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Abstract

Morse and Ingard [I] give a coupled system of time-harmonic equations for
the temperature and pressure of an excited gas. These equations form a
critical aspect of modeling trace gas sensors. Like other wave propagation
problems, the computational problem must be closed with suitable far-field
boundary conditions. Working in a scattered-field formulation, we adapt
a nonlocal boundary condition proposed in [2] for the Helmholtz equation
to this coupled system. This boundary condition uses a Green’s formula
for the true solution on the boundary, giving rise to a nonlocal perturba-
tion of standard transmission boundary conditions. However, the boundary
condition is exact and so Galerkin discretization of the resulting problem con-
verges to the restriction of the exact solution to the computational domain.
Numerical results demonstrate that accuracy can be obtained on relatively
coarse meshes on small computational domains, and the resulting algebraic
systems may be solved by GMRES using the local part of the operator as
an effective preconditioner. These numerical results taken together combine
several advanced techniques, including higher-order finite elements, geomet-
ric multigrid in curvilinear geometry, native use of complex arithmetic, and
incorporation of nonlocal operators. These are tied together in a high-level
simulation using the Firedrake library.
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1. Introduction

Laser absorption spectroscopy is used for detecting trace amounts of gases
in diverse application areas such as air quality monitoring, disease diagnosis,
and manufacturing [3], 14} [5]. In photoacoustic spectroscopy, a laser is focused
between the tines of a small quartz tuning fork, and in the presence of a
particular gas, acoustic and thermal waves are generated. These waves, in
turn, generate mechanical vibration of the tuning fork, and both pyroelec-
tric and piezoelectric effects induce an electric signal that is measured to
detect the presence of the gas. Two variants of these sensors are the so-called
QEPAS (quartz-enhanced photoacoustic spectroscopy) and ROTADE (reso-
nant optothermoacoustic detection) models [0l [7]. In QEPAS, the acoustic
wave dominates the signal, while the thermal wave is more important in RO-
TADE. While engineered systems typically emphasize one of these waves, a
good model should account for both effects.

Earlier work on modeling this problem [, [0, [10] simplified the model to a
single heat or wave equation. Then, an empirical damping term is added to
the tuning fork vibration to account for otherwise-neglected processes. This
term is generally only available from laboratory experiments with a particular
geometry or through analytic calculations in highly-idealized geometry. This
approach is only accurate in particular regimes, and the empirical corrections
depend strongly on geometry as well as physical parameters. With a more
complete model that includes a two-way coupling between the pressure and
temperature with the tuning fork deformation, the damping emerges without
these specialized empirical corrections. Hence, such a system is far more
suitable for design optimization in which the tuning fork geometry is modified
to maximize the electric signal.

Accurate simulation of the Morse-Ingard system [I] have been a critical
first step in this direction. The Morse-Ingard equations, derived from a
linearization of Navier-Stokes, give a coupled heat and wave equation for
the temperature and pressure. In the context of trace gas sensing, they
include a volumetric forcing term that models the laser heating the trace gas
molecules. These equations are posed in a time-harmonic setting, leading to
complex-valued Helmholtz-type formulations of the equations. The pressure
and temperature on the tuning fork surface are of primary interest, and a
fully-coupled model requires carefully chosen boundary conditions to couple
these values to the behavior of the tuning fork.

A finite element discretization of the coupled pressure-temperature sys-
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tem was first addressed in [I1], where the difficulty of solving the linear sys-
tem was noted. Kirby and Brennan gave a more rigorous treatment in [12],
with analysis of the finite element error and preconditioner performance.
Kaderli et al derived an analytical solution for the coupled system in ide-
alized geometry in [I3]. Their technique involves reformulating the system
studied in [12] by an algebraic simplification that eliminates the tempera-
ture Laplacian from the pressure equation. In [14], this reformulation was
seen to lose coercivity but still retain a Garding-type inequality, leading to
optimal-order finite element convergence theory and preconditioners. Work
by Safin et al [15] began a more robust multi-physics study, coupling the
Morse-Ingard equations for atmospheric pressure and temperature to heat
conduction of the quartz tuning fork, although vibrational effects were still
not considered. They also applied a perfectly-matched layer (PML) [16] to
truncate the computational domain, and a Schwarz-type preconditioner that
separates out the PML region was used to effectively reduce the cost of solv-
ing the linear system. They also include some favorable comparisons between
the computational model and experimental data.

Previous numerical analysis of this problem in the cited literature has
focused on volumetric discretizations based on finite elements. In [I7], we
derived a boundary integral formulation for a scattered-field form of the
Morse-Ingard equations. As with other wave problems, this problem writes
the solution as the sum of a Morse-Ingard solution that satisfies the forcing
(evaluated by means of a fast volumetric convolution with a Green’s func-
tion) plus a field that satisfies Morse-Ingard with no volumetric forcing but
Neumann data on the tuning fork such that the sum satisfies homogeneous
boundary conditions. We then formulated a second-kind integral equation
for the scattered field and approximated it with a boundary integral method.
In this work we return to finite element discretization, but we make use of the
results we obtained considering the integral form of the equations to make
significant advances in imposing a far-field condition.

