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Building integrated photovoltaic thermal (BIPVT) greenhouse technology exhibits great potential to enhance 
crop yielding, energy harvesting, and water management for highly efficient farming and enables controlled 
environment agriculture (CEA) for automated plant cultivation. The proposed smart greenhouse system uses 
BIPVT, geothermal, image-based sensing, and control technologies for high energy efficiency and high-fidelity 
plant growth control. A camera-based, computer-controlled system was demonstrated to successfully monitor 
single and multiple food plants’ growth. The growth rate over the life-cycle of the plant was automatically 
recorded by cameras without human interference. A novel algorithm was developed to extract the plants from 
the background of the image and then to measure the length from the ground to the top of the longest plant 
with different shapes or profiles. The growth rate was automatically generated as fundamental data for farming 
management and control. Because the plant growth is slow and the errors caused by image noise can be 
comparable with the actual growth when the interval between images is not large enough, the noise of a camera 
is evaluated by comparing multiple images under the same exposure condition, which is used to provide the error 
range of the measurements. The plant growth monitoring system will be integrated into an ongoing greenhouse 
project for smart greenhouse operation.

1. Introduction

The summer of 2023 might be remembered as a heat-attacked sea-
son, as the temperature hits records in almost every corner of the world, 
crossing all the continents of the globe [1]. Climate change causes 
many consequences, but the impact on ecology and food output are 
among the top concerns. One of the main drivers of the food crisis is 
extreme weather events. Droughts, floods, and heat waves have dam-
aged crops and livestock, leading to shortages of food supplies and price 
hikes as well. In this context, the issue of food deserts, where access to 
affordable, healthy food is limited, becomes even more pressing in dis-
advantaged communities [2].

The United Nations (UN) Food and Agriculture Organization (FAO) 
has warned that the number of people facing hunger could reach 928 
million by the end of 2023, up from 828 million in 2021. The world’s 
population is expected to reach 9.7 billion by 2050, and this will put 
a strain on our food production systems. In order to feed this growing 
population, we need to boost food production by 50% [3]. The situation 
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is expected to get worse in the next decades as few actions have been 
taken to tackle the problems [4]. While the food crisis is a complex 
problem, among the measures that can be chosen, applying the latest 
technologies to boost the food supply is an immediate effort that will 
enhance food production.

Representing a shift in modern agriculture, on-site food production 
through Controlled Environment Agriculture (CEA) offers a potential so-
lution with local fresh food supplies, which was enabled by the growth 
of crops in controlled greenhouse settings regardless of external weather 
conditions. CEA systems, which include hydroponic, aeroponic, and 
aquaponic setups, are designed to optimize plant growth conditions, 
thereby maximizing yield and resource efficiency [5]. This technology 
could mitigate the effects of extreme weather on food availability and 
offer a sustainable alternative for communities most at risk.

While CEA offers significant benefits in terms of yield and resource 
efficiency, the integration of advanced technologies presents challenges, 
including the complexity of data interpretation and the integration 
of technology, such as hyperspectral imaging, with existing agricul-
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Fig. 1. Schematic illustration of a greenhouse system using BIPVT roofing panels and geothermal foundation [7].

tural systems [6]. These considerations highlight the need for ongoing 
research to optimize the application of these advanced technologies, 
such as imaging and analysis systems in CEA, to ensure their cost-
effectiveness, scalability, and practicality in modern agriculture.

Recognizing these challenges, an innovative greenhouse model was 
developed that supports the integration of an imaging system for cli-
mate and light control. Fig. 1 shows a schematic design of an energy-
efficient greenhouse that utilizes building-integrated photovoltaic ther-
mal (BIPVT) panels, providing smart indoor environment control of 
light, temperature, and moisture for enhanced farm productivity and 
extended growing seasons. It can be scaled up depending on the farm’s 
configuration, such as the arable land area, water availability, topo-
graphic form, as well as the demands of food and energy production. 
This CEA greenhouse design consists of five components: 1) advanced 
BIPVT panels for electricity and heat harvesting with a 25% coverage 
for a semi-transparent roof; 2) a geothermal system for seasonal heat 
storage and exchange in the geothermal heat well; 3) a battery array for 
electricity backup and storage; 4) a fluid circulation system with glycol 
for environment control and thermal management with a geothermal 
system; and 5) a sensing and control system for smart indoor environ-
ment monitoring and management for temperature, moisture, and light 
control [7].

The fifth component, the sensing and control system, will be the key 
to operating and managing the greenhouse for optimal system efficiency 
and plant growth. Estimating food plant growth health has traditionally 
relied on human inspection and experience for thousands of years. De-
cisions are made to irrigate, fertilize, get rid of pests and weeds, etc., 
based on the regular manual inspection, which can be destructive and 
highly depends on human factors, including the inspection frequency, 
inspector’s knowledge, and sampling accuracy [8,9]. For large-scale 
farming, such traditional procedures may not be efficient. Automatic 
monitoring of food plant growth is a rapidly developing field and has 
attracted attention for deep exploration [10–12], because timely infor-
mation can be extracted by computational analysis of images. Al-Karaki 
discussed data analysis methods that can be used to extract useful in-
formation from the data [13]. Zhang et al. discussed the different types 
of systems that have been developed and highlighted challenges such 
as inefficient microclimate control, high costs, and labor requirements 
[14].

