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SUMMARY

Covariate adjustment can improve precision in analysing randomized experiments. With fully
observed data, regression adjustment and propensity score weighting are asymptotically equivalent
in improving efficiency over unadjusted analysis. When some outcomes are missing, we consider
combining these two adjustment methods with the inverse probability of observation weighting for
handling missing outcomes, and show that the equivalence between the two methods breaks down.
Regression adjustment no longer ensures efficiency gain over unadjusted analysis unless the true out-
come model is linear in covariates or the outcomes are missing completely at random. Propensity
score weighting, in contrast, still guarantees efficiency over unadjusted analysis, and including more
covariates in adjustment never harms asymptotic efficiency. Moreover, we establish the value of using
partially observed covariates to secure additional efficiency by the missingness indicator method,
which imputes all missing covariates by zero and uses the union of the completed covariates and cor-
responding missingness indicators as the new, fully observed covariates. Based on these findings, we
recommend using regression adjustment in combination with the missingness indicator method if the
linear outcome model or missing-completely-at-random assumption is plausible and using propensity
score weighting with the missingness indicator method otherwise.

Some key words: Inverse probability weighting; Missingness indicator; Propensity score; Regression adjustment.

1. COVARIATE ADJUSTMENT IN RANDOMIZED EXPERIMENTS: A REVIEW AND OPEN QUESTIONS

Adjusting for chance imbalance in covariates can improve precision in analysing randomized
experiments (Fisher, 1935; Lin, 2013). Consider a randomized controlled trial with two treatment
levels of interest, indexed by z = 1 for treatment and O for control, and a study population of N
units, indexed by i = 1,...,N. Let x; € R’, Z; € {1,0} and Y; € R denote the baseline covariates,
treatment assignment and outcome of unit i. Let Y;(1) € R and Y;(0) € R denote the potential
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Table 1. A summary of {Tunadj, Treg, Tps} When all data are observed (column 3) and when out-

comes are partially missing (column 4). Let x; = x; — X denote the centred covariates, where

x=N"1 Zfil x;. Let p; denote the estimated probability of Y; being observed given (x;, Z;),

and let ;i = Z;/e; + (1 — Z;) /(1 — ;) denote the inverse of the estimated probability of the
treatment received for unit i with e; as the estimated propensity score

Regression specification Weightoveri=1,...,n Weight over {i: RY =1}
Funadi In(Y; ~ 1+ 2Z) 1 pr!
Trea (Y ~ 1+ Zi + X+ Zix) 1 it
T Im(Y; ~ 1+ Z) A P

outcomes of unit i under treatment and control, respectively, with Y; = Z;Y;(1) + (1 — Z;) Y;(0).
Assume throughout that the N units are an independent and identically distributed sample from
some population and that the treatment levels are assigned independently across units with constant
treatment probability pr(Z; = 1) = e € (0, 1). Define 7; = Y;(1) — Y;(0) as the individual treatment
effect for unit i and T = E(t;) = E{Y;(1)} — E{Y;(0)} as the average treatment effect of interest. We
first review below three estimators of t when (Y}, x;, Z;) are fully observed.

A simple unbiased estimator of t is the difference in means of the outcomes between the two treat-
ment groups, commonly referred to as the unadjusted estimator and denoted ynag;. It is numerically
equal to the coefficient of Z; from the ordinary-least-squares fit of the unadjusted regression of Y; on
(1, Z;), denoted 1m(Y; ~ 1 + Z;) under the R convention.

Regression adjustment and propensity score weighting are two ways to adjust for chance imbal-
ances in covariates. First, the interacted regression 1m{Y; ~ 1 4+ Z; + (x; — X) + Z;(x; — X)},
where X = N~! Zfil X;, gives a covariate-adjusted variant of the unadjusted regression (Tsiatis et al.,
2008; Lin, 2013; Negi & Wooldridge, 2021). The ordinary-least-squares coefficient of Z; defines a
regression-adjusted estimator of 7, denoted 7.