In 2], we developed a novel nonlocal boundary condition for truncating
the domain of Helmholtz scattering problems. This condition, which uses
Green’s representation of the solution on the artificial boundary to give a
nonlocal Robin-type condition involving layer potentials, is exact — the so-
lution of resulting BVP agrees exactly with the restriction of the solution
of the original problem to the computational domain. The resulting finite
element stiffness matrix decomposes into “local” and “nonlocal” parts. The
local part is exactly that obtained by discretizing the problem subject to
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transmission boundary conditions. The nonlocal part of the operator in-
cludes the layer potentials. It has logical dense subblocks but can be applied
in a matrix-free way using fast multipole methods. One preconditions the
system matrix by (perhaps approximately) inverting only the local part. We
believe that this nonlocal boundary condition offers several potential advan-
tages, both theoretically and computationally, over perfectly matched layers.
Because PML solves a perturbed PDE, careful analysis [18] is required to
show that the solution to the original PDE is recovered with increasing layer
size. However, our method directly discretizes the true PDE and requires no
such additional analysis. Second, our method avoids the additional (volume)
degrees of freedom in the PML region, leading to smaller linear systems.
Finally, multigrid algorithms must be carefully adapted for use with PML
For example, the work in [19] uses a custom grid coarsening strategy that
doesn’t coarsen normal the boundary, limiting the practicality of the method
for unstructured meshes, and [20] use special complex-valued and higher-
order inter-grid transfers. Without PML, we can precondition the local part
of our operator with rather standard multigrid techniques.

Our approach to domain truncation for Helmholtz-type problems builds
on other approaches to combine nonlocality or integral operators with fi-
nite element discretizations, giving effective boundary truncation without
directly perturbing the boundary value problem to be solved. Johnson and
Nédélec [21] perform domain truncation by coupling the PDE in the compu-
tational domain to a boundary integral equation on the boundary. This ap-
proach requires separate unknowns in the volume and for its boundary trace
and solutions of the both the volumetric and surface operators. Although
not needed for Morse-Ingard, we remark that this method has recently been
extended to heterogeneous problems [22]. Keller and Givoli [23] introduce
a Dirichlet-to-Neumann or Poincaré-Steklov operator on the boundary, giv-
ing a simpler formulation with only a single unknown field. However, using
the DtN operator technically requires the solution of an exterior problem
with given Dirichlet data, taking the normal derivative of the result. If the
boundary of the computational domain has a simple shape, this can be well
approximated by a truncated Fourier series. While these methods require
(at least approximately) solving boundary integral equations, our approach
only requires evaluating a layer potential a finite distance from the scatterer,
hence avoiding any singular integrals or solution processes.

In this paper, we extend the domain truncation in [2] from the Helmholtz
operator to the Morse-Ingard system. This extension makes use of several

4
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results obtained in [I7], where we in fact develop numerical methods based
on an integral equation of this system In Section [2] we recall the Morse-
Ingard equations. Then, Section [3| addresses far-field boundary conditions
for the system and appropriate boundary conditions for domain truncation.
By means of the transformation to a decoupled Helmholtz system, we are
able to state an analogous far-field condition and associated transmission-
type condition for the Morse-Ingard system. This allows a comparison to
the ad hoc transmission boundary conditions used in [12], [14]. Moreover, we
can derive an exact analog of the nonlocal Helmholtz boundary condition for
Morse-Ingard.

Although one may directly solve the decoupled Helmholtz equations rather
than the coupled form of Morse-Ingard, formulating boundary conditions and
directly simulating the coupled system serves several purposes. First, the de-
coupled formulation leads to lower numerical accuracy than the fully coupled
formulation. This reduced accuracy was also observed in integral formula-
tions in [17], and we comment further in Section[6] Second, a more complete
model of trace gas sensors [24] involves coupling Morse-Ingard to the tuning
fork vibration, which in turn requires modeling the fluid flow. Domain trun-
cation will still be required, but coupling of pressure and temperature to the
fluid and tuning fork may limit the utility of the decoupled system. Addi-
tionally, as noted in [I7], solving for the acoustic mode while neglecting the
thermal mode turns out to be an effective approximation. After developing
the boundary conditions in Section [3, we derive a finite element formulation
for the Morse-Ingard system in Section [ We discuss the structure of the
linear system and approaches to preconditioning in Section [5| and we then
provide some numerical in Section [6] before offering some final conclusions in
Section [7l

2. The Morse-Ingard equations

The Morse-Ingard equations of thermoacoustics are a system of partial
differential equations for the temperature and pressure of an excited gas.
The model begins from a time-domain formulation. After assuming time-
periodic forcing and performing nondimensionalization and some algebraic
manipulations, we arrive at the form given in [I3] and further analyzed in [14]:

—MAT —iT + NT—lP =S,

Y(I=2)T—(1—ivyA) AP — [y (1 - &)+ &] P =iy LS.

(1)

5
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Here, T" and P are the non-dimensional temperature and pressure, respec-
tively, within the gas. S is a volumetric forcing function, modeling heating
of a trace gas by a laser.  is the ratio of specific heat of the gas at constant
pressure to that at constant volume. The dimensionless number M measures
the ratio of the product of the characteristic thermal conduction scale and
forcing frequency to sound speed, and A does similarly for the viscous length
scale. Typical values of parameters would be (to two decimal places)

v="T/5
M =366-10" (2)
A=537-10"°

are taken as in [13], [17].

We let Q¢ C R? (with d = 2,3) be a bounded domain representing the
tuning fork, and let its boundary be called I'. The complement of Q¢ will
be the domain 2 on which we pose . On I', we impose homogeneous
Neumann boundary conditions,

or 0 orP

" T
which posits that the tuning fork is thermally insulated from the gas, and
that the tuning fork is sound-hard. More advanced models, in which the gas
heats the tuning fork or the acoustic waves couple to tuning fork deformation,
generalize this condition [24], [15].

