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1.  INTRODUCTION

Speech is a complex sound encountered daily and plays 
a fundamental role in human communication. It is, thus, 
essential to understand the process through which the 
human brain translates speech from its basic encoding 
by the auditory periphery to higher level processing in the 
cortex. Subcortical structures have been proven to be 
critical in this auditory processing chain, notably in the 
encoding of vowels and processing speech in noisy envi-

ronments (Carney et  al., 2015). The auditory brainstem 
response (ABR) serves as a key metric for subcortical 
auditory neuroscience research as well as clinical audiol-
ogy. Traditionally, the ABR is characterized by a stereo-
typical evoked potential elicited by brief stimuli such as 
clicks, tones, or chirps (R. F. Burkard et al., 2007; Picton 
et  al., 1974) through electroencephalography (EEG) 
recording. This evoked potential is observed in the first 
~10  ms post-stimulus, consisting of components that 
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reflect different stages of the auditory pathway according 
to their latency. Specifically, Waves I, III, and V are of par-
ticular interest, corresponding to the responses of the 
auditory nerve, cochlear nucleus, and inferior colliculus 
and lateral lemniscus, respectively (Picton et al., 1974).

Expanding upon this foundation, investigations into 
the brainstem’s response to speech via complex ABR 
(cABR) have been undertaken (Krizman et  al., 2010; 
Musacchia et al., 2007; Skoe & Kraus, 2010). These stud-
ies demonstrate that short speech vowels elicit a tran-
sient onset and a frequency following response (FFR) 
corresponding to the voiced part. However, the cABR 
method has limitations in its controversial neural sources 
(Coffey et al., 2016) and potential neural adaptation due 
to the repetitiveness of the speech stimuli used (i.e., 
repeated tokens of vowels or syllables).

Recently, studies have developed several methods for 
detecting the brainstem response to continuous, non-
repetitive speech, thus offering a more ecologically valid 
approach (at the expense of some experimental control 
over the stimuli) and potential clinical use (Bachmann 
et al., 2021; Forte et al., 2017; Kulasingham, Bachmann, 
et al., 2024; Maddox & Lee, 2018; Polonenko & Maddox, 
2021; Shan et  al., 2024). One such technique involves 
extracting the fundamental waveform from the speech and 
cross-correlating the waveform with the EEG signal (Forte 
et al., 2017). This method yields a broad peak around 9 ms 
primarily originating from the inferior colliculus but lacking 
finer components showing distinct activity from earlier 
auditory stages. Another set of studies are based on a 
deconvolution method that was proposed by Maddox and 
Lee (2018). The result of this deconvolution is a temporal 
response function (TRF), which has been used extensively 
to study cortical responses to natural stimuli (Di Liberto 
et al., 2015; Ding & Simon, 2012; Lalor & Foxe, 2010; Lalor 
et al., 2009) and provides superior responses to the funda-
mental waveform-based methods (Bachmann et al., 2021). 
An encoding model was proposed as depicted in Fig-
ure 1a: the stimulus (more specifically, an acoustical fea-
ture derived from the stimulus) acted as the input (i.e., 
regressor, x in Fig. 1a), the recorded EEG signal as the out-
put y, and the ABR as the impulse response of a linear 
system that transforms x into y.

A subcortical TRF whose morphology matches the 
click-evoked response is important for two reasons. First 
and most important is that the morphology of the click 
ABR can be linked to specific subcortical nuclei. This 
means that the TRF waveforms can be interpreted using 
the same framework. Second is that the TRF weights are 
a model of the impulse response of a system. A click is a 
real-world implementation of an impulse, so an accurate 
model of the subcortical system should respond with an 
ABR to an impulse input. Such a response indicates the 

model is working in a more intuitive way than comparing 
correlation coefficients.

A series of studies have offered improvements for 
deconvolution methods to compute the ABR (i.e., the 
subcortical TRF). The initial study by Maddox and Lee 
(2018) utilized half-wave rectification of the stimulus as 
the regressor (HWR, Fig.  1b) as a simple simulation of 
cochlear nonlinearity. It was able to derive the speech 
ABR with a distinct Wave V that is highly correlated with 
the click-evoked ABR. Following this, Polonenko and 
Maddox (2021) proposed using “peaky speech,” a re-
synthesized speech stimulus that was made impulse-like 
by aligning the phase of the speech harmonics at the 
time of glottal pulses. The regressor used was a train of 
impulses placed at the times of the glottal pulses (GP 
regressor, Fig. 1c). This method provided distinct earlier 
ABR components waves I and III in addition to wave V 
and enabled simultaneous ABR measurements from sep-
arate frequency bands. Shan et al. (2024) further extended 
deconvolution methods by incorporating a detailed com-
putational model (Zilany et al., 2009, 2014) that simulates 
the neural representation of the auditory periphery, con-
verting the stimulus waveform into an auditory nerve 
modeled response to be used as the regressor (ANM, 
Fig. 1d). Kulasingham, Bachmann, et al. (2024) compared 
the ANM to several simpler regressors, finding that a 
more efficient model provides good responses as long as 
it recapitulates the adaptation present in the auditory 
nerve. The ANM method, like the peaky speech with the 
GP regressor, also yields ABRs with early wave compo-
nents, and improves the speech ABR’s signal-to-noise 
ratio (SNR) over the HWR regressor. Moreover, this ANM 
method is generalizable to other natural sounds, includ-
ing music.

