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ABSTRACT

Several methods have recently been developed to derive the auditory brainstem response (ABR) from continuous
natural speech, facilitating investigation into subcortical encoding of speech. These tools rely on deconvolution to
compute the temporal response function (TRF), which models the subcortical auditory pathway as a linear system,
where a nonlinearly processed stimulus is taken as the input (i.e., regressor), the electroencephalogram (EEG) data as
the output, and the ABR as the impulse response deconvolved from the recorded EEG and the regressor. In this study,
we analyzed EEG recordings from subjects listening to both unaltered natural speech and synthesized “peaky
speech.” We compared the derived ABR TRFs using three regressors: the half-wave rectified stimulus (HWR) from
Maddox and Lee (2018), the glottal pulse train (GP) from Polonenko and Maddox (2021), and the auditory nerve mod-
eled response (ANM; Zilany et al. (2014); (2009)) used in Shan et al. (2024). Our evaluation focused on the signal-to-
noise ratio, prediction accuracy, efficiency, and practicality of applying each regressor in both unaltered and peaky
speech. The results indicate that the ANM regressor with peaky speech provides the best performance, with the ANM
for unaltered speech and the GP regressor for peaky speech close behind, whereas the HWR regressor demonstrated
relatively poorer performance. There are, thus, multiple stimulus and analysis tools that can provide high-quality sub-
cortical TRFs, with the choices for which to use dictated by experimental needs. The findings in this study will guide
future research and clinical use in selecting the most appropriate paradigm for ABR derivation from continuous, nat-
uralistic speech.
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1. INTRODUCTION ronments (Carney et al., 2015). The auditory brainstem
response (ABR) serves as a key metric for subcortical
auditory neuroscience research as well as clinical audiol-

ogy. Traditionally, the ABR is characterized by a stereo-

Speech is a complex sound encountered daily and plays
a fundamental role in human communication. It is, thus,
essential to understand the process through which the

human brain translates speech from its basic encoding
by the auditory periphery to higher level processing in the
cortex. Subcortical structures have been proven to be
critical in this auditory processing chain, notably in the
encoding of vowels and processing speech in noisy envi-

typical evoked potential elicited by brief stimuli such as
clicks, tones, or chirps (R. F. Burkard et al., 2007; Picton
et al.,, 1974) through electroencephalography (EEG)
recording. This evoked potential is observed in the first
~10 ms post-stimulus, consisting of components that
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reflect different stages of the auditory pathway according
to their latency. Specifically, Waves |, lll, and V are of par-
ticular interest, corresponding to the responses of the
auditory nerve, cochlear nucleus, and inferior colliculus
and lateral lemniscus, respectively (Picton et al., 1974).

Expanding upon this foundation, investigations into
the brainstem’s response to speech via complex ABR
(cABR) have been undertaken (Krizman et al., 2010;
Musacchia et al., 2007; Skoe & Kraus, 2010). These stud-
ies demonstrate that short speech vowels elicit a tran-
sient onset and a frequency following response (FFR)
corresponding to the voiced part. However, the cABR
method has limitations in its controversial neural sources
(Coffey et al., 2016) and potential neural adaptation due
to the repetitiveness of the speech stimuli used (i.e.,
repeated tokens of vowels or syllables).

Recently, studies have developed several methods for
detecting the brainstem response to continuous, non-
repetitive speech, thus offering a more ecologically valid
approach (at the expense of some experimental control
over the stimuli) and potential clinical use (Bachmann
et al., 2021; Forte et al., 2017; Kulasingham, Bachmann,
et al., 2024; Maddox & Lee, 2018; Polonenko & Maddox,
2021; Shan et al., 2024). One such technique involves
extracting the fundamental waveform from the speech and
cross-correlating the waveform with the EEG signal (Forte
et al., 2017). This method yields a broad peak around 9 ms
primarily originating from the inferior colliculus but lacking
finer components showing distinct activity from earlier
auditory stages. Another set of studies are based on a
deconvolution method that was proposed by Maddox and
Lee (2018). The result of this deconvolution is a temporal
response function (TRF), which has been used extensively
to study cortical responses to natural stimuli (Di Liberto
et al., 2015; Ding & Simon, 2012; Lalor & Foxe, 2010; Lalor
et al., 2009) and provides superior responses to the funda-
mental waveform-based methods (Bachmann et al., 2021).
An encoding model was proposed as depicted in Fig-
ure 1a: the stimulus (more specifically, an acoustical fea-
ture derived from the stimulus) acted as the input (i.e.,
regressor, x in Fig. 1a), the recorded EEG signal as the out-
put y, and the ABR as the impulse response of a linear
system that transforms x into y.

A subcortical TRF whose morphology matches the
click-evoked response is important for two reasons. First
and most important is that the morphology of the click
ABR can be linked to specific subcortical nuclei. This
means that the TRF waveforms can be interpreted using
the same framework. Second is that the TRF weights are
a model of the impulse response of a system. A click is a
real-world implementation of an impulse, so an accurate
model of the subcortical system should respond with an
ABR to an impulse input. Such a response indicates the

model is working in a more intuitive way than comparing
correlation coefficients.

