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Abstract-Increasing renewable penetration in interconnected 
power grids has led to a higher occurrence of low-frequency 
oscillations (LFOs) and subsynchronous oscillations (SSOs). 
Ensuring the secure operation of the power grid necessitates 
e昀昀ective wide-band oscillation online detection. This study 
proposes a novel time-frequency technique for the wide-band 

oscillation detection and modal parameter identi昀椀cation. Firstly, 
fast Fourier transform (FFT) with an AI-based clustering method 
is used to calculate the time-frequency spectrum matrix using 
high-speed phasor measurement unit ⠀倀䴀唀) data. This matrix 
facilitates the accurate estimation of the total number of LFOs 
and SSOs, along with their start and end times. Additionally, an 
AR䴀䄀-FFT algorithm, considering environmental noise, is 
proposed for modal parameter estimation, including oscillation 
frequency, amplitude, phase angle, and damping factor. The 

accuracy of the proposed method is validated using data from 
di昀昀erent oscillation events with various ambient noise levels, 
demonstrating its effectiveness in multimodal analysis and robust 
resistance to noise. 

Ind攀砀 Terms-wide-band oscillation, high-speed phasor 
measurement unit ⠀倀唀瘀, subsynchronous oscillation (SSO), 
time-frequency analysis 

I. INTRODUCTION 

The rapid integration of renewable power sources, such as 
wind and photovoltaic energy, into power systems has led to an 
increased occurrence of oscillation events in daily operations. 
Real-wo爀氀d incidents, including subsynchronous oscillations 
(S SOs), natural low frequency oscillations (LFOs) and forced 
oscillations, have been observed in va爀椀ous power systems, 
including the Electric Reliabili琀礀 Council of Texas (ERCOT) 
power system [1], Great Britain power system [2], and 
Continental European power system [3]. These incidents 
jeopardize the secure operation of the system, with the potential 
for severe stabili琀礀 accidents and equipment damage [4]-[6] . 
Despite substantial efforts in the detection, modeling, and 
control of either SSOs or LFOs [7], [8], there has been limited 
research on the real-time monito爀椀ng and detection of wide­
band oscillations, which include both SSOs and LFOs. 

This work was supported by National Science Foundation under the 
Award Number 1941 101 and DOE AGM project. This work also made use of 
Engineering Research Center Shared Facilities supported by the Engineering 
Research Center Program of the National Science Foundation and DOE under 
NSF Award Number EEC-1041 877 and the CURENT Industry Partnership 
Program. 
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Phasor Measurement Units (PMUs) and Wide Area 
Measurement Systems (W AMS) has played an important role 
in detecting and controlling LFOs [9] . Recent research has 
e砀瀀lored the use of synchrophasors to capture SSO dynamics 
through various methods, including time domain [1 0] , 
frequency domain [1 1], time-frequency domain [12], and 
ar琀椀ficial intelligence (AI)-based approaches [13]. However, the 
current design of PMUs, which is tailored for 昀甀ndamental 
phasors at frequencies of 50/60 Hz or lower, introduces 
challenges in accurately captu爀椀ng SSO dynamics due to signal 
aliasing and low reporting rates [14 ]. Moreover, real-wo爀氀d 
PMU measurements often include environmental noise, and 
aforementioned analysis methods have limitations in providing 
high mode resolution and anti-noise capabilities, which are 
essential for detecting both LFO and SSOs. 

To overcome these challenges, a distribution-level PMU, 
named universal grid analyzer (UGA), has been developed at 
the Universi琀礀 of Tennessee, Knoxville. UGA is capable of 
streaming real-time measurements with a sampling rate of up to 
1440Hz [15]. Utilizing these advanced high-speed UGA 
measurements, this paper proposes a rapid wide-band 
oscillation detection algorithm that employs FFT and an AI­
based clustering method. This method enables the accurate 
capture of the start and end times of all oscillation modes based 
on a time-frequency spectrum matrix. Furthe爀洀ore, a real-time 
wide-band oscillation modal analysis method, which combined 
the Auto Regressive Moving Average (ARMA) and FFT 
method, is proposed for modal parameter identi昀椀cation of each 
detected mode with a strong anti-noise abili琀礀. 

