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Abstract— Increasing renewable penetration in interconnected
power grids has led to a higher occurrence of low-frequency
oscillations (LFOs) and subsynchronous oscillations (SSOs).
Ensuring the secure operation of the power grid necessitates
effective wide-band oscillation online detection. This study
proposes a novel time-frequency technique for the wide-band
oscillation detection and modal parameter identification. Firstly,
fast Fourier transform (FFT) with an Al-based clustering method
is used to calculate the time—frequency spectrum matrix using
high-speed phasor measurement unit (PMU) data. This matrix
facilitates the accurate estimation of the total number of LFOs
and SSOs, along with their start and end times. Additionally, an
ARMA-FFT algorithm, considering environmental noise, is
proposed for modal parameter estimation, including oscillation
frequency, amplitude, phase angle, and damping factor. The
accuracy of the proposed method is validated using data from
different oscillation events with various ambient noise levels,
demonstrating its effectiveness in multimodal analysis and robust
resistance to noise.

Index Terms—wide-band oscillation, high-speed phasor
measurement unit (PMU), subsynchronous oscillation (SSO),
time-frequency analysis

1. INTRODUCTION

The rapid integration of renewable power sources, such as
wind and photovoltaic energy, into power systems has led to an
increased occurrence of oscillation events in daily operations.
Real-world incidents, including subsynchronous oscillations
(SSOs), natural low frequency oscillations (LFOs) and forced
oscillations, have been observed in various power systems,
including the Electric Reliability Council of Texas (ERCOT)
power system [1], Great Britain power system [2], and
Continental European power system [3]. These incidents
jeopardize the secure operation of the system, with the potential
for severe stability accidents and equipment damage [4]-[6].
Despite substantial efforts in the detection, modeling, and
control of either SSOs or LFOs [7], [8], there has been limited
research on the real-time monitoring and detection of wide-
band oscillations, which include both SSOs and LFOs.
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Phasor Measurement Units (PMUs) and Wide Area
Measurement Systems (WAMS) has played an important role
in detecting and controlling LFOs [9]. Recent research has
explored the use of synchrophasors to capture SSO dynamics
through various methods, including time domain [10],
frequency domain [11], time-frequency domain [12], and
artificial intelligence (Al)-based approaches [13]. However, the
current design of PMUs, which is tailored for fundamental
phasors at frequencies of 50/60 Hz or lower, introduces
challenges in accurately capturing SSO dynamics due to signal
aliasing and low reporting rates [14]. Moreover, real-world
PMU measurements often include environmental noise, and
aforementioned analysis methods have limitations in providing
high mode resolution and anti-noise capabilities, which are
essential for detecting both LFO and SSOs.

To overcome these challenges, a distribution-level PMU,
named universal grid analyzer (UGA), has been developed at
the University of Tennessee, Knoxville. UGA is capable of
streaming real-time measurements with a sampling rate of up to
1440Hz [15]. Utilizing these advanced high-speed UGA
measurements, this paper proposes a rapid wide-band
oscillation detection algorithm that employs FFT and an Al-
based clustering method. This method enables the accurate
capture of the start and end times of all oscillation modes based
on a time-frequency spectrum matrix. Furthermore, a real-time
wide-band oscillation modal analysis method, which combined
the Auto Regressive Moving Average (ARMA) and FFT
method, is proposed for modal parameter identification of each
detected mode with a strong anti-noise ability.

Compared to existing oscillation identification method, the
proposed method in this paper has several notable advantages:
1) It does not require any prior knowledge of oscillations or
power system models. 2) It can detect all oscillation modes
across a wide frequency band using high-sampling-rate PMU
data and accurately estimate their modal characteristics. 3) It
exhibits strong anti-noise capability under various operating
scenarios, making it highly suitable for different types of
oscillation detection and mode analysis in real-time.
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The remainder of this paper is organized as follows. Section
IT describes the algorithms used for wide-band oscillation
detection and modal parameter identification. The procedure of
the proposed methods is summarized in Section III. Section IV
presents the performance evaluation of the proposed method
using various testing signals and field data in the Kaua‘i power
system. Section V gives the conclusion of the paper.