A series of studies have offered improvements for
deconvolution methods to compute the ABR (i.e., the
subcortical TRF). The initial study by Maddox and Lee
(2018) utilized half-wave rectification of the stimulus as
the regressor (HWR, Fig. 1b) as a simple simulation of
cochlear nonlinearity. It was able to derive the speech
ABR with a distinct Wave V that is highly correlated with
the click-evoked ABR. Following this, Polonenko and
Maddox (2021) proposed using “peaky speech,” a re-
synthesized speech stimulus that was made impulse-like
by aligning the phase of the speech harmonics at the
time of glottal pulses. The regressor used was a train of
impulses placed at the times of the glottal pulses (GP
regressor, Fig. 1c¢). This method provided distinct earlier
ABR components waves | and lll in addition to wave V
and enabled simultaneous ABR measurements from sep-
arate frequency bands. Shan et al. (2024) further extended
deconvolution methods by incorporating a detailed com-
putational model (Zilany et al., 2009, 2014) that simulates
the neural representation of the auditory periphery, con-
verting the stimulus waveform into an auditory nerve
modeled response to be used as the regressor (ANM,
Fig. 1d). Kulasingham, Bachmann, et al. (2024) compared
the ANM to several simpler regressors, finding that a
more efficient model provides good responses as long as
it recapitulates the adaptation present in the auditory
nerve. The ANM method, like the peaky speech with the
GP regressor, also yields ABRs with early wave compo-
nents, and improves the speech ABR’s signal-to-noise
ratio (SNR) over the HWR regressor. Moreover, this ANM
method is generalizable to other natural sounds, includ-
ing music.

In this study, we aimed to compare ABR deconvolu-
tion using the HWR, GP, and ANM regressors. By exam-
ining the signal-to-noise ratio (SNR), prediction accuracy,
efficiency, and practicality of each method in different
scenarios, we hope to offer guidance on determining the
most appropriate approach for deriving ABRs from natu-
ral speech as well as other complex sounds for a variety
of experimental or clinical uses.

2. MATERIALS AND METHODS

2.1. EEG dataset

The data analyzed in this study were obtained from a
broadband peaky speech experiment previously con-
ducted by Polonenko and Maddox (2021). In that experi-
ment, EEG was recorded from 22 normal hearing subjects
(aged 18-32 years, mean + SD of 23.0 + 3.6 years) while
they listened to the audiobook The Alchemyst (Scott,
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The encoding model using deconvolution method and the regressors that were used. (a) The deconvolution

paradigm for computing the TRF. (b) The half-wave rectified stimulus regressor (HWR). (c) The peaky speech waveform

and the Glottal Pulse train regressor (GP). (d) The auditory Nerve Modeled firing rate regressor (ANM). IHC =

inner hair cell,

AN = auditory nerve, HSR = high spontaneous rate, CF = characteristic frequency.

2008), which was narrated by a male voice, as detailed in
Polonenko and Maddox (2021). The silent pauses
exceeding 0.5 s in the audiobook had been truncated,
and the audiobook was segmented to 40 excerpts, each
lasting 64 s. The recording time was 42 min and 40 s for
each stimulus condition. During the experiment, subjects
passively listened to the speech stimuli over ER-2 insert
earphones at an average sound pressure level of 65 dB.
The EEG signal capturing subcortical activity (used to
compute the ABR) was recorded using BrainVision’s pas-
sive Ag/AgCI electrodes. These electrodes were placed

at the frontocentral position (FCz in the 10-20 system,
active non-inverting), on the left and right earlobes (invert-
ing references), and at the frontal pole (Fpz, ground). The
electrodes were connected to an ActiCHamp system
with the signal sampled at 10 kHz and high-pass filtered
at 0.1 Hz. The recording process also applied a causal,
fourth-order lowpass filter at 1/3 Nyquist (1667 Hz). Sub-
sequent offline preprocessing included applying a high-
pass filter at 1 Hz to remove any slow drifts, and a notch
filter at 60 Hz along with its first three odd harmonics to
reduce power line noise.
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2.2. Stimuli

In the original dataset, subjects listened to three stimulus
conditions. However, for the purpose of this study, we
focused on analyzing only two of those conditions: 1)
unaltered speech, 2) re-synthesized broadband peaky
speech. The re-synthesized peaky speech was designed
to make the speech audio impulse-like by aligning the
phase of the harmonics at the time of glottal pulses. This
design aimed to elicit brainstem responses similar to
those elicited by clicks, thereby evoking canonical ABRs
while still preserving the intelligibility of the speech with
minimal perceptible differences from the unaltered ver-
sion. For a detailed explanation of the peaky speech syn-
thesis process and audio examples, see Polonenko and
Maddox (2021).

2.3. ABR derivation

2.3.1. Deconvolution model for ABR

As described in Maddox and Lee (2018), Polonenko
and Maddox (2021), and Shan et al. (2024), an encod-
ing model of the ABR was defined as shown in Fig-
ure 1a. The speech stimuli were processed differently
to isolate a given stimulus feature (i.e., regressor) to be
used as the input x, while the EEG signal was the out-
put ¥, and the ABR was the impulse response of a lin-
ear system and determined through deconvolution. The
computation was performed in the frequency domain
for efficiency:

znbn X;) Y

response = F - 3 -
Nznxn Xn

where response denotes the derived impulse response
(i.e., the ABR), X,, the Fast Fourier transform (FFT) of the
regressor for trial n, Y, the FFT of EEG signal for trial n, *
the complex conjugate, F~' the inverse FFT, b, the weight
for trial n (see below), N the total number of trials, and n
the trial index.

