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ARTICLE INFO ABSTRACT

Keywords: Drones are increasingly being used in the construction industry for numerous applications. However, their
Human-Drone Interaction presence poses safety risks to construction workers who work around them but have limited control and in-
Gesture formation about these drones. To ensure safety, general construction workers who are not part of the pilot teams
f/li):tica}; Reality (VR) should also be able to communicate their concerns with drones effectively and naturally. Despite its importance,
Safety research on human-drone communication within construction for non-operator workers is scarce. This study
Drone developed and evaluated communication protocols using gesture and speech modalities to ensure safe human-
Construction drone interactions for non-operator workers in construction environments. An immersive VR environment

replicating construction site dynamics was developed, enabling workers to utilize gesture or speech communi-
cation protocols while working with drones. A total of 100 participants were recruited for the user-centered study
analysis on an immersive VR construction site, and the safety implications and cognitive loads of both protocols
were assessed both quantitatively and qualitatively. The findings suggest that gesture-based communication is
more effective than speech-based communication in mitigating risks and alleviating the negative impacts of

drones without imposing additional cognitive strain on users on construction sites.

1. Introduction

Advanced technologies have become widely adopted and imple-
mented in the construction industry to enhance safety, quality, schedule,
and cost performance [1]. Specifically, drones, also known as unmanned
aerial vehicles (UAVs), have gained popularity in construction projects
due to their numerous advantages. According to DroneDeploy, con-
struction is already the largest adopter of drones among the US in-
dustries, with 94 % of respondents using drones as their primary tool for
digitizing construction sites [2]. A recent industry report shows that 88
% of drone users in the construction industry intend to either increase or
maintain their investment in drone technology [3]. According to
another industry report, the size of the worldwide market for con-
struction drones is projected to increase to $11,968.6 million by 2027,
with a compound annual growth rate of 15.4 % from 2020 to 2027 [4].
More than half of the drone users in the construction industry believe
that drones are expected to become even more common in the near
future compared to their current usage, with 21 % holding the opinion
that they will be ubiquitous [2]. Drones have been employed in the
construction industry for numerous applications, such as building
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inspection [5,6], damage assessment [7,8], site surveying and mapping
[9,10], progress monitoring [11,12], and safety inspection [13]. More-
over, they are being explored for more active roles in applications
beyond data collection, such as improving operations, reducing cost,
and increasing safety [2], including assembling construction compo-
nents [14].

However, since the construction industry revolves around human
labor, drones must operate in close proximity to human workers,
impacting each other significantly. As drones evolve from passive ob-
servers to active participants in construction projects, human workers
must adapt their behavior to collaborate with these aerial agents.
Similarly, drones must adjust their flight paths to ensure human safety.
The presence of drones alongside various construction crews, even those
unrelated to drone operations, poses physical risks to workers and af-
fects them psychologically. Given that the construction industry is
already considered one of the most dangerous [15], a rising risk of un-
intended contact between drones and workers [16] poses new safety
challenges and increased cognitive loads for the workers [17].

To mitigate safety risks associated with drones in construction, active
engagement between construction personnel and drones via various
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communication methods is crucial. Effective communication holds
paramount importance in an industry prone to accidents and fatalities. It
aids in reducing uncertainty [18], perceived threat, and lack of control
[19,201, which are known stressors in construction work. By facilitating
effective communication, workers can actively exchange information
and influence drone behavior. For instance, if workers feel unsafe due to
drones’ proximity, they should be able to redirect drones to prevent
collisions. Human-to-drone communication should also be intuitive and
natural to foster trust [21], build confidence, and establish a connection
between workers and drones [22] to improve performance consequently
[23] and enhance productivity [24]. Conversely, inadequate commu-
nication may impair human judgment and decision-making, making
drone interaction more challenging and less safe for construction
workers [13,25].

This study’s primary objective is to establish and assess a safety
communication protocol utilizing natural interaction methods, specif-
ically speech and gestures, for general workers (those who possess
limited knowledge of drone operations but work within drone-inhabited
construction sites). Virtual reality (VR) technology was employed to
investigate the efficacy of gestures and speech for human workers to
express their safety requirements. Protocols for human-drone commu-
nication via gestures and speech were developed and validated within a
virtual construction environment. Additionally, a user-centered study,
coupled with safety performance assessments in the virtual setting, was
conducted to evaluate the effectiveness and distinctions qualitatively
and quantitatively between gesture and speech communication modal-
ities in facilitating safe human-drone interactions.

2. Background
2.1. Safety challenges of human-drone interaction in construction

The construction industry, already known for its high risk, has seen
over 5,000 fatal work injuries in the United States in the past five years,
as reported by the Bureau of Labor Statistics [15]. Beyond fatalities, the
industry also recorded over 174,000 non-fatal injuries and illnesses in
2020 alone [26]. These non-fatal incidents can result in severe
disability, income loss, chronic pain, and ongoing medical expenses,
significantly impacting workers’ quality of life. Even minor injuries can
lead to missed workdays, reduced productivity, and increased medical
costs [27]. As the integration of drones in construction grows, it in-
troduces additional safety challenges, potentially heightening the
danger on construction sites, particularly for workers exposed to haz-
ardous conditions, such as working at heights, handling dangerous tools,
or operating near heavy equipment.

Integrating drones in construction presents various safety challenges
encompassing physical risks, psychological impacts, and negative per-
ceptions. Physical risks are multifaceted and involve potential hazards
such as collisions with flying drones, the danger of being struck by
falling drones or their components, entanglement in drone rotors and
moving parts, and exposure to dust emissions generated by swiftly
spinning drone rotors [28]. The growing prevalence of drones on con-
struction sites has amplified concerns regarding physical risks, with
expectations of increased incidents, including near-miss events and
more hazardous accidents that could result in severe or fatal injuries
[16]. Psychological impacts emerge in the form of acute stress, which
elevates cognitive load and sensory saturation, culminating in negative
emotional states and potential fatigue. While the previous study [29] did
not find statistical evidence to associate drone presence with changes in
physiological and emotional states, as the methods and metrics used in
experimental settings may not fully capture the complexities of real-
world construction sites, this result is not equivalent to drones has no
psychological effects. Therefore, further research should be conducted
to explore potential safety implications in practical significance or other
psychological impacts, especially when designing training programs or
tools to facilitate safe human-drone interaction. For instance, the
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presence of drones can introduce noise and visual distractions, trig-
gering adverse emotional responses among workers laboring near
drones and potentially provoking a sense of little or no personal control
[30]. Working alongside drones can also intensify the fear of errors, as
employees perceive the need for flawless execution, straining their ca-
pabilities further in already demanding construction environments [31].
It should be noted that construction workers’ negative perception of
drones may lead to the fear of working with or around drones [32].
These concerns include a lack of perceived safety, where workers have
doubts about the reliability or precision of drones, consequently
avoiding working with these flying robots. Furthermore, workers might
exhibit negative attitudes toward drones, viewing them as a threat
rather than a helpful tool or friendly co-worker. Privacy concerns may
exacerbate these negative perceptions as workers perceive surveillance,
leading to cognitive distraction and heightened accident risks [28].

Previous research has extensively recognized the safety challenges
inherent in human-drone interaction within construction sites and the
consequential impact on worker safety and well-being. While previous
literature [28] has proposed various conceptual frameworks and rec-
ommendations for integrating UAVs safely into construction environ-
ments, there is a notable lack of empirical studies and tested solutions
that address the specific communication protocols and safety needs of
workers. This study endeavors to bridge this void by crafting a
comprehensive communication protocol to empower human workers
with active and effective means of communication with drones, ulti-
mately serving as a safeguard against physical risks, particularly acci-
dents stemming from drone collisions. It is envisioned that such a
human-to-drone communication protocol will not only mitigate psy-
chological impacts by cultivating positive emotional states among
workers and alleviating cognitive burdens but also reshape worker
perceptions by bolstering their sense of safety and countering negative
attitudes. Ultimately, this endeavor aims to foster a safer and more
harmonious work environment.

2.2. Human-robot communication for safe co-existence

People use communication to exchange information and reduce
uncertainty [33]; positive communication leads to positive relationships
that can enhance trust, satisfaction, and comfort. Effective communi-
cation is essential in the construction industry to ensure occupant safety,
given the industry’s high risk of accidents and fatalities, and commu-
nication among team members improves safety outcomes and promotes
worker safety [34-36]. Communication between humans and robots
also provides similar benefits by creating meaning and exchanging in-
formation to achieve better performance [37]. Effective communication
between humans and robots can give robots the intelligence to under-
stand the situation [24] and the respective responsibilities [38]. It also
helps to develop common ground and a shared understanding, espe-
cially the decision-making in complex environments [39], such as con-
struction sites. The modes of human-robot communication applied in
construction include direct physical interaction, remote contactless
interaction, and message exchange through interfaces [40].

