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Abstract

We construct a novel family of difference-permutation operators and prove that they are diagonalized by the wreath
Macdonald P-polynomials; the eigenvalues are written in terms of elementary symmetric polynomials of arbitrary
degree. Our operators arise from integral formulas for the action of the horizontal Heisenberg subalgebra in the
vertex representation of the corresponding quantum toroidal algebra.
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1. Introduction

Let Xy = {x1,...,xn} be a set of variables. The Macdonald polynomials {P,[Xy;q,t]} are a basis
of the ring of (g, 1)-deformed symmetric polynomials Q(gq,7)[Xn ]SV that have appeared across a
remarkably broad collection of mathematical fields. They can be characterized as eigenfunctions of a
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commuting family of difference operators, the Macdonald operators: for 1 <n < N,

Xi —

. . n(n-1) txl_.x]
Da(Xnig)=t"7 > |]] = [ |72 (1.1)

I1c{l,...,N}\ iel iel
\I|:n Jjel
Dp(Xn:q. OPa[Xn:q. 1] = en(qgV N1, gV 72, L g™ Pa[ XN g, 1]. (1.2)

Here, T, , is the g-shift operator
Si
TyxiXj=q"7x;

and e, is the nth elementary symmetric polynomial. The Macdonald operators are themselves distin-
guished as Hamiltonians of the quantum trigonometric Ruijsenaars-Schneider integrable system.

This paper is concerned with the wreath Macdonald polynomials, a generalization of the Macdonald
polynomials proposed by Haiman [7]. Fix an integer r > 0 and partition the variables x, ..., xy into r
subsets:

XN, = Il_l{xl(l)}l—l,.‘. N {x1, .. xn )

where Z;;OI N; = N. We call the index i the color of xlm, and it will be helpful to view it as an element
of I := Z/rZ. The number of variables is recorded by the vector N, := (Ny,...,N,_1), and we set
|No| := N. Consider the action of the product of symmetric groups

61\]. = l—l GN,.

i€l

on the polynomial ring Q(q, 1) [X N.] whereby Sy, only permutes the variables of color i. The wreath
Macdonald polynomials can be viewed as a set of color-symmetric polynomials that are again indexed
by a single partition:

Pi[Xn.:q.1] € Qg. 1) [Xn.] .

The combinatorics of r-cores and r-quotients play a key role in this subject, which we review in Section 2
below. When we restrict A to range over partitions with a fixed r-core and €(1) < |N,|, we obtain a basis
of color-symmetric polynomials. For reasons that seem technical at first, the r-core and N, must satisfy
a compatibility condition (see 2.9). The original Macdonald polynomials are the case r = 1.

Haiman’s proposed definition characterizes P [ X, ; ¢, t] using a pair of triangularity conditions. In
contrast with the usual Macdonald theory, we a priori do not have an analogous characterization as
the joint eigenfunction of an explicit family of difference operators. The present work remedies this
situation: we produce a novel family of difference-permutation operators that are diagonalized by the
wreath Macdonald polynomials and whose eigenvalues are written in terms of the elementary symmetric
polynomials. In addition to the degree n, they also carry a color parameter p € I:
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n(n-1)
2

=1
Dpn(Xn.3q:1) = T, (L =gk )

Np

(txy;_l) _xl(P))
- NAWE
I N VR
X Z: 1_! (I—-qt™) o >
n a=
JES]’EI; (XN.) Ll l_[ (xépa) _xz(p))
o (1.3)
xl(p)ell‘Sa
N; (tng,_l) _xl(i)) qfltTiax(liZ
‘| o | | o
. - @ —x® ; @ _7, WD a
iel\{p} I=1  |X;v =X ieJa\{p} (X, 7 X,
x,(‘)ix(;g Ja 7, 7

The notation used in this formula is outlined in 5.1.4. Our main result is the following:

Theorem (see Theorem 5.21). For A having r-core compatible with Ne and (1) < |N,|, the polynomial
P, [XN.; q,t] satisfies the eigenfunction equation

N, |
Dpu(Xni; @ OPalXni gt =en| Y. g NP Xy g0, (1.4)
b-2Ap 5?7:4-11 mod r

For the eigenvalues, we have used plethystic notation — we merely mean the elementary symmetric
function e,, evaluated at the characters appearing in the summation. In earlier work [14], the first two
authors constructed the first order dual operators D;l and their eigenfunction equation in Theorem 5.21.
Our operators (1.3) are much more complicated than the original Macdonald operators (1.1). In the
case r = 1, we do indeed obtain (1.1) after some simplification (see Remark 5.15). When r > 1, the
vanilla g-shift operator 7, 4, is replaced with what we call a cyclic-shift operator Ty , which cyclically
permutes variables of different colors in addition to multiplying by a power of g. Because of this extra
permutation, the cyclic-shift operators might not commute. Note now the ordered product in (1.3) — we
expect the formula to simplify meaningfully after taking into account the (non)commutativity of the
constituent cyclic-shift operators. Moving beyond the intricacies of our formula, let us now highlight

some nice conceptual aspects of our operators.

1.1. Integral formulas

Our strategy for deriving (1.3) and establishing the eigenfunction equation uses work of the third author
[19]. Namely, we study the wreath Macdonald polynomials using the guantum toroidal algebra U (s1,)
and its vertex representation W. The aforementioned work proves that infinite-variable wreath Macdonald
polynomials can be naturally embedded inside W such that they diagonalize a large commutative
subalgebra of Uq,h(s;'lr), the horizontal Heisenberg subalgebra. This alone is insufficient for obtaining
explicit formulas — we also need work of Negut [11] realizing Uq,h(f;'lr) in terms of a shuffle algebra.
The shuffle algebra is a space of rational functions endowed with an exotic product structure, and it is
isomorphic to a part of Uy 5 (s1,) via a map that is morally (but not precisely) an integration map. Writing
its action on W and then specializing from infinite to finite variables, we obtain actual integral formulas.
Finally, to pin down the eigenvalues, we use the (twisted) isomorphism established by Tsymbaliuk [17]
between the vertex representation and the Fock representation.
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We apply this process to the shuffle realizations of well-chosen elements of the horizontal Heisenberg
subalgebra which were found in [19]. Our operators are the highest degree parts (see Proposition 5.16),
and we can write their action as follows: for a factored element

f=[14(") e c@.n[xn]™

iel

n(n l) n(n+])

( 1) (1_ tl)nr n N; tWi,a_xl(i)
pn(XN C]J)f 7{ HZ 1(]_ ag- a) l—ll_[ ( . _ @

y { (Wpa=Wpb)(Wpa—qt™ wpp)
1<a<b<n

(Wb =17 Wpita) (Wp-t,a = 7' Wp p)

(Wi,a - Wi,b) (Wi,a - lelwi,b)

. — . . — 1.

iel\{p} (Wl+],a th,b)(Wh],a t Wl,b)

n
Xl_[{( Wo’a )( Wpill’a )

a=1 Wpila [\Wp.a =1 " Wpil,a

Wi.a Witl,a
X -1
Wia =17 Witl,a ] \Witl,a = qWi,a

X

iel\{p}
@) dWi.a
XDle l+Zqua ;W&lalﬂzn_\/—lw[a

where for each variable w; ,, the cycle C only encloses poles of the form (w;, — gw;-1,,) and
(Wi.q — xi—1,1). Explicit evaluation of this integral leads to (1.4). We also carry this out for its dual
counterpart in Theorem 5.21.

Using other shuffle elements from [19], we obtain similar integral formulas for wreath analogues of
the Noumi-Sano operators [12], although we are only able to evaluate the integral and obtain formulas
for the operators in degree n = 1. We note that our approach is similar to [4] in the r = 1 case, although
our a priori knowledge and endgoals are different. In [4], the authors use the well-known Macdonald
operators to study the action of certain shuffle elements, whereas we use r > 1 analogues of their
shuffle elements to discover new operators. In [18], Tsymbaliuk has also produced difference operators
out of Uq,b(s;'lr) through very different means. The relation between Tsymbaliuk’s operators to wreath
Macdonald theory does not seem straightforward but could be interesting.

1.2. Towards bispectral duality

In the case r = 1, the eigenfunction equation (1.2) is particularly interesting when juxtaposed with
the Pieri rules [9]. To make this apparent, introduce a continuous extension of the discrete parameters

A= (/l],...,/l]\])i
S; = q’litN_i, Sy ={s1,...,Sn}

We call the variables X the position variables and S the spectral variables. It is natural to interpret the
spectral g-shift T, 5, P,[ Xy ; g, t] as adding a box to row i of the partition A. For a certain renormalization
Pa[Xn;q,t] of PA[XN;,q,t], we can write the Pieri rules as
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~ n(n-1)
en(xt,...,xn)Pa[Xniq,t] =t 2 Z - l_[ Ty s:PalXniq.t]. (1.5)
Ic{l,..,N}\iel Si SJ iel
|I=n Jel

The fact that no shift operator 7} s, appears more than once enforces the well-known support condition
of the Pieri rules: the 13,, [ X~ g, t] that appear on the right-hand side of (1.5) are such that u\A contains
no horizontally adjacent boxes. However, we can view the eigenfunction equation (1.2) as describing
multiplication by e, (s, ...,sy). The similarity between (1.2) and (1.5) is reflective of a symmetry
X N & S N -

This symmetry is the subject of many beautiful works in Macdonald theory. A totalizing per-
spective on this was given by Noumi and Shiraishi [13], who produced an explicit function
InN(st, ..., sNlxg, ..., xN) satisfying

(g eN T gV g W . xn) = Pal X g, 1]

fN(Sl,...,SN|X1,...,XN)ZfN(xl,...,lesl,...,SN).
Discretizing the x-variables as well, we obtain the well-known evaluation duality [9]:
5 N-1 N-2 5 ( A, N-1 1, N-2 bl
Pa(g"t™ =, q*t™ gt ) = Pu(q T T gt g,

The evaluation duality is also a consequence of the Cherednik-Macdonald-Mehta formula [2], which
can be regarded as a remarkable statement about the quantum toroidal algebra Uq,t(gfll) and its Miki
automorphism. The Xy < Sxn symmetry has also been extended by Etingof and Varchenko [3] to
the much broader context of traces of intertwiners for quantum groups, although we note that in their
setting, finding explicit formulas is difficult. Finally, the symmetry is also a case of 3d mirror symmetry
as proposed by Okounkov [1].

For the wreath case r > 1, the spectral variables should also have color. We assign sl(l) to some b
suchthatb — Ay =i+ 1 mod r:

(l) q/lp,th.I—b.

Here, we point out a natural motivation for imposing our compatibility condition between core, (1) and
N, — it forces there to also be N; spectral variables of color i. The eigenfunction equation (1.4) then
describes multiplication by en(s(p ) s(P )) Note that adding a box to a row will not only contribute
a g-shift but also change the color, and that 1s precisely what the cyclic-shift operators 7y do. Work of
the third author [19] provides one constraint on the support of the wreath Pieri rules. Namely, for a box
(a, b), if we call the class of b — a mod r its color, then P, [Xy,; g, t] appears as a summand of

en(Xp.1s--->%p N, ) P2[XN,: q,1]

only if p\A consists of n boxes of each color such that no boxes of color p and p + 1 are horizontally
adjacent. One can check that the combinations of 7 ~appearing in (1.3) enforce this condition after

swapping x(l) - sl(i). Computer calculations done by the second author also confirm a wreath analogue

of evaluatlon duality. While we are still a long way from establishing a wreath analogue of the Xy < Sy
symmetry, our strange operators seem to go out of their way to say it must be true. Generalizing any
of the aforementioned perspectives for understanding this symmetry must surely lead to interesting
mathematics.
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1.3. Outline

Section 2 introduces the wreath Macdonald polynomials. It includes a review of the combinatorics of
r-cores and r-quotients. Section 3 focuses on the quantum toroidal algebra and its representations. We
derive eigenvalues for the infinite-variable analogues of our operators. Section 4 moves onto the shuffle
algebra. We write the action of a shuffle element on the vertex representation as the constant term of a
series. Section 5 is the technical heart of the paper. We derive integral formulas for our operators and
compute the integral. Some additional efforts are needed to go from the infinite-variable eigenvalues
to their finite-variable versions. Finally, in the Appendix, we derive integral formulas for wreath ana-
logues of Noumi-Sano operators. Unfortunately, for these operators, we were only able to evaluate the
integrals for degree n = 1. Throughout, we present examples following the derivation of each of our
operators.

2. Wreath Macdonald functions

Fix a positive integer r and let I = Z/rZ.

2.1. Partitions

Let Y be the set of all integer partitions. We define the diagram of a partition u = (uy,u2,...) € Y
to be D(u) = {(a,b) € (Zs0)®> : 0 < a < pps1}. The residue of (a,b) € Z? is the element
b—acZ/rZ.

2.2. Edge sequences and partitions

A function b : Z — {0, 1} can be viewed as an infinite indexed binary word - --b(1)b(0)b(-1) ---;
notice that in writing such a word, we index the positions in reverse order. An inversion of b is a pair of
integers i > j such that b(i) > b(j), a 1 to the left of a 0. An edge sequence is a function b : Z — {0, 1}
such that b(i) = 0 fori > 0 and b(i) = 1 for i < 0; that is, b has finitely many inversions. Let ES
denote the set of edge sequences. The shape of b € ES is the partition whose French partition diagram
has boundary traced out by the values of b from northwest to southeast where O (resp. 1) indicates a
vertical (resp. horizontal) unit segment; see Figure 1. Its parts are given by the number of 1’s to the
left of each O in the edge sequence. The charge of b is the index of the segment that touches the main
diagonal from the northwest, or equivalently the index of the last O in the edge sequence of the form
---0011 - - - obtained from b by repeatedly swapping adjacent pairs 10 to O1 until none remain. There is a

bijection
ES—>7ZxY
2.1
b — (charge(b), shape(b)).
Example 2.1. An edge sequence b and its charge and shape are pictured in Figure 1.
2.3. Cores and quotients
Our goal is to define the bijection
Y=C xY"
(2.2)

A = (core, (1), quot, (1)),

where core, is the r-core and quot,. is the r-guotient map.
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®
0|5
[
0|4
3 2
]
0|1
® R
olo."
N
”
0|-2
-3
”
0|-4
5 6
1 1
I 5|413|2|1]0||-1|-2|-3|-4|-5|-6

charge(b) =0 shape(b) = ‘

Figure 1. The shape of an edge sequence.

In the following diagram, all horizontal maps are bijections and vertical maps are inclusions.

ZXY < chargexshape ES S BS” c*xquot,. N G
{0} x ¥ ¢ ESy » (BS")y ——— Ox ¥ — s ¢,y
{0} x C, ul s QX"

Elements b* = (b°,b',...,b""!) € ES" are called abaci. We may write them as {0, 1,...,r — 1} XZ
matrices with entries in {0, 1}, where a 0 is a bead and a 1 is a hole (position with no bead) and the i-th
row represents the edge sequence b’ and is the i-th runner in the abacus.

There is a bijection ES — ES” sending b to (b°,b!,...,b""!) by letting b’ select the bits in b
indexed by integers congruent to i mod r: b'(j) = b(rj +i) for0 <i < r and j € Z. The inverse map
is given by interleaving the sequences b, b', ..., b"~!. This bijection is charge-additive: charge(b) =
Z;;l charge(b”). The r-fold product of the bijection (2.1) yields the bijection ES” = Z" x Y”. Denote
thisby b* = (b°,...,b" 1) > ((co,...,cr-1),A%). We write 1°* = quot, (b*); this is the r-quotient. Call
(coy--.,Ccr—1) = c*(b®) the charge vector. This indicates the position on each runner where the beads
end after pushing all beads to the left. This defines the bijections going across the top row of the diagram.

We now restrict all these bijections. Let ESg = {b € ES | charge(b) = 0} and (ES")y = {b* € ES" |
Z;OI ¢;(b®) = 0}. Then c*(b*) can be viewed as an element of the sl root lattice Q (and belongs to the
zero lattice O = 0 when r = 1). The second row of the diagram (save the last map) is given by suitable
restrictions of the top row of bijections.

An r-core is a partition y which does not have r as a hook length. That is, h, (i, j) # r for all
(i,J) € y. We denote by C, c Y the set of r-cores. Let y be a partition and let b € ES be such that
shape(b) = y. Then v has a box (i, j) € y with hook-length r, that is, &, (i, j) = r, if and only if there
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is an index k such that b(k) = 1 and b(k +r) = 0. This is equivalent to u®) # @, where u*® = quot,. (y)
and we take superscripts mod r. This proves that y is an r-core if and only if the r-quotient of y is empty:
quot, (7) = (@").