Compared to existing oscillation identi昀椀cation method, the 
proposed method in this paper has several notable advantages: 
1) It does not require any prior knowledge of oscillations or 
power system models. 2) It can detect all osc illation modes 
across a wide frequency band using high-sampling-rate PMU 
data and accurately estimate their modal characteristics. 3) It 
exhibits strong anti-noise capabili琀礀 under various operating 
scenarios, m愀欀ing it highly suitable for different 琀礀pes of 
oscillation detection and mode analysis in real-time. 
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The remainder of this paper is organized as follows. Section 
II describes the algorithms used for wide-band oscillation 
detection and modal parameter identification. The procedure of 
the proposed methods is summarized in Section III. Section IV 
presents the pe爀昀ormance evaluation of the proposed method 
using various testing signals and field data in the Kaua'i power 
system. Section V gives the conclusion of the paper. 

II. WIDE-BAND 0SCILLA TION DETECTION METHDOLOGY 

A. Problem Statement 

Considering that both LFOs and SSOs can be triggered by 
distu爀戀ances in the power g爀椀d, the bus frequency measured by 
UGAs at different locations can always provide observations of 
all oscillation modes. Assume y(t) is one UGA frequency data 
containing M oscillation modes, which can be expressed as the 
following equation (1). 

y(t) = L�= 1A me-i\mZ㄀爀fmt cos(2爀爀 fmt +e m) (1) 

The problems 爀였 to dete爀洀ine the oscillation mode number 
䴀Ⰰ and to identi昀礀 the frequency fm, co爀爀esponding amplitude Am, phase angle em, and damping factor (m for each mode. 

B. Total Oscillation Mode Number Estimation 

This paper proposes an iterative K-means combined with 
FFT method to detect the total number of oscillation modes 
during distu爀戀ances, taking into account spectrum leakage and 
environmental noise impact. When oscillations 爀였 excited by 
exte爀渀al distu爀戀ances, the magnitude in the frequency domain 
at the dominant oscillation frequency significantly exceeds that 
of normal ambient data. Through statistical analysis of the 
ambient noise spectrum magnitude using FFT, the maximum 
FFT magnitude within a broad frequency range is identified and 
labeled as 錀�ise. Considering spectrum leakage from the FFT, 
the frequencies whose FFT spectrum magnitudes are larger than 氀ꨀoise and satis昀礀 (2) are selected as candidate dominant 
oscillation modes using a 50-s sliding window UGA data with 
lO Oms refresh time step. The sliding window is set to 50s with 
the following considerations: 1) At least 4�5 cycles of 
oscillation data are required to accurately calculate modal 
characteristics, such as the damping ratio and magnitude; 2) 
The LFOs is usually be琀眀een O. lHz to 2Hz, implying that one 
oscillation cycle can last approximately 10 seconds. Taking 
these factors into account, a 50-s window length is chosen for 
the analysis { I㰀倀 (wk)l > ans 

CI㰀倀 (wk)l - I㰀倀 (wk-1) 1) /(wk - wk- 1) > 0 
C I㰀倀 (wk+1) 1- I㰀倀 (wk) l) /(wk +1 - wk) < 0 

(2) 

For each 50-s sliding window of data, the iterative K -means 
method is applied to the spectrum { I㰀倀 (wk)l } of the candidate 
modes { wd to further mitigate spectrum leakage impact from 
FFT and to identi昀礀 the dominant modes. In each iteration, the 
K-means with 2 centroids will be conducted on {㰀倀(wk)} to get 
the cluster {䤀稀( wk1)} with the larger centroid. This cluster is 
selected to count the total number of modes 䴀稀k within { wk1} 
that satisfies (wk 1( j + 1) - wk1( j)) /2爀爀 > O.lHz. This process 
ofK-means clustering with 2 centroids is iteratively conducted 
till Mlk = card({wk1}) - 1 . All the selected modes in {wk1} 
from the final iteration are the dominate oscillation modes 

obtained in each 50-s sliding window of data. Through this 
iterative process, the impact of spectrum leakage can be 
e昀昀ectively eliminated. 

