

1 **Situating the salience and parietal memory networks in the context of
2 multiple parallel distributed networks using precision functional mapping**

3

4 **Authors:** Young Hye Kwon^{1,10*}, Joseph J. Salvo¹, Nathan L. Anderson¹, Donnisa Edmonds¹,
5 Ania M. Holubecki¹, Maya Lakshman¹, Kwangsun Yoo^{2,3}, B.T. Thomas Yeo⁴, Kendrick Kay⁵,
6 Caterina Gratton^{6,7,8,9}, Rodrigo M. Braga^{1,7*}

7

8 **Affiliations:** ¹ Department of Neurology, Northwestern University, Chicago, IL, 60611, USA.

9 ² Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology,
10 Sungkyunkwan University, Seoul, 06351, Republic of Korea.

11 ³ AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul,
12 06351, Republic of Korea.

13 ⁴ Centre for Sleep & Cognition, Centre for Translational MR Research and Department of Electrical
14 & Computer Engineering, National University of Singapore, 117549, Singapore.

15 ⁵ Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of
16 Minnesota, Minneapolis, MN, 55455, USA.

17 ⁶ Department of Psychology, Florida State University, Tallahassee, FL, 32306, USA.

18 ⁷ Department of Psychology, Northwestern University, Evanston, IL, 60208, USA.

19 ⁸ Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, 61820, USA.

20 ⁹ Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign,
21 Urbana, IL, 61801, USA.

22 ¹⁰ Lead contact

23

24 ***Corresponding Authors:** Young Hye Kwon (younghye.kwon@northwestern.edu) and Rodrigo M.
25 Braga (rbraga@nortwestern.edu)

26

27 **Summary**

28 Brain networks serving higher cognitive functions are widely distributed across frontal and
29 posterior association zones. Two exceptions have been the parietal memory (PMN) and
30 salience networks (SAL), which are typically restricted to posterior (e.g., posterior cingulate
31 and lateral parietal cortex) and anterior (medial prefrontal and anterior insular cortex) areas,
32 respectively. Using high-resolution neuroimaging, we show that individualized estimates of
33 the PMN extend beyond the posterior set and encompass frontal and insula regions
34 canonically ascribed to SAL. This suggests that SAL and PMN form a unified 'SAL/PMN'
35 network. Task-based analyses confirm that both anterior and posterior components of
36 SAL/PMN show recognition-related activity. Comparison of 3T and 7T data suggests that
37 high-resolution data more readily revealed the unified network, underscoring the importance
38 of fine-scale distinctions for veridical representation of brain networks. Importantly, the
39 unified network better matches the expected parallel distributed network organization that is
40 characteristic of association cortex.

41

42 **Introduction**

43 The cerebral cortices comprise large-scale networks that are specialized for different
44 cognitive functions.^{1,2,3,4,5} Knowledge of the detailed anatomy of the networks, including the

45 constituent regions and how these fit within broader topographical patterns, can provide
46 clues to the component processes of cognition and their anatomical bases (e.g.,^{6,7,8}). One
47 example is recognition,⁹ a type of declarative memory that is commonly divided into
48 processes of recollection (i.e., the mental re-experiencing of a previous experience) and
49 familiarity (i.e., the subjective feeling that something has been previously
50 experienced^{10,11,12}). Although these processes likely interact during recognition, evidence
51 from functional brain imaging supports that distinct brain systems are associated with
52 recollection and familiarity (e.g.,^{10,13,14}).

53

54 Tasks targeting recollection often reveal increased activity in a broad network that includes
55 regions within the canonical 'default network' or 'DN'.^{15,16,17,18} The implicated network is
56 widely distributed, including regions at or near the posterior cingulate, posterior inferior
57 parietal, lateral temporal, medial and lateral prefrontal, and parahippocampal cortices.^{16,19}
58 This network shows increased activity when participants are asked to think about a past or
59 prospective future event,¹⁵ and is robustly activated when mental scenes are
60 contemplated.^{20,21,22} In contrast, tasks that target familiarity, such as those involving
61 detection of previously seen images, typically reveal activity in a much more restricted
62 posteromedial set of regions, a network sometimes called the 'parietal memory network' or
63 'PMN'.^{23,24} The PMN includes a region at or near the precuneus (PCU) and a separate
64 region in the rostral posterior cingulate cortex (rPCC) within the callosal sulcus. These PMN
65 regions surround the posteromedial regions of the canonical DN,^{1,3,5} which forms a key
66 identifying feature of the PMN. Functionally, the PMN shows increased activity to previously
67 seen stimuli – the so-called 'repetition enhancement effect'^{25, 26} – even in the absence of an
68 explicit requirement for the stimuli to be identified as familiar²⁴ (see also²⁷). Hence, evidence
69 supports that two distinct networks, one within canonical DN regions and one being the
70 PMN, play complementary but dissociable roles in recognition.

71

72 The DN is a widely distributed network, containing regions in multiple association areas; an
73 organizational motif that is characteristic of association cortex.^{2,8} In contrast, the PMN is
74 typically restricted to posteromedial cortex (i.e., the PCU and rPCC) and, sometimes, lateral
75 parietal cortex. This bears scrutiny given that the PMN is also located deep within
76 association zones, suggesting the PMN should also have a distributed network organization
77 that more resembles the DN and other association networks (e.g., see^{28, 29}). Another
78 exception is the salience network (SAL), which typically comprises regions within the
79 anterior cingulate and medial prefrontal cortex (collectively referred to as 'mPFC' here) and
80 anterior insula (aINS), and sometimes the rostralateral prefrontal cortex (rPFC). SAL also
81 appears to break the expected parallel distributed pattern of association networks, but in this
82 case by being restricted to anterior cortices, while PMN is confined to posterior cortices.
83 These discrepancies raise the possibility that SAL and PMN are anterior and posterior
84 components of a larger unified system that fits the distributed network motif.^{30,31,32} Of note,
85 the putative functions of the SAL network in responding to relevant stimuli³³ are likely
86 integral to the detection of novel or familiar stimuli in tasks typically used to define the
87 PMN.^{23,24}

88

89 There have been conflicting accounts regarding which regions comprise the PMN (as
90 reviewed in³⁴). Some functional connectivity (FC) estimates restrict the PMN to the core
91 PCU and rPCC regions, particularly when winner-takes-all algorithms are used (e.g.,
92 compare the 13th and 34th figures in the Yeo et al.⁵; see also^{1,3,35}), but several studies have
93 identified additional PMN regions. A PMN region is often reported in the inferior parietal
94 lobule (IPL), sometimes at or near the posterior angular gyrus (e.g.,^{23,34,36}) or sometimes in
95 a more anterior location within the intraparietal sulcus.^{24,37,38,39} Less frequently, the PMN has
96 been reported to include frontal regions at or near the rPFC^{25,40,41,42} and mPFC, which are
97 more commonly reported in task-based analyses^{40,41,42} than FC estimates, which led to the
98 proposal that the frontal regions are part of a separate network that is recruited alongside
99 the PMN in certain task contexts (e.g., see⁴³). However, Gordon et al.³⁷ showed that some
100 individuals do display frontal PMN regions in task-free FC estimates when individual
101 differences are specifically considered. In their analysis, some individuals showed a further
102 PMN region at or near the ramus marginalis of the cingulate sulcus (RMC). In summary,
103 data support that the PMN may include multiple regions beyond the posteromedial set (i.e.,
104 the PCU, rPCC, IPL, rPFC, mPFC, RMC), but emphasize that considerable individual
105 differences may have led to these regions being missed in group-level estimates.³⁴ Notably,
106 the putative anterior PMN regions are typically situated at or near components of SAL.
107

108 Recently, advances in functional magnetic resonance imaging (fMRI) have allowed the
109 estimation of brain networks reliably within the individual through repeated scanning.^{44,45}
110 The individual-level maps capture idiosyncratic details of the networks present in each
111 individual,^{28,37,44,46} revealing new insights (e.g.,^{17,28,29,36,46,47,48,49,50,51}). Zheng et al.⁵¹
112 analyzed extensively collected data from 10 individuals and found that, while all individuals
113 displayed a PMN that included the core PCU and rPCC regions, the other, additional
114 regions were only observed in some individuals (see also Gordon et al.³⁷). Recently, using a
115 multi-level Bayesian parcellation that incorporates information about individual variability to
116 stabilize network estimation, Kong et al.³⁸ defined the PMN as a widely distributed network,
117 including regions in a total of 7 distinct cortical zones, including PCU, rPCC, RMC, rPFC,
118 IPL and mPFC, as well as aINS; see 'Control C' network in³⁸). The aINS regions of PMN,
119 while surprising, were also present in 2 individuals in the analysis by Gordon et al.³⁷, upon
120 close inspection. These prior accounts show that even when more powerful individual-level
121 analyses are deployed, the detection of PMN regions beyond the posteromedial set has
122 been inconsistent.
123

124 Although individuals might truly vary in the number of brain regions connected to the PMN, a
125 simpler explanation is that small regions may have been missed in some individuals
126 because they fall below the signal limits of the imaging procedures used. We hypothesized
127 that high-resolution 7T network estimation within individuals would resolve multiple PMN
128 regions beyond the posteromedial set consistently, including in regions that are difficult to
129 resolve such as the insula.⁶³
130

131 **Results**

132 *High-resolution fMRI reveals that the PMN is distributed across multiple cortical zones*

133 Temporal signal-to-noise ratio (tSNR) maps revealed high average tSNR in each individual
134 (Table S1), despite the small voxel size (1.8 mm isotropic; see Supp. Fig. S1). Runs passing
135 quality control were divided into discovery and validation (i.e., replication and triplication)
136 datasets in each individual. We initially explored the discovery dataset, and then performed
137 hypothesis-testing analyses in the validation datasets, before replicating and triplicating
138 network maps in the validation datasets.

139

140 On initial exploration of functional connectivity patterns in one of the NSD subjects, the
141 observation was made that a network resembling the PMN could be defined by selecting
142 seed regions from the posteromedial cortex. The estimated network highlighted the PCU
143 and rPCC regions^{3,5,23} but also included multiple lateral and frontal cortical regions that
144 showed high correlations ($r \sim 0.6$; Fig. 1). Hints of a further region were also observed in the
145 lateral temporal cortex (LTC; explored later) which typically suffers from signal dropout in
146 fMRI. Motivated by this, we explored the organization of this network in other individuals and
147 using multiple approaches. First, we manually selected seed vertices from the rPFC in each
148 individual (Fig. 1A, first column) whose correlation maps also contained the core PMN
149 regions in the PCU and rPCC. A single “best” PMN seed was then selected for each
150 participant by visually comparing the correlation maps in the discovery dataset, emphasizing
151 strong correlation values throughout the network. In each participant, the PMN appeared as
152 a distributed network with regions in multiple cortical association zones.

153

154 Seeds were initially selected from the rPFC (Fig. 1), following^{28,46,47}. The distributed
155 organization of the network was confirmed by selecting seeds in five cortical zones (Fig. 2
156 and Supp. Fig. S2), demonstrating that the regions formed an interconnected distributed
157 network through multiple seeds, including in regions underemphasized in the literature such
158 as the aINS and mPFC.

159

160 We next defined other networks in the proximity of the PMN to ensure that the estimated
161 PMN was not being conflated with other networks. In each participant, we defined multiple
162 networks (including DN-A, DN-B, FPN-A, and FPN-B) using seeds in the lateral prefrontal
163 cortex, none of which showed connections to the characteristic posteromedial set of PMN
164 regions, confirming our estimate of the PMN was a distinct network (Supp. Figs. S3, S5—
165 S8). These analyses also revealed two parallel distributed networks within canonical CON
166 regions (which we refer to as CON-A and CON-B; see also³⁸).

167

168 Once all networks had been defined using a manual seed-based approach, we performed
169 data-driven clustering³⁸ to define multiple networks simultaneously (Fig. 1). The estimates
170 shown in Fig. 1 were consistent across multiple levels of clustering (explored later). These
171 analyses confirmed through multiple approaches that when defined in individuals using high-
172 resolution data, the PMN is a widely distributed network with regions in upwards of 9 cortical
173 zones (Fig. 1).

