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DDI Prediction with Heterogeneous Information
Network - Meta-Path Based Approach

Farhan Tanvir, Khaled Mohammed Saifuddin, Muhammad Ifte Khairul Islam, and Esra Akbas

Abstract—Drug-drug interaction (DDI) indicates where a particular drug’s desired course of action is modified when taken with other
drug (s). DDIs may hamper, enhance, or reduce the expected effect of either drug or, in the worst possible scenario, cause an adverse
side effect. While it is crucial to identify drug-drug interactions, it is quite impossible to detect all possible DDIs for a new drug during
the clinical trial. Therefore, many computational methods are proposed for this task. This paper presents a novel method based on a
heterogeneous information network (HIN), which consists of drugs and other biomedical entities like proteins, pathways, and side
effects. Afterward, we extract the rich semantic relationships among these entities using different meta-path-based topological features
and facilitate DDI prediction. In addition, we present a heterogeneous graph attention network-based end-to-end model for DDI
prediction in the heterogeneous graph. Experimental results show that our proposed method accurately predicts DDIs and outperforms
the baselines significantly.

Index Terms—Drug-drug Interaction, Link Prediction, Chemical Structure, Graph Neural Network, Representation Learning
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1 INTRODUCTION

D RUG discovery is crucial in healthcare and pharma-
ceutical research to develop new drugs to treat dis-

eases and improve patient outcomes. Addressing drug-
drug interactions (DDIs), drug-target interactions (DTIs) [1],
microRNA-drug associations [2], and drug-pathway asso-
ciations [3] are essential for patient care and drug devel-
opment. Adverse drug reactions have become a significant
health concern, particularly in the United States, where
ADRs are the fourth leading cause of death. One-third of
adverse drug reactions occur due to drug-drug interactions
(DDI). Effective and early DDI prediction is required to
reduce the impact of unwanted pharmaceutical side effects.
However, due to the numerous possible drug combinations
and comorbidities, conducting experiments on all drugs in
a clinical setting is impractical. Therefore, computational
models are needed to detect new DDIs for drugs.

Computational models have been proposed to detect
DDIs ( [4], [5], [6], [7], [8], [9]) by integrating drug-related
information from public databases like DrugBank, STITCH,
SIDER, PubChem, and KEGG. To leverage the increasing
relational information about drugs, current methods inte-
grate multiple data sources to extract drug features, such as
side effects and target proteins [10]. Recently, network-based
methods using graphs have gained attention, capturing
complex interactions between drugs and other entities in
various fields, including social networks [11], [12], citation
networks [13], [14], and biological networks [15].

Despite the achievements of existing models in DDI
prediction, several limitations still need to be addressed.
First, drug-centric interaction data are varied and diverse,
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as different types of drugs can interact with other entities,
resulting in various events. Second, heterogeneous graphs,
widely used in data mining applications, offer detailed
information and rich semantics. Meta-paths and meta-path-
based neighbors are core features of heterogeneous graphs,
where meta-paths [16] serve as composite relations con-
necting two objects, measuring higher-level similarity and
semantics between items. However, no previous works have
employed meta-paths and meta-path-level attention to de-
note drug similarity and perform DDI prediction. Thirdly,
most prior studies have focused on a limited number of
data sources for predicting DDIs. To accurately predict
possible DDIs, it is essential to incorporate information
from multiple data sources [5], [17]. Lastly, assessing model
effectiveness for new drugs needs to be addressed. Models
tested on current drugs may give different effectiveness for
new drugs [17], [18].

We propose a novel Heterogeneous Graph Attention
Network (HAN-DDI) for DDI prediction to address these
limitations. Our approach integrates rich drug-centric infor-
mation from multiple data sources, creating a comprehen-
sive drug-based interaction dataset. We represent drugs and
their interactions with other entities using a Heterogeneous
Information Network (HIN). Lastly, two essential features of
a heterogeneous information network (HIN) are the meta-
path and the meta-path-based neighbors. Meta-paths are
used on the HIN to measure higher-level similarity among
drugs.

As a baseline solution for DDI, we use meta-paths to ex-
tract handcrafted topological features. Topological features
consider the entire graph structure and node connectivity
during feature extraction. However, handcrafted topological
features may be enough to learn the complex relationship
between drugs and biomedical entities. Also, each meta-
path conveys different semantics for drug pairs and may
have different impacts on the interactions of drugs. There-
fore, we must determine which meta-paths are more crucial
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and incorporate their significance into our model.

We introduce a novel graph encoder-decoder framework
for predicting drug-drug interactions based on a hetero-
geneous graph attention network ( [19]). In contrast, prior
works for link prediction tasks in biology (e.g., [20], [21]) use
a two-stage pipeline consisting of a graph feature extraction
model and a link prediction model that are both trained
independently. Our approach utilizes several meta-paths to
indicate different relations between drug pairs within the
HIN. Our model employs a hierarchical attention mecha-
nism, combining node-level and meta-path-level attention,
to learn node representation from diverse meta-paths effi-
ciently. This model propagates information from local neigh-
bors using a meta-path. For each meta-path, we integrate
node-level attention to obtain representations for nodes. We
also use meta-path-level attention to learn the importance
of distinct meta-paths to aggregate node representations
from different meta-paths efficiently. Afterward, the pair-
wise representations of drugs are passed through decoder
functions to predict a binary score, expressing the likelihood
of interaction for each drug pair.

To demonstrate the efficacy of our model, we perform
extensive experiments, considering imbalanced data distri-
bution and evaluating performance using various metrics.
The results demonstrate our model’s ability to predict DDIs
for new drugs without known interactions.

The following are the primary contributions of our mod-
els:

• Combining multiple data sources on Heteroge-
neous Information Network: We integrate various data
sources to generate a comprehensive drug-based in-
teraction dataset, enabling more accurate information
about drug interactions. Our HIN captures the interac-
tions of drugs with proteins, diseases, and pathways,
considering the involvement of protein species and
pathway subjects.