By applying a 50-s sliding window with al OOms refresh 
time step to y(t) , the spectrum magnitude curve I㰀倀m(t) l at the 
dominant mode fm (i.e., 2nwm) with respect to time t can be 
obtained and stored in a time-frequency matrix Mm. A new row 
will be added to Mm with each lO Oms increment in time. To 
mitigate the random noise and bad data impacts, only those 
modes that last over 5 seconds (i.e., more than 50 consecutive 
non-zero rows of Mm) will be identified as the dominant modes 
and signifies the detection of an oscillation event. This 
detection will trigger two key processes: estimating the duration 
of the oscillation event and conducting a modal parameter 
estimation. 

䌀⸀ Oscillation Event Duration Estimation 

An event data with multiple modes is shown as Fig. I. For 
this analysis, it is assumed that, i.e., (m > 0, m = 1, ·· · M. Based 
on the curve I㰀倀m(t) l of the dominant mode fm, window C in 
Fig. l, which has the s�est slope change represents the start 
time tms of the event. The end time tme of the event, 
represented by window D, is identi昀椀ed as the point when 
I㰀倀 m(t) l retu爀渀s to zero. 

c .Q � 0 儀⤀ 0 最ⴀ -0.2 甀㨀 -0.4 40 

1　　 

Time(s) 
Figure 1. Spectrum magnitude curve I㰀倀m(t) l at dominant mode fm during 

an osccillation event 

D. Modal Parameter Identi昀椀cation with Time-Frequency 
Method 

After getting the start time tm5 , the UGA data from the 
interval [ tms , tms +50] is collected for modal parameter 
estimation. In this phase, the frequency fm, amplitude Am , 
phase angle em , and damping factor (m of mode m can be 
calculated using an auto regressive moving average (踀錀)­
FFT method. The 踀錀 model for y(t) can be expressed as 

y(t) = I7:� ⼀爀jy(t - j) - I7✀㨀! Tje(t - j) (3) 

where 挀瀀 j is the coefficients of 䄀刀 part to capture the oscillation 
frequency and damping factor, while rj is the coe昀昀icients of 
MA part, which represents the ambient noise caused by the load 
variations in the daily operation of a power system [1 6] . Nar 
and Nma are the orders of 䄀刀 and MA parameters, which can 
be dete爀洀ined using the Akaike Info爀洀ation Criterion (AIC) 
and Bayesian Information C爀椀te爀椀on (BIC). 

Based on the autocorrelation function of y(t) , ⼀爀j is 
estimated through Yule-Walker equation. The frequency and 
damping factor of oscillation mode j can be obtained from ( 4) 

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on August 05,2025 at 17:59:18 UTC from IEEE Xplore.  Restrictions apply. 



{ ⠀䨀Nar + 䤀⸀7:� ⼀爀j⠀䨀Nad = Q 
t; = Is ll n(挀爀·) I r = -Re{ in( "J)} 
1 2爀爀 1 ' 1 lln(挀爀J)I 

(4) 

where 挀爀j is the j-th root of the polynomial in equation ( 4) and 昀猀 is the sampling rate of y(t). 

By comparing the mode frequencies 昀樀 as obtained from 
equation ( 4), with fm, as determined in Section II.B, the mode 
with the closest frequency to fm is selected. This frequency is 
then designated as the estimated frequency fm , and the 
co爀爀esponding damping factor (m is simultaneously obtained. 

