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SUMMARY

Covariate adjustment can improve precision in analysing randomized experiments. With fully

observed data, regression adjustment and propensity score weighting are asymptotically equivalent

in improving efociency over unadjusted analysis. When some outcomes are missing, we consider

combining these two adjustment methods with the inverse probability of observation weighting for

handling missing outcomes, and show that the equivalence between the two methods breaks down.

Regression adjustment no longer ensures efociency gain over unadjusted analysis unless the true out-

come model is linear in covariates or the outcomes are missing completely at random. Propensity

score weighting, in contrast, still guarantees efociency over unadjusted analysis, and including more

covariates in adjustment never harms asymptotic efociency.Moreover, we establish the value of using

partially observed covariates to secure additional efociency by the missingness indicator method,

which imputes all missing covariates by zero and uses the union of the completed covariates and cor-

responding missingness indicators as the new, fully observed covariates. Based on these ondings, we

recommend using regression adjustment in combination with the missingness indicator method if the

linear outcomemodel ormissing-completely-at-randomassumption is plausible and using propensity

score weighting with the missingness indicator method otherwise.

Some key words: Inverse probability weighting; Missingness indicator; Propensity score; Regression adjustment.

1. Covariate adjustment in randomized experiments: a review and open questions

Adjusting for chance imbalance in covariates can improve precision in analysing randomized

experiments (Fisher, 1935; Lin, 2013). Consider a randomized controlled trial with two treatment

levels of interest, indexed by z = 1 for treatment and 0 for control, and a study population of N

units, indexed by i = 1,…,N. Let xi ∈ R
J , Zi ∈ {1, 0} and Yi ∈ R denote the baseline covariates,

treatment assignment and outcome of unit i. Let Yi(1) ∈ R and Yi(0) ∈ R denote the potential
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Table 1. A summary of {τ̂unadj, τ̂reg, τ̂ps} when all data are observed (column 3) and when out-
comes are partially missing (column 4). Let x′

i = xi − x̄ denote the centred covariates, where

x̄ = N−1
∑N

i=1 xi. Let p̂i denote the estimated probability of Yi being observed given (xi,Zi),

and let π̂i = Zi/êi + (1 − Zi)/(1 − êi) denote the inverse of the estimated probability of the

treatment received for unit i with êi as the estimated propensity score

Regression speciocation Weight over i = 1,…, n Weight over {i : RY
i = 1}

τ̂unadj lm(Yi ∼ 1 + Zi) 1 p̂−1
i

τ̂reg lm(Yi ∼ 1 + Zi + x′
i + Zix

′
i) 1 p̂−1

i

τ̂ps lm(Yi ∼ 1 + Zi) π̂i p̂−1
i π̂i

outcomes of unit i under treatment and control, respectively, with Yi = ZiYi(1) + (1 − Zi)Yi(0).

Assume throughout that the N units are an independent and identically distributed sample from

some population and that the treatment levels are assigned independently across units with constant

treatment probability pr(Zi = 1) = e ∈ (0, 1). Deone τi = Yi(1) − Yi(0) as the individual treatment

effect for unit i and τ = E(τi) = E{Yi(1)} − E{Yi(0)} as the average treatment effect of interest. We

orst review below three estimators of τ when (Yi, xi,Zi) are fully observed.

A simple unbiased estimator of τ is the difference in means of the outcomes between the two treat-

ment groups, commonly referred to as the unadjusted estimator and denoted τ̂unadj. It is numerically

equal to the coefocient of Zi from the ordinary-least-squares ot of the unadjusted regression of Yi on

(1,Zi), denoted lm(Yi ∼ 1 + Zi) under the R convention.

Regression adjustment and propensity score weighting are two ways to adjust for chance imbal-

ances in covariates. First, the interacted regression lm{Yi ∼ 1 + Zi + (xi − x̄) + Zi(xi − x̄)},
where x̄ = N−1

∑N

i=1 xi, gives a covariate-adjusted variant of the unadjusted regression (Tsiatis et al.,

2008; Lin, 2013; Negi & Wooldridge, 2021). The ordinary-least-squares coefocient of Zi deones a

regression-adjusted estimator of τ , denoted τ̂reg.

