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Abstract. We prove a Khintchine-type recurrence theorem for pairs of endomorphisms of
a countable discrete abelian group. As a special case of the main result, if I" is a countable
discrete abelian group, ¢, ¥ € End(I"), and ¥ — ¢ is an injective endomorphism with
finite index image, then for any ergodic measure-preserving I'-system (X, X, u, (Tg)ger),
any measurable set A € X, and any ¢ > 0O, there is a syndetic set of g € I' such that
nw(ANT w_(;)A N Tw_(lg )A) > 1(A)3 — &. This generalizes the main results of Ackelsberg
et al [Khintchine-type recurrence for 3-point configurations. Forum Math. Sigma
10 (2022), Paper no. e107] and essentially answers a question left open in that paper
[Question 1.12; Khintchine-type recurrence for 3-point configurations. Forum Math.
Sigma 10 (2022), Paper no. e107]. For the group I' = Z¢, the result applies to pairs of
endomorphisms given by matrices whose difference is non-singular. The key ingredients
in the proof are: (1) a recent result obtained jointly with Bergelson and Shalom
[Khintchine-type recurrence for 3-point configurations. Forum Math. Sigma 10 (2022),
Paper no. e107] that says that the relevant ergodic averages are controlled by a characteristic
factor closely related to the quasi-affine (or Conze—Lesigne) factor; (2) an extension trick
to reduce to systems with well-behaved (with respect to ¢ and ) discrete spectrum; and
(3) a description of Mackey groups associated to quasi-affine cocycles over rotational
systems with well-behaved discrete spectrum.
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1. Introduction

This paper is a continuation of work of the author together with Bergelson and Best [1]
and Bergelson and Shalom [2] investigating the phenomenon of multiple recurrence with
large intersections for actions of countable abelian groups (see also [31]).

1.1. Background and motivation. The impetus for studying large intersections for
multiple recurrence comes from the following two classical results.

Check f
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2 E. Ackelsberg

THEOREM 1.1. [24] For any invertible measure-preserving system (X, X, u, T), any
A € X, and any € > 0, the set

meZ: w(ANT"A) > w(A)? — ¢}
has bounded gaps.

THEOREM 1.2. [12] For any invertible measure-preserving system (X, X, u, T), any
A € X with u(A) > 0, and any positive integer k € N,

N-—1
lim inf ANT"AN.-..NT*A)> 0.
Jimint N 2 )>
n=

In particular, there exists ¢ > 0 such that the set
meZ: wANT"AN---NT*A)> ¢}

has bounded gaps.

A subset of Z with bounded gaps is called syndetic. More generally, in a countable
discrete abelian group (I', +), a subset S C I' is syndetic if finitely many translates of S
cover I".

With the aim of finding a common refinement of Theorems 1.1 and 1.2, Bergelson, Host,

and Kra [6] asked whether, for a measure-preserving system (X, X', u, T), aset A € X
with u(A) > 0, and ¢ > 0, the set

{WEZZ/,L(AﬂTinAﬁ...ﬂT*k”A)>M(A)k+l_8}

is syndetic. They found that the answer depends on the length (k + 1) of the arithmetic
progression.

THEOREM 1.3. [6, Theorems 1.2 and 1.3]

(1) For any ergodic measure-preserving system (X, X, u,T), any A € X, and any
&g > 0, the sets

MeZ: wANT"ANT 2A) > n(A)’ —¢)
and
MeZ: wWANT"ANT "ANTA) > n(A)* — ¢}

are syndetic.
(2)  There exists an ergodic measure-preserving system (X, X, u, T) with the following
property. Foranyl € N, there exists A = A(l) € X with u(A) > 0 such that

WANT"ANT PANT"ANT 4 A) < n(A)

for everyn # 0.

Remark 1.4. The ergodicity assumption in item (1) cannot be dropped. An adaptation of
Behrend’s construction of sets avoiding 3-term arithmetic progressions [4] can be used to
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Khintchine-type double recurrence in abelian groups 3

produce a counterexample for the non-ergodic transformation 7' (x, y) = (x, y + x) on the
2-torus T2 see [6, Theorem 2.1].

The combinatorial content of Theorem 1.3(1) is expressed by the following closely
related result.

THEOREM 1.5. [17, Theorem 1.10], [19, Theorem 1.12] Let oz, € > O.
(1) There exists N3 = N3(w, €) € N such that if N > N3 and A C{l,..., N} has
cardinality |A| > o N, then there exists d € N such that

|{a€N:{a,a+d,a+2d}§A}|>(a3—8)N.

(2) There exists Ny = Na(o, ¢) € N such that if N> Ny and A C{l,..., N} has
cardinality |A| > aN, then there exists d € N such that

HaeN:{a,a+d,a+2d,a+3d} C A} >(a4—£)N.

Remark 1.6

(1) The positive integers d € N appearing in Theorem 1.5 are sometimes referred to
as popular differences, since they are common differences for many arithmetic
progressions contained in A.

(2) Theorem 1.3 can be converted directly into a combinatorial statement involving sets
of positive upper Banach density by a version of the Furstenberg correspondence
principle that produces ergodic measure-preserving systems; see [6, §1.2]. However,
no simple argument is known to deduce Theorem 1.5 from Theorem 1.3 or vice versa.

In other contexts in which a multiple recurrence result is known, one may again ask
whether it is possible to find a corresponding Khintchine-type enhancement. Pursuing this
line of inquiry, Bergelson, Tao, and Ziegler [9] established a Khintchine-type recurrence
result for actions of the group IFIO,O.

THEOREM 1.7. [9, Theorems 1.12 and 1.13] Fix a prime p and a, b € F,. For any ergodic
measure-preserving F;O-system (X, X, u, (Tg)gngC), any A € X, and any ¢ > 0, the sets

{geFY  mANT,'AN Tb;,‘A) > u(A)?’ —¢}
and

. —1 —1 —1 4
{g e IF‘;,O tmANT,  ANT, ANT ) A) > (A — g}

are syndetic.

A finitary combinatorial analog of Theorem 1.7 along the lines of Theorem 1.5 can be
deduced using the methods established in [17, 19], which in fact apply to general finite
abelian groups. See also [18, Lecture 4].

The most general multiple recurrence result with which we will concern ourselves is the
following theorem, which can be seen as a consequence of [13] or [3, Theorem B].
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THEOREM 1.8. Let T' be a countable discrete abelian group. Let k € N and let
@1, ...,k € End(I"). For any measure-preserving I'-system (X, X, u, (Tg)ger) and
any set A € X, the set

. —1 —1
{gel: pL(AﬂT(pl(g)Aﬂo--ﬂT(pk(g)A) > 0}

is syndetic.

Remark 1.9. When dealing with topological groups, one may wish to impose various
continuity assumptions (for instance, on the endomorphisms ¢, . . ., ¢ or on the action
of I on (X, X, n)). Moreover, notions of largeness for subsets of I such as syndeticity
and upper Banach density (discussed in §1.3) depend on the topology on I'. We assume
that I" is discrete to avoid such topological issues.

The foregoing discussion motivates the following general definition.

Definition 1.10. Let I' be a countable discrete abelian group. A family of endomorphisms

01, ..., 0 € End(I") has the large intersections property if the following holds: for
any ergodic measure-preserving I'-system (X, X, u, (Tg)ger), any A € X, and any & > 0,
the set

. —1 —1 k+1
(g€l w(ANT, (JAN--NT, [ A) > (A} —g)

is syndetic.

We now give a brief summary of the previously known results about the large
intersections property in general countable discrete abelian groups.

In [1], a far-reaching generalization of Theorems 1.3 and 1.7 for configurations of
length 3 and 4 was obtained (in a slight abuse of notation, we abbreviate a family of
endomorphisms of the form {g — aig, ..., g — arg} by {ai, ..., a}).

THEOREM 1.11. [1, Theorems 1.10 and 1.11] Let I" be a countable discrete abelian group.

() If o, ¥ € End(I") are such that all three subgroups ¢(I'), ¥ (I"), and (y — ¢)(I')
have finite index in T, then {@, W} has the large intersections property.

(2) Ifa, b € Z and all four subgroups al’, bT", (a + b)T", and (b — a)T" have finite index
in T, then {a, b, a + b} has the large intersections property.

Remark 1.12. Endomorphisms of groups with finite index conditions of the kind appearing
in item (1) of Theorem 1.11 have led to fruitful developments in a number of areas of
ergodic theory and combinatorics; see, e.g., [20, 21, 26, 28, 29].

Item (2) in Theorem 1.11 was also obtained independently by Shalom; see [31, Theorem
1.3]. In joint work with Bergelson and Shalom, item (1) of Theorem 1.11 was strengthened
as follows.

THEOREM 1.13. [2, Theorems 1.11 and 1.13] Let I" be a countable discrete abelian group.

(1) Suppose ¢, € End(I') and two of the three subgroups ¢(I'), ¥ (I'), and
(¥ — @)(T") have finite index in T'. Then {¢, ¥} has the large intersections property.
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(2) Suppose a, b € Z are distinct, non-zero integers such that (b — a)T" has finite index
in T'. Then {a, b} has the large intersections property.

This result leaves the following as a natural open question.

Question 1.14. [2, Question 1.12] Let I" be a countable discrete abelian group. Suppose
¢, ¥ € End(I") such that (¥ — ¢)(I") has finite index in I". Does {¢, ¥} have the large
intersections property?

Remark 1.15. There are a variety of examples of pairs {¢, ¥} without the large intersec-
tions property (see [1, Example 10.2] and [2, Theorem 1.14]), so it is necessary to impose
some condition on ¢, ¥ € End(I") (such as the finite index assumption in Question 1.14)
to hope for the large intersections property.