Therefore, the bijection {0} X Y = Q X Y" restricts to the bijection {0} X C, = Q X (@"), that is,
C, = Q. We call this bijection «.

Example 2.2. Let b € ESp be as in the previous example. We have A = shape(b) = (4,3,2,2). Set
r=3.Wemap b > (b°, b, b*) which are pictured in the matrix below. Reading up the columns of the
{0, 1,2} X Z matrix, we recover b. Each runner of the abacus is an edge sequence; the corresponding
shapes give the 3-quotient of (4, 3,2,2), which is (1, @, 2).

To get the 3-core of A, we move all beads to the left in each runner. This produces the second abacus.
Reading up columns, we obtain the edge sequence a@ = --- 0001|1011 - - - . Therefore, core3(4,3,2,2) =
shape(a) = (2). The charge sequence is (1,-1,0) € Q.

i [[---[5[4[3]2[1[0][-1]-2[-3]-4]=5]=6]-- -
bi|[---o[o[T[t[o[of[ T[0T [0 [ 11

2 1 0]1-2-3
BTlo 1 01 1 1
p'0 0 0 |0 1 1
B0 0 1 |1 0 1
— & 0 & — 0 — O —O0— O
—eo o o o o o - %)
—e & o 0 e 0o |
—e & o o0 —o—o— 1
—e—o o e o —o— -1
—e o & o O 0 - 0

W
~
W
(V8]
p—
(e}
|
i
|
[}
|
w2
|
N
|
W
|
(@)}

core- o foloofo[o[1][T[O[1 |11 |11 o

Remark 2.3. Our map quot, and our definition of charge are the same as in [19], except that we
interchange the roles of black and white dots in our Maya diagrams.

When considering a fixed r, we simply write core = core, and quot = quot,..

2.4. Cores and ribbons

Consider p,A € Y such that 4 c A. The skew shape A/u := D(A) — D(u) is a u-addable and A-
removable r-ribbon if || — |u| = r and the set of boxes 4/u is rookwise connected (i.e., any two boxes
in A/u can be connected by a chain of horizontally and vertically adjacent boxes in A/u) with at most
one element on each southwest-northeast diagonal. Then an r-core is precisely a partition that has no
removable r-ribbon. One way to obtain core(u) is to repeatedly remove (removable) r-ribbons starting
with y until an r-core is reached; by definition, this is core(u). This is well defined: one obtains the
same r-core independently of the order of removal of r-ribbons. It is the same as moving the beads in
the abacus to the left.
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10 D. Orr, M. Shimozono and J. Wen

2.5. Cores to root lattice

Recall that Q denotes the sl, root lattice (or Q = 0 in the case r = 1), realized as the zero sum elements

in the lattice Z/:
Z Ci = 0}

i€l

Q = {(Co,. ..,Cr_l) S ZI

Let €; € Z! be the i-th coordinate vector. Then Q is the spanned by the elements
; = €1 — €, iel.

We realize the simple roots of s, as the a; fori # 0.
Another way to compute the bijection k : C — Q is as follows. Define the map x : Y — Q by

k(u) =- Z Ag—p.
(p.q)ep
It is not difficult to show that the restriction of « to C is the same as the bijection C = Q constructed above.

Example 2.4. Let r = 3 and consider the 3-core (2). We put a,,—, into the box (p, g):

0[]

Thus, k((2)) = —(ap+a3z) = a;, which agrees with the charge sequence (1, —1,0) € Q computed above.
Define the bijection big : Q x Y/ — Y via the following commutative diagram:

(core,quot)

Y —————s CxY!
lmd (2.3)

oxY!

big

Example 2.5. We list the elements u* € Y/ of total size 2 and their images under u® + big(—a, u*).

| f

aﬂmﬁmﬁﬂ@jﬂéﬁgﬂmﬁﬁéﬂ
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2.6. Symmetric functions

Let A be the algebra of symmetric functions over K = Q(gq, ?) in infinitely many variables [9, §1.2].
Denote by AT = A®! the I-fold tensor power of A over K, which is a graded K-algebra with grading
given by the sum of degrees in each tensor factor. For f € A, we write f[X ()] to indicate the element of
A with 1 in tensor factors j # i and f in factor i. The power sums py [X?] fori € I and k > 0 generate
Al as a K-algebra. We write X* for the I-tuple of alphabets (X(?, ..., X"=1) and often denote by
f[X*] a generic element of A’. Note that each alphabet X () itself contains infinitely many variables.

For an I-tuple of partitions A° = (1@, A0 A0=D) e Y/, define the tensor Schur function s+ =
®ie, $a6 = [Tier $20 [X(i)] .Let (—, —) be the Hall pairing on Al whichis givenby (sas, Sy0) = 040 .
For f € A, we denote by f* be the adjoint under the Hall pairing to the operator of multiplication by
- Explicitly,

PElXDL, pu[ X1 = 060 mi

where we view p,, [ X Y )] as a multiplication operator.
For any a € K, define the K-algebra automorphism Pyg_, -1 of Al by

Pia-ay-1 (P X]) = pi[XD] = a* pi [X V] 2.4)
for all i € I and k > 0. (The notation Pyy_,, -1 arises from more general matrix plethysms P4 for

A € Mat;«; (K) defined in [15].)

2.7. Wreath Macdonald functions

For a partition 4, let H [ X*; g, t] be the wreath Macdonald functions [7, Conjecture 7.2.19], as defined
in [19, §2.3].' These are characterized by the conditions

Pid—q)(‘lH/l [X.; q, t] € szquot(/l) + @ quuot(v) (2.5)
K(V‘;zﬁ(/l)
Pty HalX*: 4.1 € K¥squany + D Esquorn) (2.6)
v<d
k(v)=k(Q)
(s XL HalX";q,1]) = 1, @7

where n = |quot(1)| and < is the (strict) dominance order on partitions [9, §I.1].

For any A € Y, the wreath Macdonald P-function P,[X°®; g, t’l] is defined to be the scalar multiple
of Pig_s-1,-1 (Ha[X*; g, 1]) in which the coeflicient of squor(1) is 1. In particular, P [X*; g, 717 satisfies
the unitriangularity

P/I[X.;q,t_l] € Squot(2) t @ quuot(v)-

v<Aa
k(v)=k(Q)

For any fixed a € Q, the P,[X*;¢,t!] such that k(1) = a form a homogeneous basis of A, with
P[X*;q,t™'] having degree |quot(1)|.

Our notation P,[X*;q,t”'] agrees with the usual conventions in the classical » = 1 case. For
technical reasons, it is often convenient to work with P,[X*; g, t~!] rather than P,[X*; q,t], though we
will eventually switch to the latter.

In the more general framework of [15] (due to Haiman), these are the wreath Macdonald functions attached to translation
elements in the affine Weyl group of type A,_;.
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2.8. Symmetric polynomials

For any N, = (N, ..., Ny_1) € (Zs0)", we can consider a finite set of variables

. i)yiel
Xy, = {1,

and the corresponding restriction map

) . 16nN;
v A o AL = QERY, | 2.8)
i€l
. Ni N\ .
PalXOT 5 3 (57)" = palx]
=1
given by the tensor product 7y, = ®;crmn,, wWhere iy @ A — K[xy,... ,xN]GN is the standard

projection to symmetric polynomials. We also write 7y, (f) = f[Xn, ]

2.9. Finitization

Our main result will characterize the images P [Xn,; q,t] := nwn, (P2[X®; g, t]) as eigenfunctions of
explicit g-difference operators. For reasons which are clarified in Remark 5.7 below, we will only
consider variable number vectors N, for P, which are compatible with core(1) in the following way. If

k(1) = a = (co,c1,...,cr-1), then we stipulate that P, will only be assigned variables X, where N,
is equivalent to —x(1) modulo Z(1, ..., 1); that is,

Ni = Ni-1 = (¢] , k(1) = (¢ ,@) = ci-y —c;,  foralli €1, (2.9)
where

o a; is the coroot for i # 0;
0@y =-—@p = —Q_(;
o (—,-): QY X Q — Zis the standard pairing between sl root and coroot lattices.

Identifying the lattices Q" = Q and realizing Q inside Z! as above, (-, —) becomes the dot product on
Z' and @) = €y — ¢ foralli € 1.

Example 2.6. In the setting of Example 2.2, the root lattice element is k(1) = (1, —1,0). The smallest
variable number vector which we allow for 1 = (4, 3,2, 2) is therefore N, = (0,2, 1). To this we can
add the vector (1, 1, 1) any number of times.

Lemma 2.7. Under the compatibility condition (2.9) between Ny € (Zs0)! and a € Q, we have the
following:

1. The quantity
INo| := > N;
i€l
is divisible by r.
2. For A € Y with k(1) = @ and £(2) < |N.,|,
Ni=#{1 <b < |Ne|:b—-Ap =i+ 1modr},

where we count A, = 0 if €(1) < b < |N,|; in particular, quot(A) = A° satisfies (1)) < N; for all
i€l
3. Forany A* € Y! satisfying (1)) < N; for all i, the partition A = big(1*, ) satisfies £(1) < |N,|.
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Proof.

1. This follows from the fact that N, and —« (1) are congruent modulo Z(1, ..., 1), and the coordinates
of the latter sum to zero.

2. This follows from [9, I.1, Ex. 8] after taking our labeling conventions into account.

3. For any edge sequence b, the length of shape(b) is precisely the number of 0’s positioned to the right
of at least one 1. Given @ € Q, our choice of N, ensures that the number of 0’s positioned to the
right of 1’s in the interleaved edge sequence defining A will not exceed |N,|. .

An immediate consequence of parts (2) and (3) of Lemma 2.7 is the following:

Proposition 2.8. Under the compatibility condition (2.9) between N, € (Zs0)! and a € Q, the wreath
Macdonald polynomials Py[XN,; q,t] indexed by A € Y satisfying €(1) < |N.| and k() = « form a
basis of Afv..

3. Quantum toroidal algebra

To ensure compatibility with [19] and [17], we assume that r > 3 from this point on.?

3.1. The algebra Uq,h(s'flr)

Let g and d be two indeterminates, and set F := C(q% , b%).

3.1.1. Generators and relations
Fori,j e I =7Z/rZ, we set

2 j=i
aj = -1 j =7+
0 otherwise

o _Fl =il
Mii =10 otherwise
and we define
_ %z -1
8i,j(2) = T qi

The quantum toroidal algebra U ,,(s1,) is a unital associative F-algebra with generators

-1 xb  xd) xdyykeZ
{ei,k9 ﬁ,k’wi,k’¢i,0’ 7’+2’q+ ]9q+ 2}1‘:[ *

Its relations are described in terms of currents:

-k
ei(z) = Z € k2

keZ
fi@) =) fuad™
keZ
V2 =i+ ) i

k>0

2See Remark 5.15 and Remark 5.22 for discussion of the cases r = 1, 2.
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14 D. Orr, M. Shimozono and J. Wen

The relations are then
[vi(2),y7(w)] =0, y*1 are central,

1, %71 _ 3 L +d Fd| _ tdy Fdy _
YioWio =72y 2= =477 =1,

a%e; ()0 =ei(a7'2), ¢V fi(2)a™ M = fi(a7 ), qyF () =y (a7 ),
a%ei(2)a” = qei(2), a2 fi()a™" = 97" fi(2), 4Py ()™ =y (2),
81 (7D 2w (W (W) = gy (0" 2w T (W) (2),
ei(2)ej(w) =g (0" z/w)ej(w)e;(z),
F@ 5 w) = g0 00 2/w) ™ f5(w) i (2),
(@ =07 eil@), £100)] = 815 (60w /207 () = vz fwiv; (v32)),
UE@)e;(w) = giy (Y520 2/ w)e; (w)vE (),
W) f3(w) = iy (T I 2 w) L f () (2),
Sym,, . [ei(z1), [ei(22), €1 (W)]glq1 =0, [ei(z), e;(w)] =0for j #i,i+1,
Sym,, ., [fi(21). [fi(z2)s it 00)algt = 0, [fi(2). f5(w)] = Ofor j # i,i + 1,

Here, §(z) denotes the delta function

6(z) = Z Z*

kezZ

k+0

and for v € F, [a,b], = ab — vba is the v-commutator. We will also work with elements {h; x};7;

defined by

i) =yiyepl=@—a) > hia™). 3.1)
k>0

Finally, we denote by

o 'U the subalgebra obtained by dropping the generator q¥';
o U’ the subalgebra obtained by dropping the generator q%2;
o 'U’ the subalgebra obtained by dropping both generators ¢! and q<.

3.1.2. Miki automorphism

We recall that Uy ,(s1,) contains two copies of the quantum affine algebra U, (s1,.). The first, called the
vertical copy, is generated by currents where i # 0. This copy is given in the new Drinfeld presentation.
However, the second copy, called the horizontal copy, is generated by the constant terms of all the
currents. This copy is given in the Drinfeld-Jimbo presentation. We do not go into detail on these two
subalgebras as we will not need them in the sequel. However, we mention them because they give the
‘two loops’ of the quantum toroidal algebra. Let 1 denote the C(q)-linear antiautomorphism of 'U’
defined by

n(d) =o'
n(eik) = ei—ks N(fik) = firs n(hik) = =y ik, (3.2)
n(Wi0) = v n(y?) = 7.

The following beautiful result of Miki gives the ‘S-transformation’ of the torus:
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Theorem 3.1[10]. There is an algebra automorphism s of 'U’ that sends the horizontal copy of U, (sl,)
to the vertical copy. Moreover, ¢ satisfies ¢~' = n¢n.

3.1.3. Heisenberg subalgebras

Recall the generators {/;, ,,}"#0 defined by (3.1). Together with yi%, these elements generate a rank r
Heisenberg algebra. The relations are

(y" —yT)d i [na; g

[Ain, hjw] =0n-w G—an (3.3)
7% is central,
where [n], is the usual quantum number:
vt —y
[n]y = 1
Y
We define dual elements {h,}!7, 10
o= a"(a-q )n Z g =k . k.
i,n — _ _ j—k,n
(1 nrbnr)(l nrb nr)[ ] =
) (3.4)
q"(a—q )n K k
htJ_ -n = qn(1+ )bn(l )ht —j+k,—n-
(1 _ nrbnr)(l _ nrb nr)[ ];0
Lemma 3.2. The elements {htn} are characterized by
[hllnv h ] = [hj,n’s hll_n] = 5i,j5n,n’('yn - 'yin) (3.9

fork > 0.

Proof. Equations (3.5) obviously characterizes these elements. For n > 0, let M,, be the matrix r X r
matrix

(Mn)ij =d"""" [na; .
We view the rows and coloumns as indexed by /. Equation (3.3) can be rephrased as

"=y

[Ain, Bj—n] = (Mn)ijm'

For any r X r matrix A (with rows and columns indexed by 1), set

Ahi,n = Z Akihk,n’ Ahi,—n = Z Akihk,—n-
kel kel

‘We then have for n > 0,

(" =y™)
(q—qHn’

"=y

[Ahin, hj—n] = (AT My,);; PRI

[hjns Ahi_n] = (M, A)
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Thus, to obtain (3.5), we need to invert M,,. To that end, we factorize M,,:

(@ +1) —q"d" 0 e 0 —q"d™"
—q"d>" (q2” + 1) —d" 0 ce 0
M, = [n]q”™" 0 e (qz" *h -4 0
=
0 R 0 - (q2n +1) —q"™"
—q"d" 0 . 0 —q"0™" (g™ +1)
1 0 . 0 —q"d" 1 —q"d" 0 ce 0
—-q"o™" 1 0 0 0 1 —q"d"
= [n]eq™" 0 —-q"d™" 1 0 1 0
N T c. ,1.'7,1 O 0 0 '.‘_qnbn
0 . 0 —q"d 1 —q"o" 0 .. 0 1
Inverting the last two matrices, we obtain (3.4). O

We denote by U° the subalgebra generated by {yi%} U {hi,k}f:IO an call it the vertical Heisenberg
subalgebra. In analogy with 3.1.2, we call ¢(U°) the horizontal Heisenberg subalgebra.

Remark 3.3. In [19], the author defines elements {b;, } in terms of a pairing that is not used in this
paper. By comparing the commutator (3.3) to the pairing in loc. cit., we have that

1 _ _pL
hi,k - _bi,k'

3.2. Vertex representation

Uqg.n (s1,) directly interacts with the wreath Macdonald polynomials via its vertex representation, origi-
nally constructed by Yoshihisa Saito [16].