In this study, we aimed to compare ABR deconvolu-
tion using the HWR, GP, and ANM regressors. By exam-
ining the signal-to-noise ratio (SNR), prediction accuracy, 
efficiency, and practicality of each method in different 
scenarios, we hope to offer guidance on determining the 
most appropriate approach for deriving ABRs from natu-
ral speech as well as other complex sounds for a variety 
of experimental or clinical uses.

2.  MATERIALS AND METHODS

2.1.  EEG dataset

The data analyzed in this study were obtained from a 
broadband peaky speech experiment previously con-
ducted by Polonenko and Maddox (2021). In that experi-
ment, EEG was recorded from 22 normal hearing subjects 
(aged 18–32 years, mean ± SD of 23.0 ± 3.6 years) while 
they listened to the audiobook The Alchemyst (Scott, 
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2008), which was narrated by a male voice, as detailed in 
Polonenko and Maddox (2021). The silent pauses 
exceeding 0.5  s in the audiobook had been truncated, 
and the audiobook was segmented to 40 excerpts, each 
lasting 64 s. The recording time was 42 min and 40 s for 
each stimulus condition. During the experiment, subjects 
passively listened to the speech stimuli over ER-2 insert 
earphones at an average sound pressure level of 65 dB.

The EEG signal capturing subcortical activity (used to 
compute the ABR) was recorded using BrainVision’s pas-
sive Ag/AgCl electrodes. These electrodes were placed 

at the frontocentral position (FCz in the 10-20 system, 
active non-inverting), on the left and right earlobes (invert-
ing references), and at the frontal pole (Fpz, ground). The 
electrodes were connected to an ActiCHamp system 
with the signal sampled at 10 kHz and high-pass filtered 
at 0.1 Hz. The recording process also applied a causal, 
fourth-order lowpass filter at 1/3 Nyquist (1667 Hz). Sub-
sequent offline preprocessing included applying a high-
pass filter at 1 Hz to remove any slow drifts, and a notch 
filter at 60 Hz along with its first three odd harmonics to 
reduce power line noise.

Fig. 1.  The encoding model using deconvolution method and the regressors that were used. (a) The deconvolution 
paradigm for computing the TRF. (b) The half-wave rectified stimulus regressor (HWR). (c) The peaky speech waveform 
and the Glottal Pulse train regressor (GP). (d) The auditory Nerve Modeled firing rate regressor (ANM). IHC = inner hair cell, 
AN = auditory nerve, HSR = high spontaneous rate, CF = characteristic frequency.
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2.2.  Stimuli

In the original dataset, subjects listened to three stimulus 
conditions. However, for the purpose of this study, we 
focused on analyzing only two of those conditions: 1) 
unaltered speech, 2) re-synthesized broadband peaky 
speech. The re-synthesized peaky speech was designed 
to make the speech audio impulse-like by aligning the 
phase of the harmonics at the time of glottal pulses. This 
design aimed to elicit brainstem responses similar to 
those elicited by clicks, thereby evoking canonical ABRs 
while still preserving the intelligibility of the speech with 
minimal perceptible differences from the unaltered ver-
sion. For a detailed explanation of the peaky speech syn-
thesis process and audio examples, see Polonenko and 
Maddox (2021).

2.3.  ABR derivation

2.3.1.  Deconvolution model for ABR

As described in Maddox and Lee (2018), Polonenko 
and Maddox (2021), and Shan et al. (2024), an encod-
ing model of the ABR was defined as shown in Fig-
ure 1a. The speech stimuli were processed differently 
to isolate a given stimulus feature (i.e., regressor) to be 
used as the input x, while the EEG signal was the out-
put y, and the ABR was the impulse response of a lin-
ear system and determined through deconvolution. The 
computation was performed in the frequency domain 
for efficiency:

response = F−1 n∑ bn  Xn
*  Yn

1
N n∑ Xn

*  Xn

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
,

where response denotes the derived impulse response 
(i.e., the ABR), Xn the Fast Fourier transform (FFT) of the 
regressor for trial n, Yn the FFT of EEG signal for trial n, * 
the complex conjugate, F−1 the inverse FFT, bn the weight 
for trial n (see below), N the total number of trials, and n 
the trial index.

When computing the average response, a Bayesian-
like process (Elberling & Wahlgreen, 1985) was used to 
account for variations in noise level, so that noisier trials 
were weighted less. The EEG recording from each trial 

was weighted by its inverse variance, 1
σn
2

, relative to the 

sum of the inverse variances of all trials:

bn =

1
σn
2

m∑ 1
σm
2

.

2.3.2.  Three regressors

We compared the three regressors from previous three 
studies:

	 1)	� Half-wave rectified stimulus (HWR; Fig. 1b)
		  The half-wave rectified stimulus regressor was 

generated by first taking the positive values of the 
stimulus waveform and downsampling it to 10 kHz. 
This positive component of the stimulus was then 
used as the input to the encoding model (i.e., x), 
denoted as HWR. Then, the same process was 
applied, but with the original stimulus inverted so 
that the negative values (now positive) were used, 
and downsampled as before. Deconvolution was 
performed independently using both the positive 
and negative components as inputs. The final ABR 
response for each epoch and each subject was 
computed by averaging the responses to the pos-
itive and negative components.

	 2)	� Glottal Pulse (GP; Fig. 1c)
		  The glottal pulse times were initially extracted from 

the speech stimuli using speech processing soft-
ware, PRAAT (Boersma, 2011) when the peaky 
speech stimuli were constructed. The sequence of 
impulses that occurred at the glottal pulse times in 
the peaky speech stimuli was then used as the 
input to the encoding model, denoted as GP.