174

175 A strong possibility^{34,37} is that individual differences in network anatomy may have obscured
176 detection of these multiple PMN regions, particularly in prior analyses that relied on group

177 averaging. To explore this, we computed an overlap map for the 6 NSD individuals by taking
178 the binary estimate of the PMN from the clustering analysis, and calculating how many
179 subjects displayed a PMN region at each vertex (Fig. 1B). This analysis revealed that the
180 prominent PCU and rPCC regions of the PMN showed overlap across all 6 individuals,
181 whereas other regions were more variable. Notably, the aINS region also showed high
182 overlap across most subjects, suggesting other factors may have led to this region being
183 missed in prior analyses, such as the complex insular anatomy (e.g.,⁵²).
184

185 After all statistical analyses had been performed (Fig. 3; described below), we replicated
186 and triplicated the definition of the PMN in left-out data from the same individuals (Supp. Fig.
187 S4). These replications again confirmed that the PMN reliably contains multiple regions
188 beyond the core posteromedial set.
189

190 *The posteromedial regions of PMN are intrinsically connected to frontal SAL regions*
191 All subjects displayed PMN regions in the mPFC with strong connectivity to the core
192 posteromedial components of the PMN ($r \sim 0.6$), and these were anchored at a location
193 immediately dorsal to the apex of the genu of the corpus callosum (Fig. 1). This is
194 interesting because this region is considered a characteristic feature of the SAL network by
195 several accounts (^{3,37,53,54}; but see^{5,38}). Further, in all subjects the estimate of the PMN
196 contained regions within the ventral aINS, another region that is characteristic of SAL.⁵⁵ This
197 led us to consider that the two systems, SAL and PMN, may be an intrinsically connected,
198 unified network, referred to hereafter as SAL/PMN, that has been previously studied as two
199 systems (as suggested by³⁰ and see fifth Extended Data Figure in⁵⁴).
200

201 Given this is a strong claim, to ensure generalizability, we reproduced our results in a
202 separate cohort of extensively sampled individuals scanned at 3T using high-signal, multi-
203 echo fMRI data. The results again supported a unified SAL/PMN (Fig. 5A). Further, we
204 repeated network definition using a different data-driven algorithm (k -means clustering,
205 maps not shown), which again preserved the distributed organization of SAL/PMN observed
206 using MS-HBM (Fig. 1). We also examined the published analysis of UK Biobank data,⁵⁶
207 comprising data from 4,181 individuals, and observed that the network that included the
208 canonical PMN regions also included all the distributed regions we report when the
209 threshold was lowered (Fig. 4C).
210

211 Further evidence supporting the SAL/PMN as a unified network was found in subcortical
212 connections. The posterior MTL has been considered to be part of the canonical PMN,^{33,51}
213 while the ventral striatum is identified with the canonical SAL.^{55,57} Using the high- resolution
214 7T data, we observed that seeding from the ventral striatum revealed the full distributed
215 SAL/PMN network (see also³¹). Similarly, seeding from the posterior MTL also revealed the
216 full distributed SAL/PMN network (Fig. 4A & 4B). These subcortical SAL/PMN connections
217 were also observed in UK Biobank data at lower thresholds ($z = 3$ for the posterior MTL as
218 shown in Fig. 4C and $z = 2$ for the striatum; not shown). These analyses provide further
219 support for SAL/PMN being a unified network. We also replicated the finding that DN-A is

220 connected to a more anterior part of the posterior MTL than SAL/PMN,^{32,33,51} (not shown;
221 and see⁵⁸), further supporting a dissociation between canonical DN and PMN functions.
222

223 *SAL/PMN is statistically and reproducibly dissociated from nearby networks*

224 The observed distinction between SAL/PMN and surrounding networks was statistically
225 tested in the left-out datasets by targeting seeds to the regions of 7 *a priori* selected
226 networks (SAL/PMN, DN-A, DN-B, FPN-A, FPN-B, CON-A, CON-B) (Supp. Fig. S3). For all
227 networks tested, pairwise seed-seed correlations were significantly higher within-network
228 than between-networks when tested within each individual ($p < .05$, corrected; not shown),
229 with few exceptions. Importantly, the SAL/PMN was statistically dissociated from the other
230 networks (all $p < .05$, corrected) in all individuals and in both replication and triplication
231 datasets. This result was also significant in a post-hoc group-wise analysis (Fig. 3B). The
232 results show that the SAL/PMN is statistically dissociable from the other networks in
233 independent data.

234

235 *High-resolution data tends to preserve distributed SAL/PMN*

236 The replication analyses of the 3T data allowed us to explore whether the resolution of the
237 data was a factor in revealing the distributed organization of SAL/PMN. We performed
238 clustering with higher numbers of clusters, ranging from $k = 7$ –50. In all 7T NSD and some
239 3T DBNO participants, the cluster that included the posterior components of the SAL/PMN
240 also included vertices within the mPFC even at the highest solution ($k = 50$; Fig. 5B, top). To
241 further test the integrity of the SAL/PMN, we incrementally increased the number of
242 allowable vertices in the mPFC from 1 to 50. The network's unity was preserved at the
243 highest solution ($k = 50$) with the highest threshold (50-vertex) in 4 out of 6 participants (Fig.
244 5B, bottom). In DBNO subjects, the anterior and posterior components were fractionated at
245 some level of k , suggesting that the 7T data preserved the extended SAL/PMN at higher k
246 than the 3T data, regardless of the clustering algorithm we used. This demonstrates that as
247 we move to higher resolution and signal-to-noise the tendency is for the distributed
248 connections of the SAL/PMN network to be more preserved, not less. These results support
249 that the distributed organization of SAL/PMN is veridical and more readily revealable as
250 blurring is minimized. Importantly, both seed-based and clustering-based estimates here
251 revealed a distributed SAL/PMN, making it unlikely to have been a result of quirks of the
252 clustering algorithms. For both 3T and 7T datasets, the most stable solution calculated using
253 Adjusted Rand Index in all subjects included a SAL/PMN with posterior and anterior
254 components.

255

256 *The canonical cingulo-opercular network comprises two parallel distributed networks*

257 The separation between SAL and CON has been the subject of a nuanced debate since the
258 networks were first identified.^{53,55} In the present analyses, alongside SAL/PMN we were able
259 to identify two networks within canonical CON regions, CON-A and CON-B (Fig. 1 & Supp.
260 Fig. S5C). Importantly, in all subjects CON-A and CON-B contained adjacent regions in
261 multiple cortical zones, including mPFC, IPL (Supp. Figs. S5C & S8), the insula, the RMC,
262 and several regions of the lateral frontal cortex (a similar organization to the 'Salience/Ven
263 Attn A' and 'Salience/Ven Attn B' networks in³⁸; Fig. 1). Hence CON-A and CON-B also

264 appeared as parallel distributed networks in our analyses of high-resolution data, in contrast
265 to a recent account that fractionated the canonical CON into orthogonal (e.g., anterior,
266 lateral, central) sub-networks.^{59,60} These analyses support a separation of the frontal midline
267 into a sequence of upwards of three parallel distributed networks, with CON-B being closest
268 to somatomotor cortices, SAL/PMN occupying more rostral mPFC, and with CON-A in
269 between. This macroscale network sequence was also evident in the insula, with SAL/PMN
270 being most rostral and ventral, CON-B most caudal, with CON-A in between (Supp. Figs.
271 S5C & S8).

272
273 To ensure that these cingulo-opercular networks had been correctly identified, we
274 investigated the relationship of this triple network sequence to a separate premotor network
275 (PreM) that surrounds the somatomotor strip (see also⁴⁸; Fig. 6A). In each case, the
276 SAL/PMN, CON-A, CON-B, and PreM networks could each be separately defined using
277 dorsomedial prefrontal seeds, with each network occupying distinct portions of the cortex
278 throughout the brain. This confirmed the separation between all 4 networks using seeds in
279 the anterior midline and emphasized the multi-network sequence, anchored around the
280 central sulcus, potentially linking more somatomotor functions (PreM, CON-B) with more
281 higher-order associative functions (CON-A, SAL/PMN).^{30,48,59,60}

282
283 *The SAL/PMN network is distinct from networks within canonical default, frontoparietal
284 control and cingulo-opercular regions in multiple cortical zones*

285 As has been observed in other networks,^{28,46,60,61} the exact location and shape of the
286 SAL/PMN regions varied appreciably across individuals (Fig. 1B). However, broad
287 consistencies could also be observed in the relationship of the SAL/PMN to nearby
288 networks. In the posteromedial cortex (Supp. Figs. S5A & S6, top panel), the SAL/PMN
289 includes multiple regions that surround but are separable from the regions of DN-A and DN-
290 B (see black outlines of SAL/PMN in Supp. Fig. S5A insets). In the posterior and middle
291 cingulate cortex, SAL/PMN was consistently located posterior to FPN-A and FPN-B regions,
292 while CON-A and CON-B regions were typically positioned within and/or across the marginal
293 sulcus in the paracentral lobule. Similar juxtapositions were also observed in the mPFC: DN-
294 A and DN-B were generally positioned in more rostral and ventral sites (Supp. Figs. S5A &
295 S6), while regions of FPN-A and FPN-B were generally in more dorsal locations (Supp. Figs.
296 S5B & S7), and regions of CON-A and CON-B were generally in more caudal locations
297 (Supp. Figs. S5C & S8). Hence in the medial prefrontal cortex the SAL/PMN appears to sit
298 at the confluence of DN-A, DN-B, FPN-A, FPN-B, and CON-A, with CON-B typically being
299 separated from the SAL/PMN by CON-A. A similar juxtaposition between the networks was
300 observed in the anterior insular (Fig. 1).

301
302 Notably, in the lateral parietal cortex, SAL/PMN regions were sometimes located exactly in
303 between FPN-A and FPN-B, suggesting a closer correspondence between SAL/PMN and
304 FPN-A and FPN-B than canonical DN regions.

305
306 *The unified SAL/PMN preserves macroscale network sequences*

307 We and others have previously noted that the large-scale association networks are
308 organized into stereotyped sequences that span multiple networks.^{2,3,8,28,29} The same
309 sequence of networks can typically be observed in multiple locations, including anterior (i.e.,
310 frontal, midline, insula) and posterior (i.e., parietal, midline, temporal) cortices. The
311 canonical (split) PMN and SAL networks break this rule. Fig. 6B shows that, when
312 considered as a unified network, the SAL/PMN occupies the exact same position in a multi-
313 network sequence – spanning DN-A, DN-B, SAL/PMN, FPN-A, FPN-B, CON-A and CON-B
314 – across multiple anterior and posterior cortical zones (see arrows in Fig. 6B; and see other
315 subjects in Fig. 1). Although the exact placement and shape of regions varies in complex
316 ways across the brain, broadly the SAL/PMN was positioned alongside the FPNs, with the
317 DNs on one side of the sequence and the CONs on the other. The same sequence could be
318 observed in the anterior and posterior midline, as well as in the lateral parietal cortex, and
319 insula (i.e., within both canonical PMN and SAL regions). A further repeat of the sequence
320 was suggestive in the lateral temporal cortex, further supporting inclusion of the LTC into the
321 extended SAL/PMN. This observation, of SAL/PMN regions occupying the same position
322 along this stereotyped sequence in multiple cortical zones, is directly predicted by a unified
323 SAL/PMN, but no such prediction arises from a split SAL and PMN.
324

325 *Surface area analyses support the unified SAL/PMN*

326 Additional support for a unified SAL/PMN was observed by comparing the surface area of
327 each distributed network, expressed as a percentage of the total vertices in both
328 hemispheres. Fig. 6C shows that the distributed association networks typically each occupy
329 around 4 – 8% of the total surface area of the cerebral cortex (see also 21st figure in⁴⁶).
330 When SAL and PMN were considered as two separate networks, these networks were
331 significantly smaller (all $p < .003$, corrected) than the other networks, occupying around 2%
332 surface area. In contrast, the unified SAL/PMN network matched the expected size of the
333 other networks ($p > .110$; n.s.). Thus, working under the assumption that the large-scale
334 association networks occupy approximately the same size, given the resolution of the data
335 and application of similar clustering procedures, these result are noteworthy as they suggest
336 that dividing SAL/PMN in two may be over-splitting, particularly when considering the seed-
337 based maps (Fig. 2)

338 *The SAL/PMN shows a repetition enhancement effect*

339 A unified SAL/PMN leads to the prediction that both anterior and posterior components of
340 the network should show similar task-related responses. We tested whether the full network
341 showed a stimulus repetition enhancement effect that is characteristic of the canonical
342 PMN.^{23,24,62}
343

344 Fig. 7A demonstrates that the map of the SAL/PMN network overlapped with regions
345 exhibiting a repetition enhancement effect in all individuals (with the possible exception of
346 subject S7). Notably the effect was most pronounced in posteromedial regions, but the
347 frontal regions also showed evidence of task engagement. We conducted three targeted
348 analyses to test whether the effect was observable in each cortical zone (see *Quantification*
349 and *statistical analysis*). First, analysis of *a priori* defined seed vertices showed that in all six
350

351 individuals, the SAL/PMN exhibited a significant increase in signal for repeated images (P2
352 > P1 and P3 > P1; $p < .001$; P2 vs. P3, n.s.; corrected).

353
354 Second, a region-of-interest analysis focused on network regions within 5 broad cortical
355 zones, including the posterior midline (encompassing PCU, RMC and rPCC), anterior
356 midline (encompassing mPFC), the posterior lateral cortex (encompassing IPL), anterior
357 lateral cortex (encompassing rPFC), and the anterior insula. The SAL/PMN had the
358 strongest repetition enhancement effect among all networks for P2 > P1 and P3 > P1 (not
359 P2 > P3; $p < .05$, corrected). This effect was consistent across subjects, except for S1 and
360 S7, whose FPN-A showed a larger effect. DN-A and DN-B tended to show the opposite
361 repetition suppression effect in both analyses, further supporting a separation between DN-
362 A and SAL/PMN despite their close proximity in posteromedial cortex.

363
364 A third analysis used spin permutation testing to test whether the repetition enhancement
365 effect was specific to the SAL/PMN, and was similar across frontal and posterior
366 components of the network. Fig. 7B shows that the SAL/PMN as a whole showed a
367 significant repetition enhancement effect (i.e., P2 > P1 and P3 > P1), and in both anterior
368 and posterior components individually, consistently across subjects (with the exception of
369 S7's anterior SAL/PMN regions in the P2 > P1 contrast). Averaged across subjects, the
370 SAL/PMN also exhibited the largest repetition enhancement effect of all the networks (Fig.
371 7C). Other networks did not show significant effects, with the exception of FPN-A, which
372 showed a similar but weaker pattern to SAL/PMN, and the anterior portion of DN-B which
373 also showed a small significant increase.