• DDI Prediction on HIN with Meta-paths: We cre-
ate multiple meta-paths representing different relations
between drug pairs within the HIN. The HAN-DDI
model, incorporating node-level and meta-path-level
attention, efficiently learns node features from diverse
meta-paths, enhancing the accuracy of DDI prediction.

• Heterogeneous Graph Encoder-Decoder: We propose a
novel graph encoder-decoder framework for predicting
drug-drug interactions based on a heterogeneous graph
attention network. Our hierarchical attention mecha-
nism contributes to improved prediction performance.

• Extensive experiment: We conduct comprehensive ex-
periments, considering imbalanced data distribution
and employing various evaluation metrics, including
F1-score, Recall, Precision, AUROC, and AUPR. The
results demonstrate that our model predicts DDIs for
new drugs without known interactions.

The paper is organized as follows: Section 2 summarizes
related works. Section3 details data integration, heteroge-
neous graphs, and meta-paths. Section 4 presents our HAN-
DDI model. Section 5 outlines the experimental setup and
results. Finally, we conclude in Section 6.

2 RELATED WORK

Previous DDI prediction research can be categorized into
two main approaches: Similarity-based methods and graph
deep learning-based techniques.

2.1 Similarity-based Methods
Traditionally, statistical learning methods based on phar-
macological, topological, or semantic similarity have been
employed to predict adverse drug reactions (ADRs) and
drug-drug interactions (DDIs) [22], [23]. These similarity-
based approaches rely on the assumption that drugs with
similar characteristics are likely to interact. Various research
studies [17], [24], [25], [26] have utilized diverse similar-
ity metrics to predict DDIs successfully. Notably, some
researchers [10] have addressed the challenge of imbal-
anced and skewed datasets by constructing a heterogeneous
graph using multiple data sources. Additionally, [27], [28]
utilized hypergraphs to represent the chemical structure-
based similarity between drugs, connecting multiple drugs
through a single hyper-edge if they share a similar chemical
substructure. However, many of these methods focus on a
limited number of datasets and drug-centric interactions.

2.2 Graph Deep Learning-based Methods
Knowledge graphs, represented as heterogeneous networks
with entities and various relations, have been widely stud-
ied using graph neural networks (GNNs) [29]. In recent
years, these GNN-based approaches have been applied to
various problems, including DDI prediction ( [30], [31], [32]).
GNN-based models construct knowledge graphs based on
drug-centric interactions and extract relations among drugs
using neural networks. For instance, Decagon [5] developed
a graph convolutional network with encoding, decoding,
and model training phases for DDI prediction, incorpo-
rating protein-protein interactions, drug-drug interactions,
and drug-protein interactions. KGNN [33] utilized GNNs
to learn drug embeddings from a knowledge graph and
DDI information. HyGNN [28], based on hypergraphs, em-
ployed an encoder-decoder architecture with an attention-
based edge encoder to obtain drug embeddings and predict
interactions between drug pairs. Additionally, MUFFIN [34]
combines a message-passing neural network with TransE to
capture drug structure representation from the molecular
map and semantic features from the knowledge graph,
ensuring powerful drug representation for DDI prediction.
SkipGNN [35] employs a graph neural network method
that aggregates data from second-order interactions and
direct interactions to predict molecular interactions. More-
over, MRCGNN [36] applies GNN on the multi-relational
DDI event graph after extracting drug features from drug
molecular graphs. Then, they implement a multi-relational
contrastive learning to capture rare DDI events. While these
techniques demonstrate excellent performance, they often
treat DDIs as independent data samples, disregarding their
relationships within the knowledge graph. Our approach
sets itself apart by focusing on extracting drug interactions
and DDIs using various meta-paths and introducing an
attention mechanism to determine the importance of drug
nodes and meta-paths, effectively leveraging semantic in-
formation from nodes in heterogeneous networks.
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TABLE 1: Statistics of Dataset

Nodes/Edges Number of nodes/edges
Drug 481

Protein 1266
Disease (Indication and Side Effect) 1602

Pathway 48703
Pathway Subject 7

Drug-drug interaction prediction involves identifying
potential interactions between drug combination, leading to
unwanted side-effects. On the other hand, drug combina-
tion prediction focuses on identifying potential synergistic
combinations of drugs, where the combined effect of two
or more drugs is greater than the sum of their individual
effects, leading to improved therapeutic outcomes and re-
duced drug resistance. Both areas play a significant role
in pharmacological research, and they are related since
drug combinations can also lead to drug interactions, in-
fluencing their individual effects and overall therapeutic
outcome. Studies like SNRMPACDC [37] and NLLSS [20]
have emerged as efficient tools to predict potential syner-
gistic drug combinations. SNRMPACDC utilizes Siamese
convolutional networks and random matrix projection for
predicting anticancer synergistic drug combinations. On the
other hand, NLLSS integrates different types of informa-
tion, including known synergistic drug combinations, drug-
target interactions, and drug chemical structures, to predict
antifungal synergistic drug combinations with excellent ac-
curacy.

3 DATA PROCESSING

This section outlines the comprehensive process of prepar-
ing the data for drug-drug interaction (DDI) prediction,
involving three main steps: Data Integration, Heterogeneous
Graph Construction, and Meta-path Construction. The fol-
lowing subsections provide a more detailed explanation of
each of these data processing steps.

3.1 Data Integration

Our dataset encompasses diverse entities and their
interactions from publicly available sources, includ-
ing DrugBank 1, KEGG 2, and DEB2 3 (it com-
bines DrugBank, MedLine, MedLinePlus, Sider2, and
NDRFT) and TWOSIDES. We have uploaded our pre-
processed datasets to the following GitHub repository:
https://github.com/farhantanvir1/HIN-DDI. Table 1 sum-
marizes the fundamental statistics of the dataset used.

