a) ∈ [0,H ]: the latest update of the empirical reward r̂h(s,a) before the kth episode.

— σ̂k
h
(s,a) ∈ [0,H 2]: the latest update of the empirical squared reward σ̂h(s,a) before the kth

episode.
— bk

h
(s,a) ≥ 0: the latest update of the bonus term bh(s,a) before the kth episode.

— N k,all
h

(s,a): the total visitation count of the (s,a,h)-tuple before the beginning of the kth
episode.

— N k
h
(s,a): the visitation count Nh(s,a) of the (s,a,h)-tuple of the latest doubling batch used

to compute P̂s,a,h before the kth episode. When N k,all
h

(s,a) = 0, we deone N k
h
(s,a) = 1 for

ease of presentation.
—V k

h
∈ RS : the value function estimate Vh before the beginning of the kth episode.

—Qk
h
∈ RSA: the Q-function estimate Qh before the beginning of the kth episode.

Another notation for the empirical transition probability vector is also introduced below:
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— For any j ≥ 2 (respectively j = 1), let P̂
(j)
s,a,h

be the empirical transition probability vector

for (s,a,h) computed using the jth batch of data, i.e., the {2j−2 + i}2j−2i=1 -th samples (respec-

tively the 1st sample) for (s,a,h). For completeness, we take P̂
(0)
s,a,h

=
1
S
1 for the 0th batch.

— Similarly, let r̂
(j)
h
(s,a) (respectively σ̂

(j)
h
(s,a)) denote the empirical reward (respectively em-

pirical squared reward) w.r.t. (s,a,h) based on the jth batch of data.

4.1 Technical Barriers in Prior Theory for UCBVI

Let us take a close inspection on prior regret analysis for UCB-based model-based algorithms, in
order to illuminate the part that calls for novel analysis. To simplify presentation, this subsection
assumes deterministic rewards so that each empirical reward is replaced by its mean.
Let us look at the original UCBVI algorithm proposed by Azar et al. [6]. Standard decomposition

arguments employed in the literature (e.g., Azar et al. [6], Jaksch et al. [26], Zhang et al. [82])
decompose the regret as follows:

Regret(K) ≤
∑
k,h

(
P̂k,all
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h

)
V k
h+1 +

∑
k,h

bkh
(
skh ,a

k
h

)

+

∑
k,h

(
Psk

h
,ak
h
,h − esk

h+1

) (
V k
h+1 −V π k

h+1

)
; (21)

see also the derivation in Section 5. Here, we abuse the notation by letting V k
h+1

(respectively bk
h
)

be the value function estimate (respectively bonus term) of UCBVI before the kth episode, and in

the meantime, we let P̂k,all
s,a,h

represent the empirical transition probability for the (s,a,h)-tuple com-

puted using all samples before the kth episode (note that we add the superscript all to diferentiate
it from its counterpart in our algorithm). In order to achieve full-range optimal regret, one needs
to bound the three terms on the right-hand side of (21) carefully, among which two are easy to
handle.

— It is known that the second term (i.e., the aggregate bonus) on the right-hand side of (21) can
be controlled in a rate-optimal manner if we adopt a suitably chosen Bernstein-style bonus;
see, e.g., Zhang et al. [82], which will also be made clear shortly in Section 5.

— In the meantime, the third term on the right-hand side of (21) can be easily coped with by
means of standard martingale concentration bounds (e.g., the Freedman inequality).

It then comes down to controlling the orst term on the right-hand side of (21). This turns out

to be the most challenging part, owing to the complicated statistical dependency between P̂k,all
sk
h
,ak
h
,h

andV k
h+1

. To see this, note that P̂k,all
s,a,h

is constructed based on all previous samples of (s,a,h), which
has non-negligible innuences upon V k

h+1
as V k

h+1
is computed based on previous samples. At least

two strategies have been proposed to circumvent this technical dioculty, which we take a moment
to discuss.

— Strategy 1: replacing V k
h+1

with V�
h+1

for large k . Most prior analysis for model-based algo-
rithms [6, 17, 81, 82] decomposes∑

k,h

(
P̂k,all
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h

)
V k
h+1

=

∑
k,h

(
P̂k,all
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h

)
V�
h+1 +

∑
k,h

(
P̂k,all
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h

) (
V k
h+1 −V�

h+1

)
. (22)

The rationale behind this decomposition is as follows:
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(i) given that V�
h+1

is oxed and independent from the data, the orst term on the right-hand
side of (22) can be bounded easily using Freedman’s inequality;

(ii) the second term on the right-hand side of (22) would vanish as V k
h+1

and V�
h+1

become
exceedingly close (which would happen as k becomes large enough).

Such arguments, however, fall short of tightness when analyzing the initial stage of the
learning process: given that V k

h+1
− V�

h+1
cannot be suociently small at the beginning, this

approach necessarily results in a huge burn-in cost.
— Strategy 2: a covering-based argument. Let us discuss informally another potential strat-
egy that motivates our analysis. We orst take a closer look at the relationship between

P̂k,all
s,a,h

and V k
h+1

. Abusing notation by letting N k,all
h

(s,a) be the total number of visits to

a (s,a,h)-tuple before the kth episode in UCBVI, we can easily observe that P̂k,all
s,a,h

and

V k
h+1

are statistically independent conditioned on the set
{
N k,all
h

(s,a)
}
(s,a,k)∈S×A×[K ]. Con-

sequently, if we <pretend= that {N k,all
h

(s,a)} are pre-oxed and independent of {P̂k,all
s,a,h

}, then
one can invoke standard concentration inequalities to obtain a high-probability bound on∑

k,h

(
P̂k,all
sk
h
,ak
h
,h

− Psk
h
,ak
h
,h

)
V k
h+1

in a desired manner. The next step would then be to invoke

a union bound over all possible conogurations of {N k,all
h

(s,a)}, so as to eliminate the above
independence assumption. The main drawback of this approach, however, is that there are

exponentially many (e.g., in K ) possible choices of {N k,all
h

(s,a)}, inevitably loosening the
regret bound.

4.2 Our Approach

In light of the covering-based argument in Section 4.1, one can only hope that this analysis
strategy to work if substantial compression (i.e., a signiocantly reduced covering number) of
the visitation counts is plausible. This motivates our introduction of the doubling batches as

described in Section 3, so that for each (s,a,h)-tuple, the empirical model P̂s,a,h and its associated
visitation count Nh(s,a) (for the associated batch) are updated at most log2 K times (see line 9
of Algorithm 1). Compared to the original UCBVI that recomputes the transition model in every
episode, our algorithm allows for signiocant reduction of the covering number of the visitation
counts, thanks to its much less frequent updates.
Similar to (21), we are in need of bounding the following term when analyzing Algorithm 1:∑

k,h

(
P̂k
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h

)
V k
h+1. (23)

In what follows, we present our key ideas that enable tight analysis of this quantity, which consti-
tute our main technical innovations. The complete regret analysis for Algorithm 1 is postponed to
Section 5.

4.2.1 Key Concept: Profiles. One of the most important concepts underlying our analysis for
Algorithm 1 is the so-called <proole=, deoned below.

Deonition 4.1 (Proole). Consider any combination {N k,all
h

(s,a)}(s,a,h,k)∈S×A×[H ]×[K ]. For any k ∈
[K], deone

∀(s,a,h) ∈ S × A × [H ] : Iks,a,h �

{
max

{
j ∈ N : 2j−1 ≤ N k,all

h
(s,a)

}
, if N k,all

h
(s,a) > 0;

0, if N k,all
h

(s,a) = 0.

(24a)
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The proole for the kth episode (1 ≤ k ≤ K) and the total proole are then deoned respectively as

Ik
�

{
Iks,a,h

}
(s,a,h)∈S×A×[H ], (24b)

and I � {Ik }Kk=1. (24c)

Clearly, once a total proole I w.r.t. {N k,all
h

(s,a)} is given, one can write

P̂ks,a,h = P̂
(Ik
s,a,h

)
s,a,h

, ∀(s,a,h,k) ∈ S × A × [H ] × [K]. (25)

In other words, a total proole specioes all the time instances and locations when the empirical
model is updated. Given that each N k

h
(s,a) is recomputed only when the associated empirical

model is updated (see line 10 of Algorithm 1), the total proole also provides a succinct representa-
tion of the set {N k

h
(s,a)}.

In order to quantify the degree of compression, Deonition 4.1 ofers when representing the
update times and locations, we provide an upper bound on the number of possible total prooles in
the lemma below.

Lemma 4.2. Suppose that K ≥ SAH log2 K . Then the number of all possible total prooles w.r.t. Al-

gorithm 1 is at most

(4SAHK)SAH log2 K+1.

Proof. Deone the following set (which will be useful in subsequent analysis as well)

C �
{
I = {I1, . . . ,IK }

���I1 ≤ I2 ≤ · · · ≤ IK ,Ik ∈
{
0, 1, · · · , log2 K

}SAH
for all 1 ≤ k ≤ K

}
.

(26)
Due to the monotonicity constraints, it is easily seen that the total proole of any set {N k

h
(s,a)}

must lie within C. It then boils down to proving that |C| ≤ (4SAHK)SAH log2 K+1, which can
be accomplished via elementary combinatorial calculations. The complete proof is deferred to
Appendix B.1. �

In comparison to using {N k,all
h

(s,a)} to encode all update times and locations — which might
have exponentially many (in K ) possibilities — the use of doubling batches in Algorithm 1 allows
for remarkable compression (as the exponent of the number of possibilities only scales logarithmi-
cally in K ).

4.2.2 Decoupling the Statistical Dependency. In this subsection, we discuss our approach to de-
coupling statistical dependency across the trajectories.

An expanded view of randomness w.r.t. state transitions. To facilitate analysis, we ond it
helpful to look at a diferent yet closely related way to generate independent samples from a gen-
erative model.

Deonition 4.3 (An Expanded Sample Set from a Generative Model). Let Dexpand be a set of SAHK

independent samples generated as follows: for each (s,a,h) ∈ S × A × [H ], draw K independent

samples (s,a,h, s ′,(i)) obeying s ′,(i) ind.∼ Ps,a,h (1 ≤ i ≤ K ).

Crucially,Dexpand can be viewed as an expansion of the original dataset — denoted byDoriginal —
collected in online learning, as we can couple the data collection processes ofDoriginal andDexpand

as follows:

(i) generate Dexpand before the beginning of the online process;
(ii) during the online learning process, whenever a sample needs to be drawn from (s,a,h), one

can take an unused sample of (s,a,h) from Dexpand without replacement.
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Remarkably, this coupling allows one to conduct analysis alternatively based on the expanded
sample set Dexpand, which is sometimes more convenient (as we shall detail momentarily). Unless
otherwise noted, all analyses in our proof assume that Doriginal and Dexpand are coupled through
the above simulation process.

In the sequel, we let P̂
(j)
s,a,h

(cf. the beginning of Section 4) denote the empirical probability vector

based on the jth batch of data (i.e., those samples associated with (s,a,h) indexed with 2j−2 +
1, . . . , 2j−1) from Doriginal and Dexpand interchangeably, as long as it is clear from the context.

A starting point: a basic decomposition. We now describe our approach to tackling the

complicated statistical dependency between P̂k
s,a,h

and V k
h+1

. To begin with, take Itrue
=

{I1,true, · · · ,IK,true} with Ik,true
= {Ik,true

s,a,h
}, which denotes the total proole w.r.t. the true visi-

tation counts in the online learning process; let kl, j,s,a,h denote the episode index of the sample

that visits (s,a,h) for the (2l−1 + j)-th time in the online learning process; and we take V k
h+1
= 0

for any k > K . Then from relation (25) we can write

K∑
k=1

H∑
h=1

〈
P̂k
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h ,V

k
h+1

〉
=

K∑
k=1

H∑
h=1

〈
P̂
(Ik, true
sk
h
,ak
h
,h
)

sk
h
,ak
h
,h

− Psk
h
,ak
h
,h ,V

k
h+1

〉

=

log2 K∑
l=0

∑
s,a,h

〈
P̂
(l )
s,a,h

− Ps,a,h ,

K∑
k=1

1

{
(skh ,a

k
h) = (s,a), Ik,true

s,a,h
= l

}
V k
h+1

〉

≤
log2 K∑
l=1

∑
s,a,h

〈
P̂
(l )
s,a,h

− Ps,a,h ,

K∑
k=1

1

{
(skh ,a

k
h) = (s,a), Ik,true

s,a,h
= l

}
V k
h+1

〉
+ SAH 2

=

log2 K∑
l=1

2l−1∑
j=1

{ ∑
s,a,h

〈
P̂
(l )
s,a,h

− Ps,a,h ,V
kl, j,s,a,h
h+1

〉}
+ SAH 2. (27)

Here, the third line makes use of the fact that 0 ≤ V k
h+1

(s) ≤ H for all s ∈ S. The decomposition

(27) motivates us to orst control the term
∑

s,a,h 〈P̂
(l )
s,a,h

−Ps,a,h ,V
kl, j,s,a,h
h+1

〉, leading to the following
3-step analysis strategy.

(1) For any given total proole I ∈ C and any oxed 1 ≤ l ≤ log2 K , develop a high-probability
bound on a weighted sum taking the following form∑

s,a,h

(
P̂
(l )
s,a,h

− Ps,a,h

)
Xh+1,s,a , (28)

where each vector Xh+1,s,a is any deterministic function of I and the samples collected for

steps h′ ≥ h + 1. Given the statistical independence between P̂
(l )
s,a,h

and those samples for

steps h′ ≥ h + 1 (in the view of Dexpand), we can bound (28) using standard martingale
concentration inequalities.

(2) Take the union bound over all possible I ∈ C — with the aid of Lemma 4.2 — to obtain a
uniform control of the term (28), simultaneously accounting for all I ∈ C and all associated
sequences {Xh+1,s,a}.

(3) We then demonstrate that the above uniform bounds can be applied to the decomposition
(27) to obtain a desired bound.

Remark 2. Note that in Step (1) of the above description, the estimate P̂
(l )
s,a,h

and those samples

for steps h′ > h are statistically independent for oxed proole I.
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Main steps.We now carry out the above three steps.
Steps (1) and (2). Let us orst specify the types of vectors {Xh,s,a} mentioned above in (28). For

each total proole I ∈ C (cf. (26)), consider any set {Xh,I}1≤h≤H obeying: for each 1 ≤ h ≤ H ,

—Xh+1,I is given by a deterministic function of I and

{
P̂
(Ik
s,a,h′ )

s,a,h′ , r̂
(Ik
s,a,h′ )

h′ (s,a), σ̂
(Ik
s,a,h′ )

h′ (s,a)
}
h<h′≤H,(s,a,k)∈S×A×[K ]

;

— ‖X ‖∞ ≤ H for each vector X ∈ Xh,I ;
—Xh,I is a set of no more than K + 1 non-negative vectors in RS , and contains the all-zero
vector 0.

Given such a construction of
{
Xh,I

}
, we can readily conduct Steps (1) and (2), with a uniform

concentration bound stated below.

Lemma 4.4. Suppose that K ≥ SAH log2 K , and construct a set
{
Xh,I

}
1≤h≤H for each I ∈ C

satisfying the above properties. Then with probability at least 1 − δ ′,

∑
s,a,h∈S×A×[H ]

〈
P̂
(l )
s,a,h

− Ps,a,h ,Xh+1,s,a

〉
≤

∑
s,a,h∈S×A×[H ]

max
{〈
P̂
(l )
s,a,h

− Ps,a,h ,Xh+1,s,a

〉
, 0

}

≤
√√

8

2l−2

∑
s,a,h

V
(
Ps,a,h ,Xh+1,s,a

) (
6SAH log22 K + log

1

δ ′

)

+

4H

2l−2

(
6SAH log22 K + log

1

δ ′

)
, (29)

holds simultaneously for all I ∈ C, all 2 ≤ l ≤ log2 K + 1, and all sequences {Xh,s,a}(s,a,h)∈S×A×[H ]
obeying Xh,s,a ∈ Xh+1,I , ∀(s,a,h) ∈ S × A × [H ]. Here, we recall that δ ′

=
δ

200SAH 2K 2 .