1L WIDE-BAND OSCILLATION DETECTION METHDOLOGY

A. Problem Statement

Considering that both LFOs and SSOs can be triggered by
disturbances in the power grid, the bus frequency measured by
UGAs at different locations can always provide observations of
all oscillation modes. Assume y(f) is one UGA frequency data
containing M oscillation modes, which can be expressed as the
following equation (1).

y() = Xihe1 Ame ™ m?™Int cos(2nfint + 6p,) M

The problems are to determine the oscillation mode number
M, and to identify the frequency f,,,, corresponding amplitude
A,,, phase angle 8,,, and damping factor {,,, for each mode.

B. Total Oscillation Mode Number Estimation

This paper proposes an iterative K-means combined with
FFT method to detect the total number of oscillation modes
during disturbances, taking into account spectrum leakage and
environmental noise impact. When oscillations are excited by
external disturbances, the magnitude in the frequency domain
at the dominant oscillation frequency significantly exceeds that
of normal ambient data. Through statistical analysis of the
ambient noise spectrum magnitude using FFT, the maximum
FFT magnitude within a broad frequency range is identified and
labeled as dnoise. Considering spectrum leakage from the FFT,
the frequencies whose FFT spectrum magnitudes are larger than
onoise and satisfy (2) are selected as candidate dominant
oscillation modes using a 50-s sliding window UGA data with
100ms refresh time step. The sliding window is set to 50s with
the following considerations: 1) At least 4~5 cycles of
oscillation data are required to accurately calculate modal
characteristics, such as the damping ratio and magnitude; 2)
The LFOs is usually between 0.1Hz to 2Hz, implying that one
oscillation cycle can last approximately 10 seconds. Taking
these factors into account, a 50-s window length is chosen for
the analysis

|‘D((*)k)| > Ops
(12wl = [P(wr—))/ (W — wg—1) >0 )
(P (w4 = [P ])/ (Wgs1 — ) <O

For each 50-s sliding window of data, the iterative K-means
method is applied to the spectrum {|®(w;)|} of the candidate
modes {wy} to further mitigate spectrum leakage impact from
FFT and to identify the dominant modes. In each iteration, the
K-means with 2 centroids will be conducted on {®(w;)} to get
the cluster {®(wy,)} with the larger centroid. This cluster is
selected to count the total number of modes My within {w}
that satisfies (w1 (j + 1) — wg1(j))/2m > 0.1Hz. This process
of K-means clustering with 2 centroids is iteratively conducted
till My, = card({wy4}) — 1. All the selected modes in {w4}
from the final iteration are the dominate oscillation modes

obtained in each 50-s sliding window of data. Through this
iterative process, the impact of spectrum leakage can be
effectively eliminated.

By applying a 50-s sliding window with al00ms refresh
time step to y(t), the spectrum magnitude curve |®,, (t)| at the
dominant mode f,, (i.e., 21w,,) with respect to time ¢ can be
obtained and stored in a time-frequency matrix M,,,. A new row
will be added to M,,, with each 100ms increment in time. To
mitigate the random noise and bad data impacts, only those
modes that last over 5 seconds (i.c., more than 50 consecutive
non-zero rows of M,,) will be identified as the dominant modes
and signifies the detection of an oscillation event. This
detection will trigger two key processes: estimating the duration
of the oscillation event and conducting a modal parameter
estimation.

C. Oscillation Event Duration Estimation

An event data with multiple modes is shown as Fig.1. For
this analysis, it is assumed that, i.e., {,, > 0,m = 1,--- M. Based
on the curve |®,,(t)| of the dominant mode f,,, window C in
Fig.1, which has the sharpest slope change represents the start
time t,,, of the event. The end time t,, of the event,
represented by window D, is identified as the point when
|®,, ()] returns to zero.
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Figure 1. Spectrum magnitude curve |®,,(t)| at dominant mode f;,, during
an osccillation event
D. Modal Parameter Identification with Time-Frequency
Method

After getting the start time t,,;, the UGA data from the
interval [ tys, tms 750] is collected for modal parameter
estimation. In this phase, the frequency f,,, amplitude 4,,,
phase angle 6,,, and damping factor (,, of mode m can be
calculated using an auto regressive moving average (ARMA)-
FFT method. The ARMA model for y(t) can be expressed as

y(© = 2= 0yt =) — X ge(t — ) 3)

where ¢; is the coefficients of AR part to capture the oscillation
frequency and damping factor, while 7; is the coefficients of
MA part, which represents the ambient noise caused by the load
variations in the daily operation of a power system [16]. N,
and N, are the orders of AR and MA parameters, which can
be determined using the Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC).