The dataset includes drugs, proteins, pathways, chemical
substructures, ATC codes, and diseases with the following
interactions:

• Drug-Protein Interactions: Different drugs target specific
proteins in the human body, known as target proteins,
to induce therapeutic changes. DrugBank provides data
on drugs interacting with specific target proteins, in-
volving 1266 target proteins, 89 species, and 481 drugs.

1. https://go.drugbank.com
2. https://www.kegg.jp
3. https://www.vumc.org/cpm/deb2

• Drug-Pathway Interactions: The pathways of drugs pro-
vide valuable information about their mechanisms of
action and metabolism and also include pathway sub-
jects, such as diseases, proteins, and physiological pro-
cesses. Interaction data among drug pathways, path-
way subjects, and drugs are sourced from DrugBank,
yielding relational data for 481 drugs, 48703 pathways,
and seven pathway subjects.

• Drug-Indication Interactions and Side effect data: DEB2
integrates data from various sources, associating 481
drugs with 1602 indication/side effect instances.

• The chemical substructure of Drugs: The simplified
molecular-input line-entry system (SMILES) represen-
tation of 481 drugs from DrugBank and KEGG is con-
verted into MACCS keys, a binary fingerprint with
167 bits, each corresponding to a chemical substructure
indicating its presence or absence.

• ATC code of drugs: ATC codes, categorizing drugs based
on their operating organs and chemical, therapeutic,
and pharmacological characteristics, are obtained from
DrugBank and KEGG.

• Drug-drug interactions: Both DrugBank and TWOSIDES
contain information on drug-drug interactions among
the 481 drugs, curated from adverse drug effect reports.

3.2 Heterogeneous Graph Construction
In our DDI prediction approach, we operate under the hy-
pothesis that similar drugs interact with similar biomedical
entities. To model these interactions effectively, we construct
a Heterogeneous Information Network (HIN) consisting
of diverse entity types. The definition of a heterogeneous
information network is as follows:

Definition 1 (Heterogeneous information network). [38] A
heterogeneous information network (HIN) is defined as a graph G
= (V,E) with an entity type mapping ϕ: V → A and a relation
type mapping ψ : ϵ→ R, where V denotes the entity set and E is
the relation set, A denotes the entity type set and R is the relation
type set and the number of entity types |A| > 1 or the number of
relation type |R| > 1.

Our constructed HIN comprises eight node types: drugs,
proteins, species, pathways, pathway subjects, chemical
substructures, ATC codes, and diseases. Leveraging the
datasets described in subsection 3.1, we establish relations
among these distinct node types, which are elaborated be-
low:

• I1: T matrix represents the drug-target protein inter-
action where each element ti,j states whether drug i
targets protein j.

• I2: R matrix denotes the relationship between species
and proteins, with each element ri,j indicating whether
protein j can be found in species i.

• I3: W matrix captures the relationship between drugs
and pathways, with each element wi,j describes
whether pathway describing whether drug i is associ-
ated with pathway j.

• I4: The type of activities of the drug pathway may
vary, such as metabolic, protein, and drug action. B
matrix describes the association of pathway subjects
with pathways, where each element bi,j shows whether
pathway subject j is related to pathway i.
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Fig. 1: Meta-paths used in HAN-DDI

• I5: IND matrix depicts the drug-indication relation
where each element indi,j shows whether drug i is used
to treat indication j.

• I6: SE matrix represents the drug-side effect relation
where each element sei,j describes whether drug i
causes side effect j.

• I7: H matrix outlines the drug-chemical substructure
relation where each element hi,j refers to whether the
drug i has chemical substructure j.

• I8: AS matrix demonstrates the drug-anatomical sub-
group of ATC code relation where each element asi,j
refers to whether drug i affects organ or system j.

• I9: ATS matrix shows the interaction between drugs
and the anatomical and therapeutic subgroup of ATC
codes. Each element atsi,j indicates whether drug i im-
pacts a specific organ and its corresponding therapeutic
subgroup j.

• I10: ATPS matrix illustrates the relationship between
drugs and the ATC code’s anatomical, therapeutic, and
pharmacological subgroup. Each element atpsi,j indi-
cates whether drug i acts on a particular organ and
possesses its corresponding therapeutic and pharma-
cological subgroup j.

3.3 Meta-path Construction
After constructing the heterogeneous network, the next
step involves creating meta-paths to extract relationships
between drugs through other entities. Meta-paths [16] are
crucial in measuring relationships and similarities within
a heterogeneous graph. Furthermore, meta-paths are repre-
sented by a commuting matrix. Meta-path and commuting
matrix are defined below.

Definition 2 (Meta-path). A meta-path P is a path on the
network schema diagram TG = (A,R), and is represented in the
shape of A1

R1−−→ A2
R2−−→ · · · Rl−→ AL+1, describing a composite

relationshipR = R1◦R2◦· · ·◦R between entitiesA1 andAL+1,
where ◦ denotes composition operator association, and length of P
is L.

Definition 3 (Commuting matrix). Given a network G, a
commuting matrix MP for a meta-path P = (A1A2 · · ·AL+1)
is defined as MP = (GA1A2GA2A3 · · · GAlAL+1

), where GAiAj

is the adjacency matrix between types Ai and Aj . MP (i, j)
represents the number of path instances between entity xi ∈ A1

and entity yi ∈ AL+1 under meta-path P .

To design meta-paths for our DDI prediction model,
we conduct a rigorous literature survey to identify key
biomedical entities and relationships involved in DDIs. This
knowledge contribute to the development of six meta-paths
that encapsulate the most crucial and frequently occurring
patterns of drug interactions with these entities. These meta-
paths represent the collective understanding of the mecha-
nisms involved in DDIs.

For instance, let’s consider a meta-path between two

drugs: drug se−→ disease seT←−− drug indicating that two drugs
cause the same side effect. We can construct the adjacency
matrix between drugs and side effects as Gdrug,side−effect.
Then, the commuting matrix computed using the meta-
path is Gdrug,side−effect and GT

drug,side−effect, represented
as SE * SET , where each element denotes the number of
side effects caused by this pair of drugs. We can generate
six meta-paths based on a given network schema, consid-
ering the different types of entities and their interactions
described in Subsection 3.2.

