
Ergod. Th. & Dynam. Sys., (2025), 45, 1–33 © The Author(s), 2024. Published by Cambridge
University Press.
doi:10.1017/etds.2024.29

1

Khintchine-type double recurrence in abelian
groups

ETHAN ACKELSBERG

School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA
(e-mail: eackelsberg@ias.edu)

(Received 21 August 2023 and accepted in revised form 14March 2024)

Abstract. We prove a Khintchine-type recurrence theorem for pairs of endomorphisms of
a countable discrete abelian group. As a special case of the main result, if � is a countable
discrete abelian group, ϕ, ψ ∈ End(�), and ψ − ϕ is an injective endomorphism with
finite index image, then for any ergodic measure-preserving �-system (X, X , μ, (Tg)g∈�),
any measurable set A ∈ X , and any ε > 0, there is a syndetic set of g ∈ � such that
μ(A ∩ T −1

ϕ(g)A ∩ T −1
ψ(g)A) > μ(A)3 − ε. This generalizes the main results of Ackelsberg

et al [Khintchine-type recurrence for 3-point configurations. Forum Math. Sigma
10 (2022), Paper no. e107] and essentially answers a question left open in that paper
[Question 1.12; Khintchine-type recurrence for 3-point configurations. Forum Math.
Sigma 10 (2022), Paper no. e107]. For the group � = Zd , the result applies to pairs of
endomorphisms given by matrices whose difference is non-singular. The key ingredients
in the proof are: (1) a recent result obtained jointly with Bergelson and Shalom
[Khintchine-type recurrence for 3-point configurations. Forum Math. Sigma 10 (2022),
Paper no. e107] that says that the relevant ergodic averages are controlled by a characteristic
factor closely related to the quasi-affine (or Conze–Lesigne) factor; (2) an extension trick
to reduce to systems with well-behaved (with respect to ϕ and ψ) discrete spectrum; and
(3) a description of Mackey groups associated to quasi-affine cocycles over rotational
systems with well-behaved discrete spectrum.
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1. Introduction
This paper is a continuation of work of the author together with Bergelson and Best [1]
and Bergelson and Shalom [2] investigating the phenomenon of multiple recurrence with
large intersections for actions of countable abelian groups (see also [31]).

1.1. Background and motivation. The impetus for studying large intersections for
multiple recurrence comes from the following two classical results.
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2 E. Ackelsberg

THEOREM 1.1. [24] For any invertible measure-preserving system (X, X , μ, T ), any
A ∈ X , and any ε > 0, the set

{n ∈ Z : μ(A ∩ T −nA) > μ(A)2 − ε}
has bounded gaps.

THEOREM 1.2. [12] For any invertible measure-preserving system (X, X , μ, T ), any
A ∈ X with μ(A) > 0, and any positive integer k ∈ N,

lim inf
N−M→∞

1
N − M

N−1∑
n=M

μ(A ∩ T −nA ∩ · · · ∩ T −knA) > 0.

In particular, there exists c > 0 such that the set

{n ∈ Z : μ(A ∩ T −nA ∩ · · · ∩ T −knA) > c}
has bounded gaps.

A subset of Z with bounded gaps is called syndetic. More generally, in a countable
discrete abelian group (�, +), a subset S ⊆ � is syndetic if finitely many translates of S
cover �.

With the aim of finding a common refinement of Theorems 1.1 and 1.2, Bergelson, Host,
and Kra [6] asked whether, for a measure-preserving system (X, X , μ, T ), a set A ∈ X
with μ(A) > 0, and ε > 0, the set

{n ∈ Z : μ(A ∩ T −nA ∩ · · · ∩ T −knA) > μ(A)k+1 − ε}
is syndetic. They found that the answer depends on the length (k + 1) of the arithmetic
progression.

THEOREM 1.3. [6, Theorems 1.2 and 1.3]
(1) For any ergodic measure-preserving system (X, X , μ, T ), any A ∈ X , and any

ε > 0, the sets

{n ∈ Z : μ(A ∩ T −nA ∩ T −2nA) > μ(A)3 − ε}
and

{n ∈ Z : μ(A ∩ T −nA ∩ T −2nA ∩ T −3nA) > μ(A)4 − ε}
are syndetic.

(2) There exists an ergodic measure-preserving system (X, X , μ, T ) with the following
property. For any l ∈ N, there exists A = A(l) ∈ X with μ(A) > 0 such that

μ(A ∩ T −nA ∩ T −2nA ∩ T −3nA ∩ T −4nA) ≤ μ(A)l

for every n �= 0.

Remark 1.4. The ergodicity assumption in item (1) cannot be dropped. An adaptation of
Behrend’s construction of sets avoiding 3-term arithmetic progressions [4] can be used to
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Khintchine-type double recurrence in abelian groups 3

produce a counterexample for the non-ergodic transformation T (x, y) = (x, y + x) on the
2-torus T2; see [6, Theorem 2.1].

The combinatorial content of Theorem 1.3(1) is expressed by the following closely
related result.

THEOREM 1.5. [17, Theorem 1.10], [19, Theorem 1.12] Let α, ε > 0.
(1) There exists N3 = N3(α, ε) ∈ N such that if N ≥ N3 and A ⊆ {1, . . . , N} has

cardinality |A| ≥ αN , then there exists d ∈ N such that

|{a ∈ N : {a, a + d, a + 2d} ⊆ A}| > (α3 − ε)N .

(2) There exists N4 = N4(α, ε) ∈ N such that if N ≥ N4 and A ⊆ {1, . . . , N} has
cardinality |A| ≥ αN , then there exists d ∈ N such that

|{a ∈ N : {a, a + d, a + 2d, a + 3d} ⊆ A}| > (α4 − ε)N .

Remark 1.6
(1) The positive integers d ∈ N appearing in Theorem 1.5 are sometimes referred to

as popular differences, since they are common differences for many arithmetic
progressions contained in A.

(2) Theorem 1.3 can be converted directly into a combinatorial statement involving sets
of positive upper Banach density by a version of the Furstenberg correspondence
principle that produces ergodic measure-preserving systems; see [6, §1.2]. However,
no simple argument is known to deduce Theorem 1.5 from Theorem 1.3 or vice versa.

In other contexts in which a multiple recurrence result is known, one may again ask
whether it is possible to find a corresponding Khintchine-type enhancement. Pursuing this
line of inquiry, Bergelson, Tao, and Ziegler [9] established a Khintchine-type recurrence
result for actions of the group F∞

p .

THEOREM 1.7. [9, Theorems 1.12 and 1.13] Fix a prime p and a, b ∈ Fp. For any ergodic
measure-preserving F∞

p -system (X, X , μ, (Tg)g∈F∞
p

), any A ∈ X , and any ε > 0, the sets

{g ∈ F∞
p : μ(A ∩ T −1

ag A ∩ T −1
bg A) > μ(A)3 − ε}

and

{g ∈ F∞
p : μ(A ∩ T −1

ag A ∩ T −1
bg A ∩ T −1

(a+b)gA) > μ(A)4 − ε}
are syndetic.

A finitary combinatorial analog of Theorem 1.7 along the lines of Theorem 1.5 can be
deduced using the methods established in [17, 19], which in fact apply to general finite
abelian groups. See also [18, Lecture 4].

The most general multiple recurrence result with which we will concern ourselves is the
following theorem, which can be seen as a consequence of [13] or [3, Theorem B].
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4 E. Ackelsberg

THEOREM 1.8. Let � be a countable discrete abelian group. Let k ∈ N and let
ϕ1, . . . , ϕk ∈ End(�). For any measure-preserving �-system (X, X , μ, (Tg)g∈�) and
any set A ∈ X , the set

{g ∈ � : μ(A ∩ T −1
ϕ1(g)A ∩ · · · ∩ T −1

ϕk(g)A) > 0}
is syndetic.

Remark 1.9. When dealing with topological groups, one may wish to impose various
continuity assumptions (for instance, on the endomorphisms ϕ1, . . . , ϕk or on the action
of � on (X, X , μ)). Moreover, notions of largeness for subsets of � such as syndeticity
and upper Banach density (discussed in §1.3) depend on the topology on �. We assume
that � is discrete to avoid such topological issues.

The foregoing discussion motivates the following general definition.

Definition 1.10. Let � be a countable discrete abelian group. A family of endomorphisms
ϕ1, . . . , ϕk ∈ End(�) has the large intersections property if the following holds: for
any ergodic measure-preserving �-system (X, X , μ, (Tg)g∈�), any A ∈ X , and any ε > 0,
the set

{g ∈ � : μ(A ∩ T −1
ϕ1(g)A ∩ · · · ∩ T −1

ϕk(g)A) > μ(A)k+1 − ε}
is syndetic.

We now give a brief summary of the previously known results about the large
intersections property in general countable discrete abelian groups.

In [1], a far-reaching generalization of Theorems 1.3 and 1.7 for configurations of
length 3 and 4 was obtained (in a slight abuse of notation, we abbreviate a family of
endomorphisms of the form {g 
→ a1g, . . . , g 
→ akg} by {a1, . . . , ak}).
THEOREM 1.11. [1, Theorems 1.10 and 1.11] Let � be a countable discrete abelian group.
(1) If ϕ, ψ ∈ End(�) are such that all three subgroups ϕ(�), ψ(�), and (ψ − ϕ)(�)

have finite index in �, then {ϕ, ψ} has the large intersections property.
(2) If a, b ∈ Z and all four subgroups a�, b�, (a + b)�, and (b − a)� have finite index

in �, then {a, b, a + b} has the large intersections property.
Remark 1.12. Endomorphisms of groups with finite index conditions of the kind appearing
in item (1) of Theorem 1.11 have led to fruitful developments in a number of areas of
ergodic theory and combinatorics; see, e.g., [20, 21, 26, 28, 29].

Item (2) in Theorem 1.11 was also obtained independently by Shalom; see [31, Theorem
1.3]. In joint work with Bergelson and Shalom, item (1) of Theorem 1.11 was strengthened
as follows.

THEOREM 1.13. [2, Theorems 1.11 and 1.13] Let � be a countable discrete abelian group.
(1) Suppose ϕ, ψ ∈ End(�) and two of the three subgroups ϕ(�), ψ(�), and

(ψ − ϕ)(�) have finite index in �. Then {ϕ, ψ} has the large intersections property.
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(2) Suppose a, b ∈ Z are distinct, non-zero integers such that (b − a)� has finite index
in �. Then {a, b} has the large intersections property.

This result leaves the following as a natural open question.

Question 1.14. [2, Question 1.12] Let � be a countable discrete abelian group. Suppose
ϕ, ψ ∈ End(�) such that (ψ − ϕ)(�) has finite index in �. Does {ϕ, ψ} have the large
intersections property?

Remark 1.15. There are a variety of examples of pairs {ϕ, ψ} without the large intersec-
tions property (see [1, Example 10.2] and [2, Theorem 1.14]), so it is necessary to impose
some condition on ϕ, ψ ∈ End(�) (such as the finite index assumption in Question 1.14)
to hope for the large intersections property.

The goal of this paper is to extend the techniques in [2] to answer Question 1.14
affirmatively under a mild additional technical assumption. As we will see, this condition
is always satisfied when the endomorphisms are obtained as multiplication by integers or
when the group � is equal to Zd for some d ∈ N. Hence, we are able to reproduce Theorem
1.13(2) and fully resolve Question 1.14 for � = Zd .

