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A B S T R A C T

Drones are increasingly being used in the construction industry for numerous applications. However, their 
presence poses safety risks to construction workers who work around them but have limited control and in
formation about these drones. To ensure safety, general construction workers who are not part of the pilot teams 
should also be able to communicate their concerns with drones effectively and naturally. Despite its importance, 
research on human-drone communication within construction for non-operator workers is scarce. This study 
developed and evaluated communication protocols using gesture and speech modalities to ensure safe human- 
drone interactions for non-operator workers in construction environments. An immersive VR environment 
replicating construction site dynamics was developed, enabling workers to utilize gesture or speech communi
cation protocols while working with drones. A total of 100 participants were recruited for the user-centered study 
analysis on an immersive VR construction site, and the safety implications and cognitive loads of both protocols 
were assessed both quantitatively and qualitatively. The findings suggest that gesture-based communication is 
more effective than speech-based communication in mitigating risks and alleviating the negative impacts of 
drones without imposing additional cognitive strain on users on construction sites.

1. Introduction

Advanced technologies have become widely adopted and imple
mented in the construction industry to enhance safety, quality, schedule, 
and cost performance [1]. Specifically, drones, also known as unmanned 
aerial vehicles (UAVs), have gained popularity in construction projects 
due to their numerous advantages. According to DroneDeploy, con
struction is already the largest adopter of drones among the US in
dustries, with 94 % of respondents using drones as their primary tool for 
digitizing construction sites [2]. A recent industry report shows that 88 
% of drone users in the construction industry intend to either increase or 
maintain their investment in drone technology [3]. According to 
another industry report, the size of the worldwide market for con
struction drones is projected to increase to $11,968.6 million by 2027, 
with a compound annual growth rate of 15.4 % from 2020 to 2027 [4]. 
More than half of the drone users in the construction industry believe 
that drones are expected to become even more common in the near 
future compared to their current usage, with 21 % holding the opinion 
that they will be ubiquitous [2]. Drones have been employed in the 
construction industry for numerous applications, such as building 

inspection [5,6], damage assessment [7,8], site surveying and mapping 
[9,10], progress monitoring [11,12], and safety inspection [13]. More
over, they are being explored for more active roles in applications 
beyond data collection, such as improving operations, reducing cost, 
and increasing safety [2], including assembling construction compo
nents [14].

However, since the construction industry revolves around human 
labor, drones must operate in close proximity to human workers, 
impacting each other significantly. As drones evolve from passive ob
servers to active participants in construction projects, human workers 
must adapt their behavior to collaborate with these aerial agents. 
Similarly, drones must adjust their flight paths to ensure human safety. 
The presence of drones alongside various construction crews, even those 
unrelated to drone operations, poses physical risks to workers and af
fects them psychologically. Given that the construction industry is 
already considered one of the most dangerous [15], a rising risk of un
intended contact between drones and workers [16] poses new safety 
challenges and increased cognitive loads for the workers [17].

To mitigate safety risks associated with drones in construction, active 
engagement between construction personnel and drones via various 
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communication methods is crucial. Effective communication holds 
paramount importance in an industry prone to accidents and fatalities. It 
aids in reducing uncertainty [18], perceived threat, and lack of control 
[19,20], which are known stressors in construction work. By facilitating 
effective communication, workers can actively exchange information 
and influence drone behavior. For instance, if workers feel unsafe due to 
drones’ proximity, they should be able to redirect drones to prevent 
collisions. Human-to-drone communication should also be intuitive and 
natural to foster trust [21], build confidence, and establish a connection 
between workers and drones [22] to improve performance consequently 
[23] and enhance productivity [24]. Conversely, inadequate commu
nication may impair human judgment and decision-making, making 
drone interaction more challenging and less safe for construction 
workers [13,25].

This study’s primary objective is to establish and assess a safety 
communication protocol utilizing natural interaction methods, specif
ically speech and gestures, for general workers (those who possess 
limited knowledge of drone operations but work within drone-inhabited 
construction sites). Virtual reality (VR) technology was employed to 
investigate the efficacy of gestures and speech for human workers to 
express their safety requirements. Protocols for human-drone commu
nication via gestures and speech were developed and validated within a 
virtual construction environment. Additionally, a user-centered study, 
coupled with safety performance assessments in the virtual setting, was 
conducted to evaluate the effectiveness and distinctions qualitatively 
and quantitatively between gesture and speech communication modal
ities in facilitating safe human-drone interactions.

2. Background

2.1. Safety challenges of human-drone interaction in construction

The construction industry, already known for its high risk, has seen 
over 5,000 fatal work injuries in the United States in the past five years, 
as reported by the Bureau of Labor Statistics [15]. Beyond fatalities, the 
industry also recorded over 174,000 non-fatal injuries and illnesses in 
2020 alone [26]. These non-fatal incidents can result in severe 
disability, income loss, chronic pain, and ongoing medical expenses, 
significantly impacting workers’ quality of life. Even minor injuries can 
lead to missed workdays, reduced productivity, and increased medical 
costs [27]. As the integration of drones in construction grows, it in
troduces additional safety challenges, potentially heightening the 
danger on construction sites, particularly for workers exposed to haz
ardous conditions, such as working at heights, handling dangerous tools, 
or operating near heavy equipment.

Integrating drones in construction presents various safety challenges 
encompassing physical risks, psychological impacts, and negative per
ceptions. Physical risks are multifaceted and involve potential hazards 
such as collisions with flying drones, the danger of being struck by 
falling drones or their components, entanglement in drone rotors and 
moving parts, and exposure to dust emissions generated by swiftly 
spinning drone rotors [28]. The growing prevalence of drones on con
struction sites has amplified concerns regarding physical risks, with 
expectations of increased incidents, including near-miss events and 
more hazardous accidents that could result in severe or fatal injuries 
[16]. Psychological impacts emerge in the form of acute stress, which 
elevates cognitive load and sensory saturation, culminating in negative 
emotional states and potential fatigue. While the previous study [29] did 
not find statistical evidence to associate drone presence with changes in 
physiological and emotional states, as the methods and metrics used in 
experimental settings may not fully capture the complexities of real- 
world construction sites, this result is not equivalent to drones has no 
psychological effects. Therefore, further research should be conducted 
to explore potential safety implications in practical significance or other 
psychological impacts, especially when designing training programs or 
tools to facilitate safe human-drone interaction. For instance, the 

presence of drones can introduce noise and visual distractions, trig
gering adverse emotional responses among workers laboring near 
drones and potentially provoking a sense of little or no personal control 
[30]. Working alongside drones can also intensify the fear of errors, as 
employees perceive the need for flawless execution, straining their ca
pabilities further in already demanding construction environments [31]. 
It should be noted that construction workers’ negative perception of 
drones may lead to the fear of working with or around drones [32]. 
These concerns include a lack of perceived safety, where workers have 
doubts about the reliability or precision of drones, consequently 
avoiding working with these flying robots. Furthermore, workers might 
exhibit negative attitudes toward drones, viewing them as a threat 
rather than a helpful tool or friendly co-worker. Privacy concerns may 
exacerbate these negative perceptions as workers perceive surveillance, 
leading to cognitive distraction and heightened accident risks [28].

Previous research has extensively recognized the safety challenges 
inherent in human-drone interaction within construction sites and the 
consequential impact on worker safety and well-being. While previous 
literature [28] has proposed various conceptual frameworks and rec
ommendations for integrating UAVs safely into construction environ
ments, there is a notable lack of empirical studies and tested solutions 
that address the specific communication protocols and safety needs of 
workers. This study endeavors to bridge this void by crafting a 
comprehensive communication protocol to empower human workers 
with active and effective means of communication with drones, ulti
mately serving as a safeguard against physical risks, particularly acci
dents stemming from drone collisions. It is envisioned that such a 
human-to-drone communication protocol will not only mitigate psy
chological impacts by cultivating positive emotional states among 
workers and alleviating cognitive burdens but also reshape worker 
perceptions by bolstering their sense of safety and countering negative 
attitudes. Ultimately, this endeavor aims to foster a safer and more 
harmonious work environment.

2.2. Human-robot communication for safe co-existence

People use communication to exchange information and reduce 
uncertainty [33]; positive communication leads to positive relationships 
that can enhance trust, satisfaction, and comfort. Effective communi
cation is essential in the construction industry to ensure occupant safety, 
given the industry’s high risk of accidents and fatalities, and commu
nication among team members improves safety outcomes and promotes 
worker safety [34–36]. Communication between humans and robots 
also provides similar benefits by creating meaning and exchanging in
formation to achieve better performance [37]. Effective communication 
between humans and robots can give robots the intelligence to under
stand the situation [24] and the respective responsibilities [38]. It also 
helps to develop common ground and a shared understanding, espe
cially the decision-making in complex environments [39], such as con
struction sites. The modes of human-robot communication applied in 
construction include direct physical interaction, remote contactless 
interaction, and message exchange through interfaces [40].

Human-robot communication also has essential safety implications 
that can help react to unexpected or potentially unsafe situations 
[41,42]. For example, effective human drone communication extends 
the capability of individuals who were previously outside the drone 
operation team to also be able to intuitively engage with the drone 
system and address safety concerns in potentially hazardous situations 
[43,44]. Establishing such effective communication channels empowers 
drones to grasp the contextual situation, comprehend their re
sponsibilities, rectify errors, and ensure human worker safety [24,38]. 
Furthermore, employing natural communication modalities is pivotal 
for fostering trust between humans and co-robots [21], enhancing per
formance in time-sensitive environments [23], optimizing productivity 
and resource utilization [24], instilling confidence in interactions, and 
even nurturing a sense of personal connection or companionship 
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between workers and drones [22].
As the adoption of drones in construction tasks continues to grow, 

there is a pressing need to enhance their operational intelligence to meet 
performance requirements and ensure worker safety. The conventional 
remote control method for drones is cumbersome and unnatural, espe
cially for individuals engaged in multiple on-site tasks [45]. Notably, 
construction workers performing construction activities and sharing the 
same space with drones often struggle to express safety concerns 
directly. Instead, they must rely on other personnel to communicate 
with drone operators, whose lack of hazard recognition and safety 
identification may lead to drone incidents in construction [46]. This lack 
of direct communication methods with drones may hinder workers’ 
ability to address potential risks. Ideally, general construction workers 
who were previously uninvolved in drone operations could benefit from 
effective direct communication with drones, allowing them to redirect 
the drones when they feel unsafe in close proximity. This proactive 
approach could prevent potential hazards and create a safer on-site 
working environment. To realize this vision, innovative communica
tion methods are essential to empower human workers to communicate 
effectively and actively with drones, especially addressing safety chal
lenges in human-drone interaction within construction. Enabling active 
communication with drones holds the potential to reduce miscommu
nication and misunderstandings, ultimately mitigating the adverse ef
fects of human-drone interaction while simultaneously enhancing 
workers’ safety.