Next, let ei = pr(Zi = 1 | xi) denote the propensity score of unit i (Rosenbaum & Rubin, 1983).

The propensity score weighting approach to covariate adjustment weights observations by functions

of an estimate of ei (Williamson et al., 2014). In our setting, ei is known and equals e for all units.

Nevertheless, standard results suggest that we can still estimate ei using aworkingmodel as ameans to

improve efociency; see, e.g., Hahn (1998), Hirano et al. (2003) and Shen et al. (2014). Speciocally, let

êi be the maximum likelihood estimate of ei based on the logistic regression of Zi on (1, xi), denoted

glm(Zi ∼ 1 + xi) under the R convention. We can estimate τ by the coefocient of Zi from the

weighted-least-squares ot of the unadjusted regression lm(Yi ∼ 1 + Zi), where we weight unit i by

ê−1
i if Zi = 1 and by (1− êi)

−1 if Zi = 0, summarized as π̂i = Zi/êi + (1−Zi)/(1− êi). We denote the

resulting estimator by τ̂ps, where subscript ps stands for propensity score weighting. Other propensity

score weights such as overlap weighting can also be used (Zeng et al., 2021).

The {τ̂unadj, τ̂reg, τ̂ps} together deone three regression estimators of τ with fully observed data,

summarized in the orst three columns of Table 1. Under mild regularity conditions, they are all

consistent and asymptotically normal (Tsiatis et al., 2008; Lin, 2013; Williamson et al., 2014; Negi

& Wooldridge, 2021), with τ̂reg and τ̂ps being asymptotically equivalent in improving precision over

τ̂unadj (Shen et al., 2014; Zeng et al., 2021); see Theorem S1 in the Supplementary Material.

Missing data are common in practice and pose challenges to inference. Assuming missingness

only in covariates, Zhao & Ding (2024) proposed using the interacted regression with missingness

indicators for covariates included as additional covariates, and showed that the resulting inference

guarantees asymptotic efociency over unadjusted analysis. Despite the vast literature on missing data

and that on covariate adjustment, there lacks theoretical guidance on covariate adjustment withmiss-

ingness in both outcomes and covariates in randomized experiments.Many important questions such

as the following remain open. How do we conduct covariate adjustment in the presence of missing

outcomes? Does the resulting inference ensure consistency and efociency gain over unadjusted analy-

sis? Does the asymptotic equivalence between regression adjustment and propensity score weighting

still hold? Can the missingness indicator method of Zhao & Ding (2024) be extended to the presence
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of missing outcomes? Chang et al. (2023) discussed some of these issues and proposed an estima-

tor without theoretical investigation. This paper provides theoretical answers to these questions and

proposes two easy-to-implement estimators. We begin with the case of missingness in only outcomes

in § 2 and then extend to the case of missingness in both covariates and outcomes in § 3.

2. Covariate adjustment with missing outcomes

2.1. Regression estimators with missing outcomes

We orst extend § 1 to the presence of missing outcomes. Assume throughout the rest of the paper

that xi and Zi are fully observed for all units, whereas Yi is missing for some units. Let RY
i ∈ {1, 0} be

the indicator of Yi being observed for unit i, with RY
i = 1 if Yi is observed and RY

i = 0 otherwise.

Recall from Table 1 that, when all data are observed, τ̂unadj, τ̂reg and τ̂ps are the coefocients of Zi

from the least-squares ots of the unadjusted regression, the interacted regression and the unadjusted

regression over all units, respectively, with weights πi,unadj = 1, πi,reg = 1 and πi,ps = π̂i for unit

i. In the presence of missing outcomes, let pi = pr(RY
i = 1 | xi,Zi) denote the probability of Yi

being observed given (xi,Zi), and let p̂i be an estimate of pi. By the inverse probability of observation

weighting (Seaman & White, 2013), we can instead ot the corresponding regression over units with

observed outcomes, indexed by {i : RY
i = 1}, with weight π ′

i,� = p̂−1
i πi,� (� = unadj, reg, ps) for unit i.