When computing the average response, a Bayesian-
like process (Elberling & Wahlgreen, 1985) was used to
account for variations in noise level, so that noisier trials

were weighted less. The EEG recording from each trial

was weighted by its inverse variance, iz relative to the

Gn
sum of the inverse variances of all trials:

1
oh

2.3.2. Three regressors

We compared the three regressors from previous three
studies:

1) Half-wave rectified stimulus (HWR; Fig. 1b)
The half-wave rectified stimulus regressor was
generated by first taking the positive values of the
stimulus waveform and downsampling it to 10 kHz.
This positive component of the stimulus was then
used as the input to the encoding model (i.e., x),
denoted as HWR. Then, the same process was
applied, but with the original stimulus inverted so
that the negative values (now positive) were used,
and downsampled as before. Deconvolution was
performed independently using both the positive
and negative components as inputs. The final ABR
response for each epoch and each subject was
computed by averaging the responses to the pos-
itive and negative components.

2) Gilottal Pulse (GP; Fig. 1c)
The glottal pulse times were initially extracted from
the speech stimuli using speech processing soft-
ware, PRAAT (Boersma, 2011) when the peaky
speech stimuli were constructed. The sequence of
impulses that occurred at the glottal pulse times in
the peaky speech stimuli was then used as the
input to the encoding model, denoted as GP.

3) Auditory Nerve Model firing rate (ANM; Fig. 1d)
A computational auditory periphery model created
by Zilany et al. (2009), updated in Zilany et al. (2014),
and adapted for Python (Rudnicki et al., 2015) was
utilized to generate simulated auditory neural
responses. It was previously shown to be able to
account for the peripheral nonlinearity effects
(Kulasingham, Bachmann, et al., 2024; Shan et al.,
2024). The speech stimuli were upsampled to
100 kHz according to the model’s requirement and
converted to a pressure waveform (measured in
pascals) at 65 dB SPL and used as inputs to the
ANM model. We set the characteristic frequency
(CF) ranging from 125 Hz to 16 kHz spaced at 1/6
octave intervals. The auditory nerve firing rate was
then summed across all CFs of high spontaneous
rate fibers and downsampled to match the EEG
sampling rate of 10 kHz so it could be utilized as the
regressor, denoted as ANM. Positive and negative
polarities of the speech stimuli were used to derive
two responses that were averaged to get the final
ABR as described in Shan et al. (2024).

The three regressors were used for both the unaltered
and the peaky speech conditions. Although the GP
regressors were intended for use with peaky speech and
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have limited effectiveness as representative features for
unaltered speech, they still capture some acoustic infor-
mation on the timing of glottal pulses in unaltered speech.

2.4. Performance metrics and statistical analysis

2.4.1. Response signal-to-noise ratio (SNR)

To evaluate the quality of the derived ABRs, we estimated
the broadband SNRs of each waveform as described in
previous studies (Maddox & Lee, 2018; Polonenko &
Maddox, 2021; Shan et al., 2024) using the following
equation

2 2
() )
SNR = 10{%}
On

where c§+N is the variance of the ABR waveform mea-
sured within the time interval of 0 to 15 ms, and 0,2\, is the
noise variance computed by averaging the variance
across each non-overlapping 15 ms segment within the
pre-stimulus baseline period, spanning from -1000 to
-500 ms. Therefore, subtracting o3 from o4,y in the
numerator offers an estimate of the signal variance cg,
which is then divided by the noise variance and log trans-
formed and scaled to estimate SNR in decibels.

SNR was analyzed through a repeated-measures
ANOVA followed by a post-hoc pairwise t-test to com-
pare the three regressors.

We also estimate the SNR per frequency. This was
done similarly as was done in broadband SNR. But here
the power spectral density of the response was used
instead of the variance for each frequency bin (f).

Ps.n(f) = Py(f)
SNR(f)=10| SN NV T
) { Py(f) }

where Ps n(f) is the power of the ABR waveform mea-
sured within the time interval of 0 to 15 ms in frequency
bin f, and Py(f) is the noise variance computed by aver-
aging the variance across each non-overlapping 15 ms
segment within the pre-stimulus baseline period, span-
ning from —-1000 to -500 ms in frequency bin f. The
power spectral density of the signals (P) was computed
using psd_array_multitaper function in mne package
(Larson et al., 2023) with the first Slepian window with a
bandwidth of 67 Hz (Slepian, 1978). At some frequency,
bin Py(f) was higher than Pg,\(f), making the result unde-
fined (i.e., the log of a negative number). That is why
some lines are broken when plotted.

2.4.2. Time required to obtain robust responses

We were interested in how long it took to record data in
order to get a robust ABR using each of the three regres-

sors. For each subject, we calculated the broadband
SNRs of ABRs, using the previously mentioned formula,
across a recording duration ranging from 1 to 42 min. We
then reported the cumulative proportion of subjects who
achieved an ABR with an SNR of at least 0 dB throughout
the recording process, as in the original peaky speech
study (Polonenko & Maddox, 2021).

2.4.3. Correlation between the predicted and the
real EEG

To compare the power of the regressors to predict EEG,
we used the responses to predict the EEG and calculated
the correlation coefficient between the predicted EEG and
the real EEG data, as in our previous study (Shan et al.,
2024). The predicted EEG were generated by utilizing the
ABRs from each regressor as kernels (full kernel: [0, 200]
ms time range; subcortical kernel: [0,15] ms time range),
which were then convolved with the corresponding stimu-
lus’s regressors. We then calculated the Pearson correla-
tion coefficient between the predicted and real EEG data
as a performance metric for each regressor.