The goal of this paper is to extend the techniques in [2] to answer Question 1.14
affirmatively under a mild additional technical assumption. As we will see, this condition
is always satisfied when the endomorphisms are obtained as multiplication by integers or
when the group I is equal to Z¢ for some d € N. Hence, we are able to reproduce Theorem
1.13(2) and fully resolve Question 1.14 for I' = Z<.

1.2. Main results. Our main result is the following theorem.

THEOREM 1.16. Let T" be a countable discrete abelian group. Let ¢, ¥ € End(I"). Suppose
there exist endomorphisms n, ¢’, ', 01, 62 € End(T") such that:
(1) n(D) is a finite index subgroup of T';
(i) ¢=¢ onandy =y on;
(iii) 01 0 ¢ + 0y 0 Y is injective; and
iv) (' — ")) is a finite index subgroup of T.
Then for any ergodic measure-preserving I'-system (X, X, u, (Tg)ger), any A € X, and
any ¢ > 0, the set

{gel: AN T(;(;)A N wa(‘g)A) > w(A)’ — ¢}

is syndetic.

Remark 1.17. The conditions (i)—(iv) in Theorem 1.16 may be forbidding at first glance.
We give a brief explanation here and also refer the reader to the special cases outlined
below for developing stronger intuition about each condition.

Conditions (i) and (ii) can be interpreted as follows. Define a new I"-action on (X, X, u)
by S = Tj)(g)- Then

—1 —1 _ -1 —1
HANT o ANTy ) A) = n(AN S, AN Sy

so it suffices to prove a statement about the system (X, X', i, (Sg)ger) and the endomor-
phisms ¢’, ¥" € End(I"). The key consequence of condition (i) is that the new system
(X, X, i, (S¢)ger) has only finitely many ergodic components, and our dynamical tools
are flexible enough to handle this situation.

A),
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6 E. Ackelsberg

Condition (iii) imposes a level of non-triviality to the pair {¢’, ¥} by ensuring that
the map g — (¢'(g), ¥'(g)) is injective. This condition also turns out to be crucial to
describing the limiting behavior of double ergodic averages associated with {¢’, ¥'}.

Finally, condition (iv) is the key assumption to get started with analyzing the relevant
double ergodic average by invoking [2, Theorem 4.10], which is proved using the van
der Corput differencing trick (see Lemma 2.1). It is absolutely essential to the method
used in this paper, though it is less clear whether condition (iv) is needed to obtain
the desired conclusion. A concrete example where we do not know whether or not the
large intersections property holds (and for which condition (iv) does not hold) is the
following. Let I' = (Qx0, -) be the group of positive rational numbers under multiplication
(considered as a discrete group). Let a, b € N be coprime. It was asked in [2, Question
1.18] whether the pair {g — g%, ¢ — ¢”} has the large intersections property, and we
are presently unable to make any substantial progress on this question. For this example,
although condition (iv) does not hold, it is nevertheless the case that the group generated
by {¢®:q € Q-0} and {¢® : g € Q-¢} has finite index in Q-¢ (in fact, it is equal to
@Qx0), which eliminates many of the possible approaches to producing a counterexample.
Additional discussion of the difficulties involved in this problem can be found in [2, §2.7].

We now turn to several consequences of Theorem 1.16.

Theorem 1.16 includes Theorem 1.13(2) as a special case. Given a, b € Z such that
(b — a)T has finite index in T, let d = ged(a, b), a’ = (a/d), and b’ = (b/d). Since
d | b—a,wehave dT" 2 (b — a)T", so dT has finite index in I'. The integers a’ and b’ are
coprime, so there exist ¢y, ¢; € Z such that cja’ + c;b’ = 1. Finally, (b’ —d’) | (b — a),
so (b’ —a’ )T 2 (b —a)T has finite index in TI'. Taking ¢(g) =ag, ¥ (g) = bg,
n(g) =dg, ¢'(g) =d'g, ¥'(g) =b'g, 61(g) =ci1g, and 6(g) = c2g and applying
Theorem 1.16 reproduces the conclusion of Theorem 1.13(2).

Another illustrative special case of Theorem 1.16 is the following corollary.

COROLLARY 1.18. Let I' be a countable discrete abelian group. Let ¢, ¥ € End(I") such
that W — @ is injective with finite index image. Then for any ergodic measure-preserving
[-system (X, X, w, (Tg)ger), any A € X, and any ¢ > 0, the set

{gel:n(AN T(p_(;)A N Tw_(lg)A) > w(A)? — ¢}
is syndetic.

For the group I' = Z¢, Corollary 1.18 takes the following shape.

COROLLARY 1.19. Let X = (X, X, u, (T};);ez¢) be an ergodic 72 -system. Then for any
integer matrices My, My € Mgyxq(Z) such that My — M is non-singular, any A € X, and
any ¢ > 0, the set

neZl:uAan Tl;ll‘ﬁA N TA;Z‘ﬁA) > uw(A)? —¢)
is syndetic.

In the case d = 2, Corollary 1.19 was established in [2] using a combination of different
methods. If M is also non-singular, then the conclusion follows from [2, Theorem 1.11],
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which is proved using methods similar to the current paper involving characteristic factors
for multiple ergodic averages. In the case that both M| and M, are rank-one matrices,
basic linear algebra combined with the Fubini property for uniform Cesaro limits (see [7,
Lemma 1.1]) allows one to prove a stronger result that implies, in particular, that the set

ez nAan TA;IIﬁA N TA;ZIﬁA) > u(A)? —¢)
is syndetic for any (not necessarily ergodic) measure-preserving system (X, X, u,
(T#)jezz2), any A € X, and any & > 0; see [2, Theorem 7.1].

The method for handling the case where both M and M> are singular matrices does not
easily generalize for d > 3. Instead, we produce a new proof avoiding any use of matrix
manipulations that unifies the two different cases to apply to general d € N and in fact to
general countable discrete abelian groups.

1.3. Combinatorial consequences and questions. Recurrence results in ergodic theory
translate into combinatorial statements about sets of positive density. Let us first make
precise what we mean by the density of a subset of an abelian group. A Fglner sequence
in a countable discrete abelian group I' is a sequence (P y)yen of finite subsets of I" such
that for any x € T,

[(Py +x)ADy|
| Dy N—oo

0.
The upper density of a set E C T" along a Fglner sequence ® = (®y)nen is the quantity

- . [EN Oy
do(E) = lim sup ———.
N—00 |<DN|

The upper Banach density of E C T' is d*(E) = supg do(E), where the supremum is
over all Fglner sequences in I'. An immediate consequence of Theorem 1.16 together with
a version of the Furstenberg correspondence principle for ergodic systems (see [S, Theorem
2.8]) is the following theorem.

THEOREM 1.20. Let I" be a countable discrete abelian group. Let ¢, € End(I") be as in
Theorem 1.16. Then for any E C I" and any ¢ > 0, the set

{geT :d"(EN(E - ¢(g) N(E—¥(g) > d*(E)* — &)
is syndetic.

This strongly suggests that various finitary combinatorial results hold. Namely, we
conjecture that the following finitary version of Corollary 1.18 is true.

Conjecture 1.21. For o, ¢ > 0, there exists Ny = No(«, €) with the property: for any
finite abelian group G of order N > Ny, any ¢, ¥ € End(G) such that ¢ — ¢ is an
automorphism, and any set A € G with |A| > a N, there exists y € G \ {0} such that

Hx € G:{x,x + (), x + ¥ (M} C A} > (@ —e)N

A natural conjecture in the setting of Z¢, building on Corollary 1.19, is the following
conjecture.
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Conjecture 1.22. Let My, M> € Mjx4(Z) such that M, — M is non-singular. For any
o, € > 0, there exists No = No(«, &, M1, M>) € N with the property: for any N > Ny and
anyset A C {1,..., N} with |A| > a N9, there exists y € 74 \ {0} such that

X e Z4: (R, X+ My, %+ M2y} C A} > (& — &) N9,

If one imposes the additional condition in Conjecture 1.21 that ¢ and i are auto-
morphisms, then the conjecture is known to be true by [10, Theorem 7.3]. Similarly, if
the matrices My, M>, and My — M in Conjecture 1.22 are all non-singular, then the
conclusion holds by [10, Theorem 1.1]. (For the particular matrices

1 0 0 -1
M1_(0 1) and M2—<1 0),

this was also shown by [25, Theorem 1].)

The ergodic theoretic methods used in this paper are not immediately applicable in the
finitary setting. To resolve Conjectures 1.21 and 1.22, one should replace the dynamical
tools with suitable analogs from higher order Fourier analysis.

1.4. Outline of the paper. The structure of the paper is as follows. Section 2 is prepara-
tory, collecting the relevant background material that will be used in the proof of Theorem
1.16. The main technical results appear in §§3 and 4, where we prove the existence of
extensions in which the Kronecker and quasi-affine factors interact nicely with a fixed pair
of endomorphisms {¢, {}. We then prove a formula for the limit of double ergodic averages
associated with {¢, ¥} in §5. Finally, we complete the proof of Theorem 1.16 in §6.