A suitable far-field condition is required to close the model, which re-
quires some appropriate decay at infinity akin to the Sommerfeld radiation
condition for the Helmholtz operator. Numerical methods based on volu-
metric discretization on a truncated domain have posed either some kind of
transmission-type condition [12} I4] or perfectly-matched layers [15].

In [I7], we gave a boundary integral method for Morse-Ingard based on a
scattered-field formulation, which turns the volumetric inhomogeneity into an
inhomogeneous Neumann condition on I'. We discuss this in greater detail in
Section[3.2] To arrive at the scattered-field formulation, we split the solution
into incoming and scattered waves via

0, (3)

T=T+T° P=P 4P, (4)

where T* and P! satisfy with the given forcing function S but have some
inhomogeneous boundary conditions on I'. Then, T° and P?® are chosen to
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satisfy with homogeneous forcing S = 0 and such that the combined
waves satisfy . The incoming waves 7% and P’ can be constructed by
volumetric convolution of S with a free-space Green’s function. With these
in hand, their normal derivatives on I' can be computed, and the negative of
these used as boundary conditions for 7 and P?. Consequently, we drop the
superscripts ‘s’ for the scattered field and, for the rest of the paper, consider
the system of PDE

—MAT—z‘T%—WT_lP:O,
V(A=) T = A=y AP = [y (1= 5) + 5] P =0,

together with boundary conditions

oT OP
% =d4r, % = gp, (6)

on I' together with an appropriate far field condition. Although we ob-
tained satisfactory results with a boundary integral method in [17], we work
with volumetric (finite element) discretizations here to chart a path towards
modeling of additional volumetric physical phenomena without additional
computational machinery in future work. Consequently, in this paper we are
primarily interested in developing an analog of the nonlocal boundary condi-
tion developed in [2] for the Morse-Ingard system. To this end, we introduce
a truncating boundary ¥ and define a domain €' C €2 to be that contained
between I' and X, as shown in Figure [T

In [I7], we demonstrated that the Morse-Ingard system could be de-
coupled into a pair of independent Helmholtz equations. After significant
algebraic manipulations, we introduce modified material coefficients

Q* = 4(iM +YMA) + (1 —iyM — iN)?,

(20 — A — My + )M T iMQ (7)
29(A = M)(iAy — 1)

4+ =

as well as separate thermal and acoustic wave numbers
12 ? 1 —iyM —iA+Q
L oM 1 —ivA ’
12 ? 1 —iyM —iA—-Q
P2M 1 —iyA '
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Figure 1: The yellow-shaded area represents the tuning fork. The computational domain
Q) is the rectangle minus the tuning fork. ¥ is the outer rectangle, and I" is the boundary
of the tuning fork itself.

With the change of variables

=T eeon =2, ®

the Morse-Ingard system decouples into separate Helmholtz equations

AV, + kPVi = S,

2 2 (10)
AV, + k,V, = a,S,
where a; and a, are data-dependent constants. Typical values of these new
parameters, again to two decimals, based on those from given above are

k, = 116.81 + 116.82,

11
ky=1+3.42- 107", (1)
For the acoustic mode, k, has a modest real part and very small imaginary
part. Hence, V, attenuates slowly but can be well-resolved with suitable
domain truncation. However, the large real and imaginary parts of k; suggest
that the thermal mode may be difficult to resolve. We also note that the
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matrix in @D, despite being 2 x 2 has a condition number on the order of 10%
and so may amplify roundoff error in practice.

The same change of variables decouples the scattered-field formulation (5)).
In this case, we have that

AV, + K2V, = 0,

12
AV, + k2V, =0, (12)

and, by linearity, we take the normal derivative of @[) on I' to find boundary
conditions

AT i o B

So, with gr and gp given a priori, the scattered field formulation of Morse-
Ingard can be solved as a pair of decoupled Helmholtz scattering problems.

3. Far field boundary conditions

3.1. Boundary conditions for the Helmholtz problem

We can state far-field boundary conditions for Morse-Ingard and formu-
late appropriate radiation boundary conditions on ¥ by transforming such
conditions for each of the decoupled Helmholtz equations in . So, we
begin with the equation

—Au — k*u =0 (14)

with Im x > 0, posed on €, together with Neumann boundary condition

ou
8_n =4 (15)

on the scattering boundary I'. The relevant boundary condition at infinity is
the well-known Sommerfeld radiation condition [25] 26], which requires that

MJMV2<é%—NOu:0. (16)

A simple approximate boundary condition arises from imposing Sommer-

feld at finite radius, i.e.
(% —ili) u=0 (17)
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on the exterior boundary . This is sometimes called the transmission
boundary condition. If the exterior boundary ¥ is at some radius R away
from the origin, this creates an O(R™2) perturbation of u apart from any
numerical discretization error, although one may mitigate the computational
cost of increasing R by simultaneously increasing the mesh spacing toward
the outer boundary [27].

An alternative approach is the technique of perfectly matched layers |16,
28], in which one modifies the PDE near the boundary in a so-called sponge
region. The modified coefficients effectively absorb outgoing waves and allow
small computational domains, but the resulting algebraic equations do not
yield to efficient techniques such as multigrid. One can use a Schwarz-type
method to separately handle the sponge region with a direct solver and the
rest of the domain with multigrid or another fast solver [I5], although the
known method has sub-optimal complexity in three dimensions.