Different meta-paths assess the similarities between two
drugs from various perspectives. PID-1 calculates the simi-
larity of two drugs based on their common target proteins
and species. If two drugs share the same target protein, there
will be a path between them through that protein. This
meta-path starts and ends with a drug node but traverses
through an intermediate species node, enabling exploration
of the influence of species-specific protein interactions on
drug interactions. The choice of PID-1 is motivated by
the fact that species-specific protein interactions can play
a crucial role in drug interactions, as drugs may interact
differently with proteins of different species, leading to
distinct interaction patterns. Meta-path PID-2 measures how
similar two drugs are based on their shared pathways
and pathway subjects. In addition, PID-3 and PID-4 meta-
paths measure drug pairs’ similarity based on their relation
with diseases. Meta-path PID-3 considers common diseases
cured by drug pairs, whereas PID-4 considers common side
effects caused by drug pairs. Moreover, PID-5 connects two
drugs based on their shared chemical substructures, indi-
cating their structural similarity. Chemical substructures of
drugs are represented as SMILES strings and converted into
MACCS keys, a binary fingerprint representing 167 keys.
Finally, PID-6 determines the ATC code-based similarity
of drug pairs. ATC code illustrates the affected organs of
drugs and the therapeutic, chemical, and pharmacological
properties of drugs. If drug pairs affect the same organ and
have the same therapeutic, chemical, and pharmacological
properties, then the drug pair will be connected through
a meta-path. Thus, HIN can naturally provide different
similarities between drugs with different meta-path-based
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Fig. 2: System Architecture of HAN-DDI

semantics. Meta-paths used in our network are illustrated
in Figure 1.

4 METHODOLOGY

This section introduces our methodology for DDI pre-
diction, starting with the baseline model, HAN-DDI. In
HAN-DDI, we extract meta-path topological features to pre-
dict drug interactions. Subsequently, we present the limi-
tations of this model and propose an improved approach,
HAN-DDI, which incorporates a multi-layer Heterogeneous
Graph Attention Network consisting of an encoder for drug
feature generation and a decoder for DDI prediction. Fig-
ure 2 illustrates the system architecture of our HAN-DDI
model.

4.1 Meta-path Topological Features-Based Model

We first explain our model HIN-DDI, where we extract
meta-path topological features to perform DDI prediction.
Four topological features of meta-paths on heterogeneous
networks are utilized in our model:

• Path count: This feature calculates the number of path
instances between two entities for a given meta-path
R. The path count is stored in the corresponding meta-
path’s commuting matrix.

• Normalized path count: The normalized path count
computes the number of paths between two network
entities through the entire communication network and
divides it by the full connectivity of each network entity.

• Random walk-based normalized path count: In this
feature, Random Walk (RW) is used to normalize the
number of path occurrences based on the overall con-
nectedness of the network. The Random Walk is calcu-
lated as PCR(ai, aj)/PCR(ai, ◦), where PCR(ai) are
row-wise summations.

• Symmetric random walk-based normalized path
count: This feature involves a symmetric random walk,
considering the random two-way walk between enti-
ties.

After extracting the topological features with each meta-
path for drug pair relations, we obtain 24 features for each
drug pair. The objective is to predict whether two drugs
interact or not. For each drug pair relation, we obtain 24
features, and various ML algorithms such as SVM, Logistic
Regression, Random Forest, and Neural Network are used
for DDI prediction.

However, the complexity of drug relations may require
additional features beyond handcrafted meta-paths. Each
meta-path conveys distinct semantics and similarity values,
potentially affecting drug interactions differently. Thus, it
becomes essential to determine the crucial meta-paths and
incorporate their relevance into our model.

4.2 Heterogeneous Graph Attention Network Model
In response to the limitation mentioned above, we propose
the Heterogeneous Graph Attention Network (HAN-DDI)
for DDI prediction, drawing inspiration from HAN [19].
HAN-DDI consists of an encoder responsible for generating
drug embeddings and a decoder for predicting drug inter-
actions.

Our heterogeneous graph contains comprehensive in-
formation and rich semantics, incorporating various bio-
logical entities and their interactions. The encoder learns
drug embeddings in two steps: firstly, drug embeddings are
learned for each meta-path using the Heterogeneous Graph
Attention Model, resulting in diverse meta-path-based em-
beddings that capture different connection semantics. To
obtain a high-quality embedding, we compute meta-path-
level attention scores to determine the significance of each
meta-path and then aggregate the embeddings and attention
scores. This process generates the final output embedding.
The decoder uses these drug embeddings to assign scores to
drug-drug edges, indicating the likelihood of a DDI.

The HAN-DDI model is designed to handle heteroge-
neous graph data effectively, capturing subtle differences
between nodes and meta-paths. Table 2 presents the nota-
tions used throughout the article for ease of reference.

4.2.1 Node’s Feature Extraction
In the feature extraction step, we extract node features for
the drugs. Specifically, we focus on the chemical substruc-
tures of drugs, represented as SMILES strings. To create
drug features, we employ the ESPF [39] algorithm. ESPF
decomposes the SMILES string into frequent substructures,
selecting the most significant ones based on a frequency
threshold. These substructures provide informative features
for the drugs, which will be utilized in the subsequent steps
of the HAN-DDI model.