2. Preliminaries

2.1. Uniform Cesaro limits and the van der Corput differencing lemma. Just as Fursten-
berg’s multiple recurrence theorem (Theorem 1.2) establishes a recurrence result by
working with a multiple ergodic average, we will prove Theorem 1.16 by studying an
associated double ergodic average. A sequence (vg)ger in a (real or complex) topological
vector space V has uniform Cesaro limit equal to v € V, denoted UC- limger vy = v, if
for any Fglner sequence (® ) yen in I, one has

1
| D] Z Vs N—00 v
gedy

In the group I' = Z, the uniform Cesaro limit corresponds to the limit of averages
appearing in Theorem 1.2, that is,

N-1
1
UC- li = 1 .
o= MmN L
n=

One of the main tools for handling uniform Cesaro limits is the following version of the
van der Corput differencing lemma.
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LEMMA 2.1. [1, Lemma 2.2] Let I be a countable discrete abelian group and let (ug)ger
be a bounded sequence in a Hilbert space H. If

& == UC- éier{,l (Ugn»ug)

exists for every h € I' and UC- limyer &, = 0, then UC- limger ug = 0.

2.2. Host-Kra factors. Let I' be a countable discrete abelian group and let
X=(X,X, u, (Ty)ger) be a measure-preserving I'-system. A factor of X is a
(Tg)ger-invariant sub-o-algebra ) C X. We may also refer to the system Y =
(X, Y, uly, (Tg)ger), or any system isomorphic to Y, as a factor of X.

The most important family of factors for our consideration is the family of Host—Kra
factors. These factors are defined in terms of a family of seminorms, known as the
Host—Kra seminorms [23], which are an ergodic-theoretic counterpart to the Gowers
uniformity norms [16] in additive combinatorics.

Let X = (X, X, u, (Ty)ger) be a measure-preserving I'-system. For g € I' and
f:X — C, define A, f =f- T, f. Then for k € N and gy, ..., gx € I', we define
Ag,...g inductively by Ag, o f = Ag (Ag g, f). For f € L®(u) and k € N, we
define the Host—Kra seminorm of order by

,,,,,

k .
llfllge* =UC-  lim f Mgy f dp.
(81,81 ETk J X
It is shown that [||-|||« is indeed a seminorm for each k € N in [8, Appendix A]. The
corresponding Host—Kra factors are guaranteed by the following proposition.

PROPOSITION 2.2. [8, Proposition 1.10] Let T" be a countable discrete abelian group, let
X=X, X, u, (Tg)ger) be a measure-preserving I'-system, and let k > 0. There exists a
factor Z¥ with the property that for every f € L (), one has

Il fllgest =0 < E[f | 2K = 0.

IfX = (X, X, u, (Tg)ger) is an ergodic system, then the first several Host—Kra factors
are as follows.

o 20 s the trivial factor consisting of null and co-null subsets of X. (If X is not ergodic,
then 2° = 7, the o-algebra of all (T, )¢cr-invariant sets.)

e Z!is the Kronecker factor. This is the smallest o-algebra with respect to which all
eigenfunctions are measurable. As a measure-preserving system, Z! is isomorphic to a
rotational system. That is, there exists a compact abelian group Z and a homomorphism
o : ' — Z with dense image such that Z! is isomorphic to the system Z = (Z, ),
where Z is equipped with the Haar measure and g € I' acts by the rotation z —
Z + a,. Because of its relationship to the Kronecker factor, we refer to any ergodic
rotational system Z = (Z, «) as an ergodic Kronecker system. Such systems are
uniquely determined (up to isomorphism) by their discrete spectrum (that is, the group
of eigenvalues), which is given by

A:{Aoa:)»ef}.
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Moreover, the topological system underlying any ergodic Kronecker system is uniquely
ergodic. See [1, §2.4] for a more in-depth discussion of Kronecker systems in the
context of actions of countable discrete abelian groups.

o 22 is the quasi-affine (or Conze—Lesigne) factor. As a measure-preserving system, Z>
is isomorphic to a group extension of the Kronecker factor, Z> = Z! x, H, where
the cocycle o satisfies a certain functional equation known as the Conze—Lesigne
equation; see Definition 2.11.

Definition 2.3. Let I be a countable discrete abelian group and let k > 0. An ergodic
measure-preserving I'-system X = (X, X, u, (Ty)ger) is a system of order k if zZk=Xx.

Systems of order k have the following properties.

PROPOSITION 2.4. [23, §4.6] Let I' be a countable discrete abelian group, k > 0, and

X = (X, X, u, (Ty)ger) an ergodic measure-preserving I"-system.

(1)  The Host—Kra factor Z¥ is an order k system.

(2) IfXis an order k system and Y is a factor of X, then Y is again a system of order k.

(3) IfY is a system of order k and a factor of X, then Y is a factor of the Host—Kra
factor ZF.

2.3. Relatively independent joinings. The proof of Theorem 1.16 requires that the
Host—Kra factors have certain convenient properties that they may not have in general
systems. To produce these desirable properties, we will work with an extension of
the original system. The key construction to that end is the relatively independent
joining of systems with respect to a common factor. Let X = (X1, X1, w1, (T1,g)ger)
and X; = (X2, &2, u2, (Tz ¢)ger) be measure-preserving I'-systems. Suppose Y =
(Y, YV, v, (Sg)ger) is another measure-preserving I'-system that arises as a factor of
both of the systems X and X, say with factor maps 71 : X1 — Y and mp : X, — Y. The
relatively independent joining (or fiber product) of X and X, with respect to Y is the
system

X1 xy Xp = (X1 x X2, &1 ® A2, w1 Xy p2, (T1,g X T2 ¢)ger),

where the measure (1 Xy u» is defined by the equation

/X (i® XYM2)=/]E[f1 | V1-Elfs | V] dv.
1X X2

Note that the measure 11 Xy w2 is supported on the set
X1 xy X2 = {(x1, x2) € X1 x X2 : m1(x1) = m2(x2)}.

The relatively independent joining construction allows us to take an extension of a
Host—KTra factor of a given system and turn it into an extension of the full system.

THEOREM 2.5. Let X = (X, X, , (Ty)ger) be an ergodic I'-system. Let k € N. Suppose
ZF is the Host—Kra factor of X of order k. Given any ergodic order k extension Zk of ZK,
there exists an ergodic extension X of X such that Z¥ is the Host—Kra factor of X of order k.
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Proof. Define X as the relatively independent joining X=X x Zk Z¥ . First, Z is an order
k factor of i, so it is a factor of the Host—Kra factor of order k by Proposition 2.4(3).

Conversely, we want to show that the Host—Kra factor of X of order k is a factor of ZK.
Let (#;);en be an orthonormal basis in LZ(ik). Suppose f € Lz(f) is measurable with
respect to the Host—Kra factor of order k. Expand f in the basis (#;);eN:

FOy) =) ai(ui(y).
ieN
Fix i € N. Since 1x ® u; is Zk_measurable and hence measurable with respect to the
Host—Kra factor of order k, the product (1x ® u;) f remains measurable with respect to
the Host—Kra factor of order k. Therefore, E[(1x ® u;) f | X] is measurable with respect
to 2k by items (2) and (3) in Proposition 2.4. By direct computation, since (u;) jeN i an
orthonormal basis in Lz(f k), we have

El(lx ®u) f | X1 =) Ela; ®wu; | X1 =a;.
jeN
Thus, a; is Z¥-measurable for each i € N. That is, g; (x) = b; (;r1(x)) for some function
b; : Z¥ — C, where 7y : X — Z* is the factor map. However, letting 7 : Z¥ — ZF be
the other factor map, one has 71 (x) = m,(y) for almost every (a.e.) (x, y) € X. Hence,

O,y =) ai@ui(y) =Y bi(mDui(y) = Y bi(ma(y)ui(y)

ieN ieN ieN

is Zk-measurable. O]

2.4. Hilbert space-valued functions and unique ergodicity. Let H be a Hilbert space.
Given a compact metric space X, a probability measure  on X, and a continuous function
F : X — H, one can define the integral [, F dpu to be the element of 7{ satisfying

<f Fdu, v>=/ (F(x),v) du(x)
b'e b'e
for every v € H.

A characterizing property of uniquely ergodic systems is the following: a topological
system (X, (Tg)ger) is uniquely ergodic (with unique invariant measure ) if and only if
for any continuous function ' : X — C and any x¢ € X,

UC- lim F(Tgx0) = / Fdpu.
gel X
The following lemma shows that the same result holds for Hilbert space-valued functions.

LEMMA 2.6. Let (X, (Ty)ger) be a topological I'-system. Let H be a non-trivial Hilbert
space. Then (X, (Tg)ger) is uniquely ergodic (with unique invariant measure w) if and
only if for any continuous function F : X — H and any xo € X,

UC- lim F(Tyxo) =/ Fdu
gel" X

inH.
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Proof. For the group I' = 7Z, a proof of this fact appears in [22, Lemma 4.3]. We follow
the same strategy for a general countable discrete abelian group I.
Suppose that for any continuous function F : X — H and any xp € X,

UC- lim F(Tyxo) = / Fdu
gel X

in ‘H. Since H is non-trivial, it contains a copy of C, so this implies if F : X — C is
continuous and xp € X, then

UC- lim F(Tyxo) = / Fdu
gel X

in C. Therefore, (X, (Ty)ger) is uniquely ergodic.