	 3)	� Auditory Nerve Model firing rate (ANM; Fig. 1d)
		  A computational auditory periphery model created 

by Zilany et al. (2009), updated in Zilany et al. (2014), 
and adapted for Python (Rudnicki et al., 2015) was 
utilized to generate simulated auditory neural 
responses. It was previously shown to be able to 
account for the peripheral nonlinearity effects 
(Kulasingham, Bachmann, et al., 2024; Shan et al., 
2024). The speech stimuli were upsampled to 
100 kHz according to the model’s requirement and 
converted to a pressure waveform (measured in 
pascals) at 65 dB SPL and used as inputs to the 
ANM model. We set the characteristic frequency 
(CF) ranging from 125 Hz to 16 kHz spaced at 1/6 
octave intervals. The auditory nerve firing rate was 
then summed across all CFs of high spontaneous 
rate fibers and downsampled to match the EEG 
sampling rate of 10 kHz so it could be utilized as the 
regressor, denoted as ANM. Positive and negative 
polarities of the speech stimuli were used to derive 
two responses that were averaged to get the final 
ABR as described in Shan et al. (2024).

The three regressors were used for both the unaltered 
and the peaky speech conditions. Although the GP 
regressors were intended for use with peaky speech and 
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have limited effectiveness as representative features for 
unaltered speech, they still capture some acoustic infor-
mation on the timing of glottal pulses in unaltered speech.

2.4.  Performance metrics and statistical analysis

2.4.1.  Response signal-to-noise ratio (SNR)

To evaluate the quality of the derived ABRs, we estimated 
the broadband SNRs of each waveform as described in 
previous studies (Maddox & Lee, 2018; Polonenko & 
Maddox, 2021; Shan et  al., 2024) using the following 
equation

SNR = 10 σS+N
2 − σN

2

σN
2

⎡

⎣
⎢

⎤

⎦
⎥, 

where σS+N
2  is the variance of the ABR waveform mea-

sured within the time interval of 0 to 15 ms, and σN
2  is the 

noise variance computed by averaging the variance 
across each non-overlapping 15 ms segment within the 
pre-stimulus baseline period, spanning from −1000 to 
−500  ms. Therefore, subtracting σN

2  from σS+N
2  in the 

numerator offers an estimate of the signal variance σS
2 , 

which is then divided by the noise variance and log trans-
formed and scaled to estimate SNR in decibels.

SNR was analyzed through a repeated-measures 
ANOVA followed by a post-hoc pairwise t-test to com-
pare the three regressors.

We also estimate the SNR per frequency. This was 
done similarly as was done in broadband SNR. But here 
the power spectral density of the response was used 
instead of the variance for each frequency bin (f ).

SNR(f ) = 10 PS+N (f ) − PN (f )
PN (f )

⎡

⎣
⎢

⎤

⎦
⎥, 

where PS+N (f ) is the power of the ABR waveform mea-
sured within the time interval of 0 to 15 ms in frequency 
bin f , and PN (f ) is the noise variance computed by aver-
aging the variance across each non-overlapping 15 ms 
segment within the pre-stimulus baseline period, span-
ning from −1000 to −500  ms in frequency bin f. The 
power spectral density of the signals (P) was computed 
using psd_array_multitaper function in mne package 
(Larson et al., 2023) with the first Slepian window with a 
bandwidth of 67 Hz (Slepian, 1978). At some frequency, 
bin PN(f) was higher than PS+N(f), making the result unde-
fined (i.e., the log of a negative number). That is why 
some lines are broken when plotted.

2.4.2.  Time required to obtain robust responses

We were interested in how long it took to record data in 
order to get a robust ABR using each of the three regres-

sors. For each subject, we calculated the broadband 
SNRs of ABRs, using the previously mentioned formula, 
across a recording duration ranging from 1 to 42 min. We 
then reported the cumulative proportion of subjects who 
achieved an ABR with an SNR of at least 0 dB throughout 
the recording process, as in the original peaky speech 
study (Polonenko & Maddox, 2021).

2.4.3.  Correlation between the predicted and the 
real EEG

To compare the power of the regressors to predict EEG, 
we used the responses to predict the EEG and calculated 
the correlation coefficient between the predicted EEG and 
the real EEG data, as in our previous study (Shan et al., 
2024). The predicted EEG were generated by utilizing the 
ABRs from each regressor as kernels (full kernel: [0, 200] 
ms time range; subcortical kernel: [0,15] ms time range), 
which were then convolved with the corresponding stimu-
lus’s regressors. We then calculated the Pearson correla-
tion coefficient between the predicted and real EEG data 
as a performance metric for each regressor.

2.4.4.  Spectral coherence

The ability of the regressors to predict EEG across differ-
ent frequencies was evaluated using spectral coherence 
analysis, as outlined in Shan et al. (2024). This approach 
served as a normalized correlation between the predicted 
EEG and the real EEG data but is split across various 
frequency bins. To determine spectral coherence, the 
predicted EEG and the real EEG data were sliced into 
segments of specific window sizes (0.2 s in this study), 
which then determined the frequency bins. The coher-
ence of each of these frequency bins was computed as 
the following equation

Cxy (f ) =
E[Xi

* (f ) Yi (f )]

E[Xi
* (f ) Xi (f )] E[Yi

* (f )Yi (f )]
,

where Cxy (f ) denotes the coherence between signal x 
and y at frequency bin f , E [ ] is the expected value across 
slices, * the complex conjugate, Xi (f ) the FFT for pre-
dicted EEG slice i  in frequency bin f , and Yi (f ) the FFT 
for real EEG data slice i  in frequency bin f .