Proof. We orst invoke the Freedman inequality to bound the target quantity for any oxed
I ∈ C, any oxed integer l , and any oxed feasible sequence {Xh,s,a}, before applying the union
bound to establish uniform control. See Appendix B.2 for details. �

Step (3). Next, we turn to Step (3), which is accomplished via the following lemma. Note that we

also provide upper bounds for two additional quantities:
∑

k,h max{〈P̂k
sk
h
,ak
h
,h

− Psk
h
,ak
h
,h ,V

k
h+1

〉, 0}

and
∑

k,h 〈P̂ksk
h
,ak
h
,h
− Psk

h
,ak
h
,h , (V k

h+1
)2〉, which will be useful in subsequent analysis.

Lemma 4.5. Suppose that K ≥ SAH log2 K . With probability exceeding 1 − δ ′, we have

K∑
k=1

H∑
h=1

〈
P̂k
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h ,V

k
h+1

〉
≤

K∑
k=1

H∑
h=1

max
{〈
P̂k
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h ,V

k
h+1

〉
, 0

}

≤

√√√
16(log2 K)

K∑
k=1

H∑
h=1

V
(
Psk

h
,ak
h
,h ,V

k
h+1

) (
6SAH log22 K + log

1

δ ′

)

+ 49SAH 2 log32 K + 8H (log2 K) log
1

δ ′
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and
K∑
k=1

H∑
h=1

〈
P̂k
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h ,

(
V k
h+1

)2〉

≤ 8H

√√√
(log2 K)

K∑
k=1

H∑
h=1

V
(
Psk

h
,ak
h
,h ,V

k
h+1

) (
6SAH log22 K + log

1

δ ′

)

+ 49SAH 3 log32 K + 8H
2(log2 K) log

1

δ ′ .

Proof. This result is proved by combining the uniform bound in Lemma 4.4 with the decompo-
sition (27). See Appendix B.3. �

Thus far, we have obtained high-probability bounds on the most challenging terms. The com-
plete proof of Theorem 1.1 will be presented next in Section 5.

5 Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1. For notational convenience, let B be a logarithmic
term

B = 4, 000(log2 K)3 log(3SAH ) log 1

δ ′ , (30)

where we recall that δ is the conodence parameter in Algorithm 1 and δ ′
=

δ
200SAH 2K 2 . When

K ≤ BSAH , the claimed result in Theorem 1.1 holds trivially since

Regret(K) =
K∑
k=1

(
V�
1 (sk1 ) −V π k

1 (sk1 )
)
≤ HK = min

{√
BSAH 3K ,HK

}
.

As a result, it suoces to focus on the scenario with

K ≥ BSAH with B = 4, 000(log2 K)3 log(3SAH ) log 1

δ ′ . (31)

Our regret analysis for Algorithm 1 consists of several steps described below.

Step 1: the optimism principle. To begin with, we justify that the running estimates of Q-
function and value function in Algorithm 1 are always upper bounds on the optimal Q-function
and the optimal value function, respectively, thereby guaranteeing optimism in the face of uncer-
tainty.

Lemma 5.1 (Optimism). With probability exceeding 1 − 4SAHKδ ′, one has

Qk
h (s,a) ≥ Q�

h (s,a) and V k
h (s) ≥ V�

h (s), (32)

for all (s,a,h,k).

Proof. See Appendix C.1. �

Step 2: regret decomposition. In view of the optimism shown in Lemma 5.1, the regret can be
upper bounded by

Regret(K) =
K∑
k=1

(
V�
1 (sk1 ) −V π k

1 (sk1 )
)
≤

K∑
k=1

(
V k
1 (sk1 ) −V π k

1 (sk1 )
)
, (33)

with probability at least 1−4SAHKδ ′. In order to control the right-hand side of (33), we orst make
note of the following upper bound on V k

1 (sk1 ).
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Lemma 5.2. For every 1 ≤ k ≤ K , one has

V k
1 (sk1 ) ≤

H∑
h=1

(〈
P̂k
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h ,V

k
h+1

〉
+ bkh (s

k
h ,a

k
h) + r̂

k
h (s

k
h ,a

k
h) +

〈
Psk

h
,ak
h
,h − esk

h+1
,V k

h+1

〉)
.

Proof of Lemma 5.2. From the construction of V k
h
and Qk

h
, it is seen that, for each 1 ≤ h ≤ H ,

V k
h (s

k
h ) = Q

k
h (s

k
h ,a

k
h) ≤ r̂kh (s

k
h ,a

k
h) + P̂

k

sk
h
,ak
h
,h
V k
h+1 + b

k
h (s

k
h ,a

k
h)

=

〈
P̂k
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h ,V

k
h+1

〉
+ bkh (s

k
h ,a

k
h) + r̂

k
h (s

k
h ,a

k
h) +

〈
Psk

h
,ak
h
,h − esk

h+1
,V k

h+1

〉
+V k

h+1(s
k
h+1).

Applying this relation recursively over 1 ≤ h ≤ H gives

V k
1 (sk1 )

≤
H∑
h=1

(〈
P̂k
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h ,V

k
h+1

〉
+ bkh (s

k
h ,a

k
h) + r̂

k
h (s

k
h ,a

k
h) +

〈
Psk

h
,ak
h
,h − esk

h+1
,V k

h+1

〉)
+V k

H+1(skH+1),

which combined with V k
H+1 = 0 concludes the proof. �

Combine Lemma 5.2 with (33) to show that, with probability at least 1 − 4SAHKδ ′,

Regret(K) ≤
K∑
k=1

H∑
h=1

〈
P̂k
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h ,V

k
h+1

〉
︸��������������������������������������︷︷��������������������������������������︸

�T1

+

K∑
k=1

H∑
h=1

bkh (s
k
h ,a

k
h)

︸���������������︷︷���������������︸
�T2

+

K∑
k=1

H∑
h=1

〈
Psk

h
,ak
h
,h − esk

h+1
,V k

h+1

〉
︸����������������������������������︷︷����������������������������������︸

�T3

+

K∑
k=1

(
H∑
h=1

r̂kh (s
k
h ,a

k
h) −V π k

1 (sk1 )
)

︸����������������������������������︷︷����������������������������������︸
�T4

, (34)

leaving us with four terms to control. In particular, T1 has already been upper bounded in
Section 4.2, and hence we shall describe how to bound T2, . . . ,T4 in the sequel.

Step 3.1: bounding the terms T2,T3, and T4. In this section, we seek to bound the terms T2,T3,
and T4 deoned in the regret decomposition (34). To do so, we ond it helpful to orst introduce the
following quantities that capture some sort of aggregate variances:

T5 �

K∑
k=1

H∑
h=1

V
(
P̂k
sk
h
,ak
h
,h
,V k

h+1

)
, (35a)

T6 �

K∑
k=1

H∑
h=1

V
(
Psk

h
,ak
h
,h ,V

k
h+1

)
, (35b)

withT5 denoting certain empirical variance andT6 the true variance.With these quantities in place,
we claim that the following bounds hold true.
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Lemma 5.3. With probability exceeding 1 − 15SAH 2K2δ ′, one has

T2 ≤ 61

√
2SAH (log2 K)

(
log

1

δ ′

)
T5 + 8

√
SAH 3K(log2 K) log

1

δ ′ + 151SAH
2(log2 K) log

1

δ ′ ,

(36a)

|T3 | ≤
√
8T6 log

1

δ ′ + 3H log
1

δ ′ , (36b)

|T4 | ≤ 6

√
2SAH 3K(log2 K) log

1

δ ′ + 55SAH
2(log2 K) log

1

δ ′ . (36c)

Proof. See Appendix C.2. �

Step 3.2: bounding the aggregate variancesT5 andT6. The previous bounds onT2 andT3 stated
in Lemma 5.3 depend respectively on the aggregate variance T5 and T6 (cf. (35a) and (35b)), which
we would like to control now. By introducing the following quantities:

T7 �

K∑
k=1

H∑
h=1

〈
P̂k
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h ,

(
V k
h+1

)2〉
, (37a)

T8 �

K∑
k=1

H∑
h=1

〈
Psk

h
,ak
h
,h − esk

h+1
,
(
V k
h+1

)2〉
, (37b)

T9 �

K∑
k=1

H∑
h=1

max
{〈
P̂k
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h ,V

k
h+1

〉
, 0

}
, (37c)

we can upper boundT5 andT6 through the following lemma. As a remark, the proof of this lemma
makes use of the law of total variance, as in previous work like Azar et al. [6].

Lemma 5.4. With probability at least 1 − 4SAHKδ ′,

T5 ≤ T7 +T8 + 2HT2 + 6KH
2, (38a)

T6 ≤ 2HT2 + 6KH
2
+

√
32H 2T6 log

1

δ ′ + 3H
2 log

1

δ ′ + 2HT9, (38b)

|T8 | ≤
√
32H 2T6 log

1

δ ′ + 3H
2 log

1

δ ′ . (38c)

Proof. See Appendix C.3. �

Step 3.3: bounding the termsT1,T7, andT9. Taking a look at the above bounds onT2, . . . ,T6, we
see that one still needs to deal with the termsT1,T7, andT9 (see (34), (37a), and (37c), respectively).
As it turns out, these quantities have already been bounded in Section 4. Speciocally, Lemma 4.5
tells us that: with probability at least 1 − δ ′,

T1 ≤ T9 ≤

√√√
BSAH

K∑
k=1

H∑
h=1

V(Psk
h
,ak
h
,h ,V

k
h+1

) + BSAH 2
=

√
BSAHT6 + BSAH

2, (39a)

T7 ≤ H

√√√
BSAH

K∑
k=1

H∑
h=1

V(Psk
h
,ak
h
,h ,V

k
h+1

) + BSAH 3
= H

√
BSAHT6 + BSAH

3, (39b)

where we recall that B = 4, 000(log2 K)3 log(3SAH ) log 1
δ ′ .
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Step 4: putting all the pieces together. The previous bounds (36), (38), and (39) indicate that:
with probability at least 1 − 100SAH 2K2δ ′, one has

T2 ≤
√
BSAHT5 +

√
BSAH 3K + BSAH 2, (40a)

T3 ≤
√
BT6 + HB, (40b)

T4 ≤
√
BSAH 3K + BSAH 2, (40c)

T5 ≤ T7 +T8 + 2HT2 + 6KH
2, (40d)

T6 ≤
√
BH 2T6 + 2HT2 + 2HT9 + BH

2
+ 6KH 2, (40e)

T8 ≤
√
BH 2T6 + BH

2, (40f)

T1 ≤
√
BSAHT6 + BSAH

2, (40g)

T7 ≤ H
√
BSAHT6 + BSAH

3, (40h)

T9 ≤
√
BSAHT6 + BSAH

2, (40i)

where we again use B = 4, 000(log2 K)3 log(3SAH ) log 1
δ ′ .

To solve the inequalities (40), we resort to the elementary AM-GM inequality: if a ≤
√
bc +d for

some b, c ≥ 0, then it follows that a ≤ ϵb + 1
2ϵ c + d for any ϵ > 0. This basic inequality combined

with (40) gives

HT2 ≤ ϵT5 +

(
1

2ϵ
+ 1

)
BSAH 3

+

3

2
BSAH 3

+

1

2
KH 2,

T6 ≤ ϵT6 + 2HT2 + 2HT9 +

(
1 +

1

2ϵ

)
BH 2
+ 6KH 2,

HT9 ≤ ϵT6 +

(
1

2ϵ
+ 1

)
BSAH 3,

T8 ≤ ϵT6 +

(
1

2ϵ
+ 1

)
BH 2,

T7 ≤ ϵT6 +

(
1

2ϵ
+ 1

)
BSAH 3,

which in turn result in

T5 ≤ T7 +T8 + 2HT2 + 6KH
2 ≤ 2ϵT5 + 2ϵT6 +

(
1

ϵ
+ 2

)
BSAH 3

+ 6KH 2;

T6 ≤ ϵT6 + 2HT2 + 2HT9 +

(
1 +

1

2ϵ

)
BH 2
+ 6KH 2 ≤ 3ϵT6 + 2ϵT5 +

(
3

ϵ
+ 8

)
BSAH 3

+ 7KH 2.

By taking ϵ = 1/20, we arrive at
T5 +T6 � BSAH 3

+ KH 2 � KH 2, (41)

where the last relation holds due to our assumption K ≥ SAHB (cf. (31)). Substituting this into (40)
yields

T1 �
√
BSAH 3K , T2 �

√
BSAH 3K , T3 �

√
BKH 2 and T4 �

√
BSAH 3K , (42)

provided that K ≥ SAHB. These bounds taken collectively with (34) readily give

Regret(K) �
√
BSAH 3K .
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Combining the two scenarios (i.e., K ≥ BSAH and K ≤ BSAH ) reveals that with probability at
least 1 − 100SAH 2K2δ ′,

Regret(K) � min
{√

BSAH 3K ,HK
}
� min

{√
BSAH 3K log5

SAHK

δ ′ ,HK

}
.

The proof of Theorem 1.1 is thus completed by recalling that δ ′
=

δ
200SAH 2K 2 .

6 Extensions

In this section, we develop more reoned regret bounds for Algorithm 1 in order to renect the
role of several problem-dependent quantities. Detailed proofs are postponed to Appendix D and
Appendix F.

6.1 Value-based Regret Bounds

Thus far, we have not yet introduced the crucial quantityv� in Theorem 1.2, which we deone now.
When the initial states are drawn from μ, we deone v� to be the weighted optimal value:

v�
� Es∼μ

[
V�
1 (s)

]
. (43)

Encouragingly, the value-dependent regret bound we develop in Theorem 1.2 is still minimax-
optimal, as asserted by the following lower bound.

Theorem 6.1. Consider any p ∈ [0, 1] and K ≥ 1. For any learning algorithm, there exists an MDP

with S states, A actions and horizon H obeying v� ≤ Hp and

E
[
Regret(K)

]
� min

{√
SAH 3Kp, KHp

}
. (44)

In fact, the construction of the hard instance (as in the proof of Theorem 6.1) is quite simple.
Design a new branch with 0 reward and set the probability of reaching this branch to be 1−p. Also,
with probability p, we direct the learner to a hard instance with regret Ω(min{

√
SAH 3Kp,KpH })

and optimal valueH . This guarantees that the optimal value obeysv� ≤ Hp and that the expected
regret is at least

Ω

(
min

{√
SAH 3Kp,KHp

})
� min

{√
SAH 2Kv�,Kv�

}
.

See Appendix G for more details.

6.2 Cost-based Regret Bounds

Next, we turn to the cost-aware regret bound as in Theorem 1.3. Note that all other results except
for Theorem 1.3 (and a lower bound in this subsection) are about rewards as opposed to cost. In
order to facilitate discussion, let us orst formally formulate the cost-based scenarios.
Suppose that the reward distributions {Rh,s,a}(s,a,h) are replaced with the cost distributions

{Ch,s,a}(s,a,h), where each distribution Ch,s,a ∈ ∆([0,H ]) has mean ch(s,a). In the hth step of an
episode, the learner pays an immediate cost ch ∼ Ch,sh,ah instead of receiving an immediate reward

rh , and the objective of the learner is instead to minimize the total cost
∑H
h=1 ch (in an expected

sense). The optimal cost quantity c� is then deoned as

c� � min
π
Eπ ,s1∼μ

[ H∑
h=1

ch

]
. (45)
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In this cost-based setting, we ond it convenient to re-deone the Q-function and value function
as follows:

Qπ ,cost
h

(s,a) � Eπ

[
H∑

h′
=h

ch′

��� (sh ,ah) = (s,a)
]
, ∀(s,a,h) ∈ S × A × [H ],

V π ,cost
h

(s) � Eπ

[
H∑

h′
=h

ch′

��� sh = s
]
, ∀(s,h) ∈ S × ×[H ],

where we adopt diferent fonts to diferentiate them from the original Q-function and value func-
tion. The optimal cost function is then deone by

Q�,cost
h

(s,a) = min
π

Qπ ,cost
h

(s,a) and V�,cost
h

(s) = min
π

V π ,cost
h

(s).