374
375 **Discussion**
376 We studied the detailed anatomy of large-scale networks using high-field and high-
377 resolution 7T fMRI. We found that, when defined within an individual, the canonical PMN is
378 a distributed network that contains regions in upwards of 9 cortical zones (Fig. 1), including
379 regions previously considered part of the canonical SAL network, indicating that the two
380 networks form a unified 'SAL/PMN' network.³⁰ We show that the SAL/PMN is closely
381 interdigitated with, but clearly and statistically dissociable from, other nearby large-scale
382 networks (Fig. 3 and Supp. Figs. S5–S8). We further show that the entire SAL/PMN
383 network, including anterior and posterior components, can be defined from subcortical
384 seeds targeting the posterior MTL and ventral striatum (Fig. 4AB; see³¹), and shows
385 evidence of task engagement in a recognition task typically associated with the PMN (Fig. 7;
386 but see¹³). The findings were confirmed in all 6 7T NSD subjects analyzed (Fig. 1), were
387 consistent across analysis procedures (Figs. 1–2, 4AB), were replicated and triplicated in
388 the same individuals (Fig. 3 and Supp. Fig. S4), and were further replicated in 2
389 independent datasets (Figs. 4C and 5A). The results confirm that SAL/PMN, when
390 considered as a unified network, shows a distributed architecture which better matches the
391 parallel network organization characteristic of association cortex.² Our results suggest that,
392 like the other association networks, the SAL/PMN may have emerged through a process of
393 fractionation of a prototypical distributed network architecture during development.^{29,63}

394

395 *The SAL/PMN as a parallel distributed network*

396 In all individuals, our exploration revealed a distributed network including regions in upwards
397 of 9 cortical zones, including PCU, rPCC, RMC, mPFC, vmPFC, rPFC, dPFC, aINS, and IPL
398 (see dashed and dotted boxes in Fig. 1B). The resulting organization encompassed
399 canonical PMN and SAL regions, suggested that the two networks are actually a unified
400 system when imaged at sufficiently high resolution and signal to noise. Sometimes the
401 network regions were small (e.g., see IPL and vmPFC in Fig. 1), and would have been
402 overlooked if their clearer presence in other subjects were not suggestive. Notably, the
403 regions with the most overlap were also those that have most often been ascribed to the
404 canonical PMN: the PCU and rPCC (Fig. 1B).^{23,34,37} Other regions, such as the IPL and
405 rPFC, showed more variability across individuals. Similarly, although the rPFC and mPFC
406 regions were relatively large, they were more dispersed, leading to less overlap across
407 individuals. This provides a compelling explanation for why group-averaged data may have
408 split the SAL/PMN into two networks: canonical PMN regions in the posteromedial cortices
409 show high consistency across individuals, while frontal regions are much more variable. This
410 could lead to a division of frontal and posterior components when group-wise analyses are
411 conducted, due to blurring across misaligned functional regions in anterior components of
412 SAL/PMN. These findings underscore the need for individual-level network estimation.

413

414 However, recent within-subject network analyses have also sometimes considered the
415 anterior and posterior parts of the SAL/PMN as separate networks.³⁷ Our results showed
416 that the lower resolution 3T data tended to split SAL/PMN into two networks more often and
417 at a lower number of clusters than the higher resolution 7T data, regardless of algorithm
418 used (Fig. 5B). This supports that the ability to define smaller network regions in the high-
419 resolution 7T data may be key in characterizing the distributed connections between the
420 anterior and posterior components of SAL/PMN. This may be because the anterior regions
421 are smaller than the prominent posteromedial regions and/or potentially more prone to
422 partial volume effects. Therefore, even within individuals blurring may have led to the
423 SAL/PMN being over-split in past work.

424

425 An interesting observation was that some individuals showed limited evidence of a
426 SAL/PMN region in the lateral temporal cortex (LTC). This would be unremarkable given the
427 small size of the region identified, its low correlation values, and its inconsistency across
428 individuals. However, this putative region was located right next to a zone of signal dropout
429 (Supp. Fig. S1), raising the possibility that a lateral temporal SAL/PMN region may exist that
430 has been missed. Supporting this, the LTC region was also evident in a large group-average
431 analysis of $n = 4,181$ individuals in the UK Biobank at a lower threshold ($z=3$; Fig. 4C), and
432 the task-activation map during the recognition task (Fig. 7A). There are also reasons to think
433 that this part of the brain should contain a SAL/PMN region. Our analyses suggest that the
434 SAL/PMN is closely linked to FPN-A and FPN-B (Supp. Figs. S5B & S7), both of which
435 contain lateral temporal regions approximately where this putative SAL/PMN region might
436 be (Figs. 1 & 5A; and see ^{1,3,5,28}; see also Fig. 6B). Analysis of multi-echo data, which
437 theoretically improves signal at dropout regions, provided similar, suggestive support for the
438 presence of this LTC region in 7 out of 8 subjects (Supp. Fig. S9). These observations

439 underscore that technological advances in neuroimaging, such as the advent of higher-
440 resolution, individualized, and lower dropout approaches, can provide valuable refinements
441 to prior knowledge.^{3,5}

442

443 *Variability across individuals*

444 While we focused on functional anatomic features that were consistent across individuals
445 and methods, certain regions exhibited more heterogeneity than others (Fig. 1B). For
446 instance, although all subjects displayed regions of the SAL/PMN in each of the broad
447 “zones” indicated in Fig. 1B, some regions such as the rPFC exhibited more variation across
448 subjects. Prior work has suggested that association cortex is more variable across
449 individuals in functional organization than unimodal cortex,⁶⁴ and that individuals can vary
450 considerably in the size, shape, location, and topography of functional regions.^{39,65} One
451 proposal is that such heterogeneity may result from activity-dependent processes during
452 development.^{29,63} DiNicola & Buckner²⁹ describe a process by which an archetypal
453 distributed network motif is fractionated into functional regions as the cortex expands. This
454 fractionation into regions may be somewhat stochastic at a fine scale, making it unclear how
455 physiologically relevant such fine-scale differences are. However, recent studies support
456 that some features of individual differences are significant for cognition and mental
457 health.^{38,54}

458

459 *Relationship to other networks*

460 Detailed analysis suggests that the SAL/PMN sits at the confluence of multiple networks,
461 including DN-A, DN-B, FPN-A, FPN-B, CON-A, and CON-B. The SAL/PMN occupies
462 regions that are often completely distinct from other nearby networks, despite the complex
463 fine-scale anatomy on display (Supp. Figs. S5–S8). Importantly, this organization was
464 observed using both data-driven clustering and seed-based analyses of functional
465 connectivity, the latter of which does not enforce a winner-takes-all assignment. Despite the
466 complex and detailed anatomy of juxtaposed regions, seeds targeted to each network in 5
467 cortical zones using the discovery dataset statistically dissociated the networks in
468 independent data, both at the group and individual level, and in both the replication and
469 triplication datasets (Fig. 3). These results indicate that the SAL/PMN is as distinct from
470 other large-scale networks as the other networks are distinct from each other.

471

472 Prior estimates have diverged in considering the canonical PMN as a sub-system of the
473 canonical default (e.g.,³) or frontoparietal control networks (e.g.,⁵). On the other hand, there
474 has been ongoing confusion regarding the relationship between the SAL and CON
475 networks.^{55,66} Here, in the posteromedial cortex (Supp. Figs. 5A & S6), three regions of the
476 SAL/PMN – at or near the PCU, rPCC, and RMC – were found to encircle the regions of
477 DN-A and DN-B. The prominence of the PCU and rPCC regions may have led to a stronger
478 association in the literature between the SAL/PMN and the default network. However, the
479 same rPCC region of the SAL/PMN is also juxtaposed with regions of FPN-A and FPN-B as
480 one moves rostrally along the callosal sulcus (Fig. 1). Our data shows that the SAL/PMN is
481 closely juxtaposed next to frontoparietal control network regions in the posteromedial (Fig.
482 1), inferior parietal, and medial prefrontal cortices (Supp. Figs. 5B & S7). In the IPL, the

483 SAL/PMN more often was juxtaposed with FPN-A and FPN-B, remarkably filling the small
484 gap between the FPN-A and FPN-B in many individuals, and often not bordering DN-A or
485 DN-B. This variability, where the SAL/PMN borders DN-A and DN-B in some regions but not
486 others, may be a result of higher variation in functional organization found in association
487 cortex,^{39,67,68} or could be suggestive of further sub-structure within what we are defining as
488 the SAL/PMN. Alternatively, these findings could suggest that the SAL/PMN is more closely
489 linked to frontoparietal control functions. Supporting this, the functional connectivity of
490 SAL/PMN was anti-correlated (i.e., showing negative correlations) with DN-A and DN-B (Fig.
491 3), but not FPN-A and FPN-B.

492

493 In line with previous studies, analysis of a continuous recognition task provided further
494 evidence for the unified SAL/PMN and for the separation between SAL/PMN and canonical
495 default network regions. We observed the repetition enhancement effect within the
496 SAL/PMN, both in anterior and posterior components (Fig. 7), but observed a trend in the
497 opposite direction for DN-A.⁶⁹ In addition, we also observed a significant, if weaker,
498 repetition enhancement effect in FPN-A (Fig. 7C). These results, along with the close
499 juxtaposition between SAL/PMN and frontoparietal control networks in regions, again
500 suggest that the SAL/PMN may be more closely aligned functionally to the frontoparietal
501 control than default network systems. Thus, the SAL/PMN and FPN systems may serve
502 overlapping functional domains to some degree, which could be reflected in the spatial
503 overlap between these networks,⁷⁰ with the SAL/PMN potentially representing domain-
504 general processes that are related to salience processing and novelty detection. Notably,
505 the task effects were less robust in some areas, such as aINS and dorsal mPFC, and
506 adjacent regions that were likely in FPN-A showed clearer evidence of task activation,
507 raising the concern that SAL/PMN activation effects here could be a result of signal bleeding
508 from adjacent areas. However, given that other networks adjacent to FPN-A, such as FPN-B
509 and CON-A, did not show task effects (Fig. 7C), and that SAL/PMN regions farther from
510 FPN-A (e.g., in rostral mPFC) did exhibit task effects, this concern is minimized.

511

512 A final set of analyses provided evidence that, when considering broad multi-network
513 sequences that are observable in multiple cortical zones (Fig. 6B), the anterior and posterior
514 components of SAL/PMN were located in precisely the same position along the sequence.
515 This observation is uniquely predicted by considering that the anterior and posterior
516 components form part of a larger 'parent' SAL/PMN network. In contrast, a split SAL and
517 PMN would not lead to this prediction. Hence, our observations help reconcile two
518 discrepancies on that the SAL and PMN networks have differed in unusual ways from the
519 properties observed of other association networks.

520

521 Although our data suggests that the PMN and SAL form a unified network, it remains a
522 possibility that there could be substructure within the network. For instance, although our
523 recognition task analysis showed that anterior and posterior regions exhibited similar
524 responses, the effects were stronger in posteromedial region, which could represent true
525 differences in their relative functions. Our results support that the unified SAL/PMN fits
526 particularly well with the expected organization of other association networks, but it remains

527 possible that there is sub-specialization within the network. For instance, one way in which
528 networks may specialize is in fractionating a larger ‘parent’ network into anterior and
529 posterior components. In other words, one might interpret these results as suggesting that
530 SAL and PMN may share a ‘privileged connection’ rather than forming a single network.
531 That said, the differences in the magnitude of task response observed in SAL and PMN do
532 not diminish our findings that these networks are strongly correlated in the task-free resting-
533 state analyses. Future studies should seek to ascertain whether there is indeed evidence for
534 functional specialization between anterior and posterior components of SAL/PMN using
535 methods that can capture the fine-scale distinctions we describe here at high resolution.
536

537 *Limitations of the Study*

538 Although care was taken to ensure that the networks were accurately identified and were
539 consistent across individuals and estimation methods, it is possible that in some cases our
540 clustering analyses over-split certain networks. For instance, in the case of three individuals
541 (S1, S6 & S7), the clustering solution (i.e., value of k) that allowed us to separate the
542 SAL/PMN also led to a division of the canonical default network into three networks, rather
543 than two as per our previous investigations.²⁸ In these individuals, we took the two networks
544 that were closest to the PMN and labelled them “DN-A” and “DN-B”; however, the results
545 should be interpreted accordingly: these subjects were missing some core components of
546 DN-A, such as the key region extending into ventral posterior cingulate and retrosplenial
547 cortex (see Fig. 1 right column;^{28,47}). Hence in these participants “DN-A” should be
548 considered with this caveat. Note this does not affect the claims about the SAL/PMN being
549 distinct and distributed, and that this over-splitting was not present in the other three
550 subjects. The analyses here also focus heavily on resting-state functional connectivity, and
551 need to be supported by further task-based analyses within extensively sampled individuals,
552 at high-resolution, to test whether high-resolution analyses support further substructure
553 within the SAL/PMN including division into anterior and posterior components. Similarly, the
554 recognition task used here did not dissociate SAL/PMN from FPN-A (Fig. 7), whereas more
555 targeted tasks may be able to.
556

557 *Conclusion*

558 Here we provide evidence that the SAL/PMN is a unified, distributed network with regions in
559 upwards of 9 cortical zones. We show that the SAL/PMN is closely juxtaposed with
560 approximately 6 large-scale networks (DN-A, DN-B, FPN-A, FPN-B, CON-A, CON-B), but
561 provide evidence for a closer link between the SAL/PMN and frontoparietal control regions
562 than default network regions based on spatial proximity and similarity of task-evoked
563 responses. The results address a discrepancy in our understanding of the large-scale
564 networks, particularly the canonical PMN and SAL which have historically not shared the
565 distributed organization characteristic of association cortex; an observation that is reconciled
566 by a unified SAL/PMN. The findings underscore the need for individualized, high-resolution,
567 and high-field fMRI studies that provide greater separation between the tightly interwoven
568 networks that populate the cortical mantle.
569

570 **Resource Availability**

571 **Lead Contact**

572 Further information and requests for resources should be directed to and will be fulfilled by
573 the lead contact, Young Hye Kwon (younghye.kwon@northwestern.edu).
574

575 **Materials Availability**

576 This study did not generate new materials.
577

578 **Data and Code Availability**

579 All data needed to evaluate the conclusions in the paper are present in the paper and/or the
580 Supplementary Materials. All source data from the NSD Dataset, are publicly available at
581 <http://naturalscenesdataset.org>. The ICA-derived group-level functional maps from UK
582 Biobank are available at
583 https://www.fmrib.ox.ac.uk/ukbiobank/group_means/rfMRI_ICA_d25_good_nodes.html. All
584 custom code has been deposited at GitHub and is publicly available at
585 [10.5281/zenodo.14278880] as of the date of publication. Accession numbers are listed in
586 the key resources table. The independent dataset used for replication is available from the
587 lead contact upon request.
588