To estimate the noise floor of the spectral coherence, 
we shuffled the order of the predicted EEG and real EEG 
data and calculated the spectral coherence for these 
mismatched trials. The median coherence value from 
these mismatched trials served as the noise floor.

To compare the performance of the three regressors in 
spectral coherence analysis, we computed the mean of 
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Fig. 2.  Grand averaged ABR waveforms for unaltered and peaky speech derived from HWR (a), GP (b), and ANM (c) 
regressor. Shaded area shows  ± 1 SEM (n = 22).

the absolute value of the spectral coherence across three 
specific frequency bands for each regressor. These three 
frequency bands—[0, 25] Hz, [25, 85] Hz, and [85, 135] 
Hz—were selected based on findings from a previous 
study indicating superior performance of ANM in these 
ranges compared to HWR (Shan et al., 2024).

2.4.5.  Statistical test

Data were checked and confirmed for normality using the 
Shapiro–Wilk test for any following parametric test. To 
compare the performance metrics of the three regres-
sors, mixed-effects linear regression models were con-
structed (formula below) in python, using stimulus 
condition, regressor and their interaction as the fixed 
effects and subject as random effect.

Performance metric ~ condition+ regressor
+ condition× regressor + (1| subject)

To compare the metrics within each stimulus condi-
tion, repeated-measure ANOVAs followed by a pairwise 
post-hoc paired t-test with Holm-Bonferroni correction 
were used. The performance metrics used in these statis-
tical tests were SNR analysis, broadband prediction 
accuracy (Pearson correlation), and the mean absolute 
value of the spectral coherence from the three frequency 
bands, as described above.

3.  RESULTS

The data analyzed in this study were obtained from a 
peaky speech experiment previously conducted by 
Polonenko and Maddox (2021). Data were collected 
under a protocol approved by the University of Rochester 
Research Subjects Review Board (#1227). This dataset 
includes EEG recordings from 22 subjects with normal 
hearing who were passively listening to an English audio-

book under two conditions: unaltered and peaky speech. 
In the Results section, we present the ABRs derived from 
the three different regressors and assess their quality 
using various quantitative metrics. Following this, we 
introduce a novel approach designed to enable a more 
equitable comparison of time-domain responses derived 
from these spectrally different regressors.

3.1.  GP and ANM regressors yield quicker and 
more robust ABR

Using the deconvolution method with the regressors 
depicted in Figure 1, we obtained the ABRs for both unal-
tered and peaky speech from the three regressors. Illus-
trated in Figure 2 are the responses derived from HWR 
(Fig. 2a), GP (Fig. 2b) and ANM (Fig. 2c). By looking at the 
general waveforms, it is apparent that the GP for peaky 
speech condition and the ANM for both conditions exhibit 
better ABR morphology.

The ABR derived from HWR shows a broad wave V for 
both stimulus conditions (Fig. 2a; see Fig. S1 for individ-
ual responses), consistent with findings from previous 
studies (Maddox & Lee, 2018; Polonenko & Maddox, 
2021). The ABR derived from GP for peaky speech has a 
distinct and narrow wave V at around 7.2 ms along with 
an early component (Wave I) at around 3.2 ms. The GP 
regressor is not designed for unaltered speech, but since 
it captures limited acoustical representation for the 
speech at the glottal pulse time, a much smaller wave V 
is still observable (Fig 2b; see Fig.  S2 for individual 
responses). Note that we ran this regressor-stimulus 
combination for completeness, but we did not expect 
high-quality responses from it. The ANM regressor yields 
clear ABRs for both unaltered and peaky speech with 
very similar waveforms and high consistency across sub-
jects. Early components (Wave I and Wave III) were pres-
ent in the waveforms, in addition to Wave V (Fig. 2c; see 
Fig. S3 for individual responses). A broader time window, 
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including cortical responses ([-50, 300] ms time window), 
was shown in Figure S4.

We then performed an analysis of the SNR for the ABR 
waveforms derived from the three regressors within the 0 
to 15  ms time window (see Materials and Methods for 
details of SNR computation). The analysis revealed sig-
nificant variability in SNR across the regressors for both 
unaltered and peaky speech (p  <  0.001; repeated-
measures ANOVA). The results are shown in Figure 3a. 

For unaltered speech, the ANM regressor demonstrated 
the highest SNR of 12.29 ±  0.44 (mean ± SEM), which 
was significantly better than the SNR obtained with HWR, 
which averaged 3.90 ± 0.86 (p < 0.001; two-tailed paired 
t-test, Holm-Bonferroni corrected). As expected, both 
ANM and HWR showed higher SNR than GP in this con-
dition (p < 0.05; two-tailed paired t-test, Holm-Bonferroni 
corrected). For the peaky speech condition, the SNR was 
the greatest for ANM (13.17  ±  0.51), followed by GP 

Fig. 3.  SNR analysis for the derived ABRs. (a) The averaged SNR of the ABR for unaltered and peaky speech derived 
from the three regressors. The bar represents the averaged SNR across subjects, and the grey dots with lines are the 
SNRs for each individual subject. (b) The cumulative proportion of subjects that has ABR SNR > = 0 dB as a function of 
recording time.
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(9.25 ± 0.56) and HWR (5.31 ± 0.77) in that order. Post-
hoc pairwise comparison further showed significant dif-
ferences between each regressor (p < 0.001; two-tailed 
paired t-test, Holm-Bonferroni corrected). The effect was 
further confirmed by a mixed-effect linear model (see 
Table S1 for details). A similar trend was observed when 
extending the analysis to a time range of 0 to 30 ms for 
the derived waveforms (Fig. S5).