Based on the autocorrelation function of y(t), ¢; is
estimated through Yule-Walker equation. The frequency and
damping factor of oscillation mode j can be obtained from (4)
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where o; is the j-th root of the polynomial in equation (4) and
fs 1s the sampling rate of y(?).

By comparing the mode frequencies f; as obtained from
equation (4), with f,,, as determined in Section II.B, the mode
with the closest frequency to f;, is selected. This frequency is
then designated as the estimated frequency f, , and the
corresponding damping factor ¢, is simultaneously obtained.

To estimate the amplitude A4,, and phase angle 6,,, two
standard 50-s synthetic ideal oscillation signals are generated
with an amplitude of 1 p.u. as follows:

{Sml (t) = e~ im2mfmt cos(2mf,,t)
Sma2(t) = Cos(anmt)

The gain introduced by the damping factor is calculated
using the following equation:

Gms: fgo|5m1(t)|/ Ego|5m2(t)| (6)

The amplitude A,, and phase angle 8,, can be estimated
based on the spectrum magnitude|®,, (t)| as following

Am = |¢m(tms)| Gms (7)
ém = 2D, (ts) (8)

)

III. PROCEDURE OF WIDE-BAND OSCILLATION DETECTION

According to Section 11, the procedure for online wide-band
oscillation detection and modal parameter estimation in Fig. 2
can be summarized as follows:

Step 0: Collect UGA data at time t, with a 50-s sliding
window.

Step 1: Preprocess data: identify and handle random bad
data and long-term data loss. Replace random bad data using
interpolation techniques. If data loss lasts over 1 second, discard
the data and replace it all with 0.

Step 2: Use iterative K-means combined with FFT method
to estimate the total oscillation mode numbers. Obtain spectrum
magnitude |®,, (t;)| for dominate mode f;,at ¢, and save in
time-frequency matrix M,, for mode f,),.

Step 3: Get the consecutive non-zero rows of M,,, and save
as M, (t;) at ty. Check if the number of consecutive non-zero
rows of M,, is over 50.

Step 4: Estimate the oscillation start time t,,s; based on
fn(®) and [@,, (D).

Step 5: Calculate modal parameters with ARMA-FFT
method.

Step 6: Check if the size of M, (t;_,) is equal to the size
of M;,(t;) and calculate the oscillation end time t,,.

Step7:k =k + 1, t; = tyt k- T)s with T, = 100ms.

Step 8: repeat Step 0-5 until t;, reach the end of the UGA
data length or the end of the simulation.
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Figure 2. Flow chart of the proposed wide-band oscillation detection and
modal parameter estimation method

IV. STUDY CASES

In this section, the proposed technique is validated using a
range of data sets, including both simulated wide-band
oscillation events, and real field oscillation event data.
Additionally, the impact of various environmental noise levels
on the performance of the proposed method is also examined.
To save space, the data preprocessing process will not be
discussed in these study cases.

A. Oscillation Detection and Modal Parameter Estimation of
Ideal Synthetic Signal

To validate the efficiency of the proposed method, synthetic
data comprising three distinct oscillation events, including both
LFOs and SSOs, are generated with a sampling rate of 200Hz.
The total duration of the data is set at 900 s. The start times for
the events are as follows: Event 1 at 60.5 seconds, Event 2 at
450.3 seconds, and Event 3 at 737.1 seconds. In Event 1, the
two LFOs at 0.3Hz and 12Hz exhibit the highest amplitudes and
energy, followed by two SSOs at 30Hz and 24.5Hz with lower
amplitudes and energy. In Event 2, two SSOs at 13Hz and 37Hz
show higher energy levels, alongside an LFO at 0.75Hz with a
smaller amplitude. In Event 3, all the LFOs and SSOs display
similar energy levels. The detailed modal characteristics of the
LFOs and SSOs for each event are presented as actual values in
Table I. Notably, the characteristics of the oscillation modes
vary over time across these events, offering valuable insights
for assessing the effectiveness of the proposed technology in
online applications, particularly under varying power grid
operating conditions.