Many nonlocal approaches to domain truncation have also been given.
Most classically, the Dirichlet-to-Neumann map (DtN) or Stekhlov-Poincaré
operator can be used on the artificial boundary. By mapping between types of
boundary data, DtN operators require, in principle, the solution of a bound-
ary value problem. In practice, this is often realized by restricting the trun-
cation boundary to (mappings of) a simple geometry in which separation of
variables can be performed and then making use of a truncated Fourier series.
In [2], we give a new approach to nonlocal boundary conditions that requires
only the evaluation of non-singular layer potentials, i.e. a surface convolu-
tion with the Helmholtz free-space Green’s function or its derivatives. A fast
algorithm such as the Fast Multipole Method is useful to avoid quadratic
complexity. In its continuous (i.e. not yet discretized) form, this boundary
condition is exact, and discretization with any order of accuracy is straight-
forward. In Subsection [3.3, we recall the formulation of this condition for
the Helmholtz operator and develop it for the Morse-Ingard system.

3.2. Far-field conditions for Morse-Ingard

Each of the decoupled Helmholtz equations in must satisfy the Som-
merfeld condition, so that

lim |:1:|an1 <i — z'k:t) V;

= lim |x\n771 <% - ikp> V,=0.

|| =00

(18)

10



%6 In terms of the variables T" and P, the Morse-Ingard solution must satisfy

lim |z|"7 (i - ik;t) [MT + (1 — iyA)P]

= lim |z|"7 (% — ikp) [MT +t_(1—iyA)P] = 0.

»7  Because of the large imaginary part of k; the thermal mode attenuates very
xs quickly, so some simple boundary condition could be suitable for V;. The
%9 acoustic mode, on the other hand, has only a very small imaginary part and
20 80 outgoing waves attenuate very slowly. Since V), depends on both 7" and P,
on however, artificial boundary conditions must act on both of these variables.
272 We may find an analog to the transmission boundary condition by
o3 imposing those conditions on each of the decoupled equations, so that we
74 Tequire

0
’ (20)
a5 In terms of T' and P, we have

(2 - z'kt) (MT + (1 —iyA)P) =0,

0
o (21)
<— — z'k:p) (MT +t_(1—1iyA)P) = 0.
on
216 With some elementary but involved algebraic manipulation, we have
T t_ky—t k tit (ky—k
Ma_zi P MT 4 bt (ke — ky) (1—iyA) P
an t_ — t+ t_ — t+ (22>
, orP | k,—k tok, —tik ,
1 —iyA) — = 4 T = N (1—iyA) P
i) G =i [t g[S i
217 This boundary condition is of course only an approximation of the actu-

o ally desired far-field condition, in the same sense in which approximates
29 (|16)), i.e. it becomes exact as ¥ moves outward, analogous to the analysis
20 in [27] for Helmholtz.

11
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On the other hand, in prior work [12 [14], we had not yet developed
the appropriate Sommerfeld condition for Morse-Ingard and used the ad hoc
boundary conditions o7 op
This condition assumes that no heat is transported from the computational
domain and an approximate version of is applied only to the pressure
component. Clearly, this boundary condition is quite different from . In
particular, the outgoing wave for V), carries both pressure and temperature
with it, thus avoiding reliance on the decay of T' for accurate imposition of
the boundary condition.

Define
T
7=
and M
0
¢= [ 0 1- MA] '
Then, boundary conditions and can be written in the form
ou
C— =AU 24
an (24)

where for (22)) we have

_ki—tik _(ki—Fk ,
A— t tj—ii . (ultt,(—tt+ p)> (1 —ivA)

, (25)
kp—k?t tfkp—t ki .
t—ty ( t_ft_t > (1 —ivA)

and for (23)),
0 0
A= [0 V(1= mA)} (26)

Before proceeding, we offer a brief remark on perfectly matched layers
for the Morse-Ingard equations. In [15, 29|, it was found that PML must
be applied to both the temperature and pressure in order to achieve accu-
rate domain truncation. Our discussion of transmission boundary conditions
shines further light on this observation. The acoustic mode involves a lin-
ear combination of both temperature and pressure, and hence both variables
must be damped at the computational boundary in order to avoid spurious
reflections.

12
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3.3. Nonlocal boundary conditions

Now, we formulate a nonlocal boundary condition based on a Green’s
integral representation of the solution. As mentioned, this provides an (in
principle) exact boundary condition without the geometric limitations of DtN
techniques. We introduced this technique for the Helmholtz operator in [2]
and now apply it to Morse-Ingard.

For the Helmholtz problem, we let IC(z, y) be the free-space Green’s func-
tion, which is given by

LHD (sla]) d =2,
Ki(x) = {4 el g3 (27)
me = 9.

Here, Hél) is the first-kind Hankel function of order 0. We recall Green’s
representation theorem [25, Thm. 2.5|, [30] for the Helmholtz equation:

u(r) = Dy(u)(z) = Se(u)(z) (v € ), (28)

where D, and S, refer to the double- and single-layer potentials associated
with wave number k, respectively. These are

Su(wie) = [ Kulo — ) Wi, (29)
Do) = [ (Kule =) ulwhi (30)

Although the double-layer potential is weakly singular, our techniques only
require its evaluation away from the singularity on I'. In anticipation of ap-
plying our technique to the decoupled Helmholtz form of Morse-Ingard ,
we include the wave number x and use distinct layer potentials with x =
kp, k.