Now suppose (X, (Tg)ger) is uniquely ergodic with unique invariant measure .
Replacing F by F — [, F du, we may assume without loss of generality that [, F dju =0
in H. Put ug = F(Tgxo) € H. For any h € I', the function ¢, : X — C defined by
on(x) = (F(Tpx), F(x)) is continuous. Hence, by unique ergodicity of (Tg)ger,

& = UC- lim (ugyp, ug) = UC- lim @5 (Tyxo) = / on diL.
gel gel X

For x € X, consider the function v, (y) = (F(y), F(x)). This is a continuous function
from X to C, so by unique ergodicity of (Tj)per, we have

uC-fim s (1) = [ s = [ P o) =0
hel X X
for every y € X. In particular, we may take y = x, in which case
UC- lim ¢p (x) = UC- lim (F(Tpx), F(x)) = UC- lim ¥ (Tpx) = 0.

hel’ hel’ hel’

Integrating over x € X and applying the dominated convergence theorem, it follows that
UC- li =0.
lim &n

Thus, by Lemma 2.1, UC- limger F(Tgx0) = 0in H. L]
2.5. Cocycles and coboundaries. ~An important construction in ergodic theory is that
of group extensions. For our purposes, we will need only to consider extensions by
abelian groups, which creates various simplifications. Suppose X = (X, X, u, (Tg)ger)

is an ergodic I'-system. Given a compact abelian group (H, +) and a measurable function
o : ' x X — H, we can define the group extension of X by H over ¢ as the system

X xg H:=(XxH,X®Bu,uxmpy, (Tg)ger),

where Tg‘7 (x,y) := (Tyx, y + 0¢(x)). To obtain a I"-action in this manner, the function o
must satisfy the cocycle equation

Og+n(x) = 0g(Thx) + op(x)

forevery g, h € I" and pu-ae. x € X.
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Given any measurable function F : X — H, one may construct a cocycle
AgF(x) := F(Tyx) — F(x).

Such a cocycle is called a coboundary.
Two cocycles o and t are cohomologous, denoted o ~ 7, if their difference T — o is a
coboundary. The following result is an easy exercise.

PROPOSITION 2.7. [15, Lemma 3.20] Let X = (X, X, u, (Tg)ger) be a I'-system. Sup-
pose H is a compact abelian group and o, v : I' x X — H are cocycles such that o ~ t.
Then X x, H=X x; H.

When analyzing a cocycle o : ' x X — H taking values in a compact abelian group
H, it is often useful to consider the family of cocycles x oo : I' x X — S' given by
composition with characters x € H.

The following lemma gives a criterion for checking that a cocycle taking values in S' is
a coboundary, when the base system is an action by rotations on a compact abelian group.

LEMMA 2.8. [1, Proposition 7.12] Let Z = (Z, «) be a Kronecker system and o : I" x
Z — S! a cocycle. The following are equivalent:

(i) o is a coboundary;

(ii)  for any sequence (g,)neN in I" such that ag, — 0 in Z, one has o4, — 1 in Lz(Z).

Remark 2.9. 'We do not assume that the Kronecker system (Z, «) appearing in Lemma 2.8
is ergodic. This will be important for some later applications, e.g., Theorem 4.1.

COROLLARY 2.10. Let Z = (Z, a) be a Kronecker system and suppose o : T’ x Z — S!
is a coboundary. Then there is a function w : Z x Z — S' such that t — w(t,") is a
continuous map from Z to L*(Z) and

w(ag, 7) = 0g(2).

If Z is ergodic, then w is defined uniquely almost everywhere.

Proof. This follows from the proof of [1, Proposition 7.12]. We give a different proof here.
Since o is a coboundary, we may write o = AF for some F : Z — S!. That is,

F(z +ay)
F(z)
We may then take w(t, z) = F(z +t)/F(2). O]

Og (z) =

Two additional families of cocycles will play an important role in this paper.

Definition 2.11. Let I" be a countable discrete abelian group and let Z = (Z, @) be an
ergodic Kronecker system. A cocycle o : I' x Z — S is:

(1) cohomologous to a character if there exists y € T such that 0g(z) ~ y(g). That is,
there exists a measurable function F : Z — S! such that
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F(z 4 ay)
0,(2) = V(g)%

forevery g € ' and a.e. z € Z;
(2) quasi-affine (or a Conze—Lesigne cocycle) if for every ¢ € Z, the cocycle
og(z+1)
Og (2)

is cohomologous to a character.

Remark 2.12. According to the definition above, a cocycle o : I' x Z — S! is quasi-affine
if and only if for each 7 € Z, there exists a measurable function F; : Z — S! and a
character y; € T such that

oglz+1) Fi(z +ag)
—Gg @) = y(g) —Ft @

forevery g € I' and a.e. z € Z. One may additionally ensure that the maps (¢, z) — F;(z)
from Z x Z to S! and 7 y; from Z to I' are Borel measurable by [27, Proposition 2]
and [14, Proposition 10.5].

Suppose Z = (Z, «) is an ergodic Kronecker system, H is a compact abelian group,
ando : I' x Z — H isacocycle. If x o o is quasi-affine for every x € H, then the group
extension X x, H is called a quasi-affine or Conze—Lesigne system.

We now give characterizations of cocycles that are cohomologous to a character or
quasi-affine in the same vein as Lemma 2.8.

LEMMA 2.13. [1, Proposition 7.13] Let Z = (Z, o) be an ergodic Kronecker system and
o : T x Z — S' a cocycle. The following are equivalent:

(1) o is cohomologous to a character;
(ii) foreveryt e Z,
Og (z+1)
Og (2)

is a coboundary;
(iii) there is a Borel set A C Z withmz(A) > 0 such that

og(z+1)
Ug(Z)

is a coboundary for everyt € A;
(iv) for any sequence (gu)nen in I with ag, — 0in Z, there is a sequence (cp)neN in s1
such that ¢, 04,(z) — lin L2(Z).

LEMMA 2.14. [1, Proposition 7.15] Let Z = (Z, a) be an ergodic Kronecker system and
o : T x Z — S' a cocycle. The following are equivalent:
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(i) o is quasi-affine;
(ii) there is a Borel set A C Z withmz(A) > 0 such that
og(z +1)
Og (2)
is cohomologous to a character for everyt € A;

(iii) for any sequence (gp)neN in I with ag, — 0 in Z, there are sequences (c;)neN in
St and (M) ey in Z such that cph, (2)0g,(z) = lin L%(2).

2.6. Mackey groups. Mackey groups play an essential role in this paper. We review the
definition and the basic properties of the Mackey group in this section.

Let X = (X, X, u, (Tg)ger) be an ergodic I'-system, H a compact abelian group, and
o:I' x X - H a cocycle. The range of o is the closed subgroup G, generated by
{og(x) : g € I', x € X}. The cocycle o is minimal if there is no cohomologous cocycle
T with Gy C Gg.

PROPOSITION 2.15. [15, Theorem 3.25] Any cocycle o : " x X — H is cohomologous
to a minimal cocycle. Moreover, if two minimal cocycles are cohomologous, then they have
the same range.

The Mackey group associated to o is defined to be the range of a minimal cocycle
cohomologous to o. Several important properties of Mackey groups are collected in the
following proposition.

PROPOSITION 2.16
(1) If M is the Mackey group associated to o, then the annihilator of M is

Mt = {x € H: X o 0 is a coboundary}.

(2) Ifo and t are cohomologous, then their Mackey groups are equal.

(3) The system X x4 H is ergodic if and only if o is minimal with range G, = H.

@) If f:XxH— Cis (I )ger-invariant, then f(x,y+m)= f(x,y) for every
me M and (u x my)-a.e. (x,y) € X x H.

Proof. For property (1), see [22, Proposition 2.5]. Properties (2) and (3) are proved in
[15, Theorem 3.25].

In the case I' = Z, property (4) appears in [22, Proposition 2.4] (see also [14,
Proposition 7.1]). We give a quick proof for general I'. Suppose f: X x H — C is
(Tg" )ger-invariant. We may expand f as a Fourier series:

fa) =) c@x ().

xeH

Then

(T /), y) = D cx(Ten)x(y +0g(0)) = Y ex (Tex) x (05 ())x (¥).

xeH xeH
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The assumption that T; f = f then implies

cx (x) = ¢y (Tgx) x (0g(x)) 2.1)

for every x € H. Hence, if ¢y # 0, then equation (2.1) expresses x o o as a coboundary.
Thus, ¢, =0for x ¢ M L. For any m € M, we therefore have

fay+my= D" cx(+m = Y c)x() = fx,y)

xeMt xeMt

as claimed. O]

For a compact abelian group K, let M(Z, K) be the space of measurable functions
Z — K with the topology of convergence in measure. One can show that a sequence
(f)nen in M(Z, K) converges if and only if (x o f,)nen converges in L%(Z) for every
X € K see, e.g., [1, Lemma 7.28]. The following is an easy consequence of Corollary 2.10
combined with the description of the Mackey group in item (1) of Proposition 2.16.

PROPOSITION 2.17. LetZ = (Z, o) be an ergodic Kronecker system, H a compact abelian
group, ando : T x Z — H a cocycle with Mackey group M C H. Then there is a function
w:Z xZ— H/M such that t — w(t, ) is a continuous map from Z to M(Z, H/M)
and

w(ag, 2) = 04(z) (mod M).

Remark 2.18. If the cocycle o is minimal, then it takes values in the Mackey group M, in
which case w = 0.

The Mackey group plays an important role in the analysis of ergodic averages, as
demonstrated by the following result.

PROPOSITION 2.19. Let X = (X, X, u, (Ty)ger) be an ergodic I'-system, H a compact
abelian group, and o : T' x X — H a cocycle. Let M be the Mackey group associated to
o.Let f € L>(uw x mp). If for every x € M+ and p-a.e. x € X, one has

f S, )x(y)dy =0,
H
then
UcC- éienll ngf =0
in Lz(,u X mg).