Next, let ¢; = pr(Z; = 1 | x;) denote the propensity score of unit i (Rosenbaum & Rubin, 1983).
The propensity score weighting approach to covariate adjustment weights observations by functions
of an estimate of ¢; (Williamson et al., 2014). In our setting, ¢; is known and equals e for all units.
Nevertheless, standard results suggest that we can still estimate e; using a working model as a means to
improve efficiency; see, e.g., Hahn (1998), Hirano et al. (2003) and Shen et al. (2014). Specifically, let
¢; be the maximum likelihood estimate of ¢; based on the logistic regression of Z; on (1, x;), denoted
glm(Z; ~ | + x;) under the R convention. We can estimate t by the coefficient of Z; from the
weighted-least-squares fit of the unadjusted regression 1m(Y; ~ 1 + Z;), where we weight unit i by
e'if Z; = 1and by (1 — &)~ if Z; = 0, summarized as 7, = Z;/&; + (1 — Z;) /(1 — &;). We denote the
resulting estimator by 7,5, where subscript ps stands for propensity score weighting. Other propensity
score weights such as overlap weighting can also be used (Zeng et al., 2021).

The {Tunadj> Tres- Tps} together define three regression estimators of ¢ with fully observed data,
summarized in the first three columns of Table 1. Under mild regularity conditions, they are all
consistent and asymptotically normal (Tsiatis et al., 2008; Lin, 2013; Williamson et al., 2014; Negi
& Wooldridge, 2021), with 7, and 7, being asymptotically equivalent in improving precision over
Tunadj (Shen et al., 2014; Zeng et al., 2021); see Theorem S1 in the Supplementary Material.

Missing data are common in practice and pose challenges to inference. Assuming missingness
only in covariates, Zhao & Ding (2024) proposed using the interacted regression with missingness
indicators for covariates included as additional covariates, and showed that the resulting inference
guarantees asymptotic efficiency over unadjusted analysis. Despite the vast literature on missing data
and that on covariate adjustment, there lacks theoretical guidance on covariate adjustment with miss-
ingness in both outcomes and covariates in randomized experiments. Many important questions such
as the following remain open. How do we conduct covariate adjustment in the presence of missing
outcomes? Does the resulting inference ensure consistency and efficiency gain over unadjusted analy-
sis? Does the asymptotic equivalence between regression adjustment and propensity score weighting
still hold? Can the missingness indicator method of Zhao & Ding (2024) be extended to the presence
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of missing outcomes? Chang et al. (2023) discussed some of these issues and proposed an estima-
tor without theoretical investigation. This paper provides theoretical answers to these questions and
proposes two easy-to-implement estimators. We begin with the case of missingness in only outcomes
in §2 and then extend to the case of missingness in both covariates and outcomes in § 3.

2. COVARIATE ADJUSTMENT WITH MISSING OUTCOMES
2.1.  Regression estimators with missing outcomes

We first extend § 1 to the presence of missing outcomes. Assume throughout the rest of the paper
that x; and Z; are fully observed for all units, whereas Y; is missing for some units. Let R} € {1,0} be
the indicator of Y; being observed for unit i, with R} = 1 if Y; is observed and R = 0 otherwise.
Recall from Table 1 that, when all data are observed, Tunadj, Tree and Tps are the coefficients of Z;
from the least-squares fits of the unadjusted regression, the interacted regression and the unadjusted
regression over all units, respectively, with weights 77, unaqj = 1, i, = 1 and m;,s = 7; for unit
i. In the presence of missing outcomes, let p; = pr(RY = 1 | x;, Z;) denote the probability of Y;
being observed given (x;, Z;), and let p; be an estimate of p;. By the inverse probability of observation
weighting (Seaman & White, 2013), we can instead fit the corresponding regression over units with
observed outcomes, indexed by {i: R} = 1}, with weight 7/ = pr'mis (o = unadj, reg, ps) for unit i.
This generalizes {Tunadj, Treg Tps} to the presence of missing outcomes, summarized in the last column
of Table 1. The definitions of the 7, when all data are observed are special cases with RY = 1 and
pi = pi = 1 for all i. We hence use the same notation to denote the generalized estimators with
missing outcomes to highlight the connection. The generalized 7, is a double-weighted estimator,
where we use p; ' and 7; to address missing outcomes and covariate adjustment, respectively (Chang
et al., 2023; Negi, 2024).

2.2. Asymptotic theory

We now establish the asymptotic properties of the generalized {ZTynadj, Tree> Tps}- TO begin with, the
following assumption specifies the outcome missingness mechanism.

Assumption 1. Suppose that

A RYAL{Y(1), Y;(0)} | (xi, Z));

() pi=pr(RY =1|x;,2)={1+exp(=UfB*)}", where U; = U(x;, Z;) is a known vector func-
tion of (x;, Z;) and B* is the unknown parameter, and we construct p; by the logistic regression
glm(RY ~ U)overi=1,...,N.