Using the scattering boundary condition ([15)) on T', this becomes (omit-
ting the spatial argument)

w=D,.(u) - S,(g). (31)

This representation is valid away from the scattering boundary I', and in
particular, on 3. Hence, we can take its normal derivative, so that on ¥

gu — 2 (Dy(u) = S(9)) - (32)

13
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In [2], we subtracted ixu from each side of and rearranged to arrive at
a nonlocal Robin-type boundary condition

o = iru — (ir — 5) (Dx(u) — Se(9)) - (33)
More generally, we can subtract some ¢o times u from each side of to
write the condition

G —jou — (ic — 2) (Du(u) — Su(g)), (34)
and then (32)) is obtained with o = 0 and with o = k.

Now, we can apply this boundary condition, in either the form or
to the decoupled Helmholtz system and back-convert to obtain appropriate
nonlocal boundary conditions for Morse-Ingard. As in deriving the local
transmission condition, we start with the decoupled form and see what is
implied in the coupled form. We let o = (o, 0,) be a pair of complex

numbers. Then, we apply the boundary condition to each equation
of on Y, so that we have

v, . . 0
a_nt =104V — (wt — %) (Dr, (Vi) = Sk, (9v2))

v, )

T —ioy¥y ~ (i, 3 ) (D (1) = Siy o). v

Now, we substitute in for V; and V), via @, but not in the layer potentials:

L (MT +t,(1 — iyA)P) =ioy (MT + t4(1 — iyA)P) + Ry, (36)
2 (MT +t_(1 —iyA)P) =i, (MT +t_(1 — iyA)P) + R,
where
R, = — (io; — 2) Dy, (V) + G,
t (wt 8n) k ( t) t (37>

Ry, =— (iap - a%) ka(vp) + Gy,

and G, = (io; — 2) Sk, (9v,) and a similar definition for G,,.
Similar manipulations leading from to let us rearrange these

14
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equations to

or |t_oy—tiop
T | TR M
M Z[ P }M
H[w——ﬂ (1—inA) P
t_—t,
I
opr ol (38)
Oy — O
1 —iyA) =— =i |2—L| MT
(L=ivh) 5 Z{t_—tJM

to—t,
+%—m
t_—ty

44 {M} (1—iyA) P

Note that the nonlocality is contained in R, and R, each of which depend
on both 7" and P through either V; or V.

4. Variational formulation

In this section, we give a finite element formulation of the Morse-Ingard
equations under various boundary conditions. First, we establish some
notation. We let L?(£)') denote the standard space of complex-valued func-
tions with moduli square-integrable over Q" and H*(€Y) C L?(Q2) the subspace
consisting of functions with weak derivatives up to and including order k also
lying in L?*(Q)'). For any Banach space V, we let || - ||y denote its norm, with
the subscript typically omitted when V = L%(0).

The space L*(€') is equipped with the standard inner product

@mzwﬂm@ﬂ, (39)

and we also define the inner product over a portion of the boundary I' C 9

by
(f.9)p = / £(5)g(s)ds. (40)

We partition €2’ into a family of conforming, quasi-uniform triangula-
tions [31] {7,}r>0. Let V), be the standard space of continuous piecewise
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polynomials of some degree k > 1 over T,. Since we are dealing with a
system of two PDE, we define V), =V, x V).

We multiply the equations of by the conjugate of the test functions
v,w € Vy, respectively and integrate by parts over . We let U = (T, P)
and ¥ = (v,w). Applying the Neumann boundary conditions @ on I' but
not taking action yet on Y, we have

M (VT,Vv) — (./\/lg—g, vyy — i (T,v) + 27 L(Pv) = (g97,v)r,
~y (1 — ﬁ) (T, w) + (1 —ivA) [(VP, Vw) — (8n, W)y } (41)
[y (1= %) + % (Pow) = (gp, w)r.

We add these equations together and define ag : V x 'V — C as consisting of
the volumetric terms:

ap (U, ¥) =M (VT,Vv) —i(T,v) + ’ﬂT_l (P,v)
+9 (1= %) (Tow) + (1L —iyA) (VP, Vw) (42)
— [y (1= 3%) + %] Pw),

and F{ involving those boundary terms on the right-hand side:

Fo(¥) = (gr,v)r + (gp, w)r. (43)
Then, we can write as
ap(U, ¥) — (MG, v)s — (1= iyA) (G, w)s = Fo(V). (44)

At this point, we can close the system by selecting any of the boundary

conditions discussed in Section [3]and substituting in the relevant expressions

for g—z and 8—5. Following the general form of the local boundary condi-

tion (24)), we define a4 by
CLA(U, \I/) :ao(U, \If) — <a11T—|—a12P, U)Z (45>
— <0521T -+ OZQQP, U}>g
with

Q11 Q2
A= ,
Qo1 (g9

for the respective A chosen, cf. and . This leads to the variational
problem of finding U € V such that

as(U, V) = Fo(¥) (46)
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for all U € V.

We now consider variational problems corresponding to the exact, but
nonlocal, boundary conditions. Recall that these boundary conditions are
parametrized over the choice of o = (0¢, 0,). Using boundary condition (38))
in (41) motivates defining the bilinear form

ae (U, V) =ao(U, ¥)
+ <t_it+ [t— (iat - c‘%) Dy, (Vi) — t4 (wp - a%) Dy, (Vp>] ,U)s
+ {4 (iop — 55) Di, (Vo) — =25 (i0p — 57) D, (Vi) w7y
=ao(U, V) + a)*(U, V)
and linear form

FolW) = Fo(®) + (5520282 0}y — (902 ), (48)

t_—ty t_—ty )

Then, we pose the variational problem of finding U? € V such that
(U7, V) = Fo () (49)

for all ¥ € V. In fact, for any choice of o, U? is the solution to (5 with
scattering boundary conditions @ and the Sommerfeld-type far field condi-
tion ({19)).