Proof. By the mean ergodic theorem, let f~ = UC- limger T f. We want to show f =0.
Since L2(H , mp) is spanned by characters, it suffices to show

f f,Vx()dy=0
H
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for every x € H and u-a.e. x € X. We will prove this identity in cases, depending on
whether or not x annihilates the Mackey group M.

Case I: x ¢ M. By item (4) of Proposition 2.16, for any m € M and (u x mp)-a.e.
(x,y) € X x H,we have f(x,y+m) = f(x,y). Therefore, for u-a.e. x € X,

fHf(x,y>x(y)dy=fHf(x,y+m>x(y+m)dy=x(m>ﬁlf(x,y»c(y)dy.

Taking m € M such that x (m) # 1, this implies fH f(x, y)x (y) dy = 0 as claimed.
Case 2: x € M. Note that

fH Fee, x() dy =E[f - (1 ® x) | X))
By item (1) of Proposition 2.16, there is a measurable function F : X — S such that
X(0(x)) = F(Tx)F(x)
for p-a.e. x € X. We then compute directly:
E[f - (1®x) | X]= UC-;ierrFlE[(T;f) (I x) | X]
=UC- ;ienrl (X oog) -E[T (f- (1 ®x) | X]
=1“1K¥g}7M7-EU“(1®X)IXD
=0.
In the last step, we have used the hypothesis E[f - (1 ® x) | X] = 0. O]

COROLLARY 2.20. LetZ = (Z, @) be an ergodic Kronecker system, H a compact abelian
group, and o : I' x Z — H a cocycle. Let M be the Mackey group associated to o, and
let w: Z x Z — H be a measurable map such that t — w(t, -) + M is a continuous map
Z — M(Z,H/M) and w(oyg, 2) = 04(z) (mod M). Then for any f € L*(Z x H),

UC- lim f(z—i—ag,x—i—ag(z)):/ fz+t,x+m+w(t, z)dtdm (2.2)
gel ZxM

in L3(Z x H).

Remark 2.21. Proposition 2.17 provides a function @ : Z x Z — H/M corresponding to
the cocycle o : I' x Z — H. This can be lifted to a measurable function w : Z x Z —

H satisfying the conditions in the statement of Corollary 2.20 by the Kuratowski and
Ryll-Nardewski measurable selection theorem (see [32, §5.2]).

Proof of Corollary 2.20. By linearity, we may assume f is of the form f = h ® x with
x € H. Then the right-hand side of equation (2.2) is equal to

X(x)(/ h(z+tx(w(t, 2)) dt) ( / x (m) dm>. 2.3)
z M
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If x ¢ M+, then UC- limger Tg" f = 0 by Proposition 2.19. Moreover, equation (2.3) is
clearly equal to zero.
Suppose x € M. Then equation (2.3) reduces to

X(x)( / h(z+1t)x(w(t,z)) dt).
z
The left-hand side of equation (2.2) is equal to
x(x)-UC- lier{g h(z + ag) x (04(2)).
4

Define F:Z x Z — S! by F(t,z) :=h(z+1t)x(w(t, z)). Then, by Proposition 2.17,
t — F(t, ) is a continuous map from Z to L?*(Z) and Flag, ) = h(z + ag) x (04(2)).
Since (Z, «) is uniquely ergodic, it follows by Lemma 2.6 that

UC- lim F(ag, z) = / F(t,z)dt
gel 7
in L?(Z). This completes the proof. O

3. Extensions

Definition 3.1. Let ® be a family of endomorphisms of I'. A group of characters

A C Tis:

o O-completeif A o ¢ € A forevery A € A and every ¢ € O;

o  ®-divisible if for every A € A and every ¢ € ®, there exists A’ € A such that
)\/ o = A

The main result of this section is the following extension theorem.

THEOREM 3.2. Let ® be any countable family of endomorphisms of T, and let ¥ be
a countable family of injective endomorphisms of I'. Then for any ergodic T'-system

= (X, X, u, (Tg)ger), there exists an ergodic extension X of X such that the discrete
spectrum of X is ®-complete and V-divisible.

We will derive Theorem 3.2 as a consequence of the following general result.

THEOREM 3.3. Let X = (X, X, u, (Tg)ger) be an ergodic T'-system, and let A be the
discrete spectrum of X. For any countable set C C T, there is an ergodic extension X of X
such that the discrete spectrum A of X is equal to the group generated by A and C.

Proof. This is a special case (k = 1) of Theorem 2.5. Indeed, if Zisan ergodic Kronecker
system with discrete spectrum A= (A, C), then Z is an order 1 extension of Z, and
so there exists by Theorem 2.5 an ergodic extension X of X whose Kronecker factor is
isomorphic to Z. O

Remark 3.4.

(1) A similar statement to Theorem 3.3 is proved in [2, Theorem 4.3]. However, in [2,
Theorem 4.3], only one inclusion is established (namely, that A contains A and C).
It is nevertheless true that the construction in the proof of [2, Theorem 4.3] produces
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a system with the correct discrete spectrum, as can be seen with some additional
work. (In fact, though differently phrased, the construction is equivalent to taking
the relatively independent joining of X with the appropriate ergodic Kronecker
system Z).

(2) The extension X produced via Theorem 3.3 is not unique. For instance, any weakly
mixing extension of X will again satisfy the conclusion of the theorem. The minimal
such extension (that is, the one appearing as a factor of any such extension) is
precisely the relatively independent joining X xz Z.

Now we can prove Theorem 3.2.

Proof of Theorem 3.2. Let A be the discrete spectrum of X. We extend A in stages,
alternating between ®-completeness and W-divisibility.

First, we make a couple of convenient reductions to make the notation less cumbersome.
Replacing ® by ® U ¥, we may assume that W € . Let ® be the semigroup

EIV>={(p10---o(pk:kZO,(pl,...,(pkECI)},

and let U be the semigroup

={Y1o---oyYp:k=>0,9,...,Yr € ¥}

Since ® and W are countable, ® and W are also countable. Moreover, for J Yro---o0
Vi € W, we have that w is 1n]ect1ve since it is a composition of injective maps. Thus,
replacing ® and W with ® and ¥, we may assume without loss of generality that & and W
contain the identity map and are closed under composition.

Now we set up the induction process. Let Agp:= A. Suppose we have defined
Ao € --- C Apjforsome j > 0. Let

Arjr1:=(Lop: A€ Nj,pcd).

By the induction hypothesis, A5 is a countable group, so A3 is also a countable group.
Moreover, since ® is a semigroup, Az ;41 is ®-complete.

We now perform subinduction to define Azj 2. Put Sp := Azj41. Suppose we have
defined Sy for some k > 0. For A € S and ¢ € W, there exists A" € T such that A’ o U=
To see this, first define A, : /() — ST by Lo (8)) = A(g). This is well ieﬁned since ¥
is injective. Then by [30, Theorem 2.1.4], )»6 extendsAto a character A’ € I', and we have
A" o ¢ = A. Define a choice function y; : Sy x W — T so that yx (A, ¥) o ¢ = A for every
A € Sy and Y € W. Then let

Skt = {veA, ) 1 A € Sk, b € W)L

By induction, the set Si+1 is countable. Therefore, S = Uk>0 Sy is countable and hence
generates a countable group Az;12 1= (S). -

We claim that Ajj4o is W-divisible. Let A € Azj42 and let € W. We may write
A= J/;f,.i (Ai, i) with d; € Sg,, ¥ € W,andg; € {—1, 1}. Let A, = yx, 1 (v, (Mi» ¥i)s
V) € Sandlet A’ =[]_; (\))% € Ayjio. Then
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r r
Woyr=T]0iow) =[] i, vi)) =
i=1 i=1
Thus, A3;17 is W-divisible as claimed.

By induction, we have constructed an infinite sequence of countable groups Ao C
A1 € Ay € - - such that Ajji; is ®-complete and Ajj4o is W-divisible for j > 0. Let
Ao i= U?io A j. Then A is a countable group that is ®-complete and W-divisible.

Finally, we apply Theorem 3.3 to obtain an ergodic extension X of X such that the
discrete spectrum A of X is equal to A . U

Remark 3.5. The subinduction and use of the choice functions yj in the construction of
the group Aj 7 is solely used to ensure that Aj ;> is countable. A W-divisible group can
be defined more directly, namely

Dijip:=(A € T: Aoy € Apjyq for some f € W).

In general, D;;,> is uncountable. However, if ¥ (I') is a finite index subgroup of I'
for each v € W, then the set {A € T:xo Y = Ao} has cardinality [I" : ¥(I")] < oo for
each Ag € Ajy1 and ¥ € W. Thus, in this case, D;;1> is countable, so one may take
A2jy2 = Dyjyo rather than using the more complicated construction appearing in the
proof of Theorem 3.2. For the group I' = Z¢, an endomorphism is injective if and only if
it has finite index image if and only if the corresponding matrix is non-singular. Therefore,
the simpler construction Ajj42 = D342 can always be used when dealing with the group
r =74

4. Mackey group associated with {¢, ¥}
Let ¢,y € End(I") such that (¢ — ¢)(I') has finite index in I', and suppose 6,
6, € End(T") are such that 6] o ¢ + 6> o ¥ is injective.

Let X be an ergodic quasi-affine I'-system, and write X = Z x, H. Assume that the
discrete spectrum of X is {¢, ¥, 01, 62}-complete and (61 o ¢ + 6> o ¥r)-divisible. In this
section, we consider a variant of the notion of Mackey groups as discussed in §2.6 that is
tailored to analyzing ergodic averages of the form

UC- 1im Tyg) f1 - Ty (g) /2
gel

for f1, f» € L*°(Z x H).
Since the discrete spectrum A of X is {¢, ¥, 01, 62}- complete we have induced

A

continuous endomorphisms of Z = A, which we denote by @, w 01, and 02 To see
this, view Z as the dual group, expressed additively as the group of homomorphisms
z: AN — T =R/Z.For f € {p, ¥, 61,6}, themap f : Z — Z is then given by

F@):r> z(ho f).