Given the deonitions above, we overload the notation Regret(K) to denote the regret for the cost-
based scenario as

Regret(K) �
K∑
k=1

(
V π k ,cost
1 (sk1 ) −V�,cost

1 (sk1 )
)
.

One can also simply regard the cost minimization problem as reward maximization with negative
rewards by choosing rh = −ch . This way allows us to apply Algorithm 1 directly, except that (20)
is replaced by

Qh(s,a) ← max
{
min

{
r̂h(s,a) + P̂s,a,hVh+1 + bh(s,a), 0

}
, −H

}
. (46)

Note that the proof of Theorem 1.3 closely resembles that of Theorem 1.2, which can be found in
Appendix E.

To conorm the tightness of Theorem 1.3, we develop the followingmatching lower bound, which
resorts to a similar hard instance as in the proof of Theorem 6.1.

Theorem 6.2. Consider any p ∈ [0, 1/4] and any K ≥ 1. For any algorithm, one can construct an

MDP with S states, A actions and horizon H obeying c� � Hp and

E
[
Regret(K)

]
� min

{√
SAH 3Kp + SAH 2, KH (1 − p)

}
� min

{√
SAH 2Kc� + SAH 2, KH

}
.

The proof of this lower bound can be found in Appendix G.2.

6.3 Variance-dependent Regret Bound

The onal regret bound presented in Theorem 1.4 depends on some sort of variance metrics. Toward
this end, let us orst make precise the variance metrics of interest:

(i) The orst variance metric is deoned as

var1 � max
π
Eπ

[
H∑
h=1

V
(
Psh,ah,h ,V

�
h+1

)
+

H∑
h=1

Var
(
Rh(sh ,ah)

) ]
, (47)

where {(sh ,ah)}1≤h≤H represents a sample trajectory under policy π . This captures the max-
imal possible expected sum of variance with respect to the optimal value function {V�

h
}H
h=1

.
(ii) Another useful variance metric is deoned as

var2 � max
π ,s

Varπ

[ H∑
h=1

rh

��� s1 = s
]
, (48)

where {rh}1≤h≤H denotes a sample sequence of immediate rewards under policy π . This
indicates the maximal possible variance of the accumulative reward.
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The interested reader is referred to Zhou et al. [87] for further discussion about these two metrics.
Our onal variance metric is then deoned as

var � min
{
var1, var2

}
. (49)

With the above variance metrics in mind, we can then revisit Theorem 1.4. As a special case,
when the transition model is fully deterministic, the regret bound in Theorem 1.4 simplioes to

Regret(K) ≤ Õ
(
min

{
SAH 2, HK

})
,

for any K ≥ 1, which is roughly the cost of visiting each state-action pair. The full proof of
Theorem 1.4 is postponed to Appendix F.

To onish up, let us develop a matching lower bound to corroborate the tightness and optimality
of Theorem 1.4.

Theorem 6.3. Consider any p ∈ [0, 1] and any K ≥ 1. For any algorithm, one can ond an MDP

instance with S states, A actions, and horizon H satisfying max{var1, var2} ≤ H 2p and

E
[
Regret(K)

]
� min

{√
SAH 3Kp + SAH 2, KH

}
.

The proof of Theorem 6.3 resembles that of Theorem 6.1, except that we need to construct a
hard instance when K ≤ SAH/p. For this purpose, we construct a fully deterministic MDP (i.e., all
of its transitions are deterministic and all rewards are oxed), and show that the learner has to visit
about half of the state-action-layer tuples in order to learn a near-optimal policy. The proof details
are deferred to Appendix G.

7 Discussion

Focusing on tabular online RL in time-inhomogeneous onite-horizon MDPs, this article has estab-
lished the minimax-optimal regret (respectively sample complexity) — up to log factors — for the
entire range of sample size K ≥ 1 (respectively target accuracy level ε ∈ (0,H ]), thereby fully
settling an open problem at the core of recent RL theory. The MVP JAC studied herein is model-
based in nature. Remarkably, the model-based approach remains the only family of algorithms
that is capable of obtaining minimax optimality without burn-ins, regardless of the data collection
mechanism in use (e.g., online RL, onine RL, and the simulator setting). We have further unlocked
the optimality of this algorithm in a more reoned manner, making apparent the efect of several
problem-dependent quantities (e.g., optimal value/cost, variance statistics) upon the fundamental
performance limits. The new analysis and algorithmic techniques put forward herein might shed
important light on how to conquer other RL settings as well.
Moving forward, there are multiple directions that anticipate further theoretical pursuit. To be-

gin with, is it possible to develop a model-free algorithm — which often exhibits more favorable
memory complexity compared to the model-based counterpart — that achieves full-range mini-
max optimality? As alluded to previously, existing paradigms that rely on reference-advantage
decomposition (or variance reduction) seem to incur a high burn-in cost [42, 84], thus calling
for new ideas to overcome this barrier. Additionally, multiple other tabular settings (e.g., time-
homogeneous onite-horizon MDPs, discounted inonite-horizon MDPs) have also sufered from
similar issues regarding the burn-in requirements [27, 82]. Take time-homogeneous onite-horizon
MDPs for example: in order to achieve optimal sample eociency, one needs to carefully deal with
the statistical dependency incurred by aggregating data from across diferent time steps to estimate
the same transitionmatrix (due to the homogeneous nature of P ), which results in more intricate is-
sues than the time-homogeneous counterpart. We believe that resolving these two open problems
will greatly enhance our theoretical understanding about online RL and beyond.
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Appendices

A Preliminary Facts

In this section, we gather several useful results that prove useful in our analysis. We use 1{E} to
denote the indicator of the event E. The orst result below is a user-friendly version of the celebrated
Freedman inequality [24], a martingale counterpart to the Bernstein inequality. See Zhang et al.
[85, Lemma 11] for the proof.

Lemma A.1 (Freedman’s Ineqality). Let (Mn)n≥0 be a martingale such thatM0 = 0 and |Mn −
Mn−1 | ≤ c (∀n ≥ 1) hold for some quantity c > 0. Deone Varn �

∑n
k=1 E

[
(Mk −Mk−1)2 | Fk−1

]
for

every n ≥ 0, where Fk is the σ -algebra generated by (M1, . . . ,Mk ). Then for any integer n ≥ 1 and
any ϵ,δ > 0, one has

P

[
|Mn | ≥ 2

√
2

√
Varn log

1

δ
+ 2

√
ϵ log

1

δ
+ 2c log

1

δ

]
≤ 2

(
log2

(
nc2

ϵ

)
+ 1

)
δ .

Next, lettingVar(X ) represent the variance ofX , we record a basic inequality connectingVar(X 2)
with Var(X ) for any bounded random variable X .

LemmaA.2 (Lemma 30 in [13]). LetX be a random variable, and denote byCmax the largest possible

value of X . Then we have Var(X 2) ≤ 4C2
maxVar(X ).

Now, we turn to an intimate connection between the sum of a sequence of bounded non-
negative random variables and the sum of their associated conditional random variables (with
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each random variable conditioned on the past), which is a consequence of basic properties about
supermartingales.

Lemma A.3 (Lemma 10 in [83]). Let X1,X2, . . . be a sequence of random variables taking value

in [0, l]. For any k ≥ 1, let Fk be the σ -algebra generated by (X1,X2, . . . ,Xk ), and deone Yk �

E[Xk | Fk−1]. Then for any δ > 0, we have

P

[
∃n,

n∑
k=1

Xk ≥ 3

n∑
k=1

Yk + l log
1

δ

]
≤ δ

P

[
∃n,

n∑
k=1

Yk ≥ 3

n∑
k=1

Xk + l log
1

δ

]
≤ δ .

The next two lemmas are concernedwith concentration inequalities for the sum of i.i.d. bounded
random variables: the orst one is a version of the Bennet inequality, and the second one is an
empirical Bernstein inequality (which replaces the variance in the standard Bernstein inequality
with the empirical variance).

Lemma A.4 (Bennet’s Ineqality). Let Z ,Z1, . . . ,Zn be i.i.d. random variables with values in

[0, 1] and let δ > 0. Deone VZ = E
[
(Z − EZ )2

]
. Then one has

P

[�����E [Z ] − 1

n

n∑
i=1

Zi

����� >
√

2VZ log(2/δ )
n

+

log(2/δ )
n

]
≤ δ .

Lemma A.5 (Theorem 4 inMaurer and Pontil [48]). Consider any δ > 0 and any integer n ≥ 2.
Let Z ,Z1, . . . ,Zn be a collection of i.i.d. random variables falling within [0, 1]. Deone the empirical

mean Z � 1
n

∑n
i=1 Zi and empirical variance V̂n �

1
n

∑n
i=1(Zi − Z )2. Then we have

P

£¤¤¤¤¥
�����E [Z ] − 1

n

n∑
i=1

Zi

����� >
√

2V̂n log(2/δ )
n − 1

+

7 log(2/δ )
3(n − 1)

§̈̈
¨̈©
≤ δ .

Moreover, we record a simple fact concerning the visitation counts {N k
h
(sk
h
,ak

h
)}.

Lemma A.6. Recall the deonition of N k
h
(sk
h
,ak

h
) in Algorithm 1. It holds that

K∑
k=1

H∑
h=1

1

max{N k
h
(sk
h
,ak

h
), 1}

≤ 2SAH log2 K . (50)

Proof. In view of the doubling batch update rule, it is easily seen that: for any given (s,a,h),
K∑
k=1

1

max{N k
h
(sk
h
,ak

h
), 1}

1

{
(s,a) =

(
skh ,a

k
h

)}
≤ 2 log2 K , (51)

since each (s,a,h) is associated with at most log2 K epochs. Summing over (s,a,h) completes the
proof. �

As it turns out, Lemma A.6 together with the Freedman inequality allows one to control the
diference between the empirical rewards and the true mean rewards, as stated below.
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Lemma A.7. With probability exceeding 1 − 2SAHKδ ′, it holds that

K∑
k=1

H∑
h=1

���̂rkh (skh ,akh) − rh(skh ,a
k
h)

��� ≤ 4

√
2SAH 2(log2 K) log

1

δ ′

√√√
K∑
k=1

H∑
h=1

rh(skh ,a
k
h
)

+ 52SAH 2(log2 K) log
1

δ ′ ;

K∑
k=1

H∑
h=1

r̂kh (s
k
h ,a

k
h) ≤ 2

K∑
k=1

H∑
h=1

rh(skh ,a
k
h) + 60SAH

2(log2 K) log
1

δ ′ .

As an immediate consequence of Lemma A.7 and the basic fact
∑

k,h rh(skh ,a
k
h
) ≤ KH , we have

K∑
k=1

H∑
h=1

r̂kh (s
k
h ,a

k
h) ≤ 2

K∑
k=1

H∑
h=1

rh(skh ,a
k
h) + 60SAH

2(log2 K) log
1

δ ′

≤ 2KH + 60SAH 2(log2 K) log
1

δ ′ ≤ 3KH , (52)

with probability exceeding 1 − 2SAHKδ ′, where the last inequality holds true under the
assumption 31.

Proof of Lemma A.7. In view of LemmaA.5 and the union bound, with probability 1−2SAHKδ ′

we have

���̂rkh (s,a) − rh(s,a)
��� ≤ 2

√
2

√√√√ (
σ̂k
h
(sk
h
,ak

h
) −

(̂
rk
h
(sk
h
,ak

h
)
)2)

log 1
δ ′

N k
h
(s,a)

+

28H log 1
δ ′

3N k
h
(s,a)

≤ 2
√
2

√√
Hr̂k

h
(s,a) log 1

δ ′

N k
h
(s,a)

+

28H log 1
δ ′

3N k
h
(s,a)

,

simultaneously for all (s,a,h,k) obeying N k
h
(s,a) > 2, where we take advantage of the basic fact

σ̂k
h
(sk
h
,ak

h
) ≤ Hr̂k

h
(s,a) (since each immediate reward is upper bounded by H ). Solve the inequality

above to obtain

���̂rkh (s,a) − rh(s,a)
��� ≤ 4

√√
Hrh(s,a) log 1

δ ′

N k
h
(s,a)

+ 24
H log 1

δ ′

N k
h
(s,a)

. (53)

It is then seen that

∑
k,h

���̂rkh (skh ,akh) − rh(skh ,a
k
h)

��� ≤ 4SAH 2
+

∑
k,h

234
4

√√
Hrh(skh ,a

k
h
) log 1

δ ′

N k
h
(sk
h
,ak

h
)

+ 24
H log 1

δ ′

N k
h
(sk
h
,ak

h
)
567

≤ 4SAH 2
+ 4

√√√∑
k,h

H log 1
δ ′

N k
h
(sk
h
,ak

h
)
·
√∑

k,h

rh(skh ,a
k
h
) + 24

∑
k,h

H log 1
δ ′

N k
h
(sk
h
,ak

h
)
.

Here, the second inequality arises from Cauchy–Schwarz, whereas the term 4SAH 2 accounts for
those state-action pairs with N k

h
(s,a) ≤ 2 (since there are at most 2SAH such occurrences and it
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holds that
��̂rk
h
(sk
h
,ak

h
) − rh(skh ,a

k
h
)
�� ≤ 2H ). This together with Lemma A.6 then leads to

∑
k,h

���̂rkh (skh ,akh) − rh(skh ,a
k
h)

��� ≤ 4SAH 2
+ 4

√
2SAH 2(log2 K) log

1

δ ′

√∑
k,h

rh(skh ,a
k
h
)

+ 48SAH 2(log2 K) log
1

δ ′

≤ 4

√
2SAH 2(log2 K) log

1

δ ′

√∑
k,h

rh(skh ,a
k
h
) + 52SAH 2(log2 K) log

1

δ ′ .

Moreover, the AM-GM inequality implies that

∑
k,h

r̂kh (s
k
h ,a

k
h) −

∑
k,h

rh(skh ,a
k
h) ≤

K∑
k=1

H∑
h=1

rh(skh ,a
k
h) + 8SAH

2(log2 K) log
1

δ ′ + 52SAH
2(log2 K) log

1

δ ′

=⇒
∑
k,h

r̂kh (s
k
h ,a

k
h) ≤ 2

∑
k,h

rh(skh ,a
k
h) + 60SAH

2(log2 K) log
1

δ ′ ,

thus concluding the proof. �

B Proofs of Key Lemmas in Section 4

B.1 Proof of Lemma 4.2

It suoces to develop an upper bound on the cardinality of C (cf. (26)). Setting

M = log2 K and N = SAH , (54)

we ond it helpful to introduce the following useful sets:

Cdistinct(l) �
{
I = {I1, . . . ,Il } | I1 ≤ · · · ≤ Il ,Iτ ∈ {0, 1, · · · ,M}N and Iτ

� Iτ+1 (∀τ )
}
;

(55a)

Cdistinct
�

⋃
l ≥1

Cdistinct(l). (55b)

In words, Cdistinct(l) can be viewed as the set of non-decreasing length-l paths in {0, 1, · · · ,M}N ,
with all points on a path being distinct; Cdistinct thus consists of all such paths regardless of the
length.
We orst establish a connection between |C| and

��Cdistinct
��. Deone the operator Proj : C →

Cdistinct that maps each I ∈ C to Idistinct ∈ Cdistinct, where Idistinct is composed of all distinct
elements in I (in other words, this operator simply removes redundancy in I). Let us looking at
the following set

B(Idistinct) �
{
I ∈ C | Proj(I) = Idistinct

}
for each Idistinct ∈ Cdistinct. Since Idistinct is a non-decreasing path with all its points being distinct,
there are at most MN + 1 elements in each Idistinct. Hence, the size of B(Idistinct) is at most the
number of solutions to the following equations

MN+1∑
i=1

xi = K and xi ∈ N for all 1 ≤ i ≤ MN + 1.
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Elementary combinatorial arguments then reveal that

��B(Idistinct)
�� ≤ (

K +MN

MN

)
≤ (K +MN )MN ≤ (2K)MN ,

for each Idistinct, provided that K ≥ MN = SAH log2 K . We then arrive at

|C| ≤
��Cdistinct

�� · (2K)MN . (56)

Everything then boils down to bounding |Cdistinct |. To do so, let us orst look at the set
Cdistinct(MN + 1), as each path in Cdistinct cannot have length more than MN + 1. For each

Idistinct
= {Ĩ1, Ĩ2, . . . , ĨMN+1} ∈ Cdistinct(MN + 1), it is easily seen that

— Ĩ1
= [0, 0, . . . , 0]
 and ĨMN+1

= [M,M, . . . ,M]
.
— For each 1 ≤ τ ≤ MN , Ĩτ and Ĩτ+1 difer only in one element (i.e., their Hamming distance
is 1).