1.2. Main results. Our main result is the following theorem.

THEOREM 1.16. Let � be a countable discrete abelian group. Let ϕ, ψ ∈ End(�). Suppose
there exist endomorphisms η, ϕ′, ψ ′, θ1, θ2 ∈ End(�) such that:
(i) η(�) is a finite index subgroup of �;
(ii) ϕ = ϕ′ ◦ η and ψ = ψ ′ ◦ η;
(iii) θ1 ◦ ϕ′ + θ2 ◦ ψ ′ is injective; and
(iv) (ψ ′ − ϕ′)(�) is a finite index subgroup of �.
Then for any ergodic measure-preserving �-system (X, X , μ, (Tg)g∈�), any A ∈ X , and
any ε > 0, the set

{g ∈ � : μ(A ∩ T −1
ϕ(g)A ∩ T −1

ψ(g)A) > μ(A)3 − ε}
is syndetic.

Remark 1.17. The conditions (i)–(iv) in Theorem 1.16 may be forbidding at first glance.
We give a brief explanation here and also refer the reader to the special cases outlined
below for developing stronger intuition about each condition.

Conditions (i) and (ii) can be interpreted as follows. Define a new �-action on (X, X , μ)

by Sg = Tη(g). Then

μ(A ∩ T −1
ϕ(g)A ∩ T −1

ψ(g)A) = μ(A ∩ S−1
ϕ′(g)

A ∩ S−1
ψ ′(g)

A),

so it suffices to prove a statement about the system (X, X , μ, (Sg)g∈�) and the endomor-
phisms ϕ′, ψ ′ ∈ End(�). The key consequence of condition (i) is that the new system
(X, X , μ, (Sg)g∈�) has only finitely many ergodic components, and our dynamical tools
are flexible enough to handle this situation.
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6 E. Ackelsberg

Condition (iii) imposes a level of non-triviality to the pair {ϕ′, ψ ′} by ensuring that
the map g 
→ (ϕ′(g), ψ ′(g)) is injective. This condition also turns out to be crucial to
describing the limiting behavior of double ergodic averages associated with {ϕ′, ψ ′}.

Finally, condition (iv) is the key assumption to get started with analyzing the relevant
double ergodic average by invoking [2, Theorem 4.10], which is proved using the van
der Corput differencing trick (see Lemma 2.1). It is absolutely essential to the method
used in this paper, though it is less clear whether condition (iv) is needed to obtain
the desired conclusion. A concrete example where we do not know whether or not the
large intersections property holds (and for which condition (iv) does not hold) is the
following. Let � = (Q>0, ·) be the group of positive rational numbers under multiplication
(considered as a discrete group). Let a, b ∈ N be coprime. It was asked in [2, Question
1.18] whether the pair {q 
→ qa , q 
→ qb} has the large intersections property, and we
are presently unable to make any substantial progress on this question. For this example,
although condition (iv) does not hold, it is nevertheless the case that the group generated
by {qa : q ∈ Q>0} and {qb : q ∈ Q>0} has finite index in Q>0 (in fact, it is equal to
Q>0), which eliminates many of the possible approaches to producing a counterexample.
Additional discussion of the difficulties involved in this problem can be found in [2, §2.7].

We now turn to several consequences of Theorem 1.16.
Theorem 1.16 includes Theorem 1.13(2) as a special case. Given a, b ∈ Z such that

(b − a)� has finite index in �, let d = gcd(a, b), a′ = (a/d), and b′ = (b/d). Since
d | b − a, we have d� ⊇ (b − a)�, so d� has finite index in �. The integers a′ and b′ are
coprime, so there exist c1, c2 ∈ Z such that c1a

′ + c2b
′ = 1. Finally, (b′ − a′) | (b − a),

so (b′ − a′)� ⊇ (b − a)� has finite index in �. Taking ϕ(g) = ag, ψ(g) = bg,
η(g) = dg, ϕ′(g) = a′g, ψ ′(g) = b′g, θ1(g) = c1g, and θ2(g) = c2g and applying
Theorem 1.16 reproduces the conclusion of Theorem 1.13(2).

Another illustrative special case of Theorem 1.16 is the following corollary.

COROLLARY 1.18. Let � be a countable discrete abelian group. Let ϕ, ψ ∈ End(�) such
that ψ − ϕ is injective with finite index image. Then for any ergodic measure-preserving
�-system (X, X , μ, (Tg)g∈�), any A ∈ X , and any ε > 0, the set

{g ∈ � : μ(A ∩ T −1
ϕ(g)A ∩ T −1

ψ(g)A) > μ(A)3 − ε}
is syndetic.

For the group � = Zd , Corollary 1.18 takes the following shape.

COROLLARY 1.19. Let X = (X, X , μ, (T�n)�n∈Zd ) be an ergodic Zd -system. Then for any
integer matrices M1, M2 ∈ Md×d(Z) such that M2 − M1 is non-singular, any A ∈ X , and
any ε > 0, the set

{�n ∈ Zd : μ(A ∩ T −1
M1�nA ∩ T −1

M2�nA) > μ(A)3 − ε}
is syndetic.

In the case d = 2, Corollary 1.19 was established in [2] using a combination of different
methods. If M1 is also non-singular, then the conclusion follows from [2, Theorem 1.11],
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which is proved using methods similar to the current paper involving characteristic factors
for multiple ergodic averages. In the case that both M1 and M2 are rank-one matrices,
basic linear algebra combined with the Fubini property for uniform Cesàro limits (see [7,
Lemma 1.1]) allows one to prove a stronger result that implies, in particular, that the set

{�n ∈ Zd : μ(A ∩ T −1
M1�nA ∩ T −1

M2�nA) > μ(A)3 − ε}
is syndetic for any (not necessarily ergodic) measure-preserving system (X, X , μ,
(T�n)�n∈Z2), any A ∈ X , and any ε > 0; see [2, Theorem 7.1].

The method for handling the case where both M1 and M2 are singular matrices does not
easily generalize for d ≥ 3. Instead, we produce a new proof avoiding any use of matrix
manipulations that unifies the two different cases to apply to general d ∈ N and in fact to
general countable discrete abelian groups.

1.3. Combinatorial consequences and questions. Recurrence results in ergodic theory
translate into combinatorial statements about sets of positive density. Let us first make
precise what we mean by the density of a subset of an abelian group. A Følner sequence
in a countable discrete abelian group � is a sequence (	N)N∈N of finite subsets of � such
that for any x ∈ �,

|(	N + x)�	N |
|	N | −−−−→

N→∞ 0.

The upper density of a set E ⊆ � along a Følner sequence 	 = (	N)N∈N is the quantity

d	(E) = lim sup
N→∞

|E ∩ 	N |
|	N | .

The upper Banach density of E ⊆ � is d∗(E) = sup	 d	(E), where the supremum is
over all Følner sequences in �. An immediate consequence of Theorem 1.16 together with
a version of the Furstenberg correspondence principle for ergodic systems (see [5, Theorem
2.8]) is the following theorem.

THEOREM 1.20. Let � be a countable discrete abelian group. Let ϕ, ψ ∈ End(�) be as in
Theorem 1.16. Then for any E ⊆ � and any ε > 0, the set

{g ∈ � : d∗(E ∩ (E − ϕ(g)) ∩ (E − ψ(g))) > d∗(E)3 − ε}
is syndetic.

This strongly suggests that various finitary combinatorial results hold. Namely, we
conjecture that the following finitary version of Corollary 1.18 is true.

Conjecture 1.21. For α, ε > 0, there exists N0 = N0(α, ε) with the property: for any
finite abelian group G of order N ≥ N0, any ϕ, ψ ∈ End(G) such that ψ − ϕ is an
automorphism, and any set A ⊆ G with |A| ≥ αN , there exists y ∈ G \ {0} such that

|{x ∈ G : {x, x + ϕ(y), x + ψ(y)} ⊆ A}| > (α3 − ε)N .

A natural conjecture in the setting of Zd , building on Corollary 1.19, is the following
conjecture.
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8 E. Ackelsberg

Conjecture 1.22. Let M1, M2 ∈ Md×d(Z) such that M2 − M1 is non-singular. For any
α, ε > 0, there exists N0 = N0(α, ε, M1, M2) ∈ N with the property: for any N ≥ N0 and
any set A ⊆ {1, . . . , N}d with |A| ≥ αNd , there exists �y ∈ Zd \ {0} such that

|{�x ∈ Zd : {�x, �x + M1 �y, �x + M2 �y} ⊆ A}| > (α3 − ε)Nd .

If one imposes the additional condition in Conjecture 1.21 that ϕ and ψ are auto-
morphisms, then the conjecture is known to be true by [10, Theorem 7.3]. Similarly, if
the matrices M1, M2, and M2 − M1 in Conjecture 1.22 are all non-singular, then the
conclusion holds by [10, Theorem 1.1]. (For the particular matrices

M1 =
(
1 0
0 1

)
and M2 =

(
0 −1
1 0

)
,

this was also shown by [25, Theorem 1].)
The ergodic theoretic methods used in this paper are not immediately applicable in the

finitary setting. To resolve Conjectures 1.21 and 1.22, one should replace the dynamical
tools with suitable analogs from higher order Fourier analysis.

1.4. Outline of the paper. The structure of the paper is as follows. Section 2 is prepara-
tory, collecting the relevant background material that will be used in the proof of Theorem
1.16. The main technical results appear in §§3 and 4, where we prove the existence of
extensions in which the Kronecker and quasi-affine factors interact nicely with a fixed pair
of endomorphisms {ϕ, ψ}. We then prove a formula for the limit of double ergodic averages
associated with {ϕ, ψ} in §5. Finally, we complete the proof of Theorem 1.16 in §6.

2. Preliminaries
2.1. Uniform Cesàro limits and the van der Corput differencing lemma. Just as Fursten-
berg’s multiple recurrence theorem (Theorem 1.2) establishes a recurrence result by
working with a multiple ergodic average, we will prove Theorem 1.16 by studying an
associated double ergodic average. A sequence (vg)g∈� in a (real or complex) topological
vector space V has uniform Cesàro limit equal to v ∈ V , denoted UC- limg∈� vg = v, if
for any Følner sequence (	N)N∈N in �, one has

1
|	N |

∑
g∈	N

vg−−−−→
N→∞ v.

In the group � = Z, the uniform Cesàro limit corresponds to the limit of averages
appearing in Theorem 1.2, that is,

UC- lim
n∈Z vn = lim

N−M→∞
1

N − M

N−1∑
n=M

vn.

One of the main tools for handling uniform Cesàro limits is the following version of the
van der Corput differencing lemma.
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LEMMA 2.1. [1, Lemma 2.2] Let � be a countable discrete abelian group and let (ug)g∈�

be a bounded sequence in a Hilbert spaceH. If

ξh := UC- lim
g∈�

〈ug+h, ug〉

exists for every h ∈ � and UC- limh∈� ξh = 0, then UC- limg∈� ug = 0.

2.2. Host–Kra factors. Let � be a countable discrete abelian group and let
X = (X, X , μ, (Tg)g∈�) be a measure-preserving �-system. A factor of X is a
(Tg)g∈�-invariant sub-σ -algebra Y ⊆ X . We may also refer to the system Y =
(X, Y , μ|Y , (Tg)g∈�), or any system isomorphic to Y, as a factor of X.