To estimate the amplitude Am and phase angle em , 琀眀o 
standard 50-s synthetic ideal oscillation signals are generated 
with an amplitude of 1 p.u. as follows: {sml (t) = e-i(mz爀爀fmt cos ( 2爀爀/mt) 

(5) 
Sm2( t) = cos(2爀爀 /mt) 

The gain introduced by the damping factor is calculated 
using the following equation: 

Gms = 唀툀�oiS ml( t) l/唀툀�oiS mz (t) l (6) 

The amplitude Am and phase angle em can be estimated 
based on the spectrum magnitudei㰀倀 m (t) I as following 

Am = I㰀倀 mCtms)l Gms 

Bm = L㰀倀mC tms) 

(7) 

(8) 

Ill. PROCEDURE OF WIDE-BAND OSCILLATION DETECTION 

According to Section II, the procedure for online wide-band 
oscillation detection and modal parameter estimation in Fig. 2 
can be summarized as follows: 

Step 0: Collect UGA data at time tk with a 50-s sliding 
window. 

Step 1: Preprocess data: identi昀礀 and handle random bad 
data and long-te爀洀 data loss. Replace random bad data using 
inte爀瀀olation techniques. If data loss lasts over 1 second, discard 
the data and replace it all with 0. 

Step 2: Use iterative K-means combined with FFT method 
to estimate the total oscillation mode numbers. Obtain spectrum 
magnitude I㰀倀m( tk)l for dominate mode fmat tb and save in 
time-frequency matrix Mm for mode fm· 

Step 3: Get the consecutive non-zero rows of Mm and save 
as M㨀渀 (tk) at tk. Check 椀昀 the number of consecutive non-zero 
rows of Mm is over 50. 

Step 4: Estimate the oscillation start time tms based on 
fm(t) and I㰀倀m (t)l . 

Step 5: Calculate modal parameters with A刀䴀A-FFT 
method. 

Step 6: Check 椀昀 the size of M㨀渀 (tk_1 ) is equal to the size 
of M㨀渀 (tk) and calculate the oscillation end time tme · 

Step 7: k = k + 1, tk = t0+ k · Tms with Tms = lOO ms. 
Step 8: repeat Step 0-5 until tk reach the end of the UGA 

data length or the end of the simulation. 

Yes 

� � Prepr漀挀ess dallt rrom lt1昀✀t氀琀 + 50) I 

k=k+l t= t +k T ,T 㴀伀.Is 
Calcularc tms Yes 

Fi最甀re 2. Flow chart ofthe proposed wide-band oscillation detection and 
modal parameter estimation method 

IV. STUDY CASES 

In this section, the proposed technique is validated using a 
range of data sets, including both simulated wide-band 
oscillation events, and real field oscillation event data. 
Additionally, the impact of various environmental noise levels 
on the pe爀昀ormance of the proposed method is also examined. 
To save space, the data preprocessing process will not be 
discussed in these study cases. 

A. Oscillation Detection and Modal Parameter Estimation of 
Ideal Synthetic Signal 

To validate the efficiency of the proposed method, synthetic 
data comprising three distinct oscillation events, including both 
LFOs and SS Os, 爀였 generated with a sampling rate of 200Hz. 
The total duration of the data is set at 900 s. The start times for 
the events are as follows: Event 1 at 60.5 seconds, Event 2 at 
450.3 seconds, and Event 3 at 737.1 seconds. In Event 1, the 
two LFOs at 0.3Hz and 12Hz exhibit the highest amplitudes and 
energy, followed by two SSOs at 30Hz and 24. 5Hz with lower 
amplitudes and energy. InEvent2, 琀眀o SSOs at 13Hz and 37Hz 
show higher energy levels, alongside an LFO at 0.7 5Hz with a 
smaller amplitude. In Event 3, all the LFOs and SSOs display 
similar energy levels. The detailed modal characteristics of the 
LFOs and SSOs for each event are presented as actual values in 
Table I. Notably, the characte爀椀stics of the oscillation modes 
vary over time across these events, offering valuable insights 
for assessing the e昀昀ectiveness of the proposed technology in 
online applications, particularly under varying power grid 
operating conditions. 