Assumption 1(i) ensures that R} is independent of Y; conditioning on the fully observed (x;, Z;).
The outcome is hence missing at random in the sense that whether an outcome is missing is indepen-
dent of the value of the outcome conditional on the observables. Assumption 1(ii) further specifies the
functional form of the outcome missingness mechanism. We focus on the logistic missingness model
because of its prevalence in practice. We conjecture that similar results hold for general missingness
models and relegate the formal theory to future research. We use U; to denote the regressor vector in
the true outcome missingness model under Assumption 1(ii). In practice, the true value of U, is often
unknown. Common choices for fitting a working model include U; = (1,x)", U; = (1,x],Z;)" and
U= (1,x", Z,, Zix")".

Theorem 1 below generalizes the theory of covariate adjustment with fully observed data
to the presence of missing outcomes and gives the asymptotic distributions of the generalized
{Tunadj> Tregs Tps)- Let Y, = ¢ 'Yi(1) + (1 — ¢)"'Y;(0), and denote by proj(f’,« | 1,x) = E(Y) +
cov(Y;, x;){cov(x)}~{x; — E(x;)} the linear projection of Y, on (1,x)).

THEOREM 1. Assume complete randomization with Z; 1L {Y;(1), Y;(0), x;} and that Assumption 1

holds. Under standard regularity conditions, as N — 0o, we have \/N(T,—1) — N (0, v,) in distribution
for ¢ = unadj, reg, ps, where
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(1) Vps = Vunadj — 6(1 - 6’) Var{proj(Yi | lsxi)} < Vunadj,
(i) vieg can be either greater or less than vyn.q; depending on the data-generating process. As two
special cases, we have vieg < Vps < Vunadj if

(a) Y; is missing completely at random with p; = p € (0, 1) or
(b) the outcome model E(Y; | x;, Z; = z) = E{Y;(2) | x;} is linear in x; for z =0, 1.

We relegate the explicit expressions of Vyp,dj and vy, to Theorem S1 in the Supplementary Material.
When p; = 1 for all i, the three asymptotic variances reduce to those in the standard theory for
fully observed data with v, = Vps < Vynagi. Theorem 1 has two implications. First, it ensures the
consistency and asymptotic normality of {Zynadj, Tree» Tps) i the presence of missing outcomes. Second,
it clarifies the relative efficiency of {Tunadj, Treg» Tps} and highlights a key deviation from the theory when
all outcomes are observed: regression adjustment by the interacted specification no longer guarantees
efficiency gain in the presence of missing outcomes, but propensity score weighting still does. The
asymptotic equivalence between the two methods for improving precision therefore breaks down.

More specifically, Theorem 1(i) ensures that adjustment by propensity score weighting reduces the
asymptotic variance by e(1 — e) var{proj(¥; | 1, x;)}. This expression does not depend on p; such that
the reduction is the same as the reduction when outcomes are fully observed. Observe that adding
more covariates to x; never reduces the variance of proj(Y; | 1,x;). Adjusting for more covariates
by propensity score weighting hence never hurts the asymptotic efficiency of the resulting 7,;. This
underpins the extension to the case with missingness in both covariates and outcomes in § 3 below.

On the other hand, Theorem 1(ii) suggests that .., does not ensure efficiency gain over the unad-
justed estimator Ty,,qj unless the outcomes are missing completely at random or the true outcome
model is linear in x;. The latter condition echoes the standard result in semiparametric efficiency the-
ory. In particular, Robins et al. (2007) pointed out that 7., can be written as a classic augmented
inverse propensity-score-weighted estimator with a linear outcome model that corresponds to the
interacted regression; see Proposition S2 in the Supplementary Material. Standard theory ensures
that it achieves semiparametric efficiency if both the missingness model and the outcome model are
correctly specified (Tsiatis, 2006).

3. COVARIATE ADJUSTMENT WITH MISSINGNESS IN BOTH COVARIATES AND OUTCOMES
3.1. Overview and recommendation

We now extend to the case of missingness in both covariates and outcomes. Recall that x; € R’ is
the vector of baseline covariates that are fully observed for all units. Assume that, in addition to x;,
we also have K partially observed covariates, denoted by w;, = (W, ...,wig) € R fori =1,...,N.
Of interest is how we may use this additional information to further improve inference.