Human-robot communication also has essential safety implications
that can help react to unexpected or potentially unsafe situations
[41,42]. For example, effective human drone communication extends
the capability of individuals who were previously outside the drone
operation team to also be able to intuitively engage with the drone
system and address safety concerns in potentially hazardous situations
[43,44]. Establishing such effective communication channels empowers
drones to grasp the contextual situation, comprehend their re-
sponsibilities, rectify errors, and ensure human worker safety [24,38].
Furthermore, employing natural communication modalities is pivotal
for fostering trust between humans and co-robots [21], enhancing per-
formance in time-sensitive environments [23], optimizing productivity
and resource utilization [24], instilling confidence in interactions, and
even nurturing a sense of personal connection or companionship
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between workers and drones [22].

As the adoption of drones in construction tasks continues to grow,
there is a pressing need to enhance their operational intelligence to meet
performance requirements and ensure worker safety. The conventional
remote control method for drones is cumbersome and unnatural, espe-
cially for individuals engaged in multiple on-site tasks [45]. Notably,
construction workers performing construction activities and sharing the
same space with drones often struggle to express safety concerns
directly. Instead, they must rely on other personnel to communicate
with drone operators, whose lack of hazard recognition and safety
identification may lead to drone incidents in construction [46]. This lack
of direct communication methods with drones may hinder workers’
ability to address potential risks. Ideally, general construction workers
who were previously uninvolved in drone operations could benefit from
effective direct communication with drones, allowing them to redirect
the drones when they feel unsafe in close proximity. This proactive
approach could prevent potential hazards and create a safer on-site
working environment. To realize this vision, innovative communica-
tion methods are essential to empower human workers to communicate
effectively and actively with drones, especially addressing safety chal-
lenges in human-drone interaction within construction. Enabling active
communication with drones holds the potential to reduce miscommu-
nication and misunderstandings, ultimately mitigating the adverse ef-
fects of human-drone interaction while simultaneously enhancing
workers’ safety.

2.3. Communication modalities in human-drone interaction

Extensive literature has explored a range of natural communication
modalities intuitively suited for humans, including gestures, speech,
gaze, touch, movements, and body postures, with the aim of enhancing
human-drone communication [47-53]. Among the modalities
commonly employed in human-robot interaction, visual and voice
commands have gained prominence due to their user-friendly nature,
requiring minimal additional tools or training [54]. In the context of
human-drone communication, a previous elicitation study revealed that
the majority of users favored gestures to command drones and complete
tasks, followed by speech or a combination of both modalities [45].

Previous studies underscore the remarkable simplicity of natural
gestures, enabling individuals to convey a wide range of ideas with ease
[55]. Consequently, human-drone interaction necessitates only a
concise set of gestures to effectively transmit information, as both their
execution and recognition prove sufficient. Several gesture-focused
studies have endeavored to determine the naturally employed gestures
by individuals when interacting with drones [45,56,57]. Existing
research demonstrates that gesture can be used to control flight motion
(e.g., ‘Closer,” ‘Further,” ‘Stop,” ‘Go Away’ commands) [58-67], define
figural trajectories (e.g., ‘Circle,” ‘Spiral’ commands) [68], and manip-
ulate visual sensors of drones (e.g., ‘Take Picture,” ‘Record Video’
commands) [56,69]. Notably, commercial drone manufacturers like DJI
have also ventured into developing gestural languages (e.g., ‘Launch’
and ‘Follow’ commands) for user interactions [70].

Previous studies also underscore the uncomplexity of speech
communication medium for human interaction with drones or other
robots, as users need only remember voice commands, requiring a
shorter training period [71]. It’s noteworthy that certain research en-
deavors have explored both gesture and speech communication mo-
dalities utilizing similar sets of commands. For instance, some studies
have investigated how individuals naturally employ speech to command
drones (e.g., ‘Up,” ‘Down,” ‘Closer,” and ‘Further’ commands) [45,69].
Specifically, research on the development of gesture recognition systems
has delved into creating fusion communication systems that combine
gesture and speech (e.g., ‘Go Forward,” ‘Go Back,” and ‘Go away’ com-
mands) [58,60,62,65,67]. Some other studies have exclusively concen-
trated on developing speech recognition systems and commands capable
of altering drones’ general motions (e.g., ‘Up,” ‘Down,” and ‘Stop’
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commands) [72-75]. Additionally, commercial drone manufacturers
have introduced speech-controlled drones, allowing speech commands
to govern both general motions (e.g., ‘Takeoff,” ‘Land,” ‘Stop’ com-
mands) and sensors (e.g., ‘Take a Picture’ command) [76]. The collec-
tive body of research on gesture and speech communication furnishes
invaluable insights that inform the design and implementation of the
proposed protocol for ensuring safe human-drone interaction.

3. Research gap and point of departure

The majority of the studies on human-drone communication pri-
marily focused on technical development, which enabled humans to
communicate with drones through different commands, such as
changing the drone’s motions or trajectories and controlling the
embedded sensors on the drone (see section 2.3). Since these studies
center solely around the operational needs of drone operators
[45,56,57,69] rather than non-operators who share the same environ-
ment and need to work safely around drones, the proposed commands of
these existing studies communication only focus on operator-task-
related and tend to overlook the pivotal role of communication in
ensuring safety. Although communication has been proven effective in
enhancing safety between human workers or in human-robot interaction
(see section 2.2), no safety-oriented communication commands have
been designed and evaluated between drones and non-operators work-
ing around them.

Despite the increasing integration of drones in the construction in-
dustry, no studies have addressed empowering human-drone commu-
nication for non-operator construction workers, especially in the context
of their safety. Consequently, a comprehensive understanding and
practical solutions concerning effective safety communication between
drones and general workers have yet to be established. Our preliminary
study has demonstrated that gesture-based communication has great
potential for human-drone interaction in construction environments
[77]. However, a research gap still exists concerning how different
communication modalities can impact the safety and well-being of
general construction workers when they are empowered to actively
convey their safety needs to drones operating in close proximity. To
bridge this gap, this study focused on addressing the increasing safety
challenges of drone presence on the construction site by developing a
communication protocol tailored for general workers outside the drone
operating team who possess limited drone-related information. The
study encompasses user-centered investigations designed to assess the
effectiveness and differences of gesture and speech communication
modalities to ensure safe human-drone interaction.

4. Research objectives and methodology

This research aims to develop and assess the effectiveness of gesture-
based and speech-based communication protocols to facilitate safe
human-drone interaction on construction sites. The main goal of this
study is to enable workers to communicate their safety needs to drones
while understanding the impact of these protocols on workers’ safety
and their overall experience during interactions with drones. To achieve
this goal, the study pursued the following objectives:

(1) Development of gesture-based and speech-based communication
protocols for facilitating safe human-drone interaction on con-
struction sites,

(2) Evaluation of the influence of these communication protocols on
physical risks, psychological impact, and worker perceptions
during human-drone interactions.

VR as a methodological tool Given the challenges and potential risks
associated with conducting such research on real construction sites,
which could expose participants to actual dangers, this study employed
VR technology to simulate work scenarios, on-site drone operations, and
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human-drone interactions. VR offers a safe and cost-effective platform
for testing and evaluating scenarios that may involve potential hazards
or uncertainty [78]. It ensures worker safety while still enabling realistic
simulations and visualizations, allowing participants to engage with
digital objects and virtual spaces, and creating a realistic and interactive
virtual world [79]. VR can also evoke lifelike responses at both behav-
ioral and psychophysiological levels [80], enabling the reproduction of a
realistic human-robot interaction experience in complex scenarios [81].
The use of VR technology has been prominent in several facets of the
construction industry, including simulation [82-84], education [85],
training [86], and visualization [87,88], and as a reliable tool to assess
human-robot interaction under construction environments [89]. Exist-
ing studies also explored utilizing VR to simulate drone operating
environment and provide operator training [90-92], simulate drone-
related safety risks [84,93], and assess the human-drone interaction in
response to drone proximity [94-96], flight characteristics [97], and the
perception of drone social companionship[98].