The FFT analysis results of the 900-s synthetic event data 
are displayed in Fig.3, which illustrates the wide distribution of 
the dominant oscillation modes. However, FFT analysis 
p爀椀marily provides an ove椀嘀iew of the signal's overall frequency 
characte爀椀stics, and this method has limitations in capturing the 
temporal changes of time-varying oscillation signals. 

By utilizing the proposed method in this paper, the 
estimated modal parameters for each oscillation mode du爀椀ng 
the three events are shown in Table I. Since this event data is an 
ideal signal without noise, ans in equation (2) is set to 0.000 1. 
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TABLE I MODAL PARA䴀䔀TER ESTIMATION RESULTS OF IDEAL SYNTHETIC SIGNAL 

Freq. (Hz) Amp. (Hz) Phase CO) Damping factor (%) 
Event Ture Est椀洀愀琀ed Error Ture Estimated Error Ture Estimated Error Ture Estimated Error value value value value value value value value 

30 30.0000 0.0000 0.06 0.0594 0.0006 90 89.73 0.27 0.053 0.053 0 
Event 24.5 24.5000 0.0000 0.08 0.0798 0.0002 36 35 .75 0.25 0.065 0.065 0 

1 1. 2 1. 1998 0.0002 0.15 0.14 87 0.0013 18 17.01 0.99 1. 320 1. 330 le -02 
0.3 0.3000 0.0000 0.16 0.15 86 0.0014 0 -1.16 1.16 5. 300 5. 300 0 
37 37.0000 0.0000 0.15 0.15 00 0.0000 22 22.39 0.39 0.043 0.043 0 

Event 13 12.9 996 0.0004 0.20 0.19 89 0.0 011 15 14.95 0.05 0.12 2 0.118 4e-03 2 
0.75 0.7500 0.0000 0.05 0.0482 0.0 018 30 29.71 0.29 2.12 0 2.12 0 0 
55 55 .0000 0.0000 0.07 0.0683 0.0017 15 14.89 0.11 0.0289 0.0288 le -04 

Event 
45 44.9981 0.0019 0.06 0.0600 0.0000 30 0.03 0.035 0.035 0 3 30.03 
5.5 5. 5000 0.0000 0.06 0.0600 0.0000 20 19.93 0.07 0.289 0.289 0 

The results m Table I mdicate that the maximum estnuated 
error in oscillation frequency is less than 0. 0002 Hz, the 
estimated phase angle e爀爀or is less 픀혀 1.1 6 degrees, the 
estimated oscillation amplitude error is below 2 mHz, and the 
estimated damping factor e爀爀or is less than 0.01% . These results 
demonstrate that the proposed method can accurately capture 
both the LFO and SSO mode characteristics with high precision. 

The estimated start times for the three events are listed in 
Table II according to the proposed method. The estimated start 
times precisely match the actual start times of each event, 
demonstrating the accurate oscillation detection through the 
proposed method. 

•:;[ 㨀氀 • \ I l1 • l • 
Event 

Event 1 
Event 2 
Event3 

10 20 30 40 Frequen挀礀 {Hz} 50 60 
Figure 3. FFT magnitude of ideal synthetic signal 

TABLE II. START TI䴀䔀 EST䤀䴀ATION RESULTS 

Start time ( s) 
Ture va氀甀e Esti鴀ed va氀甀e 

60.5 60.5 
450.3 450.3 
737.1 737.1 

B. Oscillation Detection and Modal Parameter Identification 
under Di昀昀erent Noise Evels 

Four di昀昀erent ambient noises en are added to the synthetic 
data in Section IVA respectively. The signal-to-noise (S一刀) 
with the maximum and minimum frequency deviation of the 
three noises are calculated according to equation (9) and listed 
in Table III. SNRr = 20 iog( 1/(std(en) * fn)) 

where fn is set to be 60Hz in this study. 