To this end, we recommend using the missingness indicator method to address missing covariates
(Zhao & Ding, 2024) and then constructing the regression-adjusted and propensity-score-weighted
estimators based on the augmented covariate vectors from the missingness indicator method; see
Algorithm 1 below. We show in §3.2 below that the resulting estimators preserve the theoretical
properties in Theorem 1. Accordingly, we recommend using regression adjustment when the linear
outcome model or missing-completely-at-random assumption is plausible and using propensity score
weighting otherwise. The results combine the theory in §2 on missing outcomes and that of Zhao
& Ding (2024) on missing covariates, and offer a full picture of covariate adjustment with missing
outcomes and covariates.

Let RY = (R}, ..., R}%) € {1,0} represent the missingness in w;, with R}, = 1 if wy is observed
and R}, = 0 if wy is missing. Let W € RX denote an imputed variant of w;, where we impute
all missing elements with zero. Note that w? is in fact the elementwise product, or intuitively the
interaction, between w; and R regardless of the actual values of the missing elements in w;. The
concatenation of (x;, w?, RY), denoted x™™ € R/*?X_ gives the vector of fully observed covariates
under the missingness indicator method, which imputes all missing covariates by zero and augments
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the completed covariates by the corresponding missingness indicators. We use superscript mim to
signify the missingness indicator method.

Observe that x™™ summarizes all observed information in (x;, w;). Renew ¢; = pr(Z; = 1 | x™) =
eand p; = pr(RY = 1 | x™™ Z,) as the propensity score and the probability of having an observed
outcome given x™™. Algorithm 1 below states the procedure for constructing the recommended esti-
mators, denoted 7., (X™™) and 7,(xM™), as variants of 7., and 7, after replacing x; with x™™ as the
new fully observed covariate vector; cf. Table 1.

Algorithm 1. Construction of the recommended estimators with missing outcomes and covari-
ates.

1. Construct x™™ = (x;, w’, R) as the new fully observed covariate vector.

2. Estimate p; from the prespecified outcome missingness model, denoted by p;. When the
outcome missingness model is unknown, compute p; from the logistic regression
glm(RY ~ 1+ x™™ 4 Z, 4 x"mZ) overi =1, ..., N.

3. When the linear outcome model or missing-completely-at-random assumption is
plausible, compute 7., (x™™) as the coefficient of Z; from the weighted-least-squares fit
of the interacted regression 1m{Y; ~ 1 + Z; + (xMim — xmim) 4 Z,(xMim — xmim)}
over {i: RY = 1}, where we weight unit i by p; .

4. Otherwise, estimate ¢; from the logistic regression glm(Z; ~ 1 + xﬁ“im) over
i=1,...,N, denoted by ¢;, and compute Ty, (x?“m) as the coefficient of Z; from the
weighted-least-squares fit of the unadjusted regression 1m(Y; ~ 1 + Z;) over

{i: RY = 1}, where we weight unit i by p;HZijei + (1 — Z) /(1 — &)}.

Despite the apparent oversimplification by imputing all missing covariates with zero in forming
XM the resulting T (X™™) and 7,s(x™™) are invariant over a general class of imputation schemes.
Specifically, consider a covariatewise imputation strategy where, for £k = 1,..., K, we impute all
missing values in the kth partially observed covariate by a common value ¢, € R (Zhao & Ding,
2024). Let ¢ = (cy, ..., cx) represent the imputation scheme. The resulting imputed variant of w;
equals w¢ = (WS, ...,wx)" € RX with w$, = wy if wy is observed and w¢, = ¢, otherwise. This
defines a general class of imputed variants of w; that includes w? as a special case with ¢, = 0 for
all k. Another common choice of ¢ is the average of the observed values in (wy)Y,. Let x™™(¢) =
(x;, WS, RY) € R7*?K denote a variant of x™™ where we use the more general w¢ in place of w?.

PROPOSITION 1. Assume that in Algorithm 1 we replace all x™™ by x™™(¢). The resulting estimators
are invariant to the choice of the imputed values and equal T,e,(x™™) and T, (x™™) for all ¢ € RX.