2.3. Communication modalities in human-drone interaction

Extensive literature has explored a range of natural communication 
modalities intuitively suited for humans, including gestures, speech, 
gaze, touch, movements, and body postures, with the aim of enhancing 
human-drone communication [47–53]. Among the modalities 
commonly employed in human-robot interaction, visual and voice 
commands have gained prominence due to their user-friendly nature, 
requiring minimal additional tools or training [54]. In the context of 
human-drone communication, a previous elicitation study revealed that 
the majority of users favored gestures to command drones and complete 
tasks, followed by speech or a combination of both modalities [45].

Previous studies underscore the remarkable simplicity of natural 
gestures, enabling individuals to convey a wide range of ideas with ease 
[55]. Consequently, human-drone interaction necessitates only a 
concise set of gestures to effectively transmit information, as both their 
execution and recognition prove sufficient. Several gesture-focused 
studies have endeavored to determine the naturally employed gestures 
by individuals when interacting with drones [45,56,57]. Existing 
research demonstrates that gesture can be used to control flight motion 
(e.g., ‘Closer,’ ‘Further,’ ‘Stop,’ ‘Go Away’ commands) [58–67], define 
figural trajectories (e.g., ‘Circle,’ ‘Spiral’ commands) [68], and manip
ulate visual sensors of drones (e.g., ‘Take Picture,’ ‘Record Video’ 
commands) [56,69]. Notably, commercial drone manufacturers like DJI 
have also ventured into developing gestural languages (e.g., ‘Launch’ 
and ‘Follow’ commands) for user interactions [70].

Previous studies also underscore the uncomplexity of speech 
communication medium for human interaction with drones or other 
robots, as users need only remember voice commands, requiring a 
shorter training period [71]. It’s noteworthy that certain research en
deavors have explored both gesture and speech communication mo
dalities utilizing similar sets of commands. For instance, some studies 
have investigated how individuals naturally employ speech to command 
drones (e.g., ‘Up,’ ‘Down,’ ‘Closer,’ and ‘Further’ commands) [45,69]. 
Specifically, research on the development of gesture recognition systems 
has delved into creating fusion communication systems that combine 
gesture and speech (e.g., ‘Go Forward,’ ‘Go Back,’ and ‘Go away’ com
mands) [58,60,62,65,67]. Some other studies have exclusively concen
trated on developing speech recognition systems and commands capable 
of altering drones’ general motions (e.g., ‘Up,’ ‘Down,’ and ‘Stop’ 

commands) [72–75]. Additionally, commercial drone manufacturers 
have introduced speech-controlled drones, allowing speech commands 
to govern both general motions (e.g., ‘Takeoff,’ ‘Land,’ ‘Stop’ com
mands) and sensors (e.g., ‘Take a Picture’ command) [76]. The collec
tive body of research on gesture and speech communication furnishes 
invaluable insights that inform the design and implementation of the 
proposed protocol for ensuring safe human-drone interaction.

3. Research gap and point of departure

The majority of the studies on human-drone communication pri
marily focused on technical development, which enabled humans to 
communicate with drones through different commands, such as 
changing the drone’s motions or trajectories and controlling the 
embedded sensors on the drone (see section 2.3). Since these studies 
center solely around the operational needs of drone operators 
[45,56,57,69] rather than non-operators who share the same environ
ment and need to work safely around drones, the proposed commands of 
these existing studies communication only focus on operator-task- 
related and tend to overlook the pivotal role of communication in 
ensuring safety. Although communication has been proven effective in 
enhancing safety between human workers or in human-robot interaction 
(see section 2.2), no safety-oriented communication commands have 
been designed and evaluated between drones and non-operators work
ing around them.

Despite the increasing integration of drones in the construction in
dustry, no studies have addressed empowering human-drone commu
nication for non-operator construction workers, especially in the context 
of their safety. Consequently, a comprehensive understanding and 
practical solutions concerning effective safety communication between 
drones and general workers have yet to be established. Our preliminary 
study has demonstrated that gesture-based communication has great 
potential for human-drone interaction in construction environments 
[77]. However, a research gap still exists concerning how different 
communication modalities can impact the safety and well-being of 
general construction workers when they are empowered to actively 
convey their safety needs to drones operating in close proximity. To 
bridge this gap, this study focused on addressing the increasing safety 
challenges of drone presence on the construction site by developing a 
communication protocol tailored for general workers outside the drone 
operating team who possess limited drone-related information. The 
study encompasses user-centered investigations designed to assess the 
effectiveness and differences of gesture and speech communication 
modalities to ensure safe human-drone interaction.

4. Research objectives and methodology

This research aims to develop and assess the effectiveness of gesture- 
based and speech-based communication protocols to facilitate safe 
human-drone interaction on construction sites. The main goal of this 
study is to enable workers to communicate their safety needs to drones 
while understanding the impact of these protocols on workers’ safety 
and their overall experience during interactions with drones. To achieve 
this goal, the study pursued the following objectives:

(1) Development of gesture-based and speech-based communication 
protocols for facilitating safe human-drone interaction on con
struction sites,

(2) Evaluation of the influence of these communication protocols on 
physical risks, psychological impact, and worker perceptions 
during human-drone interactions.

VR as a methodological tool Given the challenges and potential risks 
associated with conducting such research on real construction sites, 
which could expose participants to actual dangers, this study employed 
VR technology to simulate work scenarios, on-site drone operations, and 
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human-drone interactions. VR offers a safe and cost-effective platform 
for testing and evaluating scenarios that may involve potential hazards 
or uncertainty [78]. It ensures worker safety while still enabling realistic 
simulations and visualizations, allowing participants to engage with 
digital objects and virtual spaces, and creating a realistic and interactive 
virtual world [79]. VR can also evoke lifelike responses at both behav
ioral and psychophysiological levels [80], enabling the reproduction of a 
realistic human-robot interaction experience in complex scenarios [81]. 
The use of VR technology has been prominent in several facets of the 
construction industry, including simulation [82–84], education [85], 
training [86], and visualization [87,88], and as a reliable tool to assess 
human-robot interaction under construction environments [89]. Exist
ing studies also explored utilizing VR to simulate drone operating 
environment and provide operator training [90–92], simulate drone- 
related safety risks [84,93], and assess the human-drone interaction in 
response to drone proximity [94–96], flight characteristics [97], and the 
perception of drone social companionship[98].

Therefore, to assess communication protocols that facilitate safe 
human-drone interaction on construction sites, a virtual construction 
site environment was developed in this study to replicate and visualize 
potential interactions between workers and drones. This virtual envi
ronment aims to represent construction workers performing general 
construction activities in hazardous environments and facing additional 
safety risks related to drones. The VR construction scenario serves as a 
platform that seamlessly integrates the proposed communication pro
tocol. It also creates situations where participants need to utilize the 
communication protocol, evoking realistic responses, including behav
ioral, psychophysiological, and perceptual reactions, when interacting 
with drones.

Fig. 1 illustrates the three phases required to complete this study:

(1) Protocol Development: This phase focused on identifying the 
safety needs of workers who work around drones on sites and 
establishing communication protocols using gestures and speech 
to communicate those safety needs to drones.

(2) VR Development: This phase focused on creating a virtual envi
ronment to mimic a realistic drone-populated construction site 
where workers and drones can interact using the developed 
communication protocols.

(3) Experimental Assessment: This phase of the study focused on a 
user-centered experiment to assess the influence of these 
communication protocols on physical risks, psychological 
impact, and worker perceptions during human-drone 
interactions.

5. Protocol development

Considering previous literature on gesture- and speech-based 
communication modalities, this phase focused on the development of 

a communication protocol for safe human-drone interaction. The pro
tocol was designed to utilize either modality to cater to the safety needs 
of construction workers operating around drones on construction sites. 
The primary objective was to empower workers to engage with drones 
actively, ensuring their safety and well-being during construction tasks, 
particularly in potentially hazardous scenarios. Instead of serving as 
passive observers, workers gained the capability to issue commands, 
actively influencing drone behavior and potentially augmenting their 
safety perception about drones. For instance, workers could halt drones 
when they felt unsafe in close proximity or direct them away to prevent 
potential collisions. In this phase, the initial critical commands for 
human-drone communication were identified, serving as the foundation 
for workers to communicate their safety requirements effectively. These 
commands were then utilized to develop both gesture-based and speech- 
based communication protocols to facilitate safe human-drone 
interaction.

6. Identification of critical commands to communicate safety 
needs

In this phase, the safety communication needs of construction 
workers to interact with drones were thoroughly assessed. This entailed 
gaining a comprehensive understanding of the specific challenges and 
concerns faced by workers when working in close proximity to drones. 
While empowering workers to communicate their safety requirements to 
drones was a primary focus, it was equally important to establish 
boundaries to prevent potential misuse or interference with drone op
erations. Therefore, the development of the communication protocol 
was carefully tailored to address workers’ safety needs without granting 
excessive control over drone operations.

As discussed in section 2.1, the potential safety challenges were 
categorized into three key areas: physical risks, psychological impacts, 
and worker perceptions [28,99]. The safety requirements for workers to 
safely interact with drones should be not only maintaining physical 
safety but also ensuring that the proximity is comfortable for humans 
[100]. To mitigate physical risks, it was imperative for workers to 
maintain a safe working distance between themselves and the drones. 
Despite the presence of obstacle detection features in commercial 
drones, the dynamic and complex working environment of construction 
sites could still lead to potential collisions [84]. Thus, enabling workers 
to actively communicate with drones and keep a safe distance to prevent 
potential collisions was deemed essential for ensuring their safety. 
Providing collision avoidance is not sufficient as when robots share the 
same workspace with humans, they also need to able to stay within a 
specified distance without causing uncomfortable [101]. Additionally, 
to address safety risks associated with psychological impacts, such as 
negative emotional states and increased cognitive loads when working 
closely with drones, workers needed the ability to redirect drones from 
their predetermined flight paths if they felt uncomfortable or unsafe, 

Fig. 1. Research methodology.
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and this could have a potentially positive impact on workers’ percep
tions regarding drones and their overall sense of safety on the job site. 
Therefore, drones must meet safety requirements by maintaining or 
adjusting a safe distance to prevent potential physical contact. They 
must also allow workers to alter the drone’s flight path if they feel un
comfortable while still enabling the drone to continue its task. In light of 
these safety requirements, four critical commands were identified:

(1) Stop Task: Workers could command the drone to stop or halt its 
movement.