Since A is (01 o ¢ + 6 o Y)-divisible, we claim that 0 0 $+é\2 o 1’//\ is injective.
Indeed, suppose (01 o @ + 03 o ¥)(z) = 0. Then for every A € A,

z(ho(Brop+6209)) =0.
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However, for any A € A, there exists A’ € A with A o (B0 ¢ + 62 09%) = A, s0
ZA) =z(XM o B1o@+60Y)) =0.

That is, z = 0.
Let

W={z+00),z+ V1) : 2.1 € Z}

and let @ : ' — W be the homomorphism

dg = (Ap(g)s Uy (g))-

Let& : I' x W — H? be the cocycle
Gg(w) = (0p(g)(W1), Ty (g) (W2)).
Now we define the Mackey group to be the closed subgroup M < H? with annihilator
M*t={ye H? - X oo is a coboundary over (W, @)}.

The Kronecker system W = (W, @) is not necessarily ergodic. However, its ergodic
decomposition is easy to describe and interacts well with the Mackey group M. Namely,
we may express W as the union of the subsets

W, ={c+ (), z+ V1) : 1 € Z} = (z,2) + Wo,

each supporting a Haar measure m,. The system (W, @) is uniquely ergodic, and each
of the systems (W,, @) for z € Z is an isomorphic copy. It is easily verified that the Haar
measure on W decomposes as my = . 2 Mz dz. An important property of this ergodic
decomposition is that, letting M, denote the Mackey group corresponding to the ergodic
component (W, &), one has M, = M for a.e. z € Z (see [1, Proposition 7.9]).

We now seek to describe the structure of the Mackey group M. A classical fact in ergodic
theory is that, given two measure-preserving systems X; and X, invariant functions for
the product system X; x X are formed from functions of the form f; ® f>, where fi is
an eigenfunction of X, f> is an eigenfunction of X, and the corresponding eigenvalues
are conjugates of one another. The following result describes the Mackey group M in an
analogous manner.

THEOREM 4.1. Let M be the Mackey group as defined above. Then

M+ = 1 ®x € I/-I\2 : there exists y € /ﬁ, X1(0y(g) (W1))
~ y(g) and xa2(oyg)(w2)) ~ Y (g) over (W, a)}.

Remark 4.2. Throughout this section, we treat g € I' and w = (wy, wz) € W as variables,
and write expressions of the form p(g, w1, wy) ~ (g, wi, wy) as shorthand for the state-
ment that the cocycles (g, (w1, wp)) — p(g, wi, wa) and (g, (w1, wa)) — t(g, Wi, W2)
are cohomologous. For example, the notation x1(0y(g)(w1)) ~ y(g) means that there is a
measurable function F : W — S! such that
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F(wi + agg), w2 + oy g)
F(wy, w)

for every g € I' and almost every w = (w1, wp) € W.

X1 (o) (w1)) = y(g)

Proof. Suppose Xl,Xzeﬁ and y €T such that X100 (WD) ~ y(g) and
X2(0y () (w2)) ~ ¥(g). Then

(X1 ® x2)(@g(w)) = x1(0p(g)(W1)) x2(0y (o) (w2)) ~ ¥()V(g) =1,

SO X1 ® x2 € M+
Conversely, suppose x1 @ xo € M L Let (gn)nen be a sequence in I" such that Bign — 0
in W. By Lemma 2.8,

(X1 ® x2) 0 G, = 1
in L2(W). That is,

X1 O (e (2 + PN X2 (0 (g0 (2 + T (1)) — 1 @.1)

in L2(Z x Z).
The cocycle o is quasi-affine, so by Lemma 2.14, there are sequences (c; ,)nen in S!
and (Aj n)nen in Z for i = 1, 2 such that

Clur (@ x1(0pe,) (@) — 1 and 2,22, (2) x2(0y (g, (2) — 1 4.2)

in L%(Z). We will combine equations (4.1) and (4.2) to show that x1(0ys)(2)) ~ ¥ (g) and

x2(0y()(2)) ~ ¥ (g) forsome y € I'.
For convenience, let w, = x1 0 0p(g,) and v, = x2 0 oy (g,). Now we perform a change
of coordinates. Define 1 : Z2 — Z2 by

n(z 1) = @+ 91, 2+ ¥ )
and, foru € Z,let ¢, : 7% — 72 be the map
Gulz 1) = (u+¥(@) = P). 1 = 2).
Note that equation (4.1) is equivalent to
(Un @ vp)on — 1 (4.3)
in L2(Z?).
We claim
(n @ va) omoly — 1 (4.4)

in L2(Z?). Let ¢ :=¢o. Fix u € Z and let f,(z,1) = ((un @ v,) 0 n)(z + u, t). Then
(n @ Vy) 0oLy = frol. We then want to show f, o — 1 in L?(Z?). Since the
Haar measure on Z? is invariant under shifting by (u, 0), we have f, — 1 in L2(Z?) by
equation (4.3). It therefore suffices to show that £(Z?) has positive measure (equlvalently,
finite index) in Z2. By assumption, (v — ¢)(I") has finite index in I'. Hence, [Z : (w —
O)(Z)]<[T: (W —@)T)] < oo.Let F C Z be afinite set such that (1// O(2)+F=Z.
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Let (z,1) € Z% be given. Choose x € Z and s € F such that (1} —Q)(x) +s =7+ ().
Put y = x 4 ¢. Then

£OL )+ (5.0) = (P (x) — Px) — B(0) +5.1) = (2, 1).
This shows that ¢ (Z2) + (F x {0}) = Z2, so

m2(L(Z%) > 1 > 0.
T |F

Thus, equation (4.4) holds.
However,

Mo&)@t) =nu+¥Q@) -1, t —2) =+ — DR, u+ T — D).
We therefore deduce from equation (4.4) that
tn ® vy — 1 4.5)

in L2((u + (fﬁ\ —D)(2)?). Taking a conjugate and multiplying by equation (4.2), we
deduce

cl,nCZ,n()\l,n ® )¥2,n) -1

in L2((u + (¢ — $)(2))?). That is,
/Z letneantintut (F ~ Pt + @~ §0) ~ 1P dzdr — 0.
Multiplying by A», in the integrand and using the fact that each A; , is a homomorphism,
/Z etz k@i (= 9)@) = han@han (= DO dz dr — 0.

It follows that for all sufficiently large n, we have Aj ,, A2, € ((1’//\ —0)(2)*.
Let A= (¢ — @)(Z) and put A = {(w, wp) € W : w; € A}. Note that Aq is a Borel
setand my (A1) =mz(A) > 0. Fixt = (t1, ) € A and let

X1(0g(g) (w1 + 11))
X1(0p(g) (W1))

Pg (w) =

By Lemma 2.13, our goal is to show that p is a coboundary. Since (g,),eN is an arbitrary
sequence in I with &gn — 0, it suffices, by Lemma 2.8, to show pg, — 1 in L2(W). We
have already seen that

LA, (2) X1(0gp(g,)(2)) — 1
in L2(Z) and Ay, € A+.In particular, A1 ,(z 4+ t1) = A1,,(2), since ¢; € A. Therefore,

X1(0pg,) (W1 +11))  ciarin(wi + 1) x1(0g(g,) (W1 + 1))
X1(0p(g,) (W1)) iAW) x1(0p(g,) (W1))

pe, () = — 1

in LZ(W). This proves that x1(oy(g)(w1)) is cohomologous to a character. The same
argument applies to x2(oy (g)(w2)), taking the set Ay = {(wy, w2) € W : w; € A}.
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Therefore, we may assume in the above that A; , = 1 foreveryn € Nandi =1, 2. We

may also assume c¢; , = ; (gn), Where x1(0pg)(w1)) ~ y1(g) and x2(oy o) (w2)) ~ y2(g).
We have thus shown that for any sequence (g;), <N With &'gn — 0, we have

(1v2)(gn) — 1.

Hence, by Lemma 2.8, y1y» ~ 1. By tweaking y»> up to cohomology, we may assume
y2 = ¥y, completing the proof. O

By passing to an extension of the original system, we will show that the Mackey
group M associated with {¢, ¥} decomposes into the Cartesian product of Mackey groups
associated with ¢ and v, respectively.

THEOREM 4.3. Let ¢, ¥ € End(I") such that (¢ — ¢)(I') has finite index in T, and
suppose 01, 0» € End(I") such that 61 o ¢ 4+ 0, o\ is injective. Let X = Z X, H be an
ergodic quasi-affine I' system such that the discrete spectrum Z is {o, ¥, 01, 02}-complete
and (01 o ¢ + 0 o Yr)-divisible. There is an ergodic quasi-affine extension X' = 7 x ,+ H
of X such that the Mackey group M’ decomposes as M" = M, x Ml’//, where

(M(;,)L ={x € H: (., ,(w)) is a coboundary over (W', &)}

»(8)
and
(M:p)l ={x € H: X(Ul/p(g)(WZ)) is a coboundary over (W', &')}.
Proof. Let
Co={y e T : there exists X € ﬁ X (0g(g)(w1)) ~ y(g) over (W, )}
and

Cy ={y €T : thereexists x € H, x(ay g (w2)) ~ y(g) over (W, &)}.