589 **Acknowledgments**

590 We thank Dr. Randy Buckner for helpful discussions regarding the framing of the results.
591 This work was supported in part by National Institute of Mental Health grant R00 MH117226
592 (to R.M.B); an Alzheimer's Disease Core Center grant (P30 AG013854; R.M.B.) from the
593 National Institute on Aging to Northwestern University, Chicago, Illinois.; a training award
594 T32 NS047987 (to J.J.S and N.A); the William Orr Dingwall Foundations of Language
595 Fellowship (to J.J.S); National Institutes of Health R01 MH118370 and National Science
596 Foundation (NSF) award NSFCAREER 2305698 (to. C.G); National Institutes of Health
597 grant (NIH) R01EY034118 (K.K.). Collection of the NSD dataset was supported by NSF IIS-
598 1822683 (K.K.) and NSF IIS-1822929. B.T.T.Y. is supported by the NUS Yong Loo Lin
599 School of Medicine (NUHSRO/2020/124/TMR/LOA), the Singapore National Medical
600 Research Council (NMRC) LCG (OFLCG19May-0035), NMRC CTG-IIT (CTGIIT23jan-
601 0001), NMRC OF-IRG (OFIRG24jan-0030), NMRC STaR (STaR20nov-0003), Singapore
602 Ministry of Health (MOH) Centre Grant (CG21APR1009), the Temasek Foundation
603 (TF2223-IMH-01), and the United States National Institutes of Health (R01MH133334). K.Y.
604 is supported by the National Research Foundation of Korea (NRF) grant funded by the
605 Korea government (MSIT) (RS-2024-00335670) and by a grant of the
606 Korea Dementia Research Project through the Korea Dementia Research Center (KDRC),
607 funded by the Ministry of Health & Welfare and Ministry of Science and ICT, Republic of
608 Korea (RS-2024-00339665). The content is solely the responsibility of the authors and does
609 not represent the official views of the National Institutes of Health, National Science
610 Foundation, Singapore NMRC, Singapore MOH, Temasek Foundation, Korea NRF or any
611 funders. This research was supported in part through the computational resources and staff
612 contributions provided by the Center for Translational Imaging and Quest high performance
613 computing facility at Northwestern University which is jointly supported by the Office of the
614 Provost, the Office for Research, and Northwestern University Information Technology.
615

616 **Author contributions**

617 Conceptualization: YK, RMB

618 Methodology: YK, RMB
619 Data curation and investigation: KK, JJS, NA, DE, AMH, ML, RMB
620 Formal analysis: YK, NA, KK, RMB
621 Visualization: YK, RMB
622 Writing–original draft: YK, RMB
623 Writing–review & editing: YK, JJS, AMH, KY, BTTY, KK, CG, RMB
624 Supervision: RMB
625

626 Declaration of interests

627 Authors declare no competing interests.

628

629 Main figure titles and legends

630 **Fig. 1: High-resolution functional connectivity within individuals reveals that the**
631 **posteromedial regions of the PMN form a distributed network that includes regions**
632 **typically ascribed to the SAL, suggesting that PMN and SAL form a unified “SAL/PMN”**
633 **network. A.** The left column shows the network estimated using a seed-based approach in
634 each individual (rows) using seeds (white circles) selected from the rostral prefrontal cortex
635 (rPFC). The right column shows the same distribution of SAL/PMN regions (dark blue
636 network) was observed using a data-driven clustering approach. Clustering was used to
637 define 7 *a priori* selected networks in the vicinity of the SAL/PMN, including DN-A, DN-B,
638 FPN-A, FPN-B, CON-A, and CON-B. **B.** An overlap map of SAL/PMN from each individual’s
639 clustering analysis. Dashed and dotted boxes refer to key cortical zones where each subject
640 displayed a region of SAL/PMN across methods. Dotted boxes indicate canonical SAL
641 regions. dPFC; dorsal prefrontal cortex, aINS; anterior insula, IPL; inferior parietal lobule,
642 RMC; ramus marginalis of the cingulate sulcus, vmPFC; ventromedial prefrontal cortex. *k*;
643 number of clusters used to define networks in each participant, though note the solution was
644 stable across multiple levels of clustering.

645

646 **Fig. 2: Seed-based functional connectivity at high resolution reproducibly defines**
647 **SAL/PMN from multiple cortical zones.** Five estimates of the SAL/PMN, seeded from five
648 cortical zones, are shown in two representative participants (S2 and S3; the remaining 4
649 participant are shown in Supp. Fig. S2) confirmed the distributed organization of the
650 SAL/PMN. Seeds are shown in white circles.

651

652 **Fig. 3: The SAL/PMN is statistically dissociated from nearby networks** in left out
653 datasets. **A.** The larger matrix on the left shows the cross-correlation matrix averaged
654 across all subjects, and the smaller matrices to the right show the correlations in each
655 subject (excluding S2 who only provided a discovery dataset). The upper triangle of each
656 matrix represents correlations in the replication dataset, and the lower triangle represents
657 the triplication dataset for individuals who provided sufficient data. **B.** The plots show the
658 group-averaged comparisons between within- and across-network seed-seed correlations in
659 the replication (top) and triplication (bottom) datasets. Each dot represents a different
660 individual, showing the average correlation for all seeds within each network, and across all
661 runs (paired t-tests, * $p < .05$, corrected). The SAL/PMN showed strong within-network
662 correlations, to the same level as other networks.

663

664 **Fig. 4: The unified SAL/PMN was confirmed through analysis of subcortical**
665 **connectivity and the UK Biobank data. A.** SAL/PMN defined from seeds in the posterior
666 MTL (considered part of the canonical PMN) shows clear connectivity within the anterior

667 components of the network (considered part of the canonical SAL). **B.** Seeds targeting the
668 ventral striatum (see black arrows) and mPFC (considered part of the canonical SAL) shows
669 clear connectivity with posteromedial regions (considered part of the canonical PMN). White
670 circles indicate the seed location, and dotted white circles indicate an approximate location
671 of seeds defined in the volume. Three representative subjects are shown (S2, S3, and S4).
672 **C.** Group-averaged resting-state functional connectivity maps from UK Biobank⁵⁶
673 recapitulate the distributed SAL/PMN when examined at lower thresholds ($z = 3$; see white
674 labels) than the default setting ($z = 5$). Sagittal views show “component 21” from an
675 independent component analysis at 25-dimensions.
676

677 **Fig. 5: The unified SAL/PMN network is replicated in an independent 3T multi-echo**
678 **dataset, and indicates that higher resolution 7T data more readily reveals the full**
679 **distributed network. A.** Functional connectivity procedures were replicated in the
680 independent 3T DBNO dataset, and each subject showed the full distributed SAL/PMN
681 network. **B.** (Top) The plot shows k values at which the SAL/PMN split into anterior and
682 posterior components in the 3T and 7T datasets, using MS-HBM and k -means clustering
683 algorithms. Each data point represents an individual subject. The network that contained the
684 posteromedial PMN regions was considered unified if one or more vertices were present
685 within the mPFC region of the canonical SAL. (Bottom) Increasing the number of mPFC
686 vertices that count as preserving the distributed network shows that even using more
687 stringent criteria the high-resolution data more readily preserved the distributed network.
688

689 **Fig. 6: A unified SAL/PMN conserves a multi-network sequence in multiple cortical**
690 **territories, and better matches the other distributed networks in surface area. A.**
691 Seeds were chosen from the dorsomedial prefrontal cortex in an anterior-posterior
692 progression to target SAL/PMN, CON-A, CON-B, and the premotor network (PreM) in two
693 individuals (S2 and S7). White lines serve as hand-drawn landmarks for comparing across
694 panels, to show how each network occupies distinct portions of the cortex despite being
695 defined from nearby seeds. White circles indicate the seed used to define the network
696 shown in that panel, and black hollow circles represent seeds for the other networks shown.
697 **B.** Clustering-derived network maps from an example subject (S2) show that macroscale
698 network sequences are conserved in multiple cortical territories when the SAL/PMN is
699 considered unified. **C.** Bar graphs show the surface area when SAL/PMN is considered as a
700 unified network (left) and when the network is split into anterior (ant.; canonical SAL) and
701 posterior (pos.; canonical PMN) regions (one-way ANOVA, ** $p < .01$, *** $p < .001$, corrected,
702 n.s.; not significant).
703

704 **Fig. 7: The unified SAL/PMN shows a repetition enhancement effect throughout the**
705 **distributed network. A.** Maps display z-scored t -values representing the contrast of $P2 >$
706 $P1$. The boundaries of the SAL/PMN (from Fig. 1) are shown in black. **B.** A spin test was
707 performed using the averaged task-related beta values calculated for SAL/PMN as a whole
708 (“Unified”) and split into anteromedial (“Ant.”) and posteromedial (“Pos.”) components. The
709 anteromedial and posteromedial regions were divided according to the dotted line shown in
710 the box. Permuted t -values are shown for $P2 > P1$ (pink), $P3 > P1$ (green), and $P3 > P2$
711 (grey), with the observed t -value for each contrast condition is shown as a red diamond
712 (1,000 iterations, alpha = 0.05; n.s.; not significant). **C.** The bar graph shows the mean t -
713 values for each region within each network, averaged across all subjects and contrasts
714 (error bars represent +/- SEM). Each of the SAL/PMN regions showed an increase (i.e., the
715 repetition enhancement effect), as did FPN-A (one-sample t -test, * $p < .05$, ** $p < .01$).
716

717

STAR★Methods

718

Key resources table

719 The key resources table (KRT) serves to highlight materials and resources essential to reproduce
720 results presented in the manuscript. The items in the table must also be reported alongside the
721 description of their use in the method details section. Literature cited within the KRT must be included
722 in the references list. Please do not add custom headings or subheadings to the KRT. We highly
723 recommend using RRIDs (see <https://scicrunch.org/resources>) as the identifier for antibodies and
724 model organisms in the KRT. To create the KRT, please use the template below or the [KRT webform](#).
725 See the more detailed [Word table template](#) document for examples of how to list items.

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Bacterial and virus strains		
Biological samples		
Chemicals, peptides, and recombinant proteins		
Critical commercial assays		
Deposited data		
Natural Scenes Dataset	Allen et al. ⁶⁴	http://naturalscenesdataset.org
Detailed Brain Network Organization dataset	This paper	Upon request
UK Biobank	Miller et al. ⁶⁵	https://www.fmrib.ox.ac.uk/ukbiobank/group_means/rfMRI_ICA_d25_good_nodes.html

Custom codes	This paper	10.5281/zenodo.1427880
Experimental models: Cell lines		
Experimental models: Organisms/strains		
Oligonucleotides		
Recombinant DNA		
Software and algorithms		
MATLAB	MathWorks	https://www.mathworks.com/products/matlab.html
FreeSurfer	Fischl ⁸⁷	https://surfer.nmr.mgh.harvard.edu/
Connectome Workbench	Marcus et al. ⁸⁸	https://www.humanconnectome.org/
PALM	Winkler et al. ⁹⁵	https://www.nitrc.org/projects/palm/
Other		

726
727

728 [Experimental model and study participant details](#)
729 **Participants**
730 For participants from the Natural Scenes Dataset (NSD⁷¹) six participants out of eight were
731 included in this study. Two participants (S5 and S8) were excluded due to excessive head

732 motion during resting state runs, resulting in a final sample of six participants (S1-S4, S6,
733 and S7; 4 females, age range 23-30 years, mean age = 26.8 ± 2.8 years). Each participant
734 provided approximately 30-40 fMRI sessions, with an average of 2.0 hours of resting-state
735 (passive fixation) and 38.5 hours of active task fMRI data per participant. MRI sessions were
736 collected approximately once per week. More details about participant information can be
737 found in⁷¹.

738

739 For the DBNO data, ten participants were recruited for an MRI study at Northwestern
740 Memorial Hospital. Following an initial trial period, intended to allow participants to become
741 familiar with the scanning procedures before committing to the full study, and for the study
742 team to vet participants who did not comply with instructions, two participants were excluded
743 for excessive head motion. The eight participants who were included in this study were
744 native English speakers, neurologically healthy, and had normal or corrected-to-normal
745 vision (4 females, age range 22–36 years, mean age = 26.8 ± 5.3 years). Participants
746 provided written informed consent in compliance with procedures approved by the
747 Northwestern University Institutional Review Board and were paid for their participation. The
748 experiment consisted of eight sessions. During each session, participants completed two 7-
749 min resting-state (passive fixation) runs which were collected as the first and final runs in
750 each session. This resulted in a total of 112 minutes (2 runs x 8 sessions x 7 min) of resting-
751 state data per participant. Participants completed a subset of a total of 9 active tasks
752 between the two resting-state runs in each session, but we analyzed only the resting-state
753 data in the present study.

754

755 [Method details](#)

756 **Main analysis of 7T fMRI data from the NSD**

757 Overview

758 Data from each participant were divided into a discovery dataset, for exploratory analysis,
759 and replication and triplication datasets for validation (see Supplementary Table S1). The
760 SAL/PMN was initially defined in the discovery dataset from each participant using a
761 manually selected seed-based approach, followed by data-driven clustering. We also
762 defined 6 other *a priori* selected networks, DN-A, DN-B, FPN-A, FPN-B, CON-A, and CON-
763 B, chosen based on their theoretical relevance and spatial proximity to the SAL/PMN along
764 the cortex. We then statistically tested the separation of the SAL/PMN from these adjacent
765 networks in the left-out, validation datasets. Following statistical testing, we replicated and
766 triplicated the definition of the SAL/PMN in the left-out datasets. Finally, to confirm the
767 functional properties of the SAL/PMN we assessed the networks for the ‘repetition
768 enhancement’ effect by comparing activity elicited by viewing repeated images in the NSD
769 dataset.

770

771 *Resting-state fMRI*

772 Two resting-state fMRI runs were collected per session, one before and one after the main
773 NSD tasks (further details in⁷¹). Each resting-state run lasted 5 minutes, and a total of 100-
774 180 minutes of resting-state data were acquired over 10-18 sessions for each participant.
775 During the first resting-state run of each session, participants were told to remain awake and

776 fixate their gaze on a centrally presented white crosshair. In the second resting-state run,
777 participants were presented with a red crosshair at the beginning and instructed to take a
778 deep breath when the crosshair turned red. After this cued breathing period, which occurred
779 only once, participants were instructed to fixate for the remainder of the run. Both types of
780 runs were treated as resting-state data here and counterbalanced first and second runs
781 were allocated to each dataset (discovery, replication, triplication).

