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1. Introduction12

Laser absorption spectroscopy is used for detecting trace amounts of gases13

in diverse application areas such as air quality monitoring, disease diagnosis,14

and manufacturing [3, 4, 5]. In photoacoustic spectroscopy, a laser is focused15

between the tines of a small quartz tuning fork, and in the presence of a16

particular gas, acoustic and thermal waves are generated. These waves, in17

turn, generate mechanical vibration of the tuning fork, and both pyroelec-18

tric and piezoelectric effects induce an electric signal that is measured to19

detect the presence of the gas. Two variants of these sensors are the so-called20

QEPAS (quartz-enhanced photoacoustic spectroscopy) and ROTADE (reso-21

nant optothermoacoustic detection) models [6, 7]. In QEPAS, the acoustic22

wave dominates the signal, while the thermal wave is more important in RO-23

TADE. While engineered systems typically emphasize one of these waves, a24

good model should account for both effects.25

Earlier work on modeling this problem [8, 9, 10] simplified the model to a26

single heat or wave equation. Then, an empirical damping term is added to27

the tuning fork vibration to account for otherwise-neglected processes. This28

term is generally only available from laboratory experiments with a particular29

geometry or through analytic calculations in highly-idealized geometry. This30

approach is only accurate in particular regimes, and the empirical corrections31

depend strongly on geometry as well as physical parameters. With a more32

complete model that includes a two-way coupling between the pressure and33

temperature with the tuning fork deformation, the damping emerges without34

these specialized empirical corrections. Hence, such a system is far more35

suitable for design optimization in which the tuning fork geometry is modified36

to maximize the electric signal.37

Accurate simulation of the Morse-Ingard system [1] have been a critical38

first step in this direction. The Morse-Ingard equations, derived from a39

linearization of Navier-Stokes, give a coupled heat and wave equation for40

the temperature and pressure. In the context of trace gas sensing, they41

include a volumetric forcing term that models the laser heating the trace gas42

molecules. These equations are posed in a time-harmonic setting, leading to43

complex-valued Helmholtz-type formulations of the equations. The pressure44

and temperature on the tuning fork surface are of primary interest, and a45

fully-coupled model requires carefully chosen boundary conditions to couple46

these values to the behavior of the tuning fork.47

A finite element discretization of the coupled pressure-temperature sys-48
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tem was first addressed in [11], where the difficulty of solving the linear sys-49

tem was noted. Kirby and Brennan gave a more rigorous treatment in [12],50

with analysis of the finite element error and preconditioner performance.51

Kaderli et al derived an analytical solution for the coupled system in ide-52

alized geometry in [13]. Their technique involves reformulating the system53

studied in [12] by an algebraic simplification that eliminates the tempera-54

ture Laplacian from the pressure equation. In [14], this reformulation was55

seen to lose coercivity but still retain a Gårding-type inequality, leading to56

optimal-order finite element convergence theory and preconditioners. Work57

by Safin et al [15] began a more robust multi-physics study, coupling the58

Morse-Ingard equations for atmospheric pressure and temperature to heat59

conduction of the quartz tuning fork, although vibrational effects were still60

not considered. They also applied a perfectly-matched layer (PML) [16] to61

truncate the computational domain, and a Schwarz-type preconditioner that62

separates out the PML region was used to effectively reduce the cost of solv-63

ing the linear system. They also include some favorable comparisons between64

the computational model and experimental data.65

Previous numerical analysis of this problem in the cited literature has66

focused on volumetric discretizations based on finite elements. In [17], we67

derived a boundary integral formulation for a scattered-field form of the68

Morse-Ingard equations. As with other wave problems, this problem writes69

the solution as the sum of a Morse-Ingard solution that satisfies the forcing70

(evaluated by means of a fast volumetric convolution with a Green’s func-71

tion) plus a field that satisfies Morse-Ingard with no volumetric forcing but72

Neumann data on the tuning fork such that the sum satisfies homogeneous73

boundary conditions. We then formulated a second-kind integral equation74

for the scattered field and approximated it with a boundary integral method.75

In this work we return to finite element discretization, but we make use of the76

results we obtained considering the integral form of the equations to make77

significant advances in imposing a far-field condition.78

In [2], we developed a novel nonlocal boundary condition for truncating79

the domain of Helmholtz scattering problems. This condition, which uses80

Green’s representation of the solution on the artificial boundary to give a81

nonlocal Robin-type condition involving layer potentials, is exact – the so-82

lution of resulting BVP agrees exactly with the restriction of the solution83

of the original problem to the computational domain. The resulting finite84

element stiffness matrix decomposes into “local” and “nonlocal” parts. The85

local part is exactly that obtained by discretizing the problem subject to86
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transmission boundary conditions. The nonlocal part of the operator in-87

cludes the layer potentials. It has logical dense subblocks but can be applied88

in a matrix-free way using fast multipole methods. One preconditions the89

system matrix by (perhaps approximately) inverting only the local part. We90

believe that this nonlocal boundary condition offers several potential advan-91

tages, both theoretically and computationally, over perfectly matched layers.92

Because PML solves a perturbed PDE, careful analysis [18] is required to93

show that the solution to the original PDE is recovered with increasing layer94

size. However, our method directly discretizes the true PDE and requires no95

such additional analysis. Second, our method avoids the additional (volume)96

degrees of freedom in the PML region, leading to smaller linear systems.97

Finally, multigrid algorithms must be carefully adapted for use with PML98

For example, the work in [19] uses a custom grid coarsening strategy that99

doesn’t coarsen normal the boundary, limiting the practicality of the method100

for unstructured meshes, and [20] use special complex-valued and higher-101

order inter-grid transfers. Without PML, we can precondition the local part102

of our operator with rather standard multigrid techniques.103

Our approach to domain truncation for Helmholtz-type problems builds104

on other approaches to combine nonlocality or integral operators with fi-105

nite element discretizations, giving effective boundary truncation without106

directly perturbing the boundary value problem to be solved. Johnson and107

Nédélec [21] perform domain truncation by coupling the PDE in the compu-108

tational domain to a boundary integral equation on the boundary. This ap-109

proach requires separate unknowns in the volume and for its boundary trace110

and solutions of the both the volumetric and surface operators. Although111

not needed for Morse-Ingard, we remark that this method has recently been112

extended to heterogeneous problems [22]. Keller and Givoli [23] introduce113

a Dirichlet-to-Neumann or Poincaré-Steklov operator on the boundary, giv-114

ing a simpler formulation with only a single unknown field. However, using115

the DtN operator technically requires the solution of an exterior problem116

with given Dirichlet data, taking the normal derivative of the result. If the117

boundary of the computational domain has a simple shape, this can be well118

approximated by a truncated Fourier series. While these methods require119

(at least approximately) solving boundary integral equations, our approach120

only requires evaluating a layer potential a finite distance from the scatterer,121