3.2.1. Twisted group algebra
Recall that Q and Q" denote the s, root and coroot lattices, respectively, with simple roots {a j}’.‘1

Jj=1
simple coroots {ajv- ;;11 ,

and canonical pairing (—,—) : QY X Q — Z:
(o a)) = ai;.

Let P denote the s, weight lattice and {A, };;11 the fundamental weights. We will also need

r—1 r—1
\% \Y%
ao——Za], ay =— a;, A =
J=1 J=1

We have that {ay, ..., -1, Ar_1} is a basis of P.
The twisted group algebra F{P} is the F-algebra generated by {e® };;21 U {e/1} satisfying the
relations
e = (_1)((115’,11])6(11-@(1,-

eiphr-1 = (_1)5i,rfleArfleu’i_
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Given a general @ € P, we write @ = Zr _,mja; +m,A,_ and then set

mo@y | My 1Qro1 My Ny

e =e ceMr1@r-le

For example,

e = 6—2026—303 L. e—(r—l)a,,lerA,,l

(3.6)

@ 023203 . e(r—2)ar71 e_rAr—l

e =e

Define F{Q} to be the subalgebra of F{P} generated by {e {:]1

3.2.2. Vertex operators
The vertical Heisenberg subalgebra U has a Fock representation F, defined as follows. Let Y denote

the subalgebra generated by y% and {A;, k}lk€>10 U9 has a one-dimensional representation Fy where y%

acts by q% while A; ; acts by 0. F; is then the induced representation

= IndU oFq = K[h, _e]k=0.

iel
The vertex representation is defined on the space W := F,, @ F{Q}. For v @ e® € W where

V= hiy - iy —ky VO
r—1

a= Z mjaj,
=

we define the operators #; eP, 8, 70 and d by

i

hix(v®e?®) = (hjrv) ®e?, Pvee?) =ve(fe?),
o (v®e?) = (), a)v®e?,

ZHi’O(V ® e(t) = Z(aiv,a)b% 2;;11(uiv,mja/j)m[,_,'v ® e, 3.7
dv®e?) :=- M+ik- vRe®
' 2 i=1 l ‘
Theorem 3.4 [16]. Let ¢ = (co, . ..,cr—1) € (F*)". The following formulas endow W with an action of

pelei(2) = ci exp(z T kzk)

k>0
k
q? a 1+H o,
X exp ikZ iz
( 2T, )
(=1)roee qt
pa(fi(2) = ———exp| - Z[] 2"
Ci k>0 -9
.
q? -k ,—a; 1-H;
X ex ——h ez " e Mg T,
p(];) [klq " )
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pa(Wi(2) = expl£(@=—a7) > hiaxz™ a0,
k>0

1 1
pz(¥?) =q7, pz(q") = q”.

3.2.3. Embedding symmetric functions
We can let A’ act on F, via multiplication operators given by

. k
x@ —h 3.8
pr[ XY - TR k (3.8)

for k > 0. To obtain an identification W = A’ ® F{Q}, we need to embed K into F:
g=abd, t=qd". (3.9)
Applying pz to (3.5) sends y + q. Thus, as operators on A’, we have the identification
pilX D1 ki
Now consider transforming the formulas for pz using matrix plethysms on {p;[X]}. We can
obtain an isomorphic representation as long as we perform a corresponding transformation on {/; 1}

to maintain the commutation relations, using (3.3) as a guide. First, we define pg by performing the
plethysm

PelX DT 5 8 (pilX 0] = pe [XV]),

For p::_, we will only be interested in the currents {e;(z)}, although we have a representation for the
entire algebra:

Ei(2) = pi(ei(2)) = crexp

I;)(pk (X1 -1 py [x“-“])%l

. (3.10)
xexp| ) (-pilx 1+ +q-kpk[X“'-“]l)z—leafz“wo.
k
k>0
Similarly, we define p_ by performing the plethysm
pelX O] o q78 (FpelX 0] = pe[x6]).
Here, we will only be interested in the action of the currents { f;(z)}:
3 (_1)V5i,0 ; - 7k
Fi(2) = p(fi(2) = ———exp| 3 (=" pu[X V] + pe[X V1) -
k=0 3.11)

X exp

-k
i i Z —a 1-H:
> (qkpk[X”]L—pk[ﬂ 1>]l)— e~z Mo,
k>0 k

The following is a consequence of the main result of [19]:

Theorem 3.5. Under both representations p::f, ¢ (U°) acts diagonally on {P1[X*;q,17'] ® eXV}.
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Remark 3.6. The paper [19] is concerned with the transformed wreath Macdonald functions
{Ha[X*;q,t]}. The plethysms used to define p7 are both scalar multiples of the plethysm Pjg_,-1 -1

which sends H,[X*; ¢, t] to a scalar multiple of P;[X*;¢q,17'].

3.2.4. Normal ordering

Later, we will make use of a particular expression for products of the currents {E;(z)} and {F;(z)}. We

will need notation for an ordered product or composition of noncommuting operators ay, . . .

—1=2

a;=ayaz---am
j=1
X\
m
l_laj = aAmQm-1 - aq

~.
I
—_

Proposition 3.7. For p € I, we have

n

l_[ lL[Ep+i(Zp+i,a)
a=1 i=1
(( 1)(r 2) (r— %) r ll_[Ci)n

iel

(1- Zi,b/Zi,a)(l - qiltilzi,b/Zi,a)
X

I<a<bz<n iel (1 - t_IZi+l,b/Zi,a)(1 - q_lzi—l,b/zi,a)
Zp,a/zp+1,a

n
X
g (1 - q_lzp,a/zml,a) Hiel\{p+l}(l - t_lzi,a/zi—l,a)

n k
<[] exp(z P peIX O =1y [X“—”])Z"T’“)

iel a=1 k>0

n -k
<[] exp(Z S (-prIX O g e [x D))

iel a=1 k>0

where all rational functions are Laurent series expanded assuming
|Zi,a| = 17 |Q| > 17 |t| > 1

For the F-currents, we have

1—1 l_le+l(Zp+l a)

a=1 i=
n
(r-2)(r-3)
(-1
= P
1
iel

- Zi,al %, b)(l - qui,u/Zi,b)
1 —1zi-1 a/Zl b)(l - qu+l,a/Zi,b)

< 1 Tl

1<a<b<n iel

https://doi.org/10.1017/fms.2025.10061 Published online by Cambridge University Press

9am:

(3.12)

(3.13)

(3.14)

(3.15)



20 D. Orr, M. Shimozono and J. Wen

% ﬁ Zp+1,a/Zp,a
1- qZp+l,a/Zp,a) Hie]\{p}(l - tZi,a/Zi+l,a)

= k
L eXP(Z (- o lx 1+ p [X“-”J)ZiT’“)

iel a=1 k>0
k n
X]_[GXP(ZZ(C] Pk[X(')]J‘—pk[X(' 1) ) 1a) Zz lo
iel a=1 k>0 iel a=1

where all rational functions are Laurent series expanded assuming
|zial =1, Iq| <1, |t| < 1. (3.16)

Proof. The computation is standard. We will only go over the signs and powers of d. The sign comes
from the commutation of {e }; in both cases, these factors simplify to +¢9. For the E-currents, if p=0,
then by (3.0),

e = eVAr—le—(V—l)ar—l 6_3036_202.
Thus,
(r=2)(r-3) (o _ _
ePe® ... o1 = (_1)72 erAr_le (r-2)a,_y e 2a3e a
However, if p # 0, we have
r=DE=2) ¢ _ _
e(loe(yl — (_1) 3 1@ (12.”6 Q|
T-DH(F-=2) l)(r 2 .2 _ _
_(_) +r 3(3 L 2
(r=2)(r-3) 2)(r 3) _ _
_( D P Bl

(r- )(

which also leads to a sign of (—1) . For the F-currents, first consider the case p = 0.

P P R L Pl = (- 1)r+(r (-3 —2aze—3a3 . e—("—l)(lf—r—ler/\r—l
_ ( 1)r+(r 2 r-3) rA,,le—(r—l)ar,l '-'6_3026_202.
If p # 0, then we use that
e~ @ pma0 — (_l)r —a r/\,A,le—(r—Z)a/r,l . e—ZQge—arz
_ (R g g

Finally, note that Fy(z) also has a sign of (—1)". The power of d comes from the interaction between
{z*Hio} and {e*®}. First observe that when considering E;(z; o) and E;(z;,;,) for a # b, the powers
of d from j =i —1and j =i+ 1 cancel out. When a = b, there is a total power of 2!, The case for
{F;(z)} is similar but inverted. O

3.3. Fock representation

While our main focus will be on the vertex representation, we will consider another representation of
U, v (sl,), called the Fock representation. Our goal will be gain some knowledge on the eigenvalues
implicit in the statement of Theorem 3.5.
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3.3.1. Definition

In order to define the Fock representation, we will need some notation for partitions. For a partition A,
let O = (a, b) € D(A). We set the following:

1. yo= q“tb , the character of the box;

2. ¢g = b — a modulo r (its color);

3. d;(2) the number of elements of D (1) with content equivalent to i modulo r;
4. A;(1) and R; () the addable and removable i-nodes of A, respectively.

Finally, we will abbreviate a = b mod r by simply a = b and use the Kronecker delta function
Oa=b = Oa-b,0-
Let v € F*. The Fock representation F(v) has a basis {|4)} indexed by partitions.

Theorem 3.8 [5], cf. [19]. We can define a 'U-action t, on F(v) where the only nonzero matrix elements

of the generators are
l_[ (X o~ qu l)
z ) meR; (1)

Xav l_l (xo — xm)

meA; ()
m£0

[ (qxu - q_l)(.)

) meA; ()

</l|el(Z)|/l + |:|> = 5CD:i(_b)di+l (1)5(

Z
XaV

B0

l_[ q(xo — xm)

mER; ()
(az -9 ' xwv) (a7'z - axmv)
(z = xuV) n (z = xmv)

A+ 0] f(2)|A) = Sepei(=0) i1 D 5(

k)

W@y =[]

meA; ()

A7) = 1, (Ag® |2y = g1,

mER; (/l)

3.3.2. Tsymbaliuk isomorphism
The representation 7,, on F(v) has a cyclic vector |@). However, pz and p::f also have the natural cyclic
vector 1 ® 1 € F, ® F{Q}. The following theorem was proved by Tsymbaliuk:

Theorem 3.9 [17]. Let

(£=2)(£-3) b5
p= () 3.17)
Co---Co—1

The map of cyclic vectors
FW)s|@)y—10®1eW

induces an isomorphism between the 'U’-module T, and the ¢-twisted modules p; o g, Pé‘f og.

The Tsymbaliuk isomorphism is defined only in terms of cyclic vectors. In light of Remark 3.6, the
following result from [19] provides more detail on the Tsymbaliuk isomorphisms:

Theorem 3.10. The Tsymbaliuk isomorphisms (Theorem 3.9) between 1, and pg send
Fl1) — IF(P,, (X% g, ® eKW).

Thus, we can study the eigenvalues of ¢(U°) on P, by instead studying the eigenvalues of U° on the
basis {|1)}.
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3.3.3. Infinite-variable eigenvalues
From the formulas in Theorem 3.8, we can see that

</l|l//lt(1)|/1> — qi(|Ai(/l)|—‘Ri(/l)|).

|

l—[ "az—a ' xav) a* (a7'z - axmv)
Z—xwv) oty (@ xmv)

Therefore,

(i(q a b Z h; +kak)

k>0

€A (
F2ky , +k sokey ek |V
=exp| )| D) (=0t + 3 (-t |
k>0\meA; () mER; ()
Taking logarithms, we see that for k > 0,
+k
v [k]q :k +k +k :k
Whisel) = —~—| > a > a
meA; (1) WER; ()
(3.18)
=—— D oy - D) (e

meA; () HER; ()
Using (3.18), we can try to piece together elements of U° whose eigenvalues are elementary symmetric

functions in {g*%*0}.
For k € Z-¢ and p € I, let us define

hpi o= Dy 3.19
Pk (]_tk,)z (3.19)

ok = (= a)

Lemma 3.11. Assume |t*'| < 1 (where ‘+” and ‘=’ are separate cases). For p € I, we have

</l exp[— Z hp ax(=2)FFvk [k]ql /l>

k>0
Fk
+ + —<
= exp -Z Z g R kb % (3.21)

k>0 b>0
b-Ap=p+1

- 1_[ (1+q:t/lbtj:bzil),

b>0
b-2p Ep+1

where we set Ap, =0 for all b > €(Q).
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X

Figure 2. Illustration of the proof of Lemma 3.2 1. The t-shifts on the addable black box at the bottom
results in the gray boxes. The latter are evenly spaced of interval r and have the desired color. The black
box at the top is qt times a removable box, and subtracting its t-shifts cancels out the extraneous gray
boxes.

Proof. Comparing (3.21) to (3.18), we need to establish the equality

r—1

l_ltikrztik(”l) Do - D (g™ = DD g (3.22)

i=0 mEA,_; (A BER, ; (A b>0
p=i () p=i () b-Ap=p+1

We note that here, we consider (1 —**")~! as a geometric series. The summands on the right-hand side
of (3.22) are gt-shifts of the characters of color p + 1 boxes that are the rightmost boxes in their row.
We can account for these coordinates by starting at each addable box of D (1), going straight up until
we reach a box of color p + 1, then moving upwards by intervals of r, and ending the search once we are
above the gz-shift of the removable box above it. This is exactly what the left-hand side of (3.22) does.
We illustrate this with Figure 2. |

4. Shuffle algebra

We will obtain difference operators by computing the action of ¢(U°) on the vertex representation.
However, computing the images of elements under ¢ is difficult. The shuffle algebra provides another
avatar of the quantum toroidal algebra with which we can access the horizontal Heisenberg subalgebra.

4.1. Definition and structures

Let ko = (ko, ..., kr—1) € (Zs0)" and consider the function spaces:
Sk. = F(Zi,a)ilslaSki
S := @ SE
ke€(Z20)!

The product of symmetric groups
Ok, 1= Gy X+ X G,

acts on Sg,, where the factor S, only permutes the variables {zi,a}’;i: - We call i the color of z; ,, so
Sy, acts by color-preserving permutations. Finally, let
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Sk — (Sk.)Gk.

. P s

S
ke€(Zz0)"

Unless we say otherwise, an element of S with k; variables of color 7 for all i is assumed to be in Sg, .

4.1.1. Shuffle product
We endow S with the shuffle product %, defined as follows. For i, j € I, we define the mixing terms:

(z- ) (Z—W)llfl—]
o o (qw D z) ifi+l=j
@i (@w): (z—ad'w) ifi-1=
1 otherwise.

For F € Si, and G € S;,, let F x G € Sg,4;, be defined by

1 I<as<k; k <b<k;+l;
FxG:= mSymk +, ({Zl a}lel )G({Z] b jeI ) 1—[ l_[ (Ui,j(Zi,a,Zj,b) >

i,jel 1<a<k;
kj<b$kj+lj

where for n, € (Zso)!,
n.! = l_[l’ll' = |6n.|
iel

and Sym,, denotes the color symmetrization (i.e., the symmetrization over &,, ).

4.1.2. The shuffle algebra
Consider now for each k, the subspace Sy, C Sk, consisting of functions F satisfying the following two
conditions:

1. Pole conditions: F is of the form

. (e wn

l_[ (zir — QZZi,r')

iel 1<r,r'<k;
r#r’

for a color-symmetric Laurent polynomial f.
2. Wheel conditions: F has a well-defined finite limit when
Zi
LM gd€ and
Zite,s Zi,r

Zite,s

—qd €

for any choice of i, r1, rp, s and €, where € € {+1}. This is equivalent to specifying that the Laurent
polynomial f in the pole conditions evaluates to zero at

€ —€
Zir = qb Zive,s» Lite,s = qb Zi,ry-

We set

B s

ke €(Z20)"

The following is standard:
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Proposition 4.1 [ 11, Proposition 3.3]. The shuffle product % defines an associative product on S and S
is closed under *.

We call (S, ) the shuffle algebra of type A, _;.
4.1.3. Relation to U, ,(s,)
Let

o U*c Uq,b(s'y) be the subalgebra generated by {e;(z)};<; and
o U™ c U,,»(sl,) be the subalgebra generated by {f;(z)};;-

Correspondingly, we set S* := S and S~ := S°P. The following key structural result was proved by

Negut:

Theorem 4.2 [11]. S* is generated by {z"  }"5F and
lP+(Z?,1) =€in
lP—(Z?J) = fin

induce algebra isomorphisms ¥ : S* — U*.