The most important family of factors for our consideration is the family of Host–Kra
factors. These factors are defined in terms of a family of seminorms, known as the
Host–Kra seminorms [23], which are an ergodic-theoretic counterpart to the Gowers
uniformity norms [16] in additive combinatorics.

Let X = (X, X , μ, (Tg)g∈�) be a measure-preserving �-system. For g ∈ � and
f : X → C, define �gf := f · Tgf . Then for k ∈ N and g1, . . . , gk ∈ �, we define
�g1,...,gk

inductively by �g1,...,gk
f := �gk

(�g1,...,gk−1f ). For f ∈ L∞(μ) and k ∈ N, we
define the Host–Kra seminorm of order by

|||f |||Uk
2k = UC- lim

(g1,...,gk)∈�k

∫
X

�g1,...,gk
f dμ.

It is shown that |||·|||Uk is indeed a seminorm for each k ∈ N in [8, Appendix A]. The
corresponding Host–Kra factors are guaranteed by the following proposition.

PROPOSITION 2.2. [8, Proposition 1.10] Let � be a countable discrete abelian group, let
X = (X, X , μ, (Tg)g∈�) be a measure-preserving �-system, and let k ≥ 0. There exists a
factor Zk with the property that for every f ∈ L∞(μ), one has

|||f |||Uk+1 = 0 ⇐⇒ E[f | Zk] = 0.

If X = (X, X , μ, (Tg)g∈�) is an ergodic system, then the first several Host–Kra factors
are as follows.
• Z0 is the trivial factor consisting of null and co-null subsets of X. (If X is not ergodic,

then Z0 = I, the σ -algebra of all (Tg)g∈�-invariant sets.)
• Z1 is the Kronecker factor. This is the smallest σ -algebra with respect to which all

eigenfunctions are measurable. As a measure-preserving system, Z1 is isomorphic to a
rotational system. That is, there exists a compact abelian group Z and a homomorphism
α : � → Z with dense image such that Z1 is isomorphic to the system Z = (Z, α),
where Z is equipped with the Haar measure and g ∈ � acts by the rotation z 
→
z + αg . Because of its relationship to the Kronecker factor, we refer to any ergodic
rotational system Z = (Z, α) as an ergodic Kronecker system. Such systems are
uniquely determined (up to isomorphism) by their discrete spectrum (that is, the group
of eigenvalues), which is given by


 = {λ ◦ α : λ ∈ Ẑ}.
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10 E. Ackelsberg

Moreover, the topological system underlying any ergodic Kronecker system is uniquely
ergodic. See [1, §2.4] for a more in-depth discussion of Kronecker systems in the
context of actions of countable discrete abelian groups.

• Z2 is the quasi-affine (or Conze–Lesigne) factor. As a measure-preserving system, Z2

is isomorphic to a group extension of the Kronecker factor, Z2 ∼= Z1 ×σ H , where
the cocycle σ satisfies a certain functional equation known as the Conze–Lesigne
equation; see Definition 2.11.

Definition 2.3. Let � be a countable discrete abelian group and let k ≥ 0. An ergodic
measure-preserving �-system X = (X, X , μ, (Tg)g∈�) is a system of order k if Zk = X .

Systems of order k have the following properties.

PROPOSITION 2.4. [23, §4.6] Let � be a countable discrete abelian group, k ≥ 0, and
X = (X, X , μ, (Tg)g∈�) an ergodic measure-preserving �-system.
(1) The Host–Kra factor Zk is an order k system.
(2) If X is an order k system and Y is a factor of X, then Y is again a system of order k.
(3) If Y is a system of order k and a factor of X, then Y is a factor of the Host–Kra

factor Zk .

2.3. Relatively independent joinings. The proof of Theorem 1.16 requires that the
Host–Kra factors have certain convenient properties that they may not have in general
systems. To produce these desirable properties, we will work with an extension of
the original system. The key construction to that end is the relatively independent
joining of systems with respect to a common factor. Let X1 = (X1, X1, μ1, (T1,g)g∈�)

and X2 = (X2, X2, μ2, (T2,g)g∈�) be measure-preserving �-systems. Suppose Y =
(Y , Y , ν, (Sg)g∈�) is another measure-preserving �-system that arises as a factor of
both of the systems X1 and X2, say with factor maps π1 : X1 → Y and π2 : X2 → Y . The
relatively independent joining (or fiber product) of X1 and X2 with respect to Y is the
system

X1 ×Y X2 = (X1 × X2, X1 ⊗ X2, μ1 ×Y μ2, (T1,g × T2,g)g∈�),

where the measure μ1 ×Y μ2 is defined by the equation∫
X1×X2

(f1 ⊗ f2) d(μ1 ×Y μ2) =
∫

Y

E[f1 | Y] · E[f2 | Y] dν.

Note that the measure μ1 ×Y μ2 is supported on the set

X1 ×Y X2 = {(x1, x2) ∈ X1 × X2 : π1(x1) = π2(x2)}.
The relatively independent joining construction allows us to take an extension of a

Host–Kra factor of a given system and turn it into an extension of the full system.

THEOREM 2.5. Let X = (X, X , μ, (Tg)g∈�) be an ergodic �-system. Let k ∈ N. Suppose
Zk is the Host–Kra factor of X of order k. Given any ergodic order k extension Z̃k of Zk ,
there exists an ergodic extension X̃ ofX such that Z̃k is the Host–Kra factor of X̃ of order k.
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Proof. Define X̃ as the relatively independent joining X̃ = X ×Zk Z̃k . First, Z̃k is an order
k factor of X̃, so it is a factor of the Host–Kra factor of order k by Proposition 2.4(3).

Conversely, we want to show that the Host–Kra factor of X̃ of order k is a factor of Z̃k .
Let (ui)i∈N be an orthonormal basis in L2(Z̃k). Suppose f ∈ L2(X̃) is measurable with
respect to the Host–Kra factor of order k. Expand f in the basis (ui)i∈N:

f (x, y) =
∑
i∈N

ai(x)ui(y).

Fix i ∈ N. Since 1X ⊗ ui is Z̃k-measurable and hence measurable with respect to the
Host–Kra factor of order k, the product (1X ⊗ ui)f remains measurable with respect to
the Host–Kra factor of order k. Therefore, E[(1X ⊗ ui)f | X ] is measurable with respect
to Zk by items (2) and (3) in Proposition 2.4. By direct computation, since (uj )j∈N is an
orthonormal basis in L2(Z̃k), we have

E[(1X ⊗ ui)f | X ] =
∑
j∈N

E[aj ⊗ uiuj | X ] = ai .

Thus, ai is Zk-measurable for each i ∈ N. That is, ai(x) = bi(π1(x)) for some function
bi : Zk → C, where π1 : X → Zk is the factor map. However, letting π2 : Z̃k → Zk be
the other factor map, one has π1(x) = π2(y) for almost every (a.e.) (x, y) ∈ X̃. Hence,

f (x, y) =
∑
i∈N

ai(x)ui(y) =
∑
i∈N

bi(π1(x))ui(y) =
∑
i∈N

bi(π2(y))ui(y)

is Z̃k-measurable.

2.4. Hilbert space-valued functions and unique ergodicity. Let H be a Hilbert space.
Given a compact metric space X, a probability measure μ on X, and a continuous function
F : X → H, one can define the integral

∫
X

F dμ to be the element ofH satisfying〈∫
X

F dμ, v
〉

=
∫

X

〈F(x), v〉 dμ(x)

for every v ∈ H.
A characterizing property of uniquely ergodic systems is the following: a topological

system (X, (Tg)g∈�) is uniquely ergodic (with unique invariant measure μ) if and only if
for any continuous function F : X → C and any x0 ∈ X,

UC- lim
g∈�

F (Tgx0) =
∫

X

F dμ.

The following lemma shows that the same result holds for Hilbert space-valued functions.

LEMMA 2.6. Let (X, (Tg)g∈�) be a topological �-system. Let H be a non-trivial Hilbert
space. Then (X, (Tg)g∈�) is uniquely ergodic (with unique invariant measure μ) if and
only if for any continuous function F : X → H and any x0 ∈ X,

UC- lim
g∈�

F (Tgx0) =
∫

X

F dμ

in H.
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12 E. Ackelsberg

Proof. For the group � = Z, a proof of this fact appears in [22, Lemma 4.3]. We follow
the same strategy for a general countable discrete abelian group �.

Suppose that for any continuous function F : X → H and any x0 ∈ X,

UC- lim
g∈�

F (Tgx0) =
∫

X

F dμ

in H. Since H is non-trivial, it contains a copy of C, so this implies if F : X → C is
continuous and x0 ∈ X, then

UC- lim
g∈�

F (Tgx0) =
∫

X

F dμ

in C. Therefore, (X, (Tg)g∈�) is uniquely ergodic.
Now suppose (X, (Tg)g∈�) is uniquely ergodic with unique invariant measure μ.

Replacing F by F −∫
X

F dμ, we may assume without loss of generality that
∫
X

F dμ = 0
in H. Put ug = F(Tgx0) ∈ H. For any h ∈ �, the function ϕh : X → C defined by
ϕh(x) = 〈F(Thx), F(x)〉 is continuous. Hence, by unique ergodicity of (Tg)g∈� ,

ξh := UC- lim
g∈�

〈ug+h, ug〉 = UC- lim
g∈�

ϕh(Tgx0) =
∫

X

ϕh dμ.

For x ∈ X, consider the function ψx(y) = 〈F(y), F(x)〉. This is a continuous function
from X to C, so by unique ergodicity of (Th)h∈� , we have

UC- lim
h∈�

ψx(Thy) =
∫

X

ψx dμ =
〈∫

X

F dμ, F(x)

〉
= 0

for every y ∈ X. In particular, we may take y = x, in which case

UC- lim
h∈�

ϕh(x) = UC- lim
h∈�

〈F(Thx), F(x)〉 = UC- lim
h∈�

ψx(Thx) = 0.

Integrating over x ∈ X and applying the dominated convergence theorem, it follows that

UC- lim
h∈�

ξh = 0.

Thus, by Lemma 2.1, UC- limg∈� F (Tgx0) = 0 inH.

2.5. Cocycles and coboundaries. An important construction in ergodic theory is that
of group extensions. For our purposes, we will need only to consider extensions by
abelian groups, which creates various simplifications. Suppose X = (X, X , μ, (Tg)g∈�)

is an ergodic �-system. Given a compact abelian group (H , +) and a measurable function
σ : � × X → H , we can define the group extension of X by H over σ as the system

X ×σ H := (X × H , X ⊗ BH , μ × mH , (T σ
g )g∈�),

where T σ
g (x, y) := (Tgx, y + σg(x)). To obtain a �-action in this manner, the function σ

must satisfy the cocycle equation

σg+h(x) = σg(Thx) + σh(x)

for every g, h ∈ � and μ-a.e. x ∈ X.
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Given any measurable function F : X → H , one may construct a cocycle

�gF(x) := F(Tgx) − F(x).

Such a cocycle is called a coboundary.
Two cocycles σ and τ are cohomologous, denoted σ ∼ τ , if their difference τ − σ is a

coboundary. The following result is an easy exercise.

PROPOSITION 2.7. [15, Lemma 3.20] Let X = (X, X , μ, (Tg)g∈�) be a �-system. Sup-
pose H is a compact abelian group and σ , τ : � × X → H are cocycles such that σ ∼ τ .
Then X ×σ H ∼= X ×τ H .