3.2. Asymptotic justification of the recommended estimators in Algorithm 1

Theorem 2 below states the asymptotic properties of Zreg (X™™) and 7, (x™™) in Algorithm 1. For
comparison, let x{*® be a subvector of x™™, and let 7,s(x3"*) denote a variant of 7,(x™™) with x™™
replaced by x3*° in step 3 of Algorithm 1. A common choice of x$*° is x3"° = x;, where we use only
fully observed covariates in constructing e;.

THEOREM 2. Assume complete randomization with Z; 1L {Y;(1), Y:(0), x;, w;, R} and that Assump-
tion 1 holds with all x; replaced by x™™. Under standard regularity conditions, as N — o0,

(i) Theorem 1 holds with (Tieg, Tps) replaced by {Tcq (ocmimy fps(x?‘im)} and Tynagj renewed based on the
renewed definition of p; from step 2 of Algorithm 1;
(ii) the asymptotic variance of T,s(x3"°) is greater than or equal to that of Tps(x™™).

Other than being independent of Z;, Theorem 2 does not require further assumptions on the
missingness mechanism of w;. Therefore, Theorem 2 holds even if w; is missing not at random, which
departs from the standard literature of missing covariates under the missing-at-random assumption
(Robins et al., 1994).

In addition, the independence between R and Z; ensures that x?‘im = (x;, WY, RY) is effectively a
fully observed pretreatment covariate vector, generalizing x;. Theorem 2 requires that Assumption 1
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Fig. 1. Violin plots over 10* independent replications. (a),(b) Deviations of {Tunadj» Treg> Tps} from  with (a) e = 0.2
and (b) e = 0.5. (c) Deviations of Zypagj (unadj), Tps(x;) (ccov), Tps(x;7) (imp) and Zps(x™M) (mim) from .

holds with all x; replaced by x™™, and thereby ensures that the outcome is missing at random with
RY 1 Y; | (x™m Z,). This is the weakest form of the missing-at-random assumption based on
the observed information in (x;, w;, Z;) (Rosenbaum & Rubin, 1984). An alternative, more standard
form of the missing-at-random assumption is R} 1L Y; | (x;, Z;). This is a more restrictive condition
because it does not allow the missingness in outcomes to depend on the missingness pattern of the
covariates, as represented by R, or the observed values in w;.

Theorem 2(i) ensures that 7,,(x™™) is asymptotically more efficient than fynagj, While Zree (x™™) is
asymptotically more efficient than both Tn.q and 7 (x}“im) when the outcomes are either linear in
covariates or missing completely at random. Theorem 2(ii) ensures that 7,,(x™™) is asymptotically
more efficient than all alternative propensity-score-weighted estimators that use only a subset of x™™
for estimating the propensity score, including Z,s(x;) that uses only x;. Recall that w? is a variant of w;
by imputing all missing covariates by zero. From Theorem 2, this rather basic imputation guarantees
efficiency gain irrespective of the true values of the missing covariates, illustrating the quick wins that
can be achieved by adjusting for partially observed covariates.

As a comparison, the approach reviewed by Seaman & White (2013) only applies inverse probabil-
ity weighting to units with fully observed outcomes and covariates, and requires correct specification
of both the outcome and covariate missingness models. Accordingly, it requires the covariates to
be missing at random. Our proposed method, in contrast, places no restriction on the covariate
missingness mechanism and does not require the specification of the covariate missingness model.

4. SIMULATION AND A REAL-DATA EXAMPLE

4.1. Regression adjustment does not guarantee efficiency gain

We first illustrate the possibly worse precision of 7, in finite samples. Assume missingness in only
outcomes. We generate {x;, Y;(1), Y;(0), Z;, RI}¥ | as independent realizations of x; ~ Un(—10, 10),
Y:(1) = sin(x;), ¥;(0) = —cos(x;), Z; ~ Ber(e) and R’ ~ Ber(p;), where p; = {1 + exp(—1 —
2x;)}~!. Panels (a) and (b) of Fig. I show the distributions of the deviations of {Zunadj Tregs Tps} from
7 over 10000 independent replications at N = 1000 and e = 0.2, 0.5. The regression adjusted 7., has
worse precision than Tyn,qj in both cases. Similar patterns are observed for other choices of potential
outcomes and combinations of N and e; we omit the results to avoid repetition.