We were interested in how efficient each regressor is in 
deriving the ABR by measuring the time required for sub-
jects to achieve a good response with SNR greater than 
0  dB. As shown in Figure  3b, for unaltered speech, all 
subjects reach 0 dB SNR within 6.4 min when using the 
ANM regressor. Conversely, when using the HWR and GP 
regressors for the duration of the 42-min experiment, 
only 95% and 86% of subjects reached 0 dB, respec-
tively. With peaky speech, it took 35.2 min for all subjects 
to reach 0 dB using HWR, while it only took 11.7 min with 
GP and 8.5 min with ANM. These indicate that the ANM 
is efficient in both conditions, and GP exhibited superior 
performance in peaky speech. Both the ANM and GP 
outperformed HWR.

3.2.  ABR derived from GP and ANM regressor can 
better predict EEG

In line with common practices in cortical TRF studies 
(Crosse et al., 2016; David et al., 2007), we conducted a 
Pearson correlation analysis to evaluate the accuracy of 
EEG signal prediction against real EEG recordings utiliz-
ing the waveform derived by each regressor. As in the 
previous study (Shan et al., 2024), we used the derived 
waveforms from the short time range of [0, 15] ms as a 
kernel with emphasis on subcortical encoding, which 
was then convolved with the regressors to generate the 
predicted EEG. The prediction accuracies (i.e., the Pear-
son’s r) were low since the later, slower cortical compo-
nent of the EEG was not part of the model (but were still 
present in the signal). There were also no differences 
among the regressors (p = 0.257 and p = 0.099, respec-
tively; repeated-measures ANOVA). However, a distinct 
divergence among regressors emerged upon applying a 
high-pass filter at 40  Hz to the EEG signals to de-
emphasize slower cortical activity, significant for both 
speech conditions (p  <  0.001; repeated-measures 
ANOVA; Fig.  4a). Specifically, in the unaltered speech 
condition, we again observed that both HWR and ANM 
demonstrated better accuracy compared to GP 
(p  <  0.001; two-tailed paired t-test, Holm-Bonferroni 
corrected). Additionally, ANM exhibited an advantage 
over HWR (p  <  0.001; two-tailed paired t-test, Holm-
Bonferroni corrected). In the peaky speech condition, 
GP and ANM both outperformed HWR (p < 0.001; two-

tailed paired t-test, Holm-Bonferroni corrected), and 
ANM also showed significantly better accuracy than GP 
(p  <  0.001; two-tailed paired t-test, Holm-Bonferroni 
corrected). Notably, mixed-effects linear regression 
showed that the correlation coefficients achieved from 
the two stimulus conditions were significantly different, 
with the peaky speech having higher coefficients 
(p = 0.049 for stimulus condition variable; see Table S2 
for the detailed model results.).

We also assessed a broadband correlation coefficient 
using a [0, 200] ms kernel. However, there was no signif-
icant effect of regressor type in either speech condition 
(p = 0.097 for unaltered and p = 0.44 for peaky speech; 
repeated-measures ANOVA; Fig.  S6). This broadband 
measure reflected a large portion of signals from cortical 
activity, indicating a consistent predictive performance 
across regressors in a later component of the auditory 
potentials.

It is possible that one regressor is a better predictor of 
slower response components, while another better 
explains higher-frequency portions of the EEG. These dif-
ferences would be washed out in the broadband correla-
tion analysis. To address this possibility, we conducted a 
spectral coherence analysis to evaluate the models’ pre-
diction accuracy across frequency, similar to the approach 
utilized in Shan et al. (2024). This analysis quantifies the 
normalized similarity between the predicted and actual 
EEG data at each frequency, providing detailed insights 
into model performance on a per-frequency basis (see 
Materials and Methods for details). Figure 4c and 4e high-
lights the superiority of the ANM regressor over GP and 
HWR in unaltered speech and the advantage of ANM and 
GP over HWR in the peaky speech condition. These coher-
ence trends are consistent with the comparative superior-
ity of ANM for unaltered speech and ANM and GP in peaky 
speech seen with other metrics.

Shan et al. (2024) identified significant advantages of 
the ANM regressor over HWR particularly in the frequency 
ranges centered around 50 Hz and 100 Hz. Therefore, we 
further break down the coherence comparison into three 
frequency bands: [0, 20] Hz, [40, 60] Hz, and [80, 120] Hz 
(Fig. 4d and 4f). We then conducted a statistical compar-
ison of the mean coherence from the three frequency 
bands across the regressors. We found that the ANM 
regressor outperformed the other two regressors in all 
three bands for unaltered speech (p  <  0.01; two-tailed 
paired t-test, Holm-Bonferroni corrected; Fig. 4d). In the 
peaky speech condition, both ANM and GP exhibited 
superior performance compared to HWR in [80, 120] Hz, 
and ANM was slightly superior compared to GP (ANM vs. 
HWR, p < 0.001; GP vs. HWR, p < 0.001; ANM vs. GP, 
p = 0.02; two-tailed paired t-test, Holm-Bonferroni cor-
rected). The ANM regressor was also found to show 
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Fig. 4.  Prediction accuracy as the correlation coefficient and spectral coherence between predicted and real EEG data. 
(a) Broadband Correlation coefficient of high-pass filtered EEG with subcortical kernel (0–15 ms). The bars are averaged 
accuracy across subjects with error bars showing ± 1 SEM, and the grey dots with lines are for each individual subject. 
(b) The mean absolute value of spectral coherence for unaltered speech. (c) The mean coherence in three frequency 
bands for unaltered speech across subjects. (d) The mean absolute value of spectral coherence for peaky speech. (e) The 
mean coherence in three frequency bands for peaky speech across subjects. The dash-dotted lines in (b) and (d) indicate 
the noise floor. The shaded grey areas indicate the frequency bands analyzed in (c) and (e). The bars in (c) and (e) are 
averaged coherence across subjects, with error bars showing ± 1 SEM and the grey dots with lines are for each individual 
subject. (*p < 0.05, **p < 0.01, ***p < 0.001)
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higher coherence than HWR in [40, 60] Hz band, but not 
significantly higher than GP (ANM vs. HWR, p < 0.001; 
ANM vs. GP, p = 0.06; GP vs. HWR, p = 0.22 two-tailed 
paired t-test, Holm-Bonferroni corrected). However, no 
significant advantage was observed in the low-frequency 
band (p = 0.53; repeated-measures ANOVA; Fig. 4f).