Because plant growth is slow while image-taking is instantaneous, 
considering the noise of the camera and numerical errors in image pro-

cessing, it is not trivial to extract useful information of plant growth 
from many images. High-fidelity image recognition is highly demanded 
in CEA and crucial for the precise control of applying water, fertiliz-
ers, and pesticides, which in turn minimizes waste and environmental 
impact. Error control mechanisms will ensure that the system responds 
effectively to any anomalies, thereby reducing the risk of crop failure 
and optimizing the yielding-cost ratio.

With the ultimate goal of designing and developing a solar and 
geothermal energy-based greenhouse for CEA farming, this paper par-
ticularly focuses on camera-based automatic plant growth monitoring, 
which will be integrated into the sensing and control system in fu-
ture greenhouse construction. A high-accuracy camera-based automatic 
monitoring system was set up and demonstrated with the growth of 
wheatgrass. The system successfully monitors the plant growth rate and 
outputs the growth of the plant over a period of time on a daily ba-
sis. Inspired by the Breadth-First Search algorithm, this paper develops 
a novel technique to trace the plant’s structure pixel by pixel, provid-
ing a more detailed and accurate representation of plant growth than 
conventional methods. As many existing systems rely on expensive and 
complex imaging technologies, the present approach utilizes standard 
cameras, allowing for accessibility and cost-effectiveness for widespread 
use in agriculture. Additionally, the method’s non-destructive nature 
and adaptability to various plant species make it versatile across many 
applications. Furthermore, the algorithm and method can be general-
ized to an even wider variety of plants through physical data-based 
machine learning and plant growth modeling in future work.

2. System integration of the BIPVT greenhouse with geothermal 
energy

The proposed greenhouse in Fig. 1 utilizes building integrated 
photovoltaic-thermal (BIPVT) panels coupled with geothermal energy 
for the dual synergetic benefits: 1) improved energy harvesting and 
management toward zero-net-energy agriculture, 2) CEA with light, 
temperature, and moisture for improved plant production [7]. The ad-
vanced BIPVT panels with 75% transparent and 25% solar cell coverage 
will be installed on the south-facing roof of a solar greenhouse to gen-
erate PV electricity and collect heat; the electricity can be stored in 
a battery array for electricity backup and directly used for extended 
LED light for plant growth; a passive bi-directional geothermal heat ex-
change system will store heat in summer and release in winter by a 
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smart thermal management system and; the sensing and control sys-
tem will monitor energy usage and distribution for smart operation. 
The holistic management of the heat, water, and air flows through the 
greenhouse will achieve high energy efficiency and economic benefits. 
Particularly, although the desirable environment for plant growth of-
ten mismatches with the daily weather, if we can store excess water 
and heat for future use, it is possible to achieve net-zero energy and 
net-zero water farming.

2.1. Equipment and hardware needed for the BIPVT greenhouse prototype

A small BIPVT greenhouse has been designed in coupling with the 
geothermal energy system for research purposes and will be constructed 
and demonstrated at Pleasant View Farm at Brewster, NY as a proto-
type for future large scale applications. The land plan is 24 × 36 = 864 
sft. The materials and costs are much higher than the market price as 
they are ordered in a small amount by customized manufacturing, and 
the actual price by mass production can be much lower. The current 
price are listed as follows: the BIPVT roofing panels amount $17, 320
for glass-sun power modules, the greenhouse structure $34, 420 for poly-
carbonate panels and steel frame structures, the greenhouse installation 
fee $30, 550, the geothermal well drilling $16, 420. The total structure 
costs $98, 710. The monitoring and control units change with the re-
search purpose for different case studies and are estimated $18, 000. 
Upon the successful demonstration of the system by case studies with 
actual plant growth, the research team will optimize the design with a 
goal of greenhouses $100, 000 for standardized green houses at 24 × 60 
sft in the future, which can be scaled up and down to different sizes in 
approximately proportional costs.