(2) Keep Distance: Workers could command the drone to adjust the 
distance between them.

(3) Change Path: Workers could command the drone to alter its flight 
path.

(4) Resume Task: Workers could command the drone to continue its 
flight task from a stopped position.

6.1. Proposed gesture- and speech-based communication protocol

This step involved the integration of the previously identified critical 
commands into the framework of gesture- and speech-based communi
cation modalities as part of the communication protocol for safe human- 
drone interaction. Beyond merely incorporating the four critical com
mands, several additional considerations shaped this integration pro
cess. Firstly, ensuring compatibility and comparability between the 
gesture- and speech-based modalities was paramount for the upcoming 
experiment. Secondly, the design of gesture and speech commands 
required them to be natural, consistent, safe, and easily executable 
within the construction site context. Lastly, it was imperative that the 
commands within each modality maintained their distinctiveness to 
prevent any potential interference.

Building upon the critical commands identified in the previous step 
and drawing insights from the existing literature on gesture- and speech- 
based communication modalities, a communication protocol for safe 
human-drone interaction was devised. The existing gesture and speech 
commands found in the literature were aligned with the identified 
critical commands that enable drones to meet the safety requirements of 
workers, including not only maintaining physical safety but also 
ensuring that robot proximity is comfortable for them to share the same 
work environment. These commands should be effectively utilized in 
construction environments where typical construction activities occur. 
The commands should also have minimal training requirements for 
workers, as they already perform construction tasks in complex site 
environments. Workers should only need to remember and familiarize 
themselves with the most natural and accessible commands to stay safe. 
Specifically, four speech commands were established: “Stop,” signifying 
the Stop Command to halt or pause drone movement; “Back,” employed 
for the Keep Distance Command to modify the distance between human 
workers and the drone; “Go Away,” serving as the Change Path Com
mand to redirect the flight path; and “Keep Going,” functioning as the 
Resume Task Command to continue flying from a stopped position.

Additionally, gesture commands were developed, featuring a closed 
fist gesture for “Stop,” a flat palm extended away from the face for 
“Back,” an index finger pointing outward for “Go Away,” and a flat palm 
directed toward the face for “Keep Going.” These gestures were inten
tionally designed to be distinct from one another, ensuring unambiguous 
communication between humans and drones. A comprehensive over
view of the communication needs, and specific commands is presented 
in Table 1.

7. VR development

This phase aimed to immerse users in an interactive experience 
where they could apply the proposed communication protocol for safe 
human-drone interaction while performing construction tasks in close 
proximity to virtual drones on a construction site. This section delves 
into the design of the VR scenario, detailing how users engaged with 
virtual drones on the construction site and the technical developments 
necessary to facilitate this scenario and implement various communi
cation modalities.

7.1. Scenario design

The goal of this phase was to design a scenario in a virtual con
struction site that would allow users to apply communication modalities 
while simulating increased risks typically encountered in a construction 
setting. Given that interactions with drones can introduce additional 
safety risks, particularly in hazardous environments, the scenario 
needed to replicate these risks accurately. An analysis of construction 
accident data consistently highlights falls from heights as a leading 
cause of death and injury in the construction industry. In 2020, falls, 
slips, and trips accounted for 46.1 % of fatal injuries and 31.4 % of non- 
fatal injuries recorded in the construction sector [15]. According to the 
Center for Construction Research and Training (CPWR), injuries 
resulting from falls to lower levels represented 34.7 % of all construction 
fatalities, making it the most perilous hazard for workers [102]. A closer 
examination of fall accidents revealed that roofs, ladders, and scaf
folding were the primary work locations contributing to fatal falls in the 
construction industry [103].

To authentically replicate these hazardous conditions encountered 
on construction sites, a scenario focused on working at heights was 
devised. In this scenario, participants found themselves positioned near 
scaffolding and assigned inspection tasks while a construction crew 
worked on the slab, engaged in various tasks such as binding rebars and 
delivering and setting up scaffolds. To comprehensively simulate real
istic drone applications in construction and account for various inter
action possibilities, two generic quadcopter drones, the most popular 
and widely used drones in the construction industry [104], were used in 
the scenario, which was modeled to resemble popular drones used in 
construction [105]. They were equipped with easily accessible cameras 
that can accommodate different types of popular construction sensors, 
such as LiDAR and laser scanning devices [106], while offering opera
tional flexibility with vertical takeoff and landing [104,106]. For the 

Table 1 
Proposed Gesture- and Speech-based Communication Protocol.

Critical commands Stop Task Keep Distance Change Path Resume Task

Speech-based Commands “Stop” “Back” “Go Away” “Keep Going”
Gesture-based Commands
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purpose of this experiment, the drones were pre-programmed to fly a 
particular flight path for construction tasks along designated paths or 
positions. All workers, including participants, were non-operators who 
needed to perform their construction activities continually and were not 
operating or controlling the drones for the tasks. However, participants 
could use designated commands to communicate with the drones to 
slightly adjust the drones’ flight paths if they felt unsafe or uncomfort
able or if a drone came too close to them. One drone, the inspector 
drone, was responsible for inspecting the progress of the work around 
the virtual site by flying along a predefined path. The other, the delivery 
drone, was tasked with picking up toolboxes and delivering them to 
designated positions on the slab. Furthermore, environmental and drone 
noises were integrated into the scenario contents to replicate the real
istic site environment and drone operations.

7.2. Technical development

After finalizing the scenario design, the subsequent step centered on 
two key technical developments. Firstly, the creation of the virtual 
construction site aimed to accurately simulate a realistic construction 
environment, encompassing various structural elements, dynamic ob
jects, equipment, and construction workers engaged in their tasks. 
Secondly, gesture and speech recognition systems were implemented to 
enable communication between humans and drones within the virtual 
environment (as illustrated in Fig. 2).

The initial phase of VR development focused on constructing a vir
tual construction site with all the elements outlined in the designed 
scenario. This involved procuring 3D game objects relevant to the vir
tual construction site and converting them into the.FBX file format for 
Unity® integration. These objects encompassed a wide range, including 
buildings, equipment, temporary structures, virtual construction 
workers, and drones. To add realism, 3D models of construction workers 
were generated using Daz 3D® and then programmed and animated 
using Adobe® Mixamo’s exported animations. This allowed for the 
simulation of actual workers engaged in various construction tasks 
within the scenario, creating an immersive environment for users to 
interact with drones as they performed construction-related activities.

The second phase of technical development was dedicated to 
creating the gesture and speech recognition systems, pivotal compo
nents enabling the implementation of the proposed protocol for safe 
human-drone interaction. The gesture recognition system leveraged the 
Open XR plug-in within Unity, a widely utilized application interface for 
head-mounted devices, and the Meta Quest interaction SDK [107]. This 

SDK, associated with Meta Quest, introduced the hand tracking feature, 
which allowed hands to serve as input methods for the headsets. Uti
lizing this feature, alongside various components and configurators, 
facilitated the detection of hand poses. The four gestures devised for the 
gesture-based communication modality were defined using hand shapes, 
finger positions (e.g., curl, flexion, abduction, opposition), and trans
forms (employing wrist, palm, and finger positions as 3-axis represen
tations) [107]. Once detected by the Unity game engine, these gestures 
acted as inputs to scripts governing drone behavior and triggering cor
responding responses.

Moreover, the speech recognition system was established by utilizing 
the Windows speech recognition system API within the Unity game 
engine [108]. This implementation facilitated the integration of voice 
input from the Meta Quest 2 headset into the application. The system 
operated through two distinct processes: keyword recognition and 
dictation recognition. Keyword recognition enabled the system to 
actively listen for predefined phrases spoken by the user. This approach 
ensured that the system exclusively processed specific voice inputs, as 
delineated in the protocol, rather than analyzing all spoken content. 
Subsequently, the dictation recognizer translated the identified speech 
commands into text, thus triggering corresponding responses from the 
drones.

After the completion of the gesture and speech recognition systems, 
they were seamlessly integrated into the virtual construction site, 
enabling users to immerse themselves in the virtual environment and 
experience the gesture and speech interaction modalities for controlling 
drone behaviors.

8. Experimental assessment

This study employed a user-centered quasi-experiment with a 
between-subjects design to investigate whether the developed commu
nication protocol, utilizing communication modalities of gesture and 
speech, can enhance worker safety and well-being on construction sites 
when working with or near drones. The study adopted a between-subject 
design to minimize the time participants spent wearing VR headsets, 
thereby avoiding potential negative feelings like nausea and headache 
[109] and potential carry-over or learning effects [110], such as 
becoming familiar with the presence of drones, which could lead to 
biased responses to safety risks.

The experiment consisted of three conditions:

Fig. 2. Technical development.
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(1) Control Condition: Subjects were not able to use any communi
cation modalities to interact with drones.

(2) Gesture Condition: Subjects were able to use gesture-based 
communication modality to interact with drones.

(3) Speech Condition: Subjects were able to use speech-based 
communication modality to interact with drones.

The assessment protocol received approval from the University of 
Florida Institutional Review Board (IRB #202300203). An a priori 
power analysis was performed using G*Power v. 3.1.9.7 [111]. The 
analysis, utilizing an effect size f2 of 0.40 [112], a significance level α of 
0.05, and a desired power of 0.80 [113], with a group number of 3 for a 
between-subjects design, showed that a total sample size of 66 partici
pants would be required. Considering potential participant dropouts in 
addition to other technical and external factors, a total of 100 partici
pants were recruited in this study. The following subsections will outline 
the experiment procedures and study metrics.