Finally, note that the subalgebras U* are each closed under . We will need to understand how the
antiautomorphism 7 is manifested on the shuffle side:

Proposition 4.3. For I € S, define

ns(F) := F(z; )l_“_[( b)kmk k,+1+kl 1=2(ki—1)

i€l r= brod~!

We have
VW (F) = WZ'nW_(F) = ns(F). 4.2)

Proof. Equation (4.2) is true when F = z, is a generator. To see that it is a C(q)-linear algebra
antiautomorphism that inverts d, we first observe that

2w w7 wh = wii(w,2)
bl
w(=d)wi i (7w = wit1,;/(W, 2) 4.3)
0!
w(=d)wiri(z” L w™) = wi i1 (W, 2).
b1

Now, for F € SZ. and G € S;:,

ns(FxG)

- sl ol ) [ 1 onstaesi

i,jel 1<ac<k;
kj<b<kj+l;
ki+l;
X l_[ 1_[( —p) (Kivi#lian) (ki) {cl;1+ll+1+k, 1+li-1=2(ki+;=1) ‘ @.4)
iel r= b~
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The monomial in (4.4) is color-symmetric, so we can move it inside the symmetrization. We can break
up the exponents appearing in (4.4) as follows:

(ki1 + liv)) (ki + 1) = ki ki + il + [kl + kil ] 4.5)
kivt +lit +kici + Loy = 2(ki + 1 = 1) = ki + ki = 2(k; = 1) + [Li1 + iz = 214] (4.6)
=lig + i = 2(0 = 1) + [kig1 + ki = 2k]. 4.7

In (4.5), we will assign the bracketed summand to the mixing terms, k;+1k; to F, and /;41/; to G. In a
given summand of the symmetrization, if z; , is assigned to F, then in (4.6), we assign the bracketed
summand to the mixing terms and the rest to F. However, if z; ;- is assigned to G, then in (4.7), we assign
the bracketed summand to the mixing terms and the rest to G. Then, applying (4.3), we do indeed obtain

ns(G) xns(F).
The case where F,G € S~ is similar. m]

4.1.4. Shuffle presentation of horizontal Heisenberg elements

Recall the vertical Heisenberg elements (3.21) whose actions on J(v) are related to infinite-variable
Macdonald operators. Previous work [19] gives us a better understanding of the action of ¢~! on such
elements. However, we need ¢ instead, and thus, we will apply the identity ¢ = ¢~ !5 (cf. Theorem 3.1)
and Proposition 4.3. To that end, recall the elements {ﬁ p.+k} from (3.19) and (3.20). Observe that

R q+k(_z)+kl
— hp g ———
;O TN
~ k(z+1)h itk qtk(_z)ik
‘“xpf%( (1—r=r) ) K],

~ pexp Z S R e (o 2) | gt (—2)FF
= (1-g*kr) [k]q

S exp

4.8)

=nexp|(@-a)7 Y (7 (b o) = KT Uy 1)

k>0 k

qik(_z)$kl

where in the last line, we use (3.3). Let § = (1,...,1) € (Zso)! be the diagonal vector and consider the
elements &, € S* given by

Zp+1a q Zpb
£, = Sym ]—[ [ ] @ii(zias2i0)
RO o i,j\Ki,a>»<j,b
p-n " Ip+l,a — tzph

i,jel

20,a _1 0,a
-q — Zi,a
Zp,a Ip+lal jef

-1
_ Zp+l,a—49 Zpb
Sp,n = Symna( {——t | | wi,j(zi,a,Zj,b)
1<a<b<n Zp+l,a Zp,b ijel

n
Ip+l,a Zp,a
X Z
n{qZOa ZOa)nla})

iel

(4.9)

By [19, Proposition 4.22], 5;’n € S*.
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Lemma 4.4. We have

Z( l)n n(r— l)t n(l lt—l)nr
g v nHZ:1(1 _ at a)

i (_l)nr—nb—n(r—l)tn(l _ qt)nr . (
vigh [Tgo (1 —g=a)
n=0 a=1

Remark 4.5. Note that prior to taking ¢, the series on the right-hand sides are the ones appearing in
Lemma 3.11.

Proof. In [19], it was shown that

-k (_\k
exp[(q RPN r-"c*(h;],k))%]
k>0
_ i (—l)nr(—q)_nt”r(l _ q—lt—l)nr
a" [1goy (1 = g7479)

lIl+(7-£;—7,n)zn

and

k
xp[(q—q-‘rlZ(g-l(h;,_k) e (s, ) CCIT l
k>0

)

(—q)"(l — q[)nr ) i
nz=(:) q" [T, (1 —g=9t79) (Hp )"

where

Zp+1 b —Zp,a
= Sym,, 5 l_[ Wi (Zi,a 2j.b)
q42p+1,b —Zp,a ;.

i,jel

LI
{( = “;’;;“)ﬂzw})

i€l

Zp+l,b — Zp,a
= Sym,, 5 { l_[ Wi, j (Zi,a’zj,b)}
I<a<b<n

q4Zp+1,b —Zp,a i,jel
20,a
X 1_[ t 1—[11 a
a=1 Zp+l,a Zp a

iel

(4.10)

It is helpful to recall Remark 3.3 when making comparisons with [19]. The result follows from applying
Proposition 4.3 to (4.8). We note that the mixing terms in 4.10 contribute a power of d~"("~1) before
inverting d. O

4.2. Action on the vertex representation

For F € S* and G € §~, we will present a way to compute the actions of pg(‘{‘+(F)) and pZ (Y-(G)).
Our approach was inspired by Lemma 3.2 of [6] in the case r = 1.

4.2.1. Matrix elements
The following is a consequence of computations similar to those done for Proposition 3.7:
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Proposition 4.6. For v|,v, € W, we have

f({Zi,a};:IaSki) l_[ l_[ (zia — Zi,b)(Zi,a - q_lt_IZi,b)

r—1 k;

i€l 1<a<b<k;

<V1 I_II—[Ei(Zi,a) V2> = = = 4.11)
i=0 a=1 l_[ (Zo,a—t Zr—l,b) l_[ 1_[ (Zi,a_q Zi+1,b)

1<a<ko iel\{r-1} 1<a<k;
1<b<k,_y 1<b<kiy

~ r~
k

for some Laurent polynomial f, where the rational functions are expanded into Laurent series assuming
|zial =1, |q| > 1, |t] > 1. (4.12)

However,
o g({zi,a};:IaSki) H 1_[ (zib = Zisa) (206 — q12i.a)
U iel 1<a<b<k;
Vi Fi(z, )V2> = S 413
< !:Olg ne 1—[ (Zr—1,b - tZo,a) 1_[ l_[ (zi6 = qu—l,a) ( )

1<a<k,_ iel\{0} 1<b<k
1<b<kg 1<a<k;_;

for some Laurent polynomial g, where the rational functions are now expanded into Laurent series
assuming

|Zi,al =1, lgl < 1, Jz] < 1. (4.14)

Notice that (A)i’i+1(Zi’a,Zi+1’b)_1 and wi,i_l(zi,a,zi_l,b)‘l are rational functions that we can also
expand according to (4.12) and (4.14). Thus, we can make sense of matrix elements of products of
currents multiplied by these inverted mixing terms. We do not claim that such products yield well-
defined series of operators — just that their matrix elements make sense. The following is a consequence
of the toroidal relations:

Proposition 4.7. When computing matrix elements, we have the relations

Ei(2)Ei(w)  E;(w)E;i(z)

wi,i(Z,W) - wi,i(W,Z) *+15)
Ei(2)Eivi(w)  Eii(W)E;i(2)
wiiv1(z,w) - wis1,i(w, 2) .
Fi(z)Fi(w)  E;(W)E;(z)
wii(w.2)  wii(zw)
Fi(2)Fin(w) _ Fini(w)Fi(2)
wirl,i(w,2)  wiin(zw)

Proof. We will only prove the statements for E;(z). Applying p:; to the relations from 3.1.1 yields
Ei(R)Ej(w) = g, j (0" z/w)Ej(W)Ei(z2).

Strictly speaking, when unpacking this relation, we should clear denominators. We then obtain

(= - @) E@Ew) = (0= = 1) Eiw)Ei(2) (4.17)
(07> =07 Ei(@Einr(0) = (4707 = = 1) Euat 0)Ei (2. (4.18)
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Since w; ;(z,w)™! = (z — q*w)(z — w), (4.17) directly yields (4.15). However, multiplying both sides
of (4.18) by —qw gives us

Wir1,i (W, D) Ei (2) Eir1 (W) = wi,i41(2, W)Eir1 (W) Ei(2).
This implies (4.16). O

4.2.2. Constant term formula
For F € S,:' and G € S]: , consider the rational functions

la2Na%
r—1 k;
F x{v; l_ﬂ_[E-(zi,a) Vo
i=0 a=1
(1—[ wi,i(zi,a,zi,a')) 1_[ n Wi, j(Zi,as 2j,b)
iel 1<a<a’<k; 0<i<j<r-1 1<a<k;
1<b<k;
2N
r—1 k,'
G X (v HnFi(Zi,a) V2
i=0 a=1
(1—[ (J)[’[(Z[,a’ Z[,a')) l_[ 1_[ wi,j(Zi,a, Z_/,b)
i€l 1<a<a’<k; 0<i<j<r-1 1<a<k;

1<b<k;

We can expand these rational functions into Laurent series according to the assumptions (4.12) and
(4.14), respectively. For any Laurent series, we denote by {—}¢ this operation of taking constant terms.

Lemma 4.8. For F € S;(“ and G € S, , we have

Ny
r—1 k;
l—[E (2i.a)

Fx
1 i=0 a

[

i€l 1<a<a’<k;

PEPL(F)) = - (4.19)

l—l 1_[ wi,j(Zi,a, Zj,b)

0<i<j<r-1 1<a<k;
1<b<k; 0

;i i(Zi,a»> Zi,a’)

where the right-hand side is expanded according to (4.12) and

VN
r—1 ki

Gx[]]]FGia

1

i=0 a=1

P3(P-(G)) =

[

i€l 1<a<a’<k;

Wi i (Zi,a, Zi,a/)
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where the right-hand side is expanded according to (4.14). In particular, the expressions on the right-
hand side are well-defined operators on W.

Proof. A consequence of Theorem 4.2 and the toroidal relations is that S* are both spanned by shuffle

monomials
QOD 0D 1Ok 1Dy =l
since
‘I‘+(26‘(10 o "*forl,_ll’k’”)) = €0n(0.1) " €r—Ln(r-1k,_1)
‘I’_(zg(l0 Deoox szrljll’kr'l)) = fon(0,1) * fr—Ln(r=1,k-1)-

We will check that the matrix elements coincide for these monomials, from which the lemma follows.
For the ‘+’ case, the proposed formula gives us

% Sym,, 1_”_[ red Il @niia zia) [T T[] @niiazis)

iel a=1 1<a<a’<k; 0<i<j<r-1 1<a<k;
ISbSkj
~ ~
r—1 k,j
Vi nl_[Ei(Zi,a) V2
i=0 a=1

l_[ 1_[ wii(Zi,as Zi,a’) 1_[ 1_[ wi j(Zi,as2j,b)

iel 1<a<a’<k; 0<i<j<r-1 1<a<k;
]Sbﬁkj

0

Using (4.15) to swap variables, we can move both the matrix element and the mixing terms inside
the symmetrization, where the mixing terms will all cancel out. Notice that taking the constant term
is insensitive to the labeling of the variables, and thus, the constant terms of all the summands of the
symmetrization are equal. The end result is

r— 1 k
1_[ 1_[ Z"(l ) l_ﬂ—[E Gia)|v2)p = (vilpE(eono.n) - ertnir—1.-1))|v2)-
iel a=1 i=0 a=1
0
The ‘-’ case is similar. O

5. Difference operators
5.1. Setup

Now, we will fix @ € Q, which also fixes a core. The previous two sections were concerned with
symmetric functions in infinitely many variables. Here, we will shift to working with finitely many
variables
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We will impose the compatibility (2.9) between « and the vector N, recording the number of variables
of each color. Our approach for finding difference operators is straightforward: we use Lemma 4.8 to
compute the action of p;:'(‘PJ_,(E';’n)) on a function f [X N,]. We assume that n < N; foralli € I.

5.1.1. Finitized vertex operators

Recall that Afv. denotes the tensor product over i € I of rings of symmetric polynomials in N; variables
and ny, : Al — A{v. is the natural projection. We will abuse notation and also denote the map
(nn, ®1) : AT @ K{Q} = A}, ® K{Q} by 7w, . Recall Proposition 3.7.

Remark 5.1. The action (3.7) of the operator z/-? includes a power of d. In Proposition 3.7 and
throughout this paper, we will be working with products of currents that have an equal number of
E;(z) for each i € I and likewise for F;(z). In this setup, the powers of d will cancel. Namely, because

m; i+] = —M 42 i+1, wWe have that the power of b from the action of z; o (ill be canceled by those from

the action of z_ ”2 ’. Thus, we we will abuse notation and omit the d from the action of zFi0. Applying
the Compatlblhty COIldlthIl (2.9), this leaves

ZHi,O(ed) - Z((YE/,Q) = zNi=Ni1|

Proposition 5.2. Let f € A be factored according to color:

F=]]rx0
iel
where f; € Aforalli € I. For
2l =1 gl > 1l > 1 b < 1, 5.1)

the vertex operators from (3.13) act on f such that upon finitization, we have

. (exp Z(pk[x(i)] —f_kpk[x(i_l)])§
k>0
X exp Z(—pk[X(i)] +q Fpr[ XV ) k l '°(f®e"))
. k>0 (5.2)
"(Z el 1))
_ l:INi ﬁ[ (0 _ ‘1]fl [ (i~ 1)+q—1z—1] l_[ fj[xfﬂ] ® e

- - jel
H(Z - Xl(l)) j;zi,i—l

=1
However, for
=1 0gl < 1, 1l < 1, |x] < 1,
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the vertex operators from (3.15) act as

k

i i-n1\ %

nN.(exp P~ prIX D1+ prx 1)])71
k>0

X exp

Z(qkpk (X1 - pi W”‘”ﬁ)%lf O(f @ e"))

k>0

(Zil - txl(i))
fi[xfi) +q[1]ﬁ_1[x£i—1) _Z—l] l_[ fj[xﬁj)] ®e?|.

LG jel
(Z X ) Jj#ii-1

(5.3)

— 1=

Z|~

I=

—_

Proof. We will only consider (5.2) — the proof for (5.3) is similar. First consider the ‘left’ half of the
vertex operator together with z/%-. We have

. . k
. (exp D (pelx 1 =17y [X“”])%]zﬂm(f ®e”)
k>0
N;_1 Ni-
(1 - t’lle(’_l)) (z_l - t‘lxl(l_l))
= HN,» NNy (f) @ ) = llei (7N, (f) ® e”). (5.4)

l_[(l —le(i)) n(zfl —xl(i))

=1 =1

For this to hold, we will need to impose conditions on Ix;l) |. Recall that we have the conditions (3.14)
when working with {E;(z)}. We extend these to (5.1) for (5.4) to hold. Let us also point out that the
compatibility condition (2.9) is used to obtain the factor zVi=Ni-1 after the first equality.

Next, from the ‘right’ half, we have

K
TN, (CXP[Z(_Pk (X1 +q7 pr [X(”)]l)%l : f)

k>0

=mn | AIXO =XV 477 [ ] AIXY (5.5)
jel
j#iLi-1
= il = [ g T A
jel
j#iLi-1
Here, (5.5) follows from checking on power sums pi [X?] and p [XD]. O

Remark 5.3. As in Proposition 5.2, when writing formulas involving vertex operators, we will express
them in terms of functions that are factorizable according to color:

F=]1ax.

iel

Factorizable functions span Al 50 to define an operator, it suffices to consider its action on such
functions. We can write our operators in terms of general f if we introduce colored plethystic notation.
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For instance, the terms at the bottom of (5.2) can be written as

fi[xfi) - Z—l]ﬁ_l [xii—l) + q—lz—l] 1_[ ]‘j-[xfj)]
jel

J#ii-1
=f (xfi) - zil) + (xfi_l) + qilzfl) + Z xfj) ,
Jel
j#ii-1

where the bottom denotes the image of f[Xy, ] under the ring map generated by

palxi’] -2 j=i
() (i-1) n-n i _ i
palxd’ 1 = pulxs T+q™"" j=i-1.
Pulx] otherwise

This notation can then be carried over to general f. However, the benefits of introducing this notation
in our paper seemed marginal at best, so we have elected to making statements in terms of factorizable
functions.