Therefore, to assess communication protocols that facilitate safe
human-drone interaction on construction sites, a virtual construction
site environment was developed in this study to replicate and visualize
potential interactions between workers and drones. This virtual envi-
ronment aims to represent construction workers performing general
construction activities in hazardous environments and facing additional
safety risks related to drones. The VR construction scenario serves as a
platform that seamlessly integrates the proposed communication pro-
tocol. It also creates situations where participants need to utilize the
communication protocol, evoking realistic responses, including behav-
ioral, psychophysiological, and perceptual reactions, when interacting
with drones.

Fig. 1 illustrates the three phases required to complete this study:

(1) Protocol Development: This phase focused on identifying the
safety needs of workers who work around drones on sites and
establishing communication protocols using gestures and speech
to communicate those safety needs to drones.

(2) VR Development: This phase focused on creating a virtual envi-
ronment to mimic a realistic drone-populated construction site
where workers and drones can interact using the developed
communication protocols.

(3) Experimental Assessment: This phase of the study focused on a
user-centered experiment to assess the influence of these
communication protocols on physical risks, psychological
impact, and worker perceptions during human-drone
interactions.

5. Protocol development

Considering previous literature on gesture- and speech-based
communication modalities, this phase focused on the development of
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a communication protocol for safe human-drone interaction. The pro-
tocol was designed to utilize either modality to cater to the safety needs
of construction workers operating around drones on construction sites.
The primary objective was to empower workers to engage with drones
actively, ensuring their safety and well-being during construction tasks,
particularly in potentially hazardous scenarios. Instead of serving as
passive observers, workers gained the capability to issue commands,
actively influencing drone behavior and potentially augmenting their
safety perception about drones. For instance, workers could halt drones
when they felt unsafe in close proximity or direct them away to prevent
potential collisions. In this phase, the initial critical commands for
human-drone communication were identified, serving as the foundation
for workers to communicate their safety requirements effectively. These
commands were then utilized to develop both gesture-based and speech-
based communication protocols to facilitate safe human-drone
interaction.

6. Identification of critical commands to communicate safety
needs

In this phase, the safety communication needs of construction
workers to interact with drones were thoroughly assessed. This entailed
gaining a comprehensive understanding of the specific challenges and
concerns faced by workers when working in close proximity to drones.
While empowering workers to communicate their safety requirements to
drones was a primary focus, it was equally important to establish
boundaries to prevent potential misuse or interference with drone op-
erations. Therefore, the development of the communication protocol
was carefully tailored to address workers’ safety needs without granting
excessive control over drone operations.

As discussed in section 2.1, the potential safety challenges were
categorized into three key areas: physical risks, psychological impacts,
and worker perceptions [28,99]. The safety requirements for workers to
safely interact with drones should be not only maintaining physical
safety but also ensuring that the proximity is comfortable for humans
[100]. To mitigate physical risks, it was imperative for workers to
maintain a safe working distance between themselves and the drones.
Despite the presence of obstacle detection features in commercial
drones, the dynamic and complex working environment of construction
sites could still lead to potential collisions [84]. Thus, enabling workers
to actively communicate with drones and keep a safe distance to prevent
potential collisions was deemed essential for ensuring their safety.
Providing collision avoidance is not sufficient as when robots share the
same workspace with humans, they also need to able to stay within a
specified distance without causing uncomfortable [101]. Additionally,
to address safety risks associated with psychological impacts, such as
negative emotional states and increased cognitive loads when working
closely with drones, workers needed the ability to redirect drones from
their predetermined flight paths if they felt uncomfortable or unsafe,
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and this could have a potentially positive impact on workers’ percep-
tions regarding drones and their overall sense of safety on the job site.
Therefore, drones must meet safety requirements by maintaining or
adjusting a safe distance to prevent potential physical contact. They
must also allow workers to alter the drone’s flight path if they feel un-
comfortable while still enabling the drone to continue its task. In light of
these safety requirements, four critical commands were identified:

(1) Stop Task: Workers could command the drone to stop or halt its
movement.

(2) Keep Distance: Workers could command the drone to adjust the
distance between them.

(3) Change Path: Workers could command the drone to alter its flight
path.

(4) Resume Task: Workers could command the drone to continue its
flight task from a stopped position.

6.1. Proposed gesture- and speech-based communication protocol

This step involved the integration of the previously identified critical
commands into the framework of gesture- and speech-based communi-
cation modalities as part of the communication protocol for safe human-
drone interaction. Beyond merely incorporating the four critical com-
mands, several additional considerations shaped this integration pro-
cess. Firstly, ensuring compatibility and comparability between the
gesture- and speech-based modalities was paramount for the upcoming
experiment. Secondly, the design of gesture and speech commands
required them to be natural, consistent, safe, and easily executable
within the construction site context. Lastly, it was imperative that the
commands within each modality maintained their distinctiveness to
prevent any potential interference.

Building upon the critical commands identified in the previous step
and drawing insights from the existing literature on gesture- and speech-
based communication modalities, a communication protocol for safe
human-drone interaction was devised. The existing gesture and speech
commands found in the literature were aligned with the identified
critical commands that enable drones to meet the safety requirements of
workers, including not only maintaining physical safety but also
ensuring that robot proximity is comfortable for them to share the same
work environment. These commands should be effectively utilized in
construction environments where typical construction activities occur.
The commands should also have minimal training requirements for
workers, as they already perform construction tasks in complex site
environments. Workers should only need to remember and familiarize
themselves with the most natural and accessible commands to stay safe.
Specifically, four speech commands were established: “Stop,” signifying
the Stop Command to halt or pause drone movement; “Back,” employed
for the Keep Distance Command to modify the distance between human
workers and the drone; “Go Away,” serving as the Change Path Com-
mand to redirect the flight path; and “Keep Going,” functioning as the
Resume Task Command to continue flying from a stopped position.

Table 1
Proposed Gesture- and Speech-based Communication Protocol.
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Additionally, gesture commands were developed, featuring a closed
fist gesture for “Stop,” a flat palm extended away from the face for
“Back,” an index finger pointing outward for “Go Away,” and a flat palm
directed toward the face for “Keep Going.” These gestures were inten-
tionally designed to be distinct from one another, ensuring unambiguous
communication between humans and drones. A comprehensive over-
view of the communication needs, and specific commands is presented
in Table 1.

7. VR development

This phase aimed to immerse users in an interactive experience
where they could apply the proposed communication protocol for safe
human-drone interaction while performing construction tasks in close
proximity to virtual drones on a construction site. This section delves
into the design of the VR scenario, detailing how users engaged with
virtual drones on the construction site and the technical developments
necessary to facilitate this scenario and implement various communi-
cation modalities.

7.1. Scenario design

The goal of this phase was to design a scenario in a virtual con-
struction site that would allow users to apply communication modalities
while simulating increased risks typically encountered in a construction
setting. Given that interactions with drones can introduce additional
safety risks, particularly in hazardous environments, the scenario
needed to replicate these risks accurately. An analysis of construction
accident data consistently highlights falls from heights as a leading
cause of death and injury in the construction industry. In 2020, falls,
slips, and trips accounted for 46.1 % of fatal injuries and 31.4 % of non-
fatal injuries recorded in the construction sector [15]. According to the
Center for Construction Research and Training (CPWR), injuries
resulting from falls to lower levels represented 34.7 % of all construction
fatalities, making it the most perilous hazard for workers [102]. A closer
examination of fall accidents revealed that roofs, ladders, and scaf-
folding were the primary work locations contributing to fatal falls in the
construction industry [103].

To authentically replicate these hazardous conditions encountered
on construction sites, a scenario focused on working at heights was
devised. In this scenario, participants found themselves positioned near
scaffolding and assigned inspection tasks while a construction crew
worked on the slab, engaged in various tasks such as binding rebars and
delivering and setting up scaffolds. To comprehensively simulate real-
istic drone applications in construction and account for various inter-
action possibilities, two generic quadcopter drones, the most popular
and widely used drones in the construction industry [104], were used in
the scenario, which was modeled to resemble popular drones used in
construction [105]. They were equipped with easily accessible cameras
that can accommodate different types of popular construction sensors,
such as LiDAR and laser scanning devices [106], while offering opera-
tional flexibility with vertical takeoff and landing [104,106]. For the

Critical commands Stop Task

Keep Distance

Change Path Resume Task

Speech-based Commands “Back”

Gesture-based Commands

“Stop”

“Go Away”
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purpose of this experiment, the drones were pre-programmed to fly a
particular flight path for construction tasks along designated paths or
positions. All workers, including participants, were non-operators who
needed to perform their construction activities continually and were not
operating or controlling the drones for the tasks. However, participants
could use designated commands to communicate with the drones to
slightly adjust the drones’ flight paths if they felt unsafe or uncomfort-
able or if a drone came too close to them. One drone, the inspector
drone, was responsible for inspecting the progress of the work around
the virtual site by flying along a predefined path. The other, the delivery
drone, was tasked with picking up toolboxes and delivering them to
designated positions on the slab. Furthermore, environmental and drone
noises were integrated into the scenario contents to replicate the real-
istic site environment and drone operations.