This generalizes {τ̂unadj, τ̂reg, τ̂ps} to the presence of missing outcomes, summarized in the last column

of Table 1. The deonitions of the τ̂� when all data are observed are special cases with RY
i = 1 and

p̂i = pi = 1 for all i. We hence use the same notation to denote the generalized estimators with

missing outcomes to highlight the connection. The generalized τ̂ps is a double-weighted estimator,

where we use p̂−1
i and π̂i to address missing outcomes and covariate adjustment, respectively (Chang

et al., 2023; Negi, 2024).

2.2. Asymptotic theory

We now establish the asymptotic properties of the generalized {τ̂unadj, τ̂reg, τ̂ps}. To begin with, the

following assumption specioes the outcome missingness mechanism.

Assumption 1. Suppose that

(i) RY
i ⊥⊥ {Yi(1),Yi(0)} | (xi,Zi);

(ii) pi = pr(RY
i = 1 | xi,Zi) = {1 + exp(−UT

i β∗)}−1, where Ui = U(xi,Zi) is a known vector func-

tion of (xi,Zi) and β∗ is the unknown parameter, and we construct p̂i by the logistic regression

glm(RY
i ∼ Ui) over i = 1,…,N.

Assumption 1(i) ensures that RY
i is independent of Yi conditioning on the fully observed (xi,Zi).

The outcome is hence missing at random in the sense that whether an outcome is missing is indepen-

dent of the value of the outcome conditional on the observables. Assumption 1(ii) further specioes the

functional form of the outcome missingness mechanism. We focus on the logistic missingness model

because of its prevalence in practice. We conjecture that similar results hold for general missingness

models and relegate the formal theory to future research. We useUi to denote the regressor vector in

the true outcome missingness model under Assumption 1(ii). In practice, the true value of Ui is often

unknown. Common choices for otting a working model include Ui = (1, xT
i )

T, Ui = (1, xT
i ,Zi)

T and

Ui = (1, xT
i ,Zi,Zix

T
i )

T.

Theorem 1 below generalizes the theory of covariate adjustment with fully observed data

to the presence of missing outcomes and gives the asymptotic distributions of the generalized

{τ̂unadj, τ̂reg, τ̂ps}. Let Ỹi = e−1Yi(1) + (1 − e)−1Yi(0), and denote by proj(Ỹi | 1, xi) = E(Ỹi) +
cov(Ỹi, xi){cov(xi)}−1{xi − E(xi)} the linear projection of Ỹi on (1, xi).

THEOREM 1. Assume complete randomization with Zi ⊥⊥ {Yi(1),Yi(0), xi} and that Assumption 1
holds. Under standard regularity conditions, as N → ∞, we have

√
N(τ̂�−τ) → N (0, v�) in distribution

for � = unadj, reg, ps, where
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(i) vps = vunadj − e(1 − e) var{proj(Ỹi | 1, xi)} � vunadj;

(ii) vreg can be either greater or less than vunadj depending on the data-generating process. As two

special cases, we have vreg � vps � vunadj if

(a) Yi is missing completely at random with pi = p ∈ (0, 1) or

(b) the outcome model E(Yi | xi, Zi = z) = E{Yi(z) | xi} is linear in xi for z = 0, 1.

We relegate the explicit expressions of vunadj and vreg to Theorem S1 in the SupplementaryMaterial.

When pi = 1 for all i, the three asymptotic variances reduce to those in the standard theory for

fully observed data with vreg = vps � vunadj. Theorem 1 has two implications. First, it ensures the

consistency and asymptotic normality of {τ̂unadj, τ̂reg, τ̂ps} in the presence of missing outcomes. Second,

it clarioes the relative efociency of {τ̂unadj, τ̂reg, τ̂ps} and highlights a key deviation from the theory when

all outcomes are observed: regression adjustment by the interacted speciocation no longer guarantees

efociency gain in the presence of missing outcomes, but propensity score weighting still does. The

asymptotic equivalence between the two methods for improving precision therefore breaks down.