When analyzing a cocycle σ : � × X → H taking values in a compact abelian group
H, it is often useful to consider the family of cocycles χ ◦ σ : � × X → S1 given by
composition with characters χ ∈ Ĥ .

The following lemma gives a criterion for checking that a cocycle taking values in S1 is
a coboundary, when the base system is an action by rotations on a compact abelian group.

LEMMA 2.8. [1, Proposition 7.12] Let Z = (Z, α) be a Kronecker system and σ : � ×
Z → S1 a cocycle. The following are equivalent:
(i) σ is a coboundary;
(ii) for any sequence (gn)n∈N in � such that αgn → 0 in Z, one has σgn → 1 in L2(Z).

Remark 2.9. We do not assume that the Kronecker system (Z, α) appearing in Lemma 2.8
is ergodic. This will be important for some later applications, e.g., Theorem 4.1.

COROLLARY 2.10. Let Z = (Z, α) be a Kronecker system and suppose σ : � × Z → S1

is a coboundary. Then there is a function ω : Z × Z → S1 such that t 
→ ω(t , ·) is a
continuous map from Z to L2(Z) and

ω(αg , z) = σg(z).

If Z is ergodic, then ω is defined uniquely almost everywhere.

Proof. This follows from the proof of [1, Proposition 7.12]. We give a different proof here.
Since σ is a coboundary, we may write σ = �F for some F : Z → S1. That is,

σg(z) = F(z + αg)

F (z)
.

We may then take ω(t , z) = F(z + t)/F (z).

Two additional families of cocycles will play an important role in this paper.

Definition 2.11. Let � be a countable discrete abelian group and let Z = (Z, α) be an
ergodic Kronecker system. A cocycle σ : � × Z → S1 is:
(1) cohomologous to a character if there exists γ ∈ �̂ such that σg(z) ∼ γ (g). That is,

there exists a measurable function F : Z → S1 such that
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14 E. Ackelsberg

σg(z) = γ (g)
F (z + αg)

F (z)

for every g ∈ � and a.e. z ∈ Z;
(2) quasi-affine (or a Conze–Lesigne cocycle) if for every t ∈ Z, the cocycle

σg(z + t)

σg(z)

is cohomologous to a character.

Remark 2.12. According to the definition above, a cocycle σ : � × Z → S1 is quasi-affine
if and only if for each t ∈ Z, there exists a measurable function Ft : Z → S1 and a
character γt ∈ �̂ such that

σg(z + t)

σg(z)
= γt (g)

Ft (z + αg)

Ft (z)

for every g ∈ � and a.e. z ∈ Z. One may additionally ensure that the maps (t , z) 
→ Ft(z)

from Z × Z to S1 and t 
→ γt from Z to �̂ are Borel measurable by [27, Proposition 2]
and [14, Proposition 10.5].

Suppose Z = (Z, α) is an ergodic Kronecker system, H is a compact abelian group,
and σ : � × Z → H is a cocycle. If χ ◦ σ is quasi-affine for every χ ∈ Ĥ , then the group
extension X ×σ H is called a quasi-affine or Conze–Lesigne system.

We now give characterizations of cocycles that are cohomologous to a character or
quasi-affine in the same vein as Lemma 2.8.

LEMMA 2.13. [1, Proposition 7.13] Let Z = (Z, α) be an ergodic Kronecker system and
σ : � × Z → S1 a cocycle. The following are equivalent:
(i) σ is cohomologous to a character;
(ii) for every t ∈ Z,

σg(z + t)

σg(z)

is a coboundary;
(iii) there is a Borel set A ⊆ Z with mZ(A) > 0 such that

σg(z + t)

σg(z)

is a coboundary for every t ∈ A;
(iv) for any sequence (gn)n∈N in � with αgn → 0 in Z, there is a sequence (cn)n∈N in S1

such that cnσgn(z) → 1 in L2(Z).

LEMMA 2.14. [1, Proposition 7.15] Let Z = (Z, α) be an ergodic Kronecker system and
σ : � × Z → S1 a cocycle. The following are equivalent:

https://doi.org/10.1017/etds.2024.29 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.29


Khintchine-type double recurrence in abelian groups 15

(i) σ is quasi-affine;
(ii) there is a Borel set A ⊆ Z with mZ(A) > 0 such that

σg(z + t)

σg(z)

is cohomologous to a character for every t ∈ A;
(iii) for any sequence (gn)n∈N in � with αgn → 0 in Z, there are sequences (cn)n∈N in

S1 and (λn)n∈N in Ẑ such that cnλn(z)σgn(z) → 1 in L2(Z).

2.6. Mackey groups. Mackey groups play an essential role in this paper. We review the
definition and the basic properties of the Mackey group in this section.

Let X = (X, X , μ, (Tg)g∈�) be an ergodic �-system, H a compact abelian group, and
σ : � × X → H a cocycle. The range of σ is the closed subgroup Gσ generated by
{σg(x) : g ∈ �, x ∈ X}. The cocycle σ is minimal if there is no cohomologous cocycle
τ with Gτ � Gσ .

PROPOSITION 2.15. [15, Theorem 3.25] Any cocycle σ : � × X → H is cohomologous
to a minimal cocycle. Moreover, if two minimal cocycles are cohomologous, then they have
the same range.

The Mackey group associated to σ is defined to be the range of a minimal cocycle
cohomologous to σ . Several important properties of Mackey groups are collected in the
following proposition.

PROPOSITION 2.16
(1) If M is the Mackey group associated to σ , then the annihilator of M is

M⊥ = {χ ∈ Ĥ : χ ◦ σ is a coboundary}.
(2) If σ and τ are cohomologous, then their Mackey groups are equal.
(3) The system X ×σ H is ergodic if and only if σ is minimal with range Gσ = H .
(4) If f : X × H → C is (T σ

g )g∈�-invariant, then f (x, y + m) = f (x, y) for every
m ∈ M and (μ × mH )-a.e. (x, y) ∈ X × H .

Proof. For property (1), see [22, Proposition 2.5]. Properties (2) and (3) are proved in
[15, Theorem 3.25].

In the case � = Z, property (4) appears in [22, Proposition 2.4] (see also [14,
Proposition 7.1]). We give a quick proof for general �. Suppose f : X × H → C is
(T σ

g )g∈�-invariant. We may expand f as a Fourier series:

f (x, y) =
∑
χ∈Ĥ

cχ (x)χ(y).

Then

(T σ
g f )(x, y) =

∑
χ∈Ĥ

cχ (Tgx)χ(y + σg(x)) =
∑
χ∈Ĥ

cχ (Tgx)χ(σg(x))χ(y).
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The assumption that T σ
g f = f then implies

cχ (x) = cχ (Tgx)χ(σg(x)) (2.1)

for every χ ∈ Ĥ . Hence, if cχ �= 0, then equation (2.1) expresses χ ◦ σ as a coboundary.
Thus, cχ = 0 for χ /∈ M⊥. For any m ∈ M , we therefore have

f (x, y + m) =
∑

χ∈M⊥
cχ (x)χ(y + m) =

∑
χ∈M⊥

cχ (x)χ(y) = f (x, y)

as claimed.

For a compact abelian group K, let M(Z, K) be the space of measurable functions
Z → K with the topology of convergence in measure. One can show that a sequence
(fn)n∈N in M(Z, K) converges if and only if (χ ◦ fn)n∈N converges in L2(Z) for every
χ ∈ K̂; see, e.g., [1, Lemma 7.28]. The following is an easy consequence of Corollary 2.10
combined with the description of the Mackey group in item (1) of Proposition 2.16.

PROPOSITION 2.17. Let Z = (Z, α) be an ergodic Kronecker system, H a compact abelian
group, and σ : � × Z → H a cocycle with Mackey groupM ⊆ H . Then there is a function
ω : Z × Z → H/M such that t 
→ ω(t , ·) is a continuous map from Z to M(Z, H/M)

and

ω(αg , z) ≡ σg(z) (mod M).

Remark 2.18. If the cocycle σ is minimal, then it takes values in the Mackey group M, in
which case ω = 0.

The Mackey group plays an important role in the analysis of ergodic averages, as
demonstrated by the following result.

PROPOSITION 2.19. Let X = (X, X , μ, (Tg)g∈�) be an ergodic �-system, H a compact
abelian group, and σ : � × X → H a cocycle. Let M be the Mackey group associated to
σ . Let f ∈ L2(μ × mH ). If for every χ ∈ M⊥ and μ-a.e. x ∈ X, one has∫

H

f (x, y)χ(y) dy = 0,

then

UC- lim
g∈�

T σ
g f = 0

in L2(μ × mH ).

Proof. By the mean ergodic theorem, let f̃ = UC- limg∈� T σ
g f . We want to show f̃ = 0.

Since L2(H , mH ) is spanned by characters, it suffices to show∫
H

f̃ (x, y)χ(y) dy = 0
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for every χ ∈ Ĥ and μ-a.e. x ∈ X. We will prove this identity in cases, depending on
whether or not χ annihilates the Mackey groupM.

Case 1: χ /∈ M⊥. By item (4) of Proposition 2.16, for any m ∈ M and (μ × mH )-a.e.
(x, y) ∈ X × H , we have f̃ (x, y + m) = f̃ (x, y). Therefore, for μ-a.e. x ∈ X,∫

H

f̃ (x, y)χ(y) dy =
∫

H

f̃ (x, y + m)χ(y + m) dy = χ(m)

∫
H

f̃ (x, y)χ(y) dy.

Taking m ∈ M such that χ(m) �= 1, this implies
∫
H

f̃ (x, y)χ(y) dy = 0 as claimed.

Case 2: χ ∈ M⊥. Note that∫
H

f̃ (x, y)χ(y) dy = E[f̃ · (1 ⊗ χ) | X ](x).

By item (1) of Proposition 2.16, there is a measurable function F : X → S1 such that

χ(σg(x)) = F(Tgx)F (x)

for μ-a.e. x ∈ X. We then compute directly:

E[f̃ · (1 ⊗ χ) | X ] = UC- lim
g∈�

E[(T σ
g f ) · (1 ⊗ χ) | X ]

= UC- lim
g∈�

(χ ◦ σg) · E[T σ
g (f · (1 ⊗ χ)) | X ]

= F · UC- lim
g∈�

Tg(F · E[f · (1 ⊗ χ) | X ])

= 0.

In the last step, we have used the hypothesis E[f · (1 ⊗ χ) | X ] = 0.

COROLLARY 2.20. Let Z = (Z, α) be an ergodic Kronecker system, H a compact abelian
group, and σ : � × Z → H a cocycle. Let M be the Mackey group associated to σ , and
let ω : Z × Z → H be a measurable map such that t 
→ ω(t , ·) + M is a continuous map
Z → M(Z, H/M) and ω(αg , z) ≡ σg(z) (mod M). Then for any f ∈ L2(Z × H),

UC- lim
g∈�

f (z + αg , x + σg(z)) =
∫

Z×M

f (z + t , x + m + ω(t , z)) dt dm (2.2)

in L2(Z × H).

Remark 2.21. Proposition 2.17 provides a function ω̃ : Z × Z → H/M corresponding to
the cocycle σ : � × Z → H . This can be lifted to a measurable function ω : Z × Z →
H satisfying the conditions in the statement of Corollary 2.20 by the Kuratowski and
Ryll-Nardewski measurable selection theorem (see [32, §5.2]).