2.2. Software for the operation of the smart greenhouse

Traditional control systems for the greenhouse are constructed to 
achieve the maximum crop production through the balanced environ-
mental parameters for multiple control loops [15], which can be im-
plemented by proportional, integral, and derivative (PID) controllers as 
follows:

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖

𝑡

∫
0

𝑒(𝑡)𝑑𝑡+ 𝑘𝑑
𝑑𝑒(𝑡)
𝑑𝑡

(1)

where 𝑢(𝑡) is the control vector, 𝑒(𝑡) is the error of the signal, and 
𝑘𝑝, 𝑘𝑖 and 𝑘𝑑 are the proportional, integral, and derivative constants, 
respectively [16]. When multiple controls are applied, such as heat-
ing, fogging, lighting, ventilation, and CO2 flux, the above equation 
can be expanded into a matrix form. For different plants, different PID 
controls could be straightforwardly implemented in the present green-
house. However, when the external environmental conditions change 
with the locations, weather, and seasons, the PID control may lead to 
unsatisfactory performance with large errors, high energy/water con-
sumption, and failures due to the mismatch of the capacity and demand 
of the control system. Particularly, it is time-consuming to develop the 
control parameters for such a new greenhouse technology.

On the other hand, model predictive control (MPC) can be a better 
alternative to PID control to optimize the control based on the real-
time sensing and modeling results, which significantly improves the 
robustness and efficiency of greenhouse management systems, particu-
larly under frequent extreme weather due to climate change and global 
warming. MPC determines the optimal control sequence by minimiz-
ing the cost function, which can be constructed over a series of discrete 
time 𝑡𝑘 (𝑘 = 0, 1, ⋯ , 𝑁) as an example [16]:

𝐽 (u) = 1
2

𝑁−1∑
𝑘=0

[
𝑥𝑖(𝑡𝑘)𝑄𝑖𝑗𝑥𝑗 (𝑡𝑘) + 𝑢𝑚(𝑡𝑘)𝑅𝑚𝑛𝑢𝑛(𝑡𝑘)

]
+ 𝑥𝑖(𝑡𝑁 )𝑃𝑖𝑗𝑥𝑗 (𝑡𝑁 ) (2)

where 𝑥𝑖(𝑡𝑘) (𝑖 = 1, 2, ⋯ , 𝑁𝑠) are the total 𝑁𝑠 state variables at time step 
𝑡𝑘 with 𝑥𝑖(𝑡0) given by sensors, such as temperature, moisture, light, 

CO2 level; 𝑢𝑚(𝑡𝑘) (𝑚 = 1, 2, ⋯ , 𝑁𝑐 ) are the total 𝑁𝑐 state variables at 
time step 𝑡𝑘 to be optimized in the range of 𝑢𝑚𝑖𝑛𝑚

≤ 𝑢𝑚(𝑡𝑘) ≤ 𝑢𝑚𝑎𝑥
𝑚

; 𝑄𝑖𝑗

and 𝑃𝑖𝑗 are semi-definite positive representing the cost of the state; 𝑅𝑚𝑛

is definite positive representing the cost of the control; the repeated 
subscripts 1 ≤ 𝑖, 𝑗 ≤ 𝑁𝑠, 1 ≤ 𝑚, 𝑛 ≤ 𝑁𝑐 follow the Einstein summation 
notation [17]. A predictive model can predict the state variables as

x(𝑡𝑘+1) = 𝑓
(
x(𝑡𝑘),u(𝑡𝑘)

)
(3)

Therefore, given the state variable at 𝑡0, a quadratic cost function 𝐽 (u)
can be constructed and solved by a quadratic optimization program 
[16]. Accurately sensing and monitoring the state variables is critical 
to greenhouse management and operation. Existing MPC platforms [18,
19] can be integrated into the present greenhouse to minimize the cost.

Although PID control systems are well established and can be in-
stalled into the BIPVT greenhouse in the initial phase, in the long 
term, an MPC control system is needed for the smart greenhouse as 
the environmental conditions can be optimized by balancing the cost-
benefit ratio in a certain time window, to achieve the maximal ben-
efit. The ultimate goal of the greenhouse is to maximize the yielding 
of plants to cover the costs with economical margins. Even though a 
high-performance environmental control system can create a growth 
environment accurately, it is critical to correlate the relationship be-
tween the environmental parameters and plant growth rate. Therefore, 
we can provide recipes of environmental control for different plants 
according to their growth pattern. Plant growth sensing and modeling 
not only provide inputs to control the environments but also enable 
machine learning to develop a predictive model with the actual plant 
growth data. A novel CMOS image-based sensing and modeling method 
has been developed and demonstrated in the next section, which will 
be integrated into the greenhouse for plant data collection.

The entity relation (ER) diagram of the sensing and control system 
is shown in Fig. 2 for the proposed smart greenhouse. Given a plant 
to grow in the greenhouse, we can formulate the recipe of desirable 
environment parameters and the expected growth each day in its life 
cycle. The environmental sensing will provide real-time monitoring of 
the greenhouse environmental parameters. When their difference from 
the recipe is larger than the threshold, it triggers the environmental con-
trol units to enforce the environmental change according to the recipe. 
The plant growth sensor will detect the growth rate against the recipe. 
If the difference is larger than the threshold, the recipe shall be up-
dated through modeling and simulation. The operational data records 
provide the physics-based data for machine learning to optimize fu-
ture plant growth recipes as well. The sensing and monitoring system 
will keep running with the greenhouse operation. The ER diagram pro-
vides the guideline for database construction and software development 
for system integration, which will directly monitor the environmental 
parameters through the hardware and control the work units by the 
commands from the software. This paper focuses on the plant growth 
sensing and monitoring.