5.1.2. Applying the constant term formula
Our next goal is to obtain constant term formulas for the action of the shuffle elements £, ,, from (4.9).
In light of Lemma 4.4, we will also incorporate the constants

B (_l)nqn(rfl)tfn(l _ qfltfl)nr - (_l)nrfnbfn(rfl)tn(l _ qt)nr

ct = , = ,
" v [T (1= g9 ) " vigt [T (1 = g=9t79)
2y
where v = (=1) ad 2 (co--cro1)”h

Lemma 5.4. For any factorizable f = [1;¢; fi[X?] € AL, we have

ChTN. ((pg o W)(E; ) (f ® e"))

mn HZ:] (1 _ q—a[—a) R 1 11 _xl(l)

1- lt Zp+l, b/zp+1 a)
(1 -1 Zp+2 b/2p+1 a)

1_Zp+1 b/Zp+1a
1 ><)

l<a<b<n (1—th b/Zp+ia

(1=zip/zia)(1 =g 2ip /2 a)
x l_[ T

ienipery (1= @7 2im1p/2ia) (1= 1720010 /2ia) (5.6)
2]
a=1 Zp,a 1_1_1Zp+1,a/zp,a

X

1 1
iell{_p[H}(l - lei,a/Zi—La)(] - ‘IIZi—l,a/Zi’a)

Xl_lflz v Zzta+qlzzt+la} e

iel
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and

o, (<p5 W) (E;)(f ® e“))

()

t"(1 - gt)"" Tl Zia — 1%
_H (1_q kiKY l_H_”_[ N

i€l a=1 I=1 t+la l

X l_[ [( (1-2p.a/zpp)(1 = qt2p.alzpp)

1- t_lZp+l,a/Zp,b) (1 - th—l,a/Zp,b)

I<a<b<n

(1-zia/zip) (1 = qtzialzip)
iel\{p} (1 - ‘1Zi+1,a/Zi,b)(1 - tZi—l,a/Zi,b) 6.7

p,a 1
X -
1_[ (ZUH)( th,a/Zp+1,a)

NN eewenr[ieremmen
iel\{p} 1 =1z a/Ziv1.a ]\ 1 = qZi+1.a/Zia

Xl_[f‘lZ (l)+qulu sza} ®e?.

iel
Proof. Plugging in 5;—; ,, into the formula from Lemma 4.8, we can use the toroidal relations and
Proposition 4.7 to reorder the currents in alignment with Proposition 3.7. As in the proof of Lemma 4.8,

we can use the toroidal relations to remove the symmetrizations in & ,,. Taking the result for £ ,,
acting on f ® e® and then applying 7, gives us

X

X

. (<pg o W,)(E(f @ e“>)

(r=2)(r=3) 2)(r 3) o5 " n_ Ni l+1 a—l_lx(l)
(_ ) l—[Ci l—[l_[ e (,)

iel iel a=1 I=1 1a 1

]—[ 1=q ' 2pb/2p+1.a l_[ (1=zip/zia)(1 =g 7 2 0/2ia) l

l<a<b<n 1- tzp,b/zpﬂ,a icl (1 - f’]Zi+1,b/Zi,a)(1 - CI’IZi—l,b/Zi,a)

n
20, Zp+l,a
1L\ Zp+la Wp+1,p(Zp+1,as Zp,a)

a

Zi,a
X

ienvipery (1= 17" 20al2im1.0) 0in1,i(Zim1.a0 Zia)
Xl_[fllz (i) Zzla+q ZZHla} ®e?,

i€l
where all rational functions are expanded as Laurent series assuming

lzial = 1, K < 1, Je > 1, gl > 1. (5.8)
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For & s WE instead have

7N, ((pg oW )(E, ) (f® e"))

n
(r=2)(r-3) n N; (i)

_| 0 fha 71
b%_lnci DBH Zi_+11,a_xl(l)
iel
l—[ T = Zp+lalip 1_[ (1~ zia/zi0) (1 = q2ia/7i0)

t=ZpetalZpb o (1=12ic1.a/2i0) (1 = q2ist.a/2ib)

1<a<b<n

n
<] |
i

- 20,a wp+1,p(zp+l,aazp,a)

« 1_[ (1 — . Zi,a

iel\{p} [Zt,a/zl+1,a)wi,i+l(Zi,a’ Zi+l,a)

Xﬂfz[z (’)+qu,a Zzlﬂa} ®e?,
0

i€l
where all rational functions are expanded into Laurent series assuming.

lzial = 1, X9 < 1, gl < 1, J¢] < 1. (5.9)

In both formulas, we are taking constant terms in the z-variables.
Finally, to obtain (5.6) and (5.7) from these formulas, we multiply through by ¢} and use ¢ = qd,
t = qd~! to write
wiiv1(z,w) =qw-d"lz=0"1(gw - 2) = q(w - q_lz)
wiis1(zow) =z —qd w=2z7—1w. O
Remark 5.5. Observe that the formulas in Lemma 5.4 are for symmetric functions in finitely many

variables. To obtain constant term formulas for operators in infinitely many variables, we can apply
Proposition 5.2. For example, starting from (5.6), we use (5.2) and replace

| z_+11a_t_lx(l) s ) _1
[T S - Sstee Stao

i€l a=1 I=1

with

n k
exp[ie Z(k>0(pk [X(i)] ) t_kpk [X(i_l)]) ZlTa)l

> S (-petx +q-’<pk[x<i-“r)z’7] ho(f © ).

5.1.3. Integral formula
Regardless of f, the formulas obtained in 5.1.2 are constant terms of Laurent series expansions of some
rational function. Note that all poles are simple except for the poles at zero possibly coming from the
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plethystic modifications done to f. Thus, it will be advantageous to invert all the z-variables: let

R
Wia = 2 q
and define the functions

(_1 n(n 1)

g;,n(w’,"XN.) = n(n+l)

—1.— n i 4= (i)
COS[e) oo

Hnl(l_ ~at=4) el a=1 =1 Wia —

l—[ Wp+1 b — Wp+l, a)(Wp+l,b - q_lt_lwpﬂ,a) (5.11)
l<a<b<n Wp+l,a - Wp,b)(wp+2,b - t_lwp+l,a)

< T (Wib = wia) (Wip =g~ wia) (5.12)
iel\{p+1} (Wi-16 = a7 'Wia) (Wis1,p = 7'Wia) ‘

[ (w w
<[] ( ”’“)( ar ) (5.13)
a=1 W0,a Wp+l,a — 1~ Wp,u
wi wi_
X ( = )( Che ) (5.14)
ien\(pr1y\Wia =T WislaJ\Wi-l.a =4~ Wia
and
n(n-1) n(n+1> n N; ()
_ (=12 (1 =gt [ Wia —ix,
Epn(We e XN,) i= (5.15)
p.n na:1(1 _ ata) 1:[[ L 1—1[ Witla — (l)
% [ (Wp,a - Wp,b) (Wﬁ,a - thﬁ,b) (5.16)
l<a<b<n (Wp.b = tWpit,a) (Wp-1,a = Wp )

y (Wi,a - Wi,b) (Wi,a - qlWi,b) .17
iel\{p} (Wi+1,a - qwi,b)(Wi—l,a - lWi,b)

Wo0,a Wi,a Witl,a
X . . . (5.18)
]—[ (Wp a~ Wpil, a) .ERIP}(Wi,a —Witl,a ) (Wi+1,a - qwi,a)

Lemma 5.6. Let f = [1;¢; fi[ XY € A! be factorizable according to color. For the ‘+’ case, assume

1< 1 gl > 1 J] > 1

We have

CHTN, ((pg o W) (Ep ) (f @ e"))

%‘ f‘gpn(wto,XN.)l—[ﬁlZ @ sza+261 Witl,a ﬁh\d/‘/—‘;ﬁ ®e?,

[Wi.al=1 i€l a=1

(5.19)
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where we orient the unit circle |w; 4| = 1 counter-clockwise. In the ‘=’ case, we now assume
KD <1,0gl <1, 1l < 1
1 1) CI 1) .

We then have

CZﬂN.((pE. oW )(E, ) (f @ e"))

N ) dw; 4 o
‘7{ j{gp n(We, .,XN.)th[Z +ZCIW”1 ;wlnalﬂzﬂ\/_ma e® (5.20)

|WL al 1
and also orient the unit circle counter-clockwise.

Proof. Upon making the substitution w; , := z; _, the right-hand side of (5.6) is equal to

la’

{gpn(WOnXN.)l_[fllz " sza"'zq Witl,a

iel

} ® e, (5.21)
0

Now, all the poles appearing in (5.21) are simple. Similarly, the right-hand side of (5.7) becomes

N
{gp,n(WO,O’ Xn.) n fi [Z xl(i) + z": qwia — z": Wisl,a
a=1 a=1

iel =1

} ®e”. (5.22)
0

In case ‘+’, the integrands are given by series in the xl(i) and q*l, 71, with coeflicients which
are Laurent polynomials in the w; ,. Under the given assumptions, these series converge uniformly
absolutely on the integration cycle, and thus, we can exchange the order of summation and integra-
tion. This turns the integrals (5.19) and (5.20) into the constant term formulas (5.21) and (5.22),
respectively. O

Remark 5.7. Recall that the compatibility condition (2.9) between N, and a was used to obtain the
formulas in Proposition 5.2. At this stage, we note that without the compatibility, we would have to
contend with an additional Laurent monomial factor in the variables w; , in (5.21) and (5.22). This
would prevent us from obtaining a manageable formula due to the presence of non-simple poles at zero.

5.1.4. Cyclic-shift operators
To describe the results of our computation, we need to introduce some difference operators that also

permute variables. As before, let Xy, = {xl(i)}? <I<Ni

iel denote our set of variables compatible with our
r-core via (2.9). Define a shift pattern of Xy, to be a subset of X, that contains no more than one
variable of each color. A shift pattern contains color p € I if it contains a variable of color p. Let
Shp(Xn,) denote the set of all shift patterns containing color p.

For a shift pattern J, let J C I denote the colors of the variables in /. We denote the variables in J
by xy) ,80J = {xy) }ies. To J we associate the following:
1. Gap labels: For i € I, let i* € J be first element greater than or equal to i in the cyclic order.

Similarly, let ;¥ € J be the first element less than or equal to i in the cyclic order. We stipulate that
0<i®—1i,i—i’ <r— 1. With this set, we define

q

W) _ (=) G7)
xiv—q” Xy

@) _  (i-i*) (%)
Xja = ot Xy
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To clarify, x(JiA) = xyv) = xy) if i € J. Thus, while J gives a list of variables colored by J C I, we ‘fill

in the gaps’ for values i € I\J with certain g-shifts of the elements of J. Note that the g-shifts are

(@)

I Jv

2. A cyclic-shift operator: Fori € J,leti" € J be the first element strictly less than i in the cyclic order.
We set 1 <i—i" < r, where r occurs if and only if |J| = {i}. We then define the operator 7; on

K[Xn,] as the algebra map induced by

negative for x;iz and positive for x

)

70 q(i‘i')x(Ji') ifieJandx; = xg
s = (i) )
X, otherwise.

Note that this g-shift is positive. If we let i* € J be the first element strictly greater than i in the
cyclic order, then observe that

1o [a My iti e Jand x” = x
7 () (@) .
= X, otherwise,

where as before, we view 1 < i* —i < r. Finally, we note the following: fori € J,

i i—1
Ty (x)") = gx"

) ) (5.23)
77 69) = g,

The cyclic-shift operators Tj] will arise when evaluating the integrals of Lemma 5.6 by iterated
residues. For later use, and to clarify this relationship, we record the following:

Lemma 5.8. Forany f = [1; f;[X®?] € Al, J € Shp(Xn,), define the following evaluations on a set
of auxilliary variables {w;};c;:

xy) ifiel
a ' win ifiel\J
SV ipio1ed
gwii ifi—1el\J.

evy: fori=p,p+1,...,p—1cyclic order, w,-!—>{
evy: fori=p+1,p,...,p+2inreverse cyclic order, w; 0—>{

We then have
evy(wi) =xl vy (wp) = x7) (5.24)
and

.
7' fXn.] = ev;(]—[ A —wi+ q_lw,-+1l) (5.25)

iel L =1

N; )
Tyf|Xn] = eVJ(l_[ A 5" +qwi - Wi+ll)~ (5.26)
iel L I=1
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Proof. The equations (5.24) follow from the definitions. Equipped with that, the right-hand side of
(5.25) becomes

nf’ Z @ _ +q71x(l+1)

iel

(0 _ ()
FE]

-l 5 fi by (5.23). The case of (5.26) is similar. o

Ifi € I\J, then x(’) q‘lxyf b and so f; is unchanged. However, if i € J, then x and we obtain

Example 5.9. For instance, suppose » = 3, p = 0, and J = {xio),xfz)}. Then the right-hand side of
(5.25)is

Ni

No Ny
0 — — _
eV}(fo[Zx,( ) e lwl]ﬁ [zx,w g IWZ]lezx,@ ity w])
=1 I=1

=1

with ev’ given by evaluating wo — x]( ) w1 g o, wo xg ) in this order. The result is

No N,
0 0 2.2 1 2 2 ~1.(0
fO[le()_xi)"’qzxi)lfl[le() Z @ _ () 1() =Ty f[XN.]
I=1 I=1
We will also make use of n-tuples of shift patterns. For such an n-tuple J = (J,,...,J,) and

0 < k < n, we denote

Il =Jyu---UJ, C X,
|J|sk=11U"‘Ulk C XN,
ok =J, VU, X,

If J is an n-tuple of shift patterns all containing color p, we say J is p-distinct if the p-colored variables
(p ) are all distinct. Let Sh (X ~.) denote the set of all p-distinct n-tuples of shift patterns containing
color p-

5.2. Degree one case

We will first compute the integrals from Lemma 5.6 for the case n = 1. The first order wreath Macdonald
operators are defined as follows:

1 ‘Jlx(p+1)
* C -1y }‘ o1 I
D (Xn.ig.177) = 1-g 11! (1 a1 ) (0)
JeShpy(Xn,) e

N; (txy: D_ xl(i))
I o
)

X5a xl)

1_[ (y ~ J(i))) Ti_l

ieJ\{p} (X
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(r 1)
1 x
S N |71
Dp,l(XN.yq’t ) l—qt Z ( qt) (p)
lEShp(XN.)
l_[ 1_[ (-1 (i=1) xl(i)) q—lt—lTJ(x(i))
el =i ( ‘(Ilv) x(i)) iel\{p} ( TJ(x(l)))

2

Observe thatwhenr = 1, Do 1(x0,¢; g, ) and Dy | (x0.; g, 1) are the first Macdonald and dual Macdonald
operators, respectively.