The FFT analysis results of the 900-s synthetic event data
are displayed in Fig.3, which illustrates the wide distribution of
the dominant oscillation modes. However, FFT analysis
primarily provides an overview of the signal's overall frequency
characteristics, and this method has limitations in capturing the
temporal changes of time-varying oscillation signals.

By utilizing the proposed method in this paper, the
estimated modal parameters for each oscillation mode during
the three events are shown in Table I. Since this event data is an
ideal signal without noise, a,,; in equation (2) is set to 0.0001.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on August 05,2025 at 17:59:18 UTC from IEEE Xplore. Restrictions apply.



TABLEI

MODAL PARAMETER ESTIMATION RESULTS OF IDEAL SYNTHETIC SIGNAL

The results in Table I indicate that the maximum estimated
error in oscillation frequency is less than 0.0002 Hz, the
estimated phase angle error is less than 1.16 degrees, the
estimated oscillation amplitude error is below 2 mHz, and the
estimated damping factor error is less than 0.01%. These results
demonstrate that the proposed method can accurately capture

both the LFO and SSO mode characteristics with high precision.

The estimated start times for the three events are listed in
Table II according to the proposed method. The estimated start
times precisely match the actual start times of each event,
demonstrating the accurate oscillation detection through the
proposed method.
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Figure 3. FFT magnitude of ideal synthetic signal
TABLE II. START TIME ESTIMATION RESULTS
Start time (s)
Event Ture value Estimated value
Event 1 60.5 60.5
Event 2 450.3 450.3
Event 3 737.1 737.1

B. Oscillation Detection and Modal Parameter Identification
under Different Noise Evels

Four different ambient noises e, are added to the synthetic
data in Section IV.A respectively. The signal-to-noise (SNR)
with the maximum and minimum frequency deviation of the
three noises are calculated according to equation (9) and listed
in Table III.

SNRy = 201log(1/(std(en) * f)) ©)
where f,, is set to be 60Hz in this study.

Given that the estimation of the oscillation mode with
smaller amplitude is more susceptible to the noise, the 0.75 Hz
mode in Event 2 and the 45 Hz mode in Event 3, both
characterized by smaller amplitudes, are studied in detail. Fig.4
(a) and (b) show the spectrum magnitude |®,,(t)| for the
0.75Hz mode and the 45 Hz mode, respectively. From the plots,
it can be clearly seen that the curves of |®,, (t)| become more
fluctuated with the increase of noise level. Even with noise

Freq. (Hz) Amp. (Hz) Phase (°) Damping factor (%)
Event Ture Estimated Error Ture Estimated Error Ture Estimated Error Ture Estimated Error
value value value value value value value value
30 30.0000 0.0000 0.06 0.0594 0.0006 90 89.73 0.27 0.053 0.053 0
Event 24.5 24.5000 0.0000 0.08 0.0798 0.0002 36 35.75 0.25 0.065 0.065 0
1 1.2 1.1998 0.0002 0.15 0.1487 0.0013 18 17.01 0.99 1.320 1.330 1e-02
0.3 0.3000 0.0000 0.16 0.1586 0.0014 0 -1.16 1.16 5.300 5.300 0
37 37.0000 0.0000 0.15 0.1500 0.0000 22 22.39 0.39 0.043 0.043 0
Evzent 13 12.9996 0.0004 0.20 0.1989 0.0011 15 14.95 0.05 0.122 0.118 4e-03
0.75 0.7500 0.0000 0.05 0.0482 0.0018 30 29.71 0.29 2.120 2.120 0
55 55.0000 0.0000 0.07 0.0683 0.0017 15 14.89 0.11 0.0289 0.0288 le-04
Evfm 45 449981 | 0.0019 | 0.06 0.0600 0.0000 30 30.03 003 | 0035 0.035 0
5.5 5.5000 0.0000 0.06 0.0600 0.0000 20 19.93 0.07 0.289 0.289 0

reaching a maximum amplitude of 40 mHz (e.g., Noise 4 with
77.2 dB), close to the amplitude of the 0.75Hz and 45Hz
oscillation mode, the curves still accurately identify the start
time of the events at the point with the sharpest slope change.
The oscillation start times are precisely estimated at 450.3s and
737.1s across the four different noise levels.