7.2. Technical development

After finalizing the scenario design, the subsequent step centered on
two key technical developments. Firstly, the creation of the virtual
construction site aimed to accurately simulate a realistic construction
environment, encompassing various structural elements, dynamic ob-
jects, equipment, and construction workers engaged in their tasks.
Secondly, gesture and speech recognition systems were implemented to
enable communication between humans and drones within the virtual
environment (as illustrated in Fig. 2).

The initial phase of VR development focused on constructing a vir-
tual construction site with all the elements outlined in the designed
scenario. This involved procuring 3D game objects relevant to the vir-
tual construction site and converting them into the.FBX file format for
Unity® integration. These objects encompassed a wide range, including
buildings, equipment, temporary structures, virtual construction
workers, and drones. To add realism, 3D models of construction workers
were generated using Daz 3D® and then programmed and animated
using Adobe® Mixamo’s exported animations. This allowed for the
simulation of actual workers engaged in various construction tasks
within the scenario, creating an immersive environment for users to
interact with drones as they performed construction-related activities.

The second phase of technical development was dedicated to
creating the gesture and speech recognition systems, pivotal compo-
nents enabling the implementation of the proposed protocol for safe
human-drone interaction. The gesture recognition system leveraged the
Open XR plug-in within Unity, a widely utilized application interface for
head-mounted devices, and the Meta Quest interaction SDK [107]. This
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SDK, associated with Meta Quest, introduced the hand tracking feature,
which allowed hands to serve as input methods for the headsets. Uti-
lizing this feature, alongside various components and configurators,
facilitated the detection of hand poses. The four gestures devised for the
gesture-based communication modality were defined using hand shapes,
finger positions (e.g., curl, flexion, abduction, opposition), and trans-
forms (employing wrist, palm, and finger positions as 3-axis represen-
tations) [107]. Once detected by the Unity game engine, these gestures
acted as inputs to scripts governing drone behavior and triggering cor-
responding responses.

Moreover, the speech recognition system was established by utilizing
the Windows speech recognition system API within the Unity game
engine [108]. This implementation facilitated the integration of voice
input from the Meta Quest 2 headset into the application. The system
operated through two distinct processes: keyword recognition and
dictation recognition. Keyword recognition enabled the system to
actively listen for predefined phrases spoken by the user. This approach
ensured that the system exclusively processed specific voice inputs, as
delineated in the protocol, rather than analyzing all spoken content.
Subsequently, the dictation recognizer translated the identified speech
commands into text, thus triggering corresponding responses from the
drones.

After the completion of the gesture and speech recognition systems,
they were seamlessly integrated into the virtual construction site,
enabling users to immerse themselves in the virtual environment and
experience the gesture and speech interaction modalities for controlling
drone behaviors.

8. Experimental assessment

This study employed a user-centered quasi-experiment with a
between-subjects design to investigate whether the developed commu-
nication protocol, utilizing communication modalities of gesture and
speech, can enhance worker safety and well-being on construction sites
when working with or near drones. The study adopted a between-subject
design to minimize the time participants spent wearing VR headsets,
thereby avoiding potential negative feelings like nausea and headache
[109] and potential carry-over or learning effects [110], such as
becoming familiar with the presence of drones, which could lead to
biased responses to safety risks.

The experiment consisted of three conditions:

Virtual Construction Site Creation

Construction-related simulated objects
(.FBX files) developed in Unity game engine

Virtual workers

/ Modality Recognition Systems

~

=
~
Gesture Speech
Software: Software:

*  Unity Open XR Plug-in *  Windows Speech

*  Meta Quest Interaction Recognition System
SDK Voice recognition:

Hand tracking: *  Keyword and dictation

* Hand shapes, finger Recognition
vositims‘ and transforms

Meta Quest 2

Users interacting
with drones in VR

First-person perspective
of users in VR

Fig. 2. Technical development.
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(1) Control Condition: Subjects were not able to use any communi-
cation modalities to interact with drones.

(2) Gesture Condition: Subjects were able to use gesture-based
communication modality to interact with drones.

(3) Speech Condition: Subjects were able to use speech-based
communication modality to interact with drones.

The assessment protocol received approval from the University of
Florida Institutional Review Board (IRB #202300203). An a priori
power analysis was performed using G*Power v. 3.1.9.7 [111]. The
analysis, utilizing an effect size f2 of 0.40 [112], a significance level o of
0.05, and a desired power of 0.80 [113], with a group number of 3 for a
between-subjects design, showed that a total sample size of 66 partici-
pants would be required. Considering potential participant dropouts in
addition to other technical and external factors, a total of 100 partici-
pants were recruited in this study. The following subsections will outline
the experiment procedures and study metrics.

8.1. Experiment procedures

In this experiment (Fig. 3), participants initially reviewed and con-
sented to the study by completing a consent form. Subsequently, they
provided demographic information and then randomly assigned to one
of three conditions: Control, Gesture, or Speech. Before starting the
experimental conditions, each condition viewed an instructional video
outlining their tasks within the virtual environment. As described in
scenario design (see Section 6.1), during the experiment, participants
were assigned an inspection task on top of an ongoing structure, where
they needed to stand near scaffolding and inspect a construction crew
working on the slab. The crew was engaged in various tasks, such as
binding rebar, delivering, and setting up scaffolds. All workers,
including participants, were non-operators who needed to continually
perform their construction activities and were not operating or con-
trolling the drones for the tasks. To ensure participants continued to pay
attention to the site situation and engage with the scenario during the
inspection task, they were required to report on the scenario’s activities
and the crew’s safety after the inspection task. For the purpose of this
experiment, the drones were pre-programmed to fly a particular flight
path for construction tasks along designated paths or positions. Partic-
ipants were required to remain vigilant about all activities on the site
and ensure site safety. They could change their standing positions or
move around during the inspection if they felt unsafe or uncomfortable
or if a drone came too close. In the Gesture and Speech condition, par-
ticipants were informed that they could utilize gestures or speech to
command the drones if they felt unsafe or uncomfortable, to slightly
adjust the drones’ flight path (e.g., stop momentarily, fly around the
work area), and they could practice the commands in VR before the
experiment task. The participants in the Control condition could not
communicate with the drones or adjust their flight paths at all (Fig. 3).
Once they clearly understood their responsibilities, participants were
placed in a learning scene tailored to their assigned condition, where
they familiarized themselves with the available communication mo-
dality. After confirming their command familiarity, participants pro-
ceeded to engage in the actual experimental conditions. Throughout the
experiment, data logs from the VR environment were collected to record
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their interactions and behaviors, including near-miss incidents, for
further analysis. Upon completing the experimental tasks, participants
filled out four post-experiment surveys: NASA TLX, SAM, Safety Risk
Perception Scale, and NARS: interaction subscale. The following section
will provide a detailed discussion of all the study measures employed in
this experiment.

8.2. Study metrics

The study employed the following metrics to assess three aspects of
physical risks, psychological impact, and worker perceptions:

e Physical Risks of Drones on Workers:

o Near-Miss Incidents [114]: A near-miss incident was defined as a
potential hazard where no property damage or personal injury
occurred but had the potential to occur with slight changes in time
or position, as defined by OSHA [114]. The analysis of near-miss
incident data is commonly used to assess safety performance
[115] and conduct risk assessment [116]. Within this experiment,
we programmed in Unity3D game engine to classify and record
events as near-miss incidents when the distance between the
human and the drone reached an intimate distance of 1.5 feet
[117]. After each experiment, the total number of near-miss in-
cidents was extracted from project log files.

e Psychological Impacts of Drones on Workers:

o Cognitive Workload by NASA-TLX [118]: NASA-TLX is a widely
used instrument for assessing cognitive and mental workload
during or immediately after performing a task, which has
demonstrated reliability and effectiveness in investigating the
psychological load of individuals performing different activities
[119,120]. It comprises a multidimensional score based on a
weighted average of ratings on six subscales: mental demand,
physical demand, temporal demand, performance, effort, and
frustration level [121]. In this study, each subscale was scored on a
seven-point scale from very low to very high.

o Emotional Status by Self-Assessment Manikin Scale (SAM) [122]:
SAM is a straightforward and efficient technique used to assess
natural emotions in three dimensions: pleasure, arousal, and
dominance [123]. It is an imagery-based measure easily under-
stood and widely applied as a language-free tool [124]. The
valence dimension of SAM represents a range of emotions from
negative to positive, the arousal dimension reflects values from
calm to excited, and the dominance dimension encompasses values
from submissive to in-control.

e Worker Perception about Safely Working with Drones:

o Safety Risk Perception Scale [125,126]: Safety risk is fundamentally
defined as the product of frequency and severity of safety incidents
[127]: Safety Risk = Incident Frequency x Incident Severity. This
concept has been widely used in a large number of studies to assess
the relative risk of construction activities [128]. Pandit etal. [126]
developed the Safety Risk Perception Scale by adapting the inci-
dent severity score proposed by Hallowell [125], and the Safety
Risk Perception Scale was scored by multiplying the incident
severity score with the expected frequency of the incident.