Proof of Corollary 2.20. By linearity, we may assume f is of the form f = h ⊗ χ with
χ ∈ Ĥ . Then the right-hand side of equation (2.2) is equal to

χ(x)

( ∫
Z

h(z + t)χ(ω(t , z)) dt

)( ∫
M

χ(m) dm

)
. (2.3)
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If χ /∈ M⊥, then UC- limg∈� T σ
g f = 0 by Proposition 2.19. Moreover, equation (2.3) is

clearly equal to zero.
Suppose χ ∈ M⊥. Then equation (2.3) reduces to

χ(x)

( ∫
Z

h(z + t)χ(ω(t , z)) dt

)
.

The left-hand side of equation (2.2) is equal to

χ(x) · UC- lim
g∈�

h(z + αg)χ(σg(z)).

Define F : Z × Z → S1 by F(t , z) := h(z + t)χ(ω(t , z)). Then, by Proposition 2.17,
t 
→ F(t , ·) is a continuous map from Z to L2(Z) and F(αg , z) = h(z + αg)χ(σg(z)).
Since (Z, α) is uniquely ergodic, it follows by Lemma 2.6 that

UC- lim
g∈�

F (αg , z) =
∫

Z

F(t , z) dt

in L2(Z). This completes the proof.

3. Extensions
Definition 3.1. Let 	 be a family of endomorphisms of �. A group of characters

 ⊆ �̂ is:
• 	-complete if λ ◦ ϕ ∈ 
 for every λ ∈ 
 and every ϕ ∈ 	;
• 	-divisible if for every λ ∈ 
 and every ϕ ∈ 	, there exists λ′ ∈ 
 such that

λ′ ◦ ϕ = λ.

The main result of this section is the following extension theorem.

THEOREM 3.2. Let 	 be any countable family of endomorphisms of �, and let � be
a countable family of injective endomorphisms of �. Then for any ergodic �-system
X = (X, X , μ, (Tg)g∈�), there exists an ergodic extension X̃ of X such that the discrete
spectrum of X̃ is 	-complete and �-divisible.

We will derive Theorem 3.2 as a consequence of the following general result.

THEOREM 3.3. Let X = (X, X , μ, (Tg)g∈�) be an ergodic �-system, and let 
 be the
discrete spectrum of X. For any countable set C ⊆ �̂, there is an ergodic extension X̃ of X
such that the discrete spectrum 
̃ of X̃ is equal to the group generated by 
 and C.

Proof. This is a special case (k = 1) of Theorem 2.5. Indeed, if Z̃ is an ergodic Kronecker
system with discrete spectrum 
̃ = 〈
, C〉, then Z̃ is an order 1 extension of Z, and
so there exists by Theorem 2.5 an ergodic extension X̃ of X whose Kronecker factor is
isomorphic to Z̃.

Remark 3.4.
(1) A similar statement to Theorem 3.3 is proved in [2, Theorem 4.3]. However, in [2,

Theorem 4.3], only one inclusion is established (namely, that 
̃ contains 
 and C).
It is nevertheless true that the construction in the proof of [2, Theorem 4.3] produces
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a system with the correct discrete spectrum, as can be seen with some additional
work. (In fact, though differently phrased, the construction is equivalent to taking
the relatively independent joining of X with the appropriate ergodic Kronecker
system Z̃).

(2) The extension X̃ produced via Theorem 3.3 is not unique. For instance, any weakly
mixing extension of X̃ will again satisfy the conclusion of the theorem. The minimal
such extension (that is, the one appearing as a factor of any such extension) is
precisely the relatively independent joining X ×Z Z̃.

Now we can prove Theorem 3.2.

Proof of Theorem 3.2. Let 
 be the discrete spectrum of X. We extend 
 in stages,
alternating between 	-completeness and �-divisibility.

First, we make a couple of convenient reductions to make the notation less cumbersome.
Replacing 	 by 	 ∪ �, we may assume that � ⊆ 	. Let 	̃ be the semigroup

	̃ = {ϕ1 ◦ · · · ◦ ϕk : k ≥ 0, ϕ1, . . . , ϕk ∈ 	},
and let �̃ be the semigroup

�̃ = {ψ1 ◦ · · · ◦ ψk : k ≥ 0, ψ1, . . . , ψk ∈ �}.
Since 	 and � are countable, 	̃ and �̃ are also countable. Moreover, for ψ̃ = ψ1 ◦ · · · ◦
ψk ∈ �̃, we have that ψ̃ is injective, since it is a composition of injective maps. Thus,
replacing 	 and � with 	̃ and �̃, we may assume without loss of generality that 	 and �

contain the identity map and are closed under composition.
Now we set up the induction process. Let 
0 := 
. Suppose we have defined


0 ⊆ · · · ⊆ 
2j for some j ≥ 0. Let


2j+1 := 〈λ ◦ ϕ : λ ∈ 
2j , ϕ ∈ 	〉.
By the induction hypothesis, 
2j is a countable group, so 
2j+1 is also a countable group.
Moreover, since 	 is a semigroup, 
2j+1 is 	-complete.

We now perform subinduction to define 
2j+2. Put S0 := 
2j+1. Suppose we have
defined Sk for some k ≥ 0. For λ ∈ Sk andψ ∈ �, there exists λ′ ∈ �̂ such that λ′ ◦ ψ = λ.
To see this, first define λ′

0 : ψ(�) → S1 by λ′
0(ψ(g)) = λ(g). This is well defined since ψ

is injective. Then by [30, Theorem 2.1.4], λ′
0 extends to a character λ′ ∈ �̂, and we have

λ′ ◦ ψ = λ. Define a choice function γk : Sk × � → �̂ so that γk(λ, ψ) ◦ ψ = λ for every
λ ∈ Sk and ψ ∈ �. Then let

Sk+1 := {γk(λ, ψ) : λ ∈ Sk , ψ ∈ �}.
By induction, the set Sk+1 is countable. Therefore, S = ⋃

k≥0 Sk is countable and hence
generates a countable group 
2j+2 := 〈S〉.

We claim that 
2j+2 is �-divisible. Let λ ∈ 
2j+2 and let ψ ∈ �. We may write
λ = ∏r

i=1 γ
εi

ki
(λi , ψi)with λi ∈ Ski

,ψi ∈ �, and εi ∈ {−1, 1}. Let λ′
i = γki+1(γki

(λi , ψi),
ψ) ∈ S and let λ′ = ∏r

i=1 (λ′
i )

εi ∈ 
2j+2. Then
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λ′ ◦ ψ =
r∏

i=1

(λ′
i ◦ ψ)εi =

r∏
i=1

(γki
(λi , ψi))

εi = λ.

Thus, 
2j+2 is �-divisible as claimed.
By induction, we have constructed an infinite sequence of countable groups 
0 ⊆


1 ⊆ 
2 ⊆ · · · such that 
2j+1 is 	-complete and 
2j+2 is �-divisible for j ≥ 0. Let

∞ := ⋃∞

j=0 
j . Then 
∞ is a countable group that is 	-complete and �-divisible.
Finally, we apply Theorem 3.3 to obtain an ergodic extension X̃ of X such that the

discrete spectrum 
̃ of X̃ is equal to 
∞.

Remark 3.5. The subinduction and use of the choice functions γk in the construction of
the group 
2j+2 is solely used to ensure that 
2j+2 is countable. A �-divisible group can
be defined more directly, namely

D2j+2 := 〈λ ∈ �̂ : λ ◦ ψ ∈ 
2j+1 for some ψ ∈ �〉.
In general, D2j+2 is uncountable. However, if ψ(�) is a finite index subgroup of �

for each ψ ∈ �, then the set {λ ∈ �̂ : λ ◦ ψ = λ0} has cardinality [� : ψ(�)] < ∞ for
each λ0 ∈ 
2j+1 and ψ ∈ �. Thus, in this case, D2j+2 is countable, so one may take

2j+2 = D2j+2 rather than using the more complicated construction appearing in the
proof of Theorem 3.2. For the group � = Zd , an endomorphism is injective if and only if
it has finite index image if and only if the corresponding matrix is non-singular. Therefore,
the simpler construction 
2j+2 = D2j+2 can always be used when dealing with the group
� = Zd .

4. Mackey group associated with {ϕ, ψ}
Let ϕ, ψ ∈ End(�) such that (ψ − ϕ)(�) has finite index in �, and suppose θ1,
θ2 ∈ End(�) are such that θ1 ◦ ϕ + θ2 ◦ ψ is injective.

Let X be an ergodic quasi-affine �-system, and write X = Z ×σ H . Assume that the
discrete spectrum of X is {ϕ, ψ , θ1, θ2}-complete and (θ1 ◦ ϕ + θ2 ◦ ψ)-divisible. In this
section, we consider a variant of the notion of Mackey groups as discussed in §2.6 that is
tailored to analyzing ergodic averages of the form

UC- lim
g∈�

Tϕ(g)f1 · Tψ(g)f2

for f1, f2 ∈ L∞(Z × H).
Since the discrete spectrum 
 of X is {ϕ, ψ , θ1, θ2}-complete, we have induced

continuous endomorphisms of Z = 
̂, which we denote by ϕ̂, ψ̂ , θ̂1, and θ̂2. To see
this, view Z as the dual group, expressed additively as the group of homomorphisms
z : 
 → T = R/Z. For f ∈ {ϕ, ψ , θ1, θ2}, the map f̂ : Z → Z is then given by

f̂ (z) : λ 
→ z(λ ◦ f ).

Since 
 is (θ1 ◦ ϕ + θ2 ◦ ψ)-divisible, we claim that θ̂1 ◦ ϕ̂ + θ̂2 ◦ ψ̂ is injective.
Indeed, suppose (θ̂1 ◦ ϕ̂ + θ̂2 ◦ ψ̂)(z) = 0. Then for every λ ∈ 
,

z(λ ◦ (θ1 ◦ ϕ + θ2 ◦ ψ)) = 0.
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However, for any λ ∈ 
, there exists λ′ ∈ 
 with λ′ ◦ (θ1 ◦ ϕ + θ2 ◦ ψ) = λ, so

z(λ) = z(λ′ ◦ (θ1 ◦ ϕ + θ2 ◦ ψ)) = 0.

That is, z = 0.
Let

W = {(z + ϕ̂(t), z + ψ̂(t)) : z, t ∈ Z}
and let α̃ : � → W be the homomorphism

α̃g = (αϕ(g), αψ(g)).

Let σ̃ : � × W → H 2 be the cocycle

σ̃g(w) = (σϕ(g)(w1), σψ(g)(w2)).

Now we define the Mackey group to be the closed subgroup M ≤ H 2 with annihilator

M⊥ = {χ̃ ∈ Ĥ 2 : χ̃ ◦ σ̃ is a coboundary over (W , α̃)}.
The Kronecker system W = (W , α̃) is not necessarily ergodic. However, its ergodic

decomposition is easy to describe and interacts well with the Mackey group M. Namely,
we may express W as the union of the subsets

Wz = {(z + ϕ̂(t), z + ψ̂(t)) : t ∈ Z} = (z, z) + W0,

each supporting a Haar measure mz. The system (W0, α̃) is uniquely ergodic, and each
of the systems (Wz, α̃) for z ∈ Z is an isomorphic copy. It is easily verified that the Haar
measure on W decomposes as mW = ∫

Z
mz dz. An important property of this ergodic

decomposition is that, letting Mz denote the Mackey group corresponding to the ergodic
component (Wz, α̃), one has Mz = M for a.e. z ∈ Z (see [1, Proposition 7.9]).