Then let C = C, N Cy. Note that a character y € Tis cohomologous to another character
y' € T if and only if 7y’ is an eigenvalue for the system (W, &). That is,

7y €e{(ao@)(haow) i, k€ Z) C Z.

Moreover, the groups Z and H are countable, so C is a countable set of characters.

By Theorem 3.2, let A" be a countable subgroup of T that is {o, ¥, 01, 62}-complete,
(61 0 ¢ + 6, o )-divisible, and contains the group generated by A = Z and C, and
let Z' = A’. For gerl, let oeg, € Z' be the element such that Otjg()\.) = A(g) for every
A€ A. Since A C A/, there is a surjective homomorphism 7 : Z' — Z such that
7'[(0[;,) = ag. Defineo’ : ' x Z' — H by ag’,(z) = 0g((2)).

CLAIM 1. ¢’ is a cocycle.
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Proof. Indeed, forany g, h e T and z € Z/,

0414 (2) = 0grn((z)) (definition of o)
= 0g(m(2) + ap) + o (m(z)) (o is a cocycle)
= 0,(7(z + ) + op(7(z)) (7 is a factor map)
= 0,(z +ap) + 0,(2).
This proves the claim. O

CLAIM 2. o’ is quasi-affine.

Proof. The cocycle o is quasi-affine, so there exist measurable functions F : Z x Z — S§!
and y : Z — T such that

og(z+1) F(t,z+ o)
0@ T8 e

Define F’: Z' x Z' — S' by F'(t,z) = F(n(t),n(z)) and y' : Z' — T by y'(t, ) =
y (7 (1), -). Then

0,241 o,(n(x)+7(@) Fn(t),n(2)+ag) F'(t, 2 + o)
0@ - aa@ OO Ry 00T R

)

so o’ is quasi-affine as claimed. O

CLAIM 3. The quasi-affine system Z! x ;» H is an ergodic system with Kronecker factor
7 = (Z,a).

Proof. We need to check that ¢’ is a weakly mixing cocycle. That is, for any x € H,
if x oo’ is cohomologous to a character, then x = 1 (see [1, Proposition 7.5]). Suppose
x€Hand xoo' ~y el overZ.Let F:Z — S'such that

F(z+ap)

x(0,(2)) = y(g) Q)

for every g €I’ and almost every z € Z'. Define G:Z x H— S' by G(z,x) =
F(2)x(x). Then

G(z+ 0y, x +0,(2)) = F(z+ ap) X (04(2)x (x) = y (@) F (@) x (x) = y(8)G(z, x).

Hence, G is an eigenfunction for the system Z/ x, H (with eigenvalue y). The function
F ® 1 is measurable with respect to the Kronecker factor of Z' x, H, since Z is a
Kronecker system and therefore contained in the Kronecker factor. Therefore, 1, ® x =
(F ® 1g)G is measurable with respect to the Kronecker factor.

Now, the projection of 1 ® x under the factor map Z' x, H — Z x, H is the
function 1z ® x. Thus, 1z ® x is measurable with respect to the Kronecker factor of
Z x, H, but by assumption, the Kronecker factor of Z x, H is Z. It follows that the
function (z, x) = x(x) = (1z ® x)(z, x) does not depend on x. That is, x = 1. O
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As a brief aside, it is worth remarking that the system Z’ x, H is (isomorphic to) the
relatively independent joining of Z x, H and Z’ with respect to the common factor Z. We
therefore could have shown the previous three claims by establishing this isomorphism and
referring to Theorem 2.5. However, to prove that X' = Z/ x,+ H is the desired extension of
X, it is more convenient to work with the system written explicitly as a group extension over
its Kronecker factor rather than appealing to general abstract statements about Host—Kra
factors.

It remains to show that the ergodic quasi-affine system Z' x, H is the desired
extension. Let us introduce some notation. We define a system (W', @’) by

W ={z+e@),z+y@®):zteZ}

and

~/ = ’ ’ )

% = Wo(e) Yy(g))
We then define the cocycle 5 : T’ x W/ — H? by

Eé(w) = (U(;(g)(wl), U,;,(g)(wz))
and associate a Mackey group M’ with annihilator
(M): = (¥ € H2: ¥ 0 is a coboundary over (W', &@)}.

We want to show M’ = M;J X M{//. To this end, we prove one more claim.

CLAIM 4. Let x € H and y € T
(a) Ifx(a(;(g)(wl)) ~ y(g) over (W', @), then there exists y' € Cy, such that y ~ y'.
(b) If)((a&/(g)(wz)) ~ y(g) over (W', @'), then there exists y' € Cy, such thaty ~ y'.

Proof. The proofs of items (a) and (b) are the same, so we prove only item (a). Suppose
X (0, (W) ~ ¥ (g) over W' = (W', &’). Arguing as in the proof of Claim 3 above, the
function 1y ® x ® 1y : W' x H> — S' is measurable with respect to the Kronecker
factor of W’ x5z H?. Projecting onto the factor W x5 H?2, it follows that 1y ® x ® 1y
is measurable with respect to the Kronecker factor of W x5z H?. We then project again
to the factor (Z, o o ¢) Xo, H (with the action of I given by g - (z, x) = (z + ap(g), X +
0y(g)(z))) to conclude that 17 ® x is measurable with respect to the Kronecker factor Z,,
of (Z,ao f) Xo, H. Noting that LZ(Z(p) is spanned by functions of the form F(z)¢(x)
with ¢ € H such that ¢ oo, is cohomologous to a character (see the proof of [1,
Proposition 7.5(2)]), it follows that x o o, is cohomologous to a character ' € T over
(Z,a o ). Therefore, y’ € Cyp and y ~ y’'. O

Let x; ® x2 € (M')*. By Theorem 4.1, there exists y € T such that xl(aq’)(g)(u)l)) ~
y(g) and XZ(U,},(g)(WZ)) ~ Y (g) over (W', @’). By Claim 4, we may assume y € Cy, N
Cy = C. We constructed the extension Z' x,+ H so that A’ O C. Therefore, y € A’. Also
by construction, A’ is {¢, ¥, 01, 62}-complete and (6 o ¢ + 6, o )-divisible. Using the
divisibility condition, let A € A’ suchthat L o (§; o + 6, 0 ) = y.Let A.; = A 0 0; and
A2 = A o 0>. By the completeness condition, A1, Ay € A’. Moreover, (A o @)(Ay 0 ) =y.
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So, taking F = (A1 ® A2)|w : W' — S, we have y(g) = Ay F, soy ~ L. Thus,

X100y (WD) ~ X2(0y (o) (w2)) ~ 1

That is, x1 ® x2 € (M/)J- X (M )1 as desired. O

5. Limit formula
In this section, we use the Mackey group M defined in §4 to derive a limit formula for
double ergodic averages over quasi-affine systems.

THEOREM 5.1. Let ¢, ¥, 01, 6> € End(I") such that  — ¢ has finite index image in I and
01 0 ¢ + 02 o Y is injective. Let X = Z x4 H be an ergodic quasi-affine I'-system whose
discrete spectrum is {@, ¥, 01, 62}-complete and (0] o ¢ + 05 o \r)-divisible. Let M < H?
be the Mackey group associated with {@, W}. Then there is a measurable function w :
Z x Z — H? such that:

(1) w(,z)€e M forallz € Zandt+— w(t,-)+ M is a continuous function from Z to
M(Z, H*/M); and
(2) forany fi, fo € L*(Z x H), we have

UcC- ;igfl‘ J1(Tpe) (2, X)) f2(Ty (g)(z, X))

= [GE+PW), x +u+ w1(1,2) fr(z + Y1), x + v+ (1, 2) dmz () dmy (u, v)
ZxM
(5.0)

in L2(Z x H), where w = (w1, w3).
Before proving Theorem 5.1, we note an immediate corollary.

COROLLARY 5.2. In the setup of Theorem 5.1, for any fo, f1, f» € L®°(Z x H) and any
continuous function xk : Z — C, one has

UC- lim K(Olg) / f() . Tw(g)fl . Tw(g)fz d(mz X mH)
el ZxH
:/ k() folz, x) fi(z + @), x +u + w1(t, 2))
Z2xHxM
X foz+ (1), x + v+ wr(t, 2)) dmz(z) dmz(t) dmp(x) dmpy(u, v). (5.2)
Proof. By the Stone—Weierstrass theorem, we may assume « is a character on Z. Since
the discrete spectrum A=Zis Brop+6r0 w) divisible, there exists k' € Z such that

k' o (91 X —1—92 o 1//) = k. Define functions f, € L*(Z x H) by

fo(z, x) = k' (01 (2) + 62(2)) fo 2 x),
fiz x) =K' G1(2)) fi(z, %),
2. %) = 62(2)) f2(z, x).
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The left-hand side of equation (5.2) is equal to

UC- lim fo - To) F1 - Ty(o) oo (5.3)
g€l JzxH

while the right-hand side of equation (5.2) is equal to

/ foz,x) iz 4+ @), x +u + w1 (1, 2))
Z2xHxM

X Frz4+ Y @), x + v+ o, 2)) dmz(z) dmz(t) dmp (x) dmpy(u, v).  (5.4)

The quantities in equations (5.3) and (5.4) are equal by Theorem 5.1. O

The first step in the proof of Theorem 5.1 is the following enhancement of
Proposition 2.19.

PROPOSITION 5.3. Let fi, f» € L®°(Z x H). Suppose that for every ¥ € M, one has

/HZ Sfi(wy, x1) fa(wa, x2) X (x) dx =0 (5.5)
for a.e. w = (wy, wy) € W. Then

ucC- i}erp 1@+ age), X + 0p(g) (2)) f2(2 + ayg), X + oy (g)(2)) =0
in L*(Z x H).