hence avoiding any singular integrals or solution processes.122

In this paper, we extend the domain truncation in [2] from the Helmholtz123

operator to the Morse-Ingard system. This extension makes use of several124
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results obtained in [17], where we in fact develop numerical methods based125

on an integral equation of this system In Section 2, we recall the Morse-126

Ingard equations. Then, Section 3 addresses far-field boundary conditions127

for the system and appropriate boundary conditions for domain truncation.128

By means of the transformation to a decoupled Helmholtz system, we are129

able to state an analogous far-field condition and associated transmission-130

type condition for the Morse-Ingard system. This allows a comparison to131

the ad hoc transmission boundary conditions used in [12, 14]. Moreover, we132

can derive an exact analog of the nonlocal Helmholtz boundary condition for133

Morse-Ingard.134

Although one may directly solve the decoupled Helmholtz equations rather135

than the coupled form of Morse-Ingard, formulating boundary conditions and136

directly simulating the coupled system serves several purposes. First, the de-137

coupled formulation leads to lower numerical accuracy than the fully coupled138

formulation. This reduced accuracy was also observed in integral formula-139

tions in [17], and we comment further in Section 6. Second, a more complete140

model of trace gas sensors [24] involves coupling Morse-Ingard to the tuning141

fork vibration, which in turn requires modeling the fluid flow. Domain trun-142

cation will still be required, but coupling of pressure and temperature to the143

fluid and tuning fork may limit the utility of the decoupled system. Addi-144

tionally, as noted in [17], solving for the acoustic mode while neglecting the145

thermal mode turns out to be an effective approximation. After developing146

the boundary conditions in Section 3, we derive a finite element formulation147

for the Morse-Ingard system in Section 4. We discuss the structure of the148

linear system and approaches to preconditioning in Section 5 and we then149

provide some numerical in Section 6 before offering some final conclusions in150

Section 7.151

2. The Morse-Ingard equations152

The Morse-Ingard equations of thermoacoustics are a system of partial153

differential equations for the temperature and pressure of an excited gas.154

The model begins from a time-domain formulation. After assuming time-155

periodic forcing and performing nondimensionalization and some algebraic156

manipulations, we arrive at the form given in [13] and further analyzed in [14]:157

−M∆T − iT + iγ−1
γ
P = −S,

γ
(︁
1− Λ

M

)︁
T − (1− iγΛ)∆P −

[︁
γ
(︁
1− Λ

M

)︁
+ Λ

M

]︁
P = iγ Λ

MS.
(1)
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Here, T and P are the non-dimensional temperature and pressure, respec-158

tively, within the gas. S is a volumetric forcing function, modeling heating159

of a trace gas by a laser. γ is the ratio of specific heat of the gas at constant160

pressure to that at constant volume. The dimensionless number M measures161

the ratio of the product of the characteristic thermal conduction scale and162

forcing frequency to sound speed, and Λ does similarly for the viscous length163

scale. Typical values of parameters would be (to two decimal places)164

γ = 7/5

M = 3.66 · 10−5

Λ = 5.37 · 10−5

(2)

are taken as in [13, 17].165

We let Ωc ⊂ Rd (with d = 2, 3) be a bounded domain representing the166

tuning fork, and let its boundary be called Γ. The complement of Ωc will167

be the domain Ω on which we pose (1). On Γ, we impose homogeneous168

Neumann boundary conditions,169

∂T

∂n
= 0,

∂P

∂n
= 0. (3)

which posits that the tuning fork is thermally insulated from the gas, and170

that the tuning fork is sound-hard. More advanced models, in which the gas171

heats the tuning fork or the acoustic waves couple to tuning fork deformation,172

generalize this condition [24, 15].173

A suitable far-field condition is required to close the model, which re-174

quires some appropriate decay at infinity akin to the Sommerfeld radiation175

condition for the Helmholtz operator. Numerical methods based on volu-176

metric discretization on a truncated domain have posed either some kind of177

transmission-type condition [12, 14] or perfectly-matched layers [15].178

In [17], we gave a boundary integral method for Morse-Ingard based on a179

scattered-field formulation, which turns the volumetric inhomogeneity into an180

inhomogeneous Neumann condition on Γ. We discuss this in greater detail in181

Section 3.2. To arrive at the scattered-field formulation, we split the solution182

into incoming and scattered waves via183

T = T i + T s, P = P i + P s, (4)

where T i and P i satisfy (1) with the given forcing function S but have some184

inhomogeneous boundary conditions on Γ. Then, T s and P s are chosen to185
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satisfy (1) with homogeneous forcing S = 0 and such that the combined186

waves satisfy (3). The incoming waves T i and P i can be constructed by187

volumetric convolution of S with a free-space Green’s function. With these188

in hand, their normal derivatives on Γ can be computed, and the negative of189

these used as boundary conditions for T s and P s. Consequently, we drop the190

superscripts ‘s’ for the scattered field and, for the rest of the paper, consider191

the system of PDE192

−M∆T − iT + iγ−1
γ
P = 0,

γ
(︁
1− Λ

M

)︁
T − (1− iγΛ)∆P −

[︁
γ
(︁
1− Λ

M

)︁
+ Λ

M

]︁
P = 0,

(5)

together with boundary conditions193

∂T

∂n
= gT ,

∂P

∂n
= gP , (6)

on Γ together with an appropriate far field condition. Although we ob-194

tained satisfactory results with a boundary integral method in [17], we work195

with volumetric (finite element) discretizations here to chart a path towards196

modeling of additional volumetric physical phenomena without additional197

computational machinery in future work. Consequently, in this paper we are198

primarily interested in developing an analog of the nonlocal boundary condi-199

tion developed in [2] for the Morse-Ingard system. To this end, we introduce200

a truncating boundary Σ and define a domain Ω′ ⊂ Ω to be that contained201

between Γ and Σ, as shown in Figure 1.202

In [17], we demonstrated that the Morse-Ingard system (1) could be de-203

coupled into a pair of independent Helmholtz equations. After significant204

algebraic manipulations, we introduce modified material coefficients205

Q2 = 4(iM+ γMΛ) + (1− iγM− iΛ)2,

t± =
(2Λγ − Λ−Mγ + i)M∓ iMQ

2γ(Λ−M)(iΛγ − 1)