8.1. Experiment procedures

In this experiment (Fig. 3), participants initially reviewed and con
sented to the study by completing a consent form. Subsequently, they 
provided demographic information and then randomly assigned to one 
of three conditions: Control, Gesture, or Speech. Before starting the 
experimental conditions, each condition viewed an instructional video 
outlining their tasks within the virtual environment. As described in 
scenario design (see Section 6.1), during the experiment, participants 
were assigned an inspection task on top of an ongoing structure, where 
they needed to stand near scaffolding and inspect a construction crew 
working on the slab. The crew was engaged in various tasks, such as 
binding rebar, delivering, and setting up scaffolds. All workers, 
including participants, were non-operators who needed to continually 
perform their construction activities and were not operating or con
trolling the drones for the tasks. To ensure participants continued to pay 
attention to the site situation and engage with the scenario during the 
inspection task, they were required to report on the scenario’s activities 
and the crew’s safety after the inspection task. For the purpose of this 
experiment, the drones were pre-programmed to fly a particular flight 
path for construction tasks along designated paths or positions. Partic
ipants were required to remain vigilant about all activities on the site 
and ensure site safety. They could change their standing positions or 
move around during the inspection if they felt unsafe or uncomfortable 
or if a drone came too close. In the Gesture and Speech condition, par
ticipants were informed that they could utilize gestures or speech to 
command the drones if they felt unsafe or uncomfortable, to slightly 
adjust the drones’ flight path (e.g., stop momentarily, fly around the 
work area), and they could practice the commands in VR before the 
experiment task. The participants in the Control condition could not 
communicate with the drones or adjust their flight paths at all (Fig. 3). 
Once they clearly understood their responsibilities, participants were 
placed in a learning scene tailored to their assigned condition, where 
they familiarized themselves with the available communication mo
dality. After confirming their command familiarity, participants pro
ceeded to engage in the actual experimental conditions. Throughout the 
experiment, data logs from the VR environment were collected to record 

their interactions and behaviors, including near-miss incidents, for 
further analysis. Upon completing the experimental tasks, participants 
filled out four post-experiment surveys: NASA TLX, SAM, Safety Risk 
Perception Scale, and NARS: interaction subscale. The following section 
will provide a detailed discussion of all the study measures employed in 
this experiment.

8.2. Study metrics

The study employed the following metrics to assess three aspects of 
physical risks, psychological impact, and worker perceptions:

• Physical Risks of Drones on Workers:
o Near-Miss Incidents [114]: A near-miss incident was defined as a 

potential hazard where no property damage or personal injury 
occurred but had the potential to occur with slight changes in time 
or position, as defined by OSHA [114]. The analysis of near-miss 
incident data is commonly used to assess safety performance 
[115] and conduct risk assessment [116]. Within this experiment, 
we programmed in Unity3D game engine to classify and record 
events as near-miss incidents when the distance between the 
human and the drone reached an intimate distance of 1.5 feet 
[117]. After each experiment, the total number of near-miss in
cidents was extracted from project log files.

• Psychological Impacts of Drones on Workers:
o Cognitive Workload by NASA-TLX [118]: NASA-TLX is a widely 

used instrument for assessing cognitive and mental workload 
during or immediately after performing a task, which has 
demonstrated reliability and effectiveness in investigating the 
psychological load of individuals performing different activities 
[119,120]. It comprises a multidimensional score based on a 
weighted average of ratings on six subscales: mental demand, 
physical demand, temporal demand, performance, effort, and 
frustration level [121]. In this study, each subscale was scored on a 
seven-point scale from very low to very high.

o Emotional Status by Self-Assessment Manikin Scale (SAM) [122]: 
SAM is a straightforward and efficient technique used to assess 
natural emotions in three dimensions: pleasure, arousal, and 
dominance [123]. It is an imagery-based measure easily under
stood and widely applied as a language-free tool [124]. The 
valence dimension of SAM represents a range of emotions from 
negative to positive, the arousal dimension reflects values from 
calm to excited, and the dominance dimension encompasses values 
from submissive to in-control.

• Worker Perception about Safely Working with Drones:
o Safety Risk Perception Scale [125,126]: Safety risk is fundamentally 

defined as the product of frequency and severity of safety incidents 
[127]: Safety Risk = Incident Frequency × Incident Severity. This 
concept has been widely used in a large number of studies to assess 
the relative risk of construction activities [128]. Pandit et al. [126]
developed the Safety Risk Perception Scale by adapting the inci
dent severity score proposed by Hallowell [125], and the Safety 
Risk Perception Scale was scored by multiplying the incident 
severity score with the expected frequency of the incident.

NASA Task Load Index (TLX)
Self-Assessment Manikin Scale (SAM)
Safety Risk Perception Scale
Negative Attitudes Toward Robots
Scale (NARS): Interaction Subscale

Control, Gesture, and Speech Conditions

Task introduction
Command practice in VR

Near Miss Incidents

Fig. 3. Experiment procedures.
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o Negative Attitudes Toward Robots Scale (NARS) Interaction Subscale 
[129]: NARS is a validated tool widely used in HRI studies, which 
was designed to determine human attitudes toward robots when 
interacting with them. In this study, the subscale of NARS specif
ically focusing on “negative attitude toward interaction with ro
bots,” was employed. This subscale includes six items, and each 
item is scored on a five-point Likert scale.

9. Results and discussion

A total of 100 participants (as shown in Table 2) were recruited for 
this study and randomly assigned to one of three conditions: the Control 
condition (33 subjects), the Gesture condition (34 subjects), and the 
Speech condition (33 subjects). The safe communication protocol is 
designed for non-operators working on site, including anyone who 
might be present on a construction site where drones are used. The 
target population for the experiment included personnel who are 
currently working in the construction industry or students from AEC 
(architecture engineering and construction) background who have ac
quired construction knowledge through practical activities such as site 
visits and will soon become construction professionals. The insights 
gained from these participants could offer initial insights into how 
communication protocols might affect construction practitioners’ safety 
and perceptions. The majority of participants were male (65 %), aged 
between 20 and 30 (68 %), graduate-level education background (71 
%), and majoring in construction, civil engineering, or architecture (80 
%). Furthermore, a significant portion of participants had previous work 
experience on construction sites (81 %) and possessed some to fair de
grees of familiarity with VR (75 %) and drones (81 %). Importantly, 
none of the participants reported experiencing severe dizziness or side 
effects from the VR device that could impede their ability to perform the 
experimental tasks, and all participants were in good physical and 
mental condition.

9.1. Near-Miss incidents

Analysis result of the total number of near-miss incidents during the 

experiment (Table 3) revealed a lower number of incidents for the 
Gesture condition (8.18 ± 5.73) and Speech condition (11.67 ± 7.09) in 
comparison to the Control condition (12.45 ± 6.48). This suggests that 
both communication protocols may have contributed to a reduction in 
safety incidents when participants interacted with the drone on the 
construction site. The normality assumption of the near-miss incident 
data was rejected (p-value < 0.001) using the Shapiro-Wilk test [130]. 
Consequently, a nonparametric Kruskal-Wallis test [131] was utilized to 
evaluate differences among the conditions, resulting in a p-value of 
0.004, indicating statistical significance. Subsequently, a post-hoc Dunn- 
Bonferroni test [132] was conducted to discern specific condition dif
ferences (Table 4). The outcomes indicated significant differences in 
Gesture vs. Control (p-value = 0.005) and Gesture vs. Speech (p-value =
0.033) means, while no significant difference between Speech vs. Con
trol means (p-value = 1.000).

The results did not provide enough evidence that subjects utilizing 
the speech modality demonstrated enhanced safety performance 
compared to the Control condition, where no specific communication 
modality was available. Interestingly, the findings highlight that the 
utilization of the gesture modality for human-drone interaction signifi
cantly reduced near-miss incidents in comparison to the Control con
dition (no communication) and the Speech condition. The results 
suggested that gesture communication showed an advancement over 
speech communication in preventing safety incidents on construction 
sites.

This gap might come from various reasons. First, in the construction 
context, the loud noise of background activities and the sound from fast- 
spinning propellers can mitigate the accurate recognition of voice 
commands [52,58,71]. The immersive VR environment in this study 
used realistic audio and spatial sound effects to mimic the real con
struction environment, which could cause the speech recognition system 
to be disrupted by various noises. In addition to technical factors, the 
perception of speech commands by the subjects could also be influenced 
by the noisy environment, making it challenging for them to hear their 
own voices clearly and adjust the speech commands accordingly. This 
noise disturbance particularly affected individuals who speak softly, as 
mentioned in subject feedback: “… I spoke too softly, but after working in 
virtual reality, I can see that I have to speak louder and more confidently.” At 
the same time, gestures can remain effective in noisy environments and 
are already observed as a popular communication mode among workers 
[133]. Furthermore, existing studies have proved that gesture is the 
more intuitive communication modality [134], which enables precise 
adjustments and continuous control throughout the interaction 
compared to speech [71,135]. The gesture modality does not depend on 
the user’s language [24], while the speech accent changes from person 
to person, impacting the recognition result [72]. During the experiment, 
6 out of the 33 subjects spontaneously incorporated gestures into their 
speech commands despite not receiving any explicit instructions 
regarding gesture-based communication. Notably, these gestures were 
aligned with the intended meaning of their speech commands, for 
instance, extending their palm toward the drone while uttering “Back” 
commands. This observation indicated that a significant 18 % of the 
subjects exhibited a preference for employing gesture-based communi
cation, even when they were in the Speech condition.

Table 2 
Demographics and Background Information.

Variable Category Number (out of 100 
subjects)

Gender Male 65
Female 34
Non-binary 1

Age ≤ 20 13
> 20 and ≤ 25 41
> 25 and ≤ 30 27
> 30 19

Educational Status Undergraduate 29
Master 35
PhD 36

Educational Background Construction 
Management

45

Civil Engineering 26
Architecture 9
Other (from AEC field) 20

Work Experience on 
Construction Site

None 19
Less than 1 year 41
1 to 2 years 15
More than 2 years 25

Understanding of VR None 7
Some Knowledge of 46
Fair 29
Competent 18

Understanding of Drone None 10
Some Knowledge of 55
Fair 26
Competent 9

Table 3 
Near-miss incidents analysis results.