More speciocally, Theorem 1(i) ensures that adjustment by propensity score weighting reduces the

asymptotic variance by e(1− e) var{proj(Ỹi | 1, xi)}. This expression does not depend on pi such that

the reduction is the same as the reduction when outcomes are fully observed. Observe that adding

more covariates to xi never reduces the variance of proj(Ỹi | 1, xi). Adjusting for more covariates

by propensity score weighting hence never hurts the asymptotic efociency of the resulting τ̂ps. This

underpins the extension to the case with missingness in both covariates and outcomes in § 3 below.

On the other hand, Theorem 1(ii) suggests that τ̂reg does not ensure efociency gain over the unad-

justed estimator τ̂unadj unless the outcomes are missing completely at random or the true outcome

model is linear in xi. The latter condition echoes the standard result in semiparametric efociency the-

ory. In particular, Robins et al. (2007) pointed out that τ̂reg can be written as a classic augmented

inverse propensity-score-weighted estimator with a linear outcome model that corresponds to the

interacted regression; see Proposition S2 in the Supplementary Material. Standard theory ensures

that it achieves semiparametric efociency if both the missingness model and the outcome model are

correctly specioed (Tsiatis, 2006).

3. Covariate adjustment with missingness in both covariates and outcomes

3.1. Overview and recommendation

We now extend to the case of missingness in both covariates and outcomes. Recall that xi ∈ R
J is

the vector of baseline covariates that are fully observed for all units. Assume that, in addition to xi,

we also have K partially observed covariates, denoted by wi = (wi1,…,wiK) ∈ R
K for i = 1,…,N.

Of interest is how we may use this additional information to further improve inference.

To this end, we recommend using the missingness indicator method to address missing covariates

(Zhao & Ding, 2024) and then constructing the regression-adjusted and propensity-score-weighted

estimators based on the augmented covariate vectors from the missingness indicator method; see

Algorithm 1 below. We show in § 3.2 below that the resulting estimators preserve the theoretical

properties in Theorem 1. Accordingly, we recommend using regression adjustment when the linear

outcomemodel or missing-completely-at-random assumption is plausible and using propensity score

weighting otherwise. The results combine the theory in § 2 on missing outcomes and that of Zhao

& Ding (2024) on missing covariates, and offer a full picture of covariate adjustment with missing

outcomes and covariates.

Let Rw
i = (Rw

i1,…,Rw
iK) ∈ {1, 0}K represent the missingness in wi, with R

w
ik = 1 if wik is observed

and Rw
ik = 0 if wik is missing. Let w0

i ∈ R
K denote an imputed variant of wi, where we impute

all missing elements with zero. Note that w0
i is in fact the elementwise product, or intuitively the

interaction, between wi and Rw
i regardless of the actual values of the missing elements in wi. The

concatenation of (xi,w
0
i ,R

w
i ), denoted x

mim
i ∈ R

J+2K , gives the vector of fully observed covariates

under the missingness indicator method, which imputes all missing covariates by zero and augments
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the completed covariates by the corresponding missingness indicators. We use superscript mim to

signify the missingness indicator method.

Observe that xmim
i summarizes all observed information in (xi,wi). Renew ei = pr(Zi = 1 | xmim

i ) =
e and pi = pr(RY

i = 1 | xmim
i ,Zi) as the propensity score and the probability of having an observed

outcome given xmim
i . Algorithm 1 below states the procedure for constructing the recommended esti-

mators, denoted τ̂reg(x
mim
i ) and τ̂ps(x

mim
i ), as variants of τ̂reg and τ̂ps after replacing xi with x

mim
i as the

new fully observed covariate vector; cf. Table 1.

Algorithm 1. Construction of the recommended estimators with missing outcomes and covari-

ates.

1. Construct xmim
i = (xi,w

0
i ,R

w
i ) as the new fully observed covariate vector.

2. Estimate pi from the prespecioed outcome missingness model, denoted by p̂i. When the

outcome missingness model is unknown, compute p̂i from the logistic regression

glm(RY
i ∼ 1 + xmim

i + Zi + xmim
i Zi) over i = 1,…,N.