(7)

as well as separate thermal and acoustic wave numbers206

k2t =
i

2M

(︃
1− iγM− iΛ +Q

1− iγΛ

)︃
,

k2p =
i

2M

(︃
1− iγM− iΛ−Q

1− iγΛ

)︃
.

(8)
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Γ

Ω′

Σ Ω

Figure 1: The yellow-shaded area represents the tuning fork. The computational domain
Ω is the rectangle minus the tuning fork. Σ is the outer rectangle, and Γ is the boundary
of the tuning fork itself.

With the change of variables207 [︃
Vt
Vp

]︃
=

[︃
M t+(1− iγΛ)
M t−(1− iγΛ)

]︃ [︃
T
P

]︃
≡ B

[︃
T
P

]︃
, (9)

the Morse-Ingard system (1) decouples into separate Helmholtz equations208

∆2Vt + k2t Vt = atS,

∆2Vp + k2pVp = apS,
(10)

where at and ap are data-dependent constants. Typical values of these new209

parameters, again to two decimals, based on those from given above are210

kt = 116.81 + 116.82,

kp = 1 + 3.42 · 10−5i.
(11)

For the acoustic mode, kp has a modest real part and very small imaginary211

part. Hence, Vp attenuates slowly but can be well-resolved with suitable212

domain truncation. However, the large real and imaginary parts of kt suggest213

that the thermal mode may be difficult to resolve. We also note that the214
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matrix in (9), despite being 2×2 has a condition number on the order of 104215

and so may amplify roundoff error in practice.216

The same change of variables decouples the scattered-field formulation (5).217

In this case, we have that218

∆2Vt + k2t Vt = 0,

∆2Vp + k2pVp = 0,
(12)

and, by linearity, we take the normal derivative of (9) on Γ to find boundary219

conditions220 [︃
∂VT

∂n
∂Vp

∂n

]︃
= B

[︃
gT
gP

]︃
=

[︃
MgT + t+(1− iγΛ)gP
MgT + t−(1− iγΛ)gP

]︃
≡

[︃
gVt

gVp

]︃
. (13)

So, with gT and gP given a priori, the scattered field formulation of Morse-221

Ingard can be solved as a pair of decoupled Helmholtz scattering problems.222

3. Far field boundary conditions223

3.1. Boundary conditions for the Helmholtz problem224

We can state far-field boundary conditions for Morse-Ingard and formu-225

late appropriate radiation boundary conditions on Σ by transforming such226

conditions for each of the decoupled Helmholtz equations in (12). So, we227

begin with the equation228

−∆u− κ2u = 0 (14)

with Imκ ≥ 0, posed on Ω, together with Neumann boundary condition229

∂u

∂n
= g (15)

on the scattering boundary Γ. The relevant boundary condition at infinity is230

the well-known Sommerfeld radiation condition [25, 26], which requires that231

lim
|x|→∞

|x|
n−1
2

(︃
∂

∂|x|
− iκ

)︃
u = 0. (16)

A simple approximate boundary condition arises from imposing Sommer-232

feld at finite radius, i.e.233 (︃
∂

∂n
− iκ

)︃
u = 0 (17)
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on the exterior boundary Σ. This is sometimes called the transmission234

boundary condition. If the exterior boundary Σ is at some radius R away235

from the origin, this creates an O(R−2) perturbation of u apart from any236

numerical discretization error, although one may mitigate the computational237

cost of increasing R by simultaneously increasing the mesh spacing toward238

the outer boundary [27].239

An alternative approach is the technique of perfectly matched layers [16,240

28], in which one modifies the PDE near the boundary in a so-called sponge241

region. The modified coefficients effectively absorb outgoing waves and allow242

small computational domains, but the resulting algebraic equations do not243

yield to efficient techniques such as multigrid. One can use a Schwarz-type244

method to separately handle the sponge region with a direct solver and the245

rest of the domain with multigrid or another fast solver [15], although the246

known method has sub-optimal complexity in three dimensions.247

Many nonlocal approaches to domain truncation have also been given.248

Most classically, the Dirichlet-to-Neumann map (DtN) or Stekhlov-Poincaré249

operator can be used on the artificial boundary. By mapping between types of250

boundary data, DtN operators require, in principle, the solution of a bound-251

ary value problem. In practice, this is often realized by restricting the trun-252

cation boundary to (mappings of) a simple geometry in which separation of253

variables can be performed and then making use of a truncated Fourier series.254

In [2], we give a new approach to nonlocal boundary conditions that requires255

only the evaluation of non-singular layer potentials, i.e. a surface convolu-256

tion with the Helmholtz free-space Green’s function or its derivatives. A fast257

algorithm such as the Fast Multipole Method is useful to avoid quadratic258

complexity. In its continuous (i.e. not yet discretized) form, this boundary259

condition is exact, and discretization with any order of accuracy is straight-260

forward. In Subsection 3.3, we recall the formulation of this condition for261

the Helmholtz operator and develop it for the Morse-Ingard system.262

3.2. Far-field conditions for Morse-Ingard263

Each of the decoupled Helmholtz equations in (12) must satisfy the Som-264

merfeld condition, so that265

lim
|x|→∞

|x|
n−1
2

(︃
∂

∂|x|
− ikt

)︃
Vt

= lim
|x|→∞

|x|
n−1
2

(︃
∂

∂|x|
− ikp

)︃
Vp = 0.