2.4.4. Spectral coherence

The ability of the regressors to predict EEG across differ-
ent frequencies was evaluated using spectral coherence
analysis, as outlined in Shan et al. (2024). This approach
served as a normalized correlation between the predicted
EEG and the real EEG data but is split across various
frequency bins. To determine spectral coherence, the
predicted EEG and the real EEG data were sliced into
segments of specific window sizes (0.2 s in this study),
which then determined the frequency bins. The coher-
ence of each of these frequency bins was computed as
the following equation

_ ELX; (f) Yi(F)] ,
JELX; (F) X, (O] ETY; (F)Y;(F)]

Cyy (f)

where C,, (f) denotes the coherence between signal x
and y at frequency bin f, E[] is the expected value across
slices, * the complex conjugate, X;(f) the FFT for pre-
dicted EEG slice i in frequency bin f, and Y;(f) the FFT
for real EEG data slice i in frequency bin f.

To estimate the noise floor of the spectral coherence,
we shuffled the order of the predicted EEG and real EEG
data and calculated the spectral coherence for these
mismatched trials. The median coherence value from
these mismatched trials served as the noise floor.

To compare the performance of the three regressors in
spectral coherence analysis, we computed the mean of
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the absolute value of the spectral coherence across three
specific frequency bands for each regressor. These three
frequency bands—|[0, 25] Hz, [25, 85] Hz, and [85, 135]
Hz—were selected based on findings from a previous
study indicating superior performance of ANM in these
ranges compared to HWR (Shan et al., 2024).

2.4.5. Statistical test

Data were checked and confirmed for normality using the
Shapiro-Wilk test for any following parametric test. To
compare the performance metrics of the three regres-
sors, mixed-effects linear regression models were con-
structed (formula below) in python, using stimulus
condition, regressor and their interaction as the fixed
effects and subject as random effect.

Performance metric ~ condition + regressor
+ condition x regressor + (1| subject)

To compare the metrics within each stimulus condi-
tion, repeated-measure ANOVAs followed by a pairwise
post-hoc paired t-test with Holm-Bonferroni correction
were used. The performance metrics used in these statis-
tical tests were SNR analysis, broadband prediction
accuracy (Pearson correlation), and the mean absolute
value of the spectral coherence from the three frequency
bands, as described above.

3. RESULTS

The data analyzed in this study were obtained from a
peaky speech experiment previously conducted by
Polonenko and Maddox (2021). Data were collected
under a protocol approved by the University of Rochester
Research Subjects Review Board (#1227). This dataset
includes EEG recordings from 22 subjects with normal
hearing who were passively listening to an English audio-

book under two conditions: unaltered and peaky speech.
In the Results section, we present the ABRs derived from
the three different regressors and assess their quality
using various quantitative metrics. Following this, we
introduce a novel approach designed to enable a more
equitable comparison of time-domain responses derived
from these spectrally different regressors.

3.1. GP and ANM regressors yield quicker and
more robust ABR

Using the deconvolution method with the regressors
depicted in Figure 1, we obtained the ABRs for both unal-
tered and peaky speech from the three regressors. lllus-
trated in Figure 2 are the responses derived from HWR
(Fig. 2a), GP (Fig. 2b) and ANM (Fig. 2c). By looking at the
general waveforms, it is apparent that the GP for peaky
speech condition and the ANM for both conditions exhibit
better ABR morphology.

The ABR derived from HWR shows a broad wave V for
both stimulus conditions (Fig. 2a; see Fig. S1 for individ-
ual responses), consistent with findings from previous
studies (Maddox & Lee, 2018; Polonenko & Maddox,
2021). The ABR derived from GP for peaky speech has a
distinct and narrow wave V at around 7.2 ms along with
an early component (Wave |) at around 3.2 ms. The GP
regressor is not designed for unaltered speech, but since
it captures limited acoustical representation for the
speech at the glottal pulse time, a much smaller wave V
is still observable (Fig 2b; see Fig. S2 for individual
responses). Note that we ran this regressor-stimulus
combination for completeness, but we did not expect
high-quality responses from it. The ANM regressor yields
clear ABRs for both unaltered and peaky speech with
very similar waveforms and high consistency across sub-
jects. Early components (Wave | and Wave lll) were pres-
ent in the waveforms, in addition to Wave V (Fig. 2c; see
Fig. S3 for individual responses). A broader time window,

GP
a le—7 HWR b 0301 ' @ ANM
10.0 1 y —— Unaltered 809 '
—— Unaltered 0.25 1 Peaky —— Unaltered
7.5 Peaky 0.204 607 — Ppeaky
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Fig. 2. Grand averaged ABR waveforms for unaltered and peaky speech derived from HWR (a), GP (b), and ANM (c)

regressor. Shaded area shows + 1 SEM (n = 22).
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recording time.

including cortical responses ([-50, 300] ms time window),
was shown in Figure S4.

We then performed an analysis of the SNR for the ABR
waveforms derived from the three regressors within the 0
to 15 ms time window (see Materials and Methods for
details of SNR computation). The analysis revealed sig-
nificant variability in SNR across the regressors for both
unaltered and peaky speech (p < 0.001; repeated-
measures ANOVA). The results are shown in Figure 3a.