Proposition 5.10. The integrals from Lemma 5.6 for n = 1 yield the following:

(+) For
|x1(i)| <L gl>1,[t| > 1,
we have
can (ot o ¥O(EE N (F@e®)| = [ MID*  (Xn.: f‘)+L|N| Xx .
1N Pz +)\¢p1 e = p i ANG G, = flXn.
(=) For
<1 gl <1, ] < 1,
we have
n = - a IN.| -1 tp+1+|N.|
C‘KN'((pE oW, )(fee ')) = (t Dy (Xni g7 + | £ [Xn]

Proof. Inthe ‘+° case, the integral from Lemma 5.6 is

) (@)
i (Wl+1 1=t lxl )
- gy 175 }51_][_] (5.27)
wigl1 (S ( =)
w w w; wi_
x( P,l)( p+1,1l ) 1—[ ( ,,11 )( i 1,1l ) (5.28)
wWo,1 J\Wp+1,1 =1 " Wp 1 rel\{p+1} Wil =1 Wi, ) \Wi-1,1 — g~ w1
dw;
(i) l 1
x| | fi — Wi g Wisi (5.29)
D Z 7TV w, 1
We will first integrate w, 1. Based on (5.8), the residues within the unit circle |[w 1| = 1 come from the
factors
1
Np ’
(pr - flwp_l,l) (pr —xl(p))
I=1
(5:28) (5.27)

We will call the first type of pole a #-pole and the second type an x-pole.
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The ‘-’ case is

r—1 ¥ Wll (i))
—qt) jzf }{ [_] )) (5.30)

iel I=1 Wl+1 1 _)CI

|WI. 11=1
x ( wo.1 ) ( )( VWi 1 ) (5.31)
Wp,1 = IWpil,1 iel\{p}) Wil — le+1 1)\ Wit1,1 —gwWi.1
dw;
(l) il
x| | fi +qWil = Wis 1 | ———. (5.32)
1:1[ 2‘ 2nV=1w;

Here, we will instead start by integrating w .1 1. As before, there are x-poles and a t-pole coming from

ZH

p+l

(p)
(Wp+1,1 —th+2,1) (Wp+l,1 —X;
1

~
1l

(5.31)

(5.30)

Our analysis of the integrals at these two kinds of poles is addressed in 5.2.1 and 5.2.2 below. O

5.2.1. The t-poles
First consider the ‘+’ case. Here, we begin with the residue w, | = t'w p-1,1. Let us group together the
factors

Np-1 (Wp,l -t (p 1))

Np _ DY)
I=1 Wp_11—X

w1 (w — g1 )( — 1 ) —x® r=l, !

p 1 Wp-1,1 =4 Wp,1)\(Wp,1 Wp-1,1 Wp,1 =X

Wp,1Wp-1,1

~
—

Upon taking taking the residue, this becomes

=1

Because of the additional restriction |¢| > 1, the poles above will be outside the unit circle |w,_1 1| = 1.
This pattern persists as we continue downwards in cyclic order until we reach w . ;. Here, we have

N, (wp+1 — 1x(p))

Wwo1=tP T w0 ( —r+l <P))
. =1 |t w - X
wp it~ D =1 P+l l

Wp+l,]Wp,l

W 1w, 1 (Wpei,1 = 7w 1)

P 1 Np (Wp+1 1=t x(p))

=— )
=17 wpa g (f_r+lwp+l,l _xl(p))
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The only pole here is the simple pole at w,,;,1 = 0. After taking this residue, (5.29) becomes just
f [X N.]. Bringing in the front matter in (5.27), we are left with

g=p=1-IN.]

Xn, |-
-t N']
Here, we recall that Ny = (Ny, . .., N,_1) records the number of x-variables and |Ne| = 3;¢; N;.

For the ‘-’ case, recall that we begin at w11 and take the residue wpy1,1 = twp. We group
together the factors

Npat _ (p+1))
Wpal,1Wpe2,1 £ (WP”’I X
N (p+D)’
T ) = (wpe1z =3
Wp+1,1 (Wp2,1 = qWp+1,1)(Wp+1,1 — IWpi21 Wptl,1 —X
!

~
Il

1
which upon taking the residue becomes

th+l

Np

(I-gqt) r[(pr+2,1 —xl(p))
i=1

The remaining poles above lie outside the unit circle w42 1| = 1 because we have assumed [f] < 1.
We continue upwards in cyclic order, yielding similar calculations until we arrive at w, ;. Here, we
have the factors

Np (Wp,l —txl(p))

wo, 1P wp, _
r,1b =1 | lwp,l _ xl(l’)
Wpi1,191 Wp.1

tP AL (Wp,l_txl(p))

Tl wy, -1 ™\’
Pl=l (7 wp 1 —

wo,1

Wpt (Wp,1 = tWpai1)

The only pole within the unit circle |w, 1| = 1 is w, 1 = 0. After taking this residue, the final result
(after including the front matter) is

tp+1+|N.|

T /e

5.2.2. The x-poles

We will first work out the ‘+’ case. Thus, we have taken the residue of w, | at the pole w, | = xl(p ) for

(p).

some 1 </ < N,,. This variable xl(p ) will be an element of a shift pattern J. Therefore, we call it x

It will be advantageous to now group together the factors

N -1 (P))
w -1 X
Wp AW psl, 1 q ( 11 !

Wo,1Wp,1 (Wp+l,1 - t_IWp,l) =1 (Wp 1 _xl(P))
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After taking the residue, we leave behind

N, _+1.(p)

Wil p (Wp+]1 I X

wol (x(]p) _ xl(p))
xl(P)’th’) =

Next, we consider w4+1,1. We group together the factors

-1,.(p+1)
Wp+1,1Wp+2,1 N (W 2,1~ 1 |

- -1 (p+1)
Wp+1,1(Wp+2,1 =1 le+1,1) (Wp+1,1 —-q Wp+2,1) =1 (Wp+1,l -X
———

e (2

The only (nonremovable) poles within the unit circle [w41,1| = 1 are marked (1) and (2). We thus have
two cases:

1. Residue at wpi1,1 = g 'wps,1: In this case, (Wps2,1 — 17 'wp1,1) cancels with a wpio 1 in the
numerator, leaving behind

1 Np+i (wp+2 1=t x(p+1))

— 11
(L=g7'7t) o (Wp+l,l_-xl(p+l))

Wp+l,l'_)qilwp+2,l

Because |g| > 1, the poles above lie outside the unit circle |w 42 1| = 1.

2. Residue at wp41,1 = xl(P“) = x(JP+1): Here, (Wp+2,1 —1 'Wp1,1) cancels with a factor in the

numerator, leaving behind

Npat (w aq — 1 lx (p+1))
Wp+2,1 Pt
’ (5.33)
1 1 1
(xim ) q—lwp+2’1) = (x3p+ ) l(p+ ))

(p+1) , (p+1)
X, ixl

Again, because |g| > 1, the first pole above lies outside the unit circle |wp42.1] = 1.
This pattern and dichotomy for residues continues upwards in cyclic order. The x-variables in the type
(2) residues constitute a shift pattern J, and our gap labels x 1ncorp0rate the g-shifts from the type (1)
residues. Therefore, w; ; is always evaluated atx Flnally, observe that by Lemma 5.8, (5.29) becomes
ilf[XN.]. The end result is ¢~ |N'|D;’l (.t 1)f[XN,].
The ‘-’ case is similar. Our first variable is w 1,1, for which we take the residue at w411 = )cl(’7 )

x&p ). We consider the factors

Np (Wp 1 —tx(p))

( wo.1 ) 1
Wp+1,1 (Wp,l —IWp+1,1) =1 (w,,+1,1 —xl(l’))
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After taking the residue, the pole from (w1 —twp.1,1) cancels with a factor in the numerator, leaving
behind

Wp1 — txl(p))

w Np (

0,1

x;”) 1:1[ (x(p) _ xl(p))
- xl(p);&xi,p)

We now proceed downward in cyclic order. For each w; 1, we consider the factors

1)
Ni-1 (w;_ —Z)C(l )
Wi 1Wi-1,1 ( i-1.1 l
wit(Wict = twin) (win —qwica) G (Wi 1 —xl("*‘))
~—— —— ’
—_————
(1)
(2)

Because (w; | — twi+1’|) has been canceled at this point, the only poles within the unit circle |w; 1| =1
are those marked (1) and (2). The analysis is as before:

1. Residue at w; | = qw;_1,1: This leaves behind

1 Ni- (W,-_l,] - txl(i_l))

(1-q1) }_ (WU —xl("*‘))

Wi 1P>gWi-1,1
2. Residue at w; 1 = xl(i_l) = xy_l): The leftovers are now
Wil Ni- (Wi—l,l - l‘xl(i_l))
a—— - (5.34)
(i-1) @i-1)
(xi—l,l_qwi—l,l) =1 (xi - X, )

(ifl): (@i-1)
X, X,

The x-variables where we have taken residues constitute a shift pattern J, and w; ; is always evaluated
at x;lv_l). Again, by Lemma 5.8, (5.32) becomes 7T} f [XN.]. Here, we obtain t|N°|Dp,1(q, t‘l)f[XN.].

5.2.3. Degree one eigenfunction equation
Finally, we enhance Proposition 5.10 by obtaining eigenfunction equations for D;,1 (g,t)and D, 1(q,1)
for generic values of the parameters.

Theorem 5.11. For generic values of g, t,

A
D' (XN, g, 1) PalXn.; g, 1] = g NP XN, g, 1] (5.35)
b—/lli,:slp+1
N
Dpi(Xnia ) PalXnia =] D, g™ P Xy q.1). (5.36)
P e
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Proof. We will only consider the ‘+’ case — the ‘-’ case is similar. Combining Lemma 3.11 and
Proposition 5.10, we have for 2 € Y with k(1) = @ and |quot(2)| < |N.],

p-1-IN.|

T PA[XN.;QJ_I] = Z C]_/lbt_b P/I[XN.;q,l‘_l],

t_lN'lD;J(XN.;q,t_l) + 1

b>0
b-Ap=p+1

where we assume |g| > 1, || > 1 and |x; ;| < 1. Even here, it is essential that [f| > 1 as we are
working with series in #=!. We can do away with this once we notice that since |N,| is divisible by r
(Proposition 2.7) and €(2) < |N,|,

oo |Ne |
Z q—abt—b — (Z t—p—l—N.l—rk) n Z q—/lbt—b
b>0 k=0 b=1
b-Ap=p+1 b-Ap=p+1
(5.37)
Cp1o|N. IN.|
_ t~P [N | —/lbt—b
=t 1 '
b=1
b-Ap=p+1

Here, we have split off the terms corresponding to rows above height |N,|. Thus, (5.36) holds under our
conditions on |g|, || and |xl(i)|.

Finally, we address the genericity of parameters. The equations (5.35) and (5.36) are equalities of
rational functions in the space (Xy.,, ¢, ). We have established them over an analytic open subset of
(Xn.,q,t). After subtracting one side to the other, this is equivalent saying a rational function is zero
on a codimension zero subspace, and thus, it must be zero. O

The eigenvalues of {D,, 1(Xn.;q, t)}pE ; on {Pa[Xn,: g, 1]} are nondegenerate. Therefore, we have
the following:

Corollary 5.12. For A with core k() compatible with N, (cf. 2.9), the line spanned by P,[XNn,; q,t] is
characterized by the eigenfunction equations (5.35) ranging over all p € I.

Example 5.13. Letr =3, p=1, Ne = (2,1,0) and A = (3, 1, 1). In this case, A is a 3-core and so
P,I[XN.;q,l‘] =1.
There are three shift patterns containing p = 1:

1
gy =1{x"}

0 1
L= 1n"x")

0 1
Iy =15".x").
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The operator D ;1(Xn,; ¢, 1) is then

thm x OV [ x5O
Dy1(Xn,:q.1) = Ty, (5.38)
q

1 0 1 0
x]<>_x§> 7 <> <>
(n _ <o> (1
o qrx, X5 qix;
+(1 - gt )q( O | RN Ty, (5.39)
1
 _ (o> (1
B qix, X qrx,;
+(1-qgthyg Ty.. (5.40)
x§°)— (0) (0)_q2x§1> 43

The cyclic-shift operators act trivially on P4 (Xn,; g, t). Consolidating (5.39) and (5.40) gets us

(l_qt_l)q th(l) 50) thil) + th(l) }O) thil)
NONNCN | NONpENG RONNON | NONpEND

gtx “)(th(%“)) gxDx(® = x 03 0 4 (00 2,0, _ q2x<°)xf“)

=(1-qt™")q
(xI(O) _Xzo))(x](O) lel))(x(o) q2x 1))

0 1
+x§ ) —qzxg ))

1
(1) (1) (0)
qtx, ( gtx;’ +x;
(x§0) _ q2x(1))(x(0) _ 2x(1))
G _qt—l)q —(q2t2+q3t)x(l) (1 +th(0)x(1) +th(0) (1
( 0) _ qzx(l))(x(o) _ 2x(1))

=(1-qt™)q

(_qZ 4)x(1) (€)) +(qt - 2))6(0) (1)+(qt 2)x§0)x§1)
=4 (0> 220 (O — g2, D : (5.41)
(x, qx; ) (xy q°x,")
However, (5.38) becomes
gixD —x O\ [ gax® — 0
q(q M _ (0>)(q 20 (0>)
PO N BN O PN NOIRNC NG
- 0) My _ 5 (D) (5.42)
(-xl —Clx] )(-xz —Clx] )

Combining (5.41) and (5.42) gets us

q X —-q —q7x
0 l 0 1
(x§ ) _ q2x§ ))(xé ) _ q2x§ ))

4 (1) (1) 2x(1) (0) 2 (0) (1) (O)X(O)
D11(Xn,; 9, ) PalXn,; g, 1) = fI{ : }
0 1 0 1
q(xi ) _q2x§ ))(xé ) _q2x§ ))
0 1 0 1
(xi ) _qzxf ))(xé ) _qzxf ))

=qPa[Xn.:q,t].

Example 5.14. Letr =2, p =0, Ne = (1, 1), and A = (1, 1). Here,

PilXn.g.1] = x.
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There are two shift patterns containing 0:

0
7, ={x")
J,= {xﬁo),xfl)}.

47

We then have
(0) (1) (1 (0)
D01(XN'qf)=thl—_xTJ +(1- )xl—tx—lTJ
’ o (0) (1) (0) () _ (0] =2
qx, X\ qxy
Observe that
(1) [€))
Ty x)7 =x
1 0
lexf ) — qx( )
Altogether then,
5@ _ 5V A O o
. . —_— — 1 — —
Do (XNn,: g, )Pa[XN,3q,1] = (—(0) (1)) +-a )Gl =o o™
qx, X\ qx,
1 0
B qx(l) txg ) —xi ) _ (t—q)xi )
! gx® D
(0) (1)
mfax —x )
1 (0) (1)
qxr, " — X

=qPa[Xn,:q.1].

5.3. Higher degree operators

Now we consider higher values of n. The order n wreath Macdonald operators are defined as follows:

n(n 1)
_ (=1)
D}, (Xn;q.t7") = (5.43)
pn [Tie (1 = g7%t7F)
Np
(p+1) (p)
H (txjjl Xl )
~ (p+1) =1
n " (p)
N VR N i
x ;} H(l N o |,
Jeshi (Xn,) 4= Jb l—[ ((p)_x(p))
J i
I=1 -
P ¢l|<a

( (z+l)

(t))
X

<11 1] )

iel (
i#p <z) (r)
¢ ia

[

“) ieJ\{p}

W
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n(n 1)

_ (=)~
Dpn(Xniqit™h) = (5.44)
P [Tee (1 = gke*)
NP
-1_(p-1) _ (p)
[1 (t xf )
W x5\ el
JV X za
n = x L&
Jesny! (xn,) 4= L, 1_[ (x“’)—xl(”))
l:] —_—a
"¢l l<a
N; (t’lxgz_l) —xl(i)) q’lt’lTJHt(xg:)
* !:1[ ]l:[ (x(i) —x(i)) AT }(x-J -1y (x(i)))
P (D) £x0) Jo Tl AMPIThda  T2a

Here, recall our notation for ordered products/compositions (3.12).

Remark 5.15. In contrast with the n = 1 case, it is less obvious that these yield the higher-order
Macdonald operators with 7 inverted when » = 1. When r = 1, note that our sum is over ordered n-tuples
of distinct shift operators, whereas the usual formula for the nth Macdonald operator is over unordered
n-tuples. Summing over the orderings for a given n-tuple, the numerator will contain a factor that is
antisymmetric, while the denominator will contain a Vandermonde determinant. The quotient of these
two will yield (- t)+ times the (g¢)™'-generating function of lengths of elements in ,,. After
consolidating all constants, one is indeed left with the nth Macdonald operator.

Proposition 5.16. For general n, the integrals from Lemma 5.6 yield the following:

(+) Assuming |x1(i>| < land |q|,|t| > 1, we have

n—1
TN, ((P;: © \P+)(C;(€; n)f) = ([nN.lD*p,n(XN.; q, lil) + Z C;,k,nD;,k(XN.; q, til) f[XN.]
k=0
for some c;f),k’n € C(q,1).
(=) For|q|, |t| < 1, we have
n—1
7N, ((p~ o W_)(cpép, ,,)f) "NID (XN g )+ Y Do (Kt | £ [ X
k=0
Jfor some Cpkm € C(q,1).

Proof. In the ‘+’ case, we will start by integrating the p-colored variables {w o }. There are two kinds
of poles inside the unit circle [w, | = 1:

(x) the poles (w b — x;”) in (5.10) and
(¢) the poles (wp, p —t7'w 1 ,4) fora < bin (5.12) and (5.14).

As in 5.2, we call them x- and -poles, respectively. We note that evaluating two variables w, ;, and
wp.p at the same pole will result in zero due to the factor (wp,l7 - wp,b/) in (5.12). Besides that, for
r > 1, these residues can be evaluated independently, and we elect to do so. For the ‘-’ case, we instead
start with {w .1 .}, for which the relevant poles are now
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) (w,,ﬂ,a —xl“’)) in (5.15) and
(1) (Wp+1,a — tWpsap) fora < bin (5.17) and (5.18).