3. When the linear outcome model or missing-completely-at-random assumption is

plausible, compute τ̂reg(x
mim
i ) as the coefocient of Zi from the weighted-least-squares ot

of the interacted regression lm{Yi ∼ 1 + Zi + (xmim
i − x̄mim) + Zi(x

mim
i − x̄mim)}

over {i : RY
i = 1}, where we weight unit i by p̂−1

i .

4. Otherwise, estimate ei from the logistic regression glm(Zi ∼ 1 + xmim
i ) over

i = 1,…,N, denoted by êi, and compute τ̂ps(x
mim
i ) as the coefocient of Zi from the

weighted-least-squares ot of the unadjusted regression lm(Yi ∼ 1 + Zi) over

{i : RY
i = 1}, where we weight unit i by p̂−1

i {Zi/êi + (1 − Zi)/(1 − êi)}.

Despite the apparent oversimpliocation by imputing all missing covariates with zero in forming

xmim
i , the resulting τ̂reg(x

mim
i ) and τ̂ps(x

mim
i ) are invariant over a general class of imputation schemes.

Speciocally, consider a covariatewise imputation strategy where, for k = 1,…,K , we impute all

missing values in the kth partially observed covariate by a common value ck ∈ R (Zhao & Ding,

2024). Let c = (c1,…, cK) represent the imputation scheme. The resulting imputed variant of wi

equals wc
i = (wc

i1,…,wc
iK)T ∈ R

K with wc
ik = wik if wik is observed and wc

ik = ck otherwise. This

deones a general class of imputed variants of wi that includes w
0
i as a special case with ck = 0 for

all k. Another common choice of ck is the average of the observed values in (wik)
N
i=1. Let x

mim
i (c) =

(xi,w
c
i ,R

w
i ) ∈ R

J+2K denote a variant of xmim
i where we use the more general wc

i in place of w0
i .

PROPOSITION 1. Assume that in Algorithm 1 we replace all xmim
i by xmim

i (c). The resulting estimators

are invariant to the choice of the imputed values and equal τ̂reg(x
mim
i ) and τ̂ps(x

mim
i ) for all c ∈ R

K .

3.2. Asymptotic justiocation of the recommended estimators in Algorithm 1

Theorem 2 below states the asymptotic properties of τ̂reg(x
mim
i ) and τ̂ps(x

mim
i ) in Algorithm 1. For

comparison, let xsubi be a subvector of xmim
i , and let τ̂ps(x

sub
i ) denote a variant of τ̂ps(x

mim
i ) with xmim

i

replaced by xsubi in step 3 of Algorithm 1. A common choice of xsubi is xsubi = xi, where we use only

fully observed covariates in constructing êi.

THEOREM 2. Assume complete randomization with Zi ⊥⊥ {Yi(1),Yi(0), xi,wi,R
w
i } and that Assump-

tion 1 holds with all xi replaced by x
mim
i . Under standard regularity conditions, as N → ∞,

(i) Theorem 1 holds with (τ̂reg, τ̂ps) replaced by {τ̂reg(xmim
i ), τ̂ps(x

mim
i )} and τ̂unadj renewed based on the

renewed deonition of p̂i from step 2 of Algorithm 1;

(ii) the asymptotic variance of τ̂ps(x
sub
i ) is greater than or equal to that of τ̂ps(x

mim
i ).

Other than being independent of Zi, Theorem 2 does not require further assumptions on the

missingness mechanism of wi. Therefore, Theorem 2 holds even if wi is missing not at random, which

departs from the standard literature of missing covariates under the missing-at-random assumption

(Robins et al., 1994).

