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Abstract

We construct a novel family of difference-permutation operators and prove that they are diagonalized by the wreath

Macdonald P-polynomials; the eigenvalues are written in terms of elementary symmetric polynomials of arbitrary

degree. Our operators arise from integral formulas for the action of the horizontal Heisenberg subalgebra in the

vertex representation of the corresponding quantum toroidal algebra.
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1. Introduction

Let ÿý = {ý1, . . . , ýý } be a set of variables. The Macdonald polynomials {ÿÿ [ÿý ; ÿ, ý]} are a basis

of the ring of (ÿ, ý)-deformed symmetric polynomials Q(ÿ, ý) [ÿý ]ÿý that have appeared across a

remarkably broad collection of mathematical ûelds. They can be characterized as eigenfunctions of a
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commuting family of difference operators, the Macdonald operators: for 1 ≤ ÿ ≤ ý ,

ÿÿ (ÿý ; ÿ, ý) := ý
ÿ(ÿ−1)

2

∑
ý ⊂{1,...,ý }

|ý |=ÿ

����
∏
ÿ∈ý
ÿ∉ý

ýýÿ − ý ÿ

ýÿ − ý ÿ

����	
∏
ÿ∈ý

ÿÿ,ýÿ (1.1)

ÿÿ (ÿý ; ÿ, ý)ÿÿ [ÿý ; ÿ, ý] = ÿÿ (ÿÿ1 ýý−1, ÿÿ2 ýý−2, . . . , ÿÿý )ÿÿ [ÿý ; ÿ, ý] . (1.2)

Here, ÿÿ,ýÿ is the q-shift operator

ÿÿ,ýÿý ÿ = ÿ ÿÿ, ÿ ý ÿ

and ÿÿ is the nth elementary symmetric polynomial. The Macdonald operators are themselves distin-

guished as Hamiltonians of the quantum trigonometric Ruijsenaars-Schneider integrable system.

This paper is concerned with the wreath Macdonald polynomials, a generalization of the Macdonald

polynomials proposed by Haiman [7]. Fix an integer ÿ > 0 and partition the variables ý1, . . . , ýý into r

subsets:

ÿý• :=

ÿ−1⊔
ÿ=0

{
ý
(ÿ)
ý

}
ý=1,...,ýÿ

= {ý1, . . . , ýý }

where
∑ÿ−1
ÿ=0 ýÿ = ý . We call the index i the color of ý

(ÿ)
ý

, and it will be helpful to view it as an element

of ý := Z/ÿZ. The number of variables is recorded by the vector ý• := (ý0, . . . , ýÿ−1), and we set

|ý• | := ý . Consider the action of the product of symmetric groups

ÿý• :=
∏
ÿ∈ý

ÿýÿ

on the polynomial ring Q(ÿ, ý)
[
ÿý•

]
whereby ÿýÿ

only permutes the variables of color i. The wreath

Macdonald polynomials can be viewed as a set of color-symmetric polynomials that are again indexed

by a single partition:

ÿÿ [ÿý• ; ÿ, ý] ∈ Q(ÿ, ý)
[
ÿý•

]ÿý• .

The combinatorics of r-cores and r-quotients play a key role in this subject, which we review in Section 2

below. When we restrict ÿ to range over partitions with a ûxed r-core and ℓ(ÿ) ≤ |ý• |, we obtain a basis

of color-symmetric polynomials. For reasons that seem technical at ûrst, the r-core and ý• must satisfy

a compatibility condition (see 2.9). The original Macdonald polynomials are the case ÿ = 1.

Haiman9s proposed deûnition characterizes ÿÿ [ÿý• ; ÿ, ý] using a pair of triangularity conditions. In

contrast with the usual Macdonald theory, we a priori do not have an analogous characterization as

the joint eigenfunction of an explicit family of difference operators. The present work remedies this

situation: we produce a novel family of difference-permutation operators that are diagonalized by the

wreath Macdonald polynomials and whose eigenvalues are written in terms of the elementary symmetric

polynomials. In addition to the degree n, they also carry a color parameter ý ∈ ý:
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ÿ ý,ÿ (ÿý• ; ÿ, ý) :=
(−1) ÿ(ÿ−1)

2∏ÿ
ý=1(1 − ÿý ý−ý )

×
∑

J∈ÿℎ [ÿ]
ý (ÿý• )

�
ÿ∏
ÿ=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

(1 − ÿý−1) |ýÿ |���
ý
(ÿ−1)
ý�ÿ

ý
(ý)
ýÿ

��	

ýý∏
ý=1

ý
(ý)
ý

∉ |J |≥ÿ

(
ýý

(ý−1)
ý�
ÿ

− ý
(ý)
ý

)

ýý∏
ý=1

ý
(ý)
ý

∉ |J |≤ÿ

(
ý
(ý)
ýÿ

− ý
(ý)
ý

)

×
�������

∏
ÿ∈ý \{ý}

ýÿ∏
ý=1

ý
(ÿ)
ý

≠ý
(ÿ)
ý�ÿ

(
ýý

(ÿ−1)
ý�
ÿ

− ý
(ÿ)
ý

)
(
ý
(ÿ)
ý�
ÿ

− ý
(ÿ)
ý

)
������	
����
∏

ÿ∈ýÿ\{ý}

ÿ−1ýÿýÿ
ý
(ÿ)
ý
ÿ(

ý
(ÿ)
ý
ÿ
− ÿýÿ

ý
(ÿ)
ý
ÿ

) ���	
ÿý

ÿ

«⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪­

.

(1.3)

The notation used in this formula is outlined in 5.1.4. Our main result is the following:

Theorem (see Theorem 5.21). For ÿ having r-core compatible with ý• and ℓ(ÿ) ≤ |ý• |, the polynomial

ÿÿ [ÿý• ; ÿ, ý] satisfies the eigenfunction equation

ÿ ý,ÿ (ÿý• ; ÿ, ý)ÿÿ [ÿý• ; ÿ, ý] = ÿÿ

£¤¤¤¤¤¥
|ý• |∑
ÿ=1

ÿ−ÿÿ≡ý+1 mod ÿ

ÿÿÿ ý |ý• |−ÿ
¦§§§§§̈ÿÿ [ÿý• ; ÿ, ý] . (1.4)

For the eigenvalues, we have used plethystic notation – we merely mean the elementary symmetric

function ÿÿ evaluated at the characters appearing in the summation. In earlier work [14], the ûrst two

authors constructed the ûrst order dual operators ÿ∗
ý,1

and their eigenfunction equation in Theorem 5.21.

Our operators (1.3) are much more complicated than the original Macdonald operators (1.1). In the

case ÿ = 1, we do indeed obtain (1.1) after some simpliûcation (see Remark 5.15). When ÿ > 1, the

vanilla q-shift operator ÿÿ,ýÿ is replaced with what we call a cyclic-shift operator ÿýÿ
, which cyclically

permutes variables of different colors in addition to multiplying by a power of q. Because of this extra

permutation, the cyclic-shift operators might not commute. Note now the ordered product in (1.3) – we

expect the formula to simplify meaningfully after taking into account the (non)commutativity of the

constituent cyclic-shift operators. Moving beyond the intricacies of our formula, let us now highlight

some nice conceptual aspects of our operators.

1.1. Integral formulas

Our strategy for deriving (1.3) and establishing the eigenfunction equation uses work of the third author

[19]. Namely, we study the wreath Macdonald polynomials using the quantum toroidal algebraýÿ,ý ( �ýýÿ )
and its vertex representation W. The aforementioned work proves that inûnite-variable wreath Macdonald

polynomials can be naturally embedded inside W such that they diagonalize a large commutative

subalgebra of ýÿ,ý ( �ýýÿ ), the horizontal Heisenberg subalgebra. This alone is insufficient for obtaining

explicit formulas – we also need work of Neguţ [11] realizing ýÿ,ý ( �ýýÿ ) in terms of a shuffle algebra.

The shuffle algebra is a space of rational functions endowed with an exotic product structure, and it is

isomorphic to a part ofýÿ,ý ( �ýýÿ ) via a map that is morally (but not precisely) an integration map. Writing

its action on W and then specializing from inûnite to ûnite variables, we obtain actual integral formulas.

Finally, to pin down the eigenvalues, we use the (twisted) isomorphism established by Tsymbaliuk [17]

between the vertex representation and the Fock representation.
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We apply this process to the shuffle realizations of well-chosen elements of the horizontal Heisenberg

subalgebra which were found in [19]. Our operators are the highest degree parts (see Proposition 5.16),

and we can write their action as follows: for a factored element

ÿ =
∏
ÿ∈ý

ÿÿ

(
ý
(ÿ)
•
)
∈ C(ÿ, ý)

[
ÿý•

]ÿý•

ÿ ý,ÿ (ÿý• ; ÿ, ý) ÿ =
∮
ÿ

(−1) ÿ(ÿ−1)
2 ý−

ÿ(ÿ+1)
2 (1 − ÿý−1)ÿÿ∏ÿ

ÿ=1 (1 − ÿÿý−ÿ)
∏
ÿ∈ý

ÿ∏
ÿ=1

ýÿ∏
ý=1

(
ýýÿ,ÿ − ý

(ÿ)
ý

ýÿ+1,ÿ − ý
(ÿ)
ý

)

×
∏

1≤ÿ<ÿ≤ÿ

{ (
ýý,ÿ − ýý,ÿ

) (
ýý,ÿ − ÿý−1ýý,ÿ

)
(
ýý,ÿ − ý−1ýý+1,ÿ

) (
ýý−1,ÿ − ý−1ýý,ÿ

)

×
∏

ÿ∈ý \{ý}

(
ýÿ,ÿ − ýÿ,ÿ

) (
ýÿ,ÿ − ÿý−1ýÿ,ÿ

)
(
ýÿ+1,ÿ − ÿýÿ,ÿ

) (
ýÿ−1,ÿ − ý−1ýÿ,ÿ

)
«⎪⎪¬
⎪⎪­

×
ÿ∏
ÿ=1

{(
ý0,ÿ

ýý+1,ÿ

) (
ýý+1,ÿ

ýý,ÿ − ý−1ýý+1,ÿ

)

×
∏

ÿ∈ý \{ý}

(
ýÿ,ÿ

ýÿ,ÿ − ý−1ýÿ+1,ÿ

) (
ýÿ+1,ÿ

ýÿ+1,ÿ − ÿýÿ,ÿ

)«⎪⎪¬
⎪⎪­

×
∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

+
ÿ∑
ÿ=1

ÿýÿ,ÿ −
ÿ∑
ÿ=1

ýÿ+1,ÿ

]
ÿ∏
ÿ=1

ýýÿ,ÿ

2ÿ
√
−1ýÿ,ÿ

,

where for each variable ýÿ,ÿ, the cycle C only encloses poles of the form (ýÿ,ÿ − ÿýÿ−1,ÿ) and

(ýÿ,ÿ − ýÿ−1,ý). Explicit evaluation of this integral leads to (1.4). We also carry this out for its dual

counterpart in Theorem 5.21.

Using other shuffle elements from [19], we obtain similar integral formulas for wreath analogues of

the Noumi-Sano operators [12], although we are only able to evaluate the integral and obtain formulas

for the operators in degree ÿ = 1. We note that our approach is similar to [4] in the ÿ = 1 case, although

our a priori knowledge and endgoals are different. In [4], the authors use the well-known Macdonald

operators to study the action of certain shuffle elements, whereas we use ÿ > 1 analogues of their

shuffle elements to discover new operators. In [18], Tsymbaliuk has also produced difference operators

out of ýÿ,ý ( �ýýÿ ) through very different means. The relation between Tsymbaliuk9s operators to wreath

Macdonald theory does not seem straightforward but could be interesting.

1.2. Towards bispectral duality

In the case ÿ = 1, the eigenfunction equation (1.2) is particularly interesting when juxtaposed with

the Pieri rules [9]. To make this apparent, introduce a continuous extension of the discrete parameters

ÿ = (ÿ1, . . . , ÿý ):

ýÿ := ÿÿÿ ýý−ÿ , ÿý := {ý1, . . . , ýý }.

We call the variables ÿý the position variables and ÿý the spectral variables. It is natural to interpret the

spectral q-shiftÿÿ,ýÿÿÿ [ÿý ; ÿ, ý] as adding a box to row i of the partition ÿ. For a certain renormalization

ÿ̃ÿ [ÿý ; ÿ, ý] of ÿÿ [ÿý ; , ÿ, ý], we can write the Pieri rules as

https://doi.org/10.1017/fms.2025.10061 Published online by Cambridge University Press
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ÿÿ (ý1, . . . , ýý )ÿ̃ÿ [ÿý ; ÿ, ý] = ý
ÿ(ÿ−1)

2

∑
ý ⊂{1,...,ý }

|ý |=ÿ

����
∏
ÿ∈ý
ÿ∉ý

ýýÿ − ý ÿ

ýÿ − ý ÿ

����	
∏
ÿ∈ý

ÿÿ,ýÿ ÿ̃ÿ [ÿý ; ÿ, ý] . (1.5)

The fact that no shift operator ÿÿ,ýÿ appears more than once enforces the well-known support condition

of the Pieri rules: the ÿ̃ÿ [ÿý ; ÿ, ý] that appear on the right-hand side of (1.5) are such that ÿ\ÿ contains

no horizontally adjacent boxes. However, we can view the eigenfunction equation (1.2) as describing

multiplication by ÿÿ (ý1, . . . , ýý ). The similarity between (1.2) and (1.5) is reüective of a symmetry

ÿý ↔ ÿý .

This symmetry is the subject of many beautiful works in Macdonald theory. A totalizing per-

spective on this was given by Noumi and Shiraishi [13], who produced an explicit function

ÿý (ý1, . . . , ýý |ý1, . . . , ýý ) satisfying

ÿý (ÿÿ1 ýý−1, ÿÿ2 ýý−2, . . . , ÿÿý |ý1, . . . , ýý ) = ÿ̃ÿ [ÿý ; ÿ, ý]
ÿý (ý1, . . . , ýý |ý1, . . . , ýý ) = ÿý (ý1, . . . , ýý |ý1, . . . , ýý ).

Discretizing the x-variables as well, we obtain the well-known evaluation duality [9]:

ÿ̃ÿ (ÿÿ1 ýý−1, ÿÿ2 ýý−2, . . . , ÿÿý ) = ÿ̃ÿ (ÿÿ1 ýý−1, ÿÿ2 ýý−2, . . . , ÿÿý ).

The evaluation duality is also a consequence of the Cherednik-Macdonald-Mehta formula [2], which

can be regarded as a remarkable statement about the quantum toroidal algebra ýÿ,ý ( �ýý1) and its Miki

automorphism. The ÿý ↔ ÿý symmetry has also been extended by Etingof and Varchenko [3] to

the much broader context of traces of intertwiners for quantum groups, although we note that in their

setting, ûnding explicit formulas is difficult. Finally, the symmetry is also a case of 3d mirror symmetry

as proposed by Okounkov [1].

For the wreath case ÿ > 1, the spectral variables should also have color. We assign ý
(ÿ)
ý

to some b

such that ÿ − ÿÿ ≡ ÿ + 1 mod r:

ý
(ÿ)
ý

:= ÿÿÿ ý |ý• |−ÿ .

Here, we point out a natural motivation for imposing our compatibility condition between coreÿ (ÿ) and

ý• – it forces there to also be ýÿ spectral variables of color i. The eigenfunction equation (1.4) then

describes multiplication by ÿÿ (ý (ý)1
, . . . , ý

(ý)
ýý

). Note that adding a box to a row will not only contribute

a q-shift but also change the color, and that is precisely what the cyclic-shift operators ÿýÿ
do. Work of

the third author [19] provides one constraint on the support of the wreath Pieri rules. Namely, for a box

(ÿ, ÿ), if we call the class of ÿ − ÿ mod r its color, then ÿÿ [ÿý• ; ÿ, ý] appears as a summand of

ÿÿ (ýý,1, . . . , ýý,ýý
)ÿÿ [ÿý• ; ÿ, ý]

only if ÿ\ÿ consists of n boxes of each color such that no boxes of color p and ý + 1 are horizontally

adjacent. One can check that the combinations of ÿý
ÿ

appearing in (1.3) enforce this condition after

swapping ý
(ÿ)
ý

↔ ý
(ÿ)
ý

. Computer calculations done by the second author also conûrm a wreath analogue

of evaluation duality. While we are still a long way from establishing a wreath analogue of the ÿý ↔ ÿý
symmetry, our strange operators seem to go out of their way to say it must be true. Generalizing any

of the aforementioned perspectives for understanding this symmetry must surely lead to interesting

mathematics.
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1.3. Outline

Section 2 introduces the wreath Macdonald polynomials. It includes a review of the combinatorics of

r-cores and r-quotients. Section 3 focuses on the quantum toroidal algebra and its representations. We

derive eigenvalues for the inûnite-variable analogues of our operators. Section 4 moves onto the shuffle

algebra. We write the action of a shuffle element on the vertex representation as the constant term of a

series. Section 5 is the technical heart of the paper. We derive integral formulas for our operators and

compute the integral. Some additional efforts are needed to go from the inûnite-variable eigenvalues

to their ûnite-variable versions. Finally, in the Appendix, we derive integral formulas for wreath ana-

logues of Noumi-Sano operators. Unfortunately, for these operators, we were only able to evaluate the

integrals for degree ÿ = 1. Throughout, we present examples following the derivation of each of our

operators.

2. Wreath Macdonald functions

Fix a positive integer r and let ý = Z/ÿZ.

2.1. Partitions

Let Y be the set of all integer partitions. We deûne the diagram of a partition ÿ = (ÿ1, ÿ2, . . . ) ∈ Y
to be ÿ (ÿ) = {(ÿ, ÿ) ∈ (Z≥0)2 : 0 ≤ ÿ < ÿÿ+1}. The residue of (ÿ, ÿ) ∈ Z2 is the element

ÿ − ÿ ∈ Z/ÿZ.

2.2. Edge sequences and partitions

A function ÿ : Z → {0, 1} can be viewed as an inûnite indexed binary word · · · ÿ(1)ÿ(0)ÿ(−1) · · · ;
notice that in writing such a word, we index the positions in reverse order. An inversion of b is a pair of

integers ÿ > ÿ such that ÿ(ÿ) > ÿ( ÿ), a 1 to the left of a 0. An edge sequence is a function ÿ : Z→ {0, 1}
such that ÿ(ÿ) = 0 for ÿ � 0 and ÿ(ÿ) = 1 for ÿ 
 0; that is, b has ûnitely many inversions. Let ES

denote the set of edge sequences. The shape of ÿ ∈ ES is the partition whose French partition diagram

has boundary traced out by the values of b from northwest to southeast where 0 (resp. 1) indicates a

vertical (resp. horizontal) unit segment; see Figure 1. Its parts are given by the number of 19s to the

left of each 0 in the edge sequence. The charge of b is the index of the segment that touches the main

diagonal from the northwest, or equivalently the index of the last 0 in the edge sequence of the form

· · · 0011 · · · obtained from b by repeatedly swapping adjacent pairs 10 to 01 until none remain. There is a

bijection

ES → Z × Y
ÿ ↦→ (charge(ÿ), shape(ÿ)). (2.1)

Example 2.1. An edge sequence b and its charge and shape are pictured in Figure 1.

2.3. Cores and quotients

Our goal is to deûne the bijection

Y � Cÿ × Yÿ

ÿ ↦→ (coreÿ (ÿ), quotÿ (ÿ)),
(2.2)

where coreÿ is the r-core and quotÿ is the r-quotient map.
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Figure 1. The shape of an edge sequence.

In the following diagram, all horizontal maps are bijections and vertical maps are inclusions.

Z × Y ES ESÿ Zÿ × Yÿ

{0} × Y ES0 (ESÿ )0 ý × Yÿ Cÿ × Yÿ

{0} × Cÿ ý × ∅ÿ

charge×shape ý•×quotÿ

ÿ−1×id

ÿ

Elements ÿ• = (ÿ0, ÿ1, . . . , ÿÿ−1) ∈ ESÿ are called abaci. We may write them as {0, 1, . . . , ÿ − 1} × Z
matrices with entries in {0, 1}, where a 0 is a bead and a 1 is a hole (position with no bead) and the i-th

row represents the edge sequence ÿÿ and is the i-th runner in the abacus.

There is a bijection ES → ESÿ sending b to (ÿ0, ÿ1, . . . , ÿÿ−1) by letting ÿÿ select the bits in b

indexed by integers congruent to i mod r: ÿÿ ( ÿ) = ÿ(ÿ ÿ + ÿ) for 0 ≤ ÿ < ÿ and ÿ ∈ Z. The inverse map

is given by interleaving the sequences ÿ0, ÿ1, . . . , ÿÿ−1. This bijection is charge-additive: charge(ÿ) =∑ÿ−1
ÿ=0 charge(ÿ ÿ ). The r-fold product of the bijection (2.1) yields the bijection ESÿ � Zÿ × Yÿ . Denote

this by ÿ• = (ÿ0, . . . , ÿÿ−1) ↦→ ((ý0, . . . , ýÿ−1), ÿ•). We write ÿ• = quotÿ (ÿ•); this is the r-quotient. Call

(ý0, . . . , ýÿ−1) = ý•(ÿ•) the charge vector. This indicates the position on each runner where the beads

end after pushing all beads to the left. This deûnes the bijections going across the top row of the diagram.

We now restrict all these bijections. Let ES0 = {ÿ ∈ ES | charge(ÿ) = 0} and (ESÿ )0 = {ÿ• ∈ ESÿ |∑ÿ−1
ÿ=0 ýÿ (ÿ•) = 0}. Then ý•(ÿ•) can be viewed as an element of the ýýÿ root lattice Q (and belongs to the

zero lattice ý = 0 when ÿ = 1). The second row of the diagram (save the last map) is given by suitable

restrictions of the top row of bijections.

An r-core is a partition ÿ which does not have r as a hook length. That is, ℎÿ (ÿ, ÿ) ≠ ÿ for all

(ÿ, ÿ) ∈ ÿ. We denote by Cÿ ⊂ Y the set of r-cores. Let ÿ be a partition and let ÿ ∈ ES be such that

shape(ÿ) = ÿ. Then ÿ has a box (ÿ, ÿ) ∈ ÿ with hook-length r, that is, ℎÿ (ÿ, ÿ) = ÿ , if and only if there
https://doi.org/10.1017/fms.2025.10061 Published online by Cambridge University Press
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is an index k such that ÿ(ý) = 1 and ÿ(ý + ÿ) = 0. This is equivalent to ÿ (ý) ≠ ∅, where ÿ• = quotÿ (ÿ)
and we take superscripts mod r. This proves that ÿ is an r-core if and only if the r-quotient of ÿ is empty:

quotÿ (ÿ) = (∅ÿ ).
Therefore, the bijection {0} × Y � ý × Yÿ restricts to the bijection {0} × Cÿ � ý × (∅ÿ ), that is,

Cÿ � ý. We call this bijection ÿ.

Example 2.2. Let ÿ ∈ ES0 be as in the previous example. We have ÿ = shape(ÿ) = (4, 3, 2, 2). Set

ÿ = 3. We map ÿ ↦→ (ÿ0, ÿ1, ÿ2) which are pictured in the matrix below. Reading up the columns of the

{0, 1, 2} × Z matrix, we recover b. Each runner of the abacus is an edge sequence; the corresponding

shapes give the 3-quotient of (4, 3, 2, 2), which is (1,∅, 2).
To get the 3-core of ÿ, we move all beads to the left in each runner. This produces the second abacus.

Reading up columns, we obtain the edge sequence ÿ = · · · 0001|1011 · · · . Therefore, core3 (4, 3, 2, 2) =
shape(ÿ) = (2). The charge sequence is (1,−1, 0) ∈ ý.

ÿ · · · 5 4 3 2 1 0 −1 −2 −3 −4 −5 −6 · · ·
ÿÿ · · · 0 0 1 1 0 0 1 0 1 0 1 1 · · ·

2 1 0 -1 -2 -3

ÿ0 0 1 0 1 1 1

ÿ1 0 0 0 0 1 1

ÿ2 0 0 1 1 0 1

· · ·

· · ·

· · ·

•

•

•

◦

•

•

•

•

◦

◦

•

◦

◦

◦

•

◦

◦

◦

· · ·

· · ·

· · ·
∅

· · ·

· · ·

· · ·

•

•

•

•

•

•

◦

•

•

◦

•

◦

◦

◦

◦

◦

◦

◦

· · ·

· · ·

· · ·

1

−1

0

core:
ÿ · · · 5 4 3 2 1 0 −1 −2 −3 −4 −5 −6 · · ·
ÿÿ 0 0 0 0 0 0 1 1 0 1 1 1 1 1

Remark 2.3. Our map quotÿ and our deûnition of charge are the same as in [19], except that we

interchange the roles of black and white dots in our Maya diagrams.

When considering a ûxed r, we simply write core = coreÿ and quot = quotÿ .

2.4. Cores and ribbons

Consider ÿ, ÿ ∈ Y such that ÿ ⊂ ÿ. The skew shape ÿ/ÿ := ÿ (ÿ) − ÿ (ÿ) is a ÿ-addable and ÿ-

removable r-ribbon if |ÿ | − |ÿ | = ÿ and the set of boxes ÿ/ÿ is rookwise connected (i.e., any two boxes

in ÿ/ÿ can be connected by a chain of horizontally and vertically adjacent boxes in ÿ/ÿ) with at most

one element on each southwest-northeast diagonal. Then an r-core is precisely a partition that has no

removable r-ribbon. One way to obtain core(ÿ) is to repeatedly remove (removable) r-ribbons starting

with ÿ until an r-core is reached; by deûnition, this is core(ÿ). This is well deûned: one obtains the

same r-core independently of the order of removal of r-ribbons. It is the same as moving the beads in

the abacus to the left.
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2.5. Cores to root lattice

Recall that Q denotes the ýýÿ root lattice (or ý = 0 in the case ÿ = 1), realized as the zero sum elements

in the lattice Zý :

ý :=

{
(ý0, . . . , ýÿ−1) ∈ Zý

+++++
∑
ÿ∈ý

ýÿ = 0

}
.

Let ÿÿ ∈ Zý be the i-th coordinate vector. Then Q is the spanned by the elements

ÿÿ := ÿÿ−1 − ÿÿ , ÿ ∈ ý .

We realize the simple roots of ýýÿ as the ÿÿ for ÿ ≠ 0.

Another way to compute the bijection ÿ : C → ý is as follows. Deûne the map ÿ : Y→ ý by

ÿ(ÿ) = −
∑

(ý,ÿ) ∈ÿ
ÿÿ−ý .

It is not difficult to show that the restriction of ÿ to C is the same as the bijection C � ý constructed above.

Example 2.4. Let ÿ = 3 and consider the 3-core (2). We put ÿÿ−ý into the box (ý, ÿ):

ÿ0 ÿ2

Thus, ÿ((2)) = −(ÿ0+ÿ2) = ÿ1, which agrees with the charge sequence (1,−1, 0) ∈ ý computed above.

Deûne the bijection big : ý × Yý → Y via the following commutative diagram:

Y C × Yý

ý × Yý

(core,quot)

ÿ×id
big

(2.3)

Example 2.5. We list the elements ÿ• ∈ Yý of total size 2 and their images under ÿ• ↦→ big(−ÿ1, ÿ
•).

ÿ• image

· ·
· ·
·

·
· ·

· ·

·

· ·

· ·

https://doi.org/10.1017/fms.2025.10061 Published online by Cambridge University Press



Forum of Mathematics, Sigma 11

2.6. Symmetric functions

Let Λ be the algebra of symmetric functions over K = Q(ÿ, ý) in inûnitely many variables [9, §I.2].

Denote by Λý = Λ⊗ý the I-fold tensor power of Λ over K, which is a graded K-algebra with grading

given by the sum of degrees in each tensor factor. For ÿ ∈ Λ, we write ÿ [ÿ (ÿ) ] to indicate the element of

Λý with 1 in tensor factors ÿ ≠ ÿ and f in factor i. The power sums ýý [ÿ (ÿ) ] for ÿ ∈ ý and ý > 0 generate

Λý as a K-algebra. We write ÿ• for the I-tuple of alphabets (ÿ (0) , . . . , ÿ (ÿ−1) ) and often denote by

ÿ [ÿ•] a generic element of Λý . Note that each alphabet ÿ (ÿ) itself contains inûnitely many variables.

For an I-tuple of partitions ÿ• = (ÿ (0) , ÿ (1) , . . . , ÿ (ÿ−1) ) ∈ Yý , deûne the tensor Schur function ýÿ• =⊗
ÿ∈ý ýÿ(ÿ) =

∏
ÿ∈ý ýÿ(ÿ) [ÿ (ÿ) ]. Let 〈−,−〉 be the Hall pairing onΛý , which is given by 〈ýÿ• , ýÿ•〉 = ÿÿ• ,ÿ• .