Control 
(Mean ± SD)

Gesture 
(Mean ± SD)

Speech 
(Mean ± SD)

Kruskal-Wallis 
Test p-value

Near-miss 
incidents

12.45 ± 6.48 8.18 ± 5.73 11.67 ±
7.09

0.004*

* p-value < 0.05.
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9.2. Cognitive workload by NASA-TLX

Table 5 displays the results for NASA-TLX, including subscales of 
mental demand, physical demand, temporal demand, performance, 
effort, and frustration. Overall, the subjects in the Control condition had 
the lowest workload, except for physical demand and performance 
success (reversed score). The subjects in the Control condition had no 
means to communicate with drones while performing construction tasks 
on site. When they felt unsafe or uncomfortable, the only option was to 
adjust their body postures or move around to avoid any negative in
fluence from the drone. However, without any communication protocols 
to utilize, they tended to have a lower sense of success regarding the 
performing task.

In terms of the overall NASA-TLX score for each experimental con
dition (See Table 6), the Speech condition exhibited the highest score 
(3.75 ± 0.79), followed by the Gesture condition (3.59 ± 0.81), and 
lastly, the Control condition (3.11 ± 0.92). Subjects who need to use 
communication protocols during the experiment must memorize the 
newly learned instructions for the protocols and utilize them precisely 
when they feel unsafe or uncomfortable while interacting with drones. 
As a result, they processed more information simultaneously, without 
being sure about the potential results, e.g., “It was definitely demanding a 
lot of effort especially that it is my first time communicating with a drone 
while there are a lot going on, on the jobsite”; “…, Remembering which one I 
wanted to use was hard when the drones started going on a dangerous path.” 
This also led to a higher demand for mental and temporal effort and 
tended to make them more frustrated, even though they had less phys
ical demand and better task performance. Furthermore, subjects who 
utilized communication protocols mentioned that they would perform 
better if they had more practice time, e.g., “Learning the sign commands 
was a little bit challenging. Perhaps more time to memorize the sign com
mands is needed.”; “I think if I had more time to observe them and practice 
the gestures, then I would have been much better.” or they can perform the 
task with less effort, e.g., “I think I was nervous I didn’t remember the 
signals properly, but with more time it would become easier.”.

The Shapiro-Wilk test confirmed the normality assumption for the 
NASA-TLX scores (p-value > 0.05) [130]. Subsequently, a one-way 
ANOVA test [136] was conducted to evaluate differences among the 
conditions, yielding a statistically significant p-value of 0.007. A post- 
hoc Tukey HSD test [137] was conducted to identify specific differ
ences among conditions (Table 7). The outcomes indicated significant 
differences in the Speech vs. Control means (p-value = 0.007). However, 
no significant differences were observed between the Gesture vs. Control 
(p-value = 0.056) and the Gesture vs. Speech (p-value = 0.721). The 
data suggests that, although subjects who utilized gesture communica
tion protocols had a higher cognitive load compared to those who did 
not have any communication methods, the difference was not statisti
cally significant. On the other hand, utilizing speech communication 
could result in a significant cognitive load increase for subjects inter
acting with drones on a construction site. As discussed in the previous 
section, gesture modalities are more natural and effortless for subjects to 
adapt to during tasks, while speech communication can be influenced by 
environmental noise and may be challenging to adjust for improved 
performance, leading to a higher cognitive load compared to gesture 
communication.

9.3. Emotional status by Self-Assessment Manikin Scale (SAM)

The results from the SAM Scale, which measures emotional status 
across dimensions of pleasure, arousal, and dominance, are presented in 
Table 8. As shown in the figures of visual Likert scales, the scores range 
from low to high in each dimension, indicating a transition from positive 
to negative emotion, from excited to calm, and from being submissive to 
being in control. In all conditions, the average pleasure scores were 
similar (Control: 1.94 ± 0.86; Gesture: 1.94 ± 0.74, Speech: 1.94 ±

0.90. This suggests that a short period of interaction with drones, 
regardless of whether subjects use any communication method, may not 
impact their overall emotional state in terms of the pleasure dimension. 
Regarding the arousal dimension, the Control condition (2.97 ± 0.98) 
had a slightly higher average score than the Gesture (2.91 ± 0.87) and 
the Speech (2.82 ± 0.95) conditions, indicating that subjects in the 
control condition were slightly calmer than those in the other two 
conditions. This suggests that subjects became more excited when using 
communication protocols to interact with drones compared to those 
without communication methods. Subjects were required to effectively 
apply their newly acquired knowledge of protocols as they noticed the 
drone approaching. This, in turn, led them to react more intensively. For 
example, one subject provided feedback, stating, “For most of the time, it 
was fairly calm, but when the drones started getting closer, I would get a little 
nervous”. Regarding the dominance dimension, the Gesture condition 
had the highest average score (3.32 ± 0.84), followed by the the Speech 

Table 4 
Near-miss incidents post-hoc analysis results.

Conditions Mean Difference Dunn-Bonferroni Test 
p-value

Gesture vs. Control 3.15 0.005*
Speech vs. Control 0.60 1.000
Gesture vs. Speech 2.54 0.033*

* p-value < 0.05.

Table 5 
NASA-TLX descriptive statistics results.

NASA-TLX Questions* Control 
(Mean ±
SD)

Gesture 
(Mean ±
SD)

Speech 
(Mean ±
SD)

1: Mental demand: How mentally 
demanding was the task?

3.52 ± 1.37 3.97 ± 1.57 4.33 ±
1.47

2: Physical demand: How physically 
demanding was the task?

2.85 ± 1.25 2.76 ± 1.28 2.70 ±
1.31

3: Temporal: How hurried or rushed 
was the pace of the task?

3.15 ± 1.42 4.24 ± 1.37 3.76 ±
1.48

4: Performance: How successful 
were you in accomplishing what 
you were asked to do? **

5.03 ± 1.36 4.65 ± 1.12 4.00 ±
1.46

5: Effort: How hard did you have to 
work to accomplish your level of 
performance?

3.12 ± 1.29 3.91 ± 1.60 3.94 ±
1.39

6: Frustration: How insecure, 
discouraged, irritated, stressed, 
and annoyed were you?

2.91 ± 1.63 3.18 ± 1.57 3.88 ±
1.69

* Likert Scale: Very Low (1) to (7) Very High.
** Statement worded reversely.

Table 6 
NASA-TLX One-way ANOVA test analysis results.

Control 
(Mean ± SD)

Gesture 
(Mean ± SD)

Speech 
(Mean ±
SD)

One-way 
ANOVA Test p- 
value

Overall 
NASA-TLX 
score

3.11 ± 0.93 3.59 ± 0.81 3.75 ± 0.79 0.007*

* p-value < 0.05.

Table 7 
NASA-TLX post-hoc analysis results.

Conditions Difference Tukey HSD Test 
p-value

Gesture vs. Control 0.48 0.056
Speech vs. Control 0.64 0.007*
Gesture vs. Speech −0.16 0.721

* p-value < 0.05.
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(3.12 ± 0.78) and the Control (3.06 ± 1.00) conditions. This suggests 
that subjects utilizing gesture- and speech-based communication mo
dalities tended to perceive themselves as more in control while inter
acting with drones on-site because they feel safer and more comfortable 
by keeping drones out of high-risk zones that could influence them. For 
example, subjects from the Gesture condition provided feedback that the 
gesture communication protocol made it easy to control drone move
ments when needed, e.g., “I felt in control of the drone because I was sure 
that if it makes a mistake, I can change its direction or action.” ().

The normality assumption for all SAM dimensions, including plea
sure, arousal, and dominance, was rejected (p-value < 0.001) using the 
Shapiro-Wilk test [130]. Therefore, a nonparametric Kruskal-Wallis test 
[131] was conducted to assess differences among conditions, resulting 
in a p-value higher than 0.05. This indicates no statistical significance 
for any SAM dimensions. These results did not provide enough statistical 
evidence to support that the communication protocols employing ges
tures or speech had an impact on the emotional status of subjects while 
interacting with drones on the construction site. The data suggests that 
participants utilizing communication protocols tended to experience a 
slightly higher level of arousal and a heightened sense of dominance 
when compared to the Control condition. However, overall, emotional 
states remained relatively stable throughout the short duration of the 
experiment.

9.4. Safety risk perception

Table 9 illustrates the subjects’ responses across all three conditions, 
revealing distinct perceptions regarding the frequency of injury 

incidents across various severity levels during their interactions with 
drones at a construction site. Subjects most commonly perceived 
Discomfort/Pain (58 %-47 %-52 % for control-gesture-speech) and First 
Aid incidents (58 %-62 %-55 % for control-gesture-speech) as “Very 
Likely” to occur. For the Media Case incident, subjects in the Control and 
Speech conditions mostly perceived it as “Unlikely but Possible” (33 
%-39 % for control-speech), while subjects in the Gesture condition 
mostly perceived it as “Very Likely” (29 %). Regarding the Lost Work 
Time incident, subjects in the Control condition mostly perceived it as 
“Very Likely” (33 %), while subjects in the Gesture condition mostly 
perceived it as “Unlikely but Possible” (38 %), and subjects in the Speech 
condition were divided between perceiving it as “Unlikely But Possible” 
(30 %) or “Very Likely” (30 %). For the Permanent Disablement or Fa
tality incident, subjects in the Control and Speech conditions mostly 
perceive it as “Not Possible” (36 % 30 % for control-speech) or “Unlikely 
but Possible” (36 %-30 % for control-speech). Subjects in the Gesture 
condition most perceived it as “Unlikely But Possible” (38 %).

To compute the perceived safety score, we adapted scores developed 
by Hallowell [125] and Pandit et al. [126], as presented in Table 10.

The safety risk perception score results for all conditions were 
analyzed and presented in Table 11. The average safety risk perception 
scores of conditions that use communication modalities to interact with 
drones (Gesture condition: 3.89 ± 7.28, Speech condition: 2.35 ± 4.44) 
were higher than the condition without any communication modality 
(Control condition: 1.79 ± 3.26), but with higher standard deviations. 
The results indicate that subjects using communication modalities ten
ded to perceive higher risks of safety accidents resulting in injuries. 
Several factors may contribute to this observation. Firstly, subjects may 

Table 8 
SAM descriptive statistics and Kruskal-Wallis test results.