In addition, the independence between Rw
i and Zi ensures that x

mim
i = (xi,w

0
i ,R

w
i ) is effectively a

fully observed pretreatment covariate vector, generalizing xi. Theorem 2 requires that Assumption 1
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Fig. 1. Violinplotsover104 independent replications. (a),(b)Deviationsof {τ̂unadj, τ̂reg, τ̂ps} from τ with (a) e = 0.2

and (b) e = 0.5. (c) Deviations of τ̂unadj (unadj), τ̂ps(xi) (ccov), τ̂ps(x
imp
i ) (imp) and τ̂ps(x

mim
i ) (mim) from τ .

holds with all xi replaced by xmim
i , and thereby ensures that the outcome is missing at random with

RY
i ⊥⊥ Yi | (xmim

i ,Zi). This is the weakest form of the missing-at-random assumption based on

the observed information in (xi,wi,Zi) (Rosenbaum & Rubin, 1984). An alternative, more standard

form of the missing-at-random assumption is RY
i ⊥⊥Yi | (xi,Zi). This is a more restrictive condition

because it does not allow the missingness in outcomes to depend on the missingness pattern of the

covariates, as represented by Rw
i , or the observed values in wi.

Theorem 2(i) ensures that τ̂ps(x
mim
i ) is asymptotically more efocient than τ̂unadj, while τ̂reg(x

mim
i ) is

asymptotically more efocient than both τ̂unadj and τ̂ps(x
mim
i ) when the outcomes are either linear in

covariates or missing completely at random. Theorem 2(ii) ensures that τ̂ps(x
mim
i ) is asymptotically

more efocient than all alternative propensity-score-weighted estimators that use only a subset of xmim
i

for estimating the propensity score, including τ̂ps(xi) that uses only xi. Recall that w
0
i is a variant of wi

by imputing all missing covariates by zero. From Theorem 2, this rather basic imputation guarantees

efociency gain irrespective of the true values of the missing covariates, illustrating the quick wins that

can be achieved by adjusting for partially observed covariates.

As a comparison, the approach reviewed by Seaman &White (2013) only applies inverse probabil-

ity weighting to units with fully observed outcomes and covariates, and requires correct speciocation

of both the outcome and covariate missingness models. Accordingly, it requires the covariates to

be missing at random. Our proposed method, in contrast, places no restriction on the covariate

missingness mechanism and does not require the speciocation of the covariate missingness model.

4. Simulation and a real-data example

4.1. Regression adjustment does not guarantee efociency gain

We orst illustrate the possibly worse precision of τ̂reg in onite samples. Assume missingness in only

outcomes. We generate {xi,Yi(1),Yi(0),Zi,R
Y
i }Ni=1 as independent realizations of xi ∼ Un(−10, 10),

Yi(1) = sin(xi), Yi(0) = − cos(xi), Zi ∼ Ber(e) and RY
i ∼ Ber(pi), where pi = {1 + exp(−1 −

2xi)}−1. Panels (a) and (b) of Fig. 1 show the distributions of the deviations of {τ̂unadj, τ̂reg, τ̂ps} from
τ over 10 000 independent replications atN = 1000 and e = 0.2, 0.5. The regression adjusted τ̂reg has

worse precision than τ̂unadj in both cases. Similar patterns are observed for other choices of potential

outcomes and combinations of N and e; we omit the results to avoid repetition.

4.2. Efociency gain by propensity score weighting

We next illustrate the efociency gain by propensity score weighting, along with the beneots of

adjusting for partially observed covariates. Consider a treatment-control experiment with N = 500

units and treatment probability e = 0.2. Let (ξi)
N
i=1 be independent Ber(0.4) to divide the units into

two latent classes. Assume that we have J = 1 fully observed covariates xi ∼ N (ξi, 1) and K = 9 par-

tially observed covariates wi = (wi1,…,wiK)T ∼ N (ξi1K , IK). We generate the missingness indicators
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Table 2. Point estimates and estimated variances of the unadjusted, regression-adjusted and

propensity-score-weighted estimators based on xi and x
mim
i , respectively. The variances are

estimated by the bootstrap over 104 independent replications

τ̂unadj(x
mim
i ) τ̂reg(x

mim
i ) τ̂ps(x

mim
i ) τ̂unadj(xi) τ̂reg(xi) τ̂ps(xi)