For ÿ ∈ Λý , we denote by ÿ ⊥ be the adjoint under the Hall pairing to the operator of multiplication by

f. Explicitly, [
ý⊥ÿ [ÿ (ÿ) ], ýÿ [ÿ ( ÿ) ]

]
= ÿÿÿ,ÿÿÿ, ÿ ,

where we view ýÿ [ÿ ( ÿ) ] as a multiplication operator.

For any ÿ ∈ K, deûne the K-algebra automorphism Pid−ÿÿ−1 of Λý by

Pid−ÿÿ−1 (ýý [ÿ (ÿ) ]) = ýý [ÿ (ÿ) ] − ÿý ýý [ÿ (ÿ−1) ] (2.4)

for all ÿ ∈ ý and ý > 0. (The notation Pid−ÿÿ−1 arises from more general matrix plethysms Pý for

ý ∈ Matý×ý (K) deûned in [15].)

2.7. Wreath Macdonald functions

For a partition ÿ, let ÿÿ [ÿ•; ÿ, ý] be the wreath Macdonald functions [7, Conjecture 7.2.19], as deûned

in [19, §2.3].1 These are characterized by the conditions

Pid−ÿÿ−1ÿÿ [ÿ•; ÿ, ý] ∈ K×ýquot(ÿ) +
⊕
ÿ>ÿ

ÿ (ÿ)=ÿ (ÿ)

Kýquot(ÿ) (2.5)

Pid−ý−1ÿ−1ÿÿ [ÿ•; ÿ, ý] ∈ K×ýquot(ÿ) +
⊕
ÿ<ÿ

ÿ (ÿ)=ÿ (ÿ)

Kýquot(ÿ) (2.6)

〈ý (ÿ) [ÿ (0) ], ÿÿ [ÿ•; ÿ, ý]〉 = 1, (2.7)

where ÿ = |quot(ÿ) | and < is the (strict) dominance order on partitions [9, §I.1].

For any ÿ ∈ Y, the wreath Macdonald P-function ÿÿ [ÿ•; ÿ, ý−1] is deûned to be the scalar multiple

of Pid−ý−1ÿ−1 (ÿÿ [ÿ•; ÿ, ý]) in which the coefficient of ýquot(ÿ) is 1. In particular, ÿÿ [ÿ•; ÿ, ý−1] satisûes

the unitriangularity

ÿÿ [ÿ•; ÿ, ý−1] ∈ ýquot(ÿ) +
⊕
ÿ<ÿ

ÿ (ÿ)=ÿ (ÿ)

Kýquot(ÿ) .

For any ûxed ÿ ∈ ý, the ÿÿ [ÿ•; ÿ, ý−1] such that ÿ(ÿ) = ÿ form a homogeneous basis of Λý , with

ÿÿ [ÿ•; ÿ, ý−1] having degree |quot(ÿ) |.
Our notation ÿÿ [ÿ•; ÿ, ý−1] agrees with the usual conventions in the classical ÿ = 1 case. For

technical reasons, it is often convenient to work with ÿÿ [ÿ•; ÿ, ý−1] rather than ÿÿ [ÿ•; ÿ, ý], though we

will eventually switch to the latter.

1In the more general framework of [15] (due to Haiman), these are the wreath Macdonald functions attached to translation
elements in the affine Weyl group of type ýÿ−1.
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2.8. Symmetric polynomials

For any ý• = (ý0, . . . , ýÿ−1) ∈ (Z≥0)ý , we can consider a ûnite set of variables

ÿý• := {ý (ÿ)
ý
}ÿ∈ý1≤ý≤ýÿ

and the corresponding restriction map

ÿý• : Λý → Λý
ý• :=

⊗
ÿ∈ý
K

[
ý
(ÿ)
1
, . . . , ý

(ÿ)
ýÿ

]ÿýÿ

(2.8)

ýÿ [ÿ (ÿ) ] ↦→
ýÿ∑
ý=1

(
ý
(ÿ)
ý

)ÿ
= ýÿ [ý (ÿ)• ]

given by the tensor product ÿý• = ⊗ÿ∈ý ÿýÿ
, where ÿý : Λ → K[ý1, . . . , ýý ]ÿý is the standard

projection to symmetric polynomials. We also write ÿý• ( ÿ ) = ÿ [ÿý•].

2.9. Finitization

Our main result will characterize the images ÿÿ [ÿý• ; ÿ, ý] := ÿý• (ÿÿ [ÿ•; ÿ, ý]) as eigenfunctions of

explicit q-difference operators. For reasons which are clariûed in Remark 5.7 below, we will only

consider variable number vectors ý• for ÿÿ which are compatible with core(ÿ) in the following way. If

ÿ(ÿ) = ÿ = (ý0, ý1, . . . , ýÿ−1), then we stipulate that ÿÿ will only be assigned variables ÿý• where ý•
is equivalent to −ÿ(ÿ) modulo Z(1, . . . , 1); that is,

ýÿ − ýÿ−1 = (ÿ∨
ÿ , ÿ(ÿ)) = (ÿ∨

ÿ , ÿ) = ýÿ−1 − ýÿ , for all ÿ ∈ ý, (2.9)

where

◦ ÿ∨
ÿ is the coroot for ÿ ≠ 0;

◦ ÿ0 = −ÿ1 − · · · − ÿÿ−1;

◦ (−,−) : ý∨ ×ý → Z is the standard pairing between ýýÿ root and coroot lattices.

Identifying the lattices ý∨
� ý and realizing Q inside Zý as above, (−,−) becomes the dot product on

Zý and ÿ∨
ÿ = ÿÿ−1 − ÿÿ for all ÿ ∈ ý.

Example 2.6. In the setting of Example 2.2, the root lattice element is ÿ(ÿ) = (1,−1, 0). The smallest

variable number vector which we allow for ÿ = (4, 3, 2, 2) is therefore ý• = (0, 2, 1). To this we can

add the vector (1, 1, 1) any number of times.

Lemma 2.7. Under the compatibility condition (2.9) between ý• ∈ (Z≥0)ý and ÿ ∈ ý, we have the

following:

1. The quantity

|ý• | :=
∑
ÿ∈ý

ýÿ

is divisible by r.

2. For ÿ ∈ Y with ÿ(ÿ) = ÿ and ℓ(ÿ) ≤ |ý• |,

ýÿ = #{1 ≤ ÿ ≤ |ý• | : ÿ − ÿÿ ≡ ÿ + 1 mod ÿ},

where we count ÿÿ = 0 if ℓ(ÿ) < ÿ ≤ |ý• |; in particular, quot(ÿ) = ÿ• satisfies ℓ(ÿ (ÿ) ) ≤ ýÿ for all

ÿ ∈ ý.

3. For any ÿ• ∈ Yý satisfying ℓ(ÿ (ÿ) ) ≤ ýÿ for all i, the partition ÿ = big(ÿ•, ÿ) satisfies ℓ(ÿ) ≤ |ý• |.
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Proof.

1. This follows from the fact that ý• and −ÿ(ÿ) are congruent modulo Z(1, . . . , 1), and the coordinates

of the latter sum to zero.

2. This follows from [9, I.1, Ex. 8] after taking our labeling conventions into account.

3. For any edge sequence b, the length of shape(ÿ) is precisely the number of 09s positioned to the right

of at least one 1. Given ÿ ∈ ý, our choice of ý• ensures that the number of 09s positioned to the

right of 19s in the interleaved edge sequence deûning ÿ will not exceed |ý• |.
�

An immediate consequence of parts (2) and (3) of Lemma 2.7 is the following:

Proposition 2.8. Under the compatibility condition (2.9) between ý• ∈ (Z≥0)ý and ÿ ∈ ý, the wreath

Macdonald polynomials ÿÿ [ÿý• ; ÿ, ý] indexed by ÿ ∈ Y satisfying ℓ(ÿ) ≤ |ý• | and ÿ(ÿ) = ÿ form a

basis of Λý
ý•

.

3. Quantum toroidal algebra

To ensure compatibility with [19] and [17], we assume that ÿ ≥ 3 from this point on.2

3.1. The algebra ýÿ,ý ( �ýýÿ )

Let ÿ and ý be two indeterminates, and set F := C(ÿ 1
2 , ý

1
2 ).

3.1.1. Generators and relations

For ÿ, ÿ ∈ ý = Z/ÿZ, we set

ÿÿ, ÿ =

⎧⎪⎪«
⎪⎪¬

2 ÿ = ÿ

−1 ÿ = ÿ ± 1

0 otherwise

ÿÿ, ÿ =

{
∓1 ÿ = ÿ ± 1

0 otherwise

and we deûne

ýÿ, ÿ (ÿ) :=
ÿÿÿ, ÿ ÿ − 1

ÿ − ÿÿÿ, ÿ
.

The quantum toroidal algebra ýý,ÿ ( �ýýÿ ) is a unital associative F-algebra with generators

{ÿÿ,ý , ÿÿ,ý , ÿÿ,ý , ÿ−1
ÿ,0, ÿ

± 1
2 ,ÿ±ý1 ,ÿ±ý2 }ý∈Zÿ∈ý .

Its relations are described in terms of currents:

ÿÿ (ÿ) :=
∑
ý∈Z

ÿÿ,ý ÿ
−ý

ÿÿ (ÿ) :=
∑
ý∈Z

ÿÿ,ý ÿ
−ý

ÿ±
ÿ (ÿ) := ÿ±1

ÿ,0 +
∑
ý>0

ÿÿ,±ý ÿ
∓ý .

2See Remark 5.15 and Remark 5.22 for discussion of the cases ÿ = 1, 2.
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The relations are then

[ÿ±
ÿ (ÿ), ÿ±

ÿ (ý)] = 0, ÿ±
1
2 are central,

ÿ±1
ÿ,0ÿ

∓1
ÿ,0 = ÿ±

1
2 ÿ∓

1
2 = ÿ±ý1ÿ∓ý1 = ÿ±ý2ÿ∓ý2 = 1,

ÿý1ÿÿ (ÿ)ÿ−ý1 = ÿÿ (ÿ−1ÿ), ÿý1 ÿÿ (ÿ)ÿ−ý1 = ÿÿ (ÿ−1ÿ), ÿý1ÿ±
ÿ (ÿ)ÿ−ý1 = ÿ±

ÿ (ÿ−1ÿ),
ÿý2ÿÿ (ÿ)ÿ−ý2 = ÿÿÿ (ÿ), ÿý2 ÿÿ (ÿ)ÿ−ý2 = ÿ−1 ÿÿ (ÿ), ÿý2ÿ±

ÿ (ÿ)ÿ−ý2 = ÿ±
ÿ (ÿ),

ýÿ, ÿ (ÿ−1ýÿÿ, ÿ ÿ/ý)ÿ+
ÿ (ÿ)ÿ−

ÿ (ý) = ýÿ, ÿ (ÿýÿÿ, ÿ ÿ/ý)ÿ−
ÿ (ý)ÿ+

ÿ (ÿ),
ÿÿ (ÿ)ÿ ÿ (ý) = ýÿ, ÿ (ýÿÿ, ÿ ÿ/ý)ÿ ÿ (ý)ÿÿ (ÿ),
ÿÿ (ÿ) ÿ ÿ (ý) = ýÿ, ÿ (ýÿÿ, ÿ ÿ/ý)−1 ÿ ÿ (ý) ÿÿ (ÿ),

(ÿ − ÿ−1) [ÿÿ (ÿ), ÿ ÿ (ý)] = ÿÿ, ÿ

(
ÿ(ÿý/ÿ)ÿ+

ÿ (ÿ
1
2 ý) − ÿ(ÿÿ/ý)ÿ−

ÿ (ÿ
1
2 ÿ)
)
,

ÿ±
ÿ (ÿ)ÿ ÿ (ý) = ýÿ, ÿ (ÿ±

1
2 ýÿÿ, ÿ ÿ/ý)ÿ ÿ (ý)ÿ±

ÿ (ÿ),
ÿ±
ÿ (ÿ) ÿ ÿ (ý) = ýÿ, ÿ (ÿ∓

1
2 ýÿÿ, ÿ ÿ/ý)−1 ÿ ÿ (ý)ÿ±

ÿ (ÿ),
Symÿ1 ,ÿ2

[ÿÿ (ÿ1), [ÿÿ (ÿ2), ÿÿ±1 (ý)]ÿ]ÿ−1 = 0, [ÿÿ (ÿ), ÿ ÿ (ý)] = 0 for ÿ ≠ ÿ, ÿ ± 1,

Symÿ1 ,ÿ2
[ ÿÿ (ÿ1), [ ÿÿ (ÿ2), ÿÿ±1 (ý)]ÿ]ÿ−1 = 0, [ ÿÿ (ÿ), ÿ ÿ (ý)] = 0 for ÿ ≠ ÿ, ÿ ± 1,

Here, ÿ(ÿ) denotes the delta function

ÿ(ÿ) =
∑
ý∈Z

ÿý

and for ÿ ∈ F, [ÿ, ÿ]ÿ = ÿÿ − ÿÿÿ is the v-commutator. We will also work with elements {ℎÿ,ý }ý≠0
ÿ∈ý

deûned by

ÿ±
ÿ (ÿ) = ÿ±1

ÿ,0 exp

(
±(ÿ − ÿ−1)

∑
ý>0

ℎÿ,±ý ÿ
∓ý
)
. (3.1)

Finally, we denote by

◦ ′ �ý the subalgebra obtained by dropping the generator ÿý1 ;

◦ �ý ′ the subalgebra obtained by dropping the generator ÿý2 ;

◦ ′ �ý ′ the subalgebra obtained by dropping both generators ÿý1 and ÿý2 .

3.1.2. Miki automorphism

We recall that ýÿ,ý ( �ýýÿ ) contains two copies of the quantum affine algebra ýÿ ( �ýýÿ ). The ûrst, called the

vertical copy, is generated by currents where ÿ ≠ 0. This copy is given in the new Drinfeld presentation.

However, the second copy, called the horizontal copy, is generated by the constant terms of all the

currents. This copy is given in the Drinfeld-Jimbo presentation. We do not go into detail on these two

subalgebras as we will not need them in the sequel. However, we mention them because they give the

8two loops9 of the quantum toroidal algebra. Let ÿ denote the C(ÿ)-linear antiautomorphism of ′ �ý ′

deûned by

ÿ(ý) = ý−1

ÿ(ÿÿ,ý ) = ÿÿ,−ý , ÿ( ÿÿ,ý ) = ÿÿ,−ý , ÿ(ℎÿ,ý ) = −ÿýℎÿ,−ý , (3.2)

ÿ(ÿÿ,0) = ÿ−1
ÿ,0, ÿ(ÿ

1
2 ) = ÿ

1
2 .

The following beautiful result of Miki gives the 8S-transformation9 of the torus:
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Theorem 3.1 [10]. There is an algebra automorphism ÿ of ′ �ý ′ that sends the horizontal copy ofýÿ ( �ýýÿ )
to the vertical copy. Moreover, ÿ satisfies ÿ−1 = ÿÿÿ.

3.1.3. Heisenberg subalgebras

Recall the generators {ℎÿ,ÿ}ÿ≠0
ÿ∈ý deûned by (3.1). Together with ÿ±

1
2 , these elements generate a rank r

Heisenberg algebra. The relations are

[ℎÿ,ÿ, ℎ ÿ ,ÿ′] = ÿÿ,−ÿ′
(ÿÿ − ÿ−ÿ)ý−ÿÿÿ, ÿ [ÿÿÿ, ÿ ]ÿ

(ÿ − ÿ−1)ÿ (3.3)

ÿ
1
2 is central,

where [ÿ]ÿ is the usual quantum number:

[ÿ]ÿ =
ÿÿ − ÿ−ÿ

ÿ − ÿ−1
.

We deûne dual elements {ℎ⊥ÿ,ÿ}ÿ≠0
ÿ∈ý by

ℎ⊥ÿ,ÿ =
ÿÿ (ÿ − ÿ−1)ÿ

(1 − ÿÿÿýÿÿ ) (1 − ÿÿÿý−ÿÿ ) [ÿ]ÿ

ÿ−1∑
ÿ ,ý=0

ÿÿ( ÿ+ý)ýÿ( ÿ−ý)ℎÿ+ ÿ−ý,ÿ

ℎ⊥ÿ,−ÿ =
ÿÿ (ÿ − ÿ−1)ÿ

(1 − ÿÿÿýÿÿ ) (1 − ÿÿÿý−ÿÿ ) [ÿ]ÿ

ÿ−1∑
ÿ ,ý=0

ÿÿ( ÿ+ý)ýÿ( ÿ−ý)ℎÿ− ÿ+ý,−ÿ.

(3.4)

Lemma 3.2. The elements {ℎ⊥ÿ,ÿ} are characterized by

[ℎ⊥ÿ,ÿ, ℎ ÿ ,−ÿ′] = [ℎ ÿ ,ÿ′ , ℎ⊥ÿ,−ÿ] = ÿÿ, ÿÿÿ,ÿ′ (ÿÿ − ÿ−ÿ) (3.5)

for ý > 0.

Proof. Equations (3.5) obviously characterizes these elements. For ÿ > 0, let ýÿ be the matrix ÿ × ÿ

matrix

(ýÿ)ÿ ÿ = ý−ÿÿÿ, ÿ [ÿÿÿ, ÿ ]ÿ .

We view the rows and coloumns as indexed by I. Equation (3.3) can be rephrased as

[ℎÿ,ÿ, ℎ ÿ ,−ÿ] = (ýÿ)ÿ ÿ
(ÿÿ − ÿ−ÿ)
(ÿ − ÿ−1)ÿ .

For any ÿ × ÿ matrix A (with rows and columns indexed by I), set

ýℎÿ,ÿ =
∑
ý∈ý

ýýÿℎý,ÿ, ýℎÿ,−ÿ =
∑
ý∈ý

ýýÿℎý,−ÿ.

We then have for ÿ > 0,

[
ýℎÿ,ÿ, ℎ ÿ ,−ÿ

]
= (ýÿ ýÿ)ÿ ÿ

(ÿÿ − ÿ−ÿ)
(ÿ − ÿ−1)ÿ ,

[
ℎ ÿ ,ÿ, ýℎÿ,−ÿ

]
= (ýÿý) ÿÿ

(ÿÿ − ÿ−ÿ)
(ÿ − ÿ−1)ÿ .
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Thus, to obtain (3.5), we need to invert ýÿ. To that end, we factorize ýÿ:

ýÿ = [ÿ]ÿÿ−ÿ

�����������

(ÿ2ÿ + 1) −ÿÿýÿ 0 · · · 0 −ÿÿý−ÿ
−ÿÿý−ÿ (ÿ2ÿ + 1) −ýÿ 0 · · · 0

0 −ÿÿý−ÿ (ÿ2ÿ + 1) −ÿÿý . . . 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 −ÿÿý−ÿ (ÿ2ÿ + 1) −ÿÿýÿ
−ÿÿýÿ 0 · · · 0 −ÿÿý−ÿ (ÿ2ÿ + 1)

����������	

= [ÿ]ÿÿ−ÿ

���������

1 0 · · · 0 −ÿÿý−ÿ
−ÿÿý−ÿ 1 0 0

0 −ÿÿý−ÿ 1
. . . 0

...
. . .

. . .
. . . 0

0 · · · 0 −ÿÿý−ÿ 1

��������	

����������

1 −ÿÿýÿ 0 · · · 0

0 1 −ÿÿýÿ . . .
...

...
. . . 1

. . . 0

0 · · · 0
. . . −ÿÿýÿ

−ÿÿýÿ 0 · · · 0 1

���������	
.

Inverting the last two matrices, we obtain (3.4). �

We denote by �ý0 the subalgebra generated by {ÿ± 1
2 } ∪ {ℎÿ,ý }ý≠0

ÿ∈ý an call it the vertical Heisenberg

subalgebra. In analogy with 3.1.2, we call ÿ ( �ý0) the horizontal Heisenberg subalgebra.

Remark 3.3. In [19], the author deûnes elements {ÿ⊥
ÿ,ý

} in terms of a pairing that is not used in this

paper. By comparing the commutator (3.3) to the pairing in loc. cit., we have that

ℎ⊥ÿ,ý = −ÿ⊥ÿ,ý .

3.2. Vertex representation

ýÿ,ý ( �ýýÿ ) directly interacts with the wreath Macdonald polynomials via its vertex representation, origi-

nally constructed by Yoshihisa Saito [16].

3.2.1. Twisted group algebra

Recall that Q and ý∨ denote the ýýÿ root and coroot lattices, respectively, with simple roots {ÿ ÿ }ÿ−1
ÿ=1

,

simple coroots {ÿ∨
ÿ }ÿ−1

ÿ=1
, and canonical pairing (−,−) : ý∨ ×ý → Z:

(ÿ∨
ÿ , ÿ ÿ ) = ÿÿ, ÿ .

Let P denote the ýýÿ weight lattice and {Λý}ÿ−1
ÿ=1

the fundamental weights. We will also need

ÿ0 = −
ÿ−1∑
ÿ=1

ÿ ÿ , ÿ∨
0 = −

ÿ−1∑
ÿ=1

ÿ∨
ÿ , Λ0 := 0.

We have that {ÿ2, . . . , ÿÿ−1,Λÿ−1} is a basis of P.

The twisted group algebra F{ÿ} is the F-algebra generated by {ÿÿÿ }ÿ−1
ÿ=2

∪ {ÿΛÿ−1 } satisfying the

relations

ÿÿÿ ÿÿÿ = (−1) (ÿ∨
ÿ
,ÿÿ)ÿÿÿ ÿÿÿ

ÿÿÿ ÿΛÿ−1 = (−1) ÿÿ,ÿ−1ÿΛÿ−1ÿÿÿ .
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Given a general ÿ ∈ ÿ, we write ÿ =
∑ÿ−1

ÿ=2 ÿ ÿÿ ÿ + ÿÿΛÿ−1 and then set

ÿÿ = ÿÿ2ÿ2 · · · ÿÿÿ−1ÿÿ−1ÿÿÿΛÿ−1 .

For example,

ÿÿ1 = ÿ−2ÿ2ÿ−3ÿ3 · · · ÿ−(ÿ−1)ÿÿ−1ÿÿΛÿ−1

ÿÿ0 = ÿÿ2ÿ2ÿ3 · · · ÿ (ÿ−2)ÿÿ−1ÿ−ÿΛÿ−1 .
(3.6)

Deûne F{ý} to be the subalgebra of F{ÿ} generated by {ÿÿÿ }ÿ−1
ÿ=1

.

3.2.2. Vertex operators

The vertical Heisenberg subalgebra �ý0 has a Fock representation ýÿ deûned as follows. Let �ý0
+ denote

the subalgebra generated by ÿ
1
2 and {ℎÿ,ý }ý>0

ÿ∈ý . �ý0
+ has a one-dimensional representation Fÿ where ÿ

1
2

acts by ÿ
1
2 while ℎÿ,ý acts by 0. ýÿ is then the induced representation

ýÿ := Ind
�ý0

�ý0
+
Fÿ � K[ℎÿ,−ý ]ý>0

ÿ∈ý .

The vertex representation is deûned on the space ÿ := ýÿ ⊗ F{ý}. For ÿ ⊗ ÿÿ ∈ ÿ where

ÿ = ℎÿ1 ,−ý1
· · · ℎÿý ,−ýý ÿ0

ÿ =

ÿ−1∑
ÿ=1

ÿ ÿÿ ÿ ,

we deûne the operators ℎÿ,ý , ÿÿ , ÿÿÿ
, ÿÿÿ,0 and d by

ℎÿ,ý (ÿ ⊗ ÿÿ) := (ℎÿ,ýÿ) ⊗ ÿÿ, ÿÿ (ÿ ⊗ ÿÿ) := ÿ ⊗ (ÿÿÿÿ),
ÿÿÿ

(ÿ ⊗ ÿÿ) :=
(
ÿ∨
ÿ , ÿ

)
ÿ ⊗ ÿÿ,

ÿÿÿ,0 (ÿ ⊗ ÿÿ) := ÿ(ÿ∨
ÿ
,ÿ)ý 1

2

∑ÿ−1
ÿ=1 (ÿ∨

ÿ
,ÿ ÿ ÿÿ)ÿÿ, ÿ ÿ ⊗ ÿÿ, (3.7)

ý (ÿ ⊗ ÿÿ) := −
(
(ÿ, ÿ)

2
+

ý∑
ÿ=1

ýÿ

)
ÿ ⊗ ÿÿ .

Theorem 3.4 [16]. Let �ý = (ý0, . . . , ýÿ−1) ∈ (F×)ÿ . The following formulas endow W with an action of
�ý ′:

ÿ �ý (ÿÿ (ÿ)) = ýÿ exp

(∑
ý>0

ÿ−
ý
2

[ý]ÿ
ℎÿ,−ý ÿ

ý

)

× exp

(
−
∑
ý>0

ÿ−
ý
2

[ý]ÿ
ℎÿ,ý ÿ

−ý
)
ÿÿÿ ÿ1+ÿÿ,0 ,

ÿ �ý ( ÿÿ (ÿ)) =
(−1)ÿ ÿÿ,0

ýÿ
exp

(
−
∑
ý>0

ÿ
ý
2

[ý]ÿ
ℎÿ,−ý ÿ

ý

)

× exp

(∑
ý>0

ÿ
ý
2

[ý]ÿ
ℎÿ,ý ÿ

−ý
)
ÿ−ÿÿ ÿ1−ÿÿ,0 ,
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ÿ �ý (ÿ±
ÿ (ÿ)) = exp

(
±(ÿ − ÿ−1)

∑
ý>0

ℎÿ,±ý ÿ
∓ý
)
ÿ±ÿÿÿ ,

ÿ �ý (ÿ
1
2 ) = ÿ

1
2 , ÿ �ý (ÿý1 ) = ÿý .

3.2.3. Embedding symmetric functions

We can let Λý act on ýÿ via multiplication operators given by

ýý [ÿ (ÿ) ] ↦→ ý

[ý]ÿ
ℎÿ,−ý (3.8)

for ý > 0. To obtain an identiûcation ÿ � Λý ⊗ F{ý}, we need to embed K into F:

ÿ = ÿý, ý = ÿý−1. (3.9)

Applying ÿ �ý to (3.5) sends ÿ ↦→ ÿ. Thus, as operators on Λý , we have the identiûcation

ýý [ÿ (ÿ) ]⊥ ↦→ ýℎ⊥ÿ,ý .

Now consider transforming the formulas for ÿ �ý using matrix plethysms on {ýý [ÿ (ÿ) ]}. We can

obtain an isomorphic representation as long as we perform a corresponding transformation on {ℎÿ,ý }
to maintain the commutation relations, using (3.3) as a guide. First, we deûne ÿ+�ý by performing the

plethysm

ýý [ÿ (ÿ) ] ↦→ ÿ
ý
2

(
ýý [ÿ (ÿ) ] − ý−ý ýý [ÿ (ÿ−1) ]

)
.

For ÿ+�ý , we will only be interested in the currents {ÿÿ (ÿ)}, although we have a representation for the

entire algebra:

ýÿ (ÿ) := ÿ+�ý (ÿÿ (ÿ)) = ýÿ exp

[∑
ý>0

(
ýý [ÿ (ÿ) ] − ý−ý ýý [ÿ (ÿ−1) ]

) ÿý
ý

]

× exp

[∑
ý>0

(
−ýý [ÿ (ÿ) ]⊥ + ÿ−ý ýý [ÿ (ÿ−1) ]⊥

) ÿ−ý
ý

]
ÿÿÿ ÿ1+ÿÿ,0 .

(3.10)

Similarly, we deûne ÿ−ý by performing the plethysm

ýý [ÿ (ÿ) ] ↦→ ÿ−
ý
2

(
ýý ýý [ÿ (ÿ) ] − ýý [ÿ (ÿ−1) ]

)
.

Here, we will only be interested in the action of the currents { ÿÿ (ÿ)}:

ýÿ (ÿ) := ÿ−�ý ( ÿÿ (ÿ)) =
(−1)ÿ ÿÿ,0

ýÿ
exp

[∑
ý>0

(
−ýý ýý [ÿ (ÿ) ] + ýý [ÿ (ÿ−1) ]

) ÿý
ý

]

× exp

[∑
ý>0

(
ÿý ýý [ÿ (ÿ) ]⊥ − ýý [ÿ (ÿ−1) ]⊥

) ÿ−ý
ý

]
ÿ−ÿÿ ÿ1−ÿÿ,0 .