3.3.  The relationship between regressor and TRF 
power spectra

While our analysis demonstrated that ANM regressor, 
especially when combined with peaky speech stimuli, 
offers an advantage across multiple metrics among the 
three regressors, it is crucial to acknowledge the inherent 
spectral differences among the regressors as illustrated 
in Figure 5. The deconvolution process, which includes 
dividing the Fourier transform of the EEG signal by the 
Fourier transform of the regressor, highlights the signifi-
cance of the regressor’s spectrum on the resulting TRF. 
The inverse regressor spectrum effectively acts as a filter, 
where frequencies with lower amplitude in the regressor 
are emphasized in the resulting TRF. (It should be noted 
that even if the analysis is done in the time-domain, the 
same still applies, as this process involves multiplying by 
the inverse of the autocorrelation matrix.) For example, 
the ANM regressor (Fig. 5c) has a decreasing magnitude 
in higher frequency regions compared to the GP (Fig. 5b), 
leading to the ABR TRF derived from ANM containing 
larger magnitudes in higher frequencies than that derived 
from the GP. These spectral differences have no effect on 
prediction accuracy, since the TRF as a convolution ker-
nel compensates for the input spectrum, but have a large 
effect on the TRF waveform.

We can explore the effect of these spectral differences 
in two ways. The first is simply to apply filters that accen-
tuate the standard ABR morphology. Up to this point, we 
have used broad filters, applying only a first-order 1 Hz 
high-pass filter to the raw EEG recordings to remove drift. 
It is more common to somewhat aggressively high-pass 

filter ABRs. Figure 6 compares the ABR waveforms from 
this study and click responses recorded from recent 
study (Shan et  al., 2024) without (Fig.  6a-c) and with 
(Fig. 6d-f) a 150 Hz third-order high-pass filter, as filtering 
this way can improve visibility of early ABR components 
(Polonenko & Maddox, 2021). This comparison demon-
strates a few important points. The first is that the click 
response without the high-pass filter does not show the 
standard ABR waveform of distinct waves, with wave I 
followed by a broad wave V, with wave II “riding” on top 
of that. Applying the high-pass filter, however, makes 
waves I, III, and V distinct and obvious (waves II and IV 
are variable and rarely seen in grand averages, even with 
clicks). The same is true of the ANM speech ABR for both 
stimulus types. The GP ABR, due to the GP regressor’s 
flat spectrum, is much more dominated by low-frequency 
energy, obscuring the individual waves, but the high-pass 
filter again reveals distinct components. Thus, when the 
responses are compared only over the most relevant 
ABR frequency range, they become much more similar, 
all showing clear waves I, III, and V.

The second consideration we can give to differing TRF 
spectra is by analyzing waveform SNR in a frequency-
specific way, such that the effect of the overall spectral 
shape is minimized. Figure 7 shows the median SNR for 
each regressor-stimulus condition across frequency. 
There are useful SNRs up to about 500  Hz for peaky 
speech with all three regressors, and for the ANM regres-
sor with unaltered speech. In that range, the ANM regres-
sor with peaky speech offers the best SNR, consistent 
with its superiority from the previous sections. The 
peaky-GP and unaltered-ANM are very similar to each 
other, except for the lowest frequency bin, and are a few 
decibels below the peaky-ANM combination.

4.  DISCUSSION

This study presents a comprehensive quantitative analysis 
and comparison of deconvolution using stimulus regres-

Fig. 5.  Averaged power density spectrum with Welch estimate for HWR (a), GP (b), and ANM (c). (The GP regressor for 
peaky and unaltered is the same.)
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sors designed to derive the TRF corresponding to the 
human ABR from continuous naturalistic speech. We ana-
lyzed EEG recordings from subjects listening to both unal-
tered speech and modified peaky speech. We compared 
three regressors that were developed in recent studies: the 
HWR from Maddox and Lee (2018), the GP from Polonenko 
and Maddox (2021), and the ANM from Shan et al. (2024). 
Several metrics were conducted to compare these regres-

sors’ performance, including the derived ABR waveform 
SNR, the time required for subjects to get robust ABRs, 
and the prediction accuracies of the ABR kernel with 
broadband (Pearson’s correlation) and per-frequency 
(spectral coherence) approaches. The insights gained from 
these evaluations are intended to inform and guide future 
research in selecting the most appropriate regressors for 
ABR derivation from continuous, naturalistic speech.

Fig. 6.  The ABR derived from the three regressors: HWR (a), GP (b), ANM (c) and high-passed at 150 Hz (d), (e), and (f). 
The vertical axis ranges were adjusted to show the early waves for both original and high-passed ABRs in this figure.