For unaltered speech, the ANM regressor demonstrated
the highest SNR of 12.29 + 0.44 (mean + SEM), which
was significantly better than the SNR obtained with HWR,
which averaged 3.90 + 0.86 (p < 0.001; two-tailed paired
t-test, Holm-Bonferroni corrected). As expected, both
ANM and HWR showed higher SNR than GP in this con-
dition (p < 0.05; two-tailed paired t-test, Holm-Bonferroni
corrected). For the peaky speech condition, the SNR was
the greatest for ANM (13.17 + 0.51), followed by GP
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(9.25 + 0.56) and HWR (5.31 + 0.77) in that order. Post-
hoc pairwise comparison further showed significant dif-
ferences between each regressor (p < 0.001; two-tailed
paired t-test, Holm-Bonferroni corrected). The effect was
further confirmed by a mixed-effect linear model (see
Table S1 for details). A similar trend was observed when
extending the analysis to a time range of 0 to 30 ms for
the derived waveforms (Fig. S5).

We were interested in how efficient each regressor is in
deriving the ABR by measuring the time required for sub-
jects to achieve a good response with SNR greater than
0 dB. As shown in Figure 3b, for unaltered speech, all
subjects reach 0 dB SNR within 6.4 min when using the
ANM regressor. Conversely, when using the HWR and GP
regressors for the duration of the 42-min experiment,
only 95% and 86% of subjects reached 0 dB, respec-
tively. With peaky speech, it took 35.2 min for all subjects
to reach 0 dB using HWR, while it only took 11.7 min with
GP and 8.5 min with ANM. These indicate that the ANM
is efficient in both conditions, and GP exhibited superior
performance in peaky speech. Both the ANM and GP
outperformed HWR.

3.2. ABR derived from GP and ANM regressor can
better predict EEG

In line with common practices in cortical TRF studies
(Crosse et al., 2016; David et al., 2007), we conducted a
Pearson correlation analysis to evaluate the accuracy of
EEG signal prediction against real EEG recordings utiliz-
ing the waveform derived by each regressor. As in the
previous study (Shan et al., 2024), we used the derived
waveforms from the short time range of [0, 15] ms as a
kernel with emphasis on subcortical encoding, which
was then convolved with the regressors to generate the
predicted EEG. The prediction accuracies (i.e., the Pear-
son’s r) were low since the later, slower cortical compo-
nent of the EEG was not part of the model (but were still
present in the signal). There were also no differences
among the regressors (p = 0.257 and p = 0.099, respec-
tively; repeated-measures ANOVA). However, a distinct
divergence among regressors emerged upon applying a
high-pass filter at 40 Hz to the EEG signals to de-
emphasize slower cortical activity, significant for both
speech conditions (p < 0.001; repeated-measures
ANOVA; Fig. 4a). Specifically, in the unaltered speech
condition, we again observed that both HWR and ANM
demonstrated better accuracy compared to GP
(p < 0.001; two-tailed paired t-test, Holm-Bonferroni
corrected). Additionally, ANM exhibited an advantage
over HWR (p < 0.001; two-tailed paired t-test, Holm-
Bonferroni corrected). In the peaky speech condition,
GP and ANM both outperformed HWR (p < 0.001; two-

tailed paired t-test, Holm-Bonferroni corrected), and
ANM also showed significantly better accuracy than GP
(p < 0.001; two-tailed paired t-test, Holm-Bonferroni
corrected). Notably, mixed-effects linear regression
showed that the correlation coefficients achieved from
the two stimulus conditions were significantly different,
with the peaky speech having higher coefficients
(p = 0.049 for stimulus condition variable; see Table S2
for the detailed model results.).

We also assessed a broadband correlation coefficient
using a [0, 200] ms kernel. However, there was no signif-
icant effect of regressor type in either speech condition
(p = 0.097 for unaltered and p = 0.44 for peaky speech;
repeated-measures ANOVA; Fig. S6). This broadband
measure reflected a large portion of signals from cortical
activity, indicating a consistent predictive performance
across regressors in a later component of the auditory
potentials.

It is possible that one regressor is a better predictor of
slower response components, while another better
explains higher-frequency portions of the EEG. These dif-
ferences would be washed out in the broadband correla-
tion analysis. To address this possibility, we conducted a
spectral coherence analysis to evaluate the models’ pre-
diction accuracy across frequency, similar to the approach
utilized in Shan et al. (2024). This analysis quantifies the
normalized similarity between the predicted and actual
EEG data at each frequency, providing detailed insights
into model performance on a per-frequency basis (see
Materials and Methods for details). Figure 4c and 4e high-
lights the superiority of the ANM regressor over GP and
HWR in unaltered speech and the advantage of ANM and
GP over HWR in the peaky speech condition. These coher-
ence trends are consistent with the comparative superior-
ity of ANM for unaltered speech and ANM and GP in peaky
speech seen with other metrics.