(3.11)

The following is a consequence of the main result of [19]:

Theorem 3.5. Under both representations ÿ±�ý , ÿ ( �ý0) acts diagonally on {ÿÿ [ÿ•; ÿ, ý−1] ⊗ ÿÿ (ÿ) }.
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Remark 3.6. The paper [19] is concerned with the transformed wreath Macdonald functions

{ÿÿ [ÿ•; ÿ, ý]}. The plethysms used to deûne ÿ±�ý are both scalar multiples of the plethysm Pid−ý−1ÿ−1

which sends ÿÿ [ÿ•; ÿ, ý] to a scalar multiple of ÿÿ [ÿ•; ÿ, ý−1].

3.2.4. Normal ordering

Later, we will make use of a particular expression for products of the currents {ýÿ (ÿ)} and {ýÿ (ÿ)}. We

will need notation for an ordered product or composition of noncommuting operators ÿ1, . . . , ÿÿ:

�
ÿ∏
ÿ=1

ÿ ÿ := ÿ1ÿ2 · · · ÿÿ

�
ÿ∏
ÿ=1

ÿ ÿ := ÿÿÿÿ−1 · · · ÿ1

(3.12)

Proposition 3.7. For ý ∈ ý, we have

�
ÿ∏
ÿ=1

�
ÿ∏
ÿ=1

ýý+ÿ (ÿý+ÿ,ÿ)

=

(
(−1)

(ÿ−2) (ÿ−3)
2 ý

ÿ
2
−1
∏
ÿ∈ý

ýÿ

)ÿ

×
∏

1≤ÿ<ÿ≤ÿ

∏
ÿ∈ý

(
1 − ÿÿ,ÿ/ÿÿ,ÿ

) (
1 − ÿ−1ý−1ÿÿ,ÿ/ÿÿ,ÿ

)
(
1 − ý−1ÿÿ+1,ÿ/ÿÿ,ÿ

) (
1 − ÿ−1ÿÿ−1,ÿ/ÿÿ,ÿ

)

×
ÿ∏
ÿ=1

ÿý,ÿ/ÿý+1,ÿ(
1 − ÿ−1ÿý,ÿ/ÿý+1,ÿ

) ∏
ÿ∈ý \{ý+1}

(
1 − ý−1ÿÿ,ÿ/ÿÿ−1,ÿ

)
×
∏
ÿ∈ý

exp

(
ÿ∑
ÿ=1

∑
ý>0

(
ýý [ÿ (ÿ) ] − ý−ý ýý [ÿ (ÿ−1) ]

) ÿý
ÿ,ÿ

ý

)

×
∏
ÿ∈ý

exp

(
ÿ∑
ÿ=1

∑
ý>0

(
−ýý [ÿ (ÿ) ]⊥ + ÿ−ý ýý [ÿ (ÿ−1) ]⊥

) ÿ−ý
ÿ,ÿ

ý

)∏
ÿ∈ý

ÿ∏
ÿ=1

ÿ
ÿÿ,0

ÿ,ÿ
,

(3.13)

where all rational functions are Laurent series expanded assuming

|ÿÿ,ÿ | = 1, |ÿ | > 1, |ý | > 1. (3.14)

For the F-currents, we have

�
ÿ∏
ÿ=1

�
ÿ∏
ÿ=1

ýý+ÿ (ÿý+ÿ,ÿ)

=

�����
(−1) (ÿ−2) (ÿ−3)

2

ý
ÿ
2
−1
∏
ÿ∈ý

ýÿ

����	

ÿ

×
∏

1≤ÿ<ÿ≤ÿ

∏
ÿ∈ý

(
1 − ÿÿ,ÿ/ÿÿ,ÿ

) (
1 − ÿýÿÿ,ÿ/ÿÿ,ÿ

)
(
1 − ýÿÿ−1,ÿ/ÿÿ,ÿ

) (
1 − ÿÿÿ+1,ÿ/ÿÿ,ÿ

) (3.15)
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×
ÿ∏
ÿ=1

ÿý+1,ÿ/ÿý,ÿ(
1 − ÿÿý+1,ÿ/ÿý,ÿ

) ∏
ÿ∈ý \{ý}

(
1 − ýÿÿ,ÿ/ÿÿ+1,ÿ

)
×
∏
ÿ∈ý

exp

(
ÿ∑
ÿ=1

∑
ý>0

(
−ýý ýý [ÿ (ÿ) ] + ýý [ÿ (ÿ−1) ]

) ÿý
ÿ,ÿ

ý

)

×
∏
ÿ∈ý

exp

(
ÿ∑
ÿ=1

∑
ý>0

(
ÿý ýý [ÿ (ÿ) ]⊥ − ýý [ÿ (ÿ−1) ]⊥

) ÿ−ý
ÿ,ÿ

ý

)∏
ÿ∈ý

ÿ∏
ÿ=1

ÿ
−ÿÿ,0

ÿ,ÿ
,

where all rational functions are Laurent series expanded assuming

|ÿÿ,ÿ | = 1, |ÿ | < 1, |ý | < 1. (3.16)

Proof. The computation is standard. We will only go over the signs and powers of ý. The sign comes

from the commutation of {ÿÿÿ }; in both cases, these factors simplify to ±ÿ0. For the E-currents, if ý = 0,

then by (3.6),

ÿÿ1 = ÿÿΛÿ−1ÿ−(ÿ−1)ÿÿ−1 · · · ÿ−3ÿ3ÿ−2ÿ2 .

Thus,

ÿÿ1ÿÿ2 · · · ÿÿÿ−1 = (−1)
(ÿ−2) (ÿ−3)

2 ÿÿΛÿ−1ÿ−(ÿ−2)ÿÿ−1 · · · ÿ−2ÿ3ÿ−ÿ2 .

However, if ý ≠ 0, we have

ÿÿ0ÿÿ1 = (−1)
(ÿ−1) (ÿ−2)

2
−1ÿ−ÿ2 · · · ÿ−ÿÿ−1

= (−1)
(ÿ−1) (ÿ−2)

2
+ÿ−3ÿ−ÿÿ−1 · · · ÿ−ÿ2

= (−1)
(ÿ−2) (ÿ−3)

2 ÿ−ÿÿ−1 · · · ÿ−ÿ2 ,

which also leads to a sign of (−1) (ÿ−2) (ÿ−3)
2 . For the F-currents, ûrst consider the case ý = 0.

ÿ−ÿ0ÿ−ÿÿ−1 · · · ÿ−ÿ3ÿ−ÿ2 = (−1)ÿ+
(ÿ−2) (ÿ−3)

2 ÿ−2ÿ2ÿ−3ÿ3 · · · ÿ−(ÿ−1)ÿ−ÿ−1ÿÿΛÿ−1

= (−1)ÿ+
(ÿ−2) (ÿ−3)

2 ÿÿΛÿ−1ÿ−(ÿ−1)ÿÿ−1 · · · ÿ−3ÿ2ÿ−2ÿ2 .

If ý ≠ 0, then we use that

ÿ−ÿ1ÿ−ÿ0 = (−1)ÿ ÿ−ÿ1ÿÿΛÿ−1ÿ−(ÿ−2)ÿÿ−1 · · · ÿ−2ÿ3ÿ−ÿ2

= (−1)ÿ+
(ÿ−2) (ÿ−3)

2 ÿÿ2ÿÿ3 · · · ÿÿÿ−1 .

Finally, note that ý0 (ÿ) also has a sign of (−1)ÿ . The power of ý comes from the interaction between

{ÿ±ÿÿ,0 } and {ÿ±ÿÿ }. First observe that when considering ýÿ (ÿÿ,ÿ) and ý ÿ (ÿ ÿ ,ÿ) for ÿ ≠ ÿ, the powers

of ý from ÿ = ÿ − 1 and ÿ = ÿ + 1 cancel out. When ÿ = ÿ, there is a total power of ý
ÿ
2
−1. The case for

{ýÿ (ÿ)} is similar but inverted. �

3.3. Fock representation

While our main focus will be on the vertex representation, we will consider another representation of

ýÿ,ý ( �ýýÿ ), called the Fock representation. Our goal will be gain some knowledge on the eigenvalues

implicit in the statement of Theorem 3.5.
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3.3.1. Definition

In order to deûne the Fock representation, we will need some notation for partitions. For a partition ÿ,

let � = (ÿ, ÿ) ∈ ÿ (ÿ). We set the following:

1. ÿ� = ÿÿýÿ , the character of the box;

2. ý� = ÿ − ÿ modulo r (its color);

3. ýÿ (ÿ) the number of elements of ÿ (ÿ) with content equivalent to i modulo r;

4. ýÿ (ÿ) and ýÿ (ÿ) the addable and removable i-nodes of ÿ, respectively.

Finally, we will abbreviate ÿ ≡ ÿ mod ÿ by simply ÿ ≡ ÿ and use the Kronecker delta function

ÿÿ=ÿ := ÿÿ−ÿ,0.

Let ÿ ∈ F×. The Fock representation F (ÿ) has a basis {|ÿ〉} indexed by partitions.

Theorem 3.8 [5], cf. [19]. We can define a ′ �ý-action ÿÿ onF (ÿ) where the only nonzero matrix elements

of the generators are

〈ÿ |ÿÿ (ÿ) |ÿ + �〉 = ÿý�=ÿ (−ý)ýÿ+1 (ÿ)ÿ

(
ÿ

ÿ�ÿ

)
∏
�∈ýÿ (ÿ)

(
ÿ� − ÿ2ÿ�

)
∏

�∈ýÿ (ÿ)
�≠�

(ÿ� − ÿ�)

〈ÿ + �| ÿÿ (ÿ) |ÿ〉 = ÿý�=ÿ (−ý)−ýÿ+1 (ÿ)ÿ

(
ÿ

ÿ�ÿ

)
∏

�∈ýÿ (ÿ)
�≠�

(
ÿÿ� − ÿ−1ÿ�

)
∏
�∈ýÿ (ÿ)

ÿ(ÿ� − ÿ�)

〈ÿ |ÿ±
ÿ (ÿ) |ÿ〉 =

∏
�∈ýÿ (ÿ)

(
ÿÿ − ÿ−1ÿ�ÿ

)
(ÿ − ÿ�ÿ)

∏
�∈ýÿ (ÿ)

(
ÿ−1ÿ − ÿÿ�ÿ

)
(ÿ − ÿ�ÿ)

,

〈ÿ |ÿ 1
2 |ÿ〉 = 1, 〈ÿ |ÿý2 |ÿ〉 = ÿ−|ÿ | .

3.3.2. Tsymbaliuk isomorphism

The representation ÿÿ on F (ÿ) has a cyclic vector |∅〉. However, ÿ �ý and ÿ±�ý also have the natural cyclic

vector 1 ⊗ 1 ∈ ýÿ ⊗ F{ý}. The following theorem was proved by Tsymbaliuk:

Theorem 3.9 [17]. Let

ÿ = (−1)
(ℓ−2) (ℓ−3)

2
ÿý−

ℓ
2

ý0 · · · ýℓ−1

. (3.17)

The map of cyclic vectors

F (ÿ) � |∅〉 ↦→ 1 ⊗ 1 ∈ ÿ

induces an isomorphism between the ′ �ý ′-module ÿÿ and the ÿ-twisted modules ÿ �ý ◦ ÿ , ÿ±�ý ◦ ÿ .

The Tsymbaliuk isomorphism is deûned only in terms of cyclic vectors. In light of Remark 3.6, the

following result from [19] provides more detail on the Tsymbaliuk isomorphisms:

Theorem 3.10. The Tsymbaliuk isomorphisms (Theorem 3.9) between ÿÿ and ÿ±�ý send

F|ÿ〉 → F
(
ÿÿ [ÿ•; ÿ, ý−1] ⊗ ÿÿ (ÿ)

)
.

Thus, we can study the eigenvalues of ÿ ( �ý0) on ÿÿ by instead studying the eigenvalues of �ý0 on the

basis {|ÿ〉}.
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3.3.3. Infinite-variable eigenvalues

From the formulas in Theorem 3.8, we can see that

〈ÿ |ÿ±1
ÿ,0 |ÿ〉 = ÿ±( |ýÿ (ÿ) |− |ýÿ (ÿ) |) .

Therefore,

〈
ÿ

+++++exp

(
±(ÿ − ÿ−1)

∑
ý>0

ℎÿ,±ý ÿ
∓ý
)+++++ÿ
〉

=
∏

�∈ýÿ (ÿ)

ÿ∓1
(
ÿÿ − ÿ−1ÿ�ÿ

)
(ÿ − ÿ�ÿ)

∏
�∈ýÿ (ÿ)

ÿ±1
(
ÿ−1ÿ − ÿÿ�ÿ

)
(ÿ − ÿ�ÿ)

= exp

£¤¤¤¤¥
∑
ý>0

���
∑

�∈ýÿ (ÿ)
(1 − ÿ∓2ý )ÿ±ý

�
+

∑
�∈ýÿ (ÿ)

(1 − ÿ±2ý )ÿ±ý
�

��	
ÿ±ý ÿ∓ý

ý

¦§§§§̈ .
Taking logarithms, we see that for ý > 0,

〈ÿ |ℎÿ,±ý |ÿ〉 =
ÿ±ý [ý]ÿ

ý

���
∑

�∈ýÿ (ÿ)
ÿ∓ý ÿ±ý

�
−

∑
�∈ýÿ (ÿ)

ÿ±ý ÿ∓ý
�

��	
=
ÿ±ýÿ∓ý [ý]ÿ

ý

���
∑

�∈ýÿ (ÿ)
ÿ±ý
�

−
∑

�∈ýÿ (ÿ)
(ÿýÿ�)±ý��	

.

(3.18)

Using (3.18), we can try to piece together elements of �ý0 whose eigenvalues are elementary symmetric

functions in {ÿ±ÿÿ ý±ÿ}.
For ý ∈ Z>0 and ý ∈ ý, let us deûne

ℎ̂ý,ý :=
1

(1 − ýýÿ )

ÿ−1∑
ÿ=0

ýý (ÿ+1)ℎý−ÿ,ý (3.19)

ℎ̂ý,−ý :=
1

(1 − ý−ýÿ )

ÿ−1∑
ÿ=0

ý−ý (ÿ+1)ℎý−ÿ,−ý . (3.20)

Lemma 3.11. Assume |ý±1 | < 1 (where ‘+’ and ‘−’ are separate cases). For ý ∈ ý, we have

〈
ÿ

+++++exp

[
−
∑
ý>0

ℎ̂ý,±ý (−ÿ)∓ýÿ±ý [ý]ÿ
] +++++ÿ
〉

= exp

£¤¤¤¤¤¤¥
−
∑
ý>0

�����
∑
ÿ>0

ÿ−ÿÿ≡ý+1

ÿ±ýÿÿ ý±ýÿ
����	
(−ÿ)∓ý

ý

¦§§§§§§̈
=

∏
ÿ>0

ÿ−ÿÿ≡ý+1

(
1 + ÿ±ÿÿ ý±ÿÿ∓1

)
,

(3.21)

where we set ÿÿ = 0 for all ÿ > ℓ(ÿ).
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ÿ

Figure 2. Illustration of the proof of Lemma 3.21. The t-shifts on the addable black box at the bottom

results in the gray boxes. The latter are evenly spaced of interval r and have the desired color. The black

box at the top is ÿý times a removable box, and subtracting its t-shifts cancels out the extraneous gray

boxes.

Proof. Comparing (3.21) to (3.18), we need to establish the equality

1

1 − ý±ýÿ

ÿ−1∑
ÿ=0

ý±ý (ÿ+1)���
∑

�∈ýý−ÿ (ÿ)
ÿ±ý
�

−
∑

�∈ýý−ÿ (ÿ)
(ÿýÿ�)±ý��	

=

�����
∑
ÿ>0

ÿ−ÿÿ≡ý+1

ÿ±ýÿÿ ý±ýÿ
����	
. (3.22)

We note that here, we consider (1− ý±ýÿ )−1 as a geometric series. The summands on the right-hand side

of (3.22) are ÿý-shifts of the characters of color ý + 1 boxes that are the rightmost boxes in their row.

We can account for these coordinates by starting at each addable box of ÿ (ÿ), going straight up until

we reach a box of color ý + 1, then moving upwards by intervals of r, and ending the search once we are

above the ÿý-shift of the removable box above it. This is exactly what the left-hand side of (3.22) does.

We illustrate this with Figure 2. �

4. Shuffle algebra

We will obtain difference operators by computing the action of ÿ ( �ý0) on the vertex representation.

However, computing the images of elements under ÿ is difficult. The shuffle algebra provides another

avatar of the quantum toroidal algebra with which we can access the horizontal Heisenberg subalgebra.

4.1. Definition and structures

Let ý• = (ý0, . . . , ýÿ−1) ∈ (Z≥0)ý and consider the function spaces:

Sý• := F(ÿÿ,ÿ)1≤ÿ≤ýÿ
ÿ∈ý

S :=
⊕

ý•∈(Z≥0) ý
S�ý .

The product of symmetric groups

ÿý• := ÿý0
× · · · ×ÿýÿ−1

acts on Sý• , where the factor ÿýÿ only permutes the variables {ÿÿ,ÿ}ýÿÿ=1
. We call i the color of ÿÿ,ÿ , so

ÿý• acts by color-preserving permutations. Finally, let
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Sý• :=
(
Sý•
)ÿý•

S :=
⊕

ý•∈(Z≥0) ý
Sý• .

Unless we say otherwise, an element of S with ýÿ variables of color i for all i is assumed to be in Sý• .

4.1.1. Shuffle product

We endow S with the shuffle product ★, deûned as follows. For ÿ, ÿ ∈ ý, we deûne the mixing terms:

ÿÿ, ÿ (ÿ, ý) :=

⎧⎪⎪⎪⎪«
⎪⎪⎪⎪¬

(
ÿ − ÿ2ý

)−1(ÿ − ý)−1 if ÿ = ÿ(
ÿý − ý−1ÿ

)
if ÿ + 1 = ÿ(

ÿ − ÿý−1ý
)

if ÿ − 1 = ÿ

1 otherwise.

For ý ∈ Sý• and ÿ ∈ Sý• , let ý ★ÿ ∈ Sý•+ý• be deûned by

ý ★ÿ :=
1

ý•!ý•!
Symý•+ý•

£¤¤¤¤¤¤¥
ý
({
ÿÿ,ÿ

}1≤ÿ≤ýÿ
ÿ∈ý

)
ÿ
({
ÿ ÿ ,ÿ

}ý ÿ<ÿ≤ý ÿ+ý ÿ
ÿ∈ý

) ∏
ÿ, ÿ∈ý

∏
1≤ÿ≤ýÿ

ý ÿ<ÿ≤ý ÿ+ý ÿ

ÿÿ, ÿ (ÿÿ,ÿ, ÿ ÿ ,ÿ)

¦§§§§§§̈
,

where for ÿ• ∈ (Z≥0)ý ,

ÿ•! =
∏
ÿ∈ý

ÿÿ! = |ÿÿ• |

and Symÿ• denotes the color symmetrization (i.e., the symmetrization over ÿÿ•).

4.1.2. The shuffle algebra

Consider now for each ý• the subspace Sý• ⊂ Sý• consisting of functions F satisfying the following two

conditions:

1. Pole conditions: F is of the form

ý =
ÿ ({ÿÿ,ÿ })∏

ÿ∈ý

∏
1≤ÿ ,ÿ ′≤ýÿ

ÿ≠ÿ ′

(ÿÿ,ÿ − ÿ2ÿÿ,ÿ ′)
(4.1)

for a color-symmetric Laurent polynomial f.

2. Wheel conditions: F has a well-deûned ûnite limit when

ÿÿ,ÿ1

ÿÿ+ÿ ,ý
→ ÿýÿ and

ÿÿ+ÿ ,ý
ÿÿ,ÿ2

→ ÿý−ÿ

for any choice of i, ÿ1, ÿ2, s and ÿ , where ÿ ∈ {±1}. This is equivalent to specifying that the Laurent

polynomial f in the pole conditions evaluates to zero at

ÿÿ,ÿ1
= ÿýÿ ÿÿ+ÿ ,ý , ÿÿ+ÿ ,ý = ÿý−ÿ ÿÿ,ÿ2

.

We set

S :=
⊕

ý•∈(Z≥0) ý
Sý• .

The following is standard:
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Proposition 4.1 [11, Proposition 3.3]. The shuffle product ★ defines an associative product on S and S

is closed under ★.

We call (S , ★) the shuffle algebra of type ý̂ÿ−1.

4.1.3. Relation to ýÿ,ý ( �ýýÿ )
Let

◦ �ý+ ⊂ ýÿ,ý ( �ýýÿ ) be the subalgebra generated by {ÿÿ (ÿ)}ÿ∈ý and

◦ �ý− ⊂ ýÿ,ý ( �ýýÿ ) be the subalgebra generated by { ÿÿ (ÿ)}ÿ∈ý .
Correspondingly, we set S+ := S and S− := Sýý . The following key structural result was proved by

Neguţ:

Theorem 4.2 [11]. S± is generated by {ÿÿ
ÿ,1
}ÿ∈Z
ÿ∈ý and

Ψ+(ÿÿÿ,1) = ÿÿ,ÿ

Ψ−(ÿÿÿ,1) = ÿÿ,ÿ

induce algebra isomorphisms Ψ± : S± → �ý±.

Finally, note that the subalgebras �ý± are each closed under ÿ. We will need to understand how the

antiautomorphism ÿ is manifested on the shuffle side:

Proposition 4.3. For ý ∈ S±
ý•

, define

ÿS (ý) := ý (ÿ−1
ÿ,ÿ )

∏
ÿ∈ý

ýÿ∏
ÿ=1

(−ý)ýÿ+1ýÿ ÿ
ýÿ+1+ýÿ−1−2(ýÿ−1)
ÿ,ÿ

+++++
ý ↦→ý−1

.

We have

Ψ−1
+ ÿΨ+(ý) = Ψ−1

− ÿΨ−(ý) = ÿS (ý). (4.2)

Proof. Equation (4.2) is true when ý = ÿÿ
ÿ,1

is a generator. To see that it is a C(ÿ)-linear algebra

antiautomorphism that inverts ý, we ûrst observe that

ÿ−2ý−2ÿÿ,ÿ (ÿ−1, ý−1)
++++
ý ↦→ý−1

= ÿÿ,ÿ (ý, ÿ)

ÿý(−ý)ÿÿ,ÿ+1(ÿ−1, ý−1)
++++
ý ↦→ý−1

= ÿÿ+1,ÿ (ý, ÿ)

ÿý(−ý)ÿÿ+1,ÿ (ÿ−1, ý−1)
++++
ý ↦→ý−1

= ÿÿ,ÿ+1(ý, ÿ).

(4.3)

Now, for ý ∈ S+
ý•

and ÿ ∈ S+
ý•

,

ÿS (ý ★ÿ)

=
1

ý•!ý•!
Sym

£¤¤¤¤¤¤¥
ý
(
{ÿ−1

ÿ,ÿ}1≤ÿ≤ýÿ
ÿ∈ý

)
ÿ
(
{ÿ−1

ÿ ,ÿ}
ý ÿ<ÿ≤ý ÿ+ý ÿ
ÿ∈ý

) ∏
ÿ, ÿ∈ý

∏
1≤ÿ≤ýÿ

ý ÿ<ÿ≤ý ÿ+ý ÿ

ÿÿ, ÿ (ÿ−1
ÿ,ÿ, ÿ

−1
ÿ ,ÿ)

¦§§§§§§̈
×
∏
ÿ∈ý

ýÿ+ýÿ∏
ÿ=1

(−ý) (ýÿ+1+ýÿ+1) (ýÿ+ýÿ) ÿýÿ+1+ýÿ+1+ýÿ−1+ýÿ−1−2(ýÿ+ýÿ−1)
ÿ,ÿ

++++
ý ↦→ý−1

. (4.4)
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The monomial in (4.4) is color-symmetric, so we can move it inside the symmetrization. We can break

up the exponents appearing in (4.4) as follows:

(ýÿ+1 + ýÿ+1) (ýÿ + ýÿ) = ýÿ+1ýÿ + ýÿ+1ýÿ + [ýÿ+1ýÿ + ýÿ ýÿ+1] (4.5)

ýÿ+1 + ýÿ+1 + ýÿ−1 + ýÿ−1 − 2(ýÿ + ýÿ − 1) = ýÿ+1 + ýÿ−1 − 2(ýÿ − 1) + [ýÿ+1 + ýÿ−1 − 2ýÿ] (4.6)

= ýÿ+1 + ýÿ−1 − 2(ýÿ − 1) + [ýÿ+1 + ýÿ−1 − 2ýÿ] . (4.7)

In (4.5), we will assign the bracketed summand to the mixing terms, ýÿ+1ýÿ to F, and ýÿ+1ýÿ to G. In a

given summand of the symmetrization, if ÿÿ,ÿ is assigned to F, then in (4.6), we assign the bracketed

summand to the mixing terms and the rest to F. However, if ÿÿ,ÿ is assigned to G, then in (4.7), we assign

the bracketed summand to the mixing terms and the rest to G. Then, applying (4.3), we do indeed obtain

ÿS (ÿ) ★ ÿS (ý).

The case where ý, ÿ ∈ S− is similar. �

4.1.4. Shuffle presentation of horizontal Heisenberg elements

Recall the vertical Heisenberg elements (3.21) whose actions on F (ÿ) are related to inûnite-variable

Macdonald operators. Previous work [19] gives us a better understanding of the action of ÿ−1 on such

elements. However, we need ÿ instead, and thus, we will apply the identity ÿ = ÿÿ−1ÿ (cf. Theorem 3.1)

and Proposition 4.3. To that end, recall the elements {ℎ̂ý,±ý } from (3.19) and (3.20). Observe that

ÿ exp

[
−
∑
ý>0

ℎ̂ý,±ý
ÿ±ý (−ÿ)∓ý

[ý]ÿ

]

= ÿ exp

[
−
∑
ý>0

(∑ÿ−1
ÿ=0 ý±ý (ÿ+1)ℎý−ÿ,±ý

(1 − ý±ýÿ )

)
ÿ±ý (−ÿ)∓ý

[ý]ÿ

]

= ÿ exp

[∑
ý>0

(∑ÿ−1
ÿ=0 ÿ±ý (ÿ+1)ÿ−1 (ℎý−ÿ,∓ý )

(1 − ÿ±ýÿ )

)
ÿ±ý (−ÿ)∓ý

[ý]ÿ

]

= ÿ exp

[
(ÿ − ÿ−1)−1

∑
ý>0

(
ÿ−1 (ℎ⊥ý,∓ý ) − ý±ýÿ−1(ℎ⊥ý+1,∓ý )

) ÿ±ý (−ÿ)∓ý
ý

]
,

(4.8)

where in the last line, we use (3.3). Let ÿ = (1, . . . , 1) ∈ (Z≥0)ý be the diagonal vector and consider the

elements E±
ý,ÿ ∈ S± given by

E
+
ý,ÿ := Symÿÿ

( ∏
1≤ÿ<ÿ≤ÿ

{
ÿý+1,ÿ − ÿ−1ÿý,ÿ

ÿý+1,ÿ − ýÿý,ÿ

∏
ÿ, ÿ∈ý

ÿÿ, ÿ

(
ÿÿ,ÿ, ÿ ÿ ,ÿ

)}

×
ÿ∏
ÿ=1

{(
ÿ0,ÿ

ÿý,ÿ
− ÿ−1 ÿ0,ÿ

ÿý+1,ÿ

)∏
ÿ∈ý

ÿÿ,ÿ

})

E
−
ý,ÿ := Symÿÿ

( ∏
1≤ÿ<ÿ≤ÿ

{
ÿý+1,ÿ − ÿ−1ÿý,ÿ

ÿý+1,ÿ − ýÿý,ÿ

∏
ÿ, ÿ∈ý

ÿÿ, ÿ

(
ÿÿ,ÿ, ÿ ÿ ,ÿ

)}

×
ÿ∏
ÿ=1

{(
ÿ
ÿý+1,ÿ

ÿ0,ÿ

− ÿý,ÿ

ÿ0,ÿ

)∏
ÿ∈ý

ÿÿ,ÿ

})
.

(4.9)

By [19, Proposition 4.22], E±
ý,ÿ ∈ S±.

https://doi.org/10.1017/fms.2025.10061 Published online by Cambridge University Press



Forum of Mathematics, Sigma 27

Lemma 4.4. We have

∞∑
ÿ=0

(−1)ÿÿÿ(ÿ−1) ý−ÿ (1 − ÿ−1ý−1)ÿÿ
ÿ−ÿ

∏ÿ
ÿ=1(1 − ÿ−ÿý−ÿ) Ψ+

(
E
+
ý,ÿ

)
ÿ−ÿ = ÿ exp

[
−
∑
ý>0

ℎ̂ý,−ý
ÿ−ý (−ÿ)−ý
ÿ−ý [ý]ÿ

]

∞∑
ÿ=0

(−1)ÿÿ−ÿý−ÿ(ÿ−1) ýÿ (1 − ÿý)ÿÿ
ÿÿÿÿ

∏ÿ
ÿ=1 (1 − ÿ−ÿý−ÿ) Ψ−

(
E
−
ý,ÿ

)
ÿÿ = ÿ exp

[
−
∑
ý>0

ℎ̂ý,ý
ÿý (−ÿ)ý
ÿý [ý]ÿ

]
.