Fig. 7.  The SNR analysis for the derived ABRs per frequency bin.
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4.1.  Quantitatively comparing input regressors

To generalize our results: we found that the ANM regres-
sor with peaky speech provided the best performance, 
with the ANM for unaltered speech and the GP regressor 
for peaky speech close behind. Some caveats and spe-
cific situations where one technique might be favored 
over another are discussed below. The HWR regressor 
provided relatively poor ABRs for both speech condi-
tions. We also derived the response from natural speech 
using the GP regressor for completeness, but we do not 
recommend this combination for practical use. Even 
though it did yield an ABR, the quality was predictably 
bad, with responses showing small amplitude and broad 
Wave V. This combination is not discussed further.

The HWR regressor, which was the first of these tech-
niques to be developed (Maddox & Lee, 2018), did not 
match the performance of other regressors in either 
speech condition. The HWR-derived ABR exhibited a rel-
atively noisy waveform with a broad Wave V (Fig.  2a), 
requiring more than 42 min to acquire robust ABRs from 
all subjects (SNR> = 0 dB; Fig. 3b). The HWR ABR kernel 
resulted in low prediction accuracy because the kernel 
lacked the temporal detail of subcortical responses and 
had lower SNR. However, when the kernel time window 
was extended to incorporate the response with cortical 
responses, its performance was similar to the other two 
regressors (Fig. 4a).

The GP regressor coupled with peaky speech pro-
vided ABRs that showed early waves (Wave I) in the raw 
responses. When high-passed at 150  Hz, both Wave I 
and Wave III could be seen (Fig. 6d), allowing for examin-
ing the early generators of the auditory evoked potential. 
These responses may hold potential for clinical use, for 
example for fitting hearing aids using relevant sounds, 
rather than artificial ones like tones. The GP regressor 
was also more efficient than HWR, with all subjects 
reaching the 0 dB SNR criterion in only 12 min. This effi-
ciency could be further enhanced, as the prior study has 
shown, with high-pass filtering at 150  Hz potentially 
reducing the time to around 5 min (Polonenko & Maddox, 
2021). GP-derived kernels also provided better predic-
tion than HWR.

The ANM regressor demonstrated superior perfor-
mance in unaltered speech and comparable performance 
as GP in peaky speech conditions. This regressor did not 
only derive the best SNR ABR, but like the GP’s ability in 
peaky speech, this regressor also has the benefit of 
showing early ABR components—Wave I and Wave III—
for both speech conditions, even without the need for 
further filtering (Fig. 2c). The time required to get decent 
ABRs in both conditions was substantially reduced com-
pared to HWR, and it was even faster than GP for peaky 

speech (Fig.  3b). The best prediction accuracy was 
achieved using the ANM-derived kernels in both unal-
tered and peaky speech in correlation and spectral 
coherence analysis. The ANM’s excellent performance 
stems from its biological fidelity, as it takes the auditory 
system’s peripheral nonlinearities into account before lin-
ear deconvolution is performed, with the adaptation in 
the auditory nerve being particularly important 
(Kulasingham, Bachmann, et al., 2024; Shan et al., 2024).

Some of the metrics we tested, such as SNR and acqui-
sition time (as well as general waveform morphology), are 
frequency dependent, and thus affected by the power 
spectrum of the regressors, which differed substantially 
(Fig. 5). Because deconvolution can be computed through 
frequency domain division, using spectrally different 
regressors is equivalent to applying different filtering to the 
EEG data (and equivalently, to the deconvolved response). 
These differences mean that direct comparison of the 
responses with different filtering might not be fair, because 
one regressor may accentuate noisier frequency bands 
than others. We attempted to address this issue in a few 
different ways. Most simply, we high-pass filtered ANM 
and GP TRFs from above 150 Hz (Fig. 6). Eliminating the 
lower frequencies, where the regressor spectra differed 
substantially, did two things. First, it made the ANM and 
GP TRF morphologies much more similar to each other. 
Second, it increased the similarity of both TRFs to the 
standard click-evoked ABR morphology in which waves I, 
III, and V can be clearly distinguished (waves II and IV are 
present under ideal circumstances, but are often missing 
in practice, even from high-quality ABR measurements). 
This result of filtering shows that the spectrum of the 
regressor (and thus the TRF) has a large effect on the way 
the waveforms look. We also computed the frequency-
specific SNR for each regressor (Fig. 7), so that the overall 
effects of the regressors’ spectral shape were minimized 
(as applying a gain to a signal has no effect on its SNR). We 
found that the GP and both ANM responses had high SNR 
up to about 500 Hz, with the peaky-ANM TRF slightly edg-
ing out the other two, as it did for the measures discussed 
above.

Finally, we found that, between the two stimulus types, 
peaky speech elicited subcortical EEG responses that 
could be predicted with higher accuracy than unaltered 
speech. When analyzing phase-only regressors, this 
trend holds true across all regressors, with peaky speech 
resulting in superior SNR regardless of the regressor 
employed. Even the HWR-derived ABR from peaky 
speech had better SNR than unaltered speech. Similar to 
the CHEECH (CHirp-spEECH) stimuli (Backer et al., 2019) 
that incorporated chirps into speech, peaky speech is 
designed to make the speech click-like, aligning neural 
responses across the tonotopic axis, thereby eliciting 
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stronger auditory evoked potentials (Polonenko & 
Maddox, 2021). Given that peaky speech hardly alters 
sound quality and does not impact intelligibility, it stands 
out as the preferable stimulus for deriving speech-evoked 
ABR, when experimental conditions allow.