In 5.3.1 and 5.3.2 below, we analyze the results of the two possibilities:

1. integrating all w o at x-poles;
2. the ‘mixed’ case where some w, , is integrated at a r-pole.

The first case produces Dy, ,(q, t™!) and D p.n(q, t~1), whereas the second case yields a combination
of lower order wreath Macdonald operators. m}

5.3.1. Only x-poles
In both the ‘+” and ‘-’ cases, each of the n variables {x(p )}” will become part of a shift pattern

containing p, so we set x(J 2 (p )

—a

tuple J := (J,,... ,ln) will be p-dlStlnCt. After taking these residues, we will proceed as in 5.2.2 for a
specific value of a.

. Furthermore, as these variables must be distinct, we have that the

First consider the ‘+’ case. To see the effect of taking the residues wj , = xy’ ), we group together

the factors

N _ 1(p))
(pr) Wl b 1—"[(Wp+1h x
_ 1
Wo.b ) Wb (Wpetp — 17 Wp p) ! (Wp,b_xl(p))
1.1
1 (50 =l (e = )

_ _ 1
l_[(wml,b -t le,c) a<b (Wpst.a =17 wpp)
b<c

X

Upon taking residues, this becomes

NP
1_[ (wp+1b—t 1xl(p))
=1
Wpat,b | %7 ¢l 11
o [1(wpers =g Wpira) - (5.45)
P
’ » _  (p) a<b
[ (xib Y )
=1 ()
P ¢l

The next variable we consider is w1, 1. Notice that we have canceled the poles (w pHl 1 — w p,b)
for all b > 1, and consequently, the only two kinds of poles within the unit circle |wp.1,1| = 1 are as
before in 5.2.2. We group together the factors

Wp+1,1Wp+2,1

Wp+l,1 (Wp+2,1 - t_lwp+l,l)(wp+l,l - q‘le+2,1)

(p+1)
—1,-1 n Np+i —
(Wpst,o = Wpat,1) Wps2p — g7 1 Wpin 1) L (WP+2 b1,

X
_ 1 | 1
Ly Wp2p = 7Wpat 1) Wpat o = 7' Wpant) ot 1] (w,m,,, —x(P* ))

() ()
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The residues are

1. Residue at wpy1,1 = g 'w p+2,1: In this case, the factors in () cancel out, leaving behind

l

1
i1 (Wp+l,b —x ))

1
n Npai (Wp+2,b 1Pt ))

Wp+1,1'—>q’] Wp+2,1

Asin 5.2.2, wpyq 1 will ultimately be evaluated at x(p 1)

circle |wp42,1| = 1 because |g| > 1.
. 1
2. Residue at wpi1,1 = xl(p+ ) =

, and the poles above lie outside the unit

y’ ., Here, the factors in () cancel with those in (x#) containing
1
xY’ 1 We are left with
=1

Ny _ 1. (p+D)
Wpi2.1 P+l (Wp+2 1—1 Xy
1 1
XD g 'Wpi1 =1 Xp+l,J —x(P*D
I PR ey, ey PR T
X ixj
<1
T N _ -1 (P+1))
(Wps2p =g 't wpat) 1 (W’”“ !
X = . (5.46)
\<b (Wp+l,b —-q Wp+2,1) =1 (wp+1,b - xl(P+1))
xl(p+l)¢x(lp+l)
Because |g| > 1, the pole ( (p+l) _ q_lwp+2,1) lies outside the unit circle |wj40,1] = 1. Our key
organizational trick here is that When Wp42,1 is ultimately evaluated at x(’J +2) , then we can use (5.23)
to write (5.46) as

n Npa (Wp+2b _ t—1x1(p+1))
T_l
Iy

(p+1)
1<b I=1 (Wp+1,b X

since Ty, will only affect x (P +1)

This pattern continues upwards in cyclic order for the variables w; 1. The x-variables where we take
residues give a shift pattern J, containing p, and w; | is evaluated at x(') In (5.45), the term in () for

a = 1 can be rewritten as (w pilp — 1 1T Ix(p )) Finally, we note that by Lemma 5.8, these residues

result in 77! 7| applied to f [X N.]. Thus, we can rewrite the result after taking the residues for a = 1 as

n(n l) n(n+l)
(=D

(p+1)
(1- lt—l)r(n—l) Sy vl
Hn (1- at ay Z (1-¢ ) (0)
a=1 J,€Shy, xiA
Np
1_[ ((Jrzﬂ) t—lx(P))
I=1 (l+1) -1,.() -1,.()
AP glal, 1_[ ﬁ ( -1, ) qTLxll]
Np el el (iA)—x(i) el \{p} ) T‘ (l)
[T (e -a) (8 iy () ot :
=1
=1 4
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n
< 7{@—;( (wpera =) [T (pers a7 w™)

a=1 l<a<b<n
|Wi,a|—1
Np
1.(p)
H (Wp+l a—1 xl )
1=1
(IJ>¢|J| Ni (W,’+1’a t 1)6(1))

Np 1_[ I=1 (w~ —x(i>)
]—[ (xm_x(n)) iel\{p} 1= iha =Xy
L,
=1
x P ¢l<a

y l_l I—[ Wisb = Wi,a)) Wistp — g7 17 Wit1,a)
1<a<b§ni€1\{p} (Wi+l,h - t_lwi,a)(wi,b - q_lwi+l,a)

Wp+l,a
Xl_[(p

Wo.a )iEI\{p} (Wist.a =17 Wia) (Wia = ¢ Wisia)

13 I d "
LIRS SRS st | N g W P

iel iel\{p} a=2

Wi aWi+l,a

We have written this so that we can repeat the calculation for ¢ = 1 for general a in increasing order.
Note that as we do this, we can rewrite factors in (f) of (5.45) in terms of Tj‘lxp,ia using (5.23). The

end result of the residue calculation is

MDY (Xng. ) f XN

The ‘-’ case is similar. We begin by taking residues of {w ..} and then start instead at x(” ).

Afterwards, we continue downwards in cyclic order until we have taken constant terms of all variables
with a = n. We then continue downwards in a. The end result is then

tnlN'le,n(XN.; q, t_l)f[XN.]~

5.3.2. Mixed poles
In the case where there are #-poles, our goal is to show that the result is a linear combination of the lower
order operators applied to f[Xn,|: D} (XN.: 4, t71) in the *+" case and D, x(Xn.;q,¢7") in the ‘=
case, where k < n. Unlike in the case of n = 1, we will not try to compute the coefficients of this linear
combination — we will compute them indirectly in 5.4. As in all the previous cases, the initial residues
force a string of other residues, and we will first compute these strings that start from the initial #-poles.
Once these variables are evaluated, the remaining terms will evaluate like 5.3.1.

In the ‘+’ case, let 1 < bf < n be any index where the residue for w, bP is taken at a 7-pole. Denote

this pole by w, P = t'w In contrast to our previous calculations, we will not always cancel

pfl ,b{)_l .
out factors but rather remark on why taking residues at certain poles will result in zero. The poles

contributing within the unit circle |wp_1 pr-1| = 1 are as follows.
71

1. q ' Wp.a) for a > bY” Yfa < b¥, then the factor (Wppr = g 't7'w, 4) in the

(Wpfl,b{;_l
numerator of (5.12) becomes zero when taking this residue. If a = bf o bf , then this is a pole at
0, which cancels with the extra factor of W, 1 prt @8 in5.2.1.

71
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2. (w
3. (w

-1 - —1)5 . :
e —xl(p )): The factor (Wppr =1 1xl(p )) in the numerator of (5.10) will evaluate to zero.

potbr T t7wp_a4) fora < bf_lz These poles possibly yield nonzero residues.

Taking a residue of the third kind, we evaluate w =7 p-2 for some bV 2 < by -1
1

p-1,bP""! Wpob

. . . . - . -1
This pattern continues downwards in cyclic order, picking out variables w; b where bf > bf >

> bf”. At Wt bt the pole of type (3) becomes
91

3" (pr’b{m - t‘lwp,a)for alla:If w, 4 is evaluated at an x-variable xl(p), then as in 5.3.1, the factor

(werl pp t‘]xl(p )) will evaluate to zero upon taking this residue. Thus, only the case where
71

W q is evaluated at a t-pole yields a nonzero residue. For a = bf , this is a pole at w =0.

p+1,b{7+I
2 1
If b* = bP*", then because of the analogue of case (1), there are no extra powers of w p+1 1O
1 1 p+l.b!

cancel this pole.

If we take the residue in (3’) at w, , evaluated at a ¢-pole but a # b?, then we set bé’ := a. Letting
the #-pole be (wp’b; - [_IWP_I’bf—l) for bg_l < bg, the process is similar to as before. There is just

one alteration to the poles of type (3):

37 (wi,bé - t’lwi_l,biq): This is a pole at 0, which cancels with the factor J_r(wi’bé- - wi,bll-) in the
numerator of (5.11).

Thus, we avoid variables that we have already evaluated. Note that at first glance, the product of factors
in (5.11) and (5.12) involving w;, bl and W, may contribute a pole at 0, but in fact, their products
’ (g

have total degree zero and thus become a constant. There is an outlier case of (w el — 1w p),
p+L.b; p.b;
which has been removed when we take residues, but this can be replaced with (w]7+ Lt w » blp) to
20 >
restore the degree zero balance. We continue like this to new indices {bg}ie I, {bf‘}ie ;> ete. until either

there are no more nonzero residues or we finally take the residue at 0 of 241 pPY for some final value k.
Pk

For 1 < m < m’ < k, we note that as in the (m,m”) = (1,2) case, the product of the binomials
in (5.11) and (5.12) involving one variable from {Wi,h:;, }ier and another variable from {wj i Yier has

degree zero provided we make the same adjustment for i = p + 1 and m’ = m + 1. Thus, these factors
turn into a constant. To consider binomials involving only {wi, bi, }ier for one value of m, we note that
when we take the residues, we remove

1
T :
Wiph, =1 Wipp pixt
1

_ 1
Wp+1,b£i,+] t WPJ,JP

m+1

fori # p+1,

forl <m < k.

There is a leftover power of w; ;i fori # p from (5.13) and (5.14), and as discussed in the pole of type

(1) above, these are only absorbed when bi*! = bi . These unabsorbed powers turn the entire integral
zero when we take the final residue w = 0. Thus, we only need to consider the case where for

p+1,b£+l
each m,
-1 +1
bh =bh" = =bb" = b,
In this case, all factors only involving {w; ,, } l' ESI’"S" leave behind a constant. Evidently, the correspond-

ing terms in (5.13) and (5.14) disappear. The terms involving w; 3, and an x-variable in (5.10) leave
behind a power of  when we cancel
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Ni (Wi+l,bm - l_lxl(l))

1]

. _ 0
m=1 iel I=1 Wib, =%

Finally, the product of terms in (5.11) involving any index 1 < a < n and b,, leave behind a constant
when we evaluate w; 5, = 0 for all i € I. The remaining factors are a scalar multiple of the calculation
for £, ,—k. The ‘=’ case is analyzed similarly.

5.4. Eigenvalues

To describe the eigenvalues of the operators (5.43) and (5.44), we will use the elementary symmetric
functions eg. As in the proof of Theorem 5.1 1, Proposition 5.16 gives us the following:

Proposition 5.17. Recall the coefficients {c; «.n} from Proposition 5.16. We have

n—1
(f_"'N"DZ,n(XN.; g.17") + Z kD (XN a7 |PalXn.s g, 1]
k=0
o (5.47)
=e, Z q_/l”t_b P,l[XN_;q,t_l]
b—/l};,:Elp+l
for |xl(i)| <1 gl >1,and|t| > 1 and
n-1
NID (XN 4t + D e aDp ik (Xns g7 |Pal X .17
k=0
. (5.48)
=e, Z q/lbtb P,l[XN.;q,l‘_l]
b—/ll;,=51p+1

for |xl(i)| <1l gl <1, and |t] < 1.

Corollary 5.18. For variables and parameters satisfying the conditions in Proposition 5.17, the opera-
tors D, n(q,t) and D7, ,(q.1) act diagonally on {P/l [XN.; q, t] }

Proof. Using induction starting with the case n = 1 from Theorem 5.11, we can use the equations
in Proposition 5.17 to show that D, »(Xn,;¢,1) and D7, , (Xn,; g, 1) act diagonally on Pa[Xn,;q,1]
under the appropriate conditions on variables and parameters. O

Our goal in this subsection is to extract the eigenvalues from (5.47) and (5.48) and extend their
validity to generic values.

5.4.1. Spectral variables

Letting A vary over partitions with core(1) compatible with N, and €(1) < |N.|, we note that by
Proposition 2.7, the stabilized eigenvalues

[oe] (e8]
en Z g *1"| and e, Z i
b=1 b=1

b-Ap=p+l b-Ap=p+l
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depend only on the N, values of b, where 1 < b < |N,| and b — A = p + 1. We define the color p
spectral variables {s(p % } .2, by setting

s gp) — q/lba tba

where 1 < b, < |N,| is the ath number where b, — A5, = p + 1. Using these variables, we can rewrite

(e} 0 |N-|
o Z | = e, Zt|1v.|—p_1_kr b g
b=1 k=0 b=1
b-Ap= b-Ap=p+1
N,
INo-p-1 No i
e |L + Z( <p>)
— tn i
1 — ¢ nr

where |t| > 1. Here, we have split off the parts above row |N,| as in (5.37). Similarly,

) [Ne|
en Z en Zth.|+p+l+kr " Z q/lhtb
k=0 b=1
b- /117 P+1 b-Ap=p+1
tINe[+p+1 Np
=ey|———+ Z sP)
n 1 _ tnr a B

a=1

where |f| < 1. The following is but a slight alteration of Lemma 3.2 from [4]:

Lemma 5.19. For |t| > 1, we have

N

n-k N
rmINel=p=1 8 -1 - nINe=(n=k) (p+D)-r ("3") i 1

| +Z(S'(1p)) => s ek ZI'N"(SEZ’)) . (549

a=l k=0 1_[(1 _ t—rl) a=1

=1
while for |t| < 1, we have
INoeprt O nniN k) (pat)ar () [N
t t 2 3

en| T2 +Z HEDY ex| D NIsiP (5.50)

a=1

— n—-k
- [la-
I=1

Proof. The basic observation is that for two alphabets X and Y and an auxilliary variable u,

ien[X+Y]u" =exp(—2pk[X+Y] (_Z)k)

n=0 k>0
u)k
= exp|- 3 pelX1 5 exp[- 3 gy
k>0 k>0
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(o8]

Z e [Y]u"

n=0

=2 en k[ XJex[¥]u"

Comparing the coefficients of ", we thus have

n

en[X +Y] = Ze,,_k [X]ex[Y]. (5.51)
k=0

For (5.49), we take (5.51) and set

N,
mINeI=p-1 > 50!
X=——" 1=¢nr Z ’ Y:Z(Sa )
k=0 a=1

By the quantum binomial theorem (cf. [9, Example 1.2.5]), we have

ING=p=17 f=IN=p=D) (n=k)=r (5¥)
enk[ 1 —¢nr ]: n—k '

[Ja-

I=1
To obtain (5.49), we break off #%IN+! and place itinside e [Z(s(p)) ] The proof of (5.50) is similar. O

5.4.2. Spectral shift

By Lemma 5.19, the stabilized eigenvalues are polynomial in the spectral variables. Moreover, its
degree k part is given by ej evaluated at {t‘lN"sfl7 )}. We would like to show that the summations
in (5.47) and (5.48) correspond in some sense to this decomposition by the degree. The degree of a
homogeneous polynomial can be measured using g-shifts. However, by the definition of the spectral
variables, multiplying s(p ) by g corresponds to adding a node to the end of a row. However, we must do
this in a way that is color-insensitive. This motivates the following:

Proposition 5.20. Let A be a partition with core k(1) compatible with Ny and (1) < |N,|. Then

(0]

iel I=1

PalXnN.; q,t] = Ppine [ XN g, 1]

Here, A+ r'N+| denotes the partition obtained by adding r boxes to the first |No| rows of A.
Proof. By Corollary 5.12, P,,.in. [ XnN.; g, t] is characterized by the eigenvalue equations

|Ne|

Dp,l(XN.;Qst)P,H.r\No\[XN.;qs t] = Z q/lb+rt‘N.|7b P,1+r|N0|[XN.;Q’t]

b=1
b-Ap=p+1

ranging over all p € I. Note that we have used b — A}, = b — 4 + r. Now, for a shift pattern J, it is easy
to see that

https://doi.org/10.1017/fms.2025.10061 Published online by Cambridge University Press



56 D. Orr, M. Shimozono and J. Wen

T,(]_”—[ “)) (]_[ ﬁxl(i)), (5.52)

i€l I=

from which the proposition follows. O

5.4.3. Eigenfunction equation
We are now ready to derive the eigenvalues of the higher-order wreath Macdonald operators.

Theorem 5.21. For A with core k(1) compatible with N4 according to (2.9) and (1) < |N,|, the wreath
Macdonald polynomial P,[XN.; q,t] satisfies the equations

N |
D} (XN g DPA[ XN g.t] = en Z g NP P [ XN, 1]

.|
Dpu(XnigOPalXni gl =en| Do g™ P Py [Xn,;q.1].