Remark 4.5. Note that prior to taking ÿ , the series on the right-hand sides are the ones appearing in

Lemma 3.11.

Proof. In [19], it was shown that

exp

[
(ÿ − ÿ−1)−1

∑
ý>0

(
ÿ−1(ℎ⊥ý,ý ) − ý−ýÿ−1(ℎ⊥ý+1,ý )

) ÿ−ý (−ÿ)ý
ý

]

=

∞∑
ÿ=0

(−1)ÿÿ (−ÿ)−ÿýÿÿ (1 − ÿ−1ý−1)ÿÿ
ÿÿ
∏ÿ

ÿ=1 (1 − ÿ−ÿý−ÿ) Ψ+(H+
ý,ÿ)ÿÿ

and

exp

[
(ÿ − ÿ−1)−1

∑
ý>0

(
ÿ−1(ℎ⊥ý,−ý ) − ýýÿ−1(ℎ⊥ý+1,−ý )

) ÿý (−ÿ)−ý
ý

]

=

∞∑
ÿ=0

(−ÿ)ÿ (1 − ÿý)ÿÿ
ÿÿ
∏ÿ

ÿ=1 (1 − ÿ−ÿý−ÿ)Ψ−(H−
ý,ÿ)ÿ−ÿ,

where

H
+
ý,ÿ = Symÿÿ

( ∏
1≤ÿ<ÿ≤ÿ

{
ý−1ÿý+1,ÿ − ÿý,ÿ

ÿÿý+1,ÿ − ÿý,ÿ

∏
ÿ, ÿ∈ý

ÿÿ, ÿ

(
ÿÿ,ÿ, ÿ ÿ ,ÿ

)}

×
ÿ∏
ÿ=1

{(
ÿý,ÿ

ÿ0,ÿ

− ý−1
ÿý+1,ÿ

ÿ0,ÿ

)∏
ÿ∈ý

ÿÿ,ÿ

})

H
−
ý,ÿ = Symÿÿ

( ∏
1≤ÿ<ÿ≤ÿ

{
ý−1ÿý+1,ÿ − ÿý,ÿ

ÿÿý+1,ÿ − ÿý,ÿ

∏
ÿ, ÿ∈ý

ÿÿ, ÿ

(
ÿÿ,ÿ, ÿ ÿ ,ÿ

)}

×
ÿ∏
ÿ=1

{(
ý
ÿ0,ÿ

ÿý+1,ÿ

− ÿ0,ÿ

ÿý,ÿ

)∏
ÿ∈ý

ÿÿ,ÿ

})
.

(4.10)

It is helpful to recall Remark 3.3 when making comparisons with [19]. The result follows from applying

Proposition 4.3 to (4.8). We note that the mixing terms in 4.10 contribute a power of ý−ÿÿ(ÿ−1) before

inverting ý. �

4.2. Action on the vertex representation

For ý ∈ S+ and ÿ ∈ S−, we will present a way to compute the actions of ÿ+�ý (Ψ+(ý)) and ÿ−�ý (Ψ−(ÿ)).
Our approach was inspired by Lemma 3.2 of [6] in the case ÿ = 1.

4.2.1. Matrix elements

The following is a consequence of computations similar to those done for Proposition 3.7:
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Proposition 4.6. For ÿ1, ÿ2 ∈ ÿ , we have

〈
ÿ1

+++++++
�

ÿ−1∏
ÿ=0

�

ýÿ∏
ÿ=1

ýÿ (ÿÿ,ÿ)

+++++++ÿ2

〉
=

ÿ
({
ÿÿ,ÿ

}1≤ÿ≤ýÿ
ÿ∈ý

)∏
ÿ∈ý

∏
1≤ÿ<ÿ≤ýÿ

(
ÿÿ,ÿ − ÿÿ,ÿ

) (
ÿÿ,ÿ − ÿ−1ý−1ÿÿ,ÿ

)
∏

1≤ÿ≤ý0

1≤ÿ≤ýÿ−1

(
ÿ0,ÿ − ý−1ÿÿ−1,ÿ

) ∏
ÿ∈ý\{ÿ−1}

∏
1≤ÿ≤ýÿ

1≤ÿ≤ýÿ+1

(
ÿÿ,ÿ − ÿ−1ÿÿ+1,ÿ

) (4.11)

for some Laurent polynomial f, where the rational functions are expanded into Laurent series assuming

|ÿÿ,ÿ | = 1, |ÿ | > 1, |ý | > 1. (4.12)

However,

〈
ÿ1

+++++++
�

ÿ−1∏
ÿ=0

�

ýÿ∏
ÿ=1

ýÿ (ÿÿ,ÿ)

+++++++ÿ2

〉
=

ý
({
ÿÿ,ÿ

}1≤ÿ≤ýÿ
ÿ∈ý

)∏
ÿ∈ý

∏
1≤ÿ<ÿ≤ýÿ

(
ÿÿ,ÿ − ÿÿ,ÿ

) (
ÿÿ,ÿ − ÿýÿÿ,ÿ

)
∏

1≤ÿ≤ýÿ−1
1≤ÿ≤ý0

(
ÿÿ−1,ÿ − ýÿ0,ÿ

) ∏
ÿ∈ý\{0}

∏
1≤ÿ≤ýÿ

1≤ÿ≤ýÿ−1

(
ÿÿ,ÿ − ÿÿÿ−1,ÿ

) (4.13)

for some Laurent polynomial g, where the rational functions are now expanded into Laurent series

assuming

|ÿÿ,ÿ | = 1, |ÿ | < 1, |ý | < 1. (4.14)

Notice that ÿÿ,ÿ+1(ÿÿ,ÿ, ÿÿ+1,ÿ)−1 and ÿÿ,ÿ−1(ÿÿ,ÿ, ÿÿ−1,ÿ)−1 are rational functions that we can also

expand according to (4.12) and (4.14). Thus, we can make sense of matrix elements of products of

currents multiplied by these inverted mixing terms. We do not claim that such products yield well-

deûned series of operators – just that their matrix elements make sense. The following is a consequence

of the toroidal relations:

Proposition 4.7. When computing matrix elements, we have the relations

ýÿ (ÿ)ýÿ (ý)
ÿÿ,ÿ (ÿ, ý)

=
ýÿ (ý)ýÿ (ÿ)
ÿÿ,ÿ (ý, ÿ)

(4.15)

ýÿ (ÿ)ýÿ+1(ý)
ÿÿ,ÿ+1(ÿ, ý)

=
ýÿ+1(ý)ýÿ (ÿ)
ÿÿ+1,ÿ (ý, ÿ)

(4.16)

ýÿ (ÿ)ýÿ (ý)
ÿÿ,ÿ (ý, ÿ)

=
ýÿ (ý)ýÿ (ÿ)
ÿÿ,ÿ (ÿ, ý)

ýÿ (ÿ)ýÿ+1(ý)
ÿÿ+1,ÿ (ý, ÿ)

=
ýÿ+1(ý)ýÿ (ÿ)
ÿÿ,ÿ+1(ÿ, ý)

.

Proof. We will only prove the statements for ýÿ (ÿ). Applying ÿ+�ý to the relations from 3.1.1 yields

ýÿ (ÿ)ý ÿ (ý) = ýÿ, ÿ (ýÿÿ, ÿ ÿ/ý)ý ÿ (ý)ýÿ (ÿ).

Strictly speaking, when unpacking this relation, we should clear denominators. We then obtain( ÿ
ý

− ÿ2
)
ýÿ (ÿ)ýÿ (ý) =

(
ÿ2 ÿ

ý
− 1
)
ýÿ (ý)ýÿ (ÿ) (4.17)

(
ý−1 ÿ

ý
− ÿ−1

)
ýÿ (ÿ)ýÿ+1(ý) =

(
ÿ−1ý−1 ÿ

ý
− 1
)
ýÿ+1(ý)ýÿ (ÿ). (4.18)
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Since ÿÿ,ÿ (ÿ, ý)−1 = (ÿ − ÿ2ý) (ÿ − ý), (4.17) directly yields (4.15). However, multiplying both sides

of (4.18) by −ÿý gives us

ÿÿ+1,ÿ (ý, ÿ)ýÿ (ÿ)ýÿ+1(ý) = ÿÿ,ÿ+1(ÿ, ý)ýÿ+1(ý)ýÿ (ÿ).

This implies (4.16). �

4.2.2. Constant term formula

For ý ∈ S+
ý•

and ÿ ∈ S−
ý•

, consider the rational functions

ý ×
〈
ÿ1

+++++++
�

ÿ−1∏
ÿ=0

�

ýÿ∏
ÿ=1

ýÿ (ÿÿ,ÿ)

+++++++ÿ2

〉

(∏
ÿ∈ý

∏
1≤ÿ<ÿ′≤ýÿ

ÿÿ,ÿ (ÿÿ,ÿ, ÿÿ,ÿ′)
)�����

∏
0≤ÿ< ÿ≤ÿ−1

∏
1≤ÿ≤ýÿ
1≤ÿ≤ý ÿ

ÿÿ, ÿ (ÿÿ,ÿ, ÿ ÿ ,ÿ)
����	

ÿ ×
〈
ÿ1

+++++++
�

ÿ−1∏
ÿ=0

�

ýÿ∏
ÿ=1

ýÿ (ÿÿ,ÿ)

+++++++ÿ2

〉

(∏
ÿ∈ý

∏
1≤ÿ<ÿ′≤ýÿ

ÿÿ,ÿ (ÿÿ,ÿ, ÿÿ,ÿ′)
)�����

∏
0≤ÿ< ÿ≤ÿ−1

∏
1≤ÿ≤ýÿ
1≤ÿ≤ý ÿ

ÿÿ, ÿ (ÿÿ,ÿ, ÿ ÿ ,ÿ)
����	

.

We can expand these rational functions into Laurent series according to the assumptions (4.12) and

(4.14), respectively. For any Laurent series, we denote by {−}0 this operation of taking constant terms.

Lemma 4.8. For ý ∈ S+
ý•

and ÿ ∈ S−
ý•

, we have

ÿ+�ý (Ψ+(ý)) =
1

ý•!

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

ý ×

�

ÿ−1∏
ÿ=0

�

ýÿ∏
ÿ=1

ýÿ (ÿÿ,ÿ)

(∏
ÿ∈ý

∏
1≤ÿ<ÿ′≤ýÿ

ÿÿ,ÿ (ÿÿ,ÿ, ÿÿ,ÿ′)
)�����

∏
0≤ÿ< ÿ≤ÿ−1

∏
1≤ÿ≤ýÿ
1≤ÿ≤ý ÿ

ÿÿ, ÿ (ÿÿ,ÿ, ÿ ÿ ,ÿ)
����	

«⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪­0

(4.19)

where the right-hand side is expanded according to (4.12) and

ÿ−�ý (Ψ−(ÿ)) = 1

ý•!

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

ÿ ×

�

ÿ−1∏
ÿ=0

�

ýÿ∏
ÿ=1

ýÿ (ÿÿ,ÿ)

(∏
ÿ∈ý

∏
1≤ÿ<ÿ′≤ýÿ

ÿÿ,ÿ (ÿÿ,ÿ, ÿÿ,ÿ′)
)�����

∏
0≤ÿ< ÿ≤ÿ−1

∏
1≤ÿ≤ýÿ
1≤ÿ≤ý ÿ

ÿÿ, ÿ (ÿÿ,ÿ, ÿ ÿ ,ÿ)
����	

«⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪­0

, (4.20)
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where the right-hand side is expanded according to (4.14). In particular, the expressions on the right-

hand side are well-defined operators on W.

Proof. A consequence of Theorem 4.2 and the toroidal relations is that S± are both spanned by shuffle

monomials

ÿ
ÿ(0,1)
0,1

★ ÿ
ÿ(0,2)
0,1

★ · · ·★ ÿ
ÿ(0,ý0)
0,1

★ ÿ
ÿ(1,1)
1,1

★ · · ·★ ÿ
ÿ(ÿ−1,ýÿ−1)
ÿ−1,1

since

Ψ+
(
ÿ
ÿ(0,1)
0,1

★ · · ·★ ÿ
ÿ(ÿ−1,ýÿ−1)
ÿ−1,1

)
= ÿ0,ÿ(0,1) · · · ÿÿ−1,ÿ(ÿ−1,ýÿ−1)

Ψ−
(
ÿ
ÿ(0,1)
0,1

★ · · ·★ ÿ
ÿ(ÿ−1,ýÿ−1)
ÿ−1,1

)
= ÿ0,ÿ(0,1) · · · ÿÿ−1,ÿ(ÿ−1,ýÿ−1) .

We will check that the matrix elements coincide for these monomials, from which the lemma follows.

For the 8+9 case, the proposed formula gives us

1

ý•!

⎧⎪⎪⎪⎪«
⎪⎪⎪⎪¬

Symý•

�����

{∏
ÿ∈ý

ýÿ∏
ÿ=1

ÿ
ÿ(ÿ,ÿ)
ÿ,ÿ

∏
1≤ÿ<ÿ′≤ýÿ

ÿÿ,ÿ (ÿÿ,ÿ, ÿÿ,ÿ′)
}⎧⎪⎪⎪⎪«
⎪⎪⎪⎪¬

∏
0≤ÿ< ÿ≤ÿ−1

∏
1≤ÿ≤ýÿ
1≤ÿ≤ý ÿ

ÿÿ, ÿ (ÿÿ,ÿ, ÿ ÿ ,ÿ)

«⎪⎪⎪⎪¬
⎪⎪⎪⎪­
����	

×

〈
ÿ1

+++++++
�

ÿ−1∏
ÿ=0

�

ýÿ∏
ÿ=1

ýÿ (ÿÿ,ÿ)

+++++++ÿ2

〉

(∏
ÿ∈ý

∏
1≤ÿ<ÿ′≤ýÿ

ÿÿ,ÿ (ÿÿ,ÿ, ÿÿ,ÿ′)
)�����

∏
0≤ÿ< ÿ≤ÿ−1

∏
1≤ÿ≤ýÿ
1≤ÿ≤ý ÿ

ÿÿ, ÿ (ÿÿ,ÿ, ÿ ÿ ,ÿ)
����	

«⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪­0

.

Using (4.15) to swap variables, we can move both the matrix element and the mixing terms inside

the symmetrization, where the mixing terms will all cancel out. Notice that taking the constant term

is insensitive to the labeling of the variables, and thus, the constant terms of all the summands of the

symmetrization are equal. The end result is

⎧⎪⎪⎪«
⎪⎪⎪¬
∏
ÿ∈ý

ýÿ∏
ÿ=1

ÿ
ÿ(ÿ,ÿ)
ÿ,ÿ

〈
ÿ1

+++++++
�

ÿ−1∏
ÿ=0

�

ýÿ∏
ÿ=1

ýÿ (ÿÿ,ÿ)

+++++++ÿ2

〉«⎪⎪⎪¬
⎪⎪⎪­0

=
〈
ÿ1

++ÿ+�ý (ÿ0,ÿ(0,1) · · · ÿÿ−1,ÿ(ÿ−1,ýÿ−1)
) ++ÿ2

〉
.

The 8−9 case is similar. �

5. Difference operators

5.1. Setup

Now, we will ûx ÿ ∈ ý, which also ûxes a core. The previous two sections were concerned with

symmetric functions in inûnitely many variables. Here, we will shift to working with ûnitely many

variables

{
ý
(ÿ)
ý

}1≤ý≤ýÿ

ÿ∈ý
= ÿý• .
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We will impose the compatibility (2.9) between ÿ and the vector ý• recording the number of variables

of each color. Our approach for ûnding difference operators is straightforward: we use Lemma 4.8 to

compute the action of ÿ±�ý (Ψ±(E±
ý,ÿ)) on a function ÿ

[
ÿý•

]
. We assume that ÿ ≤ ýÿ for all ÿ ∈ ý.

5.1.1. Finitized vertex operators

Recall that Λý
ý•

denotes the tensor product over ÿ ∈ ý of rings of symmetric polynomials in ýÿ variables

and ÿý• : Λý → Λý
ý•

is the natural projection. We will abuse notation and also denote the map

(ÿý• ⊗ 1) : Λý ⊗ K{ý} → Λý
ý•

⊗ K{ý} by ÿý• . Recall Proposition 3.7.

Remark 5.1. The action (3.7) of the operator ÿÿÿ ,0 includes a power of ý. In Proposition 3.7 and

throughout this paper, we will be working with products of currents that have an equal number of

ýÿ (ÿ) for each ÿ ∈ ý and likewise for ýÿ (ÿ). In this setup, the powers of ý will cancel. Namely, because

ÿÿ,ÿ±1 = −ÿÿ±2,ÿ±1, we have that the power of ý from the action of ÿ
ÿÿ,0

ÿ,ÿ
will be canceled by those from

the action of ÿ
ÿÿ±2,0

ÿ±2,ÿ
. Thus, we we will abuse notation and omit the ý from the action of ÿÿÿ,0 . Applying

the compatibility condition (2.9), this leaves

ÿÿÿ,0 (ÿÿ) = ÿ (ÿ
∨
ÿ
,ÿ) = ÿýÿ−ýÿ−1 .

Proposition 5.2. Let ÿ ∈ Λý be factored according to color:

ÿ =
∏
ÿ∈ý

ÿÿ [ÿ (ÿ) ],

where ÿÿ ∈ Λ for all ÿ ∈ ý. For

|ÿ | = 1, |ÿ | > 1, |ý | > 1, |ý ( ÿ)
ý

| < 1, (5.1)

the vertex operators from (3.13) act on f such that upon finitization, we have

ÿý•

(
exp

[∑
ý>0

(
ýý [ÿ (ÿ) ] − ý−ý ýý [ÿ (ÿ−1) ]

) ÿý
ý

]

× exp

[∑
ý>0

(
−ýý [ÿ (ÿ) ]⊥ + ÿ−ý ýý [ÿ (ÿ−1) ]⊥

) ÿ−ý
ý

]
ÿÿÿ,0 ( ÿ ⊗ ÿÿ)

)

=

ýÿ−1∏
ý=1

(
ÿ−1 − ý−1ý

(ÿ−1)
ý

)
ýÿ∏
ý=1

(
ÿ−1 − ý

(ÿ)
ý

)
�����
ÿÿ

[
ý
(ÿ)
• − ÿ−1

]
ÿÿ−1

[
ý
(ÿ−1)
• + ÿ−1ÿ−1

] ∏
ÿ∈ý

ÿ≠ÿ,ÿ−1

ÿ ÿ

[
ý
( ÿ)
•
]
⊗ ÿÿ

����	
.

(5.2)

However, for

|ÿ | = 1, |ÿ | < 1, |ý | < 1, |ý ( ÿ)
ý

| < 1,
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the vertex operators from (3.15) act as

ÿý•

(
exp

[∑
ý>0

(
−ýý ýý [ÿ (ÿ) ] + ýý [ÿ (ÿ−1) ]

) ÿý
ý

]

× exp

[∑
ý>0

(
ÿý ýý [ÿ (ÿ) ]⊥ − ýý [ÿ (ÿ−1) ]⊥

) ÿ−ý
ý

]
ÿ−ÿÿ,0 ( ÿ ⊗ ÿÿ)

)

=

ýÿ∏
ý=1

(
ÿ−1 − ýý

(ÿ)
ý

)
ýÿ−1∏
ý=1

(
ÿ−1 − ý

(ÿ−1)
ý

)
�����
ÿÿ

[
ý
(ÿ)
• + ÿÿ−1

]
ÿÿ−1

[
ý
(ÿ−1)
• − ÿ−1

] ∏
ÿ∈ý

ÿ≠ÿ,ÿ−1

ÿ ÿ

[
ý
( ÿ)
•
]
⊗ ÿÿ

����	
.

(5.3)

Proof. We will only consider (5.2) – the proof for (5.3) is similar. First consider the 8left9 half of the

vertex operator together with ÿÿÿ ,0. We have

ÿý•

(
exp

[∑
ý>0

(
ýý [ÿ (ÿ) ] − ý−ý ýý [ÿ (ÿ−1) ]

) ÿý
ý

]
ÿÿÿ,0 ( ÿ ⊗ ÿÿ)

)

=

ýÿ−1∏
ý=1

(
1 − ý−1ÿý

(ÿ−1)
ý

)
ýÿ∏
ý=1

(
1 − ÿý

(ÿ)
ý

) ÿýÿ−ýÿ−1
(
ÿý• ( ÿ ) ⊗ ÿÿ

)
=

ýÿ−1∏
ý=1

(
ÿ−1 − ý−1ý

(ÿ−1)
ý

)
ýÿ∏
ý=1

(
ÿ−1 − ý

(ÿ)
ý

) (
ÿý• ( ÿ ) ⊗ ÿÿ

)
. (5.4)

For this to hold, we will need to impose conditions on |ý (ÿ)
ý

|. Recall that we have the conditions (3.14)

when working with {ýÿ (ÿ)}. We extend these to (5.1) for (5.4) to hold. Let us also point out that the

compatibility condition (2.9) is used to obtain the factor ÿýÿ−ýÿ−1 after the ûrst equality.

Next, from the 8right9 half, we have

ÿý•

(
exp

[∑
ý>0

(
−ýý [ÿ (ÿ) ]⊥ + ÿ−ý ýý [ÿ (ÿ−1) ]⊥

) ÿ−ý
ý

]
· ÿ
)

= ÿý•

�����
ÿÿ [ÿ (ÿ) − ÿ−1] ÿÿ−1 [ÿ (ÿ−1) + ÿ−1ÿ−1]

∏
ÿ∈ý

ÿ≠ÿ,ÿ−1

ÿ ÿ [ÿ ( ÿ) ]
����	

(5.5)

= ÿÿ

[
ý
(ÿ)
• − ÿ−1

]
ÿÿ−1

[
ý
(ÿ−1)
• + ÿ−1ÿ−1

] ∏
ÿ∈ý

ÿ≠ÿ,ÿ−1

ÿ ÿ

[
ý
( ÿ)
•
]
.

Here, (5.5) follows from checking on power sums ýý [ÿ (ÿ) ] and ýý [ÿ (ÿ−1) ]. �

Remark 5.3. As in Proposition 5.2, when writing formulas involving vertex operators, we will express

them in terms of functions that are factorizable according to color:

ÿ =
∏
ÿ∈ý

ÿÿ [ÿ (ÿ) ] .

Factorizable functions span Λý , so to deûne an operator, it suffices to consider its action on such

functions. We can write our operators in terms of general f if we introduce colored plethystic notation.
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For instance, the terms at the bottom of (5.2) can be written as

ÿÿ

[
ý
(ÿ)
• − ÿ−1

]
ÿÿ−1

[
ý
(ÿ−1)
• + ÿ−1ÿ−1

] ∏
ÿ∈ý

ÿ≠ÿ,ÿ−1

ÿ ÿ

[
ý
( ÿ)
•
]

= ÿ

£¤¤¤¤¤¤¥
(
ý
(ÿ)
• − ÿ−1

)
+
(
ý
(ÿ−1)
• + ÿ−1ÿ−1

)
+
∑
ÿ∈ý

ÿ≠ÿ,ÿ−1

ý
( ÿ)
•

¦§§§§§§̈
,

where the bottom denotes the image of ÿ [ÿý•] under the ring map generated by

ýÿ [ý ( ÿ)• ] ↦→
⎧⎪⎪⎪«
⎪⎪⎪¬
ýÿ [ý (ÿ)• ] − ÿ−ÿ ÿ = ÿ

ýÿ [ý (ÿ−1)
• ] + ÿ−ÿÿ−ÿ ÿ = ÿ − 1

ýÿ [ý ( ÿ)• ] otherwise

.

This notation can then be carried over to general f. However, the beneûts of introducing this notation

in our paper seemed marginal at best, so we have elected to making statements in terms of factorizable

functions.

5.1.2. Applying the constant term formula

Our next goal is to obtain constant term formulas for the action of the shuffle elements E±
ý,ÿ from (4.9).

In light of Lemma 4.4, we will also incorporate the constants

ý+ÿ :=
(−1)ÿÿÿ(ÿ−1) ý−ÿ (1 − ÿ−1ý−1)ÿÿ

ÿ−ÿ
∏ÿ

ÿ=1 (1 − ÿ−ÿý−ÿ) , ý−ÿ :=
(−1)ÿÿ−ÿý−ÿ(ÿ−1) ýÿ (1 − ÿý)ÿÿ

ÿÿÿÿ
∏ÿ

ÿ=1 (1 − ÿ−ÿý−ÿ) ,

where ÿ = (−1) (ÿ−2) (ÿ−3)
2 ÿý−

ÿ
2 (ý0 · · · ýÿ−1)−1.

Lemma 5.4. For any factorizable ÿ =
∏

ÿ∈ý ÿÿ [ÿ (ÿ) ] ∈ Λý , we have

ý+ÿÿý•

(
(ÿ+�ý ◦ Ψ+) (E+

ý,ÿ) ( ÿ ⊗ ÿÿ)
)

=
(1 − ÿ−1ý−1)ÿÿ

ýÿ
∏ÿ

ÿ=1 (1 − ÿ−ÿý−ÿ)

{∏
ÿ∈ý

ÿ∏
ÿ=1

ýÿ∏
ý=1

(
ÿ−1
ÿ+1,ÿ

− ý−1ý
(ÿ)
ý

ÿ−1
ÿ,ÿ

− ý
(ÿ)
ý

)

×
∏

1≤ÿ<ÿ≤ÿ

[ (
1 − ÿý+1,ÿ/ÿý+1,ÿ

) (
1 − ÿ−1ý−1ÿý+1,ÿ/ÿý+1,ÿ

)
(
1 − ýÿý,ÿ/ÿý+1,ÿ

) (
1 − ý−1ÿý+2,ÿ/ÿý+1,ÿ

)

×
∏

ÿ∈ý \{ý+1}

(
1 − ÿÿ,ÿ/ÿÿ,ÿ

) (
1 − ÿ−1ý−1ÿÿ,ÿ/ÿÿ,ÿ

)
(
1 − ÿ−1ÿÿ−1,ÿ/ÿÿ,ÿ

) (
1 − ý−1ÿÿ+1,ÿ/ÿÿ,ÿ

)
¦§§§§̈

×
ÿ∏
ÿ=1

[(
ÿ0,ÿ

ÿý,ÿ

) (
1

1 − ý−1ÿý+1,ÿ/ÿý,ÿ

)

×
∏

ÿ∈ý \{ý+1}

(
1

1 − ý−1ÿÿ,ÿ/ÿÿ−1,ÿ

) (
1

1 − ÿ−1ÿÿ−1,ÿ/ÿÿ,ÿ

)¦§§§§̈
×
∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

−
ÿ∑
ÿ=1

ÿ−1
ÿ,ÿ + ÿ−1

ÿ∑
ÿ=1

ÿ−1
ÿ+1,ÿ

]}
0

⊗ ÿÿ

(5.6)
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and

ý−ÿÿý•

(
(ÿ−�ý ◦ Ψ−) (E−

ý,ÿ) ( ÿ ⊗ ÿÿ)
)

=
ýÿ (1 − ÿý)ÿÿ∏ÿ
ý=1 (1 − ÿý ýý )

⎧⎪⎪«
⎪⎪¬
∏
ÿ∈ý

ÿ∏
ÿ=1

ýÿ∏
ý=1

���
ÿ−1
ÿ,ÿ − ýý

(ÿ)
ý

ÿ−1
ÿ+1,ÿ

− ý
(ÿ)
ý

��	
×

∏
1≤ÿ<ÿ≤ÿ

[ (
1 − ÿý,ÿ/ÿý,ÿ

) (
1 − ÿýÿý,ÿ/ÿý,ÿ

)
(
1 − ý−1ÿý+1,ÿ/ÿý,ÿ

) (
1 − ýÿý−1,ÿ/ÿý,ÿ

)

×
∏

ÿ∈ý \{ý}

(
1 − ÿÿ,ÿ/ÿÿ,ÿ

) (
1 − ÿýÿÿ,ÿ/ÿÿ,ÿ

)
(
1 − ÿÿÿ+1,ÿ/ÿÿ,ÿ

) (
1 − ýÿÿ−1,ÿ/ÿÿ,ÿ

)
¦§§§§̈

×
ÿ∏
ÿ=1

[(
ÿý,ÿ

ÿ0,ÿ

) (
1

1 − ýÿý,ÿ/ÿý+1,ÿ

)

×
∏

ÿ∈ý \{ý}

(
1

1 − ýÿÿ,ÿ/ÿÿ+1,ÿ

) (
1

1 − ÿÿÿ+1,ÿ/ÿÿ,ÿ

)¦§§§§̈
×
∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

+ ÿ

ÿ∑
ÿ=1

ÿ−1
ÿ,ÿ −

ÿ∑
ÿ=1

ÿ−1
ÿ+1,ÿ

]}
0

⊗ ÿÿ .