(9) 

Given that the estimation of the oscillation mode with 
smaller amplitude is more susceptible to the noise, the 0.75 Hz 
mode in Event 2 and the 45 Hz mode in Event 3, both 
characterized by smaller amplitudes, are studied in detail. Fig.4 
(a) and (b) show the spectrum magnitude I㰀倀m(t) l for the 
0.75 Hz mode and the 45 Hz mode, respectively. From the plots, 
it can be clearly seen that the curves of I㰀倀m (t) l become more 
昀氀uctuated with the increase of noise level. Even with noise 

reaching a maximum amplitude of 40 mHz (e.g., Nmse 4 with 
77.2 搀䈀), close to the amplitude of the 0.7 5Hz and 45Hz 
oscillation mode, the curves still accurately identi昀礀 the start 
time of the events at the point with the sha爀瀀est slope change. 
The oscillation start times are precisely estimated at 450.3s and 
73 7. 1 s across the four different noise levels. 

TABLE III. DIFFENT NOISE LEVEL INFORMATION 

Noise SNR Max (mHz) Min (mHz) 
1 82.5 20.4 -22.8 
2 79.65 30.8 -25.4 
3 77.76 35. 2 -33.7 
4 77.24 39.2 -38.9 

Table IV lists all the estimated modal parameters for each 
mode. Compared to the true values, the es琀椀mated frequency 
e爀爀or is below 0.00 1Hz, the estimated amplitude e爀爀or is less 
than 3mHz, the estimated phase angle e爀爀or is less than 2.4°, 
and the estimated damping factor error is less than 0. 1%. These 
testing results proves the significant anti-noise capabili琀礀 of the 
proposed method in modal characte爀椀stics estimation of both 
LFO and SSO and the accurate detection of the oscillation 
events. .. _. __ 

·-wllh77 78db琀섀䤀䤀䤀䤀 
�0 006 -·- with77 2㔀搀b 漀漀n;e 

0 004 0.004 0002 0.� g漀漀�-,50Ⰰ尀⸀ⴀ-ⴀⴀⴀ吀 Time(s) (a) Event 2: D. 75Hz Time(s) (b) Event 3: 45Hz 
Figure 4. Spectrum magnitude I㰀倀 m (t) l of0.75䠀稀 and 45䠀稀 mode 

䌀⸀ Validation Using Field PMU data 

In this section, UGA field data collected from 3 a.m. to 4 
a.m. UTC on March 30, 2022, in the Kaua'i power system, is 
utilized to further validate the pe爀昀ormance of the proposed 
approaches. During this period, the ambient noise level was 
77.41 搀䈀. A 20Hz SSO events occurred at 95s as shown in 
Fig.5, and lasted for several hours due to a nearly 0 damping 
factor. Both the environmental noise and the bad data was 
included in the field event data as shown in Fig.5. Utilizing our 
proposed method, the 20Hz oscillation was success昀甀lly 
detected, with its spectrum magnitude I㰀倀 m(t) l depicted in Fig. 
6. Di昀昀ering from the curves in Fig. 1 and Fig. 4, I 㰀倀m (t) I for this 
undamped SSO mode in Fig.6 continuously grew to a relatively 
stable value, rather than retu渀�ng to zero. The start time of the 
event was accurately identified at 95s that with the sha爀瀀est 
slope change as described in Section II. C. 
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90 ., 101 Timc(S) 11 0 Ill 120 
Figure 5. Field data ofthe 20Hz oscillation event in Kaua'i power system 0012 f 0.0 1 0.008 ⸀⸀ O.OOGt 0.00ⴀ㄀ 0.002 

0 0:---,ⴀ琀㨀ⴀ0---,o开䨀 80 60 ⷿحي Time(s) 

I 

J 100 120 
Figure 6. Spec琀爀um ma最渀itude I㰀倀 m(t) l of 20Hz mode 

Due to the absence of ground truth in the field data, the 
estimated modal parameters obtained from our proposed 
method are compared with the results from Prony analysis to 
evaluate the algoritlun's effectiveness. The estimated modal 
parameters for the 20Hz mode, alongside the Prony analysis 
results, are presented in Table V. This comparison reveals that 
the results are almost consistent with each other, further 
validating the efficacy of our proposed methods. 

TABLE V. 