Three Experimental Conditions in VR:

Control, Gesture, and Speech Conditions

NS .
« Consent Form | | Pre-Experiment:

. e Task introduction
« Demographics Form 1
! srapi ) | * Command practice in VR/I

During-Experiment Measure:
*  Near Miss Incidents

I Post-Experiment Measures: \
= |« NASA Task Load Index (TLX) 1
I. Self-Assessment Manikin Scale (SAM)!
* Safety Risk Perception Scale |_>
* Negative Attitudes Toward Robots 1

v Scale (NARS): Interaction Subscale /I

Fig. 3. Experiment procedures.
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o Negative Attitudes Toward Robots Scale (NARS) Interaction Subscale
[129]: NARS is a validated tool widely used in HRI studies, which
was designed to determine human attitudes toward robots when
interacting with them. In this study, the subscale of NARS specif-
ically focusing on “negative attitude toward interaction with ro-
bots,” was employed. This subscale includes six items, and each
item is scored on a five-point Likert scale.

9. Results and discussion

A total of 100 participants (as shown in Table 2) were recruited for
this study and randomly assigned to one of three conditions: the Control
condition (33 subjects), the Gesture condition (34 subjects), and the
Speech condition (33 subjects). The safe communication protocol is
designed for non-operators working on site, including anyone who
might be present on a construction site where drones are used. The
target population for the experiment included personnel who are
currently working in the construction industry or students from AEC
(architecture engineering and construction) background who have ac-
quired construction knowledge through practical activities such as site
visits and will soon become construction professionals. The insights
gained from these participants could offer initial insights into how
communication protocols might affect construction practitioners’ safety
and perceptions. The majority of participants were male (65 %), aged
between 20 and 30 (68 %), graduate-level education background (71
%), and majoring in construction, civil engineering, or architecture (80
%). Furthermore, a significant portion of participants had previous work
experience on construction sites (81 %) and possessed some to fair de-
grees of familiarity with VR (75 %) and drones (81 %). Importantly,
none of the participants reported experiencing severe dizziness or side
effects from the VR device that could impede their ability to perform the
experimental tasks, and all participants were in good physical and
mental condition.

9.1. Near-Miss incidents

Analysis result of the total number of near-miss incidents during the

Table 2
Demographics and Background Information.

Variable Category Number (out of 100
subjects)
Gender Male 65
Female 34
Non-binary 1
Age <20 13
> 20 and < 25 41
> 25and < 30 27
> 30 19
Educational Status Undergraduate 29
Master 35
PhD 36
Educational Background Construction 45
Management
Civil Engineering 26
Architecture 9
Other (from AEC field) 20
Work Experience on None 19
Construction Site Less than 1 year 41
1 to 2 years 15
More than 2 years 25
Understanding of VR None 7
Some Knowledge of 46
Fair 29
Competent 18
Understanding of Drone None 10
Some Knowledge of 55
Fair 26
Competent 9
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experiment (Table 3) revealed a lower number of incidents for the
Gesture condition (8.18 + 5.73) and Speech condition (11.67 + 7.09) in
comparison to the Control condition (12.45 + 6.48). This suggests that
both communication protocols may have contributed to a reduction in
safety incidents when participants interacted with the drone on the
construction site. The normality assumption of the near-miss incident
data was rejected (p-value < 0.001) using the Shapiro-Wilk test [130].
Consequently, a nonparametric Kruskal-Wallis test [131] was utilized to
evaluate differences among the conditions, resulting in a p-value of
0.004, indicating statistical significance. Subsequently, a post-hoc Dunn-
Bonferroni test [132] was conducted to discern specific condition dif-
ferences (Table 4). The outcomes indicated significant differences in
Gesture vs. Control (p-value = 0.005) and Gesture vs. Speech (p-value =
0.033) means, while no significant difference between Speech vs. Con-
trol means (p-value = 1.000).

The results did not provide enough evidence that subjects utilizing
the speech modality demonstrated enhanced safety performance
compared to the Control condition, where no specific communication
modality was available. Interestingly, the findings highlight that the
utilization of the gesture modality for human-drone interaction signifi-
cantly reduced near-miss incidents in comparison to the Control con-
dition (no communication) and the Speech condition. The results
suggested that gesture communication showed an advancement over
speech communication in preventing safety incidents on construction
sites.

This gap might come from various reasons. First, in the construction
context, the loud noise of background activities and the sound from fast-
spinning propellers can mitigate the accurate recognition of voice
commands [52,58,71]. The immersive VR environment in this study
used realistic audio and spatial sound effects to mimic the real con-
struction environment, which could cause the speech recognition system
to be disrupted by various noises. In addition to technical factors, the
perception of speech commands by the subjects could also be influenced
by the noisy environment, making it challenging for them to hear their
own voices clearly and adjust the speech commands accordingly. This
noise disturbance particularly affected individuals who speak softly, as
mentioned in subject feedback: “... I spoke too softly, but after working in
virtual reality, I can see that I have to speak louder and more confidently.” At
the same time, gestures can remain effective in noisy environments and
are already observed as a popular communication mode among workers
[133]. Furthermore, existing studies have proved that gesture is the
more intuitive communication modality [134], which enables precise
adjustments and continuous control throughout the interaction
compared to speech [71,135]. The gesture modality does not depend on
the user’s language [24], while the speech accent changes from person
to person, impacting the recognition result [72]. During the experiment,
6 out of the 33 subjects spontaneously incorporated gestures into their
speech commands despite not receiving any explicit instructions
regarding gesture-based communication. Notably, these gestures were
aligned with the intended meaning of their speech commands, for
instance, extending their palm toward the drone while uttering “Back”
commands. This observation indicated that a significant 18 % of the
subjects exhibited a preference for employing gesture-based communi-
cation, even when they were in the Speech condition.

Table 3
Near-miss incidents analysis results.
Control Gesture Speech Kruskal-Wallis
(Mean + SD) (Mean + SD) (Mean + SD) Test p-value
Near-miss 12.45 + 6.48  8.18 £ 5.73 11.67 + 0.004*
incidents 7.09

" p-value < 0.05.
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Table 4
Near-miss incidents post-hoc analysis results.
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Conditions Mean Difference Dunn-Bonferroni Test
p-value

Gesture vs. Control 3.15 0.005*

Speech vs. Control 0.60 1.000

Gesture vs. Speech 2.54 0.033*

" p-value < 0.05.

9.2. Cognitive workload by NASA-TLX

Table 5 displays the results for NASA-TLX, including subscales of
mental demand, physical demand, temporal demand, performance,
effort, and frustration. Overall, the subjects in the Control condition had
the lowest workload, except for physical demand and performance
success (reversed score). The subjects in the Control condition had no
means to communicate with drones while performing construction tasks
on site. When they felt unsafe or uncomfortable, the only option was to
adjust their body postures or move around to avoid any negative in-
fluence from the drone. However, without any communication protocols
to utilize, they tended to have a lower sense of success regarding the
performing task.