(5.7)

Proof. Plugging in E±
ý,ÿ into the formula from Lemma 4.8, we can use the toroidal relations and

Proposition 4.7 to reorder the currents in alignment with Proposition 3.7. As in the proof of Lemma 4.8,

we can use the toroidal relations to remove the symmetrizations in E±
ý,ÿ. Taking the result for E+

ý,ÿ,

acting on ÿ ⊗ ÿÿ and then applying ÿý• gives us

ÿý•

(
(ÿ+�ý ◦ Ψ+) (E+

ý,ÿ) ( ÿ ⊗ ÿÿ)
)

=

(
(−1)

(ÿ−2) (ÿ−3)
2 ý

ÿ
2
−1
∏
ÿ∈ý

ýÿ

)ÿ{∏
ÿ∈ý

ÿ∏
ÿ=1

ýÿ∏
ý=1

(
ÿ−1
ÿ+1,ÿ

− ý−1ý
(ÿ)
ý

ÿ−1
ÿ,ÿ

− ý
(ÿ)
ý

)

×
∏

1≤ÿ<ÿ≤ÿ

[
1 − ÿ−1ÿý,ÿ/ÿý+1,ÿ

1 − ýÿý,ÿ/ÿý+1,ÿ

∏
ÿ∈ý

(
1 − ÿÿ,ÿ/ÿÿ,ÿ

) (
1 − ÿ−1ý−1ÿÿ,ÿ/ÿÿ,ÿ

)
(
1 − ý−1ÿÿ+1,ÿ/ÿÿ,ÿ

) (
1 − ÿ−1ÿÿ−1,ÿ/ÿÿ,ÿ

)
]

×
ÿ∏
ÿ=1

[(
ÿ0,ÿ

ÿý+1,ÿ

) (
ÿý+1,ÿ

ÿý+1, ý (ÿý+1,ÿ, ÿý,ÿ)

)

×
∏

ÿ∈ý \{ý+1}

ÿÿ,ÿ(
1 − ý−1ÿÿ,ÿ/ÿÿ−1,ÿ

)
ÿÿ−1,ÿ (ÿÿ−1,ÿ, ÿÿ,ÿ)

¦§§§§̈
×
∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

−
ÿ∑
ÿ=1

ÿ−1
ÿ,ÿ + ÿ−1

ÿ∑
ÿ=1

ÿ−1
ÿ+1,ÿ

]}
0

⊗ ÿÿ,

where all rational functions are expanded as Laurent series assuming

|ÿÿ,ÿ | = 1, |ý ( ÿ)
ý

| < 1, |ý | > 1, |ÿ | > 1. (5.8)
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For E−
ý,ÿ, we instead have

ÿý•

(
(ÿ−�ý ◦ Ψ−) (E−

ý,ÿ) ( ÿ ⊗ ÿÿ)
)

=

�����
(−1) (ÿ−2) (ÿ−3)

2

ý
ÿ
2
−1
∏
ÿ∈ý

ýÿ

����	

ÿ⎧⎪⎪«
⎪⎪¬
∏
ÿ∈ý

ÿ∏
ÿ=1

ýÿ∏
ý=1

���
ÿ−1
ÿ,ÿ − ýý

(ÿ)
ý

ÿ−1
ÿ+1,ÿ

− ý
(ÿ)
ý

��	
×

∏
1≤ÿ<ÿ≤ÿ

[
ÿ−1 − ÿý+1,ÿ/ÿý,ÿ
ý − ÿý+1,ÿ/ÿý,ÿ

∏
ÿ∈ý

(
1 − ÿÿ,ÿ/ÿÿ,ÿ

) (
1 − ÿýÿÿ,ÿ/ÿÿ,ÿ

)
(
1 − ýÿÿ−1,ÿ/ÿÿ,ÿ

) (
1 − ÿÿÿ+1,ÿ/ÿÿ,ÿ

)
]

×
ÿ∏
ÿ=1

[(
ÿý+1,ÿ

ÿ0,ÿ

) ( −ÿý,ÿ
ÿý+1, ý (ÿý+1,ÿ, ÿý,ÿ)

)

×
∏

ÿ∈ý \{ý}

ÿÿ,ÿ(
1 − ýÿÿ,ÿ/ÿÿ+1,ÿ

)
ÿÿ,ÿ+1(ÿÿ,ÿ, ÿÿ+1,ÿ)

¦§§§§̈
×
∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

+ ÿ

ÿ∑
ÿ=1

ÿ−1
ÿ,ÿ −

ÿ∑
ÿ=1

ÿ−1
ÿ+1,ÿ

]}
0

⊗ ÿÿ,

where all rational functions are expanded into Laurent series assuming.

|ÿÿ,ÿ | = 1, |ý ( ÿ)
ý

| < 1, |ÿ | < 1, |ý | < 1. (5.9)

In both formulas, we are taking constant terms in the z-variables.

Finally, to obtain (5.6) and (5.7) from these formulas, we multiply through by ý±ÿ and use ÿ = ÿý,

ý = ÿý−1 to write

ÿÿ,ÿ+1(ÿ, ý) = ÿý − ý−1ÿ = ý−1 (ÿý − ÿ) = ÿ

(
ý − ÿ−1ÿ

)
ÿÿ,ÿ−1(ÿ, ý) = ÿ − ÿý−1ý = ÿ − ýý. �

Remark 5.5. Observe that the formulas in Lemma 5.4 are for symmetric functions in ûnitely many

variables. To obtain constant term formulas for operators in inûnitely many variables, we can apply

Proposition 5.2. For example, starting from (5.6), we use (5.2) and replace

∏
ÿ∈ý

ÿ∏
ÿ=1

ýÿ∏
ý=1

(
ÿ−1
ÿ+1,ÿ

− ý−1ý
(ÿ)
ý

ÿ−1
ÿ,ÿ

− ý
(ÿ)
ý

)
ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

−
ÿ∑
ÿ=1

ÿ−1
ÿ,ÿ + ÿ−1

ÿ∑
ÿ=1

ÿ−1
ÿ+1,ÿ

]
⊗ ÿÿ

with

exp

[∑
ÿ∈ý

ÿ∑
ÿ=1

(∑
ý>0

(
ýý [ÿ (ÿ) ] − ý−ý ýý [ÿ (ÿ−1) ]

) ÿý
ÿ,ÿ

ý

)]

× exp

[∑
ÿ∈ý

ÿ∑
ÿ=1

∑
ý>0

(
−ýý [ÿ (ÿ) ]⊥ + ÿ−ý ýý [ÿ (ÿ−1) ]⊥

) ÿ−ý
ÿ,ÿ

ý

]
ÿÿÿ,0 ( ÿ ⊗ ÿÿ).

5.1.3. Integral formula

Regardless of f, the formulas obtained in 5.1.2 are constant terms of Laurent series expansions of some

rational function. Note that all poles are simple except for the poles at zero possibly coming from the
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plethystic modiûcations done to f. Thus, it will be advantageous to invert all the z-variables: let

ýÿ,ÿ := ÿ−1
ÿ,ÿ

and deûne the functions

ý+ý,ÿ (ý•,•, ÿý•) :=
(−1) ÿ(ÿ−1)

2 (1 − ÿ−1ý−1)ÿÿ

ý
ÿ(ÿ+1)

2
∏ÿ

ÿ=1 (1 − ÿ−ÿý−ÿ)

∏
ÿ∈ý

ÿ∏
ÿ=1

ýÿ∏
ý=1

(
ýÿ+1,ÿ − ý−1ý

(ÿ)
ý

ýÿ,ÿ − ý
(ÿ)
ý

)
(5.10)

×
∏

1≤ÿ<ÿ≤ÿ

[ (
ýý+1,ÿ − ýý+1,ÿ

) (
ýý+1,ÿ − ÿ−1ý−1ýý+1,ÿ

)
(
ýý+1,ÿ − ý−1ýý,ÿ

) (
ýý+2,ÿ − ý−1ýý+1,ÿ

) (5.11)

×
∏

ÿ∈ý \{ý+1}

(
ýÿ,ÿ − ýÿ,ÿ

) (
ýÿ,ÿ − ÿ−1ý−1ýÿ,ÿ

)
(
ýÿ−1,ÿ − ÿ−1ýÿ,ÿ

) (
ýÿ+1,ÿ − ý−1ýÿ,ÿ

)
¦§§§§̈ (5.12)

×
ÿ∏
ÿ=1

[(
ýý,ÿ

ý0,ÿ

) (
ýý+1,ÿ

ýý+1,ÿ − ý−1ýý,ÿ

)
(5.13)

×
∏

ÿ∈ý \{ý+1}

(
ýÿ,ÿ

ýÿ,ÿ − ý−1ýÿ−1,ÿ

) (
ýÿ−1,ÿ

ýÿ−1,ÿ − ÿ−1ýÿ,ÿ

)¦§§§§̈ (5.14)

and

ý−ý,ÿ (ý•,•, ÿý•) :=
(−1) ÿ(ÿ−1)

2 ý
ÿ(ÿ+1)

2 (1 − ÿý)ÿÿ∏ÿ
ÿ=1 (1 − ÿÿýÿ)

∏
ÿ∈ý

ÿ∏
ÿ=1

ýÿ∏
ý=1

(
ýÿ,ÿ − ýý

(ÿ)
ý

ýÿ+1,ÿ − ý
(ÿ)
ý

)
(5.15)

×
∏

1≤ÿ<ÿ≤ÿ

[ (
ýý,ÿ − ýý,ÿ

) (
ýý,ÿ − ÿýýý,ÿ

)
(
ýý,ÿ − ýýý+1,ÿ

) (
ýý−1,ÿ − ýýý,ÿ

) (5.16)

×
∏

ÿ∈ý \{ý}

(
ýÿ,ÿ − ýÿ,ÿ

) (
ýÿ,ÿ − ÿýýÿ,ÿ

)
(
ýÿ+1,ÿ − ÿýÿ,ÿ

) (
ýÿ−1,ÿ − ýýÿ,ÿ

)
¦§§§§̈ (5.17)

×
ÿ∏
ÿ=1

£¤¤¤¤¥
(

ý0,ÿ

ýý,ÿ − ýýý+1,ÿ

) ∏
ÿ∈ý \{ý}

(
ýÿ,ÿ

ýÿ,ÿ − ýýÿ+1,ÿ

) (
ýÿ+1,ÿ

ýÿ+1,ÿ − ÿýÿ,ÿ

)¦§§§§̈ . (5.18)

Lemma 5.6. Let ÿ =
∏

ÿ∈ý ÿÿ [ÿ (ÿ) ] ∈ Λý be factorizable according to color. For the ‘+’ case, assume

|ý (ÿ)
ý

| < 1, |ÿ | > 1, |ý | > 1.

We have

ý+ÿÿý•

(
(ÿ+�ý ◦ Ψ+) (E+

ý,ÿ) ( ÿ ⊗ ÿÿ)
)

=
����
∮

· · ·
∮

|ýÿ,ÿ |=1

ý+ý,ÿ (ý•,•, ÿý•)
∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

−
ÿ∑
ÿ=1

ýÿ,ÿ +
ÿ∑
ÿ=1

ÿ−1ýÿ+1,ÿ

]
ÿ∏
ÿ=1

ýýÿ,ÿ

2ÿ
√
−1ýÿ,ÿ

���	
⊗ ÿÿ,

(5.19)
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where we orient the unit circle |ýÿ,ÿ | = 1 counter-clockwise. In the ‘−’ case, we now assume

|ý (ÿ)
ý

| < 1, |ÿ | < 1, |ý | < 1.

We then have

ý−ÿÿý•

(
(ÿ−�ý ◦ Ψ−) (E−

ý,ÿ) ( ÿ ⊗ ÿÿ)
)

=
����
∮

· · ·
∮

|ýÿ,ÿ |=1

ý−ý,ÿ (ý•,•, ÿý•)
∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

+
ÿ∑
ÿ=1

ÿýÿ,ÿ −
ÿ∑
ÿ=1

ýÿ+1,ÿ

]
ÿ∏
ÿ=1

ýýÿ,ÿ

2ÿ
√
−1ýÿ,ÿ

���	
⊗ ÿÿ (5.20)

and also orient the unit circle counter-clockwise.

Proof. Upon making the substitution ýÿ,ÿ := ÿ−1
ÿ,ÿ, the right-hand side of (5.6) is equal to

{
ý+ý,ÿ (ý•,•, ÿý•)

∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

−
ÿ∑
ÿ=1

ýÿ,ÿ +
ÿ∑
ÿ=1

ÿ−1ýÿ+1,ÿ

]}
0

⊗ ÿÿ . (5.21)

Now, all the poles appearing in (5.21) are simple. Similarly, the right-hand side of (5.7) becomes{
ý−ý,ÿ (ý•,•, ÿý•)

∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

+
ÿ∑
ÿ=1

ÿýÿ,ÿ −
ÿ∑
ÿ=1

ýÿ+1,ÿ

]}
0

⊗ ÿÿ . (5.22)

In case 8±9, the integrands are given by series in the ý
(ÿ)
ý

and ÿ∓1, ý∓1, with coefficients which

are Laurent polynomials in the ýÿ,ÿ. Under the given assumptions, these series converge uniformly

absolutely on the integration cycle, and thus, we can exchange the order of summation and integra-

tion. This turns the integrals (5.19) and (5.20) into the constant term formulas (5.21) and (5.22),

respectively. �

Remark 5.7. Recall that the compatibility condition (2.9) between ý• and ÿ was used to obtain the

formulas in Proposition 5.2. At this stage, we note that without the compatibility, we would have to

contend with an additional Laurent monomial factor in the variables ýÿ,ÿ in (5.21) and (5.22). This

would prevent us from obtaining a manageable formula due to the presence of non-simple poles at zero.

5.1.4. Cyclic-shift operators

To describe the results of our computation, we need to introduce some difference operators that also

permute variables. As before, let ÿý• = {ý (ÿ)
ý
}1≤ý≤ýÿ

ÿ∈ý denote our set of variables compatible with our

r-core via (2.9). Deûne a shift pattern of ÿý• to be a subset of ÿý• that contains no more than one

variable of each color. A shift pattern contains color ý ∈ ý if it contains a variable of color p. Let

ÿℎý (ÿý•) denote the set of all shift patterns containing color p.

For a shift pattern ý, let ý ⊂ ý denote the colors of the variables in ý. We denote the variables in ý

by ý
(ÿ)
ý

, so ý = {ý (ÿ)
ý
}ÿ∈ý . To ý we associate the following:

1. Gap labels: For ÿ ∈ ý, let ÿ� ∈ ý be ûrst element greater than or equal to i in the cyclic order.

Similarly, let ÿ� ∈ ý be the ûrst element less than or equal to i in the cyclic order. We stipulate that

0 ≤ ÿ� − ÿ, ÿ − ÿ� ≤ ÿ − 1. With this set, we deûne

ý
(ÿ)
ý�

= ÿ (ÿ−ÿ�)ý (ÿ
�)

ý

ý
(ÿ)
ý�

= ÿ (ÿ−ÿ�)ý (ÿ
�)

ý
.
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To clarify, ý
(ÿ)
ý�

= ý
(ÿ)
ý�

= ý
(ÿ)
ý

if ÿ ∈ ý. Thus, while ý gives a list of variables colored by ý ⊂ ý, we 8ûll

in the gaps9 for values ÿ ∈ ý\ý with certain q-shifts of the elements of ý. Note that the q-shifts are

negative for ý
(ÿ)
ý�

and positive for ý
(ÿ)
ý�

.

2. A cyclic-shift operator: For ÿ ∈ ý, let ÿ� ∈ ý be the ûrst element strictly less than i in the cyclic order.

We set 1 ≤ ÿ − ÿ� ≤ ÿ , where r occurs if and only if |ý | = {ÿ}. We then deûne the operator ÿý on

K[ÿý• ] as the algebra map induced by

ÿý (ý (ÿ)ý
) =

{
ÿ (ÿ−ÿ�)ý (ÿ

�)
ý

if ÿ ∈ ý and ýý = ý
(ÿ)
ý

ý
(ÿ)
ý

otherwise.

Note that this q-shift is positive. If we let ÿ� ∈ ý be the ûrst element strictly greater than i in the

cyclic order, then observe that

ÿ−1
ý (ý (ÿ)

ý
) =

{
ÿ (ÿ−ÿ�)ý (ÿ

�)
ý

if ÿ ∈ ý and ý
(ÿ)
ý

= ý
(ÿ)
ý

ý
(ÿ)
ý

otherwise,

where as before, we view 1 ≤ ÿ� − ÿ ≤ ÿ . Finally, we note the following: for ÿ ∈ ý,

ÿý (ý (ÿ)ý ) = ÿý
(ÿ−1)
ý�

ÿ−1
ý (ý (ÿ)

ý
) = ÿ−1ý

(ÿ+1)
ý�

.
(5.23)

The cyclic-shift operators ÿ±1
ý

will arise when evaluating the integrals of Lemma 5.6 by iterated

residues. For later use, and to clarify this relationship, we record the following:

Lemma 5.8. For any ÿ =
∏

ÿ ÿÿ [ÿ (ÿ) ] ∈ Λý , ý ∈ ÿℎý (ÿý•), define the following evaluations on a set

of auxilliary variables {ýÿ}ÿ∈ý :

ev+ý : for ÿ = ý, ý + 1, . . . , ý − 1 cyclic order, ýÿ ↦→
{
ý
(ÿ)
ý

if ÿ ∈ ý

ÿ−1ýÿ+1 if ÿ ∈ ý \ ý

ev−ý : for ÿ = ý + 1, ý, . . . , ý + 2 in reverse cyclic order, ýÿ ↦→
{
ý
(ÿ−1)
ý

if ÿ − 1 ∈ ý

ÿýÿ−1 if ÿ − 1 ∈ ý \ ý.

We then have

ev+ý (ýÿ) = ý
(ÿ)
ý�
, ev−ý (ýÿ) = ý

(ÿ)
ý�

(5.24)

and

ÿ−1
ý ÿ

[
ÿý•

]
= ev+ý

(∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

− ýÿ + ÿ−1ýÿ+1

])
(5.25)

ÿý ÿ
[
ÿý•

]
= ev−ý

(∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

+ ÿýÿ − ýÿ+1

])
. (5.26)
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Proof. The equations (5.24) follow from the deûnitions. Equipped with that, the right-hand side of

(5.25) becomes

∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ÿ

− ý
(ÿ)
ý�

+ ÿ−1ý
(ÿ+1)
ý�

]

If ÿ ∈ ý\ý, then ý
(ÿ)
ý�

= ÿ−1ý
(ÿ+1)
ý�

and so ÿÿ is unchanged. However, if ÿ ∈ ý, then ý
(ÿ)
ý�

= ý
(ÿ)
ý

and we obtain

ÿ−1
ý

ÿÿ by (5.23). The case of (5.26) is similar. �

Example 5.9. For instance, suppose ÿ = 3, ý = 0, and ý = {ý (0)
1

, ý
(2)
1

}. Then the right-hand side of

(5.25) is

ev+ý

(
ÿ0

[
ý0∑
ý=1

ý
(0)
ý

− ý0 + ÿ−1ý1

]
ÿ1

[
ý1∑
ý=1

ý
(1)
ý

− ý1 + ÿ−1ý2

]
ÿ2

[
ý2∑
ý=1

ý
(2)
ý

− ý2 + ÿ−1ý0

])

with ev+
ý

given by evaluating ý0 ↦→ ý
(0)
1

, ý1 ↦→ ÿ−1ý2, ý2 ↦→ ý
(2)
1

in this order. The result is

ÿ0

[
ý0∑
ý=1

ý
(0)
ý

− ý
(0)
1

+ ÿ−2ý
(2)
1

]
ÿ1

[
ý1∑
ý=1

ý
(1)
ý

+ 0

]
ÿ2

[
ý2∑
ý=1

ý
(2)
ý

− ý
(2)
1

+ ÿ−1ý
(0)
1

]
= ÿ−1

ý ÿ
[
ÿý•

]
.

We will also make use of n-tuples of shift patterns. For such an n-tuple J = (ý
1
, . . . , ý

ÿ
) and

0 ≤ ý ≤ ÿ, we denote

|J| = ý
1
∪ · · · ∪ ý

ÿ
⊂ ÿý•

|J|≤ý = ý
1
∪ · · · ∪ ý

ý
⊂ ÿý•

|J|≥ý = ý
ý
∪ · · · ∪ ý

ÿ
⊂ ÿý• .

If J is an n-tuple of shift patterns all containing color p, we say J is p-distinct if the p-colored variables

ý
(ý)
ý ý

are all distinct. Let ÿℎ
[ÿ]
ý (ÿý•) denote the set of all p-distinct n-tuples of shift patterns containing

color p.

5.2. Degree one case

We will ûrst compute the integrals from Lemma 5.6 for the case ÿ = 1. The first order wreath Macdonald

operators are deûned as follows:

ÿ∗
ý,1 (ÿý• ; ÿ, ý

−1) :=
1

1 − ÿ−1ý−1

∑
ý ∈ÿℎý (ÿý• )

(
1 − ÿ−1ý−1

) |ý | ý (ý+1)
ý�

ý
(0)
ý�

×
�������

∏
ÿ∈ý

ýÿ∏
ý=1

ý
(ÿ)
ý

≠ý
(ÿ)
ý�

(
ýý

(ÿ+1)
ý�

− ý
(ÿ)
ý

)
(
ý
(ÿ)
ý�

− ý
(ÿ)
ý

)
������	
����
∏

ÿ∈ý\{ý}

ÿýÿ−1
ý

(ý (ÿ)
ý
)(

ý
(ÿ)
ý

− ÿ−1
ý

(ý (ÿ)
ý
)
) ���	

ÿ−1
ý
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ÿ ý,1 (ÿý• ; ÿ, ý
−1) :=

1

1 − ÿý

∑
ý ∈ÿℎý (ÿý• )

(1 − ÿý) |ý |
ý
(ÿ−1)
ý�

ý
(ý)
ý

×
�������

∏
ÿ∈ý

ýÿ∏
ý=1

ý
(ÿ)
ý

≠ý
(ÿ)
ý�

(
ý−1ý

(ÿ−1)
ý�

− ý
(ÿ)
ý

)
(
ý
(ÿ)
ý�

− ý
(ÿ)
ý

)
������	
����
∏

ÿ∈ý\{ý}

ÿ−1ý−1ÿý (ý (ÿ)ý )(
ý
(ÿ)
ý

− ÿý (ý (ÿ)ý )
) ���	

ÿý .

Observe that when ÿ = 1, ÿ0,1 (ý0,•; ÿ, ý) and ÿ∗
0,1

(ý0,•; ÿ, ý) are the ûrst Macdonald and dual Macdonald

operators, respectively.

Proposition 5.10. The integrals from Lemma 5.6 for ÿ = 1 yield the following:

(+) For

|ý (ÿ)
ý

| < 1, |ÿ | � 1, |ý | � 1,

we have

ý+1ÿý•

(
(ÿ+�ý ◦ Ψ+) (E+

ý,1) ( ÿ ⊗ ÿÿ)
)
=

(
ý−|ý• |ÿ∗

ý,1(ÿý• ; ÿ, ý
−1) + ý−ý−1−|ý• |

1 − ý−ÿ

)
ÿ
[
ÿý•

]
.

(−) For

|ý (ÿ)
ý

| < 1, |ÿ | 
 1, |ý | 
 1,

we have

ý−1 ÿý•

(
(ÿ−�ý ◦ Ψ−) (E−

ý,1) ( ÿ ⊗ ÿÿ)
)
=

(
ý |ý• |ÿ ý,1(ÿý• ; ÿ, ý

−1) + ý ý+1+|ý• |

1 − ýÿ

)
ÿ
[
ÿý•

]
.

Proof. In the 8+9 case, the integral from Lemma 5.6 is

ý−1(1 − ÿ−1ý−1)ÿ−1

∮
· · ·
∮

|ýÿ,1 |=1

∏
ÿ∈ý

ýÿ∏
ý=1

(
ýÿ+1,1 − ý−1ý

(ÿ)
ý

)
(
ýÿ,1 − ý

(ÿ)
ý

) (5.27)

×
(
ýý,1

ý0,1

) (
ýý+1,1

ýý+1,1 − ý−1ýý,1

) ∏
ÿ∈ý \{ý+1}

(
ýÿ,1

ýÿ,1 − ý−1ýÿ−1,1

) (
ýÿ−1,1

ýÿ−1,1 − ÿ−1ýÿ,1

)
(5.28)

×
∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

− ýÿ,1 + ÿ−1ýÿ+1,1

]
ýýÿ,1

2ÿ
√
−1ýÿ,1

. (5.29)

We will ûrst integrate ýý,1. Based on (5.8), the residues within the unit circle |ýý,1 | = 1 come from the

factors

1(
ýý,1 − ý−1ýý−1,1

)
︸�������������������︷︷�������������������︸

(5.28)

ýý∏
ý=1

(
ýý,1 − ý

(ý)
ý

)
︸����������������︷︷����������������︸

(5.27)

.

We will call the ûrst type of pole a t-pole and the second type an x-pole.
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The 8−9 case is

ý (1 − ÿý)ÿ−1

∮
· · ·
∮

|ýÿ,1 |=1

∏
ÿ∈ý

ýÿ∏
ý=1

(
ýÿ,1 − ýý

(ÿ)
ý

)
(
ýÿ+1,1 − ý

(ÿ)
ý

) (5.30)

×
(

ý0,1

ýý,1 − ýýý+1,1

) ∏
ÿ∈ý \{ý}

(
ýÿ,1

ýÿ,1 − ýýÿ+1,1

) (
ýÿ+1,1

ýÿ+1,1 − ÿýÿ,1

)
(5.31)

×
∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

+ ÿýÿ,1 − ýÿ+1,1

]
ýýÿ,1

2ÿ
√
−1ýÿ,1

. (5.32)

Here, we will instead start by integrating ýý+1,1. As before, there are x-poles and a t-pole coming from

1

(
ýý+1,1 − ýýý+2,1

)
︸������������������︷︷������������������︸

(5.31)

ýý+1∏
ý=1

(
ýý+1,1 − ý

(ý)
ý

)
︸��������������������︷︷��������������������︸

(5.30)

.

Our analysis of the integrals at these two kinds of poles is addressed in 5.2.1 and 5.2.2 below. �

5.2.1. The t-poles

First consider the 8+9 case. Here, we begin with the residue ýý,1 = ý−1ýý−1,1. Let us group together the

factors

ýý,1ýý−1,1

ýý,1

(
ýý−1,1 − ÿ−1ýý,1

) (
ýý,1 − ý−1ýý−1,1

) ýý∏
ý=1

(
ýý,1 − ý

(ý)
ý

)
ýý−1∏
ý=1

(
ýý,1 − ý−1ý

(ý−1)
ý

)
(
ýý−1,1 − ý

(ý−1)
ý

) .

Upon taking taking the residue, this becomes

ý−ýý−1

(
1 − ÿ−1ý−1

) ýý∏
ý=1

(
ý−1ýý−1,1 − ý

(ý)
ý

) .

Because of the additional restriction |ý | � 1, the poles above will be outside the unit circle |ýý−1,1 | = 1.

This pattern persists as we continue downwards in cyclic order until we reach ýý+1,1. Here, we have

ýý+1,1ýý,1

ýý+1,1ý0,1

(
ýý+1,1 − ý−1ýý,1

)
++++ ý0,1 ↦→ý ý+1−ÿýý+1,1

ýý,1 ↦→ý−(ÿ−1)ýý+1,1

ýý∏
ý=1

(
ýý+1,1 − ý−1ý

(ý)
ý

)
(
ý−ÿ+1ýý+1,1 − ý

(ý)
ý

)

=
ý−ý

1 − ý−ÿ
· 1

ýý+1,1

ýý∏
ý=1

(
ýý+1,1 − ý−1ý

(ý)
ý

)
(
ý−ÿ+1ýý+1,1 − ý

(ý)
ý

) .
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The only pole here is the simple pole at ýý+1,1 = 0. After taking this residue, (5.29) becomes just

ÿ
[
ÿý•

]
. Bringing in the front matter in (5.27), we are left with

ý−ý−1−|ý• |

1 − ý−ÿ
ÿ
[
ÿý•

]
.

Here, we recall that ý• = (ý0, . . . , ýÿ−1) records the number of x-variables and |ý• | =
∑
ÿ∈ý ýÿ .