(18)
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In terms of the variables T and P , the Morse-Ingard solution must satisfy266

lim
|x|→∞

|x|
n−1
2

(︃
∂

∂|x|
− ikt

)︃
[MT + t+(1− iγΛ)P ]

= lim
|x|→∞

|x|
n−1
2

(︃
∂

∂|x|
− ikp

)︃
[MT + t−(1− iγΛ)P ] = 0.

(19)

Because of the large imaginary part of kt the thermal mode attenuates very267

quickly, so some simple boundary condition could be suitable for Vt. The268

acoustic mode, on the other hand, has only a very small imaginary part and269

so outgoing waves attenuate very slowly. Since Vp depends on both T and P ,270

however, artificial boundary conditions must act on both of these variables.271

We may find an analog to the transmission boundary condition (17) by272

imposing those conditions on each of the decoupled equations, so that we273

require274 (︃
∂

∂n
− ikt

)︃
Vt = 0,(︃

∂

∂n
− ikp

)︃
Vp = 0.

(20)

In terms of T and P , we have275 (︃
∂

∂n
− ikt

)︃
(MT + t+(1− iγΛ)P ) = 0,(︃

∂

∂n
− ikp

)︃
(MT + t−(1− iγΛ)P ) = 0.

(21)

With some elementary but involved algebraic manipulation, we have276

M∂T

∂n
= i

[︃
t−kt − t+kp
t− − t+

]︃
MT + i

[︃
t+t− (kt − kp)

t− − t+

]︃
(1− iγΛ)P

(1− iγΛ)
∂P

∂n
= i

[︃
kp − kt
t− − t+

]︃
MT + i

[︃
t−kp − t+kt
t− − t+

]︃
(1− iγΛ)P

(22)

This boundary condition is of course only an approximation of the actu-277

ally desired far-field condition, in the same sense in which (17) approximates278

(16), i.e. it becomes exact as Σ moves outward, analogous to the analysis279

in [27] for Helmholtz.280
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On the other hand, in prior work [12, 14], we had not yet developed281

the appropriate Sommerfeld condition for Morse-Ingard and used the ad hoc282

boundary conditions283

∂T

∂n
= 0,

∂P

∂n
= i

√
γP. (23)

This condition assumes that no heat is transported from the computational284

domain and an approximate version of (17) is applied only to the pressure285

component. Clearly, this boundary condition is quite different from (22). In286

particular, the outgoing wave for Vp carries both pressure and temperature287

with it, thus avoiding reliance on the decay of T for accurate imposition of288

the boundary condition.289

Define290

U =

[︃
T
P

]︃
and291

C =

[︃
M 0
0 1− iγΛ

]︃
.

Then, boundary conditions (22) and (23) can be written in the form292

C
∂U

∂n
= iAU, (24)

where for (22) we have293

A =

⎡⎣ t−kt−t+kp
t−−t+

(︂
t+t−(kt−kp)

t−−t+

)︂
(1− iγΛ)

kp−kt
t−−t+

(︂
t−kp−t+kt

t−−t+

)︂
(1− iγΛ)

⎤⎦ , (25)

and for (23),294

A =

[︃
0 0
0

√
γ (1− iγΛ)

]︃
(26)

Before proceeding, we offer a brief remark on perfectly matched layers295

for the Morse-Ingard equations. In [15, 29], it was found that PML must296

be applied to both the temperature and pressure in order to achieve accu-297

rate domain truncation. Our discussion of transmission boundary conditions298

shines further light on this observation. The acoustic mode involves a lin-299

ear combination of both temperature and pressure, and hence both variables300

must be damped at the computational boundary in order to avoid spurious301

reflections.302
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3.3. Nonlocal boundary conditions303

Now, we formulate a nonlocal boundary condition based on a Green’s304

integral representation of the solution. As mentioned, this provides an (in305

principle) exact boundary condition without the geometric limitations of DtN306

techniques. We introduced this technique for the Helmholtz operator in [2]307

and now apply it to Morse-Ingard.308

For the Helmholtz problem, we let K(x, y) be the free-space Green’s func-309

tion, which is given by310

Kκ(x) :=

{︄
i
4
H

(1)
0 (κ|x|) d = 2,

i
4π|x|e

iκ|x| d = 3.
(27)

Here, H(1)
0 is the first-kind Hankel function of order 0. We recall Green’s311

representation theorem [25, Thm. 2.5], [30] for the Helmholtz equation:312

u(x) = Dκ(u)(x)− Sκ(u)(x) (x ∈ Ω), (28)

where Dκ and Sκ refer to the double- and single-layer potentials associated313

with wave number κ, respectively. These are314

Sκ(u)(x) =

∫︂
Γ

Kκ(x− y) ∂u
∂ny

(y)dy, (29)

Dκ(u)(x) =

∫︂
Γ

(︂
∂

∂ny
Kκ(x− y)

)︂
u(y)dy. (30)

Although the double-layer potential is weakly singular, our techniques only315

require its evaluation away from the singularity on Γ. In anticipation of ap-316

plying our technique to the decoupled Helmholtz form of Morse-Ingard (10),317

we include the wave number κ and use distinct layer potentials with κ =318

kp, kt.319

Using the scattering boundary condition (15) on Γ, this becomes (omit-320

ting the spatial argument)321

u = Dκ(u)− Sκ(g). (31)

This representation is valid away from the scattering boundary Γ, and in322

particular, on Σ. Hence, we can take its normal derivative, so that on Σ323

∂u
∂n

= ∂
∂n

(Dκ(u)− Sκ(g)) . (32)
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In [2], we subtracted iκu from each side of (31) and rearranged to arrive at324

a nonlocal Robin-type boundary condition325

∂u
∂n

= iκu−
(︁
iκ− ∂

∂n

)︁
(Dκ(u)− Sκ(g)) . (33)

More generally, we can subtract some iσ times u from each side of (31) to326

write the condition327

∂u
∂n

= iσu−
(︁
iσ − ∂

∂n

)︁
(Dκ(u)− Sκ(g)) , (34)

and then (32) is obtained with σ = 0 and (33) with σ = κ.328

Now, we can apply this boundary condition, in either the form (32) or (33)329

to the decoupled Helmholtz system and back-convert to obtain appropriate330

nonlocal boundary conditions for Morse-Ingard. As in deriving the local331

transmission condition, we start with the decoupled form and see what is332

implied in the coupled form. We let σ = (σt, σp) be a pair of complex333

numbers. Then, we apply the boundary condition (34) to each equation334

of (10) on Σ, so that we have335

∂Vt
∂n

= iσtVt −
(︃
iσt −

∂

∂n

)︃
(Dkt(Vt)− Skt(gVt)) ,

∂Vp
∂n

= iσpVp −
(︃
iσp −

∂

∂n

)︃(︁
Dkp(Vp)− Skp(gVp)

)︁
.