2.3. Energy equilibrium in greenhouse operation

The energy flow in this greenhouse can be optimized by engineering 
the energy transfer and storage with the change of time and space with 
daily and annual energy equilibrium for electricity and heat, respec-
tively, for a net-zero energy greenhouse technology. The solar panels 
harvest both photovoltaic (PV) and heat from solar irradiation. The 
electricity is stored in batteries for LED and greenhouse operation en-
ergy supplies, and the heat is stored in the earth for greenhouse heating.

A bi-directional geothermal coupling with BIPVT uses the thermal 
mass at a relatively stable temperature of the shallow earth only, so 
that it can be installed on-site of the greenhouse with low initial costs. 
A ground source heat pump system can be used for active tempera-
ture control. Based on the design of a bi-directional geothermal heat 
exchanger for BIPVT systems, the heat transfer between the greenhouse 
and the ground can be approximated as a harmonic variation on a daily 
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Fig. 2. The entity relation diagram of the sensing and control system for a smart greenhouse.

and annual basis in accordance with the angle of sunlight variations. 
The temperature profile of the ground will change with the distance to 
the geothermal heat exchanger. In summer, the thermal fluid takes the 
heat from the greenhouse to the ground, reducing the room tempera-
ture for indoor comfort. Seasonal heat storage can be achieved with the 
heat pipe at a certain depth higher than 20’ so that the heat stored in 
summer may not be transferred to the ground surface before it is uti-
lized in winter.

The energy equilibrium analysis of solar energy harvesting and sys-
tem power consumption is an essential step that determines the capacity 
of energy storage and thermal fluid circulation systems. The energy 
level in the battery is traced throughout a prescribed period T, which is 
typically one day with a charge-discharge cycle, to aid the engineering 
design and to predict the system performance. The amount of energy 
charged into the battery is the difference between the harvested power 
and the consumed power. However, the daily equilibrium is not suf-
ficient for areas with dynamic weather variation. Statistical analysis 
is required to determine the redundancy of the storage capacity. Be-
cause the average temperature change and heat needs strongly follow 
the season variation, heat storage and utilization will mainly be based 
on annual energy equilibrium.

Based on the power specifications of the control units, given a 
weather pattern and plant growth recipe, the energy consumption and 
harvesting can be calculated, and the zero-energy greenhouse can be 
designed through annual energy equilibrium.

3. Methodology of plant growth monitoring

CMOS image sensors replaced CCD (charge coupling devices) cam-
eras and became the mainstream devices for different applications, 
largely because of their better performance and much lower prices 
[20]. The cost of cameras is no longer a barrier to its application to 
the agriculture industry. The most straightforward approach is to use 
RGB cameras to capture images of plants. These images can then be an-
alyzed to detect changes in plant heights and provide information on 
growth rates. Hyperspectral cameras may figure out the wavelengths of 
the light that are reflected by the plants and can be used to identify dif-
ferent plant species [21]. Thermal cameras can detect the heat emission 
of plants to judge their health [22].

In this work, two regular color webcams were used to take im-
ages from different angles, and a computer-based Python program was 

written to control the cameras, extract the plant images from the back-
ground, measure the length of the plant, and generate the final growth 
rate table. The images in the procedure were saved for the purpose of 
demonstration, but in the real application, it is optional to save sample 
images up to the storage limits.

3.1. Calibration of the camera noise

When measuring objects at a small scale, camera noise may affect 
the accuracy of measurements. For example, if the end pixels of the 
plant are obstructed by camera noise, the algorithm may detect the 
plant to be longer or shorter than it physically is. Furthermore, large 
groups of noisy pixels that appear green may cause the program to in-
correctly detect a plant present amidst the noise. Thus, measures were 
taken to minimize the camera noise surrounding the plant. The ex-
periment was conducted in a brightly lit environment, and a Python 
program was created to evaluate the level of camera noise present and 
amplify it for visual clarity. Each pixel has a brightness value from 0 to 
255, and any noise that causes a brightness difference of more than five 
levels, or a 5

256 = 0.0195 ≈ 2% brightness difference from the original 
pixel is recorded and amplified. The threshold of five brightness lev-
els was chosen to strike a balance between sensitivity to noise and the 
practical detection of meaningful discrepancies. This threshold is strin-
gent enough to capture virtually all noise that could plausibly have an 
effect on the length calculation but avoids overestimating noise levels 
by disregarding minimal brightness variations that are extraordinarily 
unlikely to impact the overall accuracy of the image processing algo-
rithm. The decision to set this specific threshold is further informed 
by preliminary tests, which indicated that a higher threshold (such as 
a 13 brightness level difference that would equate to approximately a 
5% error tolerance) would result in a detection of virtually no noise, 
thus failing to adequately represent the small amounts of environmen-
tal noise present in the image data.