For the 8−9 case, recall that we begin at ýý+1,1 and take the residue ýý+1,1 = ýýý+2. We group

together the factors

ýý+1,1ýý+2,1

ýý+1,1

(
ýý+2,1 − ÿýý+1,1

) (
ýý+1,1 − ýýý+2,1

) ýý∏
ý=1

(
ýý+1,1 − ý

(ý)
ý

)
ýý+1∏
ý=1

(
ýý+1,1 − ýý

(ý+1)
ý

)
(
ýý+1,2 − ý

(ý+1)
ý

) ,

which upon taking the residue becomes

ýýý+1

(1 − ÿý)
ýý∏
ý=1

(
ýýý+2,1 − ý

(ý)
ý

) .

The remaining poles above lie outside the unit circle |ýý+2,1 | = 1 because we have assumed |ý | 
 1.

We continue upwards in cyclic order, yielding similar calculations until we arrive at ýý,1. Here, we

have the factors

ý0,1

ýý,1

(
ýý,1 − ýýý+1,1

)
++++ ý0,1 ↦→ý ýýý,1

ýý+1,1 ↦→ýÿ−1ýý,1

ýý∏
ý=1

(
ýý,1 − ýý

(ý)
ý

)
(
ýÿ−1ýý,1 − ý

(ý)
ý

)

=
ý ý

1 − ýÿ
· 1

ýý,1

ýý∏
ý=1

(
ýý,1 − ýý

(ý)
ý

)
(
ýÿ−1ýý,1 − ý

(ý)
ý

) .

The only pole within the unit circle |ýý,1 | = 1 is ýý,1 = 0. After taking this residue, the ûnal result

(after including the front matter) is

ý ý+1+|ý• |

1 − ýÿ
ÿ
[
ÿý•

]
.

5.2.2. The x-poles

We will ûrst work out the 8+9 case. Thus, we have taken the residue of ýý,1 at the pole ýý,1 = ý
(ý)
ý

for

some 1 ≤ ý ≤ ýý . This variable ý
(ý)
ý

will be an element of a shift pattern ý. Therefore, we call it ý
(ý)
ý

.

It will be advantageous to now group together the factors

ýý,1ýý+1,1

ý0,1ýý,1

(
ýý+1,1 − ý−1ýý,1

) ýý∏
ý=1

(
ýý+1,1 − ý−1ý

(ý)
ý

)
(
ýý,1 − ý

(ý)
ý

) .
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After taking the residue, we leave behind

ýý+1,1

ý0,1

ýý∏
ý=1

ý
(ý)
ý

≠ý
(ý)
ý

(
ýý+1,1 − ý−1ý

(ý)
1

)
(
ý
(ý)
ý

− ý
(ý)
ý

) .

Next, we consider ýý+1,1. We group together the factors

ýý+1,1ýý+2,1

ýý+1,1

(
ýý+2,1 − ý−1ýý+1,1

) (
ýý+1,1 − ÿ−1ýý+2,1

)
︸����������������������︷︷����������������������︸

(1)

ýý+1∏
ý=1

(
ýý+2,1 − ý−1ý

(ý+1)
ý

)
(
ýý+1,1 − ý

(ý+1)
ý

)
︸����������������︷︷����������������︸

(2)

.

The only (nonremovable) poles within the unit circle |ýý+1,1 | = 1 are marked (1) and (2). We thus have

two cases:

1. Residue at ýý+1,1 = ÿ−1ýý+2,1: In this case,
(
ýý+2,1 − ý−1ýý+1,1

)
cancels with a ýý+2,1 in the

numerator, leaving behind

1(
1 − ÿ−1ý−1

) ýý+1∏
ý=1

(
ýý+2,1 − ý−1ý

(ý+1)
ý

)
(
ýý+1,1 − ý

(ý+1)
ý

)
+++++++
ýý+1,1 ↦→ÿ−1ýý+2,1

.

Because |ÿ | � 1, the poles above lie outside the unit circle |ýý+2,1 | = 1.

2. Residue at ýý+1,1 = ý
(ý+1)
ý

=: ý
(ý+1)
ý

: Here,
(
ýý+2,1 − ý−1ýý+1,1

)
cancels with a factor in the

numerator, leaving behind

ýý+2,1(
ý
(ý+1)
ý

− ÿ−1ýý+2,1

) ýý+1∏
ý=1

ý
(ý+1)
ý

≠ý
(ý+1)
ý

(
ýý+2,1 − ý−1ý

(ý+1)
1

)
(
ý
(ý+1)
ý

− ý
(ý+1)
ý

) . (5.33)

Again, because |ÿ | � 1, the ûrst pole above lies outside the unit circle |ýý+2,1 | = 1.

This pattern and dichotomy for residues continues upwards in cyclic order. The x-variables in the type

(2) residues constitute a shift pattern ý, and our gap labels ý
(ÿ)
ý�

incorporate the q-shifts from the type (1)

residues. Therefore, ýÿ,1 is always evaluated at ý
(ÿ)
ý�

. Finally, observe that by Lemma 5.8, (5.29) becomes

ÿ−1
ý

ÿ
[
ÿý•

]
. The end result is ý−|ý• |ÿ∗

ý,1
(ÿ, ý−1) ÿ

[
ÿý•

]
.

The 8−9 case is similar. Our ûrst variable is ýý+1,1, for which we take the residue at ýý+1,1 = ý
(ý)
ý

=:

ý
(ý)
ý

. We consider the factors

(
ý0,1

ýý+1,1

)
1(

ýý,1 − ýýý+1,1

) ýý∏
ý=1

(
ýý,1 − ýý

(ý)
ý

)
(
ýý+1,1 − ý

(ý)
ý

) .
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After taking the residue, the pole from (ýý,1 − ýýý+1,1) cancels with a factor in the numerator, leaving

behind

ý0,1

ý
(ý)
ý

ýý∏
ý=1

ý
(ý)
ý

≠ý
(ý)
ý

(
ýý,1 − ýý

(ý)
ý

)
(
ý
(ý)
ý

− ý
(ý)
ý

) .

We now proceed downward in cyclic order. For each ýÿ,1, we consider the factors

ýÿ,1ýÿ−1,1

ýÿ,1

(
ýÿ−1,1 − ýýÿ,1

) (
ýÿ,1 − ÿýÿ−1,1

)
︸��������������︷︷��������������︸

(1)

ýÿ−1∏
ý=1

(
ýÿ−1,1 − ýý

(ÿ−1)
ý

)
(
ýÿ,1 − ý

(ÿ−1)
ý

)
︸������������︷︷������������︸

(2)

.

Because
(
ýÿ,1 − ýýÿ+1,1

)
has been canceled at this point, the only poles within the unit circle |ýÿ,1 | = 1

are those marked (1) and (2). The analysis is as before:

1. Residue at ýÿ,1 = ÿýÿ−1,1: This leaves behind

1

(1 − ÿý)

ýÿ−1∏
ý=1

(
ýÿ−1,1 − ýý

(ÿ−1)
ý

)
(
ýÿ,1 − ý

(ÿ−1)
ý

)
+++++++
ýÿ,1 ↦→ÿýÿ−1,1

.

2. Residue at ýÿ,1 = ý
(ÿ−1)
ý

=: ý
(ÿ−1)
ý

: The leftovers are now

ýÿ−1,1(
ýÿ−1,ý − ÿýÿ−1,1

) ýÿ−1∏
ý=1

ý
(ÿ−1)
ý

≠ý
(ÿ−1)
ý

(
ýÿ−1,1 − ýý

(ÿ−1)
ý

)
(
ý
(ÿ−1)
ý

− ý
(ÿ−1)
ý

) . (5.34)

The x-variables where we have taken residues constitute a shift pattern ý, and ýÿ,1 is always evaluated

at ý
(ÿ−1)
ý�

. Again, by Lemma 5.8, (5.32) becomes ÿý ÿ
[
ÿý•

]
. Here, we obtain ý |ý• |ÿ ý,1 (ÿ, ý−1) ÿ

[
ÿý•

]
.

5.2.3. Degree one eigenfunction equation

Finally, we enhance Proposition 5.10 by obtaining eigenfunction equations for ÿ∗
ý,1

(ÿ, ý) and ÿ ý,1(ÿ, ý)
for generic values of the parameters.

Theorem 5.11. For generic values of q, t,

ÿ∗
ý,1

(
ÿý• ; ÿ, ý

)
ÿÿ [ÿý• ; ÿ, ý] =

�����
|ý• |∑
ÿ=1

ÿ−ÿÿ≡ý+1

ÿ−ÿÿ ý−|ý• |+ÿ
����	
ÿÿ [ÿý• ; ÿ, ý] (5.35)

ÿ ý,1

(
ÿý• ; ÿ, ý

)
ÿÿ [ÿý• ; ÿ, ý] =

�����
|ý• |∑
ÿ=1

ÿ−ÿÿ≡ý+1

ÿÿÿ ý |ý• |−ÿ
����	
ÿÿ [ÿý• ; ÿ, ý] . (5.36)
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Proof. We will only consider the 8+9 case – the 8−9 case is similar. Combining Lemma 3.11 and

Proposition 5.10, we have for ÿ ∈ Y with ÿ(ÿ) = ÿ and |quot(ÿ) | ≤ |ý• |,

(
ý−|ý• |ÿ∗

ý,1(ÿý• ; ÿ, ý
−1) + ý−ý−1−|ý• |

1 − ý−ÿ

)
ÿÿ
[
ÿý• ; ÿ, ý

−1
]
=

�����
∑
ÿ>0

ÿ−ÿÿ≡ý+1

ÿ−ÿÿ ý−ÿ
����	
ÿÿ [ÿý• ; ÿ, ý

−1],

where we assume |ÿ | � 1, |ý | � 1 and |ýÿ,ý | < 1. Even here, it is essential that |ý | � 1 as we are

working with series in ý−1. We can do away with this once we notice that since |ý• | is divisible by r

(Proposition 2.7) and ℓ(ÿ) ≤ |ý• |,

∑
ÿ>0

ÿ−ÿÿ≡ý+1

ÿ−ÿÿ ý−ÿ =

( ∞∑
ý=0

ý−ý−1−|ý• |−ÿ ý
)
+
�����

|ý• |∑
ÿ=1

ÿ−ÿÿ≡ý+1

ÿ−ÿÿ ý−ÿ
����	

=
ý−ý−1−|ý• |

1 − ý−ÿ
+
�����

|ý• |∑
ÿ=1

ÿ−ÿÿ≡ý+1

ÿ−ÿÿ ý−ÿ
����	
.

(5.37)

Here, we have split off the terms corresponding to rows above height |ý• |. Thus, (5.36) holds under our

conditions on |ÿ |, |ý | and |ý (ÿ)
ý

|.
Finally, we address the genericity of parameters. The equations (5.35) and (5.36) are equalities of

rational functions in the space (ÿý• , ÿ, ý). We have established them over an analytic open subset of

(ÿý• , ÿ, ý). After subtracting one side to the other, this is equivalent saying a rational function is zero

on a codimension zero subspace, and thus, it must be zero. �

The eigenvalues of
{
ÿ ý,1 (ÿý• ; ÿ, ý)

}
ý∈ý on

{
ÿÿ [ÿý• ; ÿ, ý]

}
are nondegenerate. Therefore, we have

the following:

Corollary 5.12. For ÿ with core ÿ(ÿ) compatible with ý• (cf. 2.9), the line spanned by ÿÿ [ÿý• ; ÿ, ý] is

characterized by the eigenfunction equations (5.35) ranging over all ý ∈ ý.

Example 5.13. Let ÿ = 3, ý = 1, ý• = (2, 1, 0) and ÿ = (3, 1, 1). In this case, ÿ is a 3-core and so

ÿÿ [ÿý• ; ÿ, ý] = 1.

There are three shift patterns containing ý = 1:

ý
1
= {ý (1)

1
}

ý
2
= {ý (0)

1
, ý

(1)
1

}
ý

3
= {ý (0)

2
, ý

(1)
1

}.

https://doi.org/10.1017/fms.2025.10061 Published online by Cambridge University Press



46 D. Orr, M. Shimozono and J. Wen

The operator ÿ1,1 (ÿý• ; ÿ, ý) is then

ÿ1,1 (ÿý• ; ÿ, ý) = ÿ

(
ÿýý

(1)
1

− ý
(0)
1

ÿ2ý
(1)
1

− ý
(0)
1

) (
ÿýý

(1)
1

− ý
(0)
2

ÿ2ý
(1)
1

− ý
(0)
2

)
ÿý 1

(5.38)

+ (1 − ÿý−1)ÿ
(
ÿýý

(1)
1

− ý
(0)
2

ý
(0)
1

− ý
(0)
2

) (
ÿýý

(1)
1

ý
(0)
1

− ÿ2ý
(1)
1

)
ÿý 2

(5.39)

+ (1 − ÿý−1)ÿ
(
ÿýý

(1)
1

− ý
(0)
1

ý
(0)
2

− ý
(0)
1

) (
ÿýý

(1)
1

ý
(0)
2

− ÿ2ý
(1)
1

)
ÿý 3

. (5.40)

The cyclic-shift operators act trivially on ÿÿ (ÿý• ; ÿ, ý). Consolidating (5.39) and (5.40) gets us

(1 − ÿý−1)ÿ
{(

ÿýý
(1)
1

− ý
(0)
2

ý
(0)
1

− ý
(0)
2

) (
ÿýý

(1)
1

ý
(0)
1

− ÿ2ý
(1)
1

)
+
(
ÿýý

(1)
1

− ý
(0)
1

ý
(0)
2

− ý
(0)
1

) (
ÿýý

(1)
1

ý
(0)
2

− ÿ2ý
(1)
1

)}

= (1 − ÿý−1)ÿ
⎧⎪⎪«
⎪⎪¬
ÿýý

(1)
1

(
ÿýý (1)ý (0)

2
− ÿýý

(1)
1

ý
(0)
1

− ý
(0)
2

ý
(0)
2

+ ý
(0)
1

ý
(0)
1

+ ÿ2ý
(0)
2

ý
(1)
1

− ÿ2ý
(0)
1

ý
(1)
1

)
(ý (0)

1
− ý

(0)
2

)(ý (0)
1

− ÿ2ý
(1)
1

) (ý (0)
2

− ÿ2ý
(1)
1

)

«⎪⎪¬
⎪⎪­

= (1 − ÿý−1)ÿ
⎧⎪⎪«
⎪⎪¬
ÿýý

(1)
1

(
−ÿýý (1)

1
+ ý

(0)
1

+ ý
(0)
2

− ÿ2ý
(1)
1

)
(ý (0)

1
− ÿ2ý

(1)
1

) (ý (0)
2

− ÿ2ý
(1)
1

)

«⎪⎪¬
⎪⎪­

= (1 − ÿý−1)ÿ
{
−(ÿ2ý2 + ÿ3ý)ý (1)

1
ý
(1)
1

+ ÿýý
(0)
1

ý
(1)
1

+ ÿýý
(0)
2

ý
(1)
1

(ý (0)
1

− ÿ2ý
(1)
1

) (ý (0)
2

− ÿ2ý
(1)
1

)

}

= ÿ

{
(−ÿ2ý2 + ÿ4)ý (1)

1
ý
(1)
1

+ (ÿý − ÿ2)ý (0)
1

ý
(1)
1

+ (ÿý − ÿ2)ý (0)
2

ý
(1)
1

(ý (0)
1

− ÿ2ý
(1)
1

) (ý (0)
2

− ÿ2ý
(1)
1

)

}
. (5.41)

However, (5.38) becomes

ÿ

(
ÿýý

(1)
1

− ý
(0)
1

ÿ2ý
(1)
1

− ý
(0)
1

) (
ÿýý

(1)
1

− ý
(0)
2

ÿ2ý
(1)
1

− ý
(0)
2

)

= ÿ

{
ÿ2ý2ý

(1)
1

ý
(1)
1

− ÿýý
(1)
1

ý
(0)
2

− ÿýý
(0)
1

ý
(1)
1

+ ý
(0)
1

ý
(0)
2

(ý (0)
1

− ÿ2ý
(1)
1

) (ý (0)
2

− ÿ2ý
(1)
1

)

}
. (5.42)

Combining (5.41) and (5.42) gets us

ÿ1,1 (ÿý• ; ÿ, ý)ÿÿ [ÿý• ; ÿ, ý] = ÿ

{
ÿ4ý

(1)
1

ý
(1)
1

− ÿ2ý
(1)
1

ý
(0)
2

− ÿ2ý
(0)
1

ý
(1)
1

+ ý
(0)
1

ý
(0)
2

(ý (0)
1

− ÿ2ý
(1)
1

) (ý (0)
2

− ÿ2ý
(1)
1

)

}

= ÿ
(ý (0)

1
− ÿ2ý

(1)
1

) (ý (0)
2

− ÿ2ý
(1)
1

)
(ý (0)

1
− ÿ2ý

(1)
1

) (ý (0)
2

− ÿ2ý
(1)
1

)
= ÿÿÿ [ÿý• ; ÿ, ý] .

Example 5.14. Let ÿ = 2, ý = 0, ý• = (1, 1), and ÿ = (1, 1). Here,

ÿÿ [ÿý• ; ÿ, ý] = ý
(1)
1

.
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There are two shift patterns containing 0:

ý
1
= {ý (0)

1
}

ý
2
= {ý (0)

1
, ý

(1)
1

}.

We then have

ÿ0,1 (ÿý• ; ÿ, ý) = ÿ

(
ýý

(0)
1

− ý
(1)
1

ÿý
(0)
1

− ý
(1)
1

)
ÿý 1

+ (1 − ÿý−1)
ý
(1)
1

ý
(0)
1

(
ýý

(0)
1

ý
(1)
1

− ÿý
(0)
1

)
ÿý 2

.

Observe that

ÿý 1
ý
(1)
1

= ý
(1)
1

ÿý 2
ý
(1)
1

= ÿý
(0)
1

.

Altogether then,

ÿ0,1 (ÿý• ; ÿ, ý)ÿÿ [ÿý• ; ÿ, ý] = ÿ

(
ýý

(0)
1

− ý
(1)
1

ÿý
(0)
1

− ý
(1)
1

)
ý
(1)
1

+ (1 − ÿý−1)
ý
(1)
1

ý
(0)
1

(
ýý

(0)
1

ý
(1)
1

− ÿý
(0)
1

)
ÿý

(0)
1

= ÿý
(1)
1

(
ýý

(0)
1

− ý
(1)
1

− (ý − ÿ)ý (0)
1

ÿý
(0)
1

− ý
(1)
1

)

= ÿý
(1)
1

(
ÿý

(0)
1

− ý
(1)
1

ÿý
(0)
1

− ý
(1)
1

)

= ÿÿÿ [ÿý• ; ÿ, ý] .

5.3. Higher degree operators

Now we consider higher values of n. The order n wreath Macdonald operators are deûned as follows:

ÿ∗
ý,ÿ (ÿý• ; ÿ, ý

−1) :=
(−1) ÿ(ÿ−1)

2∏ÿ
ý=1 (1 − ÿ−ý ý−ý ) (5.43)

×
∑

J∈ÿℎ [ÿ]
ý (ÿý• )

�
ÿ∏
ÿ=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

(1 − ÿ−1ý−1) |ýÿ |���
ý
(ý+1)
ý�
ÿ

ý
(0)
ý�
ÿ

��	

ýý∏
ý=1

ý
(ý)
ý

∉ |J |≥ÿ

(
ýý

(ý+1)
ý�ÿ

− ý
(ý)
ý

)

ýý∏
ý=1

ý
(ý)
ý

∉ |J |≤ÿ

(
ý
(ý)
ý
ÿ
− ý

(ý)
ý

)

×
�������

∏
ÿ∈ý
ÿ≠ý

ýÿ∏
ý=1

ý
(ÿ)
ý

≠ý
(ÿ)
ý�ÿ

(
ýý

(ÿ+1)
ý�
ÿ

− ý
(ÿ)
ý

)
(
ý
(ÿ)
ý�ÿ

− ý
(ÿ)
ý

)
������	
����
∏

ÿ∈ýÿ\{ý}

ÿýÿ−1
ýÿ

(ý (ÿ)
ý
ÿ
)(

ý
(ÿ)
ýÿ

− ÿ−1
ýÿ

(ý (ÿ)
ýÿ
)
) ���	
ÿ−1
ýÿ

«⎪⎪⎪⎪⎪⎪¬
⎪⎪⎪⎪⎪⎪­
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ÿ ý,ÿ (ÿý• ; ÿ, ý
−1) :=

(−1) ÿ(ÿ−1)
2∏ÿ

ý=1 (1 − ÿý ýý ) (5.44)

×
∑

J∈ÿℎ [ÿ]
ý (ÿý• )

�
ÿ∏
ÿ=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

(1 − ÿý) |ýÿ
|���
ý
(ÿ−1)
ý�ÿ

ý
(ý)
ýÿ

��	

ýý∏
ý=1

ý
(ý)
ý

∉ |J |≥ÿ

(
ý−1ý

(ý−1)
ý�
ÿ

− ý
(ý)
ý

)

ýý∏
ý=1

ý
(ý)
ý

∉ |J |≤ÿ

(
ý
(ý)
ýÿ

− ý
(ý)
ý

)

×
�������

∏
ÿ∈ý
ÿ≠ý

ýÿ∏
ý=1

ý
(ÿ)
ý

≠ý
(ÿ)
ý�ÿ

(
ý−1ý

(ÿ−1)
ý�ÿ

− ý
(ÿ)
ý

)
(
ý
(ÿ)
ý�
ÿ

− ý
(ÿ)
ý

)
������	
����
∏

ÿ∈ýÿ\{ý}

ÿ−1ý−1ÿý
ÿ
(ý (ÿ)

ýÿ
)(

ýÿ,ýÿ
− ÿýÿ

(ý (ÿ)
ý
ÿ
)
) ���	
ÿý

ÿ

«⎪⎪⎪⎪⎪⎪¬
⎪⎪⎪⎪⎪⎪­
.

Here, recall our notation for ordered products/compositions (3.12).

Remark 5.15. In contrast with the ÿ = 1 case, it is less obvious that these yield the higher-order

Macdonald operators with t inverted when ÿ = 1. When ÿ = 1, note that our sum is over ordered n-tuples

of distinct shift operators, whereas the usual formula for the nth Macdonald operator is over unordered

n-tuples. Summing over the orderings for a given n-tuple, the numerator will contain a factor that is

antisymmetric, while the denominator will contain a Vandermonde determinant. The quotient of these

two will yield (−ý)± ÿ(ÿ−1)
2 times the (ÿý)∓1-generating function of lengths of elements in ÿÿ. After

consolidating all constants, one is indeed left with the nth Macdonald operator.

Proposition 5.16. For general n, the integrals from Lemma 5.6 yield the following:

(+) Assuming |ý (ÿ)
ý

| < 1 and |ÿ |, |ý | � 1, we have

ÿý•

(
(ÿ+�ý ◦ Ψ+) (ý+ÿE+

ý,ÿ) ÿ
)
=

(
ý−ÿ |ý• |ÿ∗

ý,ÿ (ÿý• ; ÿ, ý
−1) +

ÿ−1∑
ý=0

ý+ý,ý,ÿÿ
∗
ý,ý (ÿý• ; ÿ, ý

−1)
)
ÿ
[
ÿý•

]

for some ý+
ý,ý,ÿ

∈ C(ÿ, ý).
(−) For |ÿ |, |ý | 
 1, we have

ÿý•

(
(ÿ−�ý ◦ Ψ−) (ý−ÿE−

ý,ÿ) ÿ
)
=

(
ýÿ |ý• |ÿ ý,ÿ (ÿý• ; ÿ, ý

−1) +
ÿ−1∑
ý=0

ý−ý,ý,ÿÿ ý,ý (ÿý• ; ÿ, ý
−1)
)
ÿ
[
ÿý•

]

for some ý−
ý,ý,ÿ

∈ C(ÿ, ý).

Proof. In the 8+9 case, we will start by integrating the p-colored variables {ýý,•}. There are two kinds

of poles inside the unit circle |ýý,ÿ | = 1:

(x) the poles
(
ýý,ÿ − ý

(ý)
ý

)
in (5.10) and

(t) the poles
(
ýý,ÿ − ý−1ýý−1,ÿ

)
for ÿ ≤ ÿ in (5.12) and (5.14).

As in 5.2, we call them x- and t-poles, respectively. We note that evaluating two variables ýý,ÿ and

ýý,ÿ′ at the same pole will result in zero due to the factor
(
ýý,ÿ − ýý,ÿ′

)
in (5.12). Besides that, for

ÿ > 1, these residues can be evaluated independently, and we elect to do so. For the 8−9 case, we instead

start with {ýý+1,•}, for which the relevant poles are now
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(x)
(
ýý+1,ÿ − ý

(ý)
ý

)
in (5.15) and

(t)
(
ýý+1,ÿ − ýýý+2,ÿ

)
for ÿ ≤ ÿ in (5.17) and (5.18).

In 5.3.1 and 5.3.2 below, we analyze the results of the two possibilities:

1. integrating all ýý,• at x-poles;

2. the 8mixed9 case where some ýý,• is integrated at a t-pole.

The ûrst case produces ÿ∗
ý,ÿ (ÿ, ý−1) and ÿ ý,ÿ (ÿ, ý−1), whereas the second case yields a combination

of lower order wreath Macdonald operators. �

5.3.1. Only x-poles

In both the 8+9 and 8−9 cases, each of the n variables {ý (ý)
ýÿ

}ÿ
ÿ=1

will become part of a shift pattern

containing p, so we set ý
(ý)
ýÿ

:= ý
(ý)
ýÿ

. Furthermore, as these variables must be distinct, we have that the

tuple J :=
(
ý

1
, . . . , ý

ÿ

)
will be p-distinct. After taking these residues, we will proceed as in 5.2.2 for a

speciûc value of a.

First consider the 8+9 case. To see the effect of taking the residues ýý,ÿ = ý
(ý)
ýÿ

, we group together

the factors

(
ýý,ÿ

ý0,ÿ

)
ýý+1,ÿ

ýý,ÿ

(
ýý+1,ÿ − ý−1ýý,ÿ

) ýý∏
ý=1

(
ýý+1,ÿ − ý−1ý

(ý)
ý

)
(
ýý,ÿ − ý

(ý)
ý

)

× 1∏
ÿ<ý

(
ýý+1,ÿ − ý−1ýý,ý

) ∏
ÿ<ÿ

(
ýý,ÿ − ýý,ÿ

) (
ýý+1,ÿ − ÿ−1ý−1ýý+1,ÿ

)
(
ýý+1,ÿ − ý−1ýý,ÿ

) .

Upon taking residues, this becomes

(
ýý+1,ÿ

ý0,ÿ

)
ýý∏
ý=1

ý
(ý)
ý

∉ |J |

(
ýý+1,ÿ − ý−1ý

(ý)
ý

)

ýý∏
ý=1

ý
(ý)
ý

∉ |J |≤ÿ

(
ý
(ý)
ý
ÿ
− ý

(ý)
ý

)
∏
ÿ<ÿ

(
ýý+1,ÿ − ÿ−1ý−1ýý+1,ÿ

)
︸��������������������������������︷︷��������������������������������︸

(†)

. (5.45)

The next variable we consider is ýý+1,1. Notice that we have canceled the poles
(
ýý+1,1 − ý−1ýý,ÿ

)
for all ÿ ≥ 1, and consequently, the only two kinds of poles within the unit circle |ýý+1,1 | = 1 are as

before in 5.2.2. We group together the factors

ýý+1,1ýý+2,1

ýý+1,1

(
ýý+2,1 − ý−1ýý+1,1

) (
ýý+1,1 − ÿ−1ýý+2,1

)

×
∏
1<ÿ

(
ýý+1,ÿ − ýý+1,1

) (
ýý+2,ÿ − ÿ−1ý−1ýý+2,1

)
(
ýý+2,ÿ − ý−1ýý+1,1

) (
ýý+1,ÿ − ÿ−1ýý+2,1

)
︸����������������������������������������������������������︷︷����������������������������������������������������������︸

(∗)

ÿ∏
ÿ=1

ýý+1∏
ý=1

(
ýý+2,ÿ − ý−1ý

(ý+1)
ý

)
(
ýý+1,ÿ − ý

(ý+1)
ý

)
︸���������������������������������︷︷���������������������������������︸

(∗∗)

.
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The residues are

1. Residue at ýý+1,1 = ÿ−1ýý+2,1: In this case, the factors in (∗) cancel out, leaving behind

1

(1 − ÿ−1ý−1)

ÿ∏
ÿ=1

ýý+1∏
ý=1

(
ýý+2,ÿ − ý−1ý

(ý+1)
ý

)
(
ýý+1,ÿ − ý

(ý+1)
ý

)
+++++++
ýý+1,1 ↦→ÿ−1ýý+2,1

.