(35)

Now, we substitute in for Vt and Vp via (9), but not in the layer potentials:336

∂
∂n

(MT + t+(1− iγΛ)P ) =iσt (MT + t+(1− iγΛ)P ) +Rt,
∂
∂n

(MT + t−(1− iγΛ)P ) =iσp (MT + t−(1− iγΛ)P ) +Rp,
(36)

where337

Rt = −
(︁
iσt − ∂

∂n

)︁
Dkt(Vt) +Gt,

Rp = −
(︁
iσp − ∂

∂n

)︁
Dkp(Vp) +Gp,

(37)

and Gt =
(︁
iσt − ∂

∂n

)︁
Skt(gVt) and a similar definition for Gp.338

Similar manipulations leading from (21) to (22) let us rearrange these339
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equations to340

M∂T

∂n
=i

[︃
t−σt − t+σp
t− − t+

]︃
MT

+ i

[︃
t+t− (σt − σp)

t− − t+

]︃
(1− iγΛ)P

+
t−Rt − t+Rp

t− − t+
,

(1− iγΛ)
∂P

∂n
=i

[︃
σp − σt
t− − t+

]︃
MT

+ i

[︃
t−σp − t+σt
t− − t+

]︃
(1− iγΛ)P

+
Rp −Rt

t− − t+
.

(38)

Note that the nonlocality is contained in Rp and Rt, each of which depend341

on both T and P through either Vt or Vp.342

4. Variational formulation343

In this section, we give a finite element formulation of the Morse-Ingard344

equations (5) under various boundary conditions. First, we establish some345

notation. We let L2(Ω′) denote the standard space of complex-valued func-346

tions with moduli square-integrable over Ω′ andHk(Ω′) ⊂ L2(Ω) the subspace347

consisting of functions with weak derivatives up to and including order k also348

lying in L2(Ω′). For any Banach space V , we let ∥ · ∥V denote its norm, with349

the subscript typically omitted when V = L2(Ω′).350

The space L2(Ω′) is equipped with the standard inner product351

(f, g) =

∫︂
Ω′
f(x)g(x)dx, (39)

and we also define the inner product over a portion of the boundary Γ̃ ⊂ ∂Ω′
352

by353

⟨f, g⟩Γ̃ =

∫︂
Γ̃

f(s)g(s)ds. (40)

We partition Ω′ into a family of conforming, quasi-uniform triangula-354

tions [31] {Th}h>0. Let Vh be the standard space of continuous piecewise355
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polynomials of some degree k ≥ 1 over Th. Since we are dealing with a356

system of two PDE, we define Vh = Vh × Vh.357

We multiply the equations of (5) by the conjugate of the test functions358

v, w ∈ Vh, respectively and integrate by parts over Ω′. We let U = (T, P )359

and Ψ = (v, w). Applying the Neumann boundary conditions (6) on Γ but360

not taking action yet on Σ, we have361

M (∇T,∇v)− ⟨M∂T
∂n
, v⟩Σ − i (T, v) + iγ−1

γ
(P, v) = ⟨gT , v⟩Γ,

γ
(︁
1− Λ

M

)︁
(T,w) + (1− iγΛ)

[︁
(∇P,∇w)− ⟨∂P

∂n
, w⟩Σ

]︁
−
[︁
γ
(︁
1− Λ

M

)︁
+ Λ

M

]︁
(P,w) = ⟨gP , w⟩Γ.

(41)

We add these equations together and define a0 : V×V → C as consisting of362

the volumetric terms:363

a0 (U,Ψ) =M (∇T,∇v)− i (T, v) + iγ−1
γ

(P, v)

+ γ
(︁
1− Λ

M

)︁
(T,w) + (1− iγΛ) (∇P,∇w)

−
[︁
γ
(︁
1− Λ

M

)︁
+ Λ

M

]︁
(P,w) ,

(42)

and F0 involving those boundary terms on the right-hand side:364

F0(Ψ) = ⟨gT , v⟩Γ + ⟨gP , w⟩Γ. (43)

Then, we can write (41) as365

a0(U,Ψ)− ⟨M∂T
∂n
, v⟩Σ − (1− iγΛ)⟨∂P

∂n
, w⟩Σ = F0(Ψ). (44)

At this point, we can close the system by selecting any of the boundary366

conditions discussed in Section 3 and substituting in the relevant expressions367

for ∂T
∂n

and ∂P
∂n

. Following the general form of the local boundary condi-368

tion (24), we define aA by369

aA(U,Ψ) =a0(U,Ψ)− ⟨α11T + α12P, v⟩Σ
− ⟨α21T + α22P,w⟩Σ

(45)

with370

A =

[︃
α11 α12

α21 α22

]︃
,

for the respective A chosen, cf. (25) and (26). This leads to the variational371

problem of finding U ∈ V such that372

aA(U,Ψ) = F0(Ψ) (46)
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for all Ψ ∈ V.373

We now consider variational problems corresponding to the exact, but374

nonlocal, boundary conditions. Recall that these boundary conditions are375

parametrized over the choice of σ = (σt, σp). Using boundary condition (38)376

in (41) motivates defining the bilinear form377

aσ(U,Ψ) =a0(U,Ψ)

+ ⟨ 1
t−−t+

[︁
t−

(︁
iσt − ∂

∂n

)︁
Dkt(Vt)− t+

(︁
iσp − ∂

∂n

)︁
Dkp(Vp)