Method 

Proposed method 
Prony 

ESTIMATED MODAL PAR䴀蘀TERS FOR THE 20Hz MODE 

Freq. Amp. Phase 
(Hz) (Hz) 伀氀 
19.9 95 0.0 167 179.25 
20.005 0.0158 173.05 

V. CONCLUSION 

Dampi渀最 
factor (0/�) 

0.002 
0.1 11 

This paper proposes an innovative time-frequency wide­
band oscillation detection method capable of detecting all the 
LFOs and SSOs using real-time high-sampling-rate PMU data. 
This method can automatically capture the total number of 
oscillation modes during different events, without relying on 
any prior information. More importantly, by utilizing testing 
signals with various levels of ambient noise and field data from 
the Kaua'i power system, the approach accurately captures 
event start times and estimates oscillation modal parameters 
with high accuracy. Given its high precision and strong anti­
noise capabili琀礀, this method is well-suited for online 
applications in the real-time monitoring and analysis of both 
LFOs and SSOs in power systems. 

REFERENCES 

[1] Y. Cheng, M. Podlaski, J. Schmall, S. -H. F. Huang and M. Khan, 
"ERCOT PSCAD model review platform development and performance 

comparison with PSS/e model," in 2020 IEEE Power & Energy Socie琀礀 
General Meeting (PESGM), pp. 1-5 

[2] Y. Zhao, Y. Dong, L. Zhu, K. Sun, 䬀Ⰰ Alshuaibi, C. Zhang, et a!., 
"Coordinated control of natural and sub-synchronous oscillations via 
HVDC links in Great Britain power system," in 2022 IEEEIPES 
Transmission and Distribution Conference and Exposition ⠀吀&D), pp. 1-
5 

[3] ENTSO-e. (2018 , Mar.). Oscillation event 03 .12 .2017. [Online]. 
Available: https:/ /eepublicdo眀渀loads.entsoe.eu/clean­
documents/S伀䌀%20documents/Regional_ Groups_ Continental_ Europe 
/OSCILLATION_REPORT_SPD.pdf. 

[4] L. Zhu, W. Yu, Z. Jiang, C. Zhang, Y. Zhao, J. Dong, et a!., "A 
comprehensive method to mitigate forced oscillations in large 
interconnected power grids," IEEE Access, vol. 9, pp. 22503-225 15, 
2021. 

[5] M. Wu, L. Xie, L. Cheng, R. Sun, "A study on the impact of wind farm 
spatial distribution on power system sub-synchronous oscillations," 
IEEE Trans. Power System, vol. 31, no. 3, pp. 21 54-2162, May 2016. 

[6] Y. Zhao, L. Zhu, H. Xiao, Y. Liu, E. Farantatos, M. Patel, A. Darvishi 
and B. Fardanesh, "An adaptive wide-area damping controller via facts 
for the New York State Grid using a measurement-driven model," in 
2019 IEEE Power & Energy Socie琀礀 General Meeting (PESGM), pp. 1-
5. 

[7] Y. Cheng, L. Fan, J. Rose, S.H. Huangg, J. Schmall, X. Wang, et a!., 
"Real-world sub synchronous oscillation events in power grids with high 
penetrations of inverter-based resources," IEEE Trans. Power System, 
vol. 38, no. 1, pp. 31 6-330, Jan. 2023, 

[8] R. Xie, I. Kamwa and C. Y. Chung, "A novel wide-area con琀爀ol strategy 
for damping of critical frequency oscillations via modulation of active 
power injections," IEEE Trans. Power Systems, vol. 36, no. 1, pp. 485-
494, Jan. 2021. 

[9] A. Liccardo, S. Tessitore, F. Bonavolont椀琀, S. Cristiano, L.P.D. Noia, 
G.M. Giannuzzi, eta!., "Detection and analysis of inter-area oscillations 
through a dynamic-order DMD approach," IEEE Trans. Instrumentation 
andMeasurement, vol. 71, pp. 1-14 , Jul. 2022. 