As in 5.2.2, ýý+1,1 will ultimately be evaluated at ý
(ý+1)
ý�

1

, and the poles above lie outside the unit

circle |ýý+2,1 | = 1 because |ÿ | � 1.

2. Residue at ýý+1,1 = ý
(ý+1)
ý

=: ý
(ý+1)
ý 1

: Here, the factors in (∗) cancel with those in (∗∗) containing

ý
(ý+1)
ý 1

. We are left with

ýý+2,1(
ý
(ý+1)
ý 1

− ÿ−1ýý+2,1

) ýý+1∏
ý=1

ý
(ý+1)
ý

≠ý
(ý+1)
ý1

(
ýý+2,1 − ý−1ý

(ý+1)
ý

)
(
ýý+1,ý 1

− ý
(ý+1)
ý

)

×
∏
1<ÿ

⎧⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪¬

(
ýý+2,ÿ − ÿ−1ý−1ýý+2,1

)
(
ýý+1,ÿ − ÿ−1ýý+2,1

) ýý+1∏
ý=1

ý
(ý+1)
ý

≠ý
(ý+1)
ý1

(
ýý+2,ÿ − ý−1ý

(ý+1)
ý

)
(
ýý+1,ÿ − ý

(ý+1)
ý

)
«⎪⎪⎪⎪⎪¬
⎪⎪⎪⎪⎪­
. (5.46)

Because |ÿ | � 1, the pole
(
ý
(ý+1)
ý 1

− ÿ−1ýý+2,1

)
lies outside the unit circle |ýý+2,1 | = 1. Our key

organizational trick here is that when ýý+2,1 is ultimately evaluated at ý
(ý+2)
ý�

1

, then we can use (5.23)

to write (5.46) as

ÿ−1
ý 1

����
ÿ∏

1<ÿ

ýý+1∏
ý=1

(
ýý+2,ÿ − ý−1ý

(ý+1)
ý

)
(
ýý+1,ÿ − ý

(ý+1)
ý

) ���	
since ÿý 1

will only affect ý
(ý+1)
ý 1

.

This pattern continues upwards in cyclic order for the variables ýÿ,1. The x-variables where we take

residues give a shift pattern ý
1

containing p, and ýÿ,1 is evaluated at ý
(ÿ)
ý�

1

. In (5.45), the term in (†) for

ÿ = 1 can be rewritten as
(
ýý+1,ÿ − ý−1ÿ−1

ý 1
ý
(ý)
ý 1

)
. Finally, we note that by Lemma 5.8, these residues

result in ÿ−1
ý 1

applied to ÿ
[
ÿý•

]
. Thus, we can rewrite the result after taking the residues for ÿ = 1 as

(−1) ÿ(ÿ−1)
2 ý−

ÿ(ÿ+1)
2 (1 − ÿ−1ý−1)ÿ (ÿ−1)∏ÿ

ÿ=1 (1 − ÿ−ÿý−ÿ)
∑

ý 1∈ÿℎý

(1 − ÿ−1ý−1) |ý 1 |���
ý
(ý+1)
ý�

1

ý
(0)
ý�

1

��	

×

ýý∏
ý=1

ý
(ý)
ý

∉ |J |≥1

(
ý
(ý+1)
ý�

1

− ý−1ý
(ý)
ý

)

ýý∏
ý=1

ý
(ý)
ý

∉ |J |≤1

(
ý
(ý)
ý 1

− ý
(ý)
ý

)
�������

∏
ÿ∈ý
ÿ≠ý

ýÿ∏
ý=1

ý
(ÿ)
ý

≠ý
(ÿ)
ý�

1

(
ý
(ÿ+1)
ý�

1

− ý−1ý
(ÿ)
ý

)
(
ý
(ÿ)
ý�

1

− ý
(ÿ)
ý

)
������	
����
∏

ÿ∈ý1\{ý}

ÿÿ−1
ý 1
ý
(ÿ)
ý 1(

ý
(ÿ)
ý 1

− ÿ−1
ý 1
ý
(ÿ)
ý 1

) ���	
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×
∮

· · ·
∮

|ýÿ,ÿ |=1

ÿ−1
ý 1

(
ÿ∏
ÿ=1

{(
ýý+1,ÿ − ý−1ý

(ý)
ý 1

) ∏
1<ÿ<ÿ≤ÿ

(
ýý+1,ÿ − ÿ−1ý−1ý

(ý+1)
ÿ

)

×

ýý∏
ý=1

ý
(ý)
ý

∉ |J |

(
ýý+1,ÿ − ý−1ý

(ý)
ý

)

ýý∏
ý=1

ý
(ý)
ý

∉ |J |≤ÿ

(
ý
(ý)
ý
ÿ
− ý

(ý)
ý

)
∏

ÿ∈ý \{ý}

ýÿ∏
ý=1

(
ýÿ+1,ÿ − ý−1ý

(ÿ)
ý

)
(
ýÿ,ÿ − ý

(ÿ)
ý

)

«⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪­

×
∏

1<ÿ<ÿ≤ÿ

∏
ÿ∈ý \{ý}

(ýÿ,ÿ − ýÿ,ÿ) (ýÿ+1,ÿ − ÿ−1ý−1ýÿ+1,ÿ)
(ýÿ+1,ÿ − ý−1ýÿ,ÿ) (ýÿ,ÿ − ÿ−1ýÿ+1,ÿ)

×
ÿ∏
ÿ=2

⎧⎪⎪«
⎪⎪¬
(
ýý+1,ÿ

ý0,ÿ

) ∏
ÿ∈ý \{ý}

ýÿ,ÿýÿ+1,ÿ(
ýÿ+1,ÿ − ý−1ýÿ,ÿ

) (
ýÿ,ÿ − ÿ−1ýÿ+1,ÿ

)
«⎪⎪¬
⎪⎪­∏

ÿ∈ý
ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

−
ÿ∑
ÿ=2

ýÿ,ÿ +
ÿ∑
ÿ=2

ÿ−1ýÿ+1,ÿ

]) ∏
ÿ∈ý \{ý}

ÿ∏
ÿ=2

ýýÿ,ÿ

2ÿ
√
−1ýÿ,ÿ

.

We have written this so that we can repeat the calculation for ÿ = 1 for general a in increasing order.

Note that as we do this, we can rewrite factors in (†) of (5.45) in terms of ÿ−1
ýÿ
ýý,ýÿ

using (5.23). The

end result of the residue calculation is

ý−ÿ |ý• |ÿ∗
ý,ÿ (ÿý• ; ÿ, ý

−1) ÿ
[
ÿý•

]
.

The 8−9 case is similar. We begin by taking residues of {ýý+1,•} and then start instead at ý
(ý)
ÿ .

Afterwards, we continue downwards in cyclic order until we have taken constant terms of all variables

with ÿ = ÿ. We then continue downwards in a. The end result is then

ýÿ |ý• |ÿ ý,ÿ (ÿý• ; ÿ, ý
−1) ÿ

[
ÿý•

]
.

5.3.2. Mixed poles

In the case where there are t-poles, our goal is to show that the result is a linear combination of the lower

order operators applied to ÿ
[
ÿý•

]
: ÿ∗

ý,ý
(ÿý• ; ÿ, ý

−1) in the 8+9 case and ÿ ý,ý (ÿý• ; ÿ, ý
−1) in the 8−9

case, where ý < ÿ. Unlike in the case of ÿ = 1, we will not try to compute the coefficients of this linear

combination – we will compute them indirectly in 5.4. As in all the previous cases, the initial residues

force a string of other residues, and we will ûrst compute these strings that start from the initial t-poles.

Once these variables are evaluated, the remaining terms will evaluate like 5.3.1.

In the 8+9 case, let 1 ≤ ÿ
ý

1
≤ ÿ be any index where the residue for ýý,ÿ

ý

1
is taken at a t-pole. Denote

this pole by ýý,ÿ
ý

1
= ý−1ý

ý−1,ÿ
ý−1

1

. In contrast to our previous calculations, we will not always cancel

out factors but rather remark on why taking residues at certain poles will result in zero. The poles

contributing within the unit circle |ý
ý−1,ÿ

ý−1

1

| = 1 are as follows.

1. (ý
ý−1,ÿ

ý−1

1

− ÿ−1ýý,ÿ) for ÿ ≥ ÿ
ý−1

1
: If ÿ < ÿ

ý

1
, then the factor (ýý,ÿ

ý

1
− ÿ−1ý−1ýý,ÿ) in the

numerator of (5.12) becomes zero when taking this residue. If ÿ = ÿ
ý−1

1
= ÿ

ý

1
, then this is a pole at

0, which cancels with the extra factor of ý
ý−1,ÿ

ý−1

1

as in 5.2.1.
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2. (ý
ý−1,ÿ

ý−1

1

−ý
(ý−1)
ý

): The factor (ýý,ÿ
ý

1
− ý−1ý

(ý−1)
ý

) in the numerator of (5.10) will evaluate to zero.

3. (ý
ý−1,ÿ

ý−1

1

− ý−1ýý−2,ÿ) for ÿ ≤ ÿ
ý−1

1
: These poles possibly yield nonzero residues.

Taking a residue of the third kind, we evaluate ý
ý−1,ÿ

ý−1

1

= ý−1ý
ý−2,ÿ

ý−2

1

for some ÿ
ý−2

1
≤ ÿ

ý−1

1
.

This pattern continues downwards in cyclic order, picking out variables ýÿ,ÿÿ
1

where ÿ
ý

1
≥ ÿ

ý−1

1
≥

· · · ≥ ÿ
ý+1

1
. At ý

ý+1,ÿ
ý+1

1

, the pole of type (3) becomes

(39) (ý
ý+1,ÿ

ý+1

1

− ý−1ýý,ÿ) for all a: If ýý,ÿ is evaluated at an x-variable ý
(ý)
ý

, then as in 5.3.1, the factor

(ý
ý+1,ÿ

ý+1

1

− ý−1ý
(ý)
ý

) will evaluate to zero upon taking this residue. Thus, only the case where

ýý,ÿ is evaluated at a t-pole yields a nonzero residue. For ÿ = ÿ
ý

1
, this is a pole at ý

ý+1,ÿ
ý+1

1

= 0.

If ÿ
ý+2

1
= ÿ

ý+1

1
, then because of the analogue of case (1), there are no extra powers of ý

ý+1,ÿ
ý+1

1

to

cancel this pole.

If we take the residue in (39) at ýý,ÿ evaluated at a t-pole but ÿ ≠ ÿ
ý

1
, then we set ÿ

ý

2
:= ÿ. Letting

the t-pole be (ýý,ÿ
ý

2
− ý−1ý

ý−1,ÿ
ý−1

2

) for ÿ
ý−1

2
≤ ÿ

ý

2
, the process is similar to as before. There is just

one alteration to the poles of type (3):

(3”) (ýÿ,ÿÿ
2
− ý−1ýÿ−1,ÿÿ−1

1
): This is a pole at 0, which cancels with the factor ±(ýÿ,ÿÿ

2
− ýÿ,ÿÿ

1
) in the

numerator of (5.11).

Thus, we avoid variables that we have already evaluated. Note that at ûrst glance, the product of factors

in (5.11) and (5.12) involving ýÿ,ÿÿ
2

and ý
ÿ ,ÿ

ÿ

1

may contribute a pole at 0, but in fact, their products

have total degree zero and thus become a constant. There is an outlier case of (ý
ý+1,ÿ

ý+1

1

− ý−1ýý,ÿ
ý

2
),

which has been removed when we take residues, but this can be replaced with (ý
ý+1,ÿ

ý+1

1

− ý−1ýý,ÿ
ý

1
) to

restore the degree zero balance. We continue like this to new indices {ÿÿ
3
}ÿ∈ý ,

{
ÿÿ

4

}
ÿ∈ý , etc. until either

there are no more nonzero residues or we ûnally take the residue at 0 of ÿ
ý+1,ÿ

ý+1

ý

for some ûnal value k.

For 1 ≤ ÿ < ÿ′ ≤ ý , we note that as in the (ÿ, ÿ′) = (1, 2) case, the product of the binomials

in (5.11) and (5.12) involving one variable from {ýÿ,ÿÿÿ
}ÿ∈ý and another variable from {ý

ÿ ,ÿ
ÿ

ÿ′
}ÿ∈ý has

degree zero provided we make the same adjustment for ÿ = ý + 1 and ÿ′ = ÿ + 1. Thus, these factors

turn into a constant. To consider binomials involving only {ýÿ,ÿÿÿ
}ÿ∈ý for one value of m, we note that

when we take the residues, we remove

1

ýÿ,ÿÿÿ
− ý−1ýÿ+1,ÿÿ+1

ÿ

for ÿ ≠ ý + 1,

1

ý
ý+1,ÿ

ý+1
ÿ

− ý−1ýý,ÿ
ý

ÿ+1

for 1 ≤ ÿ < ý.

There is a leftover power of ýÿ,ÿÿÿ
for ÿ ≠ ý from (5.13) and (5.14), and as discussed in the pole of type

(1) above, these are only absorbed when ÿÿ+1
ÿ = ÿÿÿ. These unabsorbed powers turn the entire integral

zero when we take the ûnal residue ý
ý+1,ÿ

ý+1

ý

= 0. Thus, we only need to consider the case where for

each m,

ÿ
ý
ÿ = ÿ

ý−1
ÿ = · · · = ÿ

ý+1
ÿ =: ÿÿ.

In this case, all factors only involving {ýÿ,ÿÿ }1≤ÿ≤ý
ÿ∈ý leave behind a constant. Evidently, the correspond-

ing terms in (5.13) and (5.14) disappear. The terms involving ýÿ,ÿÿ and an x-variable in (5.10) leave

behind a power of t when we cancel
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ý∏
ÿ=1

∏
ÿ∈ý

ýÿ∏
ý=1

(
ýÿ+1,ÿÿ − ý−1ý

(ÿ)
ý

)
(
ýÿ,ÿÿ − ý

(ÿ)
ý

) .

Finally, the product of terms in (5.11) involving any index 1 ≤ ÿ ≤ ÿ and ÿÿ leave behind a constant

when we evaluate ýÿ,ÿÿ = 0 for all ÿ ∈ ý. The remaining factors are a scalar multiple of the calculation

for Eý,ÿ−ý . The 8−9 case is analyzed similarly.

5.4. Eigenvalues

To describe the eigenvalues of the operators (5.43) and (5.44), we will use the elementary symmetric

functions ÿý . As in the proof of Theorem 5.11, Proposition 5.16 gives us the following:

Proposition 5.17. Recall the coefficients {ý±
ý,ý,ÿ

} from Proposition 5.16. We have

(
ý−ÿ |ý• |ÿ∗

ý,ÿ (ÿý• ; ÿ, ý
−1) +

ÿ−1∑
ý=0

ý+ý,ý,ÿÿ
∗
ý,ý (ÿý• ; ÿ, ý

−1)
)
ÿÿ [ÿý• ; ÿ, ý]

= ÿÿ

£¤¤¤¤¤¥
∞∑
ÿ=1

ÿ−ÿÿ≡ý+1

ÿ−ÿÿ ý−ÿ
¦§§§§§̈ÿÿ [ÿý• ; ÿ, ý

−1]
(5.47)

for |ý (ÿ)
ý

| < 1, |ÿ | � 1, and |ý | � 1 and

(
ýÿ |ý• |ÿ ý,ÿ (ÿý• ; ÿ, ý

−1) +
ÿ−1∑
ý=0

ý−ý,ý,ÿÿ ý,ý (ÿý• ; ÿ, ý
−1)
)
ÿÿ [ÿý• ; ÿ, ý

−1]

= ÿÿ

£¤¤¤¤¤¥
∞∑
ÿ=1

ÿ−ÿÿ≡ý+1

ÿÿÿ ýÿ

¦§§§§§̈ÿÿ [ÿý• ; ÿ, ý
−1]

(5.48)

for |ý (ÿ)
ý

| < 1, |ÿ | 
 1, and |ý | 
 1.

Corollary 5.18. For variables and parameters satisfying the conditions in Proposition 5.17, the opera-

tors ÿ ý,ÿ (ÿ, ý) and ÿ∗
ý,ÿ (ÿ, ý) act diagonally on

{
ÿÿ
[
ÿý• ; ÿ, ý

]}
.

Proof. Using induction starting with the case ÿ = 1 from Theorem 5.11, we can use the equations

in Proposition 5.17 to show that ÿ ý,ÿ (ÿý• ; ÿ, ý) and ÿ∗
ý,ÿ (ÿý• ; ÿ, ý) act diagonally on ÿÿ [ÿý• ; ÿ, ý]

under the appropriate conditions on variables and parameters. �

Our goal in this subsection is to extract the eigenvalues from (5.47) and (5.48) and extend their

validity to generic values.

5.4.1. Spectral variables

Letting ÿ vary over partitions with core(ÿ) compatible with ý• and ℓ(ÿ) ≤ |ý• |, we note that by

Proposition 2.7, the stabilized eigenvalues

ÿÿ

£¤¤¤¤¤¥
∞∑
ÿ=1

ÿ−ÿÿ≡ý+1

ÿ−ÿÿ ý−ÿ
¦§§§§§̈ and ÿÿ

£¤¤¤¤¤¥
∞∑
ÿ=1

ÿ−ÿÿ≡ý+1

ÿÿÿ ýÿ

¦§§§§§̈
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depend only on the ýý values of b, where 1 ≤ ÿ ≤ |ý• | and ÿ − ÿÿ = ý + 1. We deûne the color p

spectral variables {ý (ý)ÿ }ýý

ÿ=1
by setting

ý
(ý)
ÿ = ÿÿÿÿ ýÿÿ ,

where 1 ≤ ÿÿ ≤ |ý• | is the ath number where ÿÿ − ÿÿÿ ≡ ý + 1. Using these variables, we can rewrite

ÿÿ

£¤¤¤¤¤¥
∞∑
ÿ=1

ÿ−ÿÿ≡ý+1

ÿ−ÿÿ ý−ÿ
¦§§§§§̈ = ÿÿ

£¤¤¤¤¤¥
∞∑
ý=0

ý |ý• |−ý−1−ýÿ +
|ý• |∑
ÿ=1

ÿ−ÿÿ≡ý+1

ÿ−ÿÿ ý−ÿ
¦§§§§§̈

= ÿÿ

£¤¤¤¤¥
ý−|ý• |−ý−1

1 − ý−ÿÿ
+

ýý∑
ÿ=1

(
ý
(ý)
ÿ

)−1
¦§§§§̈ ,

where |ý | � 1. Here, we have split off the parts above row |ý• | as in (5.37). Similarly,

ÿÿ

£¤¤¤¤¤¥
∞∑
ÿ=1

ÿ−ÿÿ≡ý+1

ÿÿÿ ýÿ

¦§§§§§̈ = ÿÿ

£¤¤¤¤¤¥
∞∑
ý=0

ý |ý• |+ý+1+ýÿ +
|ý• |∑
ÿ=1

ÿ−ÿÿ≡ý+1

ÿÿÿ ýÿ

¦§§§§§̈
= ÿÿ

£¤¤¤¤¥
ý |ý• |+ý+1

1 − ýÿÿ
+

ýý∑
ÿ=1

ý
(ý)
ÿ

¦§§§§̈ ,

where |ý | 
 1. The following is but a slight alteration of Lemma 3.2 from [4]:

Lemma 5.19. For |ý | � 1, we have

ÿÿ

£¤¤¤¤¥
ý−|ý• |−ý−1

1 − ý−ÿÿ
+

ýý∑
ÿ=1

(
ý
(ý)
ÿ

)−1
¦§§§§̈ =

ÿ∑
ý=0

ý−ÿ |ý• |−(ÿ−ý) (ý+1)−ÿ (ÿ−ý2 )
ÿ−ý∏
ý=1

(1 − ý−ÿý)
ÿý

£¤¤¤¤¥
ýý∑
ÿ=1

ý |ý• |
(
ý
(ý)
ÿ

)−1
¦§§§§̈ , (5.49)

while for |ý | 
 1, we have

ÿÿ

£¤¤¤¤¥
ý |ý• |+ý+1

1 − ýÿÿ
+

ýý∑
ÿ=1

ý
(ý)
ÿ

¦§§§§̈ =
ÿ∑
ý=0

ýÿ |ý• |+(ÿ−ý) (ý+1)+ÿ (ÿ−ý2 )
ÿ−ý∏
ý=1

(1 − ýÿý)
ÿý

£¤¤¤¤¥
ýý∑
ÿ=1

ý−|ý• |ý (ý)ÿ

¦§§§§̈ . (5.50)

Proof. The basic observation is that for two alphabets X and Y and an auxilliary variable u,

∞∑
ÿ=0

ÿÿ [ÿ + ý ]ÿÿ = exp

(
−
∑
ý>0

ýý [ÿ + ý ] (−ÿ)
ý

ý

)

= exp

(
−
∑
ý>0

ýý [ÿ]
(−ÿ)ý
ý

)
exp

(
−
∑
ý>0

ýý [ý ]
(−ÿ)ý
ý

)
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=

( ∞∑
ÿ=0

ÿÿ [ÿ]ÿÿ
) ( ∞∑

ÿ=0

ÿÿ [ý ]ÿÿ
)

=

∞∑
ÿ=0

ÿ∑
ý=0

ÿÿ−ý [ÿ]ÿý [ý ]ÿÿ.

Comparing the coefficients of ÿÿ, we thus have

ÿÿ [ÿ + ý ] =
ÿ∑
ý=0

ÿÿ−ý [ÿ]ÿý [ý ] . (5.51)

For (5.49), we take (5.51) and set

ÿ =
ý−|ý• |−ý−1

1 − ý−ÿÿ
= ý−ý−1

∞∑
ý=0

ý−ÿ ý , ý =

ýý∑
ÿ=1

(
ý
(ý)
ÿ

)−1

.

By the quantum binomial theorem (cf. [9, Example I.2.5]), we have

ÿÿ−ý

[
ý−|ý• |−ý−1

1 − ý−ÿÿ

]
=
ý (−|ý• |−ý−1) (ÿ−ý)−ÿ (ÿ−ý2 )

ÿ−ý∏
ý=1

(1 − ý−ÿý)
.

To obtain (5.49), we break off ýý |ý• | and place it inside ÿý

[∑(ý (ý)ÿ )−1
]
. The proof of (5.50) is similar. �

5.4.2. Spectral shift

By Lemma 5.19, the stabilized eigenvalues are polynomial in the spectral variables. Moreover, its

degree k part is given by ÿý evaluated at {ý−|ý• |ý (ý)• }. We would like to show that the summations

in (5.47) and (5.48) correspond in some sense to this decomposition by the degree. The degree of a

homogeneous polynomial can be measured using q-shifts. However, by the deûnition of the spectral

variables, multiplying ý
(ý)
ÿ by q corresponds to adding a node to the end of a row. However, we must do

this in a way that is color-insensitive. This motivates the following:

Proposition 5.20. Let ÿ be a partition with core ÿ(ÿ) compatible with ý• and ℓ(ÿ) ≤ |ý• |. Then

(∏
ÿ∈ý

ýÿ∏
ý=1

ý
(ÿ)
ý

)
ÿÿ [ÿý• ; ÿ, ý] = ÿÿ+ÿ |ý• | [ÿý• ; ÿ, ý] .

Here, ÿ + ÿ |ý• | denotes the partition obtained by adding r boxes to the first |ý• | rows of ÿ.

Proof. By Corollary 5.12, ÿÿ+ÿ |ý• | [ÿý• ; ÿ, ý] is characterized by the eigenvalue equations

ÿ ý,1(ÿý• ; ÿ, ý)ÿÿ+ÿ |ý• | [ÿý• ; ÿ, ý] =
�����

|ý• |∑
ÿ=1

ÿ−ÿÿ≡ý+1

ÿÿÿ+ÿ ý |ý• |−ÿ
����	
ÿÿ+ÿ |ý• | [ÿý• ; ÿ, ý]

ranging over all ý ∈ ý. Note that we have used ÿ − ÿÿ ≡ ÿ − ÿÿ + ÿ . Now, for a shift pattern ý, it is easy

to see that

https://doi.org/10.1017/fms.2025.10061 Published online by Cambridge University Press



56 D. Orr, M. Shimozono and J. Wen

ÿý

(∏
ÿ∈ý

ýÿ∏
ý=1

ý
(ÿ)
ý

)
= ÿÿ

(∏
ÿ∈ý

ýÿ∏
ý=1

ý
(ÿ)
ý

)
, (5.52)

from which the proposition follows. �

5.4.3. Eigenfunction equation

We are now ready to derive the eigenvalues of the higher-order wreath Macdonald operators.

Theorem 5.21. For ÿ with core ÿ(ÿ) compatible with ý• according to (2.9) and ℓ(ÿ) ≤ |ý• |, the wreath

Macdonald polynomial ÿÿ [ÿý• ; ÿ, ý] satisfies the equations

ÿ∗
ý,ÿ (ÿý• ; ÿ, ý)ÿÿ [ÿý• ; ÿ, ý] = ÿÿ

£¤¤¤¤¤¥
|ý• |∑
ÿ=1

ÿ−ÿÿ≡ý+1

ÿ−ÿÿ ý−|ý• |+ÿ
¦§§§§§̈ÿÿ [ÿý• ; ÿ, ý]

ÿ ý,ÿ (ÿý• ; ÿ, ý)ÿÿ [ÿý• ; ÿ, ý] = ÿÿ

£¤¤¤¤¤¥
|ý• |∑
ÿ=1

ÿ−ÿÿ≡ý+1

ÿÿÿ ý |ý• |−ÿ
¦§§§§§̈ÿÿ [ÿý• ; ÿ, ý] .

Here, ýÿ,ý , q and t take generic values.

Proof. Let ÿý,ÿ (ÿ; ÿ, ý−1) and ÿ∗ý,ÿ (ÿ; ÿ, ý−1) be the eigenvalues of ÿ ý,ÿ (ÿý• ; ÿ, ý
−1) and

ÿ∗
ý,ÿ (ÿý• ; ÿ, ý

−1), respectively, at ÿÿ [ÿý• ; ÿ, ý
−1]. Combining (5.47), (5.48), and Lemma 5.19, we

have

ý−ÿ |ý• |ÿ∗ý,ÿ (ÿ; ÿ, ý−1) +
ÿ−1∑
ý=0

ý+ý,ý,ÿÿ
∗
ý,ý (ÿ; ÿ, ý−1)

=

ÿ∑
ý=0

ý−ÿ |ý• |−(ÿ−ý) (ý+1)−ÿ (ÿ−ý2 )
ÿ−ý∏
ý=1

(1 − ý−ÿý)
ÿý

£¤¤¤¤¥
ýý∑
ÿ=1

ý |ý• |
(
ý
(ý)
ÿ

)−1
¦§§§§̈ (5.53)

and

ýÿ |ý• |ÿý,ÿ (ÿ; ÿ, ý−1) +
ÿ−1∑
ý=0

ý−ý,ý,ÿÿý,ÿ (ÿ; ÿ, ý−1)

=

ÿ∑
ý=0

ýÿ |ý• |+(ÿ−ý) (ý+1)+ÿ (ÿ−ý2 )
ÿ−ý∏
ý=1

(1 − ýÿý)
ÿý

£¤¤¤¤¥
ýý∑
ÿ=1

ý−|ý• |ý (ý)ÿ

¦§§§§̈ . (5.54)

We can induct on n to show that, as functions of ÿ, ÿý,ÿ (ÿ; ÿ, ý−1) is polynomial in {ý (ý)• } and

ÿ∗ý,ÿ (ÿ; ÿ, ý−1) is polynomial in {(ý (ý)• )−1}. Applying (5.52) n times, we have (when viewed as

operators):

ÿ∗
ý,ÿ (ÿý• ; ÿ, ý

−1)
∏
ÿ∈ý

ýÿ∏
ý=1

ý
(ÿ)
ý

= ÿ−ÿÿ
∏
ÿ∈ý

ýÿ∏
ý=1

ý
(ÿ)
ý

ÿ∗
ý,ÿ (ÿý• ; ÿ, ý

−1)

ÿ ý,ÿ (ÿý• ; ÿ, ý
−1)

∏
ÿ∈ý

ýÿ∏
ý=1

ý
(ÿ)
ý

= ÿÿÿ
∏
ÿ∈ý

ýÿ∏
ý=1

ý
(ÿ)
ý

ÿ ý,ÿ (ÿý• ; ÿ, ý
−1).
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It then follows from Proposition 5.20 that ÿý,ÿ (ÿ; ÿ, ý−1) is homogeneous of degree n and ÿ∗ý,ÿ (ÿ; ÿ, ý−1)
is homogeneous of degree −ÿ. Thus, ý−ÿ |ý• |ÿ∗ý,ÿ (ÿ; ÿ, ý−1) is the degree −ÿ piece of (5.53) and

ýÿ |ý• |ÿý,ÿ (ÿ; ÿ, ý−1) is the degree n piece of (5.54). This establishes the eigenvalue equations under

the appropriate conditions (5.8) and (5.9) on ý
(ÿ)
ý

, q and t. We extend to generic values as in the proof

of Theorem 5.11. �

Remark 5.22. Even though ÿ ≥ 3 was assumed throughout, we have veriûed experimentally that

Theorem 5.21 continues to hold as stated for ÿ = 2. The ÿ = 1 case is discussed in Remark 5.15

above.