4.2.2 Encoder: Drug representation learning
The encoder layer in our HAN-DDI model aims to learn
drug embeddings by utilizing weighted neighborhood ag-
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TABLE 2: Notations and Explanations of HAN-DDI

Explanation Notation
Meta-path ν

Initial node feature h
Type-specific transformation matrix Mν

Projected node feature h
′

Importance of meta-path based node pair (i, j) eνi,j
Weight of meta-path based node pair (i, j) αν

i,j
Meta-path based neighbors Nν

Semantic-specific node embedding zν

Semantic-level attention vector q
Importance of meta-path ν wν

Weight of meta-path ν βν

The final embedding Z

gregation. However, since different types of nodes (e.g.,
drugs, proteins, pathways, etc.) have diverse feature spaces,
we first create type-specific transformation matrices (Mi)
for each kind of node (e.g., a node of type νi) to project
their features into the same feature space. The projection
procedure is defined as follows:

h
′

i =Mνi ◦ hi (1)

Here, h and h′ represent the original and projected
features of node i, respectively, and ◦ denotes the inner
product between the two matrices.

Next, we introduce node-level attention to learn the
importance of meta-path-based neighbors and aggregate
them to obtain meta-path-specific node embeddings. Ad-
ditionally, we define meta-path level attention to determine
the importance of different meta-paths and their weights
in combining multiple meta-path-specific drug embeddings
into one comprehensive drug embedding.

Node Level Attention In our model, meta-paths are
used to propagate information from local neighbors, but
each node’s meta-path-based neighbors may have varying
impacts on the target node. Each node’s meta-path-based
neighbors play different roles and affect the learning of the
node’s embedding differently. To address this, we introduce
node-level attention for each meta-path to learn node repre-
sentations.

Given a node pair (i, j) connected by a meta-path ν, the
node-level attention eνij determines node j’s significance for
node i. The significance of the meta-path-based node pair
(i, j) can be expressed as follows:

eνij = attnode(h
′

i, h
′

jν) (2)

where Attnode represents the deep neural network
responsible for node-level attention. For a given meta-
path, Attnode is shared by all meta-path-based node pairs.
Masked attention is employed to consider structural in-
formation, and we compute eνij only for nodes j ∈ Nν

i ,
where Nν

i denotes the meta-path-based neighbors of node i
(including itself). We then normalize the weights of all meta-
path-based neighbors using a Softmax function to obtain the
attention coefficient αij :

αν
ij = softmaxj(e

ν
ij) (3)

In the subsequent (i + 1)-layer, the meta-path-based
embedding of node i is aggregated by the embeddings of
its neighbors at the i-layer, with the corresponding attention
coefficients applied as follows:

zνi = δ(
∑

j∈Nν(i)

(αν
ij ◦ h

′

j)) (4)

where zνi represents the meta-path ν-learned embedding
of node i and δ is a non-linear activation function, such as
RELU.

To make the learning process more robust, multi-head
attention is utilized. Specifically, K attention mechanisms are
applied individually to perform the feature transformation
specified by Equation 4. The resulting modified features
are concatenated (represented as ||), resulting in the output
feature representation as a vector:

zνi = ||Kk=1δ(
∑

j∈Nν(i)

(αν
ij ◦ h

′

j)) (5)

This allows the model to dynamically assign greater
aggregate weights to nearby nodes that are more relevant
to the DDI prediction task, making the embedding of nodes
more effectively aggregated based on dynamic weighting.
This property makes our technique highly effective for
representation learning.

Meta-path Level Attention To combine multiple meta-
path-specific representations for each node, we use a meta-
path-level attention approach. The objective is to learn the
weight of each meta-path ν based on the following equation:

wν =
∑
i∈V

qT tanh(W ◦ zνi + b) (6)

where W is the weight matrix, b denotes the bias vector,
and q represents the meta-path-level attention vector. The
attention scores for a meta-path ν are then normalized using
the softmax function as follows:

βν =
exp(wν)∑T

t=1 w
t

(7)

where T is the number of meta-paths. The final repre-
sentation for each node i is then obtained by aggregating
the meta-path-specific representations as follows:

zi =
T∑

t=1

βtzνi (8)

4.2.3 Decoder: DDI learning
The objective of the decoder is to learn whether drug pairs
interact using the drug representations obtained from the
encoder. The decoder assigns a score to each drug pair
(vi,vj), expressing the probability of interaction. The dot
predictor function is used as the decoder:

γ(zx, zy) = zx · zy. (9)

After performing an element-wise dot product between
the corresponding drug features, a scalar score is obtained
for each edge.
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Following that, we apply the decoder output to a sig-
moid function: yx,y = σ(γ(zx, zy)), which generates a
prediction score, Y ′, ranging from 0 to 1. A score close to
1 indicates a high likelihood of interaction between two
drugs, whereas a score close to 0 indicates a less likely
interaction.

4.2.4 Model Training
The entire encoder-decoder architecture is trained as a bi-
nary classification problem by minimizing a binary cross-
entropy loss function defined as:

L = −
N∑
i=1

Yi log Y
′

i + (1− Yi) log(1− Y
′

i ) (10)

where N is the total number of samples, Yi is the actual
label, and Y

′

i is the predicted score.

5 EXPERIMENTAL RESULTS

In this section, we conduct a comprehensive evaluation of
our proposed model for drug-drug interaction (DDI) predic-
tion through extensive experiments. The primary objective
is to compare the performance of our model with state-of-
the-art baseline methods using several accuracy metrics. The
model used to predict the DDIs of existing drugs may not
be as effective as those used to predict the DDIs of new
drugs. Therefore, we assess our model’s performance for
new and existing drugs. For DDI prediction, we explore
two main graph representations: the DDI graph and the
heterogeneous graph. Heterogeneous graph construction is
described in subsection 3.2. The DDI graph is a traditional
graph representation commonly used in drug-drug inter-
action studies. In this graph, nodes represent individual
drugs, and edges between nodes indicate known drug-drug
interactions.