SAM Dimensions (Visual Likert Scale) Control (Mean ± SD) Gesture (Mean ± SD) Speech (Mean ± SD) Kruskal-Wallis Test p-value

Pleasure (From positive to negative emotion) 1.94 ± 0.86 1.94 ± 0.74 1.94 ± 0.90 0.970

Arousal (From excited to calm) 2.97 ± 0.98 2.91 ± 0.87 2.82 ± 0.95 0.804

Dominance (From being submissive to being in control)  3.06 ± 1.00 3.32 ± 0.84 3.12 ± 0.78 0.464

Table 9 
Percentage response results for safety risk perception scale (control-gesture-speech).

Injury Frequency Severity Not Possible Unlikely But Possible Likely Very Likely Almost Certain Total

Discomfort/Pain 6 %-3%-3% 6 %-15 %-15 % 9 %-9%-12 % 58 %-47 %-52 % 21 %-26 %-18 % 100 %-100 %-100 %
First Aid 0 %-6%-3% 24 %-6%-12 % 9 %-9%-18 % 58 %-62 %-55 % 9 %-18 %-12 % 100 %-100 %-100 %
Media Case 9 %-12 %-3% 33 %-26 %-39 % 27 %-26 %-24 % 27 %-29 %-27 % 3 %-6%-6% 100 %-100 %-100 %
Lost Work Time 12 %-9%-6% 30 %-38 %-30 % 21 %-15 %-27 % 33 %-29 %-30 % 3 %-9%-6% 100 %-100 %-100 %
Permanent Disablement or Fatality 36 %-26 %-30 % 36 %-38 %-30 % 12 %-9%-12 % 15 %-18 %-27 % 0 %-9%-0% 100 %-100 %-100 %
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have perceived drones as more uncertain and distracting when utilizing 
communication modalities due to the extended reaction time required to 
spot the drones, make distance judgments and communication de
cisions, compared to subjects in the Control condition who intuitively 
changed their postures or body positions in a shorter time to avoid 
drones, e.g., “locating the drones was a bit difficult so I was always looking 
to spot it and that made it distracting”. Secondly, the lack of sufficient 
feedback information following communication may have hindered 
their ability to confirm that the drones were no longer present in 
potentially high-risk areas. “…, I was skeptical about drone’s movements 
and kept on giving orders.”; “The gesture controls can be very precise after 
practice, but the resultant motions of the drones would be a little bit unpre
dictable”. Furthermore, subjects would perceive providing communica
tion commands based on personal judgment as unsafe because it was 
difficult to determine the timing for executing the commands and pre
venting potential incidents., e.g., “sometimes felt a bit dangerous to work 
with drones. Especially if it couldn’t automatically avoid workers but depends 
on human commands”; “it was difficult to determine what is considered safe 
or not safe.”.

The Shapiro-Wilk normality test [130] was adapted to assess the 
normality of the safety risk perception score for 100 subjects (2.69 ±
5.32). The obtained p-value was < 0.001, suggesting the normality 
assumption is rejected. Therefore, a nonparametric Kruskal-Wallis test 
[131] was conducted to examine the condition differences in safety risk 
perception scores. The p-value was 0.248, which is higher than 0.05, 
indicating that while subjects using communication protocols generally 
perceived higher safety risks, there was no statistically significant dif
ference in safety risk perception scores between the subjects who uti
lized gestures or speech and those who could not use any 
communication modalities to interact with the drones.

9.5. Negative attitudes toward robots scale (NARS): Interaction subscale

The data results for the NARS interaction subscale are presented in 
Table 12. The results show that all the subjects in the Control condition 
rated the lowest score on the statement: “I felt uneasy when I worked on 
site and drones came close to me (3.33 ± 1.22), followed by a slightly 
higher score (indicating more agreeing on the statement) in the Gesture 
condition (3.53 ± 1.05) and Speech condition (3.58 ± 1.17). These 
scores, while slightly higher in the conditions with communication ca
pabilities to drones, still fall within the range of 3.5, which implies a 
sentiment between “neutral” and “agree.” Additionally, subjects from all 

three conditions have a similar rate of around 3 (indicating “neutral” in 
the original scale) for the following statements: “I felt nervous working 
with drones in front of other people on site,” “I felt nervous when 
working around drones on site,” and “I felt paranoid when I tried to 
communicate with drones on site.” These findings indicate that subjects 
generally held neutral opinions regarding their emotions during in
teractions with drones. Additionally, the subjects in all conditions scored 
around 2 (indicating “disagree” in the original scale) for the following 
items: “Drones meant nothing to me when I performed the task on site” 
and “I hate drones performing tasks automatically and making decisions 
on site.” This suggests that the presence of drones did not negatively 
impact subjects’ perceptions of drones and their roles in on-site tasks in 
any of the conditions.

As presented in Table 13, the average negative score of the Speech 
condition (2.83 ± 0.74) was slightly more than the score of the Control 
condition (2.77 ± 0.63) and the Gesture condition (2.74 ± 0.62). This 
suggests that communication protocols did not contribute to an 
improvement in attitudes toward drones when subjects interacted with 
them on construction sites.

The Shapiro-Wilk normality test [130] was adapted to test the 
normality of the data results to evaluate the normality of the NARS 
scores for 100 subjects (2.78 ± 0.66). The obtained p-value was 0.31, 
which is higher than 0.05, suggesting the normality assumption is true. 
Therefore, a one-way ANOVA test [136] was conducted to examine the 
condition differences in NARS scores. The p-value was 0.826, indicating 
there was no significant difference in negative attitudes between con
ditions. The results suggest that the attitude toward interaction with 
drones did not significantly differ between subjects who used gesture or 
speech communication modalities to interact with drones on the virtual 
construction site and those who interacted with drones naturally, 
without any communication methods, while working on the same site. 
However, it should be noted that the negative attitude of subjects using 
communication protocols could be partly attributed to the higher 
cognitive load discussed in the previous session. The lack of information 
cannot assure subjects that the drone is no longer within an unsafe or 
uncomfortable zone and could still pose a threat, even though commu
nication protocols have helped reduce safety incidents. Additionally, the 
qualitative feedback from subjects who utilized communication pro
tocols also indicated that they hesitated to use the commands even 

Table 10 
Scores for Safety Risk Perception Scale.

Injury Frequency 
Severity

Not 
Possible

Unlikely But 
Possible

Likely Very 
Likely

Almost 
Certain

Discomfort/Pain 1.25 ×
10-4

1.25 × 10-3 0.01 0.06 2.5

First Aid 2.75 ×
10-4

2.75 × 10-3 0.03 0.14 5.5

Media Case 3.50 ×
10-4

3.50 × 10-3 0.04 0.18 7.0

Lost Work Time 4.00 ×
10-4

4.00 × 10-3 0.05 0.20 8.0

Permanent 
Disablement or 
Fatality

4.75 ×
10-4

4.75 × 10-3 0.06 0.24 9.5

Table 11 
Safety risk perception Kruskal-Wallis test analysis.

Control (Mean 
± SD)

Gesture (Mean 
± SD)

Speech (Mean 
± SD)

p- 
value

Safety risk 
perception score

1.79 ± 3.26 3.89 ± 7.28 2.35 ± 4.44 0.248

Table 12 
NARS: Interaction descriptive statistics results.

NARS: Interaction Subscale 
Questions*

Control 
(Mean ±
SD)

Gesture 
(Mean ±
SD)

Speech 
(Mean ±
SD)

1: I felt uneasy when I worked on 
site and drones came close to me.

3.33 ± 1.22 3.53 ± 1.05 3.58 ± 1.17

2: Drones meant nothing to me 
when I performed the task on site.

2.33 ± 1.11 2.06 ± 1.01 1.94 ± 1.00

3: I felt nervous working with 
drones in front other people on 
site.

2.91 ± 1.07 2.74 ± 1.33 3.27 ± 1.38

4: I hate drones performing tasks 
automatically and making 
decisions on site.

2.33 ± 1.22 2.26 ± 1.08 2.30 ± 1.16

5: I felt nervous when working 
around drones on site.

3.21 ± 1.11 3.24 ± 1.07 3.21 ± 1.19

6: I felt paranoid when I tried to 
communicate with drones on site.

2.52 ± 0.97 2.59 ± 1.26 2.69 ± 1.24

* Likert Scale: Strongly Disagree (1) to (5) Strongly Agree.

Table 13 
NARS One-way ANOVA test analysis.

Control (Mean 
± SD)

Gesture (Mean 
± SD)

Speech (Mean 
± SD)

p- 
value

Overall NARS 
score

2.77 ± 0.63 2.74 ± 0.62 2.83 ± 0.74 0.826
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though they felt unsafe or uncomfortable because they perceive pro
ductivity as a higher priority than safety, e.g., “I did not use the go away 
gesture because I did not want to stop its work.”; or reduce productivity, 
“Using the gesture commands would decrease productivity, but they can keep 
workers safe.” This conservative strategy of utilizing communication 
modalities could also impact the attitude towards drones for subjects 
who lost the opportunities to improve when they felt unsafe or 
uncomfortable.

10. Research limitation and future work

While this study provides valuable insights, certain limitations must 
be acknowledged. Firstly, the latency and accuracy of both the gesture 
and speech recognition systems can vary in real-world settings 
compared to our virtual environment. Most participants, whether in the 
Gesture or Speech condition, reported that the communication protocols 
were reliable and user-friendly during the VR experiment. For instance, 
comments included: “The gesture controls can be very precise after practice” 
and “The drones are easy to control by voice.” However, in real-world 
scenarios, these recognition systems might not be as consistent, and 
there could be discrepancies between the systems integrated into our VR 
simulation and those in an actual setting. Furthermore, speech recog
nition systems might exhibit greater latency and reduced accuracy in 
real-world applications due to the inherent intricacies of natural lan
guages [138,139]. To enhance recognition accuracy when integrating 
the Windows Speech Recognition system into Unity3D®, we deliber
ately set the speech recognizer’s confidence level lower, aiming to ac
count for the wide variety of nationalities and accents among 
participants. Nonetheless, latency remained a challenge due to system 
constraints, as echoed by participant feedback. During the experiment, 
several participants observed significant latency in the Speech condi
tion. For example, they mentioned: “The audio commands work but are 
not that accurate. There is a delay which may confuse the user” and “The 
drones seemed to have a lag time with commands.” Interestingly, those 
using the gesture communication protocol did not highlight any latency- 
related concerns. Another concern regarding speech command recog
nition is the inherent noise present in the construction site environment. 
Although the scenario in this study already included various sources of 
environmental noises and drone sounds, the real site could pose more 
disturbances and instability for speech recognition compared to the VR 
environment, thereby reducing the usability of speech commands. The 
limited scope of scenario design only covers general situations where 
drone capabilities for data capturing, including both image and speech, 
work effectively. It does not account for adverse conditions such as 
heavy rain or foggy weather, where visual and audio cues may be 
obscured.