]︁
, v⟩Σ

+ ⟨ 1
t−−t+

(︁
iσp − ∂

∂n

)︁
Dkp(Vp)− 1

t−−t+

(︁
iσp − ∂

∂n

)︁
Dkt(Vt), w⟩Σ,

≡a0(U,Ψ) + aNL
σ (U,Ψ)

(47)

and linear form378

Fσ(Ψ) = F0(Ψ) + ⟨ t−Gt−t+Gp

t−−t+
, v⟩Σ − ⟨Gt−Gp

t−−t+
, w⟩Σ. (48)

Then, we pose the variational problem of finding Uσ ∈ V such that379

aσ(U
σ,Ψ) = Fσ(Ψ) (49)

for all Ψ ∈ V . In fact, for any choice of σ, Uσ is the solution to (5) with380

scattering boundary conditions (6) and the Sommerfeld-type far field condi-381

tion (19).382

A standard Galerkin discretization of this problem is obtained by restrict-383

ing the test function Ψ to Vh, seeking Uσ
h ∈ Vh such that384

aσ(U
σ
h ,Ψh) = Fσ(Ψh) (50)

for all Ψh ∈ Vh.385

Analyzing this discretization follows along the lines proposed in [2] for the386

scalar Helmholtz problem – one establishes a Gårding inequality for the vari-387

ational form, by which existing theory [31] for Galerkin methods for elliptic388

operators provides solvability and optimal H1 and L2 and error estimates,389

subject to a sufficiently fine mesh. We have proven a Gårding-type inequality390

for the local form of Morse-Ingard in [14], and the same techniques used to391

handle the nonlocal terms for Helmholtz in [2] can be used for Morse-Ingard.392

Consequently,393

Theorem 4.1. There exists some h0 > 0 such that for h ≤ h0, the variational394

problem (50) has a unique solution Uσ
h , and this solution satisfies the best395

approximation result396

∥Uσ − Uσ
h ∥(H1(Ω′))2 ≤ C inf

Wh∈Vh

∥Uσ −Wh∥(H1(Ω′))2 , (51)
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and L2 error estimate397

∥Uσ − Uσ
h ∥(L2(Ω′))2 ≤ Ch ∥Uσ − Uσ

h ∥(H1(Ω′))2 , (52)

where the constants C in the two inequalities differ from each other but are398

independent of h.399

5. Linear algebra400

A major feature of our nonlocal boundary condition is the opportunity for401

efficient solvers. For the Helmholtz problem in [2], we demonstrated empiri-402

cally that preconditioning the entire operator with the local part led to very403

low GMRES iteration counts. This, of course, means the cost of inverting404

the local part of the operator drives the overall cost. It is well known that405

high wave numbers lead to notorious difficulty for iterative methods [32].406

Fortunately, this is not the case for the parameter regime of interest for407

Morse-Ingard. In decoupled form (10), the thermal mode has a large imag-408

inary part to complement the large real part, while the thermal mode has409

wave number approximately 1. Standard multigrid algorithms handle both410

of these situations effectively [33], so solving the problem in decoupled form411

proceeds along lines given in [2], followed by forming T and P from Vt and412

Vp.413

For the fully coupled system, we introduce a basis {ψi}dimVh

i=1 , and then414

we can write (50) as a linear system415

Ax = b, (53)

where416

Aij = aσ(ψj, ψi),

b = Fσ(ψj),
(54)

and then Uσ =
∑︁dimVh

i=1 xiψi.417

Following the partition of aσ given in (47), we can write A = AL +ANL,418

where419

AL
ij = a0(ψj, ψi),

ANL
ij = aNL

σ (ψj, ψi),
(55)

corresponding to the local and nonlocal parts of the bilinear form.420
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(a) AL (b) ANL (c) A

Figure 2: Sparsity patterns for the Morse-Ingard stiffness matrix on a coarse mesh with
520 vertices. The contributions from AL and ANL are shown separately, as well as the
combined pattern.

These two matrices have quite different structure. Figure 2 shows their421

sparsity pattern with piecewise linear basis functions, assuming all degrees422

of freedom for T are stored contiguously, followed by all degrees of freedom423

for P . AL then is a block 2× 2 matrix, with each block having the standard424

sparsity pattern of a P 1 finite element method – entry i, j nonzero when425

vertices i and j share an edge. This sparsity pattern is shown in Figure 2a.426

In our implementation, we simply assemble AL in a standard compressed427

sparse row format.428

On the other hand, ANL
ij is nonzero whenever i corresponds to a basis429

function supported on Σ and j corresponds to a basis function supported on430

Γ. This leads to logical dense subblocks, which might be expensive to store431

and operate with. However, the action of ANL onto a vector can be evaluated432

efficiently. As any vector x of the right size encodes a member Ux = (Tx, Px)433

of the finite element space, we can write434

(︁
ANLx

)︁
i
=

N∑︂
j=1

ANL
ij xj =

N∑︂
j=1

aNL
σ (ψj, ψi)xj = aNL

σ (Ux, ψi). (56)

We can efficiently compute this action to high accuracy in three stages.435

First, we compute the traces of Tx and Px on Γ and interpolate them to a436

quadrature grid obtained using the surface mapping on a quadrature rule437

from [34] on the reference element. This reduces the layer potential integrals438

to point potentials. Since source points (on Γ) and target points (on Σ)439

are well-separated, the kernels are non-singular, allowing the Gaussian-type440

rules of [34] to provide high accuracy. Then, the point potentials resulting441

from aNL are evaluated at discrete points on Σ by means of a fast multipole442
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method to interpolate the result into a polynomial space of one degree higher443

than the finite element space. Finally, these interpolated layer potentials are444

integrated against basis functions supported on Σ much like load vectors in445

a standard finite element algorithm.446

Solving the linear system with (preconditioned) GMRES [35], a parameter-447

free algorithm approximating the solution of the in the Krylov subspace by448

minimizing the equation residual over the Krylov subspace span{Aib}mi=0,449

requires only the action of the matrix-vector product and not the particular450

matrix entries. Hence, it is suitable for use with the matrix action described451

above. Unlike conjugate gradients, GMRES is not restricted to operators452

that are symmetric and positive definite.453

For most problems arising in the discretization of PDE, GMRES is most454

frequently used in conjunction with a preconditioner. Mathematically, we455

multiply the linear system through by some matrix ˆ︁P−1:456

ˆ︁P−1Ax = ˆ︁P−1b, (57)

and so the Krylov space then is span{
(︂ ˆ︁P−1A

)︂i ˆ︁P−1b}mi=0.457

The overall performance of GMRES typically depends on two factors – the458

cost of building and applying the operators ˆ︁P−1 and A, and the total number459

of iterations. One hopes to obtain a per-application cost that scales linearly460