4.2, Efficiency gain by propensity score weighting

We next illustrate the efficiency gain by propensity score weighting, along with the benefits of
adjusting for partially observed covariates. Consider a treatment-control experiment with N = 500
units and treatment probability e = 0.2. Let (§;)Y, be independent Ber(0.4) to divide the units into
two latent classes. Assume that we have J = 1 fully observed covariates x; ~ N'(§;, 1) and K = 9 par-
tially observed covariates w; = (w;y, ..., wix)" ~ N (&lg, Ix). We generate the missingness indicators
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Table 2. Point estimates and estimated variances of the unadjusted, regression-adjusted and
propensity-score-weighted estimators based on x; and xm‘m, respectively. The variances are

estimated by the bootstrap over 10* independent replications

funadj (x;jnim) Tleg (Xmlm) Tps (Xmlm) funadj (xi) freg (x:) fps (xi)
Point estimate —7.03 —6.07 —5.47 —4.78 —4.66 —4.60
Estimated variance 6.26 7.50 4.72 5.69 5.85 5.63

and potential outcomes as R}, ~ Ber{0.5;+0.95(1 — &)} fork = 1,...,K, R" ~ Ber(p,), wherep, =
{I1+exp(—1—2x)}"", and Y;(z) ~ N{u:(2), 1}, where u;(z) = 3§ + (x, + Y e Wi Ve + 3 Zk Ry
with (yi1, yon) = (1, =1) and (y1)0, Yo0) = (0.5, —0.5). The data-generating process ensures that the
covariates are missing not at random with units with & = 1 having both a higher chance of missing
covariates and on average greater values of covariates.

Let 7,5(x;) denote a variant of 7,s(x™™) where we use only the fully observed x; in constructing
éi. Let 7,5(x;™) denote a variant of 7,,(x™™) where we use only the union of x; and w? in construct-
ing &;. Figure 1(c) shows the distributions of the deviations of Tunadj, Tps(Xi), Tps(Xi *) and Tps(xMm)
from t over 10000 independent replications. The results are coherent with the asymptotic theory in
Theorem 2, with Z,(x™™) being the most precise.

4.3. A real-data example

We now apply the proposed method to the Best Apnea Interventions for Research trial of Bakker
et al. (2016). A total of 169 patients were recruited and randomized with equal probability to active
treatment and control. One outcome of interest is the 24-h systolic blood pressure measured at six
months, which is missing for 45 patients.

As an illustration, we consider four baseline covariates, namely, age, gender, baseline apnea-
hypopnea index and baseline diastolic blood pressure, for estimating the outcome missingness model
and covariate adjustment. The first three covariates are fully observed, and the last covariate is missing
for eight patients. Table 2 summarizes the point estimates and estimated variances of the unadjusted,
regression-adjusted and propensity-score-weighted estimators based on the fully observed covariates
and the augmented covariates under the missingness indicator method, respectively. The variances
are estimated by the bootstrap over 10000 independent replications. The results are coherent with
the asymptotic theory, with the combination of propensity score weighting and missingness indi-
cator method (,,(x™™)) resulting in the smallest bootstrap variance. The two regression-adjusted
estimators e, (x™™) and T.(x;), on the other hand, have higher bootstrap variances than their
respective unadjusted counterparts Zypagi (xX™™) and Tynagi(X;), illustrating the possible loss in precision
by regression adjustment.

5. FURTHER DISCUSSION ON THE ROLE OF THE OUTCOME MODEL

Theorems 1 and 2 assume that the missingness model for the outcome is correctly specified. When
this assumption fails, 7, is inconsistent, while 7,., remains consistent if the linear outcome model is
correct. The use of the outcome model ensures this double robustness property of T,,; see Propo-
sition S2 in the Supplementary Material. Analogously, we can also augment 7, with the outcome
model:

) I ¢ R Zi . . 14T, RV-Z
Tpsreg = Z |:m1(x,) 1= ‘)}i| N Z |:m0(xi) [A)l. [—o ™ ’)}:|

p, i=1

with /. (x;), z = 0, 1, the estimated outcome model. The augmented estimator Ty, is doubly robust
in that it is consistent if either the outcome model or the outcome missingness model is correct.
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As a special case, we can construct T, as the coefficient of Z; from the weighted-least-squares
fit of the interacted regression over {i: R} = 1} with weight p;'#; for unit i. The corresponding
m.(x;), z = 0, 1, equals the estimated outcome model from the same weighted-least-squares fit; see
Proposition S3 in the Supplementary Material. This integrates the regression adjustment and the
propensity score weighting in the last two rows of Table 1.
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