782

783 *MRI data acquisition, processing and quality control*

784 Functional images were collected using a 7T Siemens Magnetom MR scanner at the Center
785 for Magnetic Resonance Research at the University of Minnesota. Blood-oxygenation-level-
786 dependent (BOLD) images were collected using gradient-echo echo-planar imaging (EPI) at
787 1.8-mm isotropic resolution with whole-brain coverage with the following parameters: TR =
788 1,600 ms, TE = 22.0 ms, Flip angle 62 degrees, FOV = 216 mm (FE) × 216 mm (PE), slice
789 thickness 1.8 mm, slice gap 0 mm, matrix size 120 × 120, echo spacing 0.66 ms, bandwidth
790 1,736 Hz per pixel, partial Fourier 7/8, iPAT 2, multiband slice acceleration factor = 3, and
791 84 slices acquired in the axial plane. Dual-echo fieldmaps were collected for post hoc
792 correction of EPI spatial distortion. Pre-processed versions of the data are shared in the
793 NSD (<http://naturalscenesdataset.org>), which include steps to correct for slice acquisition
794 timing, alignment of data from each TR to correct for head motion within a run, alignment
795 across sessions, correction for EPI distortion, all performed within one interpolation step.
796 Detailed information on preprocessing procedures can be found in⁷¹.

797

798 We performed quality control on the NSD resting-state data and excluded runs that did not
799 pass rigorous criteria for head motion. Whole runs were automatically excluded if maximum
800 framewise displacement (FD) was greater than 0.4 mm, or maximum absolute motion was
801 greater than 2.0 mm. We also visually inspected any runs with maximum FD > 0.2 mm or a
802 maximum absolute motion > 1 mm, and excluded any that exhibited visible movement. This
803 resulted in a total of between 6-35 resting-state runs per participant (S1: 35 runs; S2: 6; S3:
804 16; S4: 12; S6: 19; and S7: 18). For the five participants with 12 or more included runs, the
805 data were divided into two or three groups: a discovery dataset plus replication and
806 triplication datasets (see Supplementary Table S1).

807

808 For functional connectivity analysis, we performed additional preprocessing on the resting-
809 state data following procedures outlined in⁴⁷. Nuisance variables were regressed out,
810 including six parameters to account for head motion, as well as whole-brain, ventricular, and
811 deep white matter signal, and temporal derivatives. Nuisance regression was performed
812 using 3dTproject (AFNI version 2016.09.04.1341;⁷²) on native-space-projected BOLD data
813 resampled to 1mm isotropic resolution (i.e., the ‘func1pt0mm’ version of the NSD data).
814 Data were bandpass filtered at 0.01–0.1Hz (using 3dBandpass from AFNI). Next, we
815 projected the data onto a standardized cortical surface containing 163,842 vertices
816 (fsaverage7) per hemisphere using FreeSurfer’s vol2surf command⁷³ and smoothed along
817 the surface using a 2.5mm FWHM kernel. The highest resolution cortical mesh was used to
818 minimize blurring and preserve fine-scale distinctions between networks. The smoothing
819 kernel was chosen by eye based on preliminary analyses on one individual, carefully

820 assessing the trade-off between minimizing smoothing (i.e., preserving details), maximizing
821 correlation values, and minimizing noise or 'speckling' in randomly chosen seed-based
822 correlation maps in the exploratory data. Functional connectivity matrices were estimated in
823 each participant by computing vertex-vertex Pearson's product-moment correlation for each
824 run, z normalizing, averaging across runs within each dataset in each individual, then
825 converting back to r values. These matrices were then used for network estimation²⁸ for
826 manual seed-selection using the Connectome Workbench⁷⁴ and for data-driven clustering.
827

828 *Seed-based functional connectivity analysis*

829 Our initial analyses sought to identify the PMN within each individual, anchoring on the
830 spatial distribution of key component regions previously reported.^{23,39} The two key
831 components were the prominent PCU and rPCC regions that most consistently comprise the
832 PMN.³⁴ We initially hand-selected seeds in the lateral PFC (a seed in our analyses refers to
833 a single vertex in the mesh representing the cortical surface). This was done (i) to allow
834 comparison to our previous seed-based analyses targeting other association networks
835 within individuals,^{17,28,46} where networks were distinguished using nearby seeds within
836 lateral PFC to bias the correlation patterns to be similar to each other and ensure we were
837 truly observing dissociable networks, (ii) to allow long-distance correlation patterns to be
838 appreciated (e.g., at our key component regions) without the confound of local blurring near
839 the seed, and (iii) following initial observations that the PMN could be reliably defined from
840 seeds in the PFC. We searched for a seed that recapitulated the organization of the PMN by
841 targeting seeds to five cortical zones in each individual. The seed locations were selected
842 based on the network regions revealed by the rPFC seed, hence this analysis provided
843 confirmation that the rPFC seed was not unique in revealing a distributed network, but rather
844 the entire network could be defined from multiple cortical locations, emphasizing its
845 distributed structure. The zones include the rPFC, aINS, IPL, posteromedial cortex (posterior
846 cingulate, precuneus, cuneus and retrosplenial cortices), and mPFC. The zones were
847 chosen to target both anterior and posterior components of the network where PMN regions
848 were large enough to be seeded. These seeds replicated the detailed organization of the
849 PMN (correlation maps thresholded at $r > 0.2$), including confirmation of a PMN region in the
850 rPFC (Fig. 2 and Supp. Fig. S2). We also targeted six other networks, DN-A, DN-B, FPN-A,
851 FPN-B, CON-A, and CON-B, with seeds selected in the same 5 cortical zones (with the
852 exception of DN-A, for which no region could be found in the aINS zone; Supp. Figs. S5A &
853 S6). These seeds were used to statistically test for a dissociation in the correlation between
854 the networks in each individual using the left-out replication and triplication datasets.
855

856 The separation between SAL and CON has been a topic of a nuanced and ongoing
857 discussion since their initial identification. To ensure the accurate identification of cingulo-
858 opercular networks, we examined the relationship of the network sequence (i.e., SAL, CON-
859 A, and CON-B) and a separate premotor network (PreM) that surrounds the somatomotor
860 strip (see exploration of this region in⁴⁸; Fig. 6A). Seeds were manually selected from the
861 dorsomedial prefrontal cortex in the two individuals that seemed to provide particularly good
862 separation between networks during seed-based analyses (S2, S7; based on observer
863 impressions by authors Y.H.K. and D.E).

864

865 *Clustering approach*

866 A multi-session hierarchical Bayesian model (MS-HBM) parcellation method⁷⁵ was
 867 employed for confirmation of network organization. This approach provides individual-
 868 specific network estimates by integrating priors from multiple levels (e.g., group atlas, cross-
 869 individual and cross-run variation) to stabilize network estimates. The MS-HBM parcellation
 870 method was applied to define networks using the discovery dataset. In each individual, we
 871 used a k value (i.e., number of clusters) between 7–50 and selected the lowest solution that
 872 best matched the networks observed in the seed-based analysis, respecting that the same
 873 value of k can over-split or over-lump networks in different individuals. Namely, the lowest
 874 value of k that separated the SAL/PMN from other networks – with an initial focus on
 875 SAL/PMN's separation from FPN-A and FPN-B – as observed in the seed-based approach
 876 was taken as the solution. Notably, to achieve separation of the SAL/PMN and match our
 877 seed-based observations, in some subjects a level of k was used that over-split our
 878 expected breakdown of DN-A (i.e., note diminished DN-A region in the retrosplenial cortex in
 879 subjects S1, S6 & S7 in Supp. Fig. S6). The highlighted details in Supp. Fig. S6 allow
 880 appreciation of the differences between seed-based and clustering solutions of DN-A in
 881 these subjects. Note that in all subjects the clustering estimate of the SAL/PMN overlapped
 882 closely with seed-based estimates (see multiple details in Supp. Figs. S5–S8), indicating
 883 that this over-splitting of DN-A did not affect the estimate of the SAL/PMN. The clustering
 884 analysis provided a data-driven confirmation of the patterns observed in the manual seed-
 885 based approach, while minimizing observer bias. The two approaches provided converging
 886 solutions and confirmed the PMN as a distributed network that is distinct from surrounding
 887 networks.

888

889 *Volume-based functional connectivity analysis*

890 To examine subcortical regions of SAL/PMN in the volume, we estimated the networks
 891 using a seed-based approach. We analyzed native-space projected volumetric BOLD data
 892 from the NSD that was preprocessed for functional connectivity analysis. Based on initial
 893 assessments of data quality and the strength of correlation maps (outlined in⁵⁸), a 2.5-mm
 894 FWHM smoothing kernel was applied to five individuals (S1–S4, S6) and a 2-mm FWHM
 895 smoothing kernel was applied to one individual (S7) using fsmaths (FSL v6.0.3).⁷⁶ Data
 896 were analyzed and visualized using AFNI's InstaCorr.^{72,77} Pearson's product-moment
 897 correlation coefficient was computed between all voxel pairs within a whole-brain brain mask
 898 for each run of resting-state data using 3dSetUpGroupInCorr. The correlation matrices were
 899 then Fisher transformed prior to cross-run averaging with 3dGroupInCorr to create a single,
 900 cross-run average functional connectivity matrix for each dataset from each individual. We
 901 manually selected individual voxels as seeds in the MTL, mPFC, PMC, and striatum, and
 902 observed their associated whole-brain correlation maps using AFNI. This process was used
 903 to define SAL/PMN in the discovery dataset. Volume-defined seed-based correlation maps
 904 were then projected to the cortical surface for comparison to the surface-defined network
 905 maps in the main analyses (e.g., Fig. 1)

906

907 *Continuous recognition task*

908 We sought to confirm that the SAL/PMN identified here displayed functional properties
909 characteristically ascribed to the PMN (e.g.,²³). Namely, the PMN shows a repetition
910 enhancement effect, where the perceived familiarity of a stimulus (e.g., an image) is
911 associated with increased responses. This response includes a 'flip' from below-baseline
912 activity during initial presentation of novel images, to above-baseline increased activity for
913 repeated presentations. To confirm the functional characteristics of the PMN, task data from
914 the NSD experiment, a continuous recognition task, were analyzed. Participants viewed a
915 series of color natural scene images and were asked to respond every time they saw an image
916 while undergoing scanning. Participants were instructed to press a button with their right index
917 finger if they thought the presented image was new or press another button with their right
918 middle finger if the presented image had been shown previously. Each run included 62-63
919 trials, with an image presented every 3 seconds, followed by 1s fixation period. Twelve runs
920 were collected in each session, yielding a total of 750 trials per session. Each participant
921 underwent 30-40 sessions over one year (S1: 40 sessions; S2: 40; S3: 32; S4: 30; S6: 32;
922 and S7: 40; though the last 3 sessions from each participant had not yet been released and
923 were not analyzed here). More details on the task design are provided in⁷¹. The large number
924 of trials available (ranging from 22,500 to 30,000 trials per participant) allows reliable
925 exploration of repetition effects. The experiment consisted of 10,000 distinct images, each of
926 which was presented up to three times throughout the experiment, depending on the number
927 of completed sessions by a participant. Participants also completed a variety of behavioral
928 measures, a final memory test, and an image-similarity assessment after the scan, not
929 analyzed in the present study.

930
931 The NSD public release includes beta maps for each trial of the continuous recognition task
932 (representing the percent BOLD signal change evoked by each trial relative to a baseline), as
933 well as mean FD and voxel-wise tSNR for quality control purposes. We excluded runs with
934 mean FD greater than 0.16 mm and tSNR lower than 20. We compared betas (beta version
935 3 provided in the NSD) from trials containing repeated versus novel presentations of the same
936 images, restricting the analysis to correct responses only. To focus on short-term recognition
937 memory, and avoid the increased variance of comparing data across sessions, we considered
938 only images that were presented 3 times within the same session. The within-session repeats
939 were also more likely to be recognized as familiar (within-session hit rate = .98, across-session
940 hit rate = .72, $p < .001$). By design, participants were presented with the 'new' condition more
941 frequently than the 'old' condition during the initial sessions, and were presented with the 'old'
942 condition more often during the later sessions. To avoid odd-ball effects, we only included
943 sessions where the difference between the 'new' and 'old' conditions had a ratio less than 0.3.
944 In other words, only sessions in which both trial types were relatively balanced, with neither
945 trial type comprising less than 35% or more than 65% of the total trials, were included in the
946 analysis. As a result, 14 sessions were included in the analysis for each individual. Similar
947 results were obtained in an initial analysis that included all sessions.

948
949 Trials were divided into three types relating to first (P1), second (P2), and third (P3)
950 presentation of each image. Only trials with correct responses were included in the analysis;
951 specifically, trials where images were correctly identified as novel in their first appearance (i.e.,

952 correct rejections) and correctly identified as repeats in the second and third appearances
953 (i.e., hits; see Quantification and Statistical Analysis).

954

955 ***Validation in an independent dataset at 3T***

956 *Overview*

957 We reproduced the definition of the PMN in an independent 3T MRI dataset containing 8
958 extensively sampled participants collected at Northwestern University as part of the Detailed
959 Brain Network Organization (DBNO) study. Data were quality controlled and runs that did not
960 pass the same criteria as the NSD data for head motion were excluded. This led to a total of
961 between 10-16 resting-state runs per participant (S1: 16 runs; S2: 16; S3: 16; S4: 16; S5: 10;
962 S6: 15; S7: 14; and S8: 14). For the seven participants with more than 12 good quality runs,
963 the data were divided into a discovery dataset and a replication dataset. Only the discovery
964 dataset was used for the present analyses (see Supplementary Table S2).