(or log-linearly) with respect to the number of unknowns in the linear system,461

and a total number of GMRES iterations that is bounded independently of462

the number of unknowns. We think of ˆ︁P−1 being an approximation to the463

inverse of some matrix P that approximates A. As with the Helmholtz464

problem in [2], we will take P = AL, the local part of the operator. Unlike465

ANL, for which only matrix-vector products are available at acceptable cost,466

we have access to entries of AL, so applying ˆ︁P−1 might correspond to a467

sparse direct method, an application of some block preconditioner [14], or468

some other strategy like multigrid.469

As a partial justification of our choice of preconditioning matrix, when470 ˆ︁P = AL so that the inverse is applied exactly, we arrive at a preconditioned471

matrix of the form472

ˆ︁P−1A =
(︁
AL

)︁−1 (︁
AL + ANL

)︁
= I +

(︁
AL

)︁−1
ANL. (58)

Because ANL discretizes a compact operator (layer potential in weak form)473

and, moreover,
(︁
AL

)︁−1 discretizes the inverse of an elliptic operator, the pre-474
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conditioned matrix has the form of a (discretization of) a compact perturba-475

tion of the identity. We suggested obtaining such a form via preconditioning476

as a heuristic in [36]. Moret [37] gives rigorous GMRES convergence estimates477

for this situation once one establishes certain bounds on the operators. In478

practice, one might replace the inverse of AL with some approximation, such479

as a sweep of multigrid. We pursue these options experimentally later in480

our numerical results section. Blechta [38] has extended Moret’s results to481

describe GMRES convergence for this abstract setting.482

6. Numerical results483

Now, we present a suite of computational experiments applying our finite484

element methods and boundary conditions to the Morse-Ingard equations.485

All of our numerical experiments are conducted using the Firedrake package,486

a high-level library for the automated solution of partial differential equa-487

tions [39], leveraging the PETSc library [40, 41] for scalable solutions of the488

algebraic systems. Firedrake is capable of using higher-order meshes gener-489

ated with Gmsh [42], so that we can generate (not-quite nested) multigrid490

hierarchies conforming to the curvilinear tuning fork geometry. At its core,491

Firedrake provides automation for finite element variational forms described492

in a domain-specific language called UFL, or ‘Unified Form Language’ [43].493

Our experiments rely on Firedrake’s recently-developed ‘external operator’494

capability. This provides a type of ‘foreign function interface’ from within495

UFL with two key features. First, it allows users to extend UFL with new496

operators and have them seamlessly interact with variational forms and their497

derivatives/adjoints. Second, it allows users to specify evaluation rules, in-498

cluding interfacing to external libraries. These two features allow us to define499

the boundary conditions involving layer potentials within Firedrake’s high-500

level interface.501

Internally, layer potentials are evaluated using our Pytential package.502

Pytential [44] is an open-source, MIT licensed software system for eval-503

uating layer potentials from source geometry represented by unstructured504

meshes with high accuracy and near-optimal complexity. Pytential pro-505

vides for the discretization of a source surface using tools for high-order506

accurate nonsingular quadrature [34, 45], its refinement according to ac-507

curacy requirements [46], and, finally, the evaluation of integral operators508

via quadrature by expansion (QBX) [47] and the associated GIGAQBX fast509

algorithm [48], with rigorous accuracy guarantees in two and three dimen-510
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sions [49]. This fast algorithm, can, in turn make use of FMMLIB [50, 51]511

for the evaluation of translation operators in the moderate-frequency regime512

for the Helmholtz operator. In our two-dimensional experiments, we use an513

FMM order of 15, which provides sufficient accuracy for the accuracy of layer514

potential evaluation to not limit the overall accuracy obtained. While the515

integrals in our variational problem do not require the singular integral tech-516

nology allowed by QBX, it does provide robustness in the case of Σ and Γ517

are chosen to lie close together.518

Our simulations are performed on an Intel Xeon E5-2679 processor on an519

Ubuntu Linux machine with 256 GB of RAM. Although Firedrake supports520

distributed-memory parallelism, integration with Pytential at this level521

is the subject of future work, with a need to deal with difficulties such as522

additional required cross-rank data motion. Integrating these approaches to523

support (and distributed memory) parallelism is the subject of future work.524

In all of our experiments, we consider the configuration given in Figure 3.525

Our experiments do not carry out the conversion to the scattered-field for-526

mulation, but start with (5), Neumann boundary conditions (6) on Γ, and527

various choices of boundary conditions on Σ. The boundary condition on Γ528

is chosen such that true solution of the system are the pressure and tempera-529

ture free-space Green’s functions associated with a point source given at the530

red circle in Figure 3. These Green’s functions are shown in Figure 4.531

Neumann boundary conditions on Σ532

Since we are working on problems with analytic solutions, we can pose533

Neumann boundary conditions on Σ as well as Γ – the normal derivatives of534

the pressure and temperature in the variational form are replaced by the nor-535

mal derivatives of the known Green’s functions. This allows us to establish a536

baseline of finite element convergence and compare the accuracy obtained by537

both coupled and decoupled formulations of Morse-Ingard separately from538

the discussion of more realistic boundary conditions on Σ. Figure 5a shows539

the accuracy versus mesh refinement for linear, quadratic, and cubic approx-540

imations. Here, we plot the relative error in the L2 × L2 graph norm, whose541

square is given by542

E2 =
∥T − Th∥2 + ∥P − Ph∥2

∥T∥2 + ∥P∥2
.

We can also solve the decoupled system (10), with Neumann boundary543

conditions for Vt and Vp applied on both Γ and Σ, and we should mathemati-544

cally achieve the same results. However, Figure 5b shows that the numerical545
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Σ

Γ

Figure 3: Computational tuning fork domain is the rectangle minus yellow shaded region.
Σ is the outer rectangle, and Γ is the boundary of the tuning fork itself. The red circle
shows the location of the point source.