To test the amount of noise in the environment, Figs. 3(a) and (b) 
are two images taken with an identical setting, which leads to the differ-
ence shown in Fig. 3(c) due to the camera noise present in the testing 
environment. The white pixels indicate a difference of more than 2% 
between the two supposedly identical images, and black pixels indicate 
a lack of difference, suggesting that camera noise did not alter the pixel 
between when the two images were taken. Note that there is minimal 
camera noise affecting measurements, as the number of white pixels, 
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Fig. 3. Evaluation of the camera noise: (a) and (b) two images taken with an identical setting, and (c) image difference with 2% as the threshold - non-negligible 
noise shown by white pixels and otherwise black pixels.

𝑁𝑤 is kept relatively low in comparison with the number of black pix-
els, 𝑁𝑏. The ratio of the white pixels to the overall pixels 𝜂 = 𝑁𝑤

𝑁𝑤+𝑁𝑏

can be used to evaluate the noise impact on the image quality.
Because the camera noise has been produced by the total area of the 

image, it leads to an error range of the length at 𝜂∕2. Fig. 3(c) provides 
𝜂 = 0.00191 for the image setting. Because the noise exhibits higher 
intensity along the boundary of the objects, the noise ratio 𝜂 depends 
on the objects in the image or the background setting. Therefore, the 
calibration of noise shall be taken in the greenhouse periodically for 
consistency.

3.2. Determination of error due to pixel size

While the resolution of a camera is typically defined by the num-
ber of pixels in an image, we are more interested in the physical length 
of a pixel in the region of interest (ROI) of an image. For example, in 
Fig. 3, the height of the cup 𝐻 = 40 mm covered by 65 pixels has been 
used as the reference, which corresponds to 𝐿𝑝 = 0.615 mm per pixel 
in the ROI. Therefore, the accuracy of the image considering the ef-
fect of the camera noise is approximately at Δ =𝐿𝑝 ∗ (1 + 𝜂∕2) = 0.616
mm, which can be used to determine the interval for image-taken in 
plant growth monitoring. The plant growth between two of a sequence 
of images shall be higher than Δ to capture sensible information. De-
pending on the plant growth pattern, we can tailor Δ with the camera’s 
focus distance and resolution. In the following, we use wheatgrass as an 
example to demonstrate the algorithm for plant growth monitoring.

3.3. Algorithm for plant growth monitoring (2D)

Wheatgrass planted from seeds was chosen as the target plant in this 
study because it grows quickly, and therefore, the experiment can be 
reproduced within a week. The wheatgrass seeds were planted in small 
cups in Fig. 3, and once they grew out of the earth, the monitoring 
started. For the experiment, we established two distinct groups. The 
first group consisted of a single cup with one wheatgrass plant, while 
the second group involved a cup containing three wheatgrass plants. 
The cup plants were placed in a white background box, and cameras 
were set up to capture the plant growth.

A Python program was developed to control the cameras and com-
mand them to take pictures at predefined times and intervals, and here 
the images were collected once a day in the afternoon. The Python 
program also extracts the green pixels as the grass profile, and an al-
gorithm based upon the Breadth-First Search (BFS) algorithm [23] was 
developed to accurately measure the length of the plants regardless of 
the growing direction, whose schematic is shown in Fig. 4.

The Breadth-First Search (BFS) is a fundamental algorithm in com-
puter science used for traversing or searching tree or graph data struc-
tures. It starts at a selected node (in this case, a pixel at the base of 
the plant) and explores all of its neighboring nodes at the present depth 

Fig. 4. Plant length measurement schematic. The background grid represents 
pixels, the dashed profile mimics a plant, green-filled pixels represent the im-
age, and the red line reflects the length measurement procedure. Vertical and 
horizontal direction counts 1 unit per pixel, and diagonal counts 1.41 units per 
pixel.

before moving on to nodes at the next depth level. In our application, 
when an image is taken, green masks are applied to isolate the plant 
from its background. A starting point pixel is selected for each image, 
from which the BFS algorithm extends outward in all directions, includ-
ing diagonally, traversing every connected green pixel until all green 
pixels are visited. The pixel farthest from the starting point is taken as 
the endpoint of the plant, and a path was traced back from the end-
point to the starting point to find the true length of the plant. Each 
time the path moves horizontally or vertically across a pixel, a length 
of one pixel was added to the measurement, and each time the path 
is traced diagonally across a pixel, a length of 1.41 pixels was added 
to the measurement. Since the red cup is a constant height of 4 cen-
timeters, the height of the cup in pixels was used to convert the plant’s 
length measurement into centimeters. Since there are two images, two 
measurements would be made, and the longer one of the two is used. 
Repeating the experiment over five days, the results were placed into 
a length-versus-time table as a fundamental reference for plant growth 
monitoring.