Shan et al. (2024) identified significant advantages of
the ANM regressor over HWR particularly in the frequency
ranges centered around 50 Hz and 100 Hz. Therefore, we
further break down the coherence comparison into three
frequency bands: [0, 20] Hz, [40, 60] Hz, and [80, 120] Hz
(Fig. 4d and 4f). We then conducted a statistical compar-
ison of the mean coherence from the three frequency
bands across the regressors. We found that the ANM
regressor outperformed the other two regressors in all
three bands for unaltered speech (p < 0.01; two-tailed
paired t-test, Holm-Bonferroni corrected; Fig. 4d). In the
peaky speech condition, both ANM and GP exhibited
superior performance compared to HWR in [80, 120] Hz,
and ANM was slightly superior compared to GP (ANM vs.
HWR, p < 0.001; GP vs. HWR, p < 0.001; ANM vs. GP,
p = 0.02; two-tailed paired t-test, Holm-Bonferroni cor-
rected). The ANM regressor was also found to show
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Fig. 4. Prediction accuracy as the correlation coefficient and spectral coherence between predicted and real EEG data.
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(b) The mean absolute value of spectral coherence for unaltered speech. (c) The mean coherence in three frequency
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peaky and unaltered is the same.)

higher coherence than HWR in [40, 60] Hz band, but not
significantly higher than GP (ANM vs. HWR, p < 0.001;
ANM vs. GP, p = 0.06; GP vs. HWR, p = 0.22 two-tailed
paired t-test, Holm-Bonferroni corrected). However, no
significant advantage was observed in the low-frequency
band (p = 0.53; repeated-measures ANOVA,; Fig. 4f).

3.3. The relationship between regressor and TRF
power spectra

While our analysis demonstrated that ANM regressor,
especially when combined with peaky speech stimuli,
offers an advantage across multiple metrics among the
three regressors, it is crucial to acknowledge the inherent
spectral differences among the regressors as illustrated
in Figure 5. The deconvolution process, which includes
dividing the Fourier transform of the EEG signal by the
Fourier transform of the regressor, highlights the signifi-
cance of the regressor’s spectrum on the resulting TRF.
The inverse regressor spectrum effectively acts as a filter,
where frequencies with lower amplitude in the regressor
are emphasized in the resulting TRF. (It should be noted
that even if the analysis is done in the time-domain, the
same still applies, as this process involves multiplying by
the inverse of the autocorrelation matrix.) For example,
the ANM regressor (Fig. 5¢) has a decreasing magnitude
in higher frequency regions compared to the GP (Fig. 5b),
leading to the ABR TRF derived from ANM containing
larger magnitudes in higher frequencies than that derived
from the GP. These spectral differences have no effect on
prediction accuracy, since the TRF as a convolution ker-
nel compensates for the input spectrum, but have a large
effect on the TRF waveform.

We can explore the effect of these spectral differences
in two ways. The first is simply to apply filters that accen-
tuate the standard ABR morphology. Up to this point, we
have used broad filters, applying only a first-order 1 Hz
high-pass filter to the raw EEG recordings to remove drift.
It is more common to somewhat aggressively high-pass
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filter ABRs. Figure 6 compares the ABR waveforms from
this study and click responses recorded from recent
study (Shan et al., 2024) without (Fig. 6a-c) and with
(Fig. 6d-f) a 150 Hz third-order high-pass filter, as filtering
this way can improve visibility of early ABR components
(Polonenko & Maddox, 2021). This comparison demon-
strates a few important points. The first is that the click
response without the high-pass filter does not show the
standard ABR waveform of distinct waves, with wave |
followed by a broad wave V, with wave Il “riding” on top
of that. Applying the high-pass filter, however, makes
waves |, lll, and V distinct and obvious (waves Il and IV
are variable and rarely seen in grand averages, even with
clicks). The same is true of the ANM speech ABR for both
stimulus types. The GP ABR, due to the GP regressor’s
flat spectrum, is much more dominated by low-frequency
energy, obscuring the individual waves, but the high-pass
filter again reveals distinct components. Thus, when the
responses are compared only over the most relevant
ABR frequency range, they become much more similar,
all showing clear waves I, lll, and V.

The second consideration we can give to differing TRF
spectra is by analyzing waveform SNR in a frequency-
specific way, such that the effect of the overall spectral
shape is minimized. Figure 7 shows the median SNR for
each regressor-stimulus condition across frequency.
There are useful SNRs up to about 500 Hz for peaky
speech with all three regressors, and for the ANM regres-
sor with unaltered speech. In that range, the ANM regres-
sor with peaky speech offers the best SNR, consistent
with its superiority from the previous sections. The
peaky-GP and unaltered-ANM are very similar to each
other, except for the lowest frequency bin, and are a few
decibels below the peaky-ANM combination.

4. DISCUSSION

This study presents a comprehensive quantitative analysis
and comparison of deconvolution using stimulus regres-
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sors designed to derive the TRF corresponding to the
human ABR from continuous naturalistic speech. We ana-
lyzed EEG recordings from subjects listening to both unal-
tered speech and modified peaky speech. We compared
three regressors that were developed in recent studies: the
HWR from Maddox and Lee (2018), the GP from Polonenko
and Maddox (2021), and the ANM from Shan et al. (2024).
Several metrics were conducted to compare these regres-
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sors’ performance, including the derived ABR waveform
SNR, the time required for subjects to get robust ABRs,
and the prediction accuracies of the ABR kernel with
broadband (Pearson’s correlation) and per-frequency
(spectral coherence) approaches. The insights gained from
these evaluations are intended to inform and guide future
research in selecting the most appropriate regressors for
ABR derivation from continuous, naturalistic speech.
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4.1. Quantitatively comparing input regressors

To generalize our results: we found that the ANM regres-
sor with peaky speech provided the best performance,
with the ANM for unaltered speech and the GP regressor
for peaky speech close behind. Some caveats and spe-
cific situations where one technique might be favored
over another are discussed below. The HWR regressor
provided relatively poor ABRs for both speech condi-
tions. We also derived the response from natural speech
using the GP regressor for completeness, but we do not
recommend this combination for practical use. Even
though it did yield an ABR, the quality was predictably
bad, with responses showing small amplitude and broad
Wave V. This combination is not discussed further.