In terms of the overall NASA-TLX score for each experimental con-
dition (See Table 6), the Speech condition exhibited the highest score
(3.75 + 0.79), followed by the Gesture condition (3.59 + 0.81), and
lastly, the Control condition (3.11 + 0.92). Subjects who need to use
communication protocols during the experiment must memorize the
newly learned instructions for the protocols and utilize them precisely
when they feel unsafe or uncomfortable while interacting with drones.
As a result, they processed more information simultaneously, without
being sure about the potential results, e.g., “It was definitely demanding a
lot of effort especially that it is my first time communicating with a drone
while there are a lot going on, on the jobsite”; “..., Remembering which one I
wanted to use was hard when the drones started going on a dangerous path.”
This also led to a higher demand for mental and temporal effort and
tended to make them more frustrated, even though they had less phys-
ical demand and better task performance. Furthermore, subjects who
utilized communication protocols mentioned that they would perform
better if they had more practice time, e.g., “Learning the sign commands
was a little bit challenging. Perhaps more time to memorize the sign com-
mands is needed. ”; “I think if I had more time to observe them and practice
the gestures, then I would have been much better.” or they can perform the
task with less effort, e.g., “I think I was nervous I didn’t remember the
signals properly, but with more time it would become easier.”.

Table 5
NASA-TLX descriptive statistics results.
NASA-TLX Questions* Control Gesture Speech
(Mean + (Mean + (Mean +
SD) SD) SD)

1: Mental demand: How mentally 352+1.37 397+157 433+
demanding was the task? 1.47

2: Physical demand: How physically  2.85+1.25 276+ 1.28 270+
demanding was the task? 1.31

3: Temporal: How hurried or rushed  3.15+1.42  4.24 +1.37 3.76 +
was the pace of the task? 1.48

4: Performance: How successful 5.03+1.36 4.65+1.12 4.00 +
were you in accomplishing what 1.46
you were asked to do?

5: Effort: How hard did you have to 312+1.29 391+160 394+
work to accomplish your level of 1.39
performance?

6: Frustration: How insecure, 291 +£1.63 3.18 £ 1.57 3.88 £
discouraged, irritated, stressed, 1.69

and annoyed were you?

" Likert Scale: Very Low (1) to (7) Very High.
" Statement worded reversely.

Table 6
NASA-TLX One-way ANOVA test analysis results.
Control Gesture Speech One-way
(Mean + SD) (Mean + SD) (Mean + ANOVA Test p-
SD) value
Overall 3.11 £ 0.93 3.59 £0.81 3.75+0.79 0.007*
NASA-TLX

score

" p-value < 0.05.

The Shapiro-Wilk test confirmed the normality assumption for the
NASA-TLX scores (p-value > 0.05) [130]. Subsequently, a one-way
ANOVA test [136] was conducted to evaluate differences among the
conditions, yielding a statistically significant p-value of 0.007. A post-
hoc Tukey HSD test [137] was conducted to identify specific differ-
ences among conditions (Table 7). The outcomes indicated significant
differences in the Speech vs. Control means (p-value = 0.007). However,
no significant differences were observed between the Gesture vs. Control
(p-value = 0.056) and the Gesture vs. Speech (p-value = 0.721). The
data suggests that, although subjects who utilized gesture communica-
tion protocols had a higher cognitive load compared to those who did
not have any communication methods, the difference was not statisti-
cally significant. On the other hand, utilizing speech communication
could result in a significant cognitive load increase for subjects inter-
acting with drones on a construction site. As discussed in the previous
section, gesture modalities are more natural and effortless for subjects to
adapt to during tasks, while speech communication can be influenced by
environmental noise and may be challenging to adjust for improved
performance, leading to a higher cognitive load compared to gesture
communication.

9.3. Emotional status by Self-Assessment Manikin Scale (SAM)

The results from the SAM Scale, which measures emotional status
across dimensions of pleasure, arousal, and dominance, are presented in
Table 8. As shown in the figures of visual Likert scales, the scores range
from low to high in each dimension, indicating a transition from positive
to negative emotion, from excited to calm, and from being submissive to
being in control. In all conditions, the average pleasure scores were
similar (Control: 1.94 + 0.86; Gesture: 1.94 + 0.74, Speech: 1.94 +
0.90. This suggests that a short period of interaction with drones,
regardless of whether subjects use any communication method, may not
impact their overall emotional state in terms of the pleasure dimension.
Regarding the arousal dimension, the Control condition (2.97 + 0.98)
had a slightly higher average score than the Gesture (2.91 + 0.87) and
the Speech (2.82 + 0.95) conditions, indicating that subjects in the
control condition were slightly calmer than those in the other two
conditions. This suggests that subjects became more excited when using
communication protocols to interact with drones compared to those
without communication methods. Subjects were required to effectively
apply their newly acquired knowledge of protocols as they noticed the
drone approaching. This, in turn, led them to react more intensively. For
example, one subject provided feedback, stating, “For most of the time, it
was fairly calm, but when the drones started getting closer, I would get a little
nervous”. Regarding the dominance dimension, the Gesture condition
had the highest average score (3.32 + 0.84), followed by the the Speech

Table 7
NASA-TLX post-hoc analysis results.

Conditions Difference Tukey HSD Test
p-value

Gesture vs. Control 0.48 0.056

Speech vs. Control 0.64 0.007*

Gesture vs. Speech —0.16 0.721

" p-value < 0.05.
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Table 8
SAM descriptive statistics and Kruskal-Wallis test results.
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SAM Dimensions (Visual Likert Scale) Control (Mean + SD)

Gesture (Mean + SD) Speech (Mean + SD) Kruskal-Wallis Test p-value

Pleasure (From positive to negative emotion) 1.94 + 0.86
1
,’ﬁ? il il i ﬁ%
| £t [l 1/’—\ I‘» | ﬂ
Arousal (From excited to calm) 2.97 +£0.98
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Dominance (From being submissive to being in control) 3.06 + 1.00
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1.94 +0.74 1.94 + 0.90 0.970
291 +0.87 2.82 +0.95 0.804
3.32+0.84 3.12+0.78 0.464

(3.12 £ 0.78) and the Control (3.06 + 1.00) conditions. This suggests
that subjects utilizing gesture- and speech-based communication mo-
dalities tended to perceive themselves as more in control while inter-
acting with drones on-site because they feel safer and more comfortable
by keeping drones out of high-risk zones that could influence them. For
example, subjects from the Gesture condition provided feedback that the
gesture communication protocol made it easy to control drone move-
ments when needed, e.g., “I felt in control of the drone because I was sure
that if it makes a mistake, I can change its direction or action.” ().

The normality assumption for all SAM dimensions, including plea-
sure, arousal, and dominance, was rejected (p-value < 0.001) using the
Shapiro-Wilk test [130]. Therefore, a nonparametric Kruskal-Wallis test
[131] was conducted to assess differences among conditions, resulting
in a p-value higher than 0.05. This indicates no statistical significance
for any SAM dimensions. These results did not provide enough statistical
evidence to support that the communication protocols employing ges-
tures or speech had an impact on the emotional status of subjects while
interacting with drones on the construction site. The data suggests that
participants utilizing communication protocols tended to experience a
slightly higher level of arousal and a heightened sense of dominance
when compared to the Control condition. However, overall, emotional
states remained relatively stable throughout the short duration of the
experiment.

9.4. Safety risk perception

Table 9 illustrates the subjects’ responses across all three conditions,
revealing distinct perceptions regarding the frequency of injury

Table 9

incidents across various severity levels during their interactions with
drones at a construction site. Subjects most commonly perceived
Discomfort/Pain (58 %-47 %-52 % for control-gesture-speech) and First
Aid incidents (58 %-62 %-55 % for control-gesture-speech) as “Very
Likely” to occur. For the Media Case incident, subjects in the Control and
Speech conditions mostly perceived it as “Unlikely but Possible” (33
%-39 % for control-speech), while subjects in the Gesture condition
mostly perceived it as “Very Likely” (29 %). Regarding the Lost Work
Time incident, subjects in the Control condition mostly perceived it as
“Very Likely” (33 %), while subjects in the Gesture condition mostly
perceived it as “Unlikely but Possible” (38 %), and subjects in the Speech
condition were divided between perceiving it as “Unlikely But Possible”
(30 %) or “Very Likely” (30 %). For the Permanent Disablement or Fa-
tality incident, subjects in the Control and Speech conditions mostly
perceive it as “Not Possible” (36 % 30 % for control-speech) or “Unlikely
but Possible” (36 %-30 % for control-speech). Subjects in the Gesture
condition most perceived it as “Unlikely But Possible” (38 %).

To compute the perceived safety score, we adapted scores developed
by Hallowell [125] and Pandit et al. [126], as presented in Table 10.

The safety risk perception score results for all conditions were
analyzed and presented in Table 11. The average safety risk perception
scores of conditions that use communication modalities to interact with
drones (Gesture condition: 3.89 + 7.28, Speech condition: 2.35 + 4.44)
were higher than the condition without any communication modality
(Control condition: 1.79 + 3.26), but with higher standard deviations.
The results indicate that subjects using communication modalities ten-
ded to perceive higher risks of safety accidents resulting in injuries.
Several factors may contribute to this observation. Firstly, subjects may

Percentage response results for safety risk perception scale (control-gesture-speech).