A standard Galerkin discretization of this problem is obtained by restrict-
ing the test function ¥ to V), seeking U7 € V), such that

ag(Uy, Wn) = Fo(Wh) (50)

for all ¥, € V,,.

Analyzing this discretization follows along the lines proposed in [2] for the
scalar Helmholtz problem — one establishes a Garding inequality for the vari-
ational form, by which existing theory [31] for Galerkin methods for elliptic
operators provides solvability and optimal H' and L? and error estimates,
subject to a sufficiently fine mesh. We have proven a Garding-type inequality
for the local form of Morse-Ingard in [14], and the same techniques used to
handle the nonlocal terms for Helmholtz in 2] can be used for Morse-Ingard.
Consequently,

Theorem 4.1. There exists some hg > 0 such that for h < hy, the variational
problem has a unique solution U, and this solution satisfies the best
approximation result

107 = Uil @ye < € ik, 107 = Wallgn @z (51)
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and L? error estimate
1U7 = U || (r2ryye < CRINUT = UR |l (a1 a2 » (52)

where the constants C' in the two inequalities differ from each other but are
independent of h.

5. Linear algebra

A major feature of our nonlocal boundary condition is the opportunity for
efficient solvers. For the Helmholtz problem in [2], we demonstrated empiri-
cally that preconditioning the entire operator with the local part led to very
low GMRES iteration counts. This, of course, means the cost of inverting
the local part of the operator drives the overall cost. It is well known that
high wave numbers lead to notorious difficulty for iterative methods [32].
Fortunately, this is not the case for the parameter regime of interest for
Morse-Ingard. In decoupled form , the thermal mode has a large imag-
inary part to complement the large real part, while the thermal mode has
wave number approximately 1. Standard multigrid algorithms handle both
of these situations effectively [33], so solving the problem in decoupled form
proceeds along lines given in [2], followed by forming 7" and P from V; and
V.

For the fully coupled system, we introduce a basis {@DZ}?;HI Vi and then
we can write as a linear system

Ax = b, (53)

where

(54)

and then U7 = Z?;Hf Vi xab;.
Following the partition of a, given in , we can write A = AF + ANL,
where
Af] = aO(w]’a ¢2>7
AgL = agL@ZJj’ QZ}Z)?

corresponding to the local and nonlocal parts of the bilinear form.

(55)
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Figure 2: Sparsity patterns for the Morse-Ingard stiffness matrix on a coarse mesh with
520 vertices. The contributions from AL and AN’ are shown separately, as well as the
combined pattern.

These two matrices have quite different structure. Figure [2] shows their
sparsity pattern with piecewise linear basis functions, assuming all degrees
of freedom for T' are stored contiguously, followed by all degrees of freedom
for P. A" then is a block 2 x 2 matrix, with each block having the standard
sparsity pattern of a P! finite element method — entry i,j nonzero when
vertices ¢ and j share an edge. This sparsity pattern is shown in Figure [2a]
In our implementation, we simply assemble A" in a standard compressed
sparse row format.

On the other hand, AZ]-}’L is nonzero whenever ¢ corresponds to a basis
function supported on 3 and j corresponds to a basis function supported on
I'. This leads to logical dense subblocks, which might be expensive to store
and operate with. However, the action of AV onto a vector can be evaluated
efficiently. As any vector x of the right size encodes a member Uy = (T, Px)
of the finite element space, we can write

N N

(AN'x), = > AN = ay (0, )%, = a) (U, ). (56)

j=1 j=1

We can efficiently compute this action to high accuracy in three stages.
First, we compute the traces of Ty and P on I' and interpolate them to a
quadrature grid obtained using the surface mapping on a quadrature rule
from [34] on the reference element. This reduces the layer potential integrals
to point potentials. Since source points (on I') and target points (on X)
are well-separated, the kernels are non-singular, allowing the Gaussian-type
rules of [34] to provide high accuracy. Then, the point potentials resulting
from a™* are evaluated at discrete points on ¥ by means of a fast multipole
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method to interpolate the result into a polynomial space of one degree higher
than the finite element space. Finally, these interpolated layer potentials are
integrated against basis functions supported on ¥ much like load vectors in
a standard finite element algorithm.

Solving the linear system with (preconditioned) GMRES [35], a parameter-
free algorithm approximating the solution of the in the Krylov subspace by
minimizing the equation residual over the Krylov subspace span{A‘b}"
requires only the action of the matrix-vector product and not the particular
matrix entries. Hence, it is suitable for use with the matrix action described
above. Unlike conjugate gradients, GMRES is not restricted to operators
that are symmetric and positive definite.

For most problems arising in the discretization of PDE, GMRES is most
frequently used in conjunction with a preconditioner. Mathematically, we
multiply the linear system through by some matrix P~

P 'Ax = P 'p, (57)

and so the Krylov space then is span{ <ﬁ*1A>l ﬁflb}:f;o.

The overall performance of GMRES typically depends on two factors — the
cost of building and applying the operators P~! and A, and the total number
of iterations. One hopes to obtain a per-application cost that scales linearly
(or log-linearly) with respect to the number of unknowns in the linear system,
and a total number of GMRES iterations that is bounded independently of
the number of unknowns. We think of P~! being an approximation to the
inverse of some matrix P that approximates A. As with the Helmholtz
problem in [2], we will take P = AL, the local part of the operator. Unlike
ANE_for which only matrix-vector products are available at acceptable cost,
we have access to entries of A¥, so applying P~! might correspond to a
sparse direct method, an application of some block preconditioner [14], or
some other strategy like multigrid.