One camera can capture a 2D image and obtain a plant’s silhouette 
in one orientation as a line constructed by many pixels. To improve the 
accuracy of measurements, the experiment instead utilized two cam-
eras, each positioned at a 90-degree angle relative to the other. This was 
done for two reasons: 1) The use of two cameras positioned 90 degrees 
apart ensured that the plant’s profile could be captured from multiple 
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Fig. 5. A bent straw measurement showing the algorithm worked as expected.

Fig. 6. Three plants’ measurements show the algorithm worked as expected.

angles, thereby eliminating blind spots and mitigating the risk of un-
derestimating the plant’s length due to bends or curves that might be 
hidden from a single camera’s view. 2) The algorithm was designed to 
account for diagonal traversal with 1.41 pixels, as opposed to a simple 
one-pixel increment for horizontal or vertical movement. This nuanced 
approach to measurement allowed for a more accurate representation of 
the plant’s true length, especially when the plant grew in a non-linear 
fashion. These deliberate steps were crucial in minimizing error and 
providing a more precise and reliable dataset for plant growth analysis.

3.4. Verification of the algorithm

To test the program, a green object of two sides at 65 and 82 mm, 
respectively, with a downward-pointing tip, was selected to check the 
system. Using the cup height as the reference, the program successfully 
measured the length of the object to a high degree of accuracy at 149 
mm in Fig. 5.

Additionally, the cup with three plants was used to test the auto-
matic program. The plants were grown and photographed in moderate 
humidity, 25 degrees Celcius temperature, and under high constant 
light. As shown in Fig. 6, after image taking, the program was able to 
identify the longest plant and only calculate the length of that plant. Of 
course, different schemes can also be predefined, for example, measure 
all 3 plants and calculate the average or median length, measure only 
the median plant, or only the shortest plant. In this study, the longest 
one was chosen, which has a length of 52 mm. The program success-
fully measured the length of the object to a high degree of accuracy at 
54 mm in Fig. 6.

As verified by the two tests, the program functions properly in two 
difficult scenarios: 1) when confronted with sharp curves, the program 
finds its way through sharp angles; and 2) when multiple plants are 
detected, the program can distinguish the size of each and select the 
longer one to measure.

3.5. Expansion of the algorithm into 3D

For applications that require a particularly precise measurement or 
a 3D representation of the plant, a 3D version of the algorithm was 
developed. Because the path chosen by the algorithm is recorded for 
both cameras as image outputs whenever a measurement is made for 
each of the two cameras, it is possible to use these two image outputs 

in conjunction to create a 3D representation of the plant in a process 
known as voxel carving.

First, the two images are scaled (with their aspect ratio preserved) 
to the same height in pixels and are given a coordinate system, with one 
image having a horizontal X axis, the other having a horizontal Y axis, 
and both sharing the same vertical Z axis for height. Since they share 
the same Z axis, scaling both to the same height in pixels guarantees 
that both images are at the same scale in terms of pixels.

Then, one image is placed on the X-Z plane while the other is placed 
on the Y-Z plane, and both are extruded towards their remaining axis 
so that they intersect and pass through each other.

Voxels at the intersection point are occupied twice, meaning that 
both the extruded profiles contain them. These voxels, which are con-
sistent with the information from both images, are kept, and the rest of 
the volume created by the extrusion—the voxels only occupied by one 
of the extruded profiles—is discarded. Through this process, a 3D object 
is constructed that, when viewed through either the X-Z or Y-Z profiles, 
will reflect the two 2D images taken of the real plant.

A demonstration of this method on Triple Plant B - Day 5 is shown 
below in Fig. 7.

Finally, after this approximate model of the plant has been created, 
we rerun the modified breadth-first search on the 3D model to find the 
shortest path from the bottom of the plant to the furthest tip, which will 
serve as the 3D algorithm’s calculated height. In Fig. 7(c), the plant is 
measured at a length of 10.96 cm, showing a minor difference of 1.45% 
from the 2D measurement of 11.12 cm and 0.64% from the human 
measurement of 11.03 cm.

The Python program script was provided as the Supplementary Ma-
terial of this paper.

4. Experimental demonstration of wheat grass growth monitoring

To demonstrate the program application in future greenhouse opera-
tions, we conduct an experiment with two groups of wheatgrass: group 
A with a single plant and group B with 3 plants. We monitored their 
growth with images taken continuously for 5 days. For demonstration, 
the images on days 1, 3, and 5 are provided as follows.

Fig. 8 shows the group A single plant situation on day 1. Camera-1 
and camera-2 took images at different angles, and measurements using 
both algorithms were taken. The larger of the 2D algorithm’s measure-
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Fig. 7. Construction of 3D profile from two 2D images: (a) extrusions from the two 2D images, (b) the resulting object, and (c) the final object.