Injury Frequency Severity Not Possible Unlikely But Possible

Likely Very Likely Almost Certain Total

Discomfort/Pain 6 %-3%-3% 6 %-15 %-15 %
First Aid 0 %-6%-3% 24 %-6%-12 %
Media Case 9 %-12 %-3% 33 %-26 %-39 %

12 %-9%-6%
36 %-26 %-30 %

30 %-38 %-30 %
36 %-38 %-30 %

Lost Work Time
Permanent Disablement or Fatality

9 %-9%-12 %

9 %-9%-18 %

27 %-26 %-24 %
21 %-15 %-27 %
12 %-9%-12 %

58 %-47 %-52 %
58 %-62 %-55 %
27 %-29 %-27 %
33 %-29 %-30 %
15 %-18 %-27 %

21 %-26 %-18 %
9 %-18 %-12 %
3 %-6%-6%

3 %-9%-6%

0 %-9%-0%

100 %-100 %-100 %
100 %-100 %-100 %
100 %-100 %-100 %
100 %-100 %-100 %
100 %-100 %-100 %

10
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Table 10
Scores for Safety Risk Perception Scale.
Injury Frequency Not Unlikely But ~ Likely  Very Almost
Severity Possible Possible Likely Certain
Discomfort/Pain 1.25 x 1.25 x 10 0.01 0.06 2.5
10
First Aid 2.75 x 2.75 x 103 0.03 0.14 5.5
10"
Media Case 3.50 x 3.50 x 103 0.04 0.18 7.0
10*
Lost Work Time 4.00 x 4.00 x 10°® 0.05 0.20 8.0
10
Permanent 4.75 x 475 x 10°  0.06 0.24 9.5
Disablement or 104
Fatality
Table 11

Safety risk perception Kruskal-Wallis test analysis.

Control (Mean
+ SD)

Gesture (Mean
+ SD)

Speech (Mean  p-
+ SD) value

Safety risk 1.79 + 3.26 3.89 +7.28 2.35 + 4.44 0.248

perception score

have perceived drones as more uncertain and distracting when utilizing
communication modalities due to the extended reaction time required to
spot the drones, make distance judgments and communication de-
cisions, compared to subjects in the Control condition who intuitively
changed their postures or body positions in a shorter time to avoid
drones, e.g., “locating the drones was a bit difficult so I was always looking
to spot it and that made it distracting”. Secondly, the lack of sufficient
feedback information following communication may have hindered
their ability to confirm that the drones were no longer present in
potentially high-risk areas. “..., I was skeptical about drone’s movements
and kept on giving orders.”; “The gesture controls can be very precise after
practice, but the resultant motions of the drones would be a little bit unpre-
dictable”. Furthermore, subjects would perceive providing communica-
tion commands based on personal judgment as unsafe because it was
difficult to determine the timing for executing the commands and pre-
venting potential incidents., e.g., “sometimes felt a bit dangerous to work
with drones. Especially if it couldn’t automatically avoid workers but depends
on human commands”; “it was difficult to determine what is considered safe
or not safe.”.

The Shapiro-Wilk normality test [130] was adapted to assess the
normality of the safety risk perception score for 100 subjects (2.69 +
5.32). The obtained p-value was < 0.001, suggesting the normality
assumption is rejected. Therefore, a nonparametric Kruskal-Wallis test
[131] was conducted to examine the condition differences in safety risk
perception scores. The p-value was 0.248, which is higher than 0.05,
indicating that while subjects using communication protocols generally
perceived higher safety risks, there was no statistically significant dif-
ference in safety risk perception scores between the subjects who uti-
lized gestures or speech and those who could not use any
communication modalities to interact with the drones.

9.5. Negative attitudes toward robots scale (NARS): Interaction subscale

The data results for the NARS interaction subscale are presented in
Table 12. The results show that all the subjects in the Control condition
rated the lowest score on the statement: “I felt uneasy when I worked on
site and drones came close to me (3.33 £ 1.22), followed by a slightly
higher score (indicating more agreeing on the statement) in the Gesture
condition (3.53 + 1.05) and Speech condition (3.58 + 1.17). These
scores, while slightly higher in the conditions with communication ca-
pabilities to drones, still fall within the range of 3.5, which implies a
sentiment between “neutral” and “agree.” Additionally, subjects from all

11

Table 12
NARS: Interaction descriptive statistics results.
NARS: Interaction Subscale Control Gesture Speech
Questions* (Mean + (Mean + (Mean =+
SD) SD) SD)
1: I felt uneasy when I worked on 3.33 +£1.22 3.53 + 1.05 3.58 +1.17
site and drones came close to me.
2: Drones meant nothing to me 233 +£1.11 2.06 +£1.01 1.94 £ 1.00
when I performed the task on site.
3: I felt nervous working with 291 +1.07 2.74 + 1.33 3.27 +1.38
drones in front other people on
site.
4: I hate drones performing tasks 2.33 +£1.22 2.26 + 1.08 2.30 + 1.16
automatically and making
decisions on site.
5: I felt nervous when working 3.21 £1.11 3.24 + 1.07 3.21 +1.19
around drones on site.
6: I felt paranoid when I tried to 2.52 £ 0.97 2.59 + 1.26 2.69 + 1.24

communicate with drones on site.

" Likert Scale: Strongly Disagree (1) to (5) Strongly Agree.

three conditions have a similar rate of around 3 (indicating “neutral” in
the original scale) for the following statements: “I felt nervous working
with drones in front of other people on site,” “I felt nervous when
working around drones on site,” and “I felt paranoid when I tried to
communicate with drones on site.” These findings indicate that subjects
generally held neutral opinions regarding their emotions during in-
teractions with drones. Additionally, the subjects in all conditions scored
around 2 (indicating “disagree” in the original scale) for the following
items: “Drones meant nothing to me when I performed the task on site”
and “T hate drones performing tasks automatically and making decisions
on site.” This suggests that the presence of drones did not negatively
impact subjects’ perceptions of drones and their roles in on-site tasks in
any of the conditions.

As presented in Table 13, the average negative score of the Speech
condition (2.83 + 0.74) was slightly more than the score of the Control
condition (2.77 + 0.63) and the Gesture condition (2.74 + 0.62). This
suggests that communication protocols did not contribute to an
improvement in attitudes toward drones when subjects interacted with
them on construction sites.

The Shapiro-Wilk normality test [130] was adapted to test the
normality of the data results to evaluate the normality of the NARS
scores for 100 subjects (2.78 + 0.66). The obtained p-value was 0.31,
which is higher than 0.05, suggesting the normality assumption is true.
Therefore, a one-way ANOVA test [136] was conducted to examine the
condition differences in NARS scores. The p-value was 0.826, indicating
there was no significant difference in negative attitudes between con-
ditions. The results suggest that the attitude toward interaction with
drones did not significantly differ between subjects who used gesture or
speech communication modalities to interact with drones on the virtual
construction site and those who interacted with drones naturally,
without any communication methods, while working on the same site.
However, it should be noted that the negative attitude of subjects using
communication protocols could be partly attributed to the higher
cognitive load discussed in the previous session. The lack of information
cannot assure subjects that the drone is no longer within an unsafe or
uncomfortable zone and could still pose a threat, even though commu-
nication protocols have helped reduce safety incidents. Additionally, the
qualitative feedback from subjects who utilized communication pro-
tocols also indicated that they hesitated to use the commands even

Table 13
NARS One-way ANOVA test analysis.

Gesture (Mean
+ SD)

Control (Mean
+ SD)

Speech (Mean p-
+ SD) value

Overall NARS
score

2.77 £ 0.63 2.74 £ 0.62 2.83 £0.74 0.826
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though they felt unsafe or uncomfortable because they perceive pro-
ductivity as a higher priority than safety, e.g., “I did not use the go away
gesture because I did not want to stop its work.”; or reduce productivity,
“Using the gesture commands would decrease productivity, but they can keep
workers safe.” This conservative strategy of utilizing communication
modalities could also impact the attitude towards drones for subjects
who lost the opportunities to improve when they felt unsafe or
uncomfortable.