In other words, we can view Idistinct as an MN -step path from [0, 0, . . . , 0]
 to [M,M, . . . ,M]
,
with each step moving in one dimension. Clearly, each step has at most N directions to choose
from, meaning that there are at most NMN such paths. This implies that��Cdistinct(MN + 1)

�� ≤ NMN .

To onish up, we further observe that for each Idistinct ∈ Cdistinct, there exists some Ĩdistinct ∈
Cdistinct(MN + 1) such that Idistinct ⊆ Ĩdistinct. This observation together with basic combinatorial
arguments indicates that��Cdistinct

�� ≤ 2MN+1
��Cdistinct(MN + 1)

�� ≤ (2N )MN+1,

which taken collectively with (56) leads to the advertised bound

|C| ≤ (2K)MN
��Cdistinct

�� ≤ (4KN )MN+1 ≤ (4KN )MN+1.

B.2 Proof of Lemma 4.4

Let us begin by considering any oxed total proole I ∈ C, any oxed integer l obeying 2 ≤ l ≤
log2 K + 1, and any given feasible sequence {Xh,s,a}(s,a,h)∈S×A×[H ]. Recall that (i) P̂

(l )
s,a,h

is com-

puted based on the lth batch of data comprising 2l−2 independent samples from Dexpand (see Deo-
nition 4.3); and (ii) eachXh+1,s,a is given by a deterministic function of I and the empirical models
for steps h′ ∈ [h + 1,H ]. Consequently, Lemma A.1 together with Deonition 4.3 tells us that: with
probability at least 1 − δ ′, one has∑

s,a,h

〈
P̂
(l )
s,a,h

− Ps,a,h ,Xh+1,s,a

〉

≤
√√

8

2l−2

∑
s,a,h

V
(
Ps,a,h ,Xh+1,s,a

)
log

3 log2(SAHK)
δ ′ +

4H

2l−2
log

3 log2(SAHK)
δ ′ , (57)

where we view the left-hand side of (57) as a martingale sequence from h = H back to h = 1.
Moreover, given that each Xh,s,a has at most K + 1 diferent choices (since we assume |Xh,I | ≤

K + 1), there are no more than (K + 1)SAH ≤ (2K)SAH possible choices of the feasible sequence
{Xh,s,a}(s,a,h)∈S×A×[H ]. In addition, it has been shown in Lemma 4.2 that there are no more than

(4SAHK)2SAH log2 K possibilities of the total prooleI. Taking the union bound over all these choices
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and replacing δ ′ in (57) with δ ′/
(
(4SAHK)2SAH log2 K (2K)SAH log2 K

)
, we can demonstrate that

with probability at least 1 − δ ′,

∑
s,a,h

〈
P̂
(l )
s,a,h

− Ps,a,h ,Xh+1,s,a

〉

≤

√√√
8

2l−2

∑
s,a,h

V
(
Ps,a,h ,Xh+1,s,a

) (
2SAH log2 K log(4SAHK) + SAH log(2K) + log

3 log22(SAHK)
δ ′

)

+

4H

2l−2

(
2SAH log2 K log(4SAHK) + SAH log(2K) + log

3 log22(SAHK)
δ ′

)

≤
√√

8

2l−2

∑
s,a,h

V
(
Ps,a,h ,Xh+1,s,a

) (
6SAH log22 K + log

1

δ ′

)
+

4H

2l−2

(
6SAH log22 K + log

1

δ ′

)
, (58)

holds simultaneously for all I ∈ C, all 2 ≤ l ≤ log2 K + 1, and all feasible sequences
{Xh,s,a}(s,a,h)∈S×A×[H ].
Finally, recalling our assumption 0 ∈ Xh+1,I , we see that for every total proole I and its associ-

ated feasible sequence {Xh,s,a},

∑
s,a,h

max
{〈
P̂
(l )
s,a,h

−Ps,a,h ,Xh+1,s,a

〉
, 0

}
∈

{∑
s,a,h

〈
P̂
(l )
s,a,h

−Ps,a,h , X̃h+1,s,a

〉���X̃h+1,s,a ∈Xh+1,I ,∀(s,a,h)
}
,

holds true. Consequently, the uniform upper bound on the right-hand side of (58) continues to be

a valid upper bound on
∑

s,a,h max
{〈
P̂
(l )
s,a,h

− Ps,a,h ,Xh+1,s,a

〉
, 0

}
. This concludes the proof.

B.3 Proof of Lemma 4.5

We begin by making the following claim, which we shall establish toward the end of this
subsection.

Claim 1. With probability exceeding 1 − δ ′,

∑
s,a,h

〈
P̂
(l )
s,a,h

− Ps,a,h ,V
kl, j,s,a,h
h+1

〉

≤
√√

8

2l−2

∑
s,a,h

V
(
Ps,a,h ,V

kl, j,s,a,h
h+1

) (
6SAH log22 K + log

1

δ ′

)
+

4H

2l−2

(
6SAH log22 K + log

1

δ ′

)
,

(59)

holds simultaneously for all l = 1, . . . , log2 K and all j = 1, . . . , 2l−1, where kl, j,s,a,h stands for the

episode index of the sample that visits (s,a,h) for the (2l−1 + j)-th time in the online learning process.
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Assuming the validity of Claim 1 for the moment, we can combine this claim with the decom-
position (27) and applying the Cauchy–Schwarz inequality to reach

K∑
k=1

H∑
h=1

〈
P̂k
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h ,V

k
h+1

〉
≤

log2 K∑
l=1

2l−1∑
j=1

∑
s,a,h

〈
P̂
(l )
s,a,h

− Ps,a,h ,V
kl, j,s,a,h
h+1

〉
+ SAH 2

≤
log2 K∑
l=1

2l−1∑
j=1

√√
8

2l−2

∑
s,a,h

V
(
Ps,a,h ,V

kl, j,s,a,h
h+1

) (
6SAH log22 K + log

1

δ ′

)

+

log2 K∑
l=1

2l−1∑
j=1

4H

2l−2

(
6SAH log22 K + log

1

δ ′

)
+ SAH 2

≤
log2 K∑
l=1

√√√√
16

2l−1∑
j=1

∑
s,a,h

V
(
Ps,a,h ,V

kl, j,s,a,h
h+1

) (
6SAH log22 K + log

1

δ ′

)

+

log2 K∑
l=1

8H

(
6SAH log22 K + log

1

δ ′

)
+ SAH 2

≤

√√√√
16(log2 K)

log2 K∑
l=1

2l−1∑
j=1

∑
s,a,h

V
(
Ps,a,h ,V

kl, j,s,a,h
h+1

) (
6SAH log22 K + log

1

δ ′

)

+

(
48SAH 2 log32 K + 8H (log2 K) log

1

δ ′

)
+ SAH 2

≤

√√√
16(log2 K)

K∑
k=1

H∑
h=1

V
(
Psk

h
,ak
h
,h ,V

k
h+1

) (
6SAH log22 K + log

1

δ ′

)

+ 49SAH 2 log32 K + 8H (log2 K) log
1

δ ′ .

Here, the last inequality is valid due to our assumption V k
h+1
= 0 (∀k > K ) and the identity

K∑
k=1

H∑
h=1

V
(
Psk

h
,ak
h
,h ,V

k
h+1

)

=

log2 K∑
l=1

∑
s,a,h

2l−1∑
j=1

V
(
Ps,a,h ,V

kl, j,s,a,h
h+1

)
+

K∑
k=1

H∑
h=1

1

{
N k,all
h

(skh ,a
k
h) = 0

}
V
(
Psk

h
,ak
h
,h ,V

k
h+1

)
.

This establishes our advertised bound on
∑

k,h

〈
P̂k
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h ,V

k
h+1

〉
, provided that Claim 1 is

valid.
Before proceeding to the proof of Claim 1, we note that the other two quantities∑
k,h max

{〈
P̂k
sk
h
,ak
h
,h

− Psk
h
,ak
h
,h ,V

k
h+1

〉
, 0

}
and

∑
k,h

〈
P̂k
sk
h
,ak
h
,h

− Psk
h
,ak
h
,h ,

(
V k
h+1

)2〉
can be upper

bounded using exactly the same arguments, which we omit for the sake of brevity. In particular,
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ALGORITHM 2: Monotonic Value Propagation for a given total proole I ∈ C (MVP(I))

1 initialization: set V k,I
H+1

(s) ← H for all s ∈ S and 1 ≤ k ≤ K .

2 for k = 1, 2, . . . ,K do

3 for h = H ,H − 1, . . . , 1 do

4 for (s,a) ∈ S × A do
5

j ← Ik
s,a,h
, n ← 2j−2,

bh (s,a) ← c1

√√
V
(
P̂
(j)
s,a,h
,V

k,I
h+1

)
log 1

δ ′

max{n, 1} + c2

√√ (
σ̂
(j)
h

(s,a) − (̂r (j)
h

(s,a))2
)
log 1

δ ′

max{n, 1} + c3
H log 1

δ ′

max{n, 1} ,

Q
k,I
h

(s,a) ← min
{
r̂
(j)
h

(s,a) + 〈P̂ (j)
s,a,h
,V

k,I
h+1

〉 + bh (s,a),H
}
,

V
k,I
h

(s) ← max
a

Q
k,I
h

(s,a).

the latter quantity further satisoes

K∑
k=1

H∑
h=1

〈
P̂k
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h ,

(
V k
h+1

)2〉

≤

√√√
16(log2 K)

K∑
k=1

H∑
h=1

V
(
Psk

h
,ak
h
,h ,

(
V k
h+1

)2) (
6SAH log22 K + log

1

δ ′

)

+ 49SAH 3 log32 K + 8H
2(log2 K) log

1

δ ′

≤ 8H

√√√
(log2 K)

K∑
k=1

H∑
h=1

V
(
Psk

h
,ak
h
,h ,V

k
h+1

) (
6SAH log22 K + log

1

δ ′

)

+ 49SAH 3 log32 K + 8H
2(log2 K) log

1

δ ′ ,

where the last inequality follows from Lemma A.2 and the fact that 0 ≤ V k
h+1

(s) ≤ H for all s ∈ S.

Proof of Claim 1. To invoke Lemma 4.5 to prove this claim, we need to choose the set
{Xh,I} properly to include the true value function estimates {V k

h
}. To do so, we ond it help-

ful to orst introduce an auxiliary algorithm tailored to each total proole. Speciocally, for each
I ∈ C (cf. (26)), consider the following updates operating upon the expanded sample set
Dexpand.
If we construct

Xh,I �
{
V k,I
h

| 1 ≤ k ≤ K
}
∪ {0}, ∀h ∈ [H ] and I ∈ C, (60)

then it can be easily seen that {Xh,I} satisoes the properties stated right before Lemma 4.4. As a
consequence, applying Lemma 4.4 yields
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s,a,h

〈
P̂
(l )
s,a,h

− Ps,a,h ,Xh+1,s,a

〉

≤
√√

8

2l−2

∑
s,a,h

V
(
Ps,a,h ,Xh+1,s,a

) (
6SAH log22 K + log

1

δ ′

)
+

4H

2l−2

(
6SAH log22 K + log

1

δ ′

)
,

(61)

simultaneously for all l = 1, . . . , log2 K , all I ∈ C, and all sequences {Xh,s,a} obeying Xh,s,a ∈
Xh,I , ∀(s,a,h).
To onish up, denote by Itrue the true total proole resulting from the online learning process.

Given the way we couple Dexpand and Doriginal (see the beginning of Section 4.2.2), we can easily
see that the true value function estimate {V k

h
} obeys

V k
h = V

k,Itrue

h
∈ Xh,Itrue , 1 ≤ k ≤ K . (62)

The claimed result then follows immediately from (62) and the uniform bound (61). �

C Proofs of Auxiliary Lemmas in Section 5

C.1 Proof of Lemma 5.1

To begin with, we ond it helpful to deone the following function

f (p,v,n) � 〈p,v〉 +max

{
20

3

√
V(p,v) log 1

δ ′

n
,
400

9

H log 1
δ ′

n

}
,

for any vector p ∈ ∆
S , any non-negative vector v ∈ RS obeying ‖v ‖∞ ≤ H , and any positive

integer n. We claim that

f (p,v,n) is non-decreasing in each entry of v . (63)

To justify this claim, consider any 1 ≤ s ≤ S , and let us freeze p, n and all but the sth entries ofv . It
then suoces to observe that (i) f is a continuous function, and (ii) except for at most two possible

choices of v(s) that obey 20
3

√
V(p,v) log 1

δ ′
n

=
400
9

H log 1
δ ′

n
, one can use the properties of p and v to

calculate

∂ f (p,v,n)
∂v(s) = p(s) + 20

3
1

{
20

3

√
V(p,v) log 1

δ ′

n
≥ 400

9

H log 1
δ ′

n

}
p(s)

(
v(s) − 〈p,v〉

)√
log 1

δ ′√
nV(p,v)

= p(s) + 1
{√

nV(p,v) log 1

δ ′ ≥
20

3
H log

1

δ ′

}
20
3 H log 1

δ ′√
nV(p,v) log 1

δ ′

·
p(s)

(
v(s) − 〈p,v〉

)
H

≥ min

{
p(s) + p(s)

(
v(s) − 〈p,v〉

)
H

,p(s)
}

≥ p(s)min

{
H +v(s) − 〈p,v〉

H
, 1

}
≥ 0,

thus establishing the claim (63).
We now proceed to the proof of Lemma 5.1. Consider any (h,k, s,a), and we divide into two

cases.
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Case 1: N k
h
(s,a) ≤ 2. In this case, the following trivial bounds arise directly from the update rule

(19):

Qk
h (s,a) = H ≥ Q�

h (s,a) and V k
h (s) = H ≥ V�

h (s).

Case 2: N k
h
(s,a) > 2. Suppose now that Qk

h+1
≥ Q�

h+1
, which also implies that V k

h+1
≥ V�

h+1
. If

Qk
h
(s,a) = H , then Qk

h
(s,a) ≥ Q�

h
(s,a) holds trivially, and hence it suoces to look at the case with

Qk
h
(s,a) < H . According to the update rule in (19), it holds that

Qk
h (s,a)
= r̂kh (s,a) +

〈
P̂ks,a,h ,V

k
h+1

〉

+ c1

√√√
V(P̂k

s,a,h
,V k

h+1
) log 1

δ ′

N k
h
(s,a)

+ c2

√√√√ (
σ̂k
h
(s,a) −

(̂
rk
h
(s,a)

)2)
log 1

δ ′

N k
h
(s,a)

+ c3
H log 1

δ ′

N k
h
(s,a)

≥ r̂kh (s,a) + 2
√
2

√√√√ (
σ̂k
h
(s,a) −

(̂
rk
h
(s,a)

)2)
log 1

δ ′

N k
h
(s,a)

+

48H log 1
δ ′

3N k
h
(s,a)

+ f
(
P̂ks,a,h ,V

k
h+1,N

k
h (s,a)

)

≥ r̂kh (s,a) + 2
√
2

√√√√ (
σ̂k
h
(s,a) −

(̂
rk
h
(s,a)

)2)
log 1

δ ′

N k
h
(s,a)

+

48H log 1
δ ′

3N k
h
(s,a)

+ f
(
P̂ks,a,h ,V

�
h+1,N

k
h (s,a)

)
, (64)

for any (s,a), where the last inequality results from the claim (63) and the property V k
h+1

≥ V�
h+1

.