__ As a partial justification of our choice of preconditioning matrix, when
P = A so that the inverse is applied exactly, we arrive at a preconditioned
matrix of the form

P A= (AN (AP 4 ANE) = [ 4 (AT) T AN, (58)

Because AN discretizes a compact operator (layer potential in weak form)
and, moreover, (AL)_l discretizes the inverse of an elliptic operator, the pre-
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conditioned matrix has the form of a (discretization of) a compact perturba-
tion of the identity. We suggested obtaining such a form via preconditioning
as a heuristic in [36]. Moret [37] gives rigorous GMRES convergence estimates
for this situation once one establishes certain bounds on the operators. In
practice, one might replace the inverse of A* with some approximation, such
as a sweep of multigrid. We pursue these options experimentally later in
our numerical results section. Blechta [38] has extended Moret’s results to
describe GMRES convergence for this abstract setting.

6. Numerical results

Now, we present a suite of computational experiments applying our finite
element methods and boundary conditions to the Morse-Ingard equations.
All of our numerical experiments are conducted using the Firedrake package,
a high-level library for the automated solution of partial differential equa-
tions [39], leveraging the PETSc library [40}, 4] for scalable solutions of the
algebraic systems. Firedrake is capable of using higher-order meshes gener-
ated with Gmsh [42], so that we can generate (not-quite nested) multigrid
hierarchies conforming to the curvilinear tuning fork geometry. At its core,
Firedrake provides automation for finite element variational forms described
in a domain-specific language called UFL, or ‘Unified Form Language’ [43].
Our experiments rely on Firedrake’s recently-developed ‘external operator’
capability. This provides a type of ‘foreign function interface’ from within
UFL with two key features. First, it allows users to extend UFL with new
operators and have them seamlessly interact with variational forms and their
derivatives/adjoints. Second, it allows users to specify evaluation rules, in-
cluding interfacing to external libraries. These two features allow us to define
the boundary conditions involving layer potentials within Firedrake’s high-
level interface.

Internally, layer potentials are evaluated using our PYTENTIAL package.
PYTENTIAL [44] is an open-source, MIT licensed software system for eval-
uating layer potentials from source geometry represented by unstructured
meshes with high accuracy and near-optimal complexity. PYTENTIAL pro-
vides for the discretization of a source surface using tools for high-order
accurate nonsingular quadrature [34) [45], its refinement according to ac-
curacy requirements [46], and, finally, the evaluation of integral operators
via quadrature by expansion (QBX) [47] and the associated GIGAQBX fast
algorithm [48], with rigorous accuracy guarantees in two and three dimen-
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sions [49]. This fast algorithm, can, in turn make use of FMMLIB [50, 51]
for the evaluation of translation operators in the moderate-frequency regime
for the Helmholtz operator. In our two-dimensional experiments, we use an
FMM order of 15, which provides sufficient accuracy for the accuracy of layer
potential evaluation to not limit the overall accuracy obtained. While the
integrals in our variational problem do not require the singular integral tech-
nology allowed by QBX, it does provide robustness in the case of ¥ and I
are chosen to lie close together.

Our simulations are performed on an Intel Xeon E5-2679 processor on an
Ubuntu Linux machine with 256 GB of RAM. Although Firedrake supports
distributed-memory parallelism, integration with PYTENTIAL at this level
is the subject of future work, with a need to deal with difficulties such as
additional required cross-rank data motion. Integrating these approaches to
support (and distributed memory) parallelism is the subject of future work.

In all of our experiments, we consider the configuration given in Figure [3]
Our experiments do not carry out the conversion to the scattered-field for-
mulation, but start with , Neumann boundary conditions @ on I', and
various choices of boundary conditions on Y. The boundary condition on I'
is chosen such that true solution of the system are the pressure and tempera-
ture free-space Green’s functions associated with a point source given at the
red circle in Figure 3] These Green’s functions are shown in Figure [4

Neumann boundary conditions on X

Since we are working on problems with analytic solutions, we can pose
Neumann boundary conditions on ¥ as well as I' — the normal derivatives of
the pressure and temperature in the variational form are replaced by the nor-
mal derivatives of the known Green’s functions. This allows us to establish a
baseline of finite element convergence and compare the accuracy obtained by
both coupled and decoupled formulations of Morse-Ingard separately from
the discussion of more realistic boundary conditions on . Figure [ba| shows
the accuracy versus mesh refinement for linear, quadratic, and cubic approx-
imations. Here, we plot the relative error in the L? x L? graph norm, whose
square is given by
T =Tl* +|P = B?

IT[* + [1P]]?

We can also solve the decoupled system , with Neumann boundary
conditions for V; and V,, applied on both I' and X, and we should mathemati-
cally achieve the same results. However, Figure |5b| shows that the numerical

E2
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Figure 3: Computational tuning fork domain is the rectangle minus yellow shaded region.
¥ is the outer rectangle, and I' is the boundary of the tuning fork itself. The red circle
shows the location of the point source.
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Figure 4: Real and imaginary parts of the temperature and pressure Green’s functions
corresponding to the source shown in Figure El
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error plateaus at about five digits of relative accuracy. We do not have a
fully satisfactory explanation of this, although we note that the transforma-
tion @D between T', P and V;,V, has has a condition number on the order
of 10* (despite being only a 2 x 2 matrix!). Applying the transformation
once to form right-hand side of the decoupled system and then its inverse
to produce the physical variables from the computed solution could easily
amplify roundoff errors and limit the overall accuracy. The same issue was
observed in our boundary integral method for Morse-Ingard in [I7] and so
seems generic to the decoupled formulation.