965

966 *MRI data acquisition, processing and quality control*

967 MRI data were collected at the Center for Translational Imaging at Northwestern University
968 on a 3T Siemens Prisma scanner. A high-resolution T1-weighted magnetization-prepared
969 rapid acquisition gradient echo (TR = 2,100 ms, TE = 2.9 ms, FOV = 256 mm, flip angle = 8°,
970 slice thickness = 1 mm, 176 sagittal slices parallel to the AC-PC line) was acquired after the
971 first resting-state run. Functional MRI were collected using a 64-channel head coil with a multi-
972 band, multi-echo sequence with the following parameters: TR = 1,355 ms, TE = 12.80 ms,
973 32.39 ms, 51.98 ms, 71.57 ms, and 91.16 ms, flip angle = 64°, voxel size = 2.4 mm, FOV =
974 216 mm x 216 mm, slice thickness = 2.4 mm, multiband slice acceleration factor = 6.
975 Functional MRI data were pre-processed using the iProc pipeline⁴⁷ with the following steps.
976 Runs with excessive head motion (a maximum FD > 0.2 mm or a maximum absolute
977 displacement > 1 mm) were visually inspected and excluded if they exhibited noticeable
978 movement. The first nine volumes (approximately 12 seconds) were removed to allow for T1
979 attenuation, and a mean BOLD template was generated using the remaining runs. Brain
980 extraction was performed using FSL's Brain Extraction Tool (FSL v6.0.3). Nuisance signals
981 relating to deep white matter, ventricular, and whole brain signal time series were regressed
982 out of the data, followed by bandpass filtering at 0.01-0.10 Hz. Data were then projected onto
983 a high-resolution standard surface mesh (fsaverage6, 40,962 vertices per hemisphere) using
984 Freesurfer.⁷³ Finally, the data were spatially smoothed with a 2.5 mm full width-half maximum
985 smoothing width, optimized to maintain precision while excluding noise. Pearson's product
986 moment correlations were computed pairwise between vertices to generate a correlation
987 matrix.

988

989 *Clustering approach*

990 The same MS-HBM parcellation method used for the 7T data was used to estimate networks
991 ⁷⁵ in the DBNO dataset.

992

993 **Quantification and statistical analysis**

994 Data from each participant (n = 6, NSD) were divided into a discovery dataset, for exploratory
995 analysis, and replication and triplication datasets for validation (see Supplementary Table S1).

996 Seeds targeting each network in each cortical zone and individual were selected using the
997 discovery dataset and used to extract timeseries for each run in the replication datasets in
998 subjects that provided enough data (see *MRI data acquisition, processing and quality control*).
999 Pearson's product-moment correlations were calculated between the extracted timeseries for
1000 each run in the replication dataset. We calculated correlations across all 34 seeds (5 seeds
1001 in each network except DN-A, which did not have an anterior insula seed), resulting in a 34
1002 by 34 FC matrix for each run and each individual. The elements in these seed-wise FC
1003 matrices were then averaged together to generate network-network correlation values for
1004 each run. For within-network FC, we averaged only the lower triangle of the symmetric matrix
1005 to avoid repeats. A paired t-test was performed to compare within- versus between-network
1006 FC. Six separate t-tests (e.g., comparison between SAL/PMN vs. DN-A, SAL/PMN vs. DN-B,
1007 SAL/PMN vs. FPN-A, etc) were conducted for each target network. Benjamini-Hochberg
1008 correction was performed for the six comparisons. Following these individual-level analyses,
1009 we tested for consistency at the group level by averaging network-wise FC across sessions
1010 for each individual and then comparing within- versus between-network FC, as in the
1011 individual-level analyses. Additionally, $n = 8$ participants from an independent dataset (DBNO)
1012 were included in a replication analysis. For the seven participants with more than 10 good
1013 quality runs, the data were divided into a discovery dataset and a replication dataset. Only the
1014 discovery dataset was used for the present analyses (see Supplementary Table S2).
1015

1016 For task fMRI analysis, we performed two-tailed t-tests comparing each pair of trial types
1017 (P1, P2, and P3) to obtain a statistical map for each comparison of trial types. To control for
1018 the potential confounding effects of response time (RT), we included RT as a covariate.^{78,79}
1019 Results did not differ considerably when RT was not modelled. All statistical analyses were
1020 conducted using FSL's Permutation Analysis of the Linear Model (PALM⁸⁰) in MATLAB
1021 2018b. To specifically test whether each cortical zone of SAL/PMN and other networks
1022 showed the repetition enhancement effect, we conducted three targeted analyses. First, we
1023 took the *a priori* defined seed vertices that were used in the statistical dissociation analyses
1024 (seeds shown in Supp. Figs. S2 & S3 and Figs. 2 & 3), calculated average trial-wise beta
1025 values at these vertices for each session for each trial type, and performed t-test for each
1026 contrast condition (P1 vs. P2, P1 vs. P3, and P2 vs. P3). Bonferroni correction was
1027 performed for the 3 comparisons. Second, we performed region-of-interest analysis by
1028 calculating the average betas across all vertices that were included as part of each network
1029 by the clustering analysis within 5 broad cortical regions: the posterior midline
1030 (encompassing PCU, RMC and rPCC), anterior midline (encompassing mPFC), the
1031 posterior lateral cortex (encompassing IPL), anterior lateral cortex (encompassing rPFC),
1032 and the anterior insula, and performed a two-sample t-test for each contrast condition (P1
1033 vs. P2, P1 vs. P3, and P2 vs. P3). Bonferroni correction was performed for the 3
1034 comparisons. Third, to focus on representative regions of SAL and PMN, located in mPFC
1035 and PCU/rPCC, respectively, and to determine whether the repetition effect is evident in
1036 both, we divided the SAL/PMN into posteromedial (canonical PMN) and anteromedial
1037 (canonical SAL) regions. Then we conducted a spin test (1,000 iterations) and compared
1038 observed t-values to null t-values obtained from the spin test to test statistical
1039 significance.^{36,37} The division of the SAL/PMN into each component was done by hand-

1040 drawing a large region of interest that bisected the midline along the caudal-rostral axis
1041 using Connectome Workbench (shown in Fig. 7B). The border was drawn from the top of
1042 the marginal sulcus to the most anterior part of the network in the rPCC, aiming to preserve
1043 contiguous canonical PMN (rPCC and PCU) and SAL (mPFC) regions in the midline. The
1044 border was drawn with reference to subject S6, whose rPCC SAL/PMN region was most
1045 anterior, and then applied to all the other subjects. The same analysis was repeated for the
1046 other six networks. Note that this line bisected a contiguous network region in CON-A and
1047 CON-B in some subjects. To test whether the repetition enhancement effect is observed in
1048 each region within each network, we averaged the *t*-values across all subjects and
1049 contrasts, and performed one-sample *t*-tests to assess the task effect.

1050

1051 *Surface area analysis*

1052 To determine if a unified SAL/PMN better matches the surface area of all the other
1053 distributed networks, we calculated the percentage of total vertices in both hemispheres that
1054 were identified as belonging to each of network as a proxy for surface area. A one-way
1055 ANOVA was performed to assess differences across 7 intact (unified) networks. Next, we
1056 divided the SAL/PMN into anterior and posterior regions using the manually drawn region of
1057 interest used in the task spin permutation analysis. The region of interest was also extended
1058 along the lateral surface along the central sulcus, to bisect both the medial and lateral
1059 regions of SAL/PMN. We then performed another ANOVA across 8 networks (i.e., now
1060 including anterior SAL/PMN, posterior SAL/PMN, and the other 6 intact networks), followed
1061 by post-hoc pairwise comparisons using Tukey's Honestly Significant Difference test.

1062

1063 **References**

1. G. Doucet, M. Naveau, L. Petit, N. Delcroix, L. Zago, F. Crivello, G. Jobard, N. Tzourio-Mazoyer, B. Mazoyer, E. Mellet, M. Joliot, Brain activity at rest: a multiscale hierarchical functional organization. *J Neurophysiol.* **105**, 2753–2763 (2011).
2. P. S. Goldman-Rakic, Topography of cognition: parallel distributed networks in primate association cortex. *Annual Review of Neuroscience.* **11**(1), 137-156 (1988).
3. J. D. Power, A. L. Cohen, S. M. Nelson, G. S. Wig, K. A. Barnes, J. A. Church, A. C. Vogel, T. O. Laumann, F. M. Miezin, B. L. Schlaggar, S. E. Petersen, Functional Network Organization of the Human Brain. *Neuron.* **72**(4), 665–678 (2011).
4. S. M. Smith, P. T. Fox, K. L. Miller, D. C. Glahn, P. M. Fox, C. E. Mackay, N. Filippini, K. E. Watkins, R. Toro, A. R. Laird, C. F. Beckmann, Correspondence of the brain's functional architecture during activation and rest. *Proceedings of the National Academy of Sciences of the United States of America.* **106**(31), 13040–13045 (2009).
5. B. T. Yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari, M. Hollinshead, J. L. Roffman, J. W. Smoller, L. Zöllei, J. R. Polimeni, B. Fisch, H. Liu, R. L. Buckner, The organization of the human cerebral cortex estimated by intrinsic functional connectivity. *Journal of Neurophysiology.* **106**(3), 1125–1165 (2011).
6. N. Kanwisher, Functional specificity in the human brain: a window into the functional architecture of the mind. *Proceedings of the national academy of sciences.* **107**(25), 11163-11170 (2010).

1083 7. L. Krubitzer, The magnificent compromise: cortical field evolution in mammals. *Neuron*.
1084 **56**(2), 201–208 (2007).

1085 8. D. S. Margulies, S. S. Ghosh, A. Goulas, M. Falkiewicz, J. M. Huntenburg, G. Langs,
1086 G. Bezgin, S. B. Eickhoff, F. X. Castellanos, M. Petrides, E. Jefferies, J. Smallwood,
1087 Situating the default-mode network along a principal gradient of macroscale cortical
1088 organization. *Proceedings of the National Academy of Sciences*, **113**(44), 12574–
1089 12579 (2016).

1090 9. L. R. Squire, Mechanisms of Memory. *Science*. **232**(4758), 1612–1619 (1986).

1091 10. R. Cabeza, E. Ciaramelli, I. R. Olson, M. Moscovitch, The parietal cortex and episodic
1092 memory: an attentional account. *Nature reviews neuroscience*. **9**(8), 613–625 (2008).

1093 11. A. P. Yonelinas, L. J. Otten, K. N. Shaw, M. D. Rugg, Separating the brain regions
1094 involved in recollection and familiarity in recognition memory. *Journal of Neuroscience*.
1095 **25**(11), 3002–3008 (2005).

1096 12. A. P. Yonelinas, J. Scheib, N. Kroll, M. Lazzara, J. Quamme, M. Kishiyama, E. Nolan,
1097 T. Jacobs, C. Brozin-Sky, C. Ranganath, P. Yonelinas, The Nature of Recollection and
1098 Familiarity: A Review of 30 Years of Research. *Journal of Memory and Language*. **46**,
1099 441–517 (2002).

1100 13. H. Y. Chen, A. W. Gilmore, S. M. Nelson, K. B. McDermott, Are There Multiple Kinds of
1101 Episodic Memory? An fMRI Investigation Comparing Autobiographical and Recognition
1102 Memory Tasks. *Journal of Neuroscience*. **37**(10), 2764–2775 (2017).

1103 14. M. E. Wheeler, R. L. Buckner, Functional-anatomic correlates of remembering and
1104 knowing. *Neuroimage*. **21**(4), 1337–1349 (2004).

1105 15. D. R. Addis, A. T. Wong, D. L. Schacter, Remembering the past and imagining the
1106 future: Common and distinct neural substrates during event construction and
1107 elaboration. *Neuropsychologia*, **45**, 1363–1377 (2007).

1108 16. R. L. Buckner, J. R. Andrews-Hanna, D. L. Schacter, The Brain's Default Network.
1109 *Annals of the New York Academy of Sciences*, **1124**(1), 1–38 (2008).

1110 17. L. M. DiNicola, R. M. Braga, R. L. Buckner, Parallel distributed networks dissociate
1111 episodic and social functions within the individual. *Journal of Neurophysiology*. **123**(3),
1112 1144–1179 (2020).

1113 18. A. D. Wagner, B. J. Shannon, I. Kahn, R. L. Buckner, Parietal lobe contributions to
1114 episodic memory retrieval. *Trends in cognitive sciences*. **9**(9), 445–453 (2005).

1115 19. J. L. Vincent, A. Z. Snyder, M. D. Fox, B. J. Shannon, J. R. Andrews, M. E. Raichle, R.
1116 L. Buckner, Coherent spontaneous activity identifies a hippocampal-parietal memory
1117 network. *Journal of Neurophysiology*. **96**(6), 3517–3531 (2006).

1118 20. L. M. DiNicola, O. I. Ariyo, R. L. Buckner, Functional specialization of parallel
1119 distributed networks revealed by analysis of trial-to-trial variation in processing
1120 demands. *Journal of Neurophysiology*. **129**(1), 17–40 (2023).

1121 21. M. Peer, R. Salomon, I. Goldberg, O. Blanke, S. Arzy, Brain system for mental
1122 orientation in space, time, and person. *Proceedings of the National Academy of
1123 Sciences of the United States of America*. **112**(35), 11072–11077 (2015).

1124 22. E. H. Silson, A. Steel, A. Kidder, A. W. Gilmore, C. I. Baker, Distinct subdivisions of
1125 human medial parietal cortex support recollection of people and places. *ELife*. **8**
1126 (2019).

1127 23. A. W. Gilmore, S. M. Nelson, K. B. McDermott, A parietal memory network revealed by
1128 multiple MRI methods. *Trends in Cognitive Sciences*. **19**(9), 534–543 (2015).

1129 24. A. W. Gilmore, S. M. Nelson, T. O. Laumann, E. M. Gordon, J. J. Berg, D. J. Greene,
1130 C. Gratton, A. L. Nguyen, M. Ortega, C. R. Hoyt, R. S. Coalson, B. L. Schlaggar, S. E.
1131 Petersen, N. U. F. Dosenbach, K. B. McDermott, High-fidelity mapping of repetition-
1132 related changes in the parietal memory network. *NeuroImage*. **199**, 427–439 (2019).