We now seek to describe the structure of theMackey groupM. A classical fact in ergodic
theory is that, given two measure-preserving systems X1 and X2, invariant functions for
the product system X1 × X2 are formed from functions of the form f1 ⊗ f2, where f1 is
an eigenfunction of X1, f2 is an eigenfunction of X2, and the corresponding eigenvalues
are conjugates of one another. The following result describes the Mackey group M in an
analogous manner.

THEOREM 4.1. Let M be the Mackey group as defined above. Then

M⊥ = {χ1 ⊗ χ2 ∈ Ĥ 2 : there exists γ ∈ �̂, χ1(σϕ(g)(w1))

∼ γ (g) and χ2(σψ(g)(w2)) ∼ γ (g) over (W , α̃)}.

Remark 4.2. Throughout this section, we treat g ∈ � and w = (w1, w2) ∈ W as variables,
and write expressions of the form ρ(g, w1, w2) ∼ τ(g, w1, w2) as shorthand for the state-
ment that the cocycles (g, (w1, w2)) 
→ ρ(g, w1, w2) and (g, (w1, w2)) 
→ τ(g, w1, w2)

are cohomologous. For example, the notation χ1(σϕ(g)(w1)) ∼ γ (g) means that there is a
measurable function F : W → S1 such that
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χ1(σϕ(g)(w1)) = γ (g)
F (w1 + αϕ(g), w2 + αψ(g))

F (w1, w2)

for every g ∈ � and almost every w = (w1, w2) ∈ W .

Proof. Suppose χ1, χ2 ∈ Ĥ and γ ∈ �̂ such that χ1(σϕ(g)(w1)) ∼ γ (g) and
χ2(σψ(g)(w2)) ∼ γ (g). Then

(χ1 ⊗ χ2)(̃σg(w)) = χ1(σϕ(g)(w1))χ2(σψ(g)(w2)) ∼ γ (g)γ (g) = 1,

so χ1 ⊗ χ2 ∈ M⊥.
Conversely, suppose χ1 ⊗ χ2 ∈ M⊥. Let (gn)n∈N be a sequence in � such that α̃gn → 0

inW. By Lemma 2.8,

(χ1 ⊗ χ2) ◦ σ̃gn → 1

in L2(W). That is,

χ1(σϕ(gn)(z + ϕ̂(t)))χ2(σψ(gn)(z + ψ̂(t))) → 1 (4.1)

in L2(Z × Z).
The cocycle σ is quasi-affine, so by Lemma 2.14, there are sequences (ci,n)n∈N in S1

and (λi,n)n∈N in Ẑ for i = 1, 2 such that

c1,nλ1,n(z)χ1(σϕ(gn)(z)) → 1 and c2,nλ2,n(z)χ2(σψ(gn)(z)) → 1 (4.2)

in L2(Z). We will combine equations (4.1) and (4.2) to show that χ1(σϕ(g)(z)) ∼ γ (g) and
χ2(σψ(g)(z)) ∼ γ (g) for some γ ∈ �̂.

For convenience, let μn = χ1 ◦ σϕ(gn) and νn = χ2 ◦ σψ(gn). Now we perform a change
of coordinates. Define η : Z2 → Z2 by

η(z, t) = (z + ϕ̂(t), z + ψ̂(t))

and, for u ∈ Z, let ζu : Z2 → Z2 be the map

ζu(z, t) = (u + ψ̂(z) − ϕ̂(t), t − z).

Note that equation (4.1) is equivalent to

(μn ⊗ νn) ◦ η → 1 (4.3)

in L2(Z2).
We claim

(μn ⊗ νn) ◦ η ◦ ζu → 1 (4.4)

in L2(Z2). Let ζ := ζ0. Fix u ∈ Z and let fn(z, t) = ((μn ⊗ νn) ◦ η)(z + u, t). Then
(μn ⊗ νn) ◦ η ◦ ζu = fn ◦ ζ . We then want to show fn ◦ ζ → 1 in L2(Z2). Since the
Haar measure on Z2 is invariant under shifting by (u, 0), we have fn → 1 in L2(Z2) by
equation (4.3). It therefore suffices to show that ζ(Z2) has positive measure (equivalently,
finite index) in Z2. By assumption, (ψ − ϕ)(�) has finite index in �. Hence, [Z : (ψ̂ −
ϕ̂)(Z)] ≤ [� : (ψ − ϕ)(�)] < ∞. Let F ⊆ Z be a finite set such that (ψ̂ − ϕ̂)(Z) + F = Z.
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Let (z, t) ∈ Z2 be given. Choose x ∈ Z and s ∈ F such that (ψ̂ − ϕ̂)(x) + s = z + ϕ̂(t).
Put y = x + t . Then

ζ(x, y) + (s, 0) = (ψ̂(x) − ϕ̂(x) − ϕ̂(t) + s, t) = (z, t).

This shows that ζ(Z2) + (F × {0}) = Z2, so

mZ2(ζ(Z2)) ≥ 1
|F | > 0.

Thus, equation (4.4) holds.
However,

(η ◦ ζu)(z, t) = η(u + ψ̂(z) − ϕ̂(t), t − z) = (u + (ψ̂ − ϕ̂)(z), u + (ψ̂ − ϕ̂)(t)).

We therefore deduce from equation (4.4) that

μn ⊗ νn → 1 (4.5)

in L2((u + (ψ̂ − ϕ̂)(Z))2). Taking a conjugate and multiplying by equation (4.2), we
deduce

c1,nc2,n(λ1,n ⊗ λ2,n) → 1

in L2((u + (ψ̂ − ϕ̂)(Z))2). That is,∫
Z2

|c1,nc2,nλ1,n(u + (ψ̂ − ϕ̂)(z))λ2,n(u + (ψ̂ − ϕ̂)(t)) − 1|2 dz dt → 0.

Multiplying by λ2,n in the integrand and using the fact that each λi,n is a homomorphism,∫
Z2

|c1,nc2,nλ1,n(u)λ1,n((ψ̂ − ϕ̂)(z)) − λ2,n(u)λ2,n((ψ̂ − ϕ̂)(t))|2 dz dt → 0.

It follows that for all sufficiently large n, we have λ1,n, λ2,n ∈ ((ψ̂ − ϕ̂)(Z))⊥.
Let A = (ψ̂ − ϕ̂)(Z) and put A1 = {(w1, w2) ∈ W : w1 ∈ A}. Note that A1 is a Borel

set and mW(A1) = mZ(A) > 0. Fix t = (t1, t2) ∈ A1 and let

ρg(w) = χ1(σϕ(g)(w1 + t1))

χ1(σϕ(g)(w1))
.

By Lemma 2.13, our goal is to show that ρ is a coboundary. Since (gn)n∈N is an arbitrary
sequence in � with α̃gn → 0, it suffices, by Lemma 2.8, to show ρgn → 1 in L2(W). We
have already seen that

c1,nλ1,n(z)χ1(σϕ(gn)(z)) → 1

in L2(Z) and λ1,n ∈ A⊥. In particular, λ1,n(z + t1) = λ1,n(z), since t1 ∈ A. Therefore,

ρgn(w) = χ1(σϕ(gn)(w1 + t1))

χ1(σϕ(gn)(w1))
= c1,nλ1,n(w1 + t1)χ1(σϕ(gn)(w1 + t1))

c1,nλ1,n(w1)χ1(σϕ(gn)(w1))
→ 1

in L2(W). This proves that χ1(σϕ(g)(w1)) is cohomologous to a character. The same
argument applies to χ2(σψ(g)(w2)), taking the set A2 = {(w1, w2) ∈ W : w2 ∈ A}.
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Therefore, we may assume in the above that λi,n = 1 for every n ∈ N and i = 1, 2. We
may also assume ci,n = γi(gn), where χ1(σϕ(g)(w1)) ∼ γ1(g) and χ2(σψ(g)(w2)) ∼ γ2(g).
We have thus shown that for any sequence (gn)n∈N with α̃gn → 0, we have

(γ1γ2)(gn) → 1.

Hence, by Lemma 2.8, γ1γ2 ∼ 1. By tweaking γ2 up to cohomology, we may assume
γ2 = γ 1, completing the proof.

By passing to an extension of the original system, we will show that the Mackey
groupM associated with {ϕ, ψ} decomposes into the Cartesian product of Mackey groups
associated with ϕ and ψ , respectively.

THEOREM 4.3. Let ϕ, ψ ∈ End(�) such that (ψ − ϕ)(�) has finite index in �, and
suppose θ1, θ2 ∈ End(�) such that θ1 ◦ ϕ + θ2 ◦ ψ is injective. Let X = Z ×σ H be an
ergodic quasi-affine � system such that the discrete spectrum Ẑ is {ϕ, ψ , θ1, θ2}-complete
and (θ1 ◦ ϕ + θ2 ◦ ψ)-divisible. There is an ergodic quasi-affine extensionX′ = Z′ ×σ ′ H

of X such that the Mackey group M ′ decomposes as M ′ = M ′
ϕ × M ′

ψ , where

(M ′
ϕ)⊥ = {χ ∈ Ĥ : χ(σ ′

ϕ(g)(w1)) is a coboundary over (W ′, α̃′)}

and

(M ′
ψ)⊥ = {χ ∈ Ĥ : χ(σ ′

ψ(g)(w2)) is a coboundary over (W ′, α̃′)}.

Proof. Let

Cϕ = {γ ∈ �̂ : there exists χ ∈ Ĥ , χ(σϕ(g)(w1)) ∼ γ (g) over (W , α̃)}

and

Cψ = {γ ∈ �̂ : there exists χ ∈ Ĥ , χ(σψ(g)(w2)) ∼ γ (g) over (W , α̃)}.

Then let C = Cϕ ∩ Cψ . Note that a character γ ∈ �̂ is cohomologous to another character
γ ′ ∈ �̂ if and only if γ γ ′ is an eigenvalue for the system (W , α̃). That is,

γ γ ′ ∈ {(λ1 ◦ ϕ)(λ2 ◦ ψ) : λ1, λ2 ∈ Ẑ} ⊆ Ẑ.

Moreover, the groups Ẑ and Ĥ are countable, so C is a countable set of characters.
By Theorem 3.2, let 
′ be a countable subgroup of �̂ that is {ϕ, ψ , θ1, θ2}-complete,

(θ1 ◦ ϕ + θ2 ◦ ψ)-divisible, and contains the group generated by 
 = Ẑ and C, and
let Z′ = 
̂′. For g ∈ �, let α′

g ∈ Z′ be the element such that α′
g(λ) = λ(g) for every

λ ∈ 
′. Since 
 ⊆ 
′, there is a surjective homomorphism π : Z′ → Z such that
π(α′

g) = αg . Define σ ′ : � × Z′ → H by σ ′
g(z) = σg(π(z)).

CLAIM 1. σ ′ is a cocycle.
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Proof. Indeed, for any g, h ∈ � and z ∈ Z′,

σ ′
g+h(z) = σg+h(π(z)) (definition of σ ′)

= σg(π(z) + αh) + σh(π(z)) (σ is a cocycle)

= σg(π(z + α′
h)) + σh(π(z)) (π is a factor map)

= σ ′
g(z + α′

h) + σ ′
h(z).