4.2.  Qualitatively comparing input regressors

The natural question following a comparison of two stim-
ulus types and three regressors is what to use in future 
experiments. Since the ANM regressor (for both stimulus 
types) and GP regressor (for peaky speech) provided 
similar performance, the answer is nuanced and 
experiment-dependent (the HWR regressor was poorest 
by all metrics and is unlikely to be appropriate). Both of 
these regressors and both stimulus types have their 
strengths and weaknesses that will determine the best 
choice. Where the GP regressor is discussed below, it is 
on the assumption that peaky speech is used as the 
stimulus. The overall shape of the response is not consid-
ered a differentiating factor between the GP and ANM 
regressors because they can be made to be very similar 
through spectral manipulation (i.e., filtering).

We will discuss stimulus type first. Peaky speech’s pri-
mary disadvantages are that it requires pre-processing 
and that it is not quite natural, although we consider the 
latter issue to be minor. It also cannot be broadly applied 
to arbitrary stimulus types, as it assumes a calculable 
fundamental frequency. Its advantages are that it can be 
used with either the GP or ANM regressor, affording 
greater flexibility for analysis, and provides slightly better 
responses than natural speech with both regressors. 
Natural speech, beyond the obvious benefit of its inher-
ent ecological validity, has the advantage of needing no 
pre-processing, making it appropriate for real-time use 
where sound and EEG data are recorded at the same 
time. For example, one can directly use the speech sound 
from a TV show that the subject intends to watch in real 
life as the stimulus. However, natural speech cannot be 
used with the GP regressor, it so requires that the ANM 
be used for analysis (or similar methods, as described in 
Kulasingham, Bachmann, et al. (2024)).

A unique benefit of the GP regressor is that the 
impulses that make up the pulse train regressor are of 
unitary magnitude regardless of stimulus amplitude, 
meaning the deconvolved ABR can be expressed in sim-
ple and easily interpretable units of electrical potential. 
While TRFs computed with the other regressors also 
have units, they are more complicated (μV / Pa for HWR, 
μV / (spikes / s) for ANM) and also imply a linear relation-
ship with changes in regressor magnitude that is unlikely 
to be accurate—this is discussed more fully in the final 
paragraph of this section. While not explored in this 

study, Polonenko and Maddox (2021) highlighted another 
benefit of using the GP regressor with multiband peaky 
speech, where the GP regressor can be extended to 
simultaneously investigate ABRs across different fre-
quency regions, working on a similar principle to the par-
allel ABR (Polonenko & Maddox, 2019), offering a broader 
clinical application scope.

The ANM does not require pre-processed stimuli and is 
useful for studying a wide range of spectro-temporally rich 
natural stimuli, including music (Shan et al., 2024), making 
it versatile for various research purposes. However, com-
pared to the GP, it has the limitation that the derived ABR 
is not expressed in meaningful units. Computing the ANM 
regressor takes considerable computation time, although 
this can be mitigated by using similar regressors that still 
include adaptation (Kulasingham, Bachmann, et al., 2024). 
Thus, while the GP requires significant stimulus pre-
processing, use of the ANM regressor requires substantial 
processing at the analysis stage. In the majority of use 
cases, neither of these requirements poses a problem, as 
stimulus and regressor generation are both typically one-
time offline procedures. A recent study by Kulasingham, 
Bachmann, et al. (2024) compared the ANM with regres-
sors generated by other simpler auditory periphery mod-
els. They found that when using a more computationally 
efficient regressor that still includes nonlinear effect of 
adaptation (Osses Vecchi & Kohlrausch, 2021), the SNR of 
the derived ABR is similar to that of the more complicated 
ANM, despite the derived ABR’s lack of early components 
(Kulasingham, Bachmann, et al., 2024).

A limitation of our study was its exclusive focus on a 
single speech stream narrated by a male speaker. Previ-
ous studies indicate that speech from a female speaker, 
characterized by a higher pitch, tends to reduce the 
amplitude of wave V (Polonenko & Maddox, 2021, 2024; 
Saiz-Alía & Reichenbach, 2020). This effect is particularly 
relevant for peaky speech, where a higher pitch cor-
relates with a faster rate of glottal pulse, leading to neu-
ronal adaptation and refractoriness (Burkard & Hecox, 
1983; R. Burkard et al., 1990).

Finally, it is important to consider what the decon-
volved response really represents. Calling it a response is 
a bit of a misnomer—it is a temporal kernel that relates a 
regressor to an EEG recording through convolution. This 
distinction is not pedantic. Consider an example experi-
ment in which the same peaky speech stream is pre-
sented at a high- and low-level 20  dB apart. The 
subcortical response to the lower-level stimulus will be 
smaller and later. The GP regressor is the same for both 
stimulus levels, and the deconvolved ABR should be 
smaller and later, as expected. The ANM regressor, how-
ever, changes based on stimulus level. The regressor 
itself should be smaller and later at the lower level. If we 
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assume it perfectly estimates the change, then the 
deconvolved response will be the same for both stimulus 
levels. If the ANM overestimates the amplitude reduction 
and delay, then the deconvolved ABR could even be 
larger and earlier for the lower stimulus level, which would 
be a very strange result on its face. Kulasingham, 
Innes-Brown, et al. (2024) ran such an experiment using 
several regressors to estimate level effects on subcortical 
speech encoding. They, indeed, found that the ANM and 
other more complex regressors were inappropriate, and 
relied on simpler ones, even though it resulted in an SNR 
tradeoff. That experiment did not use peaky speech, but 
had it, the GP regressor would have allowed level effects 
to be observed with only a small decrease in SNR com-
pared to the ANM. These results demonstrate that SNR is 
not the only important factor. Careful consideration must 
be given to the design, analysis, and interpretation of 
deconvolution studies.
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