The HWR regressor, which was the first of these tech-
niques to be developed (Maddox & Lee, 2018), did not
match the performance of other regressors in either
speech condition. The HWR-derived ABR exhibited a rel-
atively noisy waveform with a broad Wave V (Fig. 2a),
requiring more than 42 min to acquire robust ABRs from
all subjects (SNR> = 0 dB; Fig. 3b). The HWR ABR kernel
resulted in low prediction accuracy because the kernel
lacked the temporal detail of subcortical responses and
had lower SNR. However, when the kernel time window
was extended to incorporate the response with cortical
responses, its performance was similar to the other two
regressors (Fig. 4a).

The GP regressor coupled with peaky speech pro-
vided ABRs that showed early waves (Wave |) in the raw
responses. When high-passed at 150 Hz, both Wave |
and Wave lll could be seen (Fig. 6d), allowing for examin-
ing the early generators of the auditory evoked potential.
These responses may hold potential for clinical use, for
example for fitting hearing aids using relevant sounds,
rather than artificial ones like tones. The GP regressor
was also more efficient than HWR, with all subjects
reaching the 0 dB SNR criterion in only 12 min. This effi-
ciency could be further enhanced, as the prior study has
shown, with high-pass filtering at 150 Hz potentially
reducing the time to around 5 min (Polonenko & Maddox,
2021). GP-derived kernels also provided better predic-
tion than HWR.

The ANM regressor demonstrated superior perfor-
mance in unaltered speech and comparable performance
as GP in peaky speech conditions. This regressor did not
only derive the best SNR ABR, but like the GP’s ability in
peaky speech, this regressor also has the benefit of
showing early ABR components—Wave | and Wave Ill—
for both speech conditions, even without the need for
further filtering (Fig. 2c). The time required to get decent
ABRs in both conditions was substantially reduced com-
pared to HWR, and it was even faster than GP for peaky
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speech (Fig. 3b). The best prediction accuracy was
achieved using the ANM-derived kernels in both unal-
tered and peaky speech in correlation and spectral
coherence analysis. The ANM’s excellent performance
stems from its biological fidelity, as it takes the auditory
system’s peripheral nonlinearities into account before lin-
ear deconvolution is performed, with the adaptation in
the auditory nerve being particularly important
(Kulasingham, Bachmann, et al., 2024; Shan et al., 2024).

Some of the metrics we tested, such as SNR and acqui-
sition time (as well as general waveform morphology), are
frequency dependent, and thus affected by the power
spectrum of the regressors, which differed substantially
(Fig. 5). Because deconvolution can be computed through
frequency domain division, using spectrally different
regressors is equivalent to applying different filtering to the
EEG data (and equivalently, to the deconvolved response).
These differences mean that direct comparison of the
responses with different filtering might not be fair, because
one regressor may accentuate noisier frequency bands
than others. We attempted to address this issue in a few
different ways. Most simply, we high-pass filtered ANM
and GP TRFs from above 150 Hz (Fig. 6). Eliminating the
lower frequencies, where the regressor spectra differed
substantially, did two things. First, it made the ANM and
GP TRF morphologies much more similar to each other.
Second, it increased the similarity of both TRFs to the
standard click-evoked ABR morphology in which waves |,
Ill, and V can be clearly distinguished (waves Il and IV are
present under ideal circumstances, but are often missing
in practice, even from high-quality ABR measurements).
This result of filtering shows that the spectrum of the
regressor (and thus the TRF) has a large effect on the way
the waveforms look. We also computed the frequency-
specific SNR for each regressor (Fig. 7), so that the overall
effects of the regressors’ spectral shape were minimized
(as applying a gain to a signal has no effect on its SNR). We
found that the GP and both ANM responses had high SNR
up to about 500 Hz, with the peaky-ANM TREF slightly edg-
ing out the other two, as it did for the measures discussed
above.

Finally, we found that, between the two stimulus types,
peaky speech elicited subcortical EEG responses that
could be predicted with higher accuracy than unaltered
speech. When analyzing phase-only regressors, this
trend holds true across all regressors, with peaky speech
resulting in superior SNR regardless of the regressor
employed. Even the HWR-derived ABR from peaky
speech had better SNR than unaltered speech. Similar to
the CHEECH (CHirp-spEECH) stimuli (Backer et al., 2019)
that incorporated chirps into speech, peaky speech is
designed to make the speech click-like, aligning neural
responses across the tonotopic axis, thereby eliciting
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stronger auditory evoked potentials (Polonenko &
Maddox, 2021). Given that peaky speech hardly alters
sound quality and does not impact intelligibility, it stands
out as the preferable stimulus for deriving speech-evoked
ABR, when experimental conditions allow.