It is important to note that the dataset is imbalanced
and skewed, where the number of positive samples (DDIs)
is significantly smaller than the number of positive nega-
tive samples (non-interactions). To address this issue, we
employ negative sampling. For each positive example, we
use one negative sample. In addition, we conduct k-fold
cross-validation (k=5). In each fold, the dataset is randomly
divided into five subsets, and the model is trained and
evaluated five times, each time using a different subset as
the testing set and the remaining subsets as the training
set. The cross-validation experiment is conducted to en-
sure HAN-DDI model’s robustness and consistency across
different data splits, reaffirming its generalization ability.
Our experiments employ several accuracy metrics, includ-
ing precision, recall, F-1 score, and area under the receiver
operating characteristic curve (AUC-ROC). The use of k-
fold cross-validation ensures that our evaluation is statisti-
cally sound and provides reliable performance estimates. In
the subsequent sections, we provide a detailed description
of the parameters used, explain our experimental setup,
present the results of the subset analysis, and finally, provide
a thorough analysis of our overall results.

5.1 Parameters Used
For model training and optimization, we employ an end-
to-end optimization method for our HAN-DDI model. We

TABLE 3: Hyper-parameter Settings

Learning rate 0.005
Number of heads 8

Hidden units 8
Dropout 0.6

Weight decay 0.001
Number of epochs 200

Patience 100

simultaneously optimize all trainable parameters and prop-
agate loss function gradients through the model’s encoder
and decoder components. We use the Adam optimizer with
a learning rate of 0.005 and a dropout rate of 0.6. The num-
ber of attention heads and hidden units used are set to 8 and
16, respectively. These parameter values were chosen as they
demonstrated a good balance between model performance
and computational efficiency. The model does not take a
long time to run and shows promising accuracy results,
which indicates that the chosen hyperparameters contribute
to an efficient and effective DDI prediction process. The
parameters used in this model are outlined in Table 3.

5.2 Baseline methods

We compare the performance of HAN-DDI against several
baseline methods, covering different types of models. Af-
ter generating drug node embeddings from these baseline
methods, we concatenate them and use the concatenated
embeddings as features for drug pairings. We then feed
these concatenated embeddings to a machine learning clas-
sifier. To measure the performance of each model, we use
various accuracy metrics, including precision, recall, F1-
score, and area under the receiver operating characteristic
curve (AUC-ROC). Details of the baselines are summarized
below based on their types.

• Graph Embedding on DDI: We use DeepWalk [40] and
node2vec [41] to generate low-dimensional feature rep-
resentations of drug nodes based on neighborhood
information in the DDI network.

• Graph Neural Network on DDI: We use GNN architec-
tures on DDI graphs to learn the representation of
drugs. We select three standard GNN-based methods:
GCN [42], GAT [43], and GraphSAGE [44].

• Graph Neural Network on Heterogeneous Graph: We ap-
ply these common GNN models to our heterogeneous
graph to learn drug embeddings.

• Graph Neural Network on Homogeneous Graphs: We con-
struct various homogeneous graphs consisting of drug
nodes, where edges among drug nodes are constructed
based on their relation to other entities if they share
target proteins, cause side effects or possess similar
chemical substructures. We have three different graphs
as described below-
– HG1: Node type: Drugs; Edge: Drug Nodes sharing

the same target proteins
– HG2: Node type: Drugs; Edge: Drug Nodes causing

the same side effects
– HG3: Node type: Drugs; Edge: Drug Nodes possess-

ing the same chemical substructures
To learn drug node embedding, we apply GCN to these
homogeneous graphs.
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• HIN-DDI: We use HIN-DDI [10], our meta-path topo-
logical feature-based model, as a baseline. HIN-DDI
first constructs a DDI-related HIN, and then the in-
stance numbers of selected meta-paths are used as
features to represent the interactions between drugs;
finally, a neural network is trained as the classifier for
predicting DDIs.

• DDIMDL: We use DDIMDL [45], which combines var-
ious drug features, including chemical substructures,
targets, enzymes, and pathways, with deep neural net-
work (DNN) to build a model for DDI prediction.

• ML Classifier on Drug Functional Representation (FR):
Principal Component Analysis (PCA) [46] is a
dimensionality-reduction approach commonly used to
reduce the dimensionality of substantial data sets. This
method generates a feature vector for each drug based
on the PCA representation of the drug-target protein
interaction matrix, the PCA representation of the drug-
chemical substructure possession matrix, and the PCA
representation of the drug-side effects matrix.

• SkipGNN: We employ SkipGNN [35], a graph neural
network method that predicts molecular interactions by
aggregating data from second-order and direct interac-
tions.

• MUFFIN: MUFFIN [34] combines message-passing
neural networks with TransE to capture drug structure
representation from molecular maps and semantic fea-
tures from KG.

• Decagon: Decagon [5], a graph convolutional network
model, is employed to predict multi-relational links in
heterogeneous networks, using end-to-end learning to
produce drug embeddings and predict DDIs.

5.3 Comparison with baselines
In our experiments, we evaluate the performance of our
HAN-DDI model and several state-of-the-art baseline models
on existing and new drugs. For new drug prediction, we
partition the dataset so that 20% of drugs are unseen during
training and only appear in the testing set. This 20% of
drugs are considered as new drugs and independent from
the training set.

Experimental results for existing and new drugs are
shown in Tables ur and 5. For existing drugs, our model
achieves the best results for F-1 score, Recall, Precision,
and AUROC scores as 96.63%, 97.92%, 95.98%, and 95.44%,
respectively, while the highest-scoring baseline, MUFFIN,
obtain 92.67%, 93.6%, 91.75%, and 95.26% for the respective
metrics. HIN-DDI yields scores of 74.08%, 74.02%, 74.15%,
and 74.05% for the same metrics. Similarly, for new drugs,
our model achieves scores of 84.76%, 85.92%, 84.63%, and
83.84%, while the best-performing baseline, MUFFIN, ob-
tained 81.51%, 82.43%, 80.62%, and 82.95% for F-1 score,
Recall, Precision, and AUROC, respectively. HIN-DDI gen-
erated accuracy scores of 66.9%, 65.72%, 68.12%, and 66.82%
for these metrics. Our model demonstrates its generalization
ability by predicting interactions for both existing and new
drugs.