1133 25. H. Kim, Brain regions that show repetition suppression and enhancement: A meta-
1134 analysis of 137 neuroimaging experiments. *Human Brain Mapping*. **38**(4), 1894 (2017).

1135 26. K. Segaert, K. Weber, F. P. de Lange, K. M. Petersson, P. Hagoort, The suppression
1136 of repetition enhancement: a review of fMRI studies. *Neuropsychologia*. **51**(1), 59-66
1137 (2013).

1138 27. M. L. Rosen, C. E. Stern, K. J. Devaney, D. C. Somers, Cortical and Subcortical
1139 Contributions to Long-Term Memory-Guided Visuospatial Attention. *Cerebral Cortex*.
1140 **28**, 2935–2947 (2018).

1141 28. R. M. Braga, R. L. Buckner, Parallel Interdigitated Distributed Networks within the
1142 Individual Estimated by Intrinsic Functional Connectivity. *Neuron*. **95**(2), 457-471.e5
1143 (2017).

1144 29. L. M. DiNicola, R. L. Buckner, Precision estimates of parallel distributed association
1145 networks: evidence for domain specialization and implications for evolution and
1146 development. *Current Opinion in Behavioral Sciences*. **40**, 120–129 (2021).

1147 30. J. Du, L. M. DiNicola, P. A. Angeli, N. Saadon-Grosman, W. Sun, S. Kaiser, J.
1148 Ladopoulou, A. Xue, B. T. T. Yeo, M. C. Eldaief, R. L. Buckner, Organization of the
1149 Human Cerebral Cortex Estimated Within Individuals: Networks, Global Topography,
1150 and Function. *Journal of Neurophysiology*. (2024).

1151 31. H. L. Kosakowski, M. C. Eldaief, R. L. Buckner, Ventral Striatum is Preferentially
1152 Correlated with the Salience Network Including Regions in Dorsolateral Prefrontal
1153 Cortex. *bioRxiv*. 10.1101/2024.10.13.618063 (2024).

1154 32. D. Reznik, D. S. Margulies, M. P. Witter, C. F. Doeller, Evidence for convergence of
1155 distributed cortical processing in band-like functional zones in human entorhinal
1156 cortex. *Current Biology*. **34**, 1-13 (2024).

1157 33. P. A. Angeli, L. M. DiNicola, N. Saadon-Grosman, M. C. Eldaief, R. L. Buckner,
1158 Specialization of the Human Hippocampal Long Axis
1159 Revisited. *bioRxiv*. 10.1101/2023.12.19.572264 (2023).

1160 34. A. W. Gilmore, S. M. Nelson, K. B. McDermott, Precision functional mapping of human
1161 memory systems. *Current Opinion in Behavioral Sciences*. **40**, 52-57 (2021).

1162 35. A. Schaefer, R. Kong, E. M. Gordon, T. O. Laumann, X.-N. Zuo, A. J. Holmes, S. B.
1163 Eickhoff, B. T. T. Yeo, Local-Global Parcellation of the Human Cerebral Cortex from
1164 Intrinsic Functional Connectivity MRI. *Cerebral Cortex*. **28**(9), 3095–3114 (2018).

1165 36. E. M. Gordon, T. O. Laumann, B. Adeyemo, J. F. Huckins, W. M. Kelley, S.E.
1166 Petersen, Generation and evaluation of a cortical area parcellation from resting-state
1167 correlations. *Cerebral cortex*. **26**(1), 288-303 (2016).

1168 37. E. M. Gordon, T. O. Laumann, A. W. Gilmore, D. J. Newbold, D. J. Greene, J. J. Berg,
1169 M. Ortega, C. Hoyt-Drazen, C. Gratton, H. Sun, J. M. Hampton, R. S. Coalson, A. L.
1170 Nguyen, K. B. McDermott, J. S. Shimony, A. Z. Snyder, B. L. Schlaggar, S. E.

1171 Petersen, S. M. Nelson, N. U. F. Dosenbach, Precision Functional Mapping of
1172 Individual Human Brains. *Neuron*. **95**(4), 791-807.e7 (2017).

1173 38. R. Kong, J. Li, C. Orban, M. R. Sabuncu, H. Liu, A. Schaefer, N. Sun, X. N. Zuo, A. J.
1174 Holmes, S. B. Eickhoff, B. T. T. Yeo, Spatial Topography of Individual-Specific Cortical
1175 Networks Predicts Human Cognition, Personality, and Emotion. *Cerebral Cortex*. **29**(6),
1176 2533–2551 (2019).

1177 39. W. R. Shirer, S. Ryklevskaia, E. Ryklevskaia, V. Menon, M. D. Greicius, Decoding Subject-
1178 Driven Cognitive States with Whole-Brain Connectivity Patterns. *Cerebral Cortex*.
1179 **22**(1), 158–165 (2012).

1180 40. H. Kim, Differential neural activity in the recognition of old versus new events: An
1181 Activation Likelihood Estimation Meta-Analysis. *Human Brain Mapping*. **34**(4), 814–836
1182 (2013).

1183 41. K. B. McDermott, K. K. Szpunar, S. E. Christ, Laboratory-based and autobiographical
1184 retrieval tasks differ substantially in their neural substrates. *Neuropsychologia*. **47**(11),
1185 2290–2298 (2009).

1186 42. L. J. Otten, M. D. Rugg, Task-dependency of the neural correlates of episodic
1187 encoding as measured by fMRI. *Cerebral cortex*. **11**(12), 1150-1160 (2001).

1188 43. J. Chen, Y. C. Leong, C. J. Honey, C. H. Yong, K. A. Norman, U. Hasson, Shared
1189 memories reveal shared structure in neural activity across individuals. *Nature
1190 neuroscience*, **20**(1), 115-125 (2017).

1191 44. T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Z. Snyder, S. J. Joo, M. Y. Chen, A. W.
1192 Gilmore, K. B. McDermott, S. M. Nelson, N. U. F. Dosenbach, B. L. Schlaggar, J. A.
1193 Mumford, R. A. Poldrack, S. E. Petersen, Functional System and Areal Organization of
1194 a Highly Sampled Individual Human Brain. *Neuron*. **87**(3), 657–670 (2015).

1195 45. R. A. Poldrack, T. O. Laumann, O. Koyejo, B. Gregory, A. Hover, M. Y. Chen, K. J.
1196 Gorgolewski, J. Luci, S. J. Joo, R. L. Boyd, S. Hunicke-Smith, Z. B. Simpson, T. Caven,
1197 V. Sochat, J. Shine, E. M. Gordon, A. Z. Snyder, B. Adeyemo, S. E. Petersen, D. C.
1198 Glahn, D. R. Mckay, J. E. Curran, H. H. H. Goring, M. A. Carless, J. Blangero, R.
1199 Dougherty, A. Leemans, D. A. Handwerker, L. Frick, E. M. Marcotte, J. A. Mumford,
1200 Long-term neural and physiological phenotyping of a single human. *Nature
1201 communications*. **6**, 8885 (2015).

1202 46. R. M. Braga, L. M. DiNicola, H. C. Becker, R. L. Buckner, Situating the left-lateralized
1203 language network in the broader organization of multiple specialized large-scale
1204 distributed networks. *Journal of Neurophysiology*. **124**(5), 1415–1448 (2020).

1205 47. R. M. Braga, K. R. A. Van Dijk, J. R. Polimeni, M. C. Eldaief, R. L. Buckner, Parallel
1206 distributed networks resolved at high resolution reveal close juxtaposition of distinct
1207 regions. *Journal of Neurophysiology*. **121**(4), 1513–1534 (2019).

1208 48. E. M. Gordon, R. J. Chauvin, A. N. Van, A. Rajesh, A. Nielsen, D. J. Newbold, C. J.
1209 Lynch, N. A. Seider, S. R. Krimmel, K. M. Scheidter, J. Monk, R. L. Miller, A. Metoki, D.
1210 F. Montez, A. Zheng, I. Elbau, T. Madison, T. Nishino, M. J. Myers, S. Kaplan, C. B.
1211 D'Andrea, D. V. Demeter, M. Feigelis, J. S. B. Ramirez, T. Xu, D. M. Barch, C. D.
1212 Smyser, C. E. Rogers, J. Zimmermann, K. N. Botteron, J. R. Pruett, J. T. Willie, P.
1213 Brunner, J. S. Shimony, B. P. Kay, S. Marek, S. A. Norris, C. Gratton, C. M. Sylvester,
1214 J. D. Power, C. Liston, D. J. Greene, J. L. Roland, S. E. Petersen, M. E. Raichle, T. O.

1215 Laumann, D. A. Fair, N. U. F. Dosenbach, A somato-cognitive action network
1216 alternates with effector regions in motor cortex. *Nature*, **617** (2023).

1217 49. D. J. Newbold, T. O. Laumann, C. R. Hoyt, J. M. Hampton, D. F. Montez, R. V. Raut,
1218 M. Ortega, A. Mitra, A. N. Nielsen, D. B. Miller, B. Adeyemo, A. L. Nguyen, K. M.
1219 Scheidter, A. B. Tanenbaum, A. N. Van, S. Marek, B. L. Schlaggar, A. R. Carter, D. J.
1220 Greene, E. M. Gordon, M. E. Raichle, S. E. Petersen, A. Z. Snyder, N. U. F.
1221 Dosenbach, Plasticity and spontaneous activity pulses in disused human brain circuits.
1222 *Neuron*, **107**(3), 580-589 (2020).

1223 50. B. A. Seitzman, C. Gratton, T. O. Laumann, E. M. Gordon, B. Adeyemo, A. Dworetzky,
1224 B. T. Kraus, A. W. Gilmore, J. J. Berg, M. Ortega, A. Nguyen, D. J. Greene, K. B.
1225 McDermott, S. M. Nelson, C. N. Lessov-Schlaggar, B. L. Schlaggar, N. U. F.
1226 Dosenbach, S. E. Petersen, Trait-like variants in human functional brain networks.
1227 *Proceedings of the National Academy of Sciences*, **116**(45), 22851-22861 (2019).

1228 51. A. Zheng, D. F. Montez, S. Marek, A. W. Gilmore, D. J. Newbold, T. O. Laumann, B. P.
1229 Kay, N. A. Seider, A. N. Van, J. M. Hampton, D. Alexopoulos, B. L. Schlaggar, C. M.
1230 Sylvester, D. J. Greene, J. S. Shimony, S. M. Nelson, G. S. Wig, C. Gratton, K. B.
1231 McDermott, M. E. Raichle, E. M. Gordon, N. U. F. Dosenbach, Parallel hippocampal-
1232 parietal circuits for self-and goal-oriented processing. *Proceedings of the National
1233 Academy of Sciences*, **118**(34), e2101743118 (2021).

1234 52. C. Amiez, M. G. Wutte, I. Faillenot, M. Petrides, B. Burle, E. Procyk, Single subject
1235 analyses reveal consistent recruitment of frontal operculum in performance monitoring.
1236 *Neuroimage*, **133**, 266-278 (2016).

1237 53. N. U. Dosenbach, M. Raichle, E.M. Gordon, The brain's cingulo-opercular action-mode
1238 network. *PsyArXiv*. 10.31234/osf.io/2vt79 (2024).

1239 54. C. J. Lynch, I. G. Elbau, T. Ng, A. Ayaz, S. Zhu, D. Wolk, N. Manfredi, M. Johnson, M.
1240 Chang, J. Chou, I. Summerville, C. Ho, M. Lueckel, H. Bukhari, D. Buchanan, L. W.
1241 Victoria, N. Solomonov, E. Goldwaser, S. Moia, C. Caballero-Gaudes, J. Downar, F.
1242 Vila-Rodriguez, Z.J. Daskalakis, D.M. Blumberger, K. Kay, A. Aloysi, E. M. Gordon, M.
1243 T. Bhati, N. Williams, J. D. Power, B. Zebley, L. Grosenick, F. M. Gunning, C. Liston.
1244 Frontostriatal salience network expansion in individuals in depression. *Nature*, **633**,
1245 624–633 (2024).

1246 55. W. W. Seeley, The salience network: a neural system for perceiving and responding to
1247 homeostatic demands. *Journal of Neuroscience*, **39**(50), 9878-9882 (2019).

1248 56. K. L. Miller, F. Alfaro-Almagro, N. K. Bangerter, D. L. Thomas, E. Yacoub, J. Xu, A. J.
1249 Bartsch, S. Jbabdi, S. N. Sotiroopoulos, J. L. R. Andersson, L. Griffanti, G. Douaud, T.
1250 W. Okell, P. Weale, I. Dragonu, S. Garratt, S. Hudson, R. Collins, M. Jenkinson, P. M.
1251 Matthews, S. M. Smith, Multimodal population brain imaging in the UK Biobank
1252 prospective epidemiological study. *Nature neuroscience*, **19**(11), 1523-1536 (2016)

1253 57. E. M. Gordon, T. O. Laumann, S. Marek, D. J. Newbold, J. M. Hampton, N. A. Seider,
1254 D. F. Montez, A. M. Nielsen, A. N. Van, A. Zheng, R. Miller, J. S. Siegel, B. P. Kay, A.
1255 Z. Snyder, D. J. Greene, B. L. Schlaggar, S. E. Petersen, S. M. Nelson, N. U. F.
1256 Dosenbach, Individualized functional subnetworks connect human striatum and frontal
1257 cortex. *Cerebral Cortex*, **32**(13), 2868-2884 (2022).

1258 58. D. Edmonds, J. J. Salvo, N. Anderson, M. Lakshman, Q. Yang, K. Kay, C. Zelano, R.
1259 M. Braga, The human social cognitive network contains multiple regions within the
1260 amygdala. *Science Advances*, 10(47), eadp0453 (2024).

1261 59. C. B. D'Andrea, T. O. Laumann, D. J. Newbold, S. M. Nelson, A. N. Nielsen, R.
1262 Chauvin, S. Marek, D. J. Greene, N. U. F. Dosenbach, E. M. Gordon, Substructure of
1263 the brain's Cingulo-Opercular network. *bioRxiv*. 10.1101/2023.10.10.561772 (2023).