Here, x; 1, q and t take generic values.

Proof. Let ¢, ,(A;¢,t7") and e;‘,,n(/l;q,t‘l) be the eigenvalues of D, ,(Xn,;q,t7") and
D;’n(XN,;q,t"), respectively, at P,I[XN.;q,t_l]. Combining (5.47), (5.48), and Lemma 5.19, we

have
n—1
Nl (g, e e (g,
k=0
n _ n-k N,
1 INe|=(n=k) (p+1)-r (") ; -1
- ex Zz'N-'(sgf”) (5.53)
k=0 1_[ —rl a=1
(1-17")
=1
and
n—1
e, (g, 7+ ek ep (gt
k=0

n - nING (k) (p+1)+r ("5F) Np

_Z er Zt INel (p) ) (5.54)
gl
,EI( ")

We can induct on n to show that, as functions of A, ep,n(/l;q,t") is polynomial in {sfp )} and
e’l“,’n(/l;q,t_l) is polynomial in {(sfp))_l}. Applying (5.52) n times, we have (when viewed as
operators):

Ni
Dy, o (Xn.: 4, “)]_“_[ D=a [ 5Py (Xn g

iel I= iel I=1
N Ni
D,,,n(XN.;q,t_l) l_[ nxl(l) =q" l_[xl(’)Dp,n(XN.;q,t_l).
iel I=1 iel I=1
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It then follows from Proposition 5.20 thate,, ,(1; g, t~1) is homogeneous of degree n and e, n(4:q, th
is homogeneous of degree —n. Thus, t‘"'N'|e’;,’n(/l;q,t‘1) is the degree —n piece of (5.53) and
t"'N'|e,,,n (1;q,t7") is the degree n piece of (5.54). This establishes the eigenvalue equations under

the appropriate conditions (5.8) and (5.9) on xl(i), g and t. We extend to generic values as in the proof
of Theorem 5.11. O

Remark 5.22. Even though r > 3 was assumed throughout, we have verified experimentally that
Theorem 5.21 continues to hold as stated for r = 2. The r = 1 case is discussed in Remark 5.15
above.

Example 5.23. Letr =2, p =1, N, = (0,2) and A = (1). Because A is a 2-core,
Pa[Xn.;q,t] = 1.
There are only two shift patterns containing 1:
5 ="
5= 1"
Note that
Tilel) = qzxfl) Tizxfl) = x%l)
Tilxél) = xfl) Tizxél) = qzxgl).
Therefore,

_ (1) 2.1 (1) 2.1
(1 =gt} tx,’ —qg-x tx;,” —qg°x
D1,1(XN.;q,t)P4[X.;q,t]=( )(1-4 ){q B T R R }

1 — 212 xil) _xél) x;l) _xil)
_ (DU -gr (=9t -4
1 — q2t—2
= qtPa[Xn,;q.1].

A. Wreath Noumi-Sano operators

In this appendix, we apply our methods to study wreath analogues of the trigonometric Noumi-Sano
operators [12]. We obtain explicit formulas for degree n = 1 and an integral formula for general n.

A.l. Infinite-variable eigenvalues

Let (x; ¥)o denote the infinite y-Pochammer symbol:
@) = (1 =209,
i=0

Lemma A.l. Assume |q*'| < 1 and |t*'| < 1 (where ‘“+" and ‘~’ are separate cases). For p € I,
we have
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exp Z Z,r_ ke (i- )hp+i,ik qikzik 2
= qikr) Vik[k]q
T sk(i-1) Tk
q + + T + * z
= exp Z Z — Z q,k/l,,t,kb _ 7k Z q kap kb -
k>0| i=1 -4 b>0 b>0
b-Ap=p+i b-Ap=p+i+l (Al)
1—[ (q,ub+z)t+(h DL, g )
b>0 .
l—[ —-Ap=p+i+l
il 1_[ (/lb+i)tibzil;qir)
b>0 0
b—/lep+i
where we set A, =0 forall b > €(Q).
A.2. Shuffle elements
We rewrite
cexp|— Z er_ k(i 1)hp+i,ik q”‘f"
k>0 q_kr) [k]q
e 1q+k(i+1> hpoi ek | gk 27k
=g exXp —
kZO( (I—q7%) [,
— yexp _Z i lﬁk(”l)g Y hp-izx) | g7k
[ k>0 = 174) [Klq
7 —1y-1 £k 171 “1/pL 7
= nexp|(a—-q7") Z(—q— 7 ) + 57 ) |-
L k>0

Recall the formulas (4.9) and (4.10) for S;—;’n and ’H,i,’n

eXpl(q -qH!
k>0

.In [19], it was shown that

Z(_q_kg_l(h;,k) + 5'_1 (h;.ﬂ,k)) %l

:i (_l)nrtnrb—n(l_q—lt—l)’”’\P (5_ )
o q2n H:lzl(l_qfrt—r) *\~p.n
—1y-1 k ~1/71 1L 7k
exp| (@ =)™ (=gt )+ 67 g ) o
k>0
o 0t(1—gn)"
w_(EF ).
; r 1(1_ rt—r) ( P,n)
Applying n, we get
S g )
= v [ (1—grer)y TP
:r;exp[—Z(Z;—_o] q_kihmi,—k) q ke l
_ g—kr -k
k>0 (1 q ) v [k]q
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( l)nrb—n(r—l)tn(l _ qt)nr
Z() vnq Hn (l— —rg= r) lIL(,’LL;,H)

_ iz 4" hpik | ok
_S‘exp[—Z( (l—qkr) )Vk[k]ql.

k>0

A.3. Normal ordering
It will be slightly nicer to reorder our currents differently from Proposition 3.7:

Proposition A.2. For p € I, we have

8% ')
nor
1_[ Ep+i(zp+i,a)
a=1 i=1
n
(r= 2) G203 g
=[(-1) e
iel

(1-zin/2ia) (1 - Cfllei,b/Zi,a)

I<a<b<n i€l (1 - t_lzi+1,b/z,~,a)(l - q_lzi_l,b/zi,a)

n

Z+1,a/Z ,a
T et

a=1 (1 —1 11p+1,a/1p,a) Hiel\{p}(l - q_IZi,a/Zm,a)

n k
<[] exp(Z P prIX O =1y [x“-“])%’“)

iel a=1 k>0

xnexp(ZZ( PelX VT + g7 pi[X D] ) ) n S
i€

iel a=1 k>0 I a=1

X

where all rational functions are Laurent series expanded assuming

|zial =1, 1q| > 1, |t| > 1. (A2)
For the F-currents, we have

v
r

M\
n
l—l Fp+i (Zp+i,a)

a=1 i=1

n

(r=2)(r-3)
2

l_[Ci
iel
< T l—l ~Zialzip) (1 = tZialzip)

r<achenicl (1 =1zictalzip) (1 = qzist,a/zib)

Zp,a/zpﬂ,a
X
al_[ (1 - tzp,a/zpﬂ,a) Hiel\{p+l}(1 - qzi,a/zi—],a)

(_1) +rbg—1

https://doi.org/10.1017/fms.2025.10061 Published online by Cambridge University Press



60 D. Orr, M. Shimozono and J. Wen

1 k
B —
—k

iel a=1k>0
n
—Hi
xﬂexp(ZZ(g PRIX DT = py XD} e ) G
iel a=1 k>0 iel a=1
where all rational functions are Laurent series expanded assuming
|zial =1, Iq] < 1, [t] < 1. (A.3)
A.4. Integral formula
Let
P qn(r—l)t—n(l _ q—lt—l)"r - (_1)nrb—n(r—1)[n(l _ qt)m’
v (=g gt [T (1—g7tT)
We have
+ - @ ( )n(l B _1t_1 " . l+1 a - I'x(l)
dam | (pe o W) (Hp ) (f @ €) | = o= s [111 ﬂ R
r= iel a=1 I=1 l
X 1—[ (1= 2pp/2p.a) (1 - q‘lt‘lz,,,;,/z,,,a)
l<a<b<n (1 - qZp+1,b/Zp,a)(1 - q_lzp—l,b/zp,u)
9 (1-zip/zia)(1 _q_lt_IZi,b/Zi,a)
iel\{p} (1 - q_IZi—l,b/Zi,a)(l - t_IZi+1,b/Zi,a)
i 20 1
,a
X
1;! [(Zpﬂ,u ) ( 1- qflzp,a/ZpH,a )
1 1
X
iel\—{[p}( 1-q7"%a/zi+1,a ) ( 1- t_IZi+1,a/Zi,a)
N; ] n n
<[al35 - Syt St} o
i€l I=1 a=1 a=1 0
and

n N 71 (@)
) (1 = gt)™ i Z —Ix
dnn'N. (PE o T—)(,H_;),n)(f ® ea)) (I—[n) ((1 7 2r l(i)

1 q iel a=1 I=1 Zi+1,a - xl

[ — Zp+l, a/Zp+1 b)(l — qtZp+1, a/Zp+1 b)
1<a<b<n 1-¢q~ ZP’G/ZP“,}?)(l - qu—Z,a/ZpH,b)
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(1 - zia/2zip) (1 — qtzia/2ip)
iel\{p+1} (1 = qziv1,a/zip) (1 = 12i-1,a/2i,b)

n
<] |
i

(Zp+1,a)( 1 )
L\ Z0.a 1= g2p+t,al2p,a
1 1
< 1 [ )
icl\{p+l} 1= q%Zia/zi-1.a)\1 = tzi-1,a/Zi.a

LTS5t Syaat- Sy} o
0

i€l
Finally, we make the substitution w; o = z;, and rewrite these formulas in terms of integrals. This
gets us

X

i, ((,05 o W) (Hy ) (f © e“>)

i dwi q @
-§- f(@,,,,<w..,xN>nﬁ[z<> St 3w [ o) o

Wia |21 iel

and

i, (<pg W) (HE)(f @ ))

i d 1,a (o3
‘7{ f(gpn(w..,XN.)nfl[Z ()+qula ZWHlulHQJT\/W_Wla)@e

i€l a=1 a=1
[Wi,al=1

where
n(n+l) 1 N; (i)
(-H" =z ( ltl n S Wi — 17 X
Opn(We e, XN,) = — 05 0
q S (L=q7"t7") Uiel a=11=1\ Wiaa =X
(Wp,b - W.n»a) (Wp»b ~ q_lt_lwp,a)

X
l<a<b<n (Wp,a _q_lwp+1,b)(wp—l,b _q_lwp,a)

y (Wi,h - Wi,a) (Wi,b - q_lt_lwi,a)
iel\{p} (Wi—l,b - q_lwi,a)(wi+l,b - t_lwi,a)

n
<| |
a=

(Wp+1,a)( Wp.a )
-1 W0,a Wp.a _q_lwp+1,a

% ]_[ Wi.a Witl,a
. Wia — CI_IWi+1 a Witl,a — t_lwi a
lEl\{p} > > > )
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and

n n+l) n(n 1)

Nl 1 (l l)
_ ( 1) (l—ql)nr 1 Wi-l,a =1
% (W',"XN.) = l | |
p.n 171(1 _ rtr) B x(l 1)

=1 Wta_

Wp+l,a = Wp+l, b)(wp+l,a - thp+l,b)

l<a<b<n[ Wp+l,b - qu,a)(Wp+2,a - qu+1,b)

(Wi,a - Wi,b) (Wi,a - thi,b)

e\ (p+1} (Wist.a = qwip) (Wi-t.a = tWip)

n
1—[ ( Wwo,q )( Wpil,a )
Wp+l,u Wp+l,a - qu,u

a=1

Wi.a Wi-1l,a
< T )
iel\(p+1) Wia —qWi-1,a ] \Wi-1,a Wia

X

X

A.5. Degree one

We compute the integral and record the resulting action on f when n = 1.

A.5.1. Difference operators
Let Sh(Xpn,) = Sh denote the set of all shift patterns. Define

x4 ( ) _ (z+1>)
* . =1y ._ _ _ _1 _1 ‘Jl 6)6] — - =
Hy (Xt == ) (1 A (0> L] l_[ (7<)
JeSh g iel =1 l ]A
J40 (:)¢x<z> A
675
th l(x(P)) x(l’) preJ th l(x(l)) »
< ), 1y L
St | et (8 -1768)
X Ni ( (i) _ =1, (= 1))
: lmbper L W =t
Hp1(Xniq.17) Z (I-at) (p) ﬂ 1—[ L _ 0
JESh Jv iel =1 l _-XJV
J#0 x D'l =
- JY
Spe ;
lt IT (X(P)) (P) peJ q_lt_lTJ(x(l))
x(i —Ti(x(ip)) ie\{p} ( —TJ(X(I)))

Setting » = 1 and inverting ¢, we indeed obtain the first Noumi-Sano operator.
A.5.2. Eigenvalues

For a series f(z) in z, let [z"*] f(2) denote the coefficient of z”*. Methods similar to those in 5.4 allow us
to establish the following.
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Theorem A.3. For |q| > 1, we have
H;,I(XN.;Q»I)PJ[XN.;q’ t] (A4)
[N |
1‘[ (q—ub+i>,—|zv.|+<b—l)z; q—r)
L At )
=p+i+ .
= [2] ]_[ o PaXn.;q.1]. (A5)
i=1 l_[ ( —(/lb+i)t—|N.|+bZ;q—r)
b (o)
b- /lep
However, for |q| < 1, we have
Hp 1 (XN 4, ) Pal XN, g, 1] (A.6)
[N | _
1_[ (q/lhﬂth.l—(b—l)Z—l;qr)
_1 b— /lb p+l+l .
] ]_[ o PalXn.:4.1]. (A7)
l_[ (q/lb+it|N.|—bZ—l; qr)
b=1 ®
b—Ap=p+i
Remark A.4. We have presented the eigenvalues in terms of our original spectral variables g ¢/N+I=?.

However, we can give a more natural combinatorial expression for the eigenvalues if we forgo this and

use instead the transpose partition A’ [9, (I.1.3)]. Let

flat) = ——Z SN

Jjz1

It can be viewed as a series or as a rational function since (1—¢g") f1(g, t) is a polynomial. Let I" =

(A.8)

Z/rZ

be the cyclic group and let y be the generator of R(T"). Define f /lp (p) (g, 1) by the following expression in

Q(g,1) ® R(I'):

Alax Y =x D AP (g 0x”.

pel

Then the eigenvalues are given by

H, (XN q.0PalXN:q.1] = £17 (g7 )Pl Xn, .1

Hp i (Xn,: g, DPAlXn.: 4,11 = 17 (g, ) Pal Xw,: . 1],

(A.9)

(A.10)

(A.11)

Example A.5. Let » = 2 and @ = 0 (empty core). We use Ng = N = 1. There are three nonempty shift
patterns: J, = {x(o)} J, = {xfl)} and J, = {x(o) (1)} We apply Ho 1 [Xn,:q.t '] to Po[Xn.;q.t] = 1

using summands S5 dp J5t
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(0) (1)

Hot(Xn,: o) - PolXw.s g 171 = (1 - q° 2L S A el
—110,1(&N,5 4, Fol&AN, 4, = -q
<0 (1) ax0 x(O)_q <0
(1) (0) -1y (1) g2 (1)
+ (1 _qt)l )Cl -1 q q )C
D D 1
qu () qu f)—qxf)
-1,2.(0) _ (0) —1,-1,2 (1)
" )lq g*x;” —x;” g7 g x
N RORNC NN
q(qt‘l—l)x(]) '
1—¢ §1>_ <O
RIERREa)
g7 O qx“)
L (—an(gr 1—l)qt !
(1-4¢2)?
g 1-1 _
= t_21——q2P0[XN';q’t .
‘We have
1 2 1-+¢2

9t_ - =
fo(q,1) T=¢ 1-¢ 1-4

folax ey =

2

1-¢2
-2 :_il—t2
-2 21-q2

f(o)(q,t) =q

0 _
a1 =¢q
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