Proof. The proof is very much in the spirit of [1, Proposition 7.10]. Define fg W ox
H? - W x H? by

To(w, x) = (w4 Ty, X + T (w)).

Set F(w, x) := fi1(w1, x1) fa(wz, x2) for w = (w1, wy) € Wand x = (x1, x2) € H?. We
claim F is orthogonal to the space of (Tg) ger-invariant functions in L2>(W x H?).

Let £y :={z€ Z: M, = M}. As discussed in §4, E| has full measure. Let E> :=
{z € Z : equation (5.8) holds for a.e. w = (w1, wy) € W,}, and let E3:={z€ Z:F €
L®(W, x H 2)}. By Fubini’s theorem, both of the sets £, and E3 have full measure in Z.
Put £ .= E; N EyN E3.

Suppose z € E and let ¥ € M- = M. Then

/ Fw, x)X(x)dx =0
H2
for a.e. w € W;. Therefore,

UC- lim T, F = 0
gel

in L>(W, x H?) by Proposition 2.19.
Fix a Fglner sequence (®y)yen in I', and define the average

1
AN'

= T,F € LA(W x H?).
Dyl 2 T ( )

gedy
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We want to show Ay — 0 in LZ(W x H?). Decompose the Haar measure on W as
mw = [, m; dz. Then

||AN||L2(Wtz)2=// |An (w, ) dx dw
w JH?

Z/ (/ / |AN(w,x)|2dxdmz> dz
z w, JH?

:/ ”AN”LZ(WZXHZ)Z dz
Z

— 0.
N—o0

To complete the proof, we apply the van der Corput trick. Let ug := Ty() f1 - Ty () f2 €
L*(Z x H). Then

(Ugtn,ug) = /Z Y (F1 Tomy 1) Top—oy(0)(F2 - Ty f2) de.
X

Since (Y — ¢)(I') has finite index in I', we have Zy_, C Z, so by the mean ergodic
theorem,

& = UC- lim (g1, ug)

=/Z i T ) (/ZE[72 Ty fr | Z1G+ @ - D)) dr) dz dx
- /W E(F, - Ty f1 | Z1w1) - ELFs - Ty 2 | Z1w2) duw

= / (1 Toay SO w1, x0)(f2 - Ty f2) (w2, x2) dw dx
Wx H?
= (ThF, F)LZ(WXH2)'

Now since UC- limycr th =0in L2(W X Hz), we have UC- limper &, = 0. By the
van der Corput lemma (Lemma 2.1), it follows that UC- limger u, = 0 in L2(Z x H) as
desired. L]

The next step is to construct the function w appearing in Theorem 5.1. Fix z € Z such
that M, = M. Note that our assumptions on the discrete spectrum of X ensure that (W, &)
is isomorphic to (Z, &) under the map (w1, w2) @\l(un —2) —i—é\z(wz — 7). Hence,
by Proposition 2.17, there is a function @ : Z x Z — HZ/M such that t — @(t, ) is a
continuous map Z — M (Z, H?>/M) and

o(atg, 7) = 0g(2) (mod M).

By the Kuratowski and Ryll-Nardewski measurable selection theorem (see [32, §5.2]), we
can lift @ to a function w : Z x Z — H? such thatw + M = &.
Now we put everything together to prove Theorem 5.1.

Proof of Theorem 5.1. By linearity, we may assume f; =h; ® x; with x; € H for
i=1,2.Let ¥ = x1 ® xo € H?. Then the right-hand side of equation (5.1) is equal to
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XI(X)XZ(X)< /Z h1z +@O)ha(z + F ()X (@t 2) dt) ( /M X drmw)- (5.6)

We break the proof into two cases depending on whether or not ¥ belongs to M.
Case 1: ¥ ¢ M. In this case, the expression in equation (5.6) is equal to 0.
Proposition 5.3 guarantees that the left-hand side of equation (5.1) is also equal to zero.

Case2: ¥ € M*+.Let F : Z x Z — C be given by

F(t,2) = hiz 4+ 8)ha(z + ¥ ()X (@(t, 2)).

Note that # — F(z, -) is a continuous function from Z to L?(Z), and the expression in
equation (5.6) simplifies to x1(x)x2(x) [, F(z, z) dt.
Moving to the left-hand side of equation (5.1), for g € I, we have

S1(Tye) (2, X)) f2(Ty () (2, X)) = x1(x) x2(x) F (eg, 2).

Therefore, since (Z, «) is uniquely ergodic, we have
UC-lim F(ayg, 2) = / F(t,2)dt
geF Z
in L?>(Z) by Lemma 2.6. This completes the proof. O

6. Khintchine-type recurrence
In this section, we prove Theorem 1.16. We will first prove the following statement
(corresponding to the case n = idr), from which Theorem 1.16 can be quickly deduced.

THEOREM 6.1. Let I be a countable discrete abelian group. Let ¢, ¥ € End(I") such
that (Y — @)(I') is a finite index subgroup of I". Suppose there exist 01,0, € End(I")
such that 01 o ¢ + 0, o V¥ is injective. Then for any ergodic measure-preserving I"-system
(X, X, u, (Tg)ger) with Kronecker factor Z = (Z, a), any A € X, and any € > 0, there
is a continuous function k : Z — [0, 00) with fZ k(z) dz = 1 such that

uc- ;iemr i(og) W(ANT,  ANT, 0 A) > u(A) —e.
Proof. Let X = (X, X, , (Tg)ger) be an ergodic I'-system with Kronecker factor
Z=Z,a),let Aec X, andlete > 0.Put f =14.Letk : Z — [0, 00) be a continuous
function (to be specified later) with f 7 k(z) dz = 1. By [2, Theorem 4.10], we may assume
without loss of generality (by passing to an extension if necessary) that

UC- lim k(o) / [ Toef Ty fdu
gerl X
= UC- lim « (erp) / [ TooBLf | 22V Ty TyBLf | 22V Iyldp.
X

We may further assume that the discrete spectrum of X is {¢, ¥, 61, 6»}-complete and
(61 0 ¢ + 6, o )-divisible by passing to another extension if necessary with the help of
Theorem 3.2.
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Let f, = E[f | 22V I,]and fy = E[f | 2% Vv T, ]. We may expand
f‘ﬂ = ZC,’/’Z,’ and fI/, = Zdjkj’
i J
where ¢; is ¢(I')-invariant, d; is v (I')-invariant, and h;, k; are Z2_measurable. Write
7% = 7 x, H and apply Corollary 5.2:

. -1 -1
ucC- élg k(otg) WANT, ) ANT ) A)

= UC- 1’1;111 K (ag) Z /;( feidj - Topyhi - Tykj din
i,J

=> | a0 6@ - hirz ) + 80, 7 () + 1+ 015 72())
i,j XL X

X kj(mz(x) + P (), T (X) + v+ oa(t, w2 (x)) du(x) dmz(t) dmy (u, v).

Taking « supported on a sufficiently small neighborhood of 0 in Z, it suffices to establish
the inequality

> / FOci () (i (7 (x), g (x) + u)
ij XxM

< kj(rz(x), T (x) 4+ v) dpu(x) dmp (u, v) = p(A). (6.1)

By applying Theorem 4.3 together with Theorem 2.5 and passing to yet another exten-
sion, we may assume the Mackey group M decomposes as M = M, x My. Let W, be
the o-algebra generated by functions f : Z x H — C satisfying f(z, x) = f(z, x + y)
for y € My, and let Wy, be defined similarly. Then the left-hand side of equation (6.1) is
equal to

/Xf~]E[fIW<pVI¢]~E[fIWwVLp]du,

which is bounded below by ( [y f du)® = u(A)? by [11, Lemma 1.6]. O
Now we complete the proof of Theorem 1.16.

Proof of Theorem 1.16. Let X = (X, X, u, (Tg)ger) be an ergodic measure-preserving
["-system, let A € X, and let ¢ > 0.

The I'-system (X, X, i, (Tyy(g))ger) has finitely many ergodic components (at most
the index of n(I') in I'). Let u = Zle w; be the ergodic decomposition. Then each of
the systems X; = (X, X, w;, (Ty(g))ger) is ergodic, and they all have the same Kronecker
factor Z,, = (Z,, a o n), where Z, = W. By Theorem 6.1, we may therefore
find a continuous function « : Z;, — [0, co) such that f Z k(t) dt =1 and

. , -1 -1 AV
UC- hllﬁlr) k(ap)ui(AN T(p,(h)A N Tv/’(h)A) > ;i (A) £
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32 E. Ackelsberg
foreachi € {1, ...,1}. Then by Jensen’s inequality,

. ~1 ~1 3
UC- hgnr?r) k(ap) (AN T(p,(h)A N Tw,(h)A) > u(A)’ —e.

It follows that

. -1 -1 3
{hen): w(ANT 0 ANT, 4 A) > p(A) — e}

is syndetic in n(I"): if not, then by [1, Lemma 1.9], there exists a Fglner sequence (®n)yeN
in n(I") such that

-1 -1 3
WANT, G ANT 0 A) < u(A) —&

for every h € |Jyeny ©n» Whence

. 1 —1 -1 3 3
lim —— E k(lap)u(ANT . ANT, A < (u(A)” —¢) k(t) d=u(A)’ — ¢,
N=oo [Py] L ¢'(h) v (h) .,

which is a contradiction. However, n(I") has finite index in I', so

{gel:nAN T(p_(;)A N T]/j(lg)A) > w(A)? — ¢}

is syndetic in I. O
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