Fig. 8. Real images, plant information, and length measurements for group A single plant, day 1. C1 and C2 denote the cameras.

ments was recorded, and the single 3D measurement was recorded as 
the heights for Day 1.

Similarly, Figs. 9 and 10 show the progress on days 3 and 5, re-
spectively. As seen in Figs. 10 (d) and (e), the program can detect the 
plant with multiple leaves and measure the longest stem as shown in (f) 
automatically.

Similarly, Figs. 11–13 show the situation of group B with three 
plants on days 1, 3, and 5, respectively. The program only extracted 
the image of the longest plant among the three and made the mea-
surement. Again, the larger of the 2D algorithm’s measurements were 
recorded, and the single 3D measurement was recorded as the plant 
heights.

On day 5, after all the information was collected and measurements 
were taken, the program outputs the growth curves for groups A and 
B, for each algorithm, as shown in Fig. 14. It was interesting to see 
both groups A and B shared similar growth rates and tended to become 
slower over time, and how the 2D and 3D algorithms produced esti-
mates that were quite similar.

Table 1

Results for Single Plant A and Triple Plant B.
Day 1 2 3 4 5

Single Plant A

3D Algorithm (cm) 1.75 4.55 6.99 10.01 10.41

2D Algorithm (cm) 1.71 4.33 7.29 10.38 11.75

Human Measurement (cm) 1.79 4.13 7.06 10.15 11.68

Triple Plant B

3D Algorithm (cm) 2.93 5.19 7.55 9.54 10.96

2D Algorithm (cm) 2.83 5.16 7.79 9.80 11.12

Human Measurement (cm) 2.82 5.48 7.60 9.28 11.03

The lengths of the plants were also measured by hand and compared 
with the image-based results in the following tables. It is important to 
note that “human measurement” is distinct from “real length” as it is 
unfeasible to measure a precise definitive length. The particular reasons 
will be explained below.

As displayed by the table above, while all three forms of measure-
ment produce similar heights, each has its own sources of error.
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Fig. 9. Real images, plant information, and length measurements for group A single plant, day 3.

Fig. 10. Real images, plant information, and length measurements for group A single plant, day 5.

Fig. 11. Real images, plant information, and length measurements for group B triple plants, day 1.
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Fig. 12. Real images, plant information, and length measurements for group B triple plants, day 3.

Fig. 13. Real images, plant information, and length measurements for group B triple plants, day 5.

Any error present for the 2D algorithm is primarily attributed to the 
camera angle.

If neither camera captures the entire length of the plant without ob-
struction or an unideal perspective, then there exists a slight error in 
the image used for length calculation. Because our setup involves two 
cameras positioned 90 degrees apart, the maximum misrepresentation 
of the plant occurs when there’s a 45-degree difference between the di-
rection of the plant’s curve and each camera’s direction, with the plant 
being parallel to the floor. In such cases, the error due to plant place-
ment is 1 − 1√

2
, amounting to approximately 29.3%.

Fig. 15 below is a pictorial representation of such a scenario in a 
bird’s-eye view. The black boxes represent each camera, and the red 
circle containing the green line represents the potted plant.

To mitigate this error, one might consider the use of additional cam-
eras. For instance, employing three cameras and positioning them on 
three sides of a hexagonal box would reduce the maximum under-

estimation to 1 −
√
3
2 , which is around 13.4%. Further, using simple 

trigonometry, we can deduce that the maximum percent underestima-
tion for 𝑛 cameras is 1 − cos

(
𝜋

2𝑛

)
.

However, our data indicates that the actual percent error observed 
due to plant placement is significantly lower than these theoretical max-
imums. This discrepancy is likely attributed to the fact that plants do 
not typically grow perfectly parallel to the floor.

In addition to the primary error source, there are several minor 
factors that contribute to measurement inaccuracies. Because the BFS 
path moves through vertical, horizontal, or diagonal directions, when 
the plant is tilted at different angles, the program provides different 
measurements due to pixel discretization, which can be reduced by 
smoothening the profile through some filters.

The 3D algorithm eliminates the problem of camera angle; how-
ever, voxel discretization error may occur. Because voxels are cubes, it 
is computationally difficult to render the 3d image in its original res-
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Fig. 14. Length vs. time output tables and charts.

Fig. 15. A bird’s-eye view of the worst possible situation.

olution, and a downsampled image must be used. Thus, as the plants 
grow larger, the algorithm becomes increasingly inaccurate unless the 
amount of voxels used is increased, although the exact percent error de-
pends on computational power and the amount of voxels used for the 
calculation.

For days 1 to 4, it was sufficient to render the plants using an ar-
bitrary height of 120 voxels, but as the plant grew larger on days 5, 
it became apparent that a height of 120 voxels was not enough. If the 
ratio between the height of the plant and the thickness of the plant is 
more than the number of voxels used to represent the height, then the 
algorithm may malfunction as the thickness of the plant is considered 
less than 1 voxel. Only when the height was increased to 300 voxels 
was the algorithm able to correctly model the stem.