To statistically compare the performance of our proposed
HAN-DDI model with baseline methods, we conduct paired
t-tests using a significance level of p< 0.05. The null hypoth-
esis is that there is no significant difference in performance

between HAN-DDI and each baseline method. For existing
drugs, the p-values for F-1 score, Recall, Precision, and
AUROC are all less than 0.05, indicating that HAN-DDI
significantly outperforms all baseline models in terms of
these metrics. Similarly, for new drugs, the p-values for F-1
score, Recall, Precision, and AUROC are all less than 0.05,
indicating significant improvement in the performance of
HAN-DDI compared to the baselines. These statistical tests
further support the superiority of our proposed model.

In further analysis of baseline models on existing drugs,
Node2Vec shows the best performance on the DDI graph
among graph embedding models. For GNN models, GCN
performs best on both DDI and heterogeneous graphs,
with the latter yielding better results due to considering
more nodes and edges. Among homogeneous graphs, HG3,
which forms edges for drug nodes sharing similar chemi-
cal substructures, achieves higher accuracy, indicating the
significance of chemical substructures in drug node rep-
resentation and DDI characterization. DDIMDL achieves
comprehensive evaluation scores, while MUFFIN emerges
as the top-performing baseline with an F1 score of 92.67%.
However, in some cases, HAN-DDI outperforms baseline
methods by a significant 19% performance gain.

Our research findings are significant for drug safety
and patient care. For new drugs, Node2Vec from graph
embedding models outperforms DeepWalk. GCN produces
the best results for GNN models on DDI graphs, but GCN
outperforms it on the more diverse heterogeneous graph.
Similar to existing drugs, HG3 surpasses other homoge-
neous graph variants in evaluation metrics for new drugs.
Furthermore, MUFFIN performs the best among the base-
line models. Our in-depth analysis revealed that HAN-DDI
excels in predicting DDIs for existing and new drugs,
demonstrating its strong generalization ability.

Furthermore, we present our model result with the best-
performing method from each baseline category. Figure 3
compares all these models, with HAN-DDI outperforming all
others. Notably, GNN-based models, including HAN-DDI,
show remarkable performance because of its capacity to
analyze graph structure data. The capability of GNN to
represent the interactions between graph nodes is a mile-
stone in graph analysis research. Moreover, message pass-
ing between graph nodes allows GNNs to capture graph
dependence. Heterogeneous graph Attention network is a
variant of GNN. Our proposed HAN-DDI model represents a
significant leap in drug-drug interaction prediction, offering
a new and superior approach compared to state-of-the-
art baseline methods. This superiority can be attributed to
the innovative multi-layer heterogeneous graph attention
network architecture, combined with node-level and meta-
path level attention mechanisms. The experimental results
validate the effectiveness of HAN-DDI and underscore its
potential as a game-changing tool for advancing drug safety
research and patient care.

5.4 Case Study: Prediction and Validation of Novel DDI
Predictions

We conduct an evaluation to determine the effectiveness of
our HAN-DDI model in predicting novel drug-drug interac-
tions (DDIs). To do this, we select 10 specific drug pairs that
lack DDI information in TWOSIDES.
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TABLE 4: Performance comparisons of HAN-DDI with baseline models for existing drugs

Model Method F1 RECALL PRECISION AUROC
DeepWalk 70.81 69.73 71.92 69.80

GE on DDI graph Node2Vec 69.96 68.56 71.42 67.82
HIN-DDI 74.08 74.02 74.15 74.05

GAT 82.17 82.95 81.41 82.12
GNN on DDI graph GraphSAGE 81.49 83.22 79.84 81.17

GCN 82.39 84.55 80.34 82.88
GAT 84.15 84.38 83.92 84.33

GNN on Heterogeneous graph GraphSAGE 85.62 86.39 84.87 83.23
GCN 85.91 87.16 84.69 87.22
HG1 85.85 88.21 83.62 86.78

Homogeneous Graphs HG2 85.01 88.57 81.72 85.62
HG3 87.17 86.72 87.63 86.26

DDIMDL 77.73 71.82 84.71 95.12
ML Classifier on drugs’ FR Concatenated Drug Features 82.19 83.18 81.22 78 .91

SkipGNN 87.12 87.93 86.32 88.6
Decagon 89.48 90.88 88.12 86.52
MUFFIN 92.67 93.6 91.75 95.26
HAN-DDI 96.63 97.92 95.38 95.44

TABLE 5: Performance comparisons of HAN-DDI with baseline models for new drugs

Model Method F1 RECALL PRECISION AUROC
Node2Vec 50.86 51.48 50.26 50.27

GE on DDI graph DeepWalk 47.48 44.92 50.35 45.63
HIN-DDI 66.90 65.72 68.12 66.82

GAT 75.15 75.83 74.49 74.32
GNN on DDI graph GraphSAGE 75.02 75.96 74.11 74.52

GCN 75.58 76.81 74.39 75.92
GAT 77.15 77.58 76.72 78.04

GNN on Heterogeneous graph GraphSAGE 76.40 76.71 76.09 75.36
GCN 78.71 81.13 76.43 79.88
HG1 75.98 75.62 76.34 75.18
HG2 76.03 77.87 74.28 77.62

Homogeneous Graphs HG3 77.39 76.38 78.42 77.44
DDIMDL 68.41 67.68 69.16 71.48

ML Classifier on drugs’ FR Concatenated Drug Features 75.60 77.16 74.1 73.94
SkipGNN 79.52 80.15 78.89 77.96
MUFFIN 81.51 82.43 80.62 82.95
HAN-DDI 84.76 85.92 83.63 83.84

After training our HAN-DDI model using the TWOSIDES
dataset, we use it to predict interactions for these selected
drug pairs. The predicted scores for these drug pairs are
presented in Table 6. As we see from the table, our model
predicted scores above 90% for seven pairs, indicating a
high probability of interaction despite the zero TWOSIDES
labels. To validate these predictions, we cross-reference
them with DrugBank, which is not used for the training. We
confirm that DrugBank includes interactions for all seven
pairs.