10. Research limitation and future work

While this study provides valuable insights, certain limitations must
be acknowledged. Firstly, the latency and accuracy of both the gesture
and speech recognition systems can vary in real-world settings
compared to our virtual environment. Most participants, whether in the
Gesture or Speech condition, reported that the communication protocols
were reliable and user-friendly during the VR experiment. For instance,
comments included: “The gesture controls can be very precise after practice”
and “The drones are easy to control by voice.” However, in real-world
scenarios, these recognition systems might not be as consistent, and
there could be discrepancies between the systems integrated into our VR
simulation and those in an actual setting. Furthermore, speech recog-
nition systems might exhibit greater latency and reduced accuracy in
real-world applications due to the inherent intricacies of natural lan-
guages [138,139]. To enhance recognition accuracy when integrating
the Windows Speech Recognition system into Unity3D®, we deliber-
ately set the speech recognizer’s confidence level lower, aiming to ac-
count for the wide variety of nationalities and accents among
participants. Nonetheless, latency remained a challenge due to system
constraints, as echoed by participant feedback. During the experiment,
several participants observed significant latency in the Speech condi-
tion. For example, they mentioned: “The audio commands work but are
not that accurate. There is a delay which may confuse the user” and “The
drones seemed to have a lag time with commands.” Interestingly, those
using the gesture communication protocol did not highlight any latency-
related concerns. Another concern regarding speech command recog-
nition is the inherent noise present in the construction site environment.
Although the scenario in this study already included various sources of
environmental noises and drone sounds, the real site could pose more
disturbances and instability for speech recognition compared to the VR
environment, thereby reducing the usability of speech commands. The
limited scope of scenario design only covers general situations where
drone capabilities for data capturing, including both image and speech,
work effectively. It does not account for adverse conditions such as
heavy rain or foggy weather, where visual and audio cues may be
obscured.

Moreover, as detailed in the Results and Discussion section, while
subjects claimed familiarity with the communication protocols before
experiencing either the Gesture or Speech conditions, they might require
additional effort to accurately employ these newly learned protocols
when interacting with drones, particularly in safety—critical situations.
As a result, an extended and more intensive training program could
significantly enhance subjects’ understanding of these protocols,
boosting their usability and effectiveness. In subsequent studies or ap-
plications using the proposed communication protocols, it’s crucial to
offer more detailed and user-centric instructions. It would also be
beneficial to evaluate the frequency of command usage and user pref-
erences for each communication command. This analysis could help
determine if modifications or refinements to essential commands are
required, ensuring that users receive only pertinent information. Such
measures will guarantee that users can adeptly apply the communica-
tion protocols in the least amount of time. There are limitations related
to individual differences resulting from the between-subject experi-
mental design. As a trade-off to avoid participant fatigue and VR sick-
ness, as well as to mitigate carry-on effects from the three conditions,
individual differences such as participants’ knowledge and experience
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may also have affected the results, including how they utilized
communication or related safety impacts. Moreover, the participant
group in this study has varying industry work experience, including AEC
background students who are not full-time employed and lack industry
work experience. This group may not fully represent construction
practitioners. Statistical analysis showed that these individual charac-
teristics, as reported in surveys, including industry experience, had no
significant effect on any of the experimental metrics (near-miss, NASA
TLX, SAM, Safety Risk Perception Scale, and NARS: interaction sub-
scale). Nevertheless, future studies should consider individual differ-
ences in participant demographics more carefully, given the trade-offs in
sampling methodology, including balancing research goals, costs,
representativeness, and different dimensions of generalizability
[140,141]. Therefore, a better recruiting strategy should be adopted to
acquire a more representative sample of construction practitioners,
enhancing the generalizability of future study results.

Furthermore, while subjects using the gesture communication pro-
tocol showed enhanced safety performance, effectively reducing near-
miss incidents without added cognitive strain, they did not necessarily
feel safer or more at ease when working alongside drones. This un-
derscores the need for future studies to refine human-drone communi-
cation. It is essential to present drones not merely as autonomous robots
but as dependable, predictable collaborators. This requires a robust
drone-to-human communication system that clearly communicates
critical drone flight statuses, such as readiness to approach a work zone
or adherence to safe distance guidelines. In addition to the proposed
human-to-drone communication protocols, an improved drone-to-
human communication system should offer real-time feedback on
human commands and subsequent drone actions, like flight path
changes or task completion updates. By ensuring workers receive im-
mediate confirmations regarding drone safety measures, such a system
could significantly reduce cognitive demands on workers and address
their safety concerns.

Finally, future research should also consider construction environ-
ments with varied working conditions, as these can pose challenges for
communication protocols, especially those reliant on gestures or other
specific modalities. The inspection at heights scenario designed in this
study aimed to represent workers performing general construction ac-
tivities in hazardous environments and facing additional safety risks
related to drones. However, this specific scenario or task content is
limited and cannot fully replicate the numerous construction tasks in the
real world. Although the training requirements for the communication
commands were minimal during the experiment, all participants
confirmed they became familiar with the communication protocol and
were ready to utilize it within three minutes. Differences in construction
activities or tasks could lead to varied safety impacts and affect which
communication modalities are more suitable for specific scenarios,
including potential workload burdens on workers such as mental,
physical, and effort demands. This study focused on evaluating funda-
mental communication protocols within a VR-based construction envi-
ronment to understand their safety and psychological impacts on non-
operator construction workers. While the scope was limited to basic
instructions, the findings provide a foundational understanding that can
inform the development of more complex communication methods.
Future research should explore the application of these protocols in
comprehensive construction tasks to address the challenges and costs
associated with more intricate communication methods that offer users
a range of modality options. For instance, workers engaged in intricate
tasks, where their hands are occupied with tools, may find gesture-based
communication impractical. Moreover, situations where workers and
drones collaborate closely demand an enriched information exchange.
Communication protocols in such contexts must be finely tuned to the
intricacies of the task at hand. For example, in scenarios where workers
and drones collaborate on safety inspections, there is a pressing need for
communication tools that address risk levels, pinpoint risk locations,
and update the status of risk mitigation efforts.
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11. Conclusion

In this study, gesture-based and speech-based communication pro-
tocols were developed and assessed to enhance the safety of human-
drone interactions on construction sites. The study particularly
focused on non-operator workers who have no control over drones and
limited information about their mission. Gesture and speech modalities,
which are the most intuitive and commonly used methods for commu-
nicating with drones, were employed in designing the safe communi-
cation protocols. Critical commands “Stop Task,” “Keep Distance,”
“Change Path,” and “Resume Task” were identified to assist construction
workers in maintaining safety while working around drones. An
immersive VR environment, replicating construction site dynamics and
integrating gesture and speech recognition systems via the Unity3D®
game engine, served as the foundation for our user-centric experiment.

The impact of these protocols on safety, covering physical risks,
psychological effects, and worker perceptions during human-drone in-
teractions, was investigated using a between-subject research design.
The results showed that effective communication reduced the likelihood
of accidents (as indicated by near-miss incident numbers in the control
condition vs other conditions). The results also revealed that the gesture
communication protocol was particularly effective in minimizing the
risk of physical contact during human-drone interactions on construc-
tion sites. It demonstrated no substantial adverse effects on participants’
psychological well-being or perceptions. In contrast, while the speech
protocol added cognitive load, indicating potential psychological strain,
it did not significantly reduce physical contact risks. Overall, gesture-
based protocols outperformed speech-based ones in promoting safe
communication on construction sites.

This research deepens the understanding of how various human-
drone interaction (HDI) communication modalities can enhance the
safety and well-being of construction workers. Given the unique chal-
lenges posed by construction environments—marked by their
complexity and dynamism—it is essential to address the needs of general
workers, especially those not part of drone operating teams with limited
drone-related knowledge. As drones become more prevalent in con-
struction, potential risks arising from increased human-drone in-
teractions will intensify. Our proposed protocols offer an innovative
strategy to ensure safety in these interactions, emphasizing the impor-
tance of HDI considerations for all stakeholders. The proposed protocol
can be implemented as an innovative intervention strategy for drones
employed in construction sites while bringing up the safety consider-
ations in human-drone interaction for all the stakeholders. The assess-
ment results from the user-centered experiment can guide drone
manufacturers and tech firms in developing functions tailored to the
construction industry, prioritizing worker safety and well-being. This
study also introduced a unique and novel framework for assessing the
impact of human-drone interactions on construction worker safety using
immersive virtual reality. This framework can be employed for broader
human-robot interaction studies in the construction industry. The
immersive VR environment with integrated communication protocols
could also serve as a valuable tool for providing accessible opportunities
for construction workers to learn about the applications of drones and
the innovative future of construction sites.
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