For human measurements, we found two viable ways to measure the 
plant, each with its own forms of error. Unlike the computer algorithms, 
neither of these two methods are automatic.

One method to measure the plant is to bend it straight and find its 
height against a ruler, but this may stretch or compress the plant and 
soil, causing inaccuracies. Furthermore, the process of straightening the 
plant may damage it, negatively affecting plant health and hindering 
growth.

Another method is to use a bendable object, such as a pipe cleaner, 
to mold the approximate shape of the plant next to it so that the real 
plant remains undisturbed. However, this requires extensive human es-
timation, which may cause significant inaccuracies to arise.

The method used to gather the data for the “Human Measuremen-
t” row in Table 1 was the first, albeit with excessive care, so as not to 
disturb the growth of the plant. This additional caution placed on avoid-
ing plant disturbance may have caused significant inaccuracies in the 
reported heights, although the exact extent is unquantifiable.

5. Future work for greenhouse plant growth monitoring

As the work is an early-stage study of automatic plant growth mon-
itoring, future work will be implemented to bring it to practical ap-
plication. Monitoring single or several plants is important for building 
the model, but the model needs to be tailored for specific plants with 
different shapes or grow patterns, particularly when large-scale plant 
farms are under inspection. Besides wheatgrass, different food plants 
may have different growth behavior and may need different model-
ing methods. The growth rate in length as critical raw data, may not 
fully reflect the plant growth health, which also includes flowering, 
graining/fruiting, diseases, pest impact, etc. Moreover, correlating the 
growth rate with irrigation, weeding control, temperature, humidity, 
light, and nutrients should provide a bigger picture of how to optimize 
the growth conditions, save resources and effort, and eventually en-
hance crop yielding.
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With the imaging method and software validated, we will implement 
this program in ongoing smart greenhouse development and construc-
tion for plant growth monitoring as follows:

1. Given a plant with a typical growth curve and life cycle, we will 
sample the plants for growth monitoring and select appropriate 
camera resolution and focus distance;

2. Calibrate the camera noise and determine the image-taken intervals 
for plant growth monitoring;

3. Daily analysis of the plant growth rate is conducted in compari-
son with the reference growth curve, which may trigger additional 
intervention when an abnormal growth pattern is identified;

4. Report the plant growth curve integrated with the environmental 
control settings, and energy, water, fertilizer consumption.

The plant growth monitoring system will be a critical part in future 
smart greenhouses. The program can also be extended from length to 
area or volumetric growth of the plants with higher resolution to opti-
mize the real-time environmental control for maximized plant yielding 
and carbon neutralization. This software can not only automate future 
greenhouse operations by communicating with the greenhouse environ-
mental sensing and control system but also provide physics-based data 
for machine learning to create better plant growth recipes with lower 
costs in energy, water, and fertilizer supplies.

Besides ground-based fixed cameras in greenhouses, remote cam-
eras onboard, such as satellites or drones, can provide an even larger 
scale of monitoring the farm plant growth by the leaves area instead 
and generate even “bigger” data for artificial intelligence and machine 
learning to create more meaningful guidance to predict greenhouse per-
formance, identify potential problems, optimize planting management, 
and maximize the plant yielding. Some limitations and challenges are 
anticipated in the growth monitoring: 1) Different plants exhibit differ-
ent geometries and shapes, and the plant growth may be evaluated by 
area or volume better than length, and the algorithm can be extended 
in the future. 2) The performance of the hardware changes under dif-
ferent environmental conditions, and system reliability may be weak 
under extreme weather conditions. Higher redundancy of the working 
capacity of the hardware is recommended. 3) When the technology is 
scaled up for large-scale operations, multiple cameras will be needed, 
and the coverage of each camera shall be carefully tuned to avoid blind 
spots or large overlaps.

6. Conclusions

The camera-based automatic plant growth monitoring system was 
designed, developed, and demonstrated in monitoring and detecting 
wheatgrass growth progress for one and three units without human in-
terference. The experiments show the high fidelity and high efficiency 
of the algorithm. Image processing and plant information extraction 
was conducted by a Python program, and two novel algorithms for 2D 
and 3D length estimation were developed to measure the plant length 
regardless of the growing direction. The program generated dataset 
and output tables for greenhouse plant growth monitoring. The low-
cost camera system is robust for complicated plant growth conditions, 
displaying higher degrees of accuracy and less plant interference than 
human measurement. This program can be further refined by reduc-
ing pixel and voxel discretization to further smoothen curves or by 
increasing the number of cameras to obtain more angles of the plant 
for the algorithms to utilize. This camera-based automatic plant growth 
monitoring program will be implemented in future smart greenhouse 
operations.
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