Point estimate −7.03 −6.07 −5.47 −4.78 −4.66 −4.60

Estimated variance 6.26 7.50 4.72 5.69 5.85 5.63

and potential outcomes as Rw
ik ∼ Ber{0.5ξi + 0.95(1− ξi)} for k = 1,…,K , RY

i ∼ Ber(pi), where pi =
{1+exp(−1−2xi)}−1, andYi(z) ∼ N {µi(z), 1}, whereµi(z) = 3ξi + (xi +

∑K

k=1 wik)γz|ξi + 3
∑K

k=1 R
w
ik

with (γ1|1, γ0|1) = (1,−1) and (γ1|0, γ0|0) = (0.5,−0.5). The data-generating process ensures that the

covariates are missing not at random with units with ξi = 1 having both a higher chance of missing

covariates and on average greater values of covariates.

Let τ̂ps(xi) denote a variant of τ̂ps(x
mim
i ) where we use only the fully observed xi in constructing

êi. Let τ̂ps(x
imp
i ) denote a variant of τ̂ps(x

mim
i ) where we use only the union of xi and w

0
i in construct-

ing êi. Figure 1(c) shows the distributions of the deviations of τ̂unadj, τ̂ps(xi), τ̂ps(x
imp
i ) and τ̂ps(x

mim
i )

from τ over 10 000 independent replications. The results are coherent with the asymptotic theory in

Theorem 2, with τ̂ps(x
mim
i ) being the most precise.

4.3. A real-data example

We now apply the proposed method to the Best Apnea Interventions for Research trial of Bakker

et al. (2016). A total of 169 patients were recruited and randomized with equal probability to active

treatment and control. One outcome of interest is the 24-h systolic blood pressure measured at six

months, which is missing for 45 patients.

As an illustration, we consider four baseline covariates, namely, age, gender, baseline apnea-

hypopnea index and baseline diastolic blood pressure, for estimating the outcome missingness model

and covariate adjustment. The orst three covariates are fully observed, and the last covariate ismissing

for eight patients. Table 2 summarizes the point estimates and estimated variances of the unadjusted,

regression-adjusted and propensity-score-weighted estimators based on the fully observed covariates

and the augmented covariates under the missingness indicator method, respectively. The variances

are estimated by the bootstrap over 10 000 independent replications. The results are coherent with

the asymptotic theory, with the combination of propensity score weighting and missingness indi-

cator method (τ̂ps(x
mim
i )) resulting in the smallest bootstrap variance. The two regression-adjusted

estimators τ̂reg(x
mim
i ) and τ̂reg(xi), on the other hand, have higher bootstrap variances than their

respective unadjusted counterparts τ̂unadj(x
mim
i ) and τ̂unadj(xi), illustrating the possible loss in precision

by regression adjustment.

5. Further discussion on the role of the outcome model

Theorems 1 and 2 assume that the missingness model for the outcome is correctly specioed. When

this assumption fails, τ̂ps is inconsistent, while τ̂reg remains consistent if the linear outcome model is

correct. The use of the outcome model ensures this double robustness property of τ̂reg; see Propo-

sition S2 in the Supplementary Material. Analogously, we can also augment τ̂ps with the outcome

model:

τ̂ps-reg = 1

N

N
∑

i=1

[

m̂1(xi) + RY
i

p̂i

Zi

êi
{Yi − m̂1(xi)}

]

− 1

N

N
∑

i=1

[

m̂0(xi) + RY
i

p̂i

1 − Zi

1 − êi
{Yi − m̂0(xi)}

]

with m̂z(xi), z = 0, 1, the estimated outcome model. The augmented estimator τ̂ps-reg is doubly robust

in that it is consistent if either the outcome model or the outcome missingness model is correct.
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As a special case, we can construct τ̂ps-reg as the coefocient of Zi from the weighted-least-squares

ot of the interacted regression over {i : RY
i = 1} with weight p̂−1

i π̂i for unit i. The corresponding

m̂z(xi), z = 0, 1, equals the estimated outcome model from the same weighted-least-squares ot; see

Proposition S3 in the Supplementary Material. This integrates the regression adjustment and the

propensity score weighting in the last two rows of Table 1.
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