4.2. Qualitatively comparing input regressors

The natural question following a comparison of two stim-
ulus types and three regressors is what to use in future
experiments. Since the ANM regressor (for both stimulus
types) and GP regressor (for peaky speech) provided
similar performance, the answer is nuanced and
experiment-dependent (the HWR regressor was poorest
by all metrics and is unlikely to be appropriate). Both of
these regressors and both stimulus types have their
strengths and weaknesses that will determine the best
choice. Where the GP regressor is discussed below, it is
on the assumption that peaky speech is used as the
stimulus. The overall shape of the response is not consid-
ered a differentiating factor between the GP and ANM
regressors because they can be made to be very similar
through spectral manipulation (i.e., filtering).

We will discuss stimulus type first. Peaky speech’s pri-
mary disadvantages are that it requires pre-processing
and that it is not quite natural, although we consider the
latter issue to be minor. It also cannot be broadly applied
to arbitrary stimulus types, as it assumes a calculable
fundamental frequency. Its advantages are that it can be
used with either the GP or ANM regressor, affording
greater flexibility for analysis, and provides slightly better
responses than natural speech with both regressors.
Natural speech, beyond the obvious benefit of its inher-
ent ecological validity, has the advantage of needing no
pre-processing, making it appropriate for real-time use
where sound and EEG data are recorded at the same
time. For example, one can directly use the speech sound
from a TV show that the subject intends to watch in real
life as the stimulus. However, natural speech cannot be
used with the GP regressor, it so requires that the ANM
be used for analysis (or similar methods, as described in
Kulasingham, Bachmann, et al. (2024)).

A unique benefit of the GP regressor is that the
impulses that make up the pulse train regressor are of
unitary magnitude regardless of stimulus amplitude,
meaning the deconvolved ABR can be expressed in sim-
ple and easily interpretable units of electrical potential.
While TRFs computed with the other regressors also
have units, they are more complicated (uV / Pa for HWR,
uV / (spikes / s) for ANM) and also imply a linear relation-
ship with changes in regressor magnitude that is unlikely
to be accurate—this is discussed more fully in the final
paragraph of this section. While not explored in this
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study, Polonenko and Maddox (2021) highlighted another
benefit of using the GP regressor with multiband peaky
speech, where the GP regressor can be extended to
simultaneously investigate ABRs across different fre-
quency regions, working on a similar principle to the par-
allel ABR (Polonenko & Maddox, 2019), offering a broader
clinical application scope.

The ANM does not require pre-processed stimuli and is
useful for studying a wide range of spectro-temporally rich
natural stimuli, including music (Shan et al., 2024), making
it versatile for various research purposes. However, com-
pared to the GP, it has the limitation that the derived ABR
is not expressed in meaningful units. Computing the ANM
regressor takes considerable computation time, although
this can be mitigated by using similar regressors that still
include adaptation (Kulasingham, Bachmann, et al., 2024).
Thus, while the GP requires significant stimulus pre-
processing, use of the ANM regressor requires substantial
processing at the analysis stage. In the majority of use
cases, neither of these requirements poses a problem, as
stimulus and regressor generation are both typically one-
time offline procedures. A recent study by Kulasingham,
Bachmann, et al. (2024) compared the ANM with regres-
sors generated by other simpler auditory periphery mod-
els. They found that when using a more computationally
efficient regressor that still includes nonlinear effect of
adaptation (Osses Vecchi & Kohlrausch, 2021), the SNR of
the derived ABR is similar to that of the more complicated
ANM, despite the derived ABR’s lack of early components
(Kulasingham, Bachmann, et al., 2024).

A limitation of our study was its exclusive focus on a
single speech stream narrated by a male speaker. Previ-
ous studies indicate that speech from a female speaker,
characterized by a higher pitch, tends to reduce the
amplitude of wave V (Polonenko & Maddox, 2021, 2024;
Saiz-Alia & Reichenbach, 2020). This effect is particularly
relevant for peaky speech, where a higher pitch cor-
relates with a faster rate of glottal pulse, leading to neu-
ronal adaptation and refractoriness (Burkard & Hecox,
1983; R. Burkard et al., 1990).

Finally, it is important to consider what the decon-
volved response really represents. Calling it a response is
a bit of a misnomer—it is a temporal kernel that relates a
regressor to an EEG recording through convolution. This
distinction is not pedantic. Consider an example experi-
ment in which the same peaky speech stream is pre-
sented at a high- and low-level 20 dB apart. The
subcortical response to the lower-level stimulus will be
smaller and later. The GP regressor is the same for both
stimulus levels, and the deconvolved ABR should be
smaller and later, as expected. The ANM regressor, how-
ever, changes based on stimulus level. The regressor
itself should be smaller and later at the lower level. If we
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assume it perfectly estimates the change, then the
deconvolved response will be the same for both stimulus
levels. If the ANM overestimates the amplitude reduction
and delay, then the deconvolved ABR could even be
larger and earlier for the lower stimulus level, which would
be a very strange result on its face. Kulasingham,
Innes-Brown, et al. (2024) ran such an experiment using
several regressors to estimate level effects on subcortical
speech encoding. They, indeed, found that the ANM and
other more complex regressors were inappropriate, and
relied on simpler ones, even though it resulted in an SNR
tradeoff. That experiment did not use peaky speech, but
had it, the GP regressor would have allowed level effects
to be observed with only a small decrease in SNR com-
pared to the ANM. These results demonstrate that SNR is
not the only important factor. Careful consideration must
be given to the design, analysis, and interpretation of
deconvolution studies.
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