This proves the claim.

CLAIM 2. σ ′ is quasi-affine.

Proof. The cocycle σ is quasi-affine, so there exist measurable functionsF : Z × Z → S1

and γ : Z → �̂ such that

σg(z + t)

σg(z)
= γ (t , g)

F (t , z + αg)

F (t , z)
.

Define F ′ : Z′ × Z′ → S1 by F ′(t , z) = F(π(t), π(z)) and γ ′ : Z′ → �̂ by γ ′(t , ·) =
γ (π(t), ·). Then
σ ′

g(z + t)

σ ′
g(z)

= σg(π(z) + π(t))

σg(π(z))
= γ (π(t), g)

F (π(t), π(z) + αg)

F (π(t), π(z))
= γ ′(t , g)

F ′(t , z + α′
g)

F ′(z)
,

so σ ′ is quasi-affine as claimed.

CLAIM 3. The quasi-affine system Z′ ×σ ′ H is an ergodic system with Kronecker factor
Z′ = (Z′, α′).

Proof. We need to check that σ ′ is a weakly mixing cocycle. That is, for any χ ∈ Ĥ ,
if χ ◦ σ ′ is cohomologous to a character, then χ = 1 (see [1, Proposition 7.5]). Suppose
χ ∈ Ĥ and χ ◦ σ ′ ∼ γ ∈ �̂ over Z′. Let F : Z′ → S1 such that

χ(σ ′
g(z)) = γ (g)

F (z + α′
g)

F (z)

for every g ∈ � and almost every z ∈ Z′. Define G : Z × H → S1 by G(z, x) =
F(z)χ(x). Then

G(z + α′
g , x + σ ′

g(z)) = F(z + α′
g)χ(σ ′

g(z))χ(x) = γ (g)F (z)χ(x) = γ (g)G(z, x).

Hence, G is an eigenfunction for the system Z′ ×σ ′ H (with eigenvalue γ ). The function
F ⊗ 1H is measurable with respect to the Kronecker factor of Z′ ×σ ′ H , since Z′ is a
Kronecker system and therefore contained in the Kronecker factor. Therefore, 1Z′ ⊗ χ =
(F ⊗ 1H )G is measurable with respect to the Kronecker factor.

Now, the projection of 1Z′ ⊗ χ under the factor map Z′ ×σ ′ H → Z ×σ H is the
function 1Z ⊗ χ . Thus, 1Z ⊗ χ is measurable with respect to the Kronecker factor of
Z ×σ H , but by assumption, the Kronecker factor of Z ×σ H is Z. It follows that the
function (z, x) 
→ χ(x) = (1Z ⊗ χ)(z, x) does not depend on x. That is, χ = 1.
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As a brief aside, it is worth remarking that the system Z′ ×σ ′ H is (isomorphic to) the
relatively independent joining of Z ×σ H and Z′ with respect to the common factor Z. We
therefore could have shown the previous three claims by establishing this isomorphism and
referring to Theorem 2.5. However, to prove thatX′ = Z′ ×σ ′ H is the desired extension of
X, it is more convenient to work with the systemwritten explicitly as a group extension over
its Kronecker factor rather than appealing to general abstract statements about Host–Kra
factors.

It remains to show that the ergodic quasi-affine system Z′ ×σ ′ H is the desired
extension. Let us introduce some notation. We define a system (W ′, α̃′) by

W ′ = {(z + ϕ(t), z + ψ(t)) : z, t ∈ Z′}
and

α̃′
g = (α′

ϕ(g), α
′
ψ(g)).

We then define the cocycle σ̃ ′ : � × W ′ → H 2 by

σ̃ ′
g(w) = (σ ′

ϕ(g)(w1), σ ′
ψ(g)(w2))

and associate a Mackey group M ′ with annihilator

(M ′)⊥ = {χ̃ ∈ Ĥ 2 : χ̃ ◦ σ̃ ′ is a coboundary over (W ′, α̃′)}.
We want to show M ′ = M ′

ϕ × M ′
ψ . To this end, we prove one more claim.

CLAIM 4. Let χ ∈ Ĥ and γ ∈ �̂.
(a) If χ(σ ′

ϕ(g)(w1)) ∼ γ (g) over (W ′, α̃′), then there exists γ ′ ∈ Cϕ such that γ ∼ γ ′.
(b) If χ(σ ′

ψ(g)(w2)) ∼ γ (g) over (W ′, α̃′), then there exists γ ′ ∈ Cψ such that γ ∼ γ ′.

Proof. The proofs of items (a) and (b) are the same, so we prove only item (a). Suppose
χ(σ ′

ϕ(g)(w1)) ∼ γ (g) over W′ = (W ′, α̃′). Arguing as in the proof of Claim 3 above, the
function 1W ′ ⊗ χ ⊗ 1H : W ′ × H 2 → S1 is measurable with respect to the Kronecker
factor of W′ ×σ̃ ′ H 2. Projecting onto the factor W ×σ̃ H 2, it follows that 1W ⊗ χ ⊗ 1H

is measurable with respect to the Kronecker factor of W ×σ̃ H 2. We then project again
to the factor (Z, α ◦ ϕ) ×σϕ H (with the action of � given by g · (z, x) = (z + αϕ(g), x +
σϕ(g)(z))) to conclude that 1Z ⊗ χ is measurable with respect to the Kronecker factor Zϕ

of (Z, α ◦ ϕ) ×σϕ H . Noting that L2(Zϕ) is spanned by functions of the form F(z)ζ(x)

with ζ ∈ Ĥ such that ζ ◦ σϕ is cohomologous to a character (see the proof of [1,
Proposition 7.5(2)]), it follows that χ ◦ σϕ is cohomologous to a character γ ′ ∈ �̂ over
(Z, α ◦ ϕ). Therefore, γ ′ ∈ Cϕ and γ ∼ γ ′.

Let χ1 ⊗ χ2 ∈ (M ′)⊥. By Theorem 4.1, there exists γ ∈ �̂ such that χ1(σ
′
ϕ(g)(w1)) ∼

γ (g) and χ2(σ
′
ψ(g)(w2)) ∼ γ (g) over (W ′, α̃′). By Claim 4, we may assume γ ∈ Cϕ ∩

Cψ = C. We constructed the extension Z′ ×σ ′ H so that 
′ ⊇ C. Therefore, γ ∈ 
′. Also
by construction, 
′ is {ϕ, ψ , θ1, θ2}-complete and (θ1 ◦ ϕ + θ2 ◦ ψ)-divisible. Using the
divisibility condition, let λ ∈ 
′ such that λ ◦ (θ1 ◦ ϕ + θ2 ◦ ψ) = γ . Let λ1 = λ ◦ θ1 and
λ2 = λ ◦ θ2. By the completeness condition, λ1, λ2 ∈ 
′. Moreover, (λ1 ◦ ϕ)(λ2 ◦ ψ) = γ .
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So, taking F = (λ1 ⊗ λ2)|W ′ : W ′ → S1, we have γ (g) = �gF , so γ ∼ 1. Thus,

χ1(σ
′
ϕ(g)(w1)) ∼ χ2(σ

′
ψ(g)(w2)) ∼ 1.

That is, χ1 ⊗ χ2 ∈ (M ′
ϕ)⊥ × (M ′

ψ)⊥ as desired.

5. Limit formula
In this section, we use the Mackey group M defined in §4 to derive a limit formula for
double ergodic averages over quasi-affine systems.

THEOREM 5.1. Let ϕ, ψ , θ1, θ2 ∈ End(�) such that ψ − ϕ has finite index image in � and
θ1 ◦ ϕ + θ2 ◦ ψ is injective. Let X = Z ×σ H be an ergodic quasi-affine �-system whose
discrete spectrum is {ϕ, ψ , θ1, θ2}-complete and (θ1 ◦ ϕ + θ2 ◦ ψ)-divisible. Let M ≤ H 2

be the Mackey group associated with {ϕ, ψ}. Then there is a measurable function ω :
Z × Z → H 2 such that:
(1) ω(0, z) ∈ M for all z ∈ Z and t 
→ ω(t , ·) + M is a continuous function from Z to

M(Z, H 2/M); and
(2) for any f1, f2 ∈ L∞(Z × H), we have

UC- lim
g∈�

f1(Tϕ(g)(z, x))f2(Tψ(g)(z, x))

=
∫

Z×M

f1(z + ϕ̂(t), x + u + ω1(t , z))f2(z + ψ̂(t), x + v + ω2(t , z)) dmZ(t) dmM(u, v)

(5.1)

in L2(Z × H), where ω = (ω1, ω2).

Before proving Theorem 5.1, we note an immediate corollary.

COROLLARY 5.2. In the setup of Theorem 5.1, for any f0, f1, f2 ∈ L∞(Z × H) and any
continuous function κ : Z → C, one has

UC- lim
g∈�

κ(αg)

∫
Z×H

f0 · Tϕ(g)f1 · Tψ(g)f2 d(mZ × mH )

=
∫

Z2×H×M

κ(t) f0(z, x) f1(z + ϕ̂(t), x + u + ω1(t , z))

× f2(z + ψ̂(t), x + v + ω2(t , z)) dmZ(z) dmZ(t) dmH (x) dmM(u, v). (5.2)

Proof. By the Stone–Weierstrass theorem, we may assume κ is a character on Z. Since
the discrete spectrum 
 ∼= Ẑ is (θ1 ◦ ϕ + θ2 ◦ ψ)-divisible, there exists κ ′ ∈ Ẑ such that
κ ′ ◦ (θ̂1 ◦ ϕ̂ + θ̂2 ◦ ψ̂) = κ . Define functions f̃i ∈ L∞(Z × H) by

f̃0(z, x) = κ ′(θ̂1(z) + θ̂2(z))f0(z, x),

f̃1(z, x) = κ ′(θ̂1(z))f1(z, x),

f̃2(z, x) = κ ′(θ̂2(z))f2(z, x).
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The left-hand side of equation (5.2) is equal to

UC- lim
g∈�

∫
Z×H

f̃0 · Tϕ(g)f̃1 · Tψ(g)f̃2, (5.3)

while the right-hand side of equation (5.2) is equal to∫
Z2×H×M

f̃0(z, x) f̃1(z + ϕ̂(t), x + u + ω1(t , z))

× f̃2(z + ψ̂(t), x + v + ω2(t , z)) dmZ(z) dmZ(t) dmH (x) dmM(u, v). (5.4)

The quantities in equations (5.3) and (5.4) are equal by Theorem 5.1.

The first step in the proof of Theorem 5.1 is the following enhancement of
Proposition 2.19.

PROPOSITION 5.3. Let f1, f2 ∈ L∞(Z × H). Suppose that for every χ̃ ∈ M⊥, one has∫
H 2

f1(w1, x1)f2(w2, x2)χ̃(x) dx = 0 (5.5)

for a.e. w = (w1, w2) ∈ W . Then

UC- lim
g∈�

f1(z + αϕ(g), x + σϕ(g)(z))f2(z + αψ(g), x + σψ(g)(z)) = 0

in L2(Z × H).

Proof. The proof is very much in the spirit of [1, Proposition 7.10]. Define T̃g : W ×
H 2 → W × H 2 by

T̃g(w, x) = (w + α̃g , x + σ̃g(w)).