Example 5.23. Let ÿ = 2, ý = 1, ý• = (0, 2) and ÿ = (1). Because ÿ is a 2-core,

ÿÿ [ÿý• ; ÿ, ý] = 1.

There are only two shift patterns containing 1:

ý
1
= {ý (1)

1
}

ý
2
= {ý (1)

2
}.

Note that

ÿý 1
ý
(1)
1

= ÿ2ý
(1)
1

ÿý 2
ý
(1)
1

= ý
(1)
1

ÿý 1
ý
(1)
2

= ý
(1)
1

ÿý 2
ý
(1)
2

= ÿ2ý
(1)
2

.

Therefore,

ÿ1,1 (ÿý• ; ÿ, ý)ÿÿ [ÿ•; ÿ, ý] =
(−1) (1 − ÿý−1)

1 − ÿ2ý−2

{
ÿýý

(1)
2

− ÿ2ý
(1)
1

ý
(1)
1

− ý
(1)
2

+
ÿýý

(1)
1

− ÿ2ý
(1)
2

ý
(1)
2

− ý
(1)
1

}

=
(−1) (1 − ÿý−1) (−ÿý − ÿ2)

1 − ÿ2ý−2

= ÿýÿÿ [ÿý• ; ÿ, ý] .

A. Wreath Noumi-Sano operators

In this appendix, we apply our methods to study wreath analogues of the trigonometric Noumi-Sano

operators [12]. We obtain explicit formulas for degree ÿ = 1 and an integral formula for general n.

A.1. Infinite-variable eigenvalues

Let (ý; ÿ)∞ denote the inûnite y-Pochammer symbol:

(ý; ÿ)∞ =

∞∏
ÿ=0

(1 − ýÿÿ).

Lemma A.1. Assume |ÿ±1 | < 1 and |ý±1 | < 1 (where ‘+’ and ‘−’ are separate cases). For ý ∈ ý,

we have
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〈
ÿ

+++++exp

[
−
∑
ý>0

(∑ÿ
ÿ=1 ÿ

±ý (ÿ−1)ℎý+ÿ,±ý
(1 − ÿ±ýÿ )

)
ÿ±ý ÿ∓ý

ÿ±ý [ý]ÿ

] +++++ÿ
〉

= exp

£¤¤¤¤¤¤¥
∑
ý>0

�����
ÿ∑
ÿ=1

ÿ±ý (ÿ−1)

1 − ÿ±ýÿ

⎧⎪⎪⎪«
⎪⎪⎪¬

∑
ÿ>0

ÿ−ÿÿ≡ý+ÿ

ÿ±ýÿÿ ý±ýÿ − ý∓ý
∑
ÿ>0

ÿ−ÿÿ≡ý+ÿ+1

ÿ±ýÿÿ ý±ýÿ
«⎪⎪⎪¬
⎪⎪⎪­
����	
ÿ∓ý

ý

¦§§§§§§̈

=

ÿ∏
ÿ=1

∏
ÿ>0

ÿ−ÿÿ≡ý+ÿ+1

(
ÿ±(ÿÿ+ÿ) ý±(ÿ−1) ÿ∓1; ÿ±ÿ

)
∞

∏
ÿ>0

ÿ−ÿÿ≡ý+ÿ

(
ÿ±(ÿÿ+ÿ) ý±ÿÿ∓1; ÿ±ÿ

)
∞

,

(A.1)

where we set ÿÿ = 0 for all ÿ > ℓ(ÿ).

A.2. Shuffle elements

We rewrite

ÿ exp

[
−
∑
ý>0

(∑ÿ
ÿ=1 ÿ

±ý (ÿ−1)ℎý+ÿ,±ý
(1 − ÿ±ýÿ )

)
ÿ±ý ÿ∓ý

[ý]ÿ

]

= ÿ exp

[∑
ý>0

(∑ÿ−1
ÿ=0 ÿ∓ý (ÿ+1)ℎý−ÿ,±ý

(1 − ÿ∓ýÿ )

)
ÿ±ý ÿ∓ý

[ý]ÿ

]

= ÿ exp

[
−
∑
ý>0

(∑ÿ−1
ÿ=0 ý∓ý (ÿ+1)ÿ−1 (ℎý−ÿ,∓ý )

(1 − ý∓ýÿ )

)
ÿ±ý ÿ∓ý

[ý]ÿ

]

= ÿ exp

[
(ÿ − ÿ−1)−1

∑
ý>0

(
−ÿ±ýÿ−1(ℎ⊥ý,∓ý ) + ÿ−1(ℎ⊥ý+1,∓ý )

) ÿ∓ý
ý

]
.

Recall the formulas (4.9) and (4.10) for E±
ý,ÿ and H±

ý,ÿ. In [19], it was shown that

exp

[
(ÿ − ÿ−1)−1

∑
ý>0

(
−ÿ−ýÿ−1(ℎ⊥ý,ý ) + ÿ−1(ℎ⊥ý+1,ý )

) ÿý
ý

]

=

∞∑
ÿ=0

(−1)ÿÿ ýÿÿý−ÿ
(
1 − ÿ−1ý−1

)ÿÿ
ÿ2ÿ

∏ÿ
ÿ=1(1 − ÿ−ÿ ý−ÿ ) Ψ+

(
E
−
ý,ÿ

)

exp

[
(ÿ − ÿ−1)−1

∑
ý>0

(
−ÿýÿ−1(ℎ⊥ý,−ý ) + ÿ−1(ℎ⊥ý+1,−ý )

) ÿ−ý
ý

]

=

∞∑
ÿ=0

ýÿ (1 − ÿý)ÿÿ∏ÿ
ÿ=1(1 − ÿ−ÿ ý−ÿ )Ψ−

(
E
+
ý,ÿ

)
.

Applying ÿ, we get

∞∑
ÿ=0

ÿÿ(ÿ−1) ý−ÿ
(
1 − ÿ−1ý−1

)ÿÿ
ÿ−ÿ

∏ÿ
ÿ=1(1 − ÿ−ÿ ý−ÿ ) Ψ+(H−

ý,ÿ)

= ÿ exp

[
−
∑
ý>0

(∑ÿ−1
ÿ=0 ÿ−ýÿℎý+ÿ,−ý
(1 − ÿ−ýÿ )

)
ÿ−ý ÿý

ÿ−ý [ý]ÿ

]
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∞∑
ÿ=0

(−1)ÿÿý−ÿ(ÿ−1) ýÿ (1 − ÿý)ÿÿ
ÿÿÿÿ

∏ÿ
ÿ=1(1 − ÿ−ÿ ý−ÿ ) Ψ−

(
H

+
ý,ÿ

)

= ÿ exp

[
−
∑
ý>0

(∑ÿ−1
ÿ=0 ÿýÿℎý+ÿ,ý
(1 − ÿýÿ )

)
ÿý ÿ−ý

ÿý [ý]ÿ

]
.

A.3. Normal ordering

It will be slightly nicer to reorder our currents differently from Proposition 3.7:

Proposition A.2. For ý ∈ ý, we have

�
ÿ∏
ÿ=1

�
ÿ∏
ÿ=1

ýý+ÿ (ÿý+ÿ,ÿ)

=

(
(−1)

(ÿ−2) (ÿ−3)
2

+ÿý−
ÿ
2
+1
∏
ÿ∈ý

ýÿ

)ÿ

×
∏

1≤ÿ<ÿ≤ÿ

∏
ÿ∈ý

(
1 − ÿÿ,ÿ/ÿÿ,ÿ

) (
1 − ÿ−1ý−1ÿÿ,ÿ/ÿÿ,ÿ

)
(
1 − ý−1ÿÿ+1,ÿ/ÿÿ,ÿ

) (
1 − ÿ−1ÿÿ−1,ÿ/ÿÿ,ÿ

)

×
ÿ∏
ÿ=1

ÿý+1,ÿ/ÿý,ÿ(
1 − ý−1ÿý+1,ÿ/ÿý,ÿ

) ∏
ÿ∈ý \{ý}

(
1 − ÿ−1ÿÿ,ÿ/ÿÿ+1,ÿ

)
×
∏
ÿ∈ý

exp

(
ÿ∑
ÿ=1

∑
ý>0

(
ýý [ÿ (ÿ) ] − ý−ý ýý [ÿ (ÿ−1) ]

) ÿý
ÿ,ÿ

ý

)

×
∏
ÿ∈ý

exp

(
ÿ∑
ÿ=1

∑
ý>0

(
−ýý [ÿ (ÿ) ]⊥ + ÿ−ý ýý [ÿ (ÿ−1) ]⊥

) ÿ−ý
ÿ,ÿ

ý

)∏
ÿ∈ý

ÿ∏
ÿ=1

ÿ
ÿÿ,0

ÿ,ÿ
,

where all rational functions are Laurent series expanded assuming

|ÿÿ,ÿ | = 1, |ÿ | > 1, |ý | > 1. (A.2)

For the F-currents, we have

�
ÿ∏
ÿ=1

�
ÿ∏
ÿ=1

ýý+ÿ (ÿý+ÿ,ÿ)

=

�����
(−1) (ÿ−2) (ÿ−3)

2
+ÿý

ÿ
2
−1∏

ÿ∈ý
ýÿ

����	

ÿ

×
∏

1≤ÿ<ÿ≤ÿ

∏
ÿ∈ý

(
1 − ÿÿ,ÿ/ÿÿ,ÿ

) (
1 − ÿýÿÿ,ÿ/ÿÿ,ÿ

)
(
1 − ýÿÿ−1,ÿ/ÿÿ,ÿ

) (
1 − ÿÿÿ+1,ÿ/ÿÿ,ÿ

)
×

ÿ∏
ÿ=1

ÿý,ÿ/ÿý+1,ÿ(
1 − ýÿý,ÿ/ÿý+1,ÿ

) ∏
ÿ∈ý \{ý+1}

(
1 − ÿÿÿ,ÿ/ÿÿ−1,ÿ

)
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×
∏
ÿ∈ý

exp

(
ÿ∑
ÿ=1

∑
ý>0

(
−ýý ýý [ÿ (ÿ) ] + ýý [ÿ (ÿ−1) ]

) ÿý
ÿ,ÿ

ý

)

×
∏
ÿ∈ý

exp

(
ÿ∑
ÿ=1

∑
ý>0

(
ÿý ýý [ÿ (ÿ) ]⊥ − ýý [ÿ (ÿ−1) ]⊥

) ÿ−ý
ÿ,ÿ

ý

)∏
ÿ∈ý

ÿ∏
ÿ=1

ÿ
−ÿÿ,0

ÿ,ÿ
,

where all rational functions are Laurent series expanded assuming

|ÿÿ,ÿ | = 1, |ÿ | < 1, |ý | < 1. (A.3)

A.4. Integral formula

Let

ý+ÿ =
ÿÿ(ÿ−1) ý−ÿ

(
1 − ÿ−1ý−1

)ÿÿ
ÿ−ÿ

∏ÿ
ÿ=1(1 − ÿ−ÿ ý−ÿ ) , ý−ÿ =

(−1)ÿÿý−ÿ(ÿ−1) ýÿ (1 − ÿý)ÿÿ
ÿÿÿÿ

∏ÿ
ÿ=1(1 − ÿ−ÿ ý−ÿ ) .

We have

ý+ÿÿý•

(
(ÿ �ý ◦ Ψ+)(H−

ý,ÿ) ( ÿ ⊗ ÿÿ)
)
=

(−1)ÿ
(
1 − ÿ−1ý−1

)ÿÿ∏ÿ
ÿ=1(1 − ÿ−ÿ ý−ÿ )

{∏
ÿ∈ý

ÿ∏
ÿ=1

ýÿ∏
ý=1

(
ÿ−1
ÿ+1,ÿ

− ý−1ý
(ÿ)
ý

ÿ−1
ÿ,ÿ

− ý
(ÿ)
ý

)

×
∏

1≤ÿ<ÿ≤ÿ

[ (
1 − ÿý,ÿ/ÿý,ÿ

) (
1 − ÿ−1ý−1ÿý,ÿ/ÿý,ÿ

)
(
1 − ÿÿý+1,ÿ/ÿý,ÿ

) (
1 − ÿ−1ÿý−1,ÿ/ÿý,ÿ

)

×
∏

ÿ∈ý \{ý}

(
1 − ÿÿ,ÿ/ÿÿ,ÿ

) (
1 − ÿ−1ý−1ÿÿ,ÿ/ÿÿ,ÿ

)
(
1 − ÿ−1ÿÿ−1,ÿ/ÿÿ,ÿ

) (
1 − ý−1ÿÿ+1,ÿ/ÿÿ,ÿ

)
¦§§§§̈

×
ÿ∏
ÿ=1

[(
ÿ0,ÿ

ÿý+1,ÿ

) (
1

1 − ÿ−1ÿý,ÿ/ÿý+1,ÿ

)

×
∏

ÿ∈ý \{ý}

(
1

1 − ÿ−1ÿÿ,ÿ/ÿÿ+1,ÿ

) (
1

1 − ý−1ÿÿ+1,ÿ/ÿÿ,ÿ

)¦§§§§̈
×
∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

−
ÿ∑
ÿ=1

ÿ−1
ÿ,ÿ + ÿ−1

ÿ∑
ÿ=1

ÿ−1
ÿ+1,ÿ

]}
0

⊗ ÿÿ

and

ý−ÿÿý•

(
(ÿ �ý ◦ Ψ−)(H+

ý,ÿ) ( ÿ ⊗ ÿÿ)
)
=

(−1)ÿ (1 − ÿý)ÿÿ∏ÿ
ÿ=1(1 − ÿÿ ýÿ )

⎧⎪⎪«
⎪⎪¬
∏
ÿ∈ý

ÿ∏
ÿ=1

ýÿ∏
ý=1

���
ÿ−1
ÿ,ÿ − ýý

(ÿ)
ý

ÿ−1
ÿ+1,ÿ

− ý
(ÿ)
ý

��	
×

∏
1≤ÿ<ÿ≤ÿ

[ (
1 − ÿý+1,ÿ/ÿý+1,ÿ

) (
1 − ÿýÿý+1,ÿ/ÿý+1,ÿ

)
(
1 − ÿ−1ÿý,ÿ/ÿý+1,ÿ

) (
1 − ÿÿý−2,ÿ/ÿý+1,ÿ

)
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×
∏

ÿ∈ý \{ý+1}

(
1 − ÿÿ,ÿ/ÿÿ,ÿ

) (
1 − ÿýÿÿ,ÿ/ÿÿ,ÿ

)
(
1 − ÿÿÿ+1,ÿ/ÿÿ,ÿ

) (
1 − ýÿÿ−1,ÿ/ÿÿ,ÿ

)
¦§§§§̈

×
ÿ∏
ÿ=1

[(
ÿý+1,ÿ

ÿ0,ÿ

) (
1

1 − ÿÿý+1,ÿ/ÿý,ÿ

)

×
∏

ÿ∈ý \{ý+1}

(
1

1 − ÿÿÿ,ÿ/ÿÿ−1,ÿ

) (
1

1 − ýÿÿ−1,ÿ/ÿÿ,ÿ

)¦§§§§̈
×
∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

+
ÿ∑
ÿ=1

ÿÿ−1
ÿ,ÿ −

ÿ∑
ÿ=1

ÿ−1
ÿ+1,ÿ

]}
0

⊗ ÿÿ .

Finally, we make the substitution ýÿ,ÿ = ÿ−1
ÿ,ÿ and rewrite these formulas in terms of integrals. This

gets us

ý+ÿÿý•

(
(ÿ �ý ◦ Ψ+)(H−

ý,ÿ) ( ÿ ⊗ ÿÿ)
)

=

∮
· · ·
∮

|ýÿ,ÿ |=1

(
ÿ+ý,ÿ (ý•,•, ÿý•)

∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

−
ÿ∑
ÿ=1

ýÿ,ÿ +
ÿ∑
ÿ=1

ÿ−1ýÿ+1,ÿ

]
ÿ∏
ÿ=1

ýýÿ,ÿ

2ÿ
√
−1ýÿ,ÿ

)
⊗ ÿÿ

and

ý−ÿÿý•

(
(ÿ �ý ◦ Ψ−)(H+

ý,ÿ) ( ÿ ⊗ ÿÿ)
)

=

∮
· · ·
∮

|ýÿ,ÿ |=1

(
ÿ−ý,ÿ (ý•,•, ÿý•)

∏
ÿ∈ý

ÿÿ

[
ýÿ∑
ý=1

ý
(ÿ)
ý

+
ÿ∑
ÿ=1

ÿýÿ,ÿ −
ÿ∑
ÿ=1

ýÿ+1,ÿ

]
ÿ∏
ÿ=1

ýýÿ,ÿ

2ÿ
√
−1ýÿ,ÿ

)
⊗ ÿÿ,

where

ÿ+ý,ÿ (ý•,•, ÿý•) =
(−1) ÿ(ÿ+1)

2

(
1 − ÿ−1ý−1

)ÿÿ
ÿ

ÿ(ÿ−1)
2
∏ÿ

ÿ=1(1 − ÿ−ÿ ý−ÿ )

{∏
ÿ∈ý

ÿ∏
ÿ=1

ýÿ∏
ý=1

(
ýÿ+1,ÿ − ý−1ý

(ÿ)
ý

ýÿ,ÿ − ý
(ÿ)
ý

)

×
∏

1≤ÿ<ÿ≤ÿ

[ (
ýý,ÿ − ýý,ÿ

) (
ýý,ÿ − ÿ−1ý−1ýý,ÿ

)
(
ýý,ÿ − ÿ−1ýý+1,ÿ

) (
ýý−1,ÿ − ÿ−1ýý,ÿ

)

×
∏

ÿ∈ý \{ý}

(
ýÿ,ÿ − ýÿ,ÿ

) (
ýÿ,ÿ − ÿ−1ý−1ýÿ,ÿ

)
(
ýÿ−1,ÿ − ÿ−1ýÿ,ÿ

) (
ýÿ+1,ÿ − ý−1ýÿ,ÿ

)
¦§§§§̈

×
ÿ∏
ÿ=1

[(
ýý+1,ÿ

ý0,ÿ

) (
ýý,ÿ

ýý,ÿ − ÿ−1ýý+1,ÿ

)

×
∏

ÿ∈ý \{ý}

(
ýÿ,ÿ

ýÿ,ÿ − ÿ−1ýÿ+1,ÿ

) (
ýÿ+1,ÿ

ýÿ+1,ÿ − ý−1ýÿ,ÿ

)¦§§§§̈
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and

ÿ−ý,ÿ (ý•,•, ÿý•) =
(−1) ÿ(ÿ+1)

2 ÿ
ÿ(ÿ−1)

2 (1 − ÿý)ÿÿ∏ÿ
ÿ=1(1 − ÿÿ ýÿ )

{∏
ÿ∈ý

ÿ∏
ÿ=1

ýÿ−1∏
ý=1

(
ýÿ−1,ÿ − ýý

(ÿ−1)
ý

ýÿ,ÿ − ý
(ÿ−1)
ý

)

×
∏

1≤ÿ<ÿ≤ÿ

[ (
ýý+1,ÿ − ýý+1,ÿ

) (
ýý+1,ÿ − ÿýýý+1,ÿ

)
(
ýý+1,ÿ − ÿýý,ÿ

) (
ýý+2,ÿ − ÿýý+1,ÿ

)

×
∏

ÿ∈ý \{ý+1}

(
ýÿ,ÿ − ýÿ,ÿ

) (
ýÿ,ÿ − ÿýýÿ,ÿ

)
(
ýÿ+1,ÿ − ÿýÿ,ÿ

) (
ýÿ−1,ÿ − ýýÿ,ÿ

)
¦§§§§̈

×
ÿ∏
ÿ=1

[(
ý0,ÿ

ýý+1,ÿ

) (
ýý+1,ÿ

ýý+1,ÿ − ÿýý,ÿ

)

×
∏

ÿ∈ý \{ý+1}

(
ýÿ,ÿ

ýÿ,ÿ − ÿýÿ−1,ÿ

) (
ýÿ−1,ÿ

ýÿ−1,ÿ − ýýÿ,ÿ

)¦§§§§̈ .

A.5. Degree one

We compute the integral and record the resulting action on f when ÿ = 1.

A.5.1. Difference operators

Let ÿℎ(ÿý• ) = ÿℎ denote the set of all shift patterns. Deûne

ÿ∗
ý,1(ÿý• ; ÿ, ý

−1) := −
∑
ý ∈ÿℎ
ý≠∅

(1 − ÿ−1ý−1) |ý |−ÿý∈ý
ý
(ý+1)
ý�

ý
(0)
ý�

�������

∏
ÿ∈ý

ýÿ∏
ý=1

ý
(ÿ)
ý

≠ý
(ÿ)
ý�

(
ý
(ÿ)
ý

− ýý
(ÿ+1)
ý�

)
(
ý
(ÿ)
ý

− ý
(ÿ)
ý�

)
������	

× ���
ÿýÿ−1

ý
(ý (ý)

ý
) − ý

(ý)
ý

ý
(ý)
ý

− ÿ−1
ý

(ý (ý)
ý

)
��	
ÿý∈ý ����

∏
ÿ∈ý\{ý}

ÿýÿ−1
ý

(ý (ÿ)
ý
)(

ý
(ÿ)
ý

− ÿ−1
ý

(ý (ÿ)
ý
)
) ���	
ÿ−1
ý

ÿý,1(ÿý• ; ÿ, ý
−1) := −

∑
ý ∈ÿℎ
ý≠∅

(1 − ÿý) |ý |−ÿý∈ý
ý
(ÿ−1)
ý�

ý
(ý)
ý�

�������

∏
ÿ∈ý

ýÿ∏
ý=1

ý
(ÿ)
ý

≠ý
(ÿ)
ý�

(
ý
(ÿ)
ý

− ý−1ý
(ÿ−1)
ý�

)
(
ý
(ÿ)
ý

− ý
(ÿ)
ý�

)
������	

× ���
ÿ−1ý−1ÿý (ý (ý)ý

) − ý
(ý)
ý

ý
(ý)
ý

− ÿý (ý (ý)ý
)

��	
ÿý∈ý ����

∏
ÿ∈ý\{ý}

ÿ−1ý−1ÿý (ý (ÿ)ý )(
ý
(ÿ)
ý

− ÿý (ý (ÿ)ý )
) ���	
ÿý .

Setting ÿ = 1 and inverting t, we indeed obtain the ûrst Noumi-Sano operator.

A.5.2. Eigenvalues

For a series ÿ (ÿ) in z, let [ÿÿ] ÿ (ÿ) denote the coefficient of ÿÿ. Methods similar to those in 5.4 allow us

to establish the following.
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Theorem A.3. For |ÿ | > 1, we have

ÿ∗
ý,1(ÿý• ; ÿ, ý)ÿÿ [ÿý• ; ÿ, ý] (A.4)

= [ÿ]

�����������

ÿ∏
ÿ=1

|ý• |∏
ÿ=1

ÿ−ÿÿ≡ý+ÿ+1

(
ÿ−(ÿÿ+ÿ) ý−|ý• |+(ÿ−1) ÿ; ÿ−ÿ

)
∞

|ý• |∏
ÿ=1

ÿ−ÿÿ≡ý+ÿ

(
ÿ−(ÿÿ+ÿ) ý−|ý• |+ÿÿ; ÿ−ÿ

)
∞

����������	

ÿÿ [ÿý• ; ÿ, ý] . (A.5)

However, for |ÿ | < 1, we have

ÿý,1(ÿý• ; ÿ, ý)ÿÿ [ÿý• ; ÿ, ý] (A.6)

= [ÿ−1]

�����������

ÿ∏
ÿ=1

|ý• |∏
ÿ=1

ÿ−ÿÿ≡ý+ÿ+1

(
ÿÿÿ+ÿý |ý• |−(ÿ−1) ÿ−1; ÿÿ

)
∞

|ý• |∏
ÿ=1

ÿ−ÿÿ≡ý+ÿ

(
ÿÿÿ+ÿý |ý• |−ÿÿ−1; ÿÿ

)
∞

����������	

ÿÿ [ÿý• ; ÿ, ý] . (A.7)

Remark A.4. We have presented the eigenvalues in terms of our original spectral variables ÿÿÿ ý |ý• |−ÿ .

However, we can give a more natural combinatorial expression for the eigenvalues if we forgo this and

use instead the transpose partition ÿ′ [9, (I.1.3)]. Let

ÿÿ(ÿ, ý) =
1

1 − ÿ
−
∑
ÿ≥1

ÿ ÿ−1ý
|ý• |−ÿ′ÿ . (A.8)

It can be viewed as a series or as a rational function since (1−ÿÿ ) ÿÿ(ÿ, ý) is a polynomial. Let Γ = Z/ÿZ
be the cyclic group and let ÿ be the generator of ý(Γ). Deûne ÿ

(ý)
ÿ

(ÿ, ý) by the following expression in

Q(ÿ, ý) ⊗ ý(Γ):

ÿÿ (ÿÿ−1, ý ÿ−1) = ÿ−1
∑
ý∈ý

ÿ
(ý)
ÿ

(ÿ, ý)ÿý . (A.9)

Then the eigenvalues are given by

ÿ∗
ý,1(ÿý• ; ÿ, ý)ÿÿ [ÿý• ; ÿ, ý] = ÿ

(ý)
ÿ

(ÿ−1, ý−1)ÿÿ [ÿý• ; ÿ, ý] (A.10)

ÿý,1(ÿý• ; ÿ, ý)ÿÿ [ÿý• ; ÿ, ý] = ÿ
(ý)
ÿ

(ÿ, ý)ÿÿ [ÿý• ; ÿ, ý] . (A.11)

Example A.5. Let ÿ = 2 and ÿ = 0 (empty core). We use ý0 = ý1 = 1. There are three nonempty shift

patterns: ý
1
= {ý (0)

1
}, ý

2
= {ý (1)

1
} and ý

3
= {ý (0)

1
, ý

(1)
1

}. We apply ÿ0,1 [ÿý• ; ÿ, ý
−1] to ÿ∅ [ÿý• ; ÿ, ý] = 1

using summands ý
1
, ý

2
, ý

3
:
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−ÿ0,1 (ÿý• ; ÿ, ý
−1) · ÿ∅ [ÿý• ; ÿ, ý

−1] = (1 − ÿý)0
ÿý

(0)
1

ý
(0)
1

ý
(1)
1

− ý−1ý
(0)
1

ý
(1)
1

− ÿý
(0)
1

ÿ−1ý−1ÿ2ý
(0)
1

− ý
(0)
1

ý
(0)
1

− ÿ2ý
(0)
1

+ (1 − ÿý)1
ý
(1)
1

ÿý
(1)
1

ý
(0)
1

− ý−1ý
(1)
1

ý
(0)
1

− ÿý
(1)
1

ÿ−1ý−1ÿ2ý
(1)
1

ý
(1)
1

− ÿ2ý
(1)
1

+ (1 − ÿý)1
ÿ−1ý−1ÿ2ý

(0)
1

− ý
(0)
1

ý
(0)
1

− ÿ2ý
(0)
1

ÿ−1ý−1ÿ2ý
(1)
1

ý
(1)
1

− ÿ2ý
(1)
1

=
ÿ(ÿý−1 − 1)

1 − ÿ2

ý
(1)
1

− ý−1ý
(0)
1

ý
(1)
1

− ÿý
(0)
1

+ (1 − ÿý)ý−1

1 − ÿ2

ý
(0)
1

− ý−1ý
(1)
1

ý
(0)
1

− ÿý
(1)
1

+ (1 − ÿý) (ÿý−1 − 1)ÿý−1

(1 − ÿ2)2

=
ÿ

ý2
1 − ý2

1 − ÿ2
ÿ∅ [ÿý• ; ÿ, ý

−1] .

We have

ÿ∅ (ÿ, ý) =
1

1 − ÿ
− ý2

1 − ÿ
=

1 − ý2

1 − ÿ

ÿ∅ (ÿÿ−1, ý ÿ−1) = 1 − ý2

1 − ÿ2
(1 + ÿÿ)

ÿ
(0)
∅ (ÿ, ý) = ÿ

1 − ý2

1 − ÿ2

ÿ
(0)
∅ (ÿ, ý−1) = ÿ

1 − ý−2

1 − ÿ2
= − ÿ

ý2
1 − ý2

1 − ÿ2
.
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