Moreover, as detailed in the Results and Discussion section, while 
subjects claimed familiarity with the communication protocols before 
experiencing either the Gesture or Speech conditions, they might require 
additional effort to accurately employ these newly learned protocols 
when interacting with drones, particularly in safety–critical situations. 
As a result, an extended and more intensive training program could 
significantly enhance subjects’ understanding of these protocols, 
boosting their usability and effectiveness. In subsequent studies or ap
plications using the proposed communication protocols, it’s crucial to 
offer more detailed and user-centric instructions. It would also be 
beneficial to evaluate the frequency of command usage and user pref
erences for each communication command. This analysis could help 
determine if modifications or refinements to essential commands are 
required, ensuring that users receive only pertinent information. Such 
measures will guarantee that users can adeptly apply the communica
tion protocols in the least amount of time. There are limitations related 
to individual differences resulting from the between-subject experi
mental design. As a trade-off to avoid participant fatigue and VR sick
ness, as well as to mitigate carry-on effects from the three conditions, 
individual differences such as participants’ knowledge and experience 

may also have affected the results, including how they utilized 
communication or related safety impacts. Moreover, the participant 
group in this study has varying industry work experience, including AEC 
background students who are not full-time employed and lack industry 
work experience. This group may not fully represent construction 
practitioners. Statistical analysis showed that these individual charac
teristics, as reported in surveys, including industry experience, had no 
significant effect on any of the experimental metrics (near-miss, NASA 
TLX, SAM, Safety Risk Perception Scale, and NARS: interaction sub
scale). Nevertheless, future studies should consider individual differ
ences in participant demographics more carefully, given the trade-offs in 
sampling methodology, including balancing research goals, costs, 
representativeness, and different dimensions of generalizability 
[140,141]. Therefore, a better recruiting strategy should be adopted to 
acquire a more representative sample of construction practitioners, 
enhancing the generalizability of future study results.

Furthermore, while subjects using the gesture communication pro
tocol showed enhanced safety performance, effectively reducing near- 
miss incidents without added cognitive strain, they did not necessarily 
feel safer or more at ease when working alongside drones. This un
derscores the need for future studies to refine human-drone communi
cation. It is essential to present drones not merely as autonomous robots 
but as dependable, predictable collaborators. This requires a robust 
drone-to-human communication system that clearly communicates 
critical drone flight statuses, such as readiness to approach a work zone 
or adherence to safe distance guidelines. In addition to the proposed 
human-to-drone communication protocols, an improved drone-to- 
human communication system should offer real-time feedback on 
human commands and subsequent drone actions, like flight path 
changes or task completion updates. By ensuring workers receive im
mediate confirmations regarding drone safety measures, such a system 
could significantly reduce cognitive demands on workers and address 
their safety concerns.

Finally, future research should also consider construction environ
ments with varied working conditions, as these can pose challenges for 
communication protocols, especially those reliant on gestures or other 
specific modalities. The inspection at heights scenario designed in this 
study aimed to represent workers performing general construction ac
tivities in hazardous environments and facing additional safety risks 
related to drones. However, this specific scenario or task content is 
limited and cannot fully replicate the numerous construction tasks in the 
real world. Although the training requirements for the communication 
commands were minimal during the experiment, all participants 
confirmed they became familiar with the communication protocol and 
were ready to utilize it within three minutes. Differences in construction 
activities or tasks could lead to varied safety impacts and affect which 
communication modalities are more suitable for specific scenarios, 
including potential workload burdens on workers such as mental, 
physical, and effort demands. This study focused on evaluating funda
mental communication protocols within a VR-based construction envi
ronment to understand their safety and psychological impacts on non- 
operator construction workers. While the scope was limited to basic 
instructions, the findings provide a foundational understanding that can 
inform the development of more complex communication methods. 
Future research should explore the application of these protocols in 
comprehensive construction tasks to address the challenges and costs 
associated with more intricate communication methods that offer users 
a range of modality options. For instance, workers engaged in intricate 
tasks, where their hands are occupied with tools, may find gesture-based 
communication impractical. Moreover, situations where workers and 
drones collaborate closely demand an enriched information exchange. 
Communication protocols in such contexts must be finely tuned to the 
intricacies of the task at hand. For example, in scenarios where workers 
and drones collaborate on safety inspections, there is a pressing need for 
communication tools that address risk levels, pinpoint risk locations, 
and update the status of risk mitigation efforts.
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11. Conclusion

In this study, gesture-based and speech-based communication pro
tocols were developed and assessed to enhance the safety of human- 
drone interactions on construction sites. The study particularly 
focused on non-operator workers who have no control over drones and 
limited information about their mission. Gesture and speech modalities, 
which are the most intuitive and commonly used methods for commu
nicating with drones, were employed in designing the safe communi
cation protocols. Critical commands “Stop Task,” “Keep Distance,” 
“Change Path,” and “Resume Task” were identified to assist construction 
workers in maintaining safety while working around drones. An 
immersive VR environment, replicating construction site dynamics and 
integrating gesture and speech recognition systems via the Unity3D® 
game engine, served as the foundation for our user-centric experiment.

The impact of these protocols on safety, covering physical risks, 
psychological effects, and worker perceptions during human-drone in
teractions, was investigated using a between-subject research design. 
The results showed that effective communication reduced the likelihood 
of accidents (as indicated by near-miss incident numbers in the control 
condition vs other conditions). The results also revealed that the gesture 
communication protocol was particularly effective in minimizing the 
risk of physical contact during human-drone interactions on construc
tion sites. It demonstrated no substantial adverse effects on participants’ 
psychological well-being or perceptions. In contrast, while the speech 
protocol added cognitive load, indicating potential psychological strain, 
it did not significantly reduce physical contact risks. Overall, gesture- 
based protocols outperformed speech-based ones in promoting safe 
communication on construction sites.

This research deepens the understanding of how various human- 
drone interaction (HDI) communication modalities can enhance the 
safety and well-being of construction workers. Given the unique chal
lenges posed by construction environments—marked by their 
complexity and dynamism—it is essential to address the needs of general 
workers, especially those not part of drone operating teams with limited 
drone-related knowledge. As drones become more prevalent in con
struction, potential risks arising from increased human-drone in
teractions will intensify. Our proposed protocols offer an innovative 
strategy to ensure safety in these interactions, emphasizing the impor
tance of HDI considerations for all stakeholders. The proposed protocol 
can be implemented as an innovative intervention strategy for drones 
employed in construction sites while bringing up the safety consider
ations in human-drone interaction for all the stakeholders. The assess
ment results from the user-centered experiment can guide drone 
manufacturers and tech firms in developing functions tailored to the 
construction industry, prioritizing worker safety and well-being. This 
study also introduced a unique and novel framework for assessing the 
impact of human-drone interactions on construction worker safety using 
immersive virtual reality. This framework can be employed for broader 
human-robot interaction studies in the construction industry. The 
immersive VR environment with integrated communication protocols 
could also serve as a valuable tool for providing accessible opportunities 
for construction workers to learn about the applications of drones and 
the innovative future of construction sites.
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[80] J. Kisker, T. Gruber, B. Schöne, Behavioral realism and lifelike 
psychophysiological responses in virtual reality by the example of a height 
exposure, Psychol. Res. 85 (2021) 68–81, https://doi.org/10.1007/s00426-019- 
01244-9.

[81] V. Villani, B. Capelli, L. Sabattini, Use of virtual reality for the evaluation of 
human-robot interaction systems in complex scenarios, 2018 27th IEEE Int. 
Symposium on Robot and Human Interactive Communication (RO-MAN) (2018) 
422–427, https://doi.org/10.1109/ROMAN.2018.8525738.

[82] A.A.E. Nimr, Y. Mohamed, Application of gaming engines in simulation driven 
visualization of construction operations, J. Inf. Technol. Constr. (2011).

[83] P.V. Rekapalli, J.C. Martinez, Discrete-event simulation-based virtual reality 
environments for construction operations: technology introduction, J. Constr. 
Eng. Manag. 137 (2011) 214–224, https://doi.org/10.1061/(ASCE)CO.1943- 
7862.0000270.

[84] Z. Zhu, I. Jeelani, M. Gheisari, Physical risk assessment of drone integration in 
construction using 4D simulation, Autom. Constr. 156 (2023) 105099, https:// 
doi.org/10.1016/j.autcon.2023.105099.

[85] A.Z. Sampaio, O.P. Martins, The application of virtual reality technology in the 
construction of bridge: the cantilever and incremental launching methods, 
Autom. Constr. 37 (2014) 58–67, https://doi.org/10.1016/j.autcon.2013.10.015.

[86] N. Dawood, G. Miller, J. Patacas, M. Kassem, Combining serious games and 4D 
modelling for construction health and safety training, Computing in Civil and 
Building Eng. (2014) 2087–2094, https://doi.org/10.1061/9780784413616.259.

[87] X. Shen, E. Marks, Near-miss information visualization tool in BIM for 
construction safety, J. Constr. Eng. Manag. 142 (2016) 04015100, https://doi. 
org/10.1061/(ASCE)CO.1943-7862.0001100.

[88] C.-C. Yang, V.R. Kamat, C.C. Menassa, BIMap: plan drawings as tangible 
interfaces for building information models, Construction Res. Congress. (2016) 
2239–2249, https://doi.org/10.1061/9780784479827.223.

[89] P.B. Rodrigues, R. Singh, M. Oytun, P. Adami, P.J. Woods, B. Becerik-Gerber, 
L. Soibelman, Y. Copur-Gencturk, G.M. Lucas, A multidimensional taxonomy for 
human-robot interaction in construction, Autom. Constr. 150 (2023) 104845, 
https://doi.org/10.1016/j.autcon.2023.104845.