Moreover, applying Lemma A.5 and recalling the deonition of σ̂k
h
(s,a), we have

P

⎧⎪⎪«
⎪⎪¬
���〈P̂ks,a,h − Ps,a,h , V

�
h+1

〉��� > 2

√√√
V
(
P̂k
s,a,h
,V�

h+1

)
log 1

δ ′

N k
h
(s,a)

+

14H log 1
δ ′

3N k
h
(s,a)

«⎪⎪¬
⎪⎪­

≤ P
⎧⎪⎪«
⎪⎪¬
���〈P̂ks,a,h − Ps,a,h , V

�
h+1

〉��� >
√√√

2V
(
P̂k
s,a,h
,V�

h+1

)
log 1

δ ′

N k
h
(s,a) − 1

+

7H log 1
δ ′

3N k
h
(s,a) − 1

«⎪⎪¬
⎪⎪­
≤ 2δ ′, (65a)

and

P

⎧⎪⎪⎪«
⎪⎪⎪¬
���̂rkh (s,a) − rh(s,a)

��� > 2

√√√√ (
σ̂k
h
(s,a) −

(̂
rk
h
(s,a)

)2)
log 1

δ ′

N k
h
(s,a)

+

28H log 1
δ ′

3N k
h
(s,a)

«⎪⎪⎪¬
⎪⎪⎪­
≤ 2δ ′. (65b)

These two inequalities imply that with probability exceeding 1 − 4δ ′,

rh(s,a) ≤ r̂kh (s,a) + 2
√
2

√√√√ (
σ̂k
h
(s,a) −

(̂
rk
h
(s,a)

)2)
log 1

δ ′

N k
h
(s,a)

+

28H log 1
δ ′

3N k
h
(s,a)

;

f
(
P̂ks,a,h ,V

�
h+1,N

k
h (s,a)

)
=

〈
Ps,a,h ,V

�
h+1

〉
+

〈
P̂ks,a,h − Ps,a,h ,V

�
h+1

〉

+max

{
20

3

√√√
V(P̂k

s,a,h
,V�

h+1
) log 1

δ ′

N k
h
(s,a)

,
400

9

H log 1
δ ′

N k
h
(s,a)

}

≥
〈
Ps,a,h ,V

�
h+1

〉
.
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Substitution into (64) gives: with probability at least 1 − 4δ ′,

Qk
h (s,a) ≥ rh(s,a) +

〈
Ps,a,h ,V

�
h+1

〉
= Q�

h (s,a).

Putting all this together.With the above two cases in place, one can invoke standard induction
arguments to deduce that: with probability at least 1 − 4SAHKδ ′, one has Qk

h
(s,a) ≥ Q�

h
(s,a)

and V k
h
= maxa Q

k
h
(s,a) ≥ maxa Q

�
h
(s,a) = V�

h
(s) for every (s,a,h,k). The proof is thus

completed.

C.2 Proof of Lemma 5.3

C.2.1 Bounding T2. We orst establish the bound (36a) on T2. To begin with, T2 can be decom-
posed using the deonition (19) of the bonus term:

T2 =

K∑
k=1

H∑
h=1

bkh (s
k
h ,a

k
h)

=

460

9

∑
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√√√√
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log 1
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)
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√
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(̂
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)
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h
(sk
h
,ak

h
)

+

544

9

∑
k,h

H log 1
δ ′

N k
h
(sk
h
,ak

h
)
. (66)

Applying the Cauchy–Schwarz inequality and invoking Lemma A.6, we obtain

T2 ≤
460

9

√√√∑
k,h

log 1
δ ′

N k
h
(sk
h
,ak

h
)

√∑
k,h

V
(
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)
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√
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)
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(sk
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h
) −

(̂
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h
(sk
h
,ak

h
)
)2)
+

544H log 1
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9

∑
k,h

1

N k
h
(sk
h
,ak
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)
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√
2SAH (log2 K)

(
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1

δ ′
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V
(
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sk
h
,ak
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,h
,V k
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)

+ 4
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SAH (log2 K) log

1

δ ′

√∑
k,h

(
σ̂k
h
(sk
h
,ak

h
) −

(̂
rk
h
(sk
h
,ak

h
)
)2)
+

1, 088

9
SAH 2(log2 K) log

1

δ ′ .

(67)

Using the basic fact σ̂k
h
(sk
h
,ak

h
) ≤ Hr̂k

h
(s,a) (since each immediate reward is at most H ) and the

deonition (35a) of T5, we can continue the bound in (67) to derive

T2 ≤
460

9

√
2SAH (log2 K)

(
log

1

δ ′

)
T5

+ 4

√
SAH 2(log2 K) log

1

δ ′

√∑
k,h

r̂k
h
(sk
h
,ak

h
) + 1, 088

9
SAH 2(log2 K) log

1

δ ′ . (68)
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Applying Lemma A.7 to bound
∑

k,h r̂
k
h
(sk
h
,ak

h
) and using the basic fact

∑
k,h rh(skh ,a

k
h
) ≤ KH , we

can employ a little algebra to deduce that

T2 ≤ 61

√
2SAH (log2 K)

(
log

1

δ ′

)
T5 + 8

√
SAH 3K(log2 K) log

1

δ ′ + 155SAH
2(log2 K) log

1

δ ′

with probability exceeding 1 − 2SAHKδ ′.

C.2.2 Bounding T3. Next, let us prove the bound (36b) on |T3 |. Recall that V k
h+1

(s) denotes the
value function estimate of state s before the kth episode, which corresponds to the value estimate
computed at the end of the previous epoch. This important fact implies that conditional on (sk

h
,ak

h
),

the vector esk
h+1

is statistically independent ofV k
h+1

and has conditionalmean Psk
h
,ak
h
,h , allowing us to

invoke the Freedman inequality for martingales (see Lemma A.1) to control the sum of
〈
Psk

h
,ak
h
,h −

esk
h+1
,V k

h+1

〉
. Recalling the deonition of T6 in (35b), we can see from Lemma A.1 that

|T3 | ≤ 2
√
2 ·

√
T6 log

1

δ ′ + log
1

δ ′ + 2H log
1

δ ′ ≤ 2
√
2 ·

√
T6 log

1

δ ′ + 3H log
1

δ ′ (69)

with probability at least 1 − 10SAH 2K2δ ′.

C.2.3 Bounding T4. We now turn attention to the bound (36c) on |T4 |. Recall that

T4 =

K∑
k=1

H∑
h=1

(̂
rkh (s

k
h ,a

k
h) − rh(skh ,a

k
h)

)
+

K∑
k=1

(
H∑
h=1

rh(skh ,a
k
h) −V π k

1 (sk1 )
)
, (70)

and we shall bound the two terms above separately.

— Regarding the orst term on the right-hand side of (70), we can apply Lemma A.7 and the fact∑
k,h rh(skh ,a

k
h
) ≤ KH to show that�����

K∑
k=1

H∑
h=1

(̂
rkh (s

k
h ,a

k
h) − rh(skh ,a

k
h)

) ����� ≤ 4

√
2SAH 3K(log2 K) log

1

δ ′ + 52SAH
2(log2 K) log

1

δ ′ (71)

holds with probability at least 1 − 2SAHKδ ′.
—With regards to the second term on the right-hand side of (70), we note that conditional on

πk , Ek :=
∑H
h=1 rh(skh ,a

k
h
) −V π k

1 (sk1 ) is a zero-mean random variable bounded in magnitude
by H . According to Lemma A.1,�����

K∑
k=1

Ek

����� ≤ 2
√
2 ·

√√√
K∑
k=1

Var(Ek ) log
1

δ ′ + 3H
2 log

1

δ ′

≤ 2

√
2KH 2 log

1

δ ′ + 3H
2 log

1

δ ′ (72)

holds with probability exceeding 1−4δ ′ log2(KH ), where Var(Ek ) denotes the variance of Ek
conditioned on what happens before the kth episode, and the last inequality follows since
|Ek | ≤ H always holds.

Substituting (71) and (72) into (70) reveals that with probability at least 1 − 3SAHKδ ′,

|T4 | ≤ 6

√
2SAH 3K(log2 K) log

1

δ ′ + 55SAH
2(log2 K) log

1

δ ′ . (73)
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C.3 Proof of Lemma 5.4

Regarding the term T5, direct calculation gives
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≤ T7 +T8 + 2HT2 + 6KH
2, (75)

with probability at least 1 − 3δ ′ log(KH 3). Here, the third line utilizes the fact that V k
H+1 = 0, the

orst inequality holds since

(
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,

the penultimate line makes use of the property V k
h
(sk
h
) = Qk

h
(sk
h
,ak

h
) and the update rule (20),

whereas the last line applies property (52) and the deonition (36a) of T2.
Akin to the above bound on T5, we can show that with probability at least 1 − 3SAHKδ ′,
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≤ T8 + 2H

K∑
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H∑
h=1

max
{
V k
h (s

k
h ) −

〈
P̂sk

h
,ak
h
,h ,V

k
h+1

〉
, 0

}
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,h ,V
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〉
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≤ T8 + 2H
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bkh (s
k
h ,a

k
h) + 2H

K∑
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H∑
h=1

r̂kh (s
k
h ,a

k
h) + 2HT9, (76)

≤ T8 + 2HT2 + 6KH
2
+ 2HT9. (77)

Finally, note that the above bounds on T5 and T6 both depend on the term T8 (cf. (37b)), which
we would like to cope with now. Using Freedman’s inequality (cf. Lemma A.1) and the fact that
Var(X 2) ≤ 4H 2Var(X ) for any random variable X with support on [−H ,H ] (cf. Lemma A.2), we
reach

|T8 | ≤ 2
√
2

√∑
k,h

V

(
P̂k
sk
h
,ak
h
,h
,
(
V k
h+1

)2)
log

1

δ ′ + 3H
2 log

1

δ ′ ≤
√
32H 2T6 log

1

δ ′ + 3H
2 log

1

δ ′ (78)

with probability at least 1 − 3δ ′ log(KH 3). Substitution into (75) and (77) establishes (38).

D Proof of the Value-based Regret Bound (Proof of Theorem 1.2)

Recall that

B = 4, 000(log2 K)3 log(3SAH ) log 1

δ ′ with δ ′
=

δ

200SAH 2K2
. (79)

Consider orst the scenario where K ≤ BSAH 2

v� : the regret bound can be upper bounded by

E
[
Regret(K)

]
= E

[
K∑
k=1

(
V�
1 (sk1 ) −V π k

1 (sk1 )
)]

≤ E
[
K∑
k=1

V�
1 (sk1 )

]
= KEs1∼μ

[
V�
1 (s1)

]

= Kv�
= min

{√
BSAH 2Kv�,Kv�

}
. (80)

As a result, the remainder of the proof is dedicated to the case with

K ≥ BSAH 2

v�
. (81)

To begin with, recall that the proof of Theorem 1.1 in Section 5 consists of bounding the

quantities T1, . . . ,T9 (see (34), (35), and (37)) and recall that δ ′
=

δ
200SAH 2K 2 . In order to establish

Theorem 1.2, we need to develop tighter bounds on some of these quantities (i.e., T2, T4, T5, and
T6) to renect their dependency on v� (cf. (43)).

Bounding T2. Recall that we have shown in (68) that

T2 ≤
460

9

√
2SAH (log2 K)

(
log

1

δ ′

)
T5

+ 4

√
SAH 2(log2 K) log
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SAH 2(log2 K) log
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δ ′ .

In view of the deonition ofT4 (cf. (34)) as well as the fact that
∑K

k=1V
�
1 (sk1 ) ≤ 3Kv�

+H log 1
δ ′ holds

with probability at least 1 − δ ′ (see Lemma A.3), we arrive at∑
k,h

r̂kh (s
k
h ,a

k
h) ≤ T4 +

∑
k

V
πk
1 (sk1 ) ≤ T4 +

∑
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V�
1 (sk1 ) ≤ T4 + 3Kv

�
+ H log

1

δ ′ , (82)

J. ACM, Vol. 72, No. 3, Article 22. Publication date: June 2025.



Setling the Sample Complexity of Online Reinforcement Learning 22:41

which in turn gives

T2 ≤
460

9

√
2SAH (log2 K)

(
log
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)
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+ 4

√
SAH 2(log2 K) log

1

δ ′

√
T4 + 3Kv�

+ 130SAH 2(log2 K) log
1

δ ′ . (83)

Bounding T4. When it comes to the quantity T4 (cf. (34)), we make the observation that

T4 =

K∑
k=1

(
H∑
h=1

r̂kh (s
k
h ,a

k
h) − rh(skh ,a

k
h)

)
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. (84)

Repeating the arguments for (82) yields

∑
k,h
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k
h) ≤ qT2 +
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πk
1 (sk1 ) ≤ qT2 +

∑
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V�
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�
+ H log

1

δ ′ (85)

with probability at least 1 − δ ′. Combining this with Lemma A.7, we see that

qT1 ≤ 4

√
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with probability exceeding 1 − 3SAHKδ ′. In addition, Lemma A.1 tells us that
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≤ 2Kv�
+ 5H log

1

δ ′ , (88)

with probability at least 1−2SAHKδ ′, where the expectation operator Eπ k ,s1∼μ [·] is taken over the

randomness of a trajectory {(sh ,ah)} generated under policy πk and initial state s1 ∼ μ, the last
line arises from the AM-GM inequality, and the penultimate line makes use of Assumption 1 and
the fact that

Eπ k ,s1∼μ

[
H∑
h=1

rh(sh ,ah)
]
= Es1∼μ

[
V π k

1 (s1)
]
≤ Es1∼μ

[
V�
1 (s1)

]
= v�.
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Taking (86), (87), and (88) together, we can demonstrate that with probability exceeding 1 −
5SAHKδ ′,

qT1 ≤ 13

√
SAH 2Kv�(log2 K) log

1

δ ′ + 80SAH
2(log2 K) log

1

δ ′ , (89a)

qT2 ≤ 2

√
2KHv� log

1

δ ′ + 3H log
1

δ ′ . (89b)

Substitution into (84) reveals that: with probability exceeding 1 − 5SAHKδ ′,

T4 ≤ 15

√
SAH 2Kv�(log2 K) log

1

δ ′ + 83SAH
2(log2 K) log

1

δ ′ . (90)

Bounding T5. Recall that we have proven in (74) that

T5 ≤ T7 +T8 + 2HT2 + 2H

K∑
k=1

H∑
h=1

r̂kh (s
k
h ,a

k
h). (91)

With (85) and (88) in place, we can deduce that, with probability at least 1 − 3SAHKδ ′,

∑
k,h

rh(skh ,a
k
h) ≤ qT2 + 3Kv

�
+ H log

1

δ ′ ≤ 5Kv�
+ 6H log

1

δ ′ . (92)

Moreover, under the assumption (81), we can further bound (89a) as

qT1 ≤
√
BSAH 2Kv�

+ BSAH 2 ≤ 2Kv�,

with probability exceeding 1−3SAHKδ ′, which combined with (92) and the assumption (81) results
in

∑
k,h

r̂kh (s
k
h ,a

k
h) =

∑
k,h

rh(skh ,a
k
h) + qT1 ≤ 7Kv�

+ 6H log
1

δ ′ ≤ 8Kv�. (93)