[10 ] C.Wang, C. Liu, J. Yu, and S.X u, "Research on sub-synchronous oscilla­
tion characteristics between PMSG-based wind farms and weak AC 
grids based on prony method," in Proc. IEEE 3rd Con[ Energy Inte爀渀et 
EnergySyst. Jntegr. ⠀䔀l2), Nov. 2019, pp. 278 1-2786. 

[11] F. Zhang, L. Cheng, W. Gao and R. Huang, "Synchrophasors-based 
identification for subsynchronous oscillations in power systems," IEEE 
Trans. Smart Grid, vol. 10, no. 2, pp. 2224-2233, March 20 19. 

[12 ] E. Sezgin and 0. Salor, "Analysis of power system harmonic subgroups 
of the electric arc 昀甀爀渀ace currents based on a hybrid time-frequency 
analysis method," IEEE Trans. In搀⸀ Appl., vol. 55, no. 4, pp. 4398-4406, 
Jul./ Aug. 2019. 

[13] H. Liu, Y. Qi, J. Zhao and T. Bi, "Data-Driven subsynchronous 
oscillation identification using field synchrophasor measurements," 
IEEE Trans. Power Delivery., vol. 37, no. 1, pp. 165-17 5, Feb. 2022 

[14 ] T. Rauhala, A. Gole and P. J椀椀rventausta, "Detection of sub synchronous 
torsional oscillation frequencies using phasor measurement," Power 
Delivery, vol. 31, no. 1, pp. 11 -19, Feb.2 016. 

[15] H. Yin, W. Yao, L. Zhan, W. Yu, J. Zhao, Y. Liu, "Low cost, flexible, 
and distribution level universal grid analyser platform: desi最渀s and 
implementations," JET Generation, Transmission & Distribution, vol. 
14, no. 19, pp. 3945 -3 952, Oct.2020. 

[16 ] W. Qiu, Y. Dong, L. Zhu, S.You, Q. Tang, J. Duan, et a!., "Ambient­
based oscillation mode analysis via dynamic ensemble lTD and ARMA 
model for converter-based FFR application," in 2020 IEEE 3rd Student 
Conference on Electrical Machines and Systems (SCEMS), pp. 71 8-723 . 

TABLE IV. MODAL PAR䴀蘀TER ESTIMATION RESULTS UNDER DIFFENT NOISE LEVELS 

Noise 
Freq. (Hz) Mag. (Hz) Phase (0) Damp渀퀀 factor(%) 

Mode Ture Esti鴀ed Ture Esti蘀鴀ied Ture Estim愀琀ed Ture Estim愀琀ed 
level 

va氀甀e va氀甀e 
Error 

v愀氀ue value 
Error 

value v愀氀ue 
Error 

va氀甀e v愀氀ue 
Error 

0.75H z 82.50 0.75 0.7503 3e-4 0.0500 0. 0492 8e-4 30.00 29.23 0.77 2.12 00 2.24 le -1 
79.65 0.75 0. 7492 8e-4 0.0500 0. 0472 3e-3 30.00 32.25 2.25 2.12 00 2.14 2e-2 䤀氀l 77.76 0.75 0.7 501 le -4 0.0500 0.052 0 2e-3 30.00 28.91 1. 09 2.12 00 2.45 3e- l Event 2 77.24 0.75 0.7506 6e-4 0.0500 0.0488 le -3 30.00 27.85 2.15 2.12 00 2.20 8e-2 
82.50 45.00 45 .0000 2e-5 0.0600 0.0601 6e-5 30.00 30.03 0.03 0.0354 0.034 9 5e-4 

45Hz in 79.65 45.00 45.0005 5e-4 0.0600 0.0606 6e-4 30.00 30.21 0.21 0.0354 0.0 351 3e-4 
event 3 77.76 45.00 45 .0007 7e-4 0.0600 0.0589 le -3 30.00 30.55 0.55 0.0354 0.0358 4e-4 

77.24 45.00 45.0010 le -3 0.0600 0.0567 3e-3 30.00 29.44 0.56 0.0354 0.034 2 le -3 
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