In contrast, the predicted scores are minimal for the
three-drug pairs in Table 6. Both TWOSIDES and Drug-
Bank data indicate that these pairs do not interact. This
consistent prediction between our model and the existing
datasets highlights the reliability of our HAN-DDI model in
identifying DDIs.

5.5 Case Study: Proportions of Correctly Predicted
DDIs Among Top 100 Highly Scored Predictions
To assess our model’s ability to rank and identify the most
relevant drug pairs among a large pool of potential inter-
actions, we calculate the proportions of correctly predicted

drug-drug interactions (DDIs) among the top 100 highly
scored predictions. Our results, presented in Table 7, show
that our HAN-DDI model outperforms the best-performing
baseline method MUFFIN in accurately identifying relevant
DDIs within the top predictions. This analysis demonstrates
the effectiveness of our model in prioritizing potential in-
teractions, which can streamline experimental validation
efforts and contribute to safer and more effective drug
combination strategies.

5.6 Case Study: Performance Across Disease Cate-
gories

To assess our model’s performance across different disease
categories, we experiment on drugs associated with car-
diovascular diseases, infectious diseases, and cancer. The
results, presented in Table 8, show that our HAN-DDI model
achieves high accuracy in predicting DDIs for drugs used
in these disease categories. These findings suggest that our
model has broad applicability and can contribute signifi-
cantly to drug discovery and development efforts across
diverse disease types.
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Fig. 3: Performance Comparison of Models for a) Existing and b) New Drugs

TABLE 6: Novel DDI Predictions and Their Validation

Drug1 Drug2 TWOSIDES Label Predicted Score DrugBank Label
Carbamazepine Cimetidine 0 0.9549 1

Ampicillin Tacrolimus 0 0.9931 1
Sildenafil Cimetidine 0 0.9683 1

Loratadine Isradipine 0 0.9336 1
Quinolones Citalopram 0 0.91 1

Hydroxychloroquine Loratadine 0 0.9082 1
Fluvastatin Metronidazole 0 0.9812 1
Bexarotene Maprotiline 0 9.9993e-10 0
Amoxapine Econazole 0 6.8256e-09 0

Nabilone Oxaprozin 0 4.1440e-08 0

TABLE 7: Proportions of Correctly Predicted DDIs Among
Top 100 Highly Scored Predictions

Method Proportion of Correctly Predicted DDIs (%)
MUFFIN 91.00
HAN-DDI 94.00

In order to assess the performance of our proposed
HAN-DDI model across different disease categories, we ex-
periment on drugs associated with cardiovascular diseases,
infectious diseases, and cancer. For each disease, we extract
the drugs used for these diseases. Then, we evaluate using
k-fold cross-validation, and the model’s accuracy metrics are
calculated for each disease.

Table 8 presents the performance of HAN-DDI across
different disease categories. The results indicate that our
HAN-DDI model demonstrates consistent and promising
performance. It achieves high accuracy in predicting DDIs
for drugs used in cardiovascular diseases, infectious dis-
eases, and cancer. Furthermore, it maintains robustness and
effectiveness in other categories. These findings suggest
that our model has a broad application scope and can be
valuable in predicting DDIs across diverse disease types,

Fig. 4: Performance Comparison of HAN-DDI with its vari-
ants
facilitating drug discovery and development.

5.7 Ablation Study
In this section, we conduct an ablation study to assess the
impact of node-level and meta-path-level attention on the
overall performance of our HAN-DDI model. We develop
two HAN-DDI variants for this study:

• HAN-DDI-MP: We use meta-path-level attention ac-
quired from HAN-DDI while a random matrix was used
for node-level attention.
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TABLE 8: Performance of HAN-DDI Across Disease Categories

Disease Category F1 RECALL PRECISION AUROC
Cardiovascular 93.33 94.11 92.58 92.03

Infectious 94.07 94.72 93.39 93.90
Cancer 92.8 93.18 92.86 92.47

• HAN-DDI-N: We use node-level attention generated by
HAN-DDI, and for meta-path-level attention, we as-
signed equal weights to each meta-path.

For HAN-DDI-MP, the average F1-score, Recall, Preci-
sion, and AUROC scores are 93.65%, 94.18%, 90.72%, and
80.88%, respectively, for existing drugs. For HAN-DDI-N, our
average F1-score, Recall, Precision, and AUROC scores are
92.87%, 93.19%, 89.75%, and 78.48%, respectively.

Performance analysis in Figure 4 shows that HAN-DDI
outperforms both HAN-DDI-MP and HAN-DDI-N. This in-
dicates that both node-level and meta-path-level attention
play important roles in effectively capturing different meta-
path information of nodes. However, meta-path-level atten-
tion has a more significant impact on performance than
node-level attention, as seen by the lower performance
of HAN-DDI-N compared to HAN-DDI-MP. This finding
demonstrates the significance of meta-path-level attention
in our model.

6 CONCLUSION

Our study introduces HAN-DDI, a novel Heterogeneous
Graph Attention Network for predicting drug-drug inter-
actions (DDIs). By leveraging heterogeneous graphs and
meta-paths, HAN-DDI performs better in predicting existing
and new drug interactions. The model’s ability to process
complex heterogeneous graphs enables comprehensive and
precise DDI predictions. We anticipate that HAN-DDI will
pave the way for more effective drug safety research and
personalized medicine approaches.

This approach opens up a promising avenue for DDI
predictions, especially as we progress toward personalized
medicine. We anticipate a growing integration of graph-
based models in DDI prediction due to their effective han-
dling of multifaceted drug interactions. In addition to its
potential for improving drug safety, HAN-DDI could also
be used to address other challenges in drug discovery and
development, such as identifying new drug combinations,
polypharmacy side effect prediction, and developing per-
sonalized treatment plans.
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