Substitution into (91) indicates that: with probability exceeding 1 − 6SAHKδ ′,

T5 ≤ T7 +T8 + 2HT2 + 16HKv�. (94)

Bounding T6. Making use of our bounds (76), (38c), and (93), we can readily derive

T6 ≤ T8 + 2HT2 + 2HT9 + 2H

K∑
k=1

H∑
h=1

r̂h(skh ,a
k
h)

≤
√
32T6 log

1

δ ′ + 2HT9 + 16HKv�
+ 3H 2 log

1

δ ′ + 2HT2, (95)

with probability at least 1 − 16SAH 2K2δ ′.
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Putting all the pieces together. Recalling our choice of B (cf. (79)), we can see from (83), (36b),
(90), (94), (95), (38c), (39a), and (39b) that

T2 ≤
√
BSAHT5 +

√
BSAH 2(T4 + 3Kv�) + BSAH 2, (96a)

T3 ≤
√
BT6 + BH , (96b)

T4 ≤
√
BSAH 2Kv�

+ BSAH 2, (96c)

T5 ≤ T7 +T8 + 2HT2 + 16HKv�, (96d)

T6 ≤
√
BT6 + 2HT9 + 16HKv�

+ BH 2
+ 2HT2, (96e)

T8 ≤
√
BH 2T6 + BH

2, (96f)

T1 ≤ T9 ≤
√
BSAHT6 + BSAH

2, (96g)

T7 ≤ H
√
BSAHT6 + BSAH

3. (96h)

Solving (96) under the assumption K ≥ BSAH 2

v� allows us to demonstrate that

T6 � BHKv�, (97a)

T1 ≤ T9 �
√
B2SAH 2Kv�, (97b)

T7 +T8 �
√
B2SAH 4Kv�, (97c)

T5 � BHKv�, (97d)

T2 �
√
B2SAH 2Kv�, (97e)

T3 �
√
B2HKv�, (97f)

T4 �
√
BSAH 2Kv�, (97g)

with probability exceeding 1 − 200SAH 2K2δ ′. Putting these bounds together with (34), we arrive
at

Regret(K) ≤ T1 +T2 +T3 +T4 � B
√
SAH 2Kv�,

with probability exceeding 1 − 200SAH 2K2δ ′. Replacing δ ′ with δ
200SAH 2K 2 and taking δ = 1

2KH
give

E
[
Regret(K)

]
� (1 − δ )B

√
SAH 2Kv�

+ δKv�
� B

√
SAH 2Kv�

+ 1 � B
√
SAH 2Kv�

� min
{
B
√
SAH 2Kv�,BKv�

}
� min

{√
SAH 2Kv�,Kv�

}
log5(SAHK),

provided that K ≥ BSAH 2

v� . Taking this collectively with (80) concludes the proof.

E Proof of the Cost-based Regret Bound (Proof of Theorem 1.3)

We now turn to the proof of Theorem 1.3. For notational convenience, we shall use r to denote the
negative cost (namely, rh = −ch , r̂h = −ĉh , and so on) throughout this section. We shall also use
the following notation (and similar quantities like Qk

h
, V k

h
, . . .)

Qh(s,a) ← max
{
min

{
r̂h(s,a) + P̂s,a,hVh+1 + bh(s,a), 0

}
,−H

}
,

Vh(s) ← max
a

Qh(s,a),

in order to be consistent with the reward-based setting.
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Akin to the proof of Theorem 1.2, we need to bound the quantities T1, . . . ,T9 introduced previ-
ously (see (34), (35), and (37)). We note that the analysis for T1, T3, T7, T8, and T9 in Appendix D
readily applies to the negative reward case herein. Thus, it suoces to develop bounds onT2,T4,T5,
and T6 to capture their dependency on c�, which forms the main content of the remainder of this
section.

Bounding T2. Recall from (66) that

T2 =
460

9

∑
k,h

√√√√
V
(
P̂k
sk
h
,ak
h
,h
,V k

h+1

)
log 1

δ ′

N k
h
(sk
h
,ak

h
)

+

2
√
2
∑
k,h

√√√√ (
σ̂k
h
(sk
h
,ak

h
) −

(̂
rk
h
(sk
h
,ak

h
)
)2)

log 1
δ ′

N k
h
(sk
h
,ak

h
)

+

544

9

∑
k,h

H log 1
δ ′

N k
h
(sk
h
,ak

h
)
. (98)

In what follows, let us bound the three terms on the right-hand side of (98) separately.

— For the orst and the third terms on the right-hand side of (98), invoking the Cauchy–Schwarz
inequality and Lemma A.6 gives

∑
k,h

√√√√
V
(
P̂k
sk
h
,ak
h
,h
,V k

h+1

)
log 1

δ ′

N k
h
(sk
h
,ak

h
)

≤
√
2SAH (log2 K)

(
log

1

δ ′

) ∑
k,h

V
(
P̂k
sk
h
,ak
h
,h
,V k

h+1

)

=

√
2SAH (log2 K)

(
log

1

δ ′

)
T5, (99)

with T5 deoned in (35a), and in addition,

∑
k,h

H log 1
δ ′

N k
h
(sk
h
,ak

h
)
≤ 2SAH 2(log2 K) log

1

δ ′ . (100)

— Let us turn to the second term on the right-hand side of (98). Observing the basic fact that

σ̂k
h (s

k
h ,a

k
h) −

(̂
rkh (s

k
h ,a

k
h)

)2 ≤ −Hr̂kh (s
k
h ,a

k
h),

we can combine it with Lemma A.6 to derive√√√√ (
σ̂k
h
(sk
h
,ak

h
) −

(̂
rk
h
(sk
h
,ak

h
)
)2)

log 1
δ ′

N k
h
(sk
h
,ak

h
)

≤
√
2SAH (log2 K) log

1

δ ′

√
H

∑
k,h

−r̂k
h
(sk
h
,ak

h
)

≤
√
2SAH 2(log2 K) log

1

δ ′

√√√
−T4 + 3Kc� +

K∑
k=1

(
−V π k

1 (sk1 ) +V�
1 (sk1 )

)
+

K∑
k=1

(
−V�

1 (sk1 ) − 3c�
)
,

(101)

where the last inequality invokes the deonition ofT4 (see (34)). By virtue of Lemma A.3 and
the deonition (45) of c�, one can show that

K∑
k=1

−V�
1 (sk1 ) ≤ 3Kc� + H log

1

δ ′ ,
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with probability exceeding 1 − δ ′. In addition, we note that

K∑
k=1

(
−V π k

1 (sk1 ) +V�
1 (sk1 )

)
= Regret(K) = T1 +T2 +T3 +T4. (102)

Taking these properties together with (101) yields√√√√ (
σ̂k
h
(sk
h
,ak

h
) −

(̂
rk
h
(sk
h
,ak

h
)
)2)

log 1
δ ′

N k
h
(sk
h
,ak

h
)

≤
√
2SAH 2(log2 K) log

1

δ ′

√
T1 +T2 +T3 + 2|T4 | + 3Kc� + H log

1

δ ′ .

Putting the above results together, we can deduce that, with probability exceeding 1 − δ ′,

T2 ≤ 90

√
SAH (log2 K)

(
log

1

δ ′

)
T5

+ 4

√
SAH 2(log2 K) log

1

δ ′

√
T1 +T2 +T3 + 2|T4 | + 3Kc� + H log

1

δ ′ + 130SAH
2(log2 K) log

1

δ ′ .

(103)

Bounding T4. When it comes to the quantity T4, we recall that

T4 =

K∑
k=1

(
H∑
h=1

r̂kh (s
k
h ,a

k
h) − rh(skh ,a

k
h)

)
︸�����������������������������������︷︷�����������������������������������︸

� qT1

+

K∑
k=1

(
H∑
h=1

rh(skh ,a
k
h) −V π k

1 (sk1 )
)

︸���������������������������������︷︷���������������������������������︸
� qT2

. (104)

To controlT4, we orst make note of the following result that bounds the empirical reward (for the

case with negative rewards), which assists in bounding the term qT1.

Lemma E.1. With probability at least 1 − 2SAHKδ ′, it holds that

K∑
k=1

H∑
h=1

���̂rkh (skh ,akh) − rh(skh ,a
k
h)

���

≤ 4

√
2SAH 2(log2 K) log

1

δ ′ ·

√√√
K∑
k=1

H∑
h=1

(
− rh(skh ,a

k
h
)
)
+ 52SAH 2(log2 K) log

1

δ ′ .

Proof. The proof basically follows the same arguments as in the proof of Lemma A.7, except
that r is now replaced with −r . �

Lemma E.1 tells us that with probability at least 1 − 3SAHKδ ′,

|qT1 | ≤ 4

√
2SAH 2(log2 K) log

1

δ ′ ·

√√√
K∑
k=1

H∑
h=1

(
− rh(skh ,a

k
h
)
)
+ 52SAH 2(log2 K) log

1

δ ′

≤ 4
√
2SAH 2(log2 K) ·

√√√
−qT2 + 3Kc� +

K∑
k=1

(
−V�

1 (sk1 ) − 3c�
)
+ 52SAH 2(log2 K) log

1

δ ′

≤ 4
√
2SAH 2(log2 K) ·

√
qT2 + 3Kc� + 60SAH

2(log2 K) log
1

δ ′ . (105)
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Here, the last line uses the fact (see Lemma A.3) that, with probability exceeding 1 − δ ′,

K∑
k=1

(
−V�

1 (sk1 )
)
≤ 3Kc� + H log

1

δ ′ . (106)

In addition, the Freedman inequality in Lemma A.1 combined with (106) implies that, with prob-
ability at least 1 − 3SAHKδ ,

|qT2 | ≤ 2

√√√√√
2

K∑
k=1

Eπ k

£¤¤¤¤¥
(
H∑
h=1

rh(sh ,ah)
)2 ��� s1 = sk1

§̈̈
¨̈©
log

1

δ
+ 3H log

1

δ

≤ 2

√√√
2H

K∑
k=1

Eπ k

[
H∑
h=1

−rh(sh ,ah)
��� s1 = sk1

]
log

1

δ
+ 3H log

1

δ

= 2

√√√
2H

(
K∑
k=1

(
−V π k

1 (sk1 ) +V�
1 (sk1 )

)
+

K∑
k=1

(
−V�

1 (sk1 ) − 3c�
)
+ 3Kc�

)
log

1

δ
+ 3H log

1

δ
, (107)

≤ 3Kc� +T1 +T2 +T3 +T4 + 9H log
1

δ
. (108)

Combining (105), (107), with (108) reveals that, with probability at least 1 − 4SAHKδ ,

|qT1 | ≤ 16

√
SAH 2(Kc� +T1 +T2 +T3 +T4)(log2 K) log

1

δ
+ 200SAH 2(log2 K) log

1

δ

|qT2 | ≤ 2

√
2H (3Kc� +T1 +T2 +T3 +T4) log

1

δ
+ 9H log

1

δ
.

As a result, substitution into (104) leads to

|T4 | ≤ 22

√
SAH 2(Kc� +T1 +T2 +T3 +T4)(log2 K) log

1

δ
+ 209SAH 2(log2 K) log

1

δ
. (109)

Bounding T5. Invoking the arguments in (38a) and recalling the update rule (46), we obtain

T5 ≤
K∑
k=1

H∑
h=1

〈
P̂k
sk
h
,ak
h
,h
− Psk

h
,ak
h
,h ,

(
V k
h+1

)2〉
+

K∑
k=1

H∑
h=1

〈
Psk

h
,ak
h
,h − esk

h+1
,
(
V k
h+1

)2〉
(110)

+ 2H

K∑
k=1

H∑
h=1

[
− rh(skh ,a

k
h)

]
.

Moreover, we recall that

K∑
k=1

H∑
h=1

[
− rh(skh ,a

k
h)

]
= −qT2 −

K∑
k=1

V π k

1 (s1) ≤ −qT2 +

K∑
k=1

V�
1 (sk1 ). (111)

By virtue of (106), one sees that with probability at least 1 − 5SAHKδ ,

K∑
k=1

H∑
h=1

[
− rh(skh ,a

k
h)

]
≤ 2

√
2H (3Kc� +T1 +T2 +T3 +T4) log

1

δ
+ 3Kc� + 10H log

1

δ
. (112)
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Consequently, we arrive at

T5 ≤ T7 +T8 + 2HT2 + 4

√
2H 3(3Kc� +T1 +T2 +T3 +T4) log

1

δ
+ 6HKc� + 20H 2 log

1

δ
, (113)

with probability exceeding 1 − 5SAHKδ .

BoundingT6. Invoking the arguments in (38a), (106) and (111), and recalling the update rule (46),
we can demonstrate that

T6 ≤ 2

√
8T6 log

1

δ
+ 3H 2 log

1

δ
+ 2H

K∑
k=1

H∑
h=1

max
{〈
Psk

h
,ak
h
,h ,V

k
h+1

〉
−V k

h (s
k
h ), 0

}

≤ 2

√
8T6 log

1

δ
+ 3H 2 log

1

δ
+ 2HT9 + 2H

K∑
k=1

H∑
h=1

[
−rh(skh ,a

k
h)

]

≤ 2

√
8T6 log

1

δ
+ 3H 2 log

1

δ
+ 2HT9

+ 2H

(
2

√
2H (3Kc� +T1 +T2 +T3 +T4) log

1

δ
+ 3Kc� + 10H log

1

δ

)
(114)

with probability at least 1 − 3SAHKδ .

Putting all this together.Armedwith the preceding bounds, we are ready to establish the claimed
regret bound. By solving (103), (36b), (109), (113), (114), (38c), (39a), and (39b), we can show that,
with probability exceeding 1 − 100SAH 2Kδ ,

T6 � HKc� + BSAH 3,

T1 �
√
BSAH 2Kc� + BSAH 2,

T7 +T8 �
√
BSAH 4Kc� + BSAH 3,

T5 � HKc� + BSAH 2,

T2 �
√
BSAH 2Kc� + BSAH 2,

T3 �
√
BHKc� + BSAH 2.

We then readily conclude that the total regret is bounded by

O
(√

BSAH 2Kc� + BSAH 2) .
In addition, the regret bound is trivially upper bounded by O

(
K(H − c�)

)
. The proof is thus com-

pleted by combining these two regret bounds and replacing δ ′ with δ
100SAH 2K

.

F Proof of the Variance-dependent Regret Bounds (Proof of Theorem 1.4)

In this section, we turn to establishing Theorem 1.4. The proof primarily contains two parts, as
summarized in the following lemmas.

Lemma F.1. With probability exceeding 1 − δ/2, Algorithm 1 obeys

Regret(K) ≤ Õ
(
min

{√
SAHKvar1 + SAH

2,KH
})
.

Lemma F.2. With probability at least 1 − δ/2, Algorithm 1 satisoes

Regret(K) ≤ Õ
(
min

{√
SAHKvar2 + SAH

2,KH
})
.
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Putting these two regret bounds together and rescaling δ to δ/2, we immediately conclude the
proof of Theorem 1.4. The remainder of this section is thus devoted to establishing Lemma F.1 and
Lemma F.2.

F.1 Proof of Lemma F.1

Before proceeding, we recall that

T4 =

K∑
k=1

(
H∑
h=1

r̂kh (s
k
h ,a

k
h) −V π k

1 (sk1 )
)
,

T5 =

K∑
k=1

H∑
h=1

V
(
P̂sk

h
,ak
h
,h ,V

k
h+1

)
,

T6 =

K∑
k=1

H∑
h=1

V
(
Psk

h
,ak
h
,h ,V

k
h+1

)
,

and that

B = 4, 000(log2 K)3 log(3SAH ) log 1

δ ′ and δ ′
=

δ

200SAH 2K2
.

F.1.1 Bounding T2. Recall that when proving (36a), we have demonstrated that (see (67))

T2 ≤
460

9

√
2SAH (log2 K)

(
log

1

δ ′

)
T5

+ 4

√
SAH (log2 K) log

1

δ ′

√∑
k,h

(
σ̂k
h
(sk
h
,ak

h
) −

(̂
rk
h
(sk
h
,ak

h
)
)2)
+

1, 088

9
SAH 2(log2 K) log

1

δ ′ .