Set F(w, x) := f1(w1, x1)f2(w2, x2) for w = (w1, w2) ∈ W and x = (x1, x2) ∈ H 2. We
claim F is orthogonal to the space of (T̃g)g∈�-invariant functions in L2(W × H 2).

Let E1 := {z ∈ Z : Mz = M}. As discussed in §4, E1 has full measure. Let E2 :=
{z ∈ Z : equation (5.8) holds for a.e. w = (w1, w2) ∈ Wz}, and let E3 := {z ∈ Z : F ∈
L∞(Wz × H 2)}. By Fubini’s theorem, both of the sets E2 and E3 have full measure in Z.
Put E := E1 ∩ E2 ∩ E3.

Suppose z ∈ E and let χ̃ ∈ M⊥
z = M⊥. Then∫
H 2

F(w, x)χ̃(x) dx = 0

for a.e. w ∈ Wz. Therefore,

UC- lim
g∈�

T̃gF = 0

in L2(Wz × H 2) by Proposition 2.19.
Fix a Følner sequence (	N)N∈N in �, and define the average

AN := 1
|	N |

∑
g∈	N

T̃gF ∈ L2(W × H 2).
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We want to show AN → 0 in L2(W × H 2). Decompose the Haar measure on W as
mW = ∫

Z
mz dz. Then

‖AN‖L2(W×H 2)
2 =

∫
W

∫
H 2

|AN(w, x)|2 dx dw

=
∫

Z

( ∫
Wz

∫
H 2

|AN(w, x)|2 dx dmz

)
dz

=
∫

Z

‖AN‖L2(Wz×H 2)
2 dz

−−−−→
N→∞ 0.

To complete the proof, we apply the van der Corput trick. Let ug := Tϕ(g)f1 · Tψ(g)f2 ∈
L2(Z × H). Then

〈ug+h, ug〉 =
∫

Z×H

(f 1 · Tϕ(h)f1) · T(ψ−ϕ)(g)(f 2 · Tψ(h)f2) dμ.

Since (ψ − ϕ)(�) has finite index in �, we have Iψ−ϕ ⊆ Z , so by the mean ergodic
theorem,

ξh := UC- lim
g∈�

〈ug+h, ug〉

=
∫

Z×H

(f 1 · Tϕ(h)f1)(z, x) ·
( ∫

Z

E[f 2 · Tψ(h)f2 | Z](z + (ψ̂ − ϕ̂)(t)) dt

)
dz dx

=
∫

W

E[f 1 · Tϕ(h)f1 | Z](w1) · E[f 2 · Tψ(h)f2 | Z](w2) dw

=
∫

W×H 2
(f 1 · Tϕ(h)f1)(w1, x1)(f 2 · Tψ(h)f2)(w2, x2) dw dx

= 〈T̃hF , F 〉L2(W×H 2).

Now since UC- limh∈� T̃hF = 0 in L2(W × H 2), we have UC- limh∈� ξh = 0. By the
van der Corput lemma (Lemma 2.1), it follows that UC- limg∈� ug = 0 in L2(Z × H) as
desired.

The next step is to construct the function ω appearing in Theorem 5.1. Fix z ∈ Z such
that Mz = M . Note that our assumptions on the discrete spectrum ofX ensure that (Wz, α̃)

is isomorphic to (Z, α) under the map (w1, w2) 
→ θ̂1(w1 − z) + θ̂2(w2 − z). Hence,
by Proposition 2.17, there is a function ω̃ : Z × Z → H 2/M such that t 
→ ω̃(t , ·) is a
continuous map Z → M(Z, H 2/M) and

ω̃(αg , z) ≡ σ̃g(z) (mod M).

By the Kuratowski and Ryll-Nardewski measurable selection theorem (see [32, §5.2]), we
can lift ω̃ to a function ω : Z × Z → H 2 such that ω + M = ω̃.

Now we put everything together to prove Theorem 5.1.

Proof of Theorem 5.1. By linearity, we may assume fi = hi ⊗ χi with χi ∈ Ĥ for
i = 1, 2. Let χ̃ = χ1 ⊗ χ2 ∈ Ĥ 2. Then the right-hand side of equation (5.1) is equal to
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χ1(x)χ2(x)

( ∫
Z

h1(z + ϕ̂(t))h2(z + ψ̂(t))χ̃(ω(t , z)) dt

)( ∫
M

χ̃ dmM

)
. (5.6)

We break the proof into two cases depending on whether or not χ̃ belongs to M⊥.
Case 1: χ̃ /∈ M⊥. In this case, the expression in equation (5.6) is equal to 0.

Proposition 5.3 guarantees that the left-hand side of equation (5.1) is also equal to zero.

Case 2: χ̃ ∈ M⊥. Let F : Z × Z → C be given by

F(t , z) = h1(z + ϕ̂(t))h2(z + ψ̂(t))χ̃(ω(t , z)).

Note that t 
→ F(t , ·) is a continuous function from Z to L2(Z), and the expression in
equation (5.6) simplifies to χ1(x)χ2(x)

∫
Z

F(t , z) dt .
Moving to the left-hand side of equation (5.1), for g ∈ �, we have

f1(Tϕ(g)(z, x))f2(Tψ(g)(z, x)) = χ1(x)χ2(x)F (αg , z).

Therefore, since (Z, α) is uniquely ergodic, we have

UC- lim
g∈�

F (αg , z) =
∫

Z

F(t , z) dt

in L2(Z) by Lemma 2.6. This completes the proof.

6. Khintchine-type recurrence
In this section, we prove Theorem 1.16. We will first prove the following statement
(corresponding to the case η = id�), from which Theorem 1.16 can be quickly deduced.

THEOREM 6.1. Let � be a countable discrete abelian group. Let ϕ, ψ ∈ End(�) such
that (ψ − ϕ)(�) is a finite index subgroup of �. Suppose there exist θ1, θ2 ∈ End(�)

such that θ1 ◦ ϕ + θ2 ◦ ψ is injective. Then for any ergodic measure-preserving �-system
(X, X , μ, (Tg)g∈�) with Kronecker factor Z = (Z, α), any A ∈ X , and any ε > 0, there
is a continuous function κ : Z → [0, ∞) with

∫
Z

κ(z) dz = 1 such that

UC- lim
g∈�

κ(αg) μ(A ∩ T −1
ϕ(g)A ∩ T −1

ψ(g)A) > μ(A)3 − ε.

Proof. Let X = (X, X , μ, (Tg)g∈�) be an ergodic �-system with Kronecker factor
Z = (Z, α), let A ∈ X , and let ε > 0. Put f = 1A. Let κ : Z → [0, ∞) be a continuous
function (to be specified later) with

∫
Z

κ(z) dz = 1. By [2, Theorem 4.10], we may assume
without loss of generality (by passing to an extension if necessary) that

UC- lim
g∈�

κ(αg)

∫
X

f · Tϕ(g)f · Tψ(g)f dμ

= UC- lim
g∈�

κ(αg)

∫
X

f · Tϕ(g)E[f | Z2 ∨ Iϕ] · Tψ(g)E[f | Z2 ∨ Iψ ] dμ.

We may further assume that the discrete spectrum of X is {ϕ, ψ , θ1, θ2}-complete and
(θ1 ◦ ϕ + θ2 ◦ ψ)-divisible by passing to another extension if necessary with the help of
Theorem 3.2.
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Let fϕ = E[f | Z2 ∨ Iϕ] and fψ = E[f | Z2 ∨ Iψ ]. We may expand

fϕ =
∑

i

cihi and fψ =
∑
j

dj kj ,

where ci is ϕ(�)-invariant, dj is ψ(�)-invariant, and hi , kj are Z2-measurable. Write
Z2 = Z ×σ H and apply Corollary 5.2:

UC- lim
g∈�

κ(αg) μ(A ∩ T −1
ϕ(g)A ∩ T −1

ψ(g)A)

= UC- lim
g∈�

κ(αg)
∑
i,j

∫
X

f cidj · Tϕ(g)hi · Tψ(g)kj dμ

=
∑
i,j

∫
X×Z×M

f (x)ci(x)dj (x) · κ(t) · hi(πZ(x) + ϕ̂(t), πH (x) + u + ω1(t , πZ(x)))

× kj (πZ(x) + ψ̂(t), πH (x) + v + ω2(t , πZ(x))) dμ(x) dmZ(t) dmM(u, v).

Taking κ supported on a sufficiently small neighborhood of 0 in Z, it suffices to establish
the inequality

∑
i,j

∫
X×M

f (x)ci(x)dj (x)hi(πZ(x), πH (x) + u)

× kj (πZ(x), πH (x) + v) dμ(x) dmM(u, v) ≥ μ(A)3. (6.1)

By applying Theorem 4.3 together with Theorem 2.5 and passing to yet another exten-
sion, we may assume the Mackey group M decomposes as M = Mϕ × Mψ . Let Wϕ be
the σ -algebra generated by functions f : Z × H → C satisfying f (z, x) = f (z, x + y)

for y ∈ Mϕ , and let Wψ be defined similarly. Then the left-hand side of equation (6.1) is
equal to ∫

X

f · E[f | Wϕ ∨ Iϕ] · E[f | Wψ ∨ Iψ ] dμ,

which is bounded below by (
∫
X

f dμ)3 = μ(A)3 by [11, Lemma 1.6].

Now we complete the proof of Theorem 1.16.

Proof of Theorem 1.16. Let X = (X, X , μ, (Tg)g∈�) be an ergodic measure-preserving
�-system, let A ∈ X , and let ε > 0.

The �-system (X, X , μ, (Tη(g))g∈�) has finitely many ergodic components (at most
the index of η(�) in �). Let μ = ∑l

i=1 μi be the ergodic decomposition. Then each of
the systems Xi = (X, X , μi , (Tη(g))g∈�) is ergodic, and they all have the same Kronecker
factor Zη = (Zη, α ◦ η), where Zη = {αη(g) : g ∈ �}. By Theorem 6.1, we may therefore
find a continuous function κ : Zη → [0, ∞) such that

∫
Zη

κ(t) dt = 1 and

UC- lim
h∈η(�)

κ(αh)μi(A ∩ T −1
ϕ′(h)

A ∩ T −1
ψ ′(h)

A) > μi(A)3 − ε
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for each i ∈ {1, . . . , l}. Then by Jensen’s inequality,
UC- lim

h∈η(�)
κ(αh)μ(A ∩ T −1

ϕ′(h)
A ∩ T −1

ψ ′(h)
A) > μ(A)3 − ε.

It follows that

{h ∈ η(�) : μ(A ∩ T −1
ϕ′(h)

A ∩ T −1
ψ ′(h)

A) > μ(A)3 − ε}
is syndetic in η(�): if not, then by [1, Lemma 1.9], there exists a Følner sequence (	N)N∈N
in η(�) such that

μ(A ∩ T −1
ϕ′(h)

A ∩ T −1
ψ ′(h)

A) ≤ μ(A)3 − ε

for every h ∈ ⋃
N∈N 	N , whence

lim
N→∞

1
|	N |

∑
h∈	N

κ(αh)μ(A ∩ T −1
ϕ′(h)

A ∩ T −1
ψ ′(h)

A) ≤ (μ(A)3 − ε)

∫
Zη

κ(t) dt=μ(A)3 − ε,

which is a contradiction. However, η(�) has finite index in �, so

{g ∈ � : μ(A ∩ T −1
ϕ(g)A ∩ T −1

ψ(g)A) > μ(A)3 − ε}
is syndetic in �.
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