TABLE III DIFFENT NOISE LEVEL INFORMATION
Noise SNR Max (mHz) Min (mHz)
1 82.5 20.4 -22.8
2 79.65 30.8 -254
3 77.76 35.2 -33.7
4 77.24 39.2 -38.9

Table IV lists all the estimated modal parameters for each
mode. Compared to the true values, the estimated frequency
error is below 0.001Hz, the estimated amplitude error is less
than 3mHz, the estimated phase angle error is less than 2.4°,
and the estimated damping factor error is less than 0.1%. These
testing results proves the significant anti-noise capability of the
proposed method in modal characteristics estimation of both
LFO and SSO and the accurate detection of the oscillation
events.
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Figure 4. Spectrum magnitude |®,, (t)| of 0.75Hz and 45Hz mode
C. Validation Using Field PMU data

In this section, UGA field data collected from 3 a.m. to 4
a.m. UTC on March 30, 2022, in the Kaua‘i power system, is
utilized to further validate the performance of the proposed
approaches. During this period, the ambient noise level was
77.41 dB. A 20Hz SSO events occurred at 95s as shown in
Fig.5, and lasted for several hours due to a nearly 0 damping
factor. Both the environmental noise and the bad data was
included in the field event data as shown in Fig.5. Utilizing our
proposed method, the 20Hz oscillation was successfully
detected, with its spectrum magnitude |®,,(t)| depicted in Fig.
6. Differing from the curves in Fig.1 and Fig. 4, |®,,,(t)| for this
undamped SSO mode in Fig.6 continuously grew to a relatively
stable value, rather than returning to zero. The start time of the
event was accurately identified at 95s that with the sharpest
slope change as described in Section II.C.
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Figure 6. Spectrum magnitude |®,, (t)| of 20Hz mode

Due to the absence of ground truth in the field data, the
estimated modal parameters obtained from our proposed
method are compared with the results from Prony analysis to
evaluate the algorithm's effectiveness. The estimated modal
parameters for the 20Hz mode, alongside the Prony analysis
results, are presented in Table V. This comparison reveals that
the results are almost consistent with each other, further
validating the efficacy of our proposed methods.

TABLE V. ESTIMATED MODAL PARAMETERS FOR THE 20HZ MODE
Freq. Amp. Phase Damping
Method (Hz) (Hz) ©) factor (%)
Proposed method 19.995 0.0167 179.25 0.002
Prony 20.005 0.0158 173.05 0.111
V. CONCLUSION

This paper proposes an innovative time-frequency wide-
band oscillation detection method capable of detecting all the
LFOs and SSOs using real-time high-sampling-rate PMU data.
This method can automatically capture the total number of
oscillation modes during different events, without relying on
any prior information. More importantly, by utilizing testing
signals with various levels of ambient noise and field data from
the Kaua‘i power system, the approach accurately captures
event start times and estimates oscillation modal parameters
with high accuracy. Given its high precision and strong anti-
noise capability, this method is well-suited for online
applications in the real-time monitoring and analysis of both
LFOs and SSOs in power systems.
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45Hz in | 79.65 45.00 45.0005 Se-4 0.0600 0.0606 6e-4 30.00 30.21 0.21 0.0354 0.0351 3e-4
event 3 77.76 45.00 45.0007 Te-4 0.0600 0.0589 le-3 30.00 30.55 0.55 0.0354 0.0358 4e-4
77.24 45.00 45.0010 le-3 0.0600 0.0567 3e-3 30.00 29.44 0.56 0.0354 0.0342 le-3
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