(115)

This motivates us to bound the sum
∑

k,h

(
σ̂k
h
(sk
h
,ak

h
)−

(̂
rk
h
(sk
h
,ak

h
)
)2)

, which we accomplish via the
following lemma.

Lemma F.3. With probability at least 1 − 4SAHKδ ′, one has∑
k,h

(
σ̂k
h (s

k
h ,a

k
h) −

(̂
rkh (s

k
h ,a

k
h)

)2) ≤ 6Kvar1 + 242SAH
3(log2 K) log

1

δ ′ . (116)

Combining Lemma F.3 with (115), we can readily derive

T2 ≤
460

9

√
2SAH (log2 K)

(
log

1

δ ′

)
T5 + 12

√
SAH (log2 K) log

1

δ ′
√
2Kvar1

+ 157SAH 2(log2 K) log
1

δ ′ (117)

with probability at least 1 − 4SAHKδ ′.

Proof of Lemma F.3. For notational convenience, let us deone the variance of Rh(s,a) as
vh(s,a).

Firstly, we control each σ̂k
h
(sk
h
,ak

h
) − (̂rk

h
(sk
h
,ak

h
))2 with vh(s,a). Fix (s,a,h,k). Applying

Lemma A.3 shows that, with probability at least 1 − 2δ ′,

N k
h (s,a)

(
σ̂k
h (s

k
h ,a

k
h) −

(̂
rkh (s

k
h ,a

k
h)

)2) ≤ 3N k
hvh(s,a) + H

2 log
1

δ ′ . (118)
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This allows us to deduce that, with probability exceeding 1 − 2SAHKδ ′,∑
k,h

(
σ̂k
h (s

k
h ,a

k
h) −

(̂
rkh (s

k
h ,a

k
h)

)2) ≤ 3
∑
k,h

vh(skh ,a
k
h) +

∑
k,h

H 2 log 1
δ ′

N k
h
(sk
h
,ak

h
)

≤ 3
∑
k,h

vh(skh ,a
k
h) + 2SAH

3(log2 K) log
1

δ ′ . (119)

It then suoces to bound the sum
∑

k,h vh(skh ,a
k
h
). Toward this end, let

Ṽ k
h (s) � Eπ k

[
H∑

h′
=h

vh′(sh′,ah′)
��� sh = s

]
,

be the value function with rewards taken to be {vh(s,a)} and the policy selected as πk . It is clearly
seen that

Ṽ k
h (s,a) ≤ H 2.

In view of Lemma A.1, we can obtain

K∑
k=1

H∑
h=1

vh(skh ,a
k
h) −

K∑
k=1

Ṽ k
1 (sk1 ) =

K∑
k=1

(
H∑
h=1

〈
esk

h+1
− Psk

h
,ak
h
,h , Ṽ

k
h+1

〉)

≤ 2

√√√
2
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k=1

H∑
h=1

V
(
Psk

h
,ak
h
,h , Ṽ

k
h+1

)
log

1

δ ′ + 3H
2 log

1

δ ′ , (120)

with probability at least 1 − 2SAHKδ ′. Moreover, invoking Lemma A.1 once again reveals that

K∑
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H∑
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,h , Ṽ

k
h+1

)

=

K∑
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with probability at least 1 − 2SAHKδ ′. Combine (120) and (121) to yield
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with probability exceeding 1 − 4SAHKδ ′. �

F.1.2 BoundingT4. We now move on to the termT4, which can be written asT4 = qT1 + qT2 with

qT1 =

K∑
k=1

H∑
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(̂
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k
h ,a

k
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k
h)

)

qT2 =

K∑
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(
H∑
h=1

rh(skh ,a
k
h) −V π k

1 (sk1 )
)
.

This leaves us with two quantities to control.

To begin with, let us look at qT1. In view of Lemma A.4 and the union bound over (s,a,h,k), we
see that, with probability at least 1 − 2SAHKδ ′,

r̂kh (s,a) − rh(s,a) ≤
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. (123)

As a result, we obtain

|qT1 | ≤
K∑
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In view of (122), with probability exceeding 1 − 4SAHKδ ′ we have

K∑
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H∑
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k
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2 log
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Consequently, we arrive at

|qT1 | ≤
√
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Next, we proceed to bound qT2. Toward this, we make the observation that

qT2 =
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H∑
h=1

〈
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Applying Lemma A.1 shows that, with probability at least 1 − 2SAHKδ ′,

|qT2 | ≤ 2
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Continue the calculation to derive
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Here, (129) holds with probability at least 1 − 2SAHKδ ′, a consequence of Lemma A.1 and
Lemma A.2.

To further bound the right-hand side of (129), we develop the following upper bound:
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(130)

Note that the orst term on the right-hand side (130) is exactly Regret(K) = T1 + T2 + T3 + T4,
the second term on the right-hand side (130) corresponds to −T4, whereas the third term on the
right-hand side (130) can be bounded by
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with probability at least 1 − 2SAHKδ ′. It then implies the validity of the following bound with
probability exceeding 1 − 8SAHKδ ′:
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Combining these bounds with (129), we can use a little algebra to further obtain
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with probability at least 1 − 8SAHKδ ′. If we deone T10 =
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Combining the above bound on |qT2 | with (126), with probability exceeding 1 − 10SAHKδ ′
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which together with a little algebra yields
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F.1.3 Bounding T5 andT6. We now turn attention to the terms T5 and T6. Toward this, we start
with the following lemma.

Lemma F.4. With probability at least 1 − 2SAHKδ ′, one has
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Proof of Lemma F.4. Direct computation gives∑
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+ 2H
∑
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Invoking Lemma 4.5 to bound T7 and T1, we obtain∑
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with probability exceeding 1 − 2SAHKδ ′. �

In view of Lemma F.4, it suoces to bound T6 =
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). Given that Var(X + Y ) ≤
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To further upper bound the right-hand side of (140), we make note of the following lemmas.

Lemma F.5. With probability at least 1 − 4SAHKδ ′, it holds that
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Lemma F.6. With probability at least 1 − 2δ ′, it holds that
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Combining Lemma F.5 and Lemma F.6 with (140), we see that with probability at least 1 −
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This taken collectively with Lemma F.4 yields, with probability at least 1 − 8SAHKδ ′,
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To onish our bounds on T5 and T6, it remains to establish Lemma F.5 and Lemma F.6.

Proof of Lemma F.5. Let R
�

h (s,a) = V(Ps,a,h ,V�
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), and deone

V
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.
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Then V
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h(s) ≤ var1 ≤ H 2. It then follows that
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Note that V
k
depends only on πk , which is determined before the beginning of the kth episode.

Consequently, applying Lemma A.1 reveals that, with probability at least 1 − 2SAHKδ ′,
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Regarding the sum of variance terms on the right-hand side of (145), one can further bound
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with probability at least 1 − 2SAHKδ ′. Here, the last inequality arises from Lemmas A.1 and A.2

as well as the fact thatV
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Substituting (147) into (145) gives
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thus indicating that

K∑
k=1

H∑
h=1

V(Psk
h
,ak
h
,h ,V

�
h+1) ≤ 2

K∑
k=1

V
k

1 (sk1 ) + 84H 2 log
1

δ ′ ≤ 2Kvar1 + 84H
2 log

1

δ ′ .

The proof of Lemma F.5 is thus completed. �

Proof of Lemma F.6. We make the observation that∑
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According to Lemmas A.1 and A.2, we see that with probability exceeding 1 − δ ′,∑
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In addition, with probability at least 1 − δ ′ one has∑
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It then follows that, with probability at least 1 − 2δ ′,∑
k,h

V
(
Psk

h
,ak
h
,h ,V

k
h+1 −V�

h+1

)
≤ 4

√
BSAH 3

∑
k,h

V
(
Psk

h
,ak
h
,h ,V

k
h+1

)
+ 4H

∑
k,h

bkh (s
k
h ,a

k
h) + 3BSAH

3,

(151)

thereby concluding the proof. �
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F.1.4 Puting All This Together. To onish up, let us rewrite the inequalities (40g)−(40f) as follows,
with (40a), (40c), (40d), and (40e) replaced by (117), (135) (143), and (142), respectively:

T1 ≤
√
128BSAHT6 + 24BSAH

2,

T7 ≤ H
√
512BSAHT6 + 24BSAH

3,

T9 ≤
√
128BSAHT6 + 24BSAH

2,

T2 ≤ 100
√
BSAHT5 + 140BSAH

2,

T3 ≤
√
8BT6 + 3H log

1

δ ′ ,

T4 ≤
√
BSAHT10 + 32

√
BH (T1 +T2 +T3) + BSAH 2,

T5 ≤ 40Kvar1 + 80HT2 + 398BSAH
3,

T6 ≤ 8Kvar1 + 16HT2 + 78BSAH
3,

T8 ≤
√
32BH 2T6 + 3BH

2,

where we recall that B = 4, 000(log2 K)3 log(3SA) log 1
δ ′ . In addition, it follows from Lemma F.5

that

T10 ≤ 2Kvar1 + 80BH
2.

Solving the inequalities above reveals that, with probability exceeding 1 − 200SAH 2K2δ ′,

Regret(K) = T1 +T2 +T3 +T4 ≤ O
(√

BSAHKvar1 + BSAH
2
)
. (152)

One can thus conclude the proof by recalling that δ ′
=

δ
200SAH 2K 2 .

F.2 Proof of Lemma F.2

Following similar arguments as in the proof of Lemma F.1, we focus on boundingT2,T4,T5, andT6
in terms of var2.

F.2.1 Bounding T2. Recall that δ
′ is deoned as δ ′

=
δ

200SAH 2K 2 , and that we have demonstrated
in (67) that

T2 ≤
460

9

√
2SAHT5(log2 K) log

1

δ ′

+ 4

√
SAH (log2 K) log

1

δ ′

√∑
k,h

(
σ̂k
h
(sk
h
,ak

h
) −

(̂
rk
h
(sk
h
,ak

h
)
)2)
+

1088

9
SAH 2(log2 K) log

1

δ ′ .

(153)

To bound the right-hand side of (153), we resort to the following lemma.

Lemma F.7. With probability at least 1 − 4SAHKδ ′, one has∑
k,h

(
σ̂k
h (s

k
h ,a

k
h) − (̂rkh (s

k
h ,a

k
h))

2
)
≤ 6Kvar2 + 242H

2(log2 K) log
1

δ ′ . (154)

Proof. Recall that in Lemma F.3, we have shown that with probability at least 1 − 4SAHKδ ′,

K∑
k=1

H∑
h=1

(
σ̂k
h (s

k
h ,a

k
h) −

(̂
rkh (s

k
h ,a

k
h)

)2) ≤ 3

K∑
k=1

Ṽ k
1 (sk1 ) + 2SAH 3(log2 K) log

1

δ ′ . (155)
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We then complete the proof by observing that

Ṽ k
1 (sk1 ) ≤ Ṽ k

1 (sk1 ) + Eπ k
[
H∑
h=1

V
(
Psh,ah,h ,V

π k

h+1

) ��� s1 = sk1
]

= Varπ k

[
H∑
h=1

rh(sh ,ah)
��� s1 = sk1

]
≤ var2. (156)

�

Combining Lemma F.7 with (153) gives: with probability at least 1 − 4SAHKδ ′,

T2 ≤
460

9

√
2SAHT5(log2 K) log

1

δ ′ + 12

√
SAH (log2 K) log

1

δ ′
√
2Kvar2

+ 157SAH 2(log2 K) log
1

δ ′ . (157)

F.2.2 Bounding T4. Recall that T4 = qT1 + qT2, where

qT1 =

K∑
k=1

H∑
h=1

(̂
rkh (s

k
h ,a

k
h) − rh(skh ,a

k
h)

)
,

qT2 =

K∑
k=1

(
H∑
h=1

rh(skh ,a
k
h) −V π k

1 (sk1 )
)
.

Repeating similar arguments employed in the proof of Lemma F.3 and using (124), we see that with
probability exceeding 1 − 6SAHKδ ′,

|qT1 | ≤
√
4SAH (log2 K) log

1

δ ′ ·

√√√ K∑
k=1

H∑
h=1

vh(skh ,a
k
h
) + 2SAH 2(log2 K) log

1

δ ′

≤
√
8SAHKvar2(log2 K) log

1

δ ′ + 20SAH
2(log2 K) log

1

δ ′ .

In addition, from Lemma A.1 and the deonition of var2, we see that

|qT2 | ≤ 2

√
2Kvar2 log

1

δ ′ + 3H log
1

δ ′ , (158)

with probability at least 1 − 2SAHKδ ′. Therefore, with probability at least 1 − 8SAHKδ ′, it holds
that

T4 ≤ 4

√
2SAHKvar2(log2 K) log

1

δ ′ + 23SAH
2(log2 K) log

1

δ ′ . (159)

F.2.3 BoundingT5 andT6. Recall that Lemma F.4 asserts that with probability exceeding 1−2δ ′,

T5 ≤ 5T6 + 8BSAH
3.

Hence, it suoces to bound T6.
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From the elementary inequality Var(X + Y ) ≤ 2Var(X ) + 2Var(Y ), we obtain

T6 =
∑
k,h

V
(
Psk

h
,ak
h
,h ,V

k
h+1

)
≤ 2

∑
k,h

V
(
Psk

h
,ak
h
,h ,V

π k

h+1

)
+ 2

∑
k,h

V
(
Psk

h
,ak
h
,h ,V

k
h+1 −V π k

h+1

)

≤ 3Kvar2 +

K∑
k=1

(
H∑
h=1

V
(
Psk

h
,ak
h
,h ,V

π k

h+1

)
− 3var2

)
+ 2

∑
k,h

V
(
Psk

h
,ak
h
,h ,V

k
h+1 −V π k

h+1

)
. (160)

To bound the right-hand side of (160), we resort to the following two lemmas.

Lemma F.8. With probability at least 1 − 4SAHKδ ′, it holds that

K∑
k=1

(
H∑
h=1

V(Psk
h
,ak
h
,h ,V

π k

h+1) − 2var2

)
≤ 80H 2 log

1

δ ′ . (161)

Lemma F.9. With probability exceeding 1 − 4SAKHδ ′, it holds that∑
k,h

V
(
Psk

h
,ak
h
,h ,V

k
h+1 −V π k

h+1

)
≤ 4

√
BH 2

∑
k,h

V
(
Psk

h
,ak
h
,h ,V

k
h+1

)
+ 4H

∑
k,h

bkh (s
k
h ,a

k
h) + 3BSAH

3.

With Lemmas F.8 and F.9 in place, we can demonstrate that with probability at least 1−6SAHKδ ′,

T6 ≤ 2
∑
k,h

V
(
Psk

h
,ak
h
,h ,V

π k

h+1

)
+ 2

∑
k,h

V
(
Psk

h
,ak
h
,h ,V

k
h+1 −V π k

h+1

)

≤ 4Kvar2 + 8
√
BSAH 3T6 + 8HT2 + 7BSAH

3,

=⇒ T6 ≤ 8Kvar2 + 16HT2 + 78BSAH
3. (162)

Taking this result together with Lemma F.4 gives, with probability exceeding 1 − 8SAHKδ ′,

T5 =
∑
k,h

V
(
P̂sk

h
,ak
h
,h ,V

k
h+1

)
≤ 40Kvar2 + 80HT2 + 398BSAH

3. (163)

To onish establishing the above bounds onT5 andT6, it suoces to prove Lemmas F.8 and F.9, which
we accomplish in the sequel.

Proof of Lemma F.8. For notational convenience, deone

qRkh(s,a) = V(Ps,a,h ,V
π k

h+1) and qV k
h (s) = E

[
H∑

h′
=h

qRkh′(sh′,ah′)
��� sh = s

]
.