We observed in [I7] that one can approximate the system in this param-
eter regime by only solving for the thermal mode V;, approximating V}, by 0.
This requires only solving one Helmholtz equation and produces numerical
accuracy comparable to solving the decoupled pair of Helmholtz equations,
as shown in Figure [5d

10 F 10 F

10 f 1 k=1 .
2 102} N k=2 102F . -
3 - k=3
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I
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100F Tt 100F et 109F

E10E N0 - 210t 0 - 2104
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(a) Coupled (b) Decoupled (c) Single equation

Figure 5: Relative L? x L? accuracy of solving Morse-Ingard equations with Neumann
boundary conditions. Coupled, decoupled, and neglecting the thermal mode give compa-
rable solutions on coarse meshes, but the convergence in the decoupled form and single-field
forms levels off between 10~ and 107°.

Transmission boundary conditions on X

In practice, we can use Neumann boundary conditions on I'; but we do
not know the Neumann data on ¥. The local transmission boundary condi-
tions and lead to significant perturbations of the boundary value
problem and cannot produce the correct answer. Figure [ demonstrates that
we we obtain a relative error of about 0.46 for the “correct” Sommerfeld con-
dition and about 0.51 for the ad hoc condition . This highlights the

need for a more accurate boundary condition on ..
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Figure 6: Relative L? x L? accuracy of solving Morse-Ingard equations with transmission
boundary conditions and with piecewise linear basis functions. Both boundary
conditions lead to incorrect answers, and using quadratic or cubic basis functions produce
similar results.

Nonlocal boundary conditions on X

Next, we consider the nonlocal boundary conditions on Y. These
boundary conditions are exact, and we obtain much greater accuracy than
for the local transmission boundary conditions. We do observe a leveling-off
of the accuracy under mesh refinement in the fully coupled formulation in
Figure [7a] although it obtains more digits of accuracy than the decoupled
formulation in Figure [7H] or solving only for the acoustic mode V; and ap-
proximating V), ~ 0 in Figure We do note that requires decoupling
transformation to apply the layer potentials to the thermal and acoustic
modes, but not a subsequent application to form 7" and P from the results.
Comparing these results, we can conclude that the decoupled form can lead
to suitable results if less accuracy is required. In the more general two-way
coupled model in [24], boundary conditions coupling the pressure and temper-
ature to the tuning fork work in terms of 7" and P rather than the decoupled
variables. Hence, any advantages gained in solving individual systems would
be offset by more complex coupling in the boundary conditions.

Solver performance

Our nonlocal boundary conditions lead to high accuracy without PML,
and now we show how multigrid-preconditioned GMRES leads to scalable
solution algorithms for the linear system (50). The essential result is that, for
our parameters of interest, the linear system is solved in a number of GMRES
iterations independent of the mesh parameter and degree of polynomials used
in the finite element discretization.

We study two such solution approaches for the coupled formulation of
Morse-Ingard with nonlocal boundary conditions. First, at each outer GM-
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Figure 7: Relative L? x L? accuracy of solving Morse-Ingard equations with the nonlocal

boundary condition . The coupled form leads to a few more digits of accuracy than
the decoupled and single-field formulations.

RES iteration, use the inverse of A%, itself applied with multigrid-preconditioned

GMRES, as a preconditioner. Second, we may just use the multigrid precon-
ditioner for A" as a preconditioner for the system. This trades the nested
iteration needed for inverting A% for some (hopefully modest) increase in the
overall iteration count.

We use a monolithic multigrid approach that keeps pressure and temper-
ature coupled together. The smoother is an additive Schwarz decomposition
of the finite element spaces into small spaces based on the patch of cells
around each vertex in the mesh [52], as shown in Figure [§] for quadratic el-
ements. This smoother requires solving a small, local problems associated
with each vertex of the mesh. For symmetric and coercive problems (cer-
tainly not Morse-Ingard!) this is known to give condition number estimates
independent of the polynomial degree, but in practice seems to perform well
for many other problems [53, 54]. These smoothers are readily available
in Firedrake through PCPatch [55] and ASMStarPC. On each level of the
multigrid hierarchy, we apply two Chebyshev-accelerated iterations of this
smoother, solving the coarse grid problem with a sparse LU factorization.

7. Conclusions

We have developed exact truncating boundary conditions for the Morse-
Ingard equations. These boundary conditions use a Green’s formula repre-
sentation of the solution in terms of layer potentials and work in general
unstructured geometry. The action of the discrete operators may be evalu-
ated efficiently using matrix-free finite elements and a fast multipole method
for the layer potentials, and the linear system may be effectively precon-
ditioned with the local part of the operator. Standard convergence theory
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Figure 8: Typical vertex patch smoother for Morse-Ingard discretized with quadratic finite
elements. Gray circles indicate pressure unknowns, and green circles indicate temperature
unknowns.

holds for the Galerkin discretization, and the method gives good accuracy
on small computational domains even with relatively coarse meshes.

In the future, we hope to pursue a rigorous suite of three-dimensional
calculations, compute with iterative treatment for A%, especially as ongo-
ing PYTENTIAL improves its performance for three-dimensional problems.
We also hope to study models in which the Morse-Ingard are equations are
coupled to the tuning fork displacement.
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