[90] M. Macchini, M. Lortkipanidze, F. Schiano, D. Floreano, 2021 The Impact of 
Virtual Reality and Viewpoints in Body Motion Based Drone Teleoperation, in: 
2021 IEEE Virtual Reality and 3D User Interfaces (VR): pp. 511–518. doi: 
10.1109/VR50410.2021.00075.

[91] Y. Li, M.M. Karim, R. Qin, A virtual-reality-based training and assessment system 
for bridge inspectors with an assistant drone, IEEE Trans. Hum.-Mach. Syst. 52 
(2022) 591–601, https://doi.org/10.1109/THMS.2022.3155373.

[92] M.N. Sakib, T. Chaspari, A.H. Behzadan, Physiological data models to understand 
the effectiveness of drone operation training in immersive virtual reality, 
J. Comput. Civ. Eng. 35 (2021) 04020053, https://doi.org/10.1061/(ASCE) 
CP.1943-5487.0000941.

[93] G. Albeaino, P. Brophy, M. Gheisari, R.R.A. Issa, I. Jeelani, Working with drones: 
design and development of a virtual reality safety training environment for 
construction workers, Computing in Civil Eng. (2022) 1335–1342, https://doi. 
org/10.1061/9780784483893.163.

[94] R. Bretin, M. Khamis, E. Cross, “Do I Run Away?”: Proximity, Stress 
and Discomfort in Human-Drone Interaction in Real and Virtual Environments, 
in: J. Abdelnour Nocera, M. Kristín Lárusdóttir, H. Petrie, A. Piccinno, M. 
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[119] C. Nikulin, G. Lopez, E. Piñonez, L. Gonzalez, P. Zapata, NASA-TLX for 
predictability and measurability of instructional design models: case study in 
design methods, Education Tech. Res. Dev. 67 (2019) 467–493, https://doi.org/ 
10.1007/s11423-019-09657-4.

[120] S. Rubio, E. Díaz, J. Martín, J.M. Puente, Evaluation of subjective mental 
workload: a comparison of SWAT, NASA-TLX, and workload profile methods, 
Appl. Psychol. 53 (2004) 61–86, https://doi.org/10.1111/j.1464- 
0597.2004.00161.x.

[121] A. Cao, K.K. Chintamani, A.K. Pandya, R.D. Ellis, NASA TLX: software for 
assessing subjective mental workload, Behavior Res. Methods 41 (2009) 113–117, 
https://doi.org/10.3758/BRM.41.1.113.

[122] M.M. Bradley, P.J. Lang, Measuring emotion: the self-assessment manikin and the 
semantic differential, J. Behavior Therapy and Experimental Psychiatry 25 (1994) 
49–59, https://doi.org/10.1016/0005-7916(94)90063-9.

[123] M. Grimm, K. Kroschel, Evaluation of natural emotions using self assessment 
manikins, in: IEEE Workshop on Automatic Speech Recognition and 
Understanding, 2005., 2005: pp. 381–385. doi: 10.1109/ASRU.2005.1566530.

[124] T.-M. Bynion, M. Feldner, Self-Assessment Manikin, in: 2017: pp. 1–3. doi: 
10.1007/978-3-319-28099-8_77-1.

[125] M.R. Hallowell, A formal model for construction safety and health risk 
management, Ph.D., Oregon State University, 2008. https://www.proquest.com/ 

docview/230670029/abstract/F250A9D1F5C34F36PQ/1 (accessed September 
18, 2023).

[126] B. Pandit, A. Albert, Y. Patil, A.J. Al-Bayati, Impact of safety climate on hazard 
recognition and safety risk perception, Saf. Sci. 113 (2019) 44–53, https://doi. 
org/10.1016/j.ssci.2018.11.020.

[127] S. Baradan, M.A. Usmen, Comparative injury and fatality risk analysis of building 
trades, J. Constr. Eng. Manag. 132 (2006) 533–539, https://doi.org/10.1061/ 
(ASCE)0733-9364(2006)132:5(533).

[128] B.R. Fortunato, M.R. Hallowell, M. Behm, K. Dewlaney, Identification of safety 
risks for high-performance sustainable construction projects, J. Constr. Eng. 
Manag. 138 (2012) 499–508, https://doi.org/10.1061/(ASCE)CO.1943- 
7862.0000446.

[129] T. Nomura, T. Kanda, T. Suzuki, Experimental investigation into influence of 
negative attitudes toward robots on human–robot interaction, AI & Soc. 20 
(2006) 138–150, https://doi.org/10.1007/s00146-005-0012-7.

[130] S.S. Shapiro, M.B. Wilk, An analysis of variance test for normality (complete 
samples), Biometrika 52 (1965) 591–611, https://doi.org/10.2307/2333709.

[131] W.H. Kruskal, W.A. Wallis, Use of ranks in one-criterion variance analysis, J. Am. 
Stat. Assoc. 47 (1952) 583–621, https://doi.org/10.1080/ 
01621459.1952.10483441.

[132] O.J. Dunn, Multiple comparisons among means, J. Am. Stat. Assoc. 56 (1961) 
52–64, https://doi.org/10.1080/01621459.1961.10482090.

[133] J. Berg, S. Lu, Review of Interfaces for Industrial Human-Robot Interaction, Curr. 
Robot Rep. 1 (2020) 27–34, https://doi.org/10.1007/s43154-020-00005-6.

[134] I.L. E, J.A. Landay, J.R. Cauchard, Jane L., Drone & Wo: Cultural Influences on 
Human-Drone Interaction Techniques, in: Proceedings of the 2017 CHI 
Conference on Human Factors in Computing Systems, Association for Computing 
Machinery, New York, NY, USA, 2017: pp. 6794–6799. doi: 10.1145/ 
3025453.3025755.

[135] E. Redden, C. Carstens, R. Pettitt, Intuitive Speech-based Robotic Control, 2010. 
https://apps.dtic.mil/sti/citations/ADA519652 (accessed May 22, 2023).

[136] R.A. Fisher, Statistical methods for research workers, in: S. Kotz, N.L. Johnson 
(Eds.), Breakthroughs in Statistics: Methodology and Distribution, Springer, New 
York, NY, 1992, pp. 66–70, https://doi.org/10.1007/978-1-4612-4380-9_6.

[137] J.W. Tukey, Comparing individual means in the analysis of variance, Biometrics 5 
(1949) 99–114, https://doi.org/10.2307/3001913.

[138] G. Albeaino, M. Gheisari, R.R.A. Issa, Human-Drone Interaction (HDI): 
Opportunities and Considerations in Construction, in: H. Jebelli, M. Habibnezhad, 
S. Shayesteh, S. Asadi, S. Lee (Eds.), Automation and Robotics in the Architecture, 
Engineering, and Construction Industry, Springer International Publishing, Cham, 
2022, pp. 111–142, https://doi.org/10.1007/978-3-030-77163-8_6.

[139] T. Gong, H. Cho, B. Lee, S.-J. Lee, Knocker: vibroacoustic-based object recognition 
with smartphones, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3 
(2019) 1–21, https://doi.org/10.1145/3351240.

[140] A. Acharya, A. Prakash, P. Saxena, A. Nigam, Sampling: Why and How of it? Anita 
S Acharya, Anupam Prakash, Pikee Saxena, Aruna Nigam, Indian Journal of 
Medical Specilaities (2013). doi: 10.7713/ijms.2013.0032.

[141] J.N. Druckman, D.P. Greene, J.H. Kuklinski, Students as Experimental 
Participants: A Defense of the “Narrow Data Base,” in: Cambridge Handbook of 
Experimental Political Science, Cambridge University Press, 2011. doi: 10.2139/ 
ssrn.1498843.

Z. Zhu et al.                                                                                                                                                                                                                                      Advanced Engineering Informatics 62 (2024) 102827 

16 

https://doi.org/10.1007/s12369-010-0064-9
https://doi.org/10.1007/s12369-010-0064-9
https://doi.org/10.3758/BF03193146
https://doi.org/10.3758/BF03193146
https://doi.org/10.1519/JSC.0b013e318278eea0
https://doi.org/10.1519/JSC.0b013e318278eea0
https://doi.org/10.1016/j.ssci.2009.06.006
https://doi.org/10.1061/9780784413517.096
https://doi.org/10.1061/9780784413517.096
https://doi.org/10.1007/s11423-019-09657-4
https://doi.org/10.1007/s11423-019-09657-4
https://doi.org/10.1111/j.1464-0597.2004.00161.x
https://doi.org/10.1111/j.1464-0597.2004.00161.x
https://doi.org/10.3758/BRM.41.1.113
https://doi.org/10.1016/0005-7916(94)90063-9
https://doi.org/10.1016/j.ssci.2018.11.020
https://doi.org/10.1016/j.ssci.2018.11.020
https://doi.org/10.1061/(ASCE)0733-9364(2006)132:5(533)
https://doi.org/10.1061/(ASCE)0733-9364(2006)132:5(533)
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000446
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000446
https://doi.org/10.1007/s00146-005-0012-7
https://doi.org/10.2307/2333709
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1080/01621459.1961.10482090
https://doi.org/10.1007/s43154-020-00005-6
https://doi.org/10.1007/978-1-4612-4380-9_6
https://doi.org/10.2307/3001913
https://doi.org/10.1007/978-3-030-77163-8_6
https://doi.org/10.1145/3351240

	Using gesture and speech communication modalities for safe human-drone interaction in construction
	1 Introduction
	2 Background
	2.1 Safety challenges of human-drone interaction in construction
	2.2 Human-robot communication for safe co-existence
	2.3 Communication modalities in human-drone interaction

	3 Research gap and point of departure
	4 Research objectives and methodology
	5 Protocol development
	6 Identification of critical commands to communicate safety needs
	6.1 Proposed gesture- and speech-based communication protocol

	7 VR development
	7.1 Scenario design
	7.2 Technical development

	8 Experimental assessment
	8.1 Experiment procedures
	8.2 Study metrics

	9 Results and discussion
	9.1 Near-Miss incidents
	9.2 Cognitive workload by NASA-TLX
	9.3 Emotional status by Self-Assessment Manikin Scale (SAM)
	9.4 Safety risk perception
	9.5 Negative attitudes toward robots scale (NARS): Interaction subscale

	10 Research limitation and future work
	11 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