It is easily seen that qV k
h
(s) ≤ var2 ≤ H 2.

We also make the observation that

H∑
h=1

V(Psk
h
,ak
h
,h ,V

π k

h+1) − var2 =

H∑
h=1

qRkh (s
k
h ,a

k
h) − var2

≤
H∑
h=1

qRkh(s
k
h ,a

k
h) − qV k

1 (sk1 )

=

H∑
h=1

〈
esk

h+1
− Psk

h
,ak
h
,h ,

qV k
h+1

〉
. (164)
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Note that qV k only depends on πk , which is determined before the kth episode starts. Lemma A.1
then tells us that, with probability at least 1 − 2SAHKδ ′,

K∑
k=1

(
H∑
h=1

V
(
Psk

h
,ak
h
,h ,V

π k

h+1

)
− qV k

1 (sk1 )
)

≤ 2

√√√
2

K∑
k=1

H∑
h=1

V
(
Psk

h
,ak
h
,h ,

qV k
h+1

)
log

1

δ ′ + 3H
2 log

1

δ ′ . (165)

Further, it is observed that with probability at least 1 − 2SAHKδ ′,

K∑
k=1

H∑
h=1

V
(
Psk

h
,ak
h
,h ,

qV k
h+1

)

=

K∑
k=1

H∑
h=1

(〈
Psk

h
,ak
h
,h , (qV k

h+1)
2
〉
−

(〈
Psk

h
,ak
h
,h ,

qV k
h+1

〉)2)

=

K∑
k=1

H∑
h=1

〈
Psk

h
,ak
h
,h − esk

h+1
, (qV k

h+1)
2
〉

+

H∑
k=1

H∑
h=1

( (
qV k
h+1(s

k
h+1)

)2 − (
qV k
h (s

k
h )

)2)
+

K∑
k=1

H∑
h=1

( (
qV k
h (s

k
h )

)2 − (〈
Psk

h
,ak
h
,h ,

qV k
h+1

〉)2)

≤ 2

√√√
8H 4

K∑
k=1

H∑
h=1

V
(
Psk

h
,ak
h
,h ,

qV k
h+1

)
log

1

δ ′ + 2H
2

K∑
k=1

H∑
h=1

qRh(skh ,a
k
h) + 3H

4 log
1

δ ′ . (166)

Here, the last inequality results from Lemmas A.1, A.2 and the fact that qV k
h
(sk
h
) = qRh(skh ,a

k
h
) +

〈Psk
h
,ak
h
,h ,

qV k
h+1

〉. It then follows that

K∑
k=1

H∑
h=1

V
(
Psk

h
,ak
h
,h ,

qV k
h+1

)
≤ 4H 2

K∑
k=1

H∑
h=1

qRh(skh ,a
k
h) + 42H

4 log
1

δ ′ . (167)

Taking (165) and (167) together leads to

K∑
k=1

H∑
h=1

V
(
Psk

h
,ak
h
,h ,V

π k

h+1

)
≤

H∑
k=1

qV k
1 (sk1 ) + 2

√√√
8H 2

K∑
k=1

H∑
h=1

V
(
Psk

h
,ak
h
,h ,V

π k

h+1

)
log

1

δ ′ + 21H
2 log

1

δ ′ ,

which further implies that

K∑
k=1

H∑
h=1

V
(
Psk

h
,ak
h
,h ,V

π k

h+1

)
≤ 2

K∑
k=1

qV k
1 (sk1 ) + 84H 2 log

1

δ ′ ≤ 2Kvar2 + 84H
2 log

1

δ ′ .

This concludes the proof. �
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Proof of Lemma F.6. A little algebra gives∑
k,h

V
(
Psk

h
,ak
h
,h ,V

k
h+1 −V π k

h+1

)

=

∑
k,h

(〈
Psk

h
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2
〉
−
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=
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, (V k
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2
〉)

+
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=
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h
,h − esk

h+1
, (V k

h+1 −V π k
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2
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∑
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h (s

k
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h (skh )
)2 − (〈

Psk
h
,ak
h
,h ,V

k
h+1 −V π k

h+1

〉)2)
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(168)

From Lemmas A.1 and A.2, we can show that with probability 1 − 2SAKHδ ′,∑
k,h

〈
Psk

h
,ak
h
,h − esk

h+1
, (V k

h+1 −V π k

h+1)
2
〉

(169)

≤ 2
√
2

√
4H 2

∑
k,h

V
(
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,ak
h
,h ,V

k
h+1

−V π k

h+1

)
log

1

δ ′ + 3H
2 log

1

δ ′ . (170)

Additionally, with probability at least 1 − 2SAKHδ ′,∑
k,h

{(
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∑
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∑
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〉
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}
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∑
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,ak
h
,h − Psk
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,ak
h
,h ,V

k
h+1

〉
, 0

}
+ 2H

∑
k,h

bkh (s
k
h ,a

k
h)

≤ 2

√
BSAH 3

∑
k,h

V
(
Psk

h
,ak
h
,h ,V

k
h+1

)
+ 2H

∑
k,h

bkh (s
k
h ,a

k
h) + BSAH

3. (171)

It then follows that

∑
k,h

V(Psk
h
,ak
h
,h ,V

k
h+1 −V π k

h+1) ≤ 4

√
BSAH 3

∑
k,h

V(Psk
h
,ak
h
,h ,V

k
h+1

) + 4H
∑
k,h

bkh (s
k
h ,a

k
h) + 3BSAH

3,

(172)

with probability at least 1 − 4SAKHδ ′. The proof is thus complete. �

F.2.4 Puting All Pieces Together. Recall that B = 4, 000(log2 K)3 log(3SA) log 1
δ ′ . The last step

is to rewrite the inequalities (40g) − (40f) as follows with (40a), (40c), (40d), and (40e) replaced by
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(157),(159), (163), and (162) respectively:

T1 ≤
√
128BSAHT6 + 24BSAH

2,

T7 ≤ H
√
512BSAHT6 + 24BSAH

3,

T9 ≤
√
128BSAHT6 + 24BSAH

2,

T2 ≤ 100
√
BSAHT5 + 140BSAH

2,

T3 ≤
√
8BT6 + 3H log

1

δ ′ ,

T4 ≤
√
BSAHKvar2 + BSAH

2;

T5 ≤ 40Kvar2 + 80HT2 + 398BSAH
3,

T6 ≤ 8Kvar2 + 16HT2 + 78BSAH
3,

T8 ≤
√
32BH 2T6 + 3BH

2,

which are valid with probability at least 1 − 200SAH 2K2δ ′. Solving the inequalities listed above,
we can readily conclude that

Regret(K) = T1 +T2 +T3 +T4 ≤ O
(√

BSAHKvar2 + BSAH
2
)
. (173)

This onishes the proof by recalling that δ ′
=

δ
200SAH 2K 2 .

G Minimax Lower Bounds

In this section, we establish the lower bounds advertised in this article.

G.1 Proof of Theorem 6.1

Consider any given (S,A,H ). We start by establishing the following lemma.

Lemma G.1. Consider any K ′ ≥ 1. For any algorithm, there exists an MDP instance with S states,

A actions, and horizon H , such that the regret in K ′ episodes is at least

Regret(K ′) = Ω
(
f (K ′)

)
= Ω

(
min

{√
SAH 3K ′,K ′H

})
.

Proof of Lemma G.1. Our construction of the hard instance is based on the hard instance JAO-
MDP constructed in Jaksch et al. [26], Jin et al. [29]. In Jin et al. [29, Appendix.D], the authors
already showed that whenK ′ ≥ C0SAH for some constantC0 > 0, the minimax regret lower bound

is Ω(
√
SAH 3K ′). Hence, it suoces for us to focus on the regime where K ′ ≤ C0SAH . Without loss

of generality, we assume S = A = 2, and the argument to generalize it to arbitrary (S,A) is standard
and hence omitted for brevity.
Recall the construction of JAO-MDP in Jaksch et al. [26]. Let the two states be x and y, and the

two actions be a and b. The reward is always equal to x in state 1 and 1/2 in statey. The probability
transition kernel is given by

Px,a = Px,b = [1 − δ ,δ ], Py,a = [1 − δ ,δ ], Py,b = [1 − δ − ϵ,δ + ϵ],
where we choose δ = C1/H and ϵ = 1/H . Then the mixing time of the MDP is roughly O(H ).
By choosing C1 large enough, we can ensure that the MDP is C3-mixing after the orst half of the
horizons for some proper constant C3 ∈ (0, 1/2).
It is then easy to show that action b is the optimal action for state y. Moreover, whenever action

a is chosen in state y, the learner needs to pay regret Ω(ϵH ) = Ω(1). In addition, to diferentiate
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action a from action b in state y with probability at least 1− 1
10 , the learner needs at least Ω(

ϵ
δ 2 ) =

Ω(H ) rounds — let us call it C4H rounds for some proper constant C4 > 0. As a result, in the case
whereK ′ ≤ C4H , the minimax regret is at least Ω(K ′H 2ϵ) = Ω(K ′H ). WhenC4H ≤ K ′ ≤ C0SAH =

4C0H , the minimax regret is at least Ω(C4H
2) = Ω(K ′H ). This concludes the proof. �

With Lemma G.1, we are ready to prove Theorem 6.1. Let M be the hard instance for K ′
=

max
{

1
10Kp, 1

}
constructed in the proof of Lemma G.1. We construct an MDPM ′ as below.

— In the orst step, for any state s , with probability p, the leaner transitions to a copy ofM, and
with probability 1 − p, the learner transitions to a dumb state with 0 reward.

It can be easily verioed thatv� ≤ pH . Let X = X1+X2 + · · ·+Xk , where {Xi }Ki=1 are i.i.d. Bernoulli
random variables with mean p. Let д(X ,K ′) denote the minimax regret on the hard instanceM in
X episodes. Given that д(X ,K ′) is non-decreasing in X , one sees that

Regret(K) ≥ E
[
д(X ,K ′)

]
.

— In the case whereKp ≥ 10, Lemma A.3 tells us that with probability at least 1/2,X ≥ 1
10Kp =

K ′, and then it holds that

E
[
д(X ,K ′)

]
≥ 1

2
д(K ′,K ′) = 1

2
f (K ′) = 1

2
Ω

(
min

{√
SAH 3K ′,K ′H

})
= Ω(

√
SAH 3Kp,KHp).

— In the case where Kp < 10, with probability exceeding 1 − (1 − p)K ≥ (1 − e−Kp ) ≥ Kp

30 , one
has X ≥ 1. Then one has

E
[
д(X ,K ′)

]
≥ Kp

30
· д(1,K ′) = Kp

30
· д(1, 1) = Ω(KHp).

The preceding bounds taken together complete the proof.

G.2 Proof of Theorem 6.2

Without loss of generality, assume that S = A = 2 (as in the proof of Theorem 6.1), and recall
the assumption that p ≤ 1/4. In what follows, we construct a hard instance for which the learner
needs to identify the correct action for each step.
Let S = {s1, s2}, and take the initial state to be s1. The transition kernel and cost are chosen as

follows.

— Select a�
h
∈ {a1,a2} for every h ∈ [H ].

— For each action a and each step h, set Ps2,a,h = es2 and ch(s2,a) = 0.
— For each step h and each action a � a�

h
, set Ps1,a,h = es2 and ch(s1,a) = 1.

— Set Ps1,a�h ,h
= es1 and ch(s1,a�h ) = p.

It can be easily checked that c� = Hp (the cost obtained by choosing action a�
h
for each step h).

Note that in the above construction, the a�
h
’s are selected independently across diferent steps.

Thus, to identify the optimal action a�
h
for at least half of the H steps, we need at least Ω(H )

episodes. This implies that: there exists a constantC5 > 0 such that in the orst K ≤ C5H episodes,
the cost of the learner is at least Ω(H (1 − p)). As a result, the minimax regret is at least

Ω
(
K(H − c�)

)
= Ω

(
KH (1 − p)

)
,

when K ≤ C5H . Similarly, in the case where C5H ≤ K ≤ 100H
p

, the minimax regret is at least

Ω
(
H (H − c�)

)
= Ω

(
H 2(1 − p)

)
.

We then turn to the case whereK ≥ 100H
p

. LetM be the hard instance having the same transition

as the instance constructed in the proof of Lemma G.1, and set the cost as 1/2 (respectively 1) for
state x (respectively state y), with respect to K ′

= Kp/10 ≥ 10H (a quantity deoned therein). Let
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M ′ be the MDP such that: in the orst step, with probability p, the learner transitions to a copy
of M, and with probability 1 − p, the learner transitions to a dumb state with 0 cost. Then we
clearly have c� = Θ(Hp). It follows from Lemma A.3 that, with probability exceeding 1/2, one has
X ≥ 1

3Kp − log 2 ≥ 1
6Kp, where X is again deoned in the proof of Lemma G.1. Then one has

Regret(K) ≥ 1

2
Ω

(
min

{√
H 3K ′,K ′H

})
= Ω

(√
H 3Kp

)
.

The proof is thus completed by combining the above minimax regret lower bounds for the three
regimes K ∈ [1,C5H ], K ∈ (C5H ,

100H
p

] and K ∈ ( 100H
p
,∞].

G.3 Proof of Theorem 6.3

When K ≥ SAH/p, the lower bound in Theorem 6.1 readily applies because the regret is at least

Ω(
√
SAH 3Kp) and the variance var is at most pH 2. When SAH ≤ K ≤ SAH/p, the regret is at

least Ω(SAH 2) = Ω(min{
√
SAH 3Kp + SAH 2,KH }). As a result, it suoces to focus on the case

where 1 ≤ K ≤ SAH , Toward this end, we only need the following lemma, which suoces for us
to complete the proof.

Lemma G.2. Consider any 1 ≤ K ≤ SAH . There exists an MDP instance with S states, A actions,

horizon H , and var1 = var2 = 0, such that the regret is at least Ω(KH ).

Proof. Let us construct an MDP with deterministic transition; more precisely, for each (s,a,h),
there is some s ′ such that Ps,a,h,s ′ = 1 and Ps,a,h,s ′′ = 0 for any s ′′ � s ′. The reward function is also
chosen to be deterministic. In this case, it is easy to verify that var1 = var2 = 0.
We orst assume S = 2. For any action a and horizon h, we set Ps2,a,h = es2 and rh(s2,a) = 0. For

any action a � a� and h, we also set Ps1,a,h = es2 and rh(s2,a) = 0. At last, we set Ps1,a�,h = es1 and
rh(s1,a�) = 1. In other words, there are a dumb state and a normal state in each step. The learner
would naturally hope to ond the correct action to avoid the dumb state. Obviously,V�

1 (s1) = H . To

ond an H
2 -optimal policy, the learner needs to identify a� for the orst H

2 steps, requiring at least
Ω(HA) rounds in expectation. As a result, the minimax regret is at least Ω(KH ) when K ≤ cHA

for some proper constant c > 0.
Let us refer to the hard instance above as a hard chain. For general S , we can construct d � S

2
hard chains. Let the two states in the ith hard chain be (s1(i), s2(i)). We set the initial distribution
to be the uniform distribution over {s1(i)}di=1. Then V�

1 (s1(i)) = H holds for any 1 ≤ i ≤ d . Let
Regreti (K) be the expected regret resulting from the ith hard chain. When K ≥ 100S , Lemma A.3

tells us that with probability at least 1
2 , s1(i) is visited for at least K

10S ≥ 10 times. As a result, we
have

Regreti (K) ≥
1

2
· Ω

(
KH

S

)
.

Summing over i , we see that the total regret is at least
∑d

i=1 Regreti (K) = Ω(KH ). When K < 100S ,

with probability at least 1− (1− 1
S
)K ≥ 0.0001K

S
, we know that s1(i) is visited for at least one time.

Therefore, it holds that Regreti (K) ≥ Ω(KH
S
). Summing over i , we obtain

Regret(K) =
K∑
i=1

Regreti (K) = Ω(KH )

as claimed. �
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