(a) Re(GT ) (b) Im(GT ) (c) Re(GP ) (d) Im(GT )

Figure 4: Real and imaginary parts of the temperature and pressure Green’s functions
corresponding to the source shown in Figure 3.
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error plateaus at about five digits of relative accuracy. We do not have a546

fully satisfactory explanation of this, although we note that the transforma-547

tion (9) between T, P and Vt, Vp has has a condition number on the order548

of 104 (despite being only a 2 × 2 matrix!). Applying the transformation549

once to form right-hand side of the decoupled system and then its inverse550

to produce the physical variables from the computed solution could easily551

amplify roundoff errors and limit the overall accuracy. The same issue was552

observed in our boundary integral method for Morse-Ingard in [17] and so553

seems generic to the decoupled formulation.554

We observed in [17] that one can approximate the system in this param-555

eter regime by only solving for the thermal mode Vt, approximating Vp by 0.556

This requires only solving one Helmholtz equation and produces numerical557

accuracy comparable to solving the decoupled pair of Helmholtz equations,558

as shown in Figure 5c.559
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(c) Single equation

Figure 5: Relative L2 × L2 accuracy of solving Morse-Ingard equations with Neumann
boundary conditions. Coupled, decoupled, and neglecting the thermal mode give compa-
rable solutions on coarse meshes, but the convergence in the decoupled form and single-field
forms levels off between 10−4 and 10−5.

Transmission boundary conditions on Σ560

In practice, we can use Neumann boundary conditions on Γ, but we do561

not know the Neumann data on Σ. The local transmission boundary condi-562

tions (22) and (23) lead to significant perturbations of the boundary value563

problem and cannot produce the correct answer. Figure 6 demonstrates that564

we we obtain a relative error of about 0.46 for the “correct” Sommerfeld con-565

dition (22) and about 0.51 for the ad hoc condition (23). This highlights the566

need for a more accurate boundary condition on Σ.567
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Figure 6: Relative L2 ×L2 accuracy of solving Morse-Ingard equations with transmission
boundary conditions (22) and (23) with piecewise linear basis functions. Both boundary
conditions lead to incorrect answers, and using quadratic or cubic basis functions produce
similar results.

Nonlocal boundary conditions on Σ568

Next, we consider the nonlocal boundary conditions (38) on Σ. These569

boundary conditions are exact, and we obtain much greater accuracy than570

for the local transmission boundary conditions. We do observe a leveling-off571

of the accuracy under mesh refinement in the fully coupled formulation in572

Figure 7a, although it obtains more digits of accuracy than the decoupled573

formulation in Figure 7b or solving only for the acoustic mode Vt and ap-574

proximating Vp ≈ 0 in Figure 7c. We do note that (47) requires decoupling575

transformation to apply the layer potentials to the thermal and acoustic576

modes, but not a subsequent application to form T and P from the results.577

Comparing these results, we can conclude that the decoupled form can lead578

to suitable results if less accuracy is required. In the more general two-way579

coupled model in [24], boundary conditions coupling the pressure and temper-580

ature to the tuning fork work in terms of T and P rather than the decoupled581

variables. Hence, any advantages gained in solving individual systems would582

be offset by more complex coupling in the boundary conditions.583

Solver performance584

Our nonlocal boundary conditions lead to high accuracy without PML,585

and now we show how multigrid-preconditioned GMRES leads to scalable586

solution algorithms for the linear system (50). The essential result is that, for587

our parameters of interest, the linear system is solved in a number of GMRES588

iterations independent of the mesh parameter and degree of polynomials used589

in the finite element discretization.590

We study two such solution approaches for the coupled formulation of591

Morse-Ingard with nonlocal boundary conditions. First, at each outer GM-592
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(c) Single equation

Figure 7: Relative L2 × L2 accuracy of solving Morse-Ingard equations with the nonlocal
boundary condition (38). The coupled form leads to a few more digits of accuracy than
the decoupled and single-field formulations.

RES iteration, use the inverse ofAL, itself applied with multigrid-preconditioned593

GMRES, as a preconditioner. Second, we may just use the multigrid precon-594

ditioner for AL as a preconditioner for the system. This trades the nested595

iteration needed for inverting AL for some (hopefully modest) increase in the596

overall iteration count.597

We use a monolithic multigrid approach that keeps pressure and temper-598

ature coupled together. The smoother is an additive Schwarz decomposition599

of the finite element spaces into small spaces based on the patch of cells600

around each vertex in the mesh [52], as shown in Figure 8 for quadratic el-601

ements. This smoother requires solving a small, local problems associated602

with each vertex of the mesh. For symmetric and coercive problems (cer-603

tainly not Morse-Ingard!) this is known to give condition number estimates604

independent of the polynomial degree, but in practice seems to perform well605

for many other problems [53, 54]. These smoothers are readily available606

in Firedrake through PCPatch [55] and ASMStarPC. On each level of the607

multigrid hierarchy, we apply two Chebyshev-accelerated iterations of this608

smoother, solving the coarse grid problem with a sparse LU factorization.609

7. Conclusions610

We have developed exact truncating boundary conditions for the Morse-611

Ingard equations. These boundary conditions use a Green’s formula repre-612

sentation of the solution in terms of layer potentials and work in general613

unstructured geometry. The action of the discrete operators may be evalu-614

ated efficiently using matrix-free finite elements and a fast multipole method615

for the layer potentials, and the linear system may be effectively precon-616

ditioned with the local part of the operator. Standard convergence theory617
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Figure 8: Typical vertex patch smoother for Morse-Ingard discretized with quadratic finite
elements. Gray circles indicate pressure unknowns, and green circles indicate temperature
unknowns.

holds for the Galerkin discretization, and the method gives good accuracy618

on small computational domains even with relatively coarse meshes.619

In the future, we hope to pursue a rigorous suite of three-dimensional620

calculations, compute with iterative treatment for AL, especially as ongo-621

ing Pytential improves its performance for three-dimensional problems.622

We also hope to study models in which the Morse-Ingard are equations are623

coupled to the tuning fork displacement.624
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