1264 60. Gratton, C., Dworetzky, A., Adeyemo, B., Seitzman, B. A., Smith, D. M., Petersen, S.
1265 E., & Neta, M. The cingulo-opercular network is composed of two distinct sub-
1266 systems. *bioRxiv*. 10.1101/2022.09.16.508254 (2022).

1267 61. E. M. Gordon, T. O. Laumann, B. Adeyemo, A. W. Gilmore, S. M. Nelson, N. U. F.
1268 Dosenbach, S. E. Petersen, Individual-specific features of brain systems identified with
1269 resting-state functional correlations. *Neuroimage*. **146**, 918-939 (2017).

1270 62. S. M. Nelson, K. M. Arnold, A. W. Gilmore, K. B. McDermott, Neural Signatures of
1271 Test-Potentiated Learning in Parietal Cortex. *Journal of Neuroscience*. **33**(29), 11754–
1272 11762 (2013).

1273 63. R. L. Buckner, F. M. Krienen, The evolution of distributed association networks in the
1274 human brain. *Trends in Cognitive Sciences*. **17**(12), 648–665 (2013).

1275 64. S. Mueller, D. Wang, M. D. Fox, B. T. Yeo, J. Sepulcre, M. R. Sabuncu, R. Shafee, J.
1276 Lu, H. Liu, Individual variability in functional connectivity architecture of the human
1277 brain. *Neuron*. **77**(3), 586-95 (2013).

1278 65. A. Dworetzky, B. A. Seitzman, B. Adeyemo, A. N. Nielsen, A. S. Hatoum, D. M. Smith,
1279 T. E. Nichols, M. Neta, S. E. Petersen, C. Gratton, Two common and distinct forms of
1280 variation in human functional brain networks. *Nature Neuroscience*. **27**, 1187-1198
1281 (2024).

1282 66. N. U. Dosenbach, K. M. Visscher, E. D. Palmer, F. M. Miezin, K. K. Wenger, H. C.
1283 Kang, E. D. Burgund, A. L. Grimes, B. L. Schlaggar, S. E. Petersen, A core system for
1284 the implementation of task sets. *Neuron*. **50**(5), 799-812 (2006).

1285 67. Z. Cui, H. Li, C. H. Xia, B. Larsen, A. Adebimpe, G. L. Baum, M. Cieslak, R. E. Gur, R.
1286 C. Gur, T. M. Moore, D. J. Oathes, A. F. Alexander-Bloch, A. Raznahan, D. R. Roalf, R.
1287 T. Shinohara, D. H. Wolf, C. Davatzikos, D. S. Bassett, D. A. Fair, Y. Fan, T. D.
1288 Satterthwaite, Individual variation in functional topography of association networks in
1289 youth. *Neuron*. **106**(2), 340-53 (2020).

1290 68. W. Qiu, L. Ma, T. Jiang, Y. Zhang. Unrevealing reliable cortical parcellation of
1291 individual brains using resting-state functional magnetic resonance imaging and
1292 masked graph convolutions. *Frontiers in Neuroscience*. **16**, 838347 (2022).

1293 69. M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, M. E. Raichle,
1294 The human brain is intrinsically organized into dynamic, anticorrelated functional
1295 networks. *Proceedings of the National Academy of Sciences of the United States of
1296 America*. **102**(27), 9673–9678 (2005).

1297 70. J. D. Bijsterbosch, S. R. Farahibozorg, M. F. Glasser, D. Van Essen, L. H. Snyder, M.
1298 W. Woolrich, S. M. Smith, Evaluating functional brain organization in individuals and
1299 identifying contributions to network overlap. *Imaging Neuroscience*. **1**, 1-19, (2023).

1300 71. E. J. Allen, G. St-Yves, Y. Wu, J. L. Breedlove, J. S. Prince, L. T. Dowdle, M. Nau, B.
1301 Caron, F. Pestilli, I. Charest, J. B. Hutchinson, T. Naselaris, K. Kay, A massive 7T fMRI

1302 dataset to bridge cognitive neuroscience and artificial intelligence. *Nature Neuroscience*. **25**(1), 116–126 (2021).

1303

1304 72. R. W. Cox, AFNI: Software for Analysis and Visualization of Functional Magnetic

1305 Resonance Neuroimages. *Computers and Biomedical Research*. **29**(3), 162–173

1306 (1996).

1307 73. B. Fischl, M. I. Sereno, A. M. Dale, Cortical Surface-Based Analysis: II: Inflation,

1308 Flattening, and a Surface-Based Coordinate System. *NeuroImage*. **9**(2), 195–207

1309 (1999).

1310 74. D. S. Marcus, J. Harwell, T. Olsen, M. Hodge, M. F. Glasser, F. Prior, M. Jenkinson, T.

1311 Laumann, S. W. Curtiss, D. C. Van Essen, Informatics and data mining tools and

1312 strategies for the human connectome project. *Frontiers in neuroinformatics*. **5**, 4

1313 (2011).

1314 75. R. Kong, Q. Yang, E. Gordon, A. Xue, X. Yan, C. Orban, X.-N. Zuo, N. Spreng, T. Ge,

1315 A. Holmes, S. Eickhoff, B. T. T. Yeo, Individual-Specific Areal-Level Parcellations

1316 Improve Functional Connectivity Prediction of Behavior. *Cerebral Cortex*. **31**(10)

1317 (2021).

1318 76. S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E. J. Behrens, H.

1319 Johansen-Berg, P. R. Bannister, M. De Luca, I. Dronjak, D. E. Flitney, R. K. Niazy, J.

1320 Saunders, J. Vickers, Y. Zhang, N. De Stefano, J. M. Brady, P. M. Matthews,

1321 Advances in functional and structural MR image analysis and implementation as FSL.

1322 *NeuroImage* **23**, S208–S219 (2004).

1323 77. H. J. Jo, Z. S. Saad, W. K. Simmons, L. A. Milbury, R. W. Cox, Mapping sources of

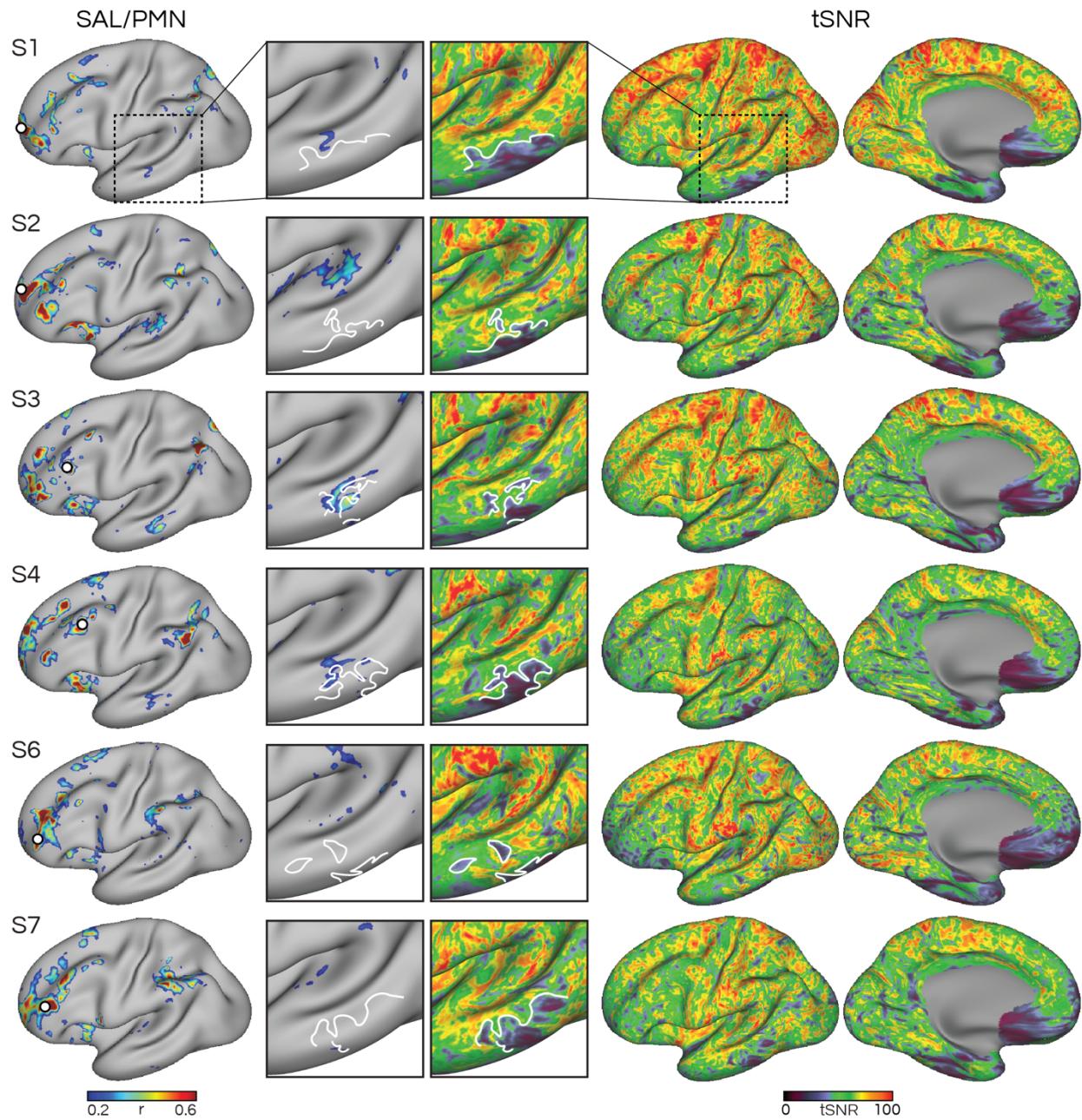
1324 correlation in resting state fMRI, with artifact detection and removal. *NeuroImage*. **52**,

1325 571–582 (2010).

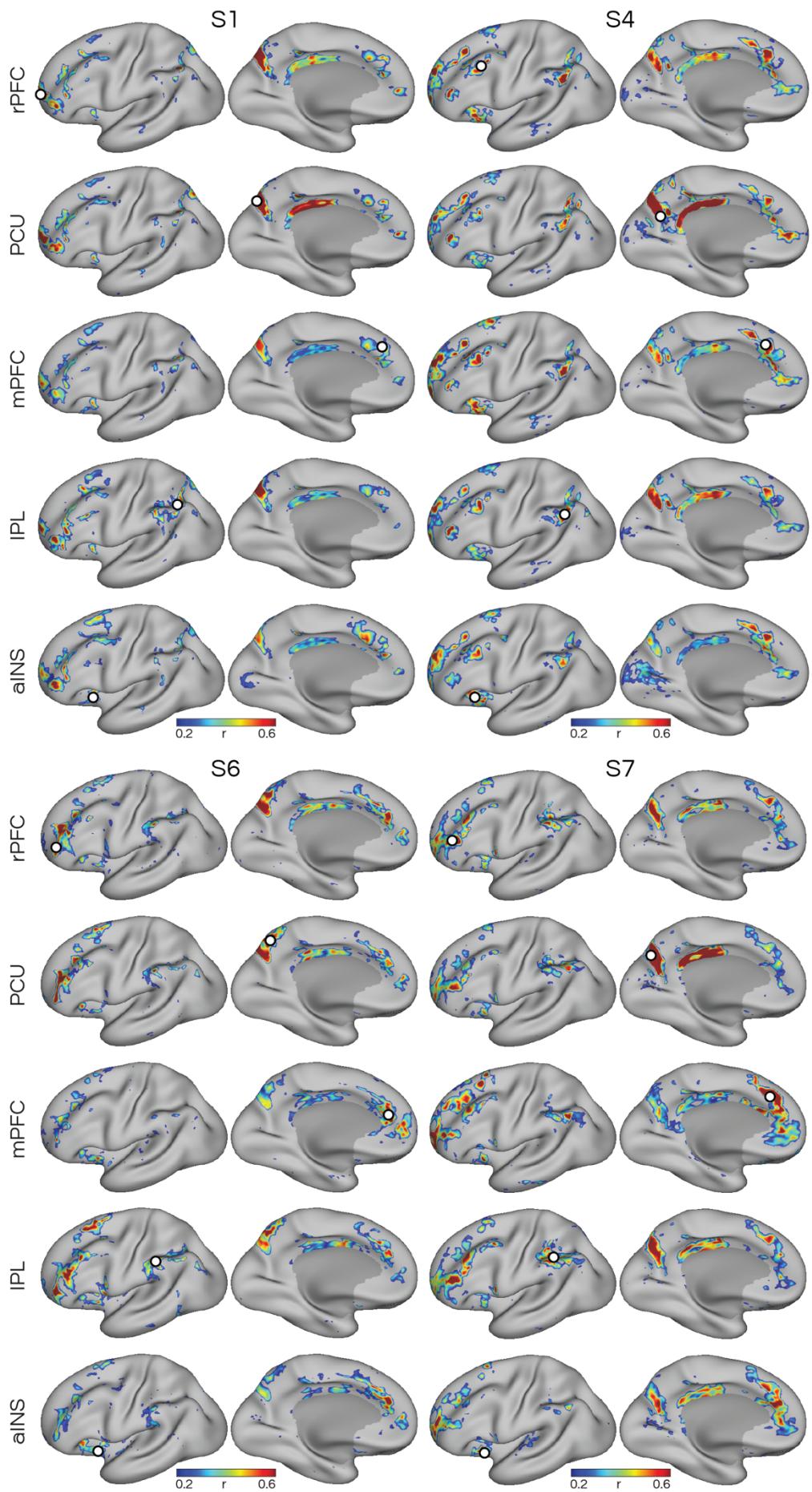
1326 78. J. S. H. Taylor, K. Rastle, M. H. Davis, Interpreting response time effects in functional

1327 imaging studies. *NeuroImage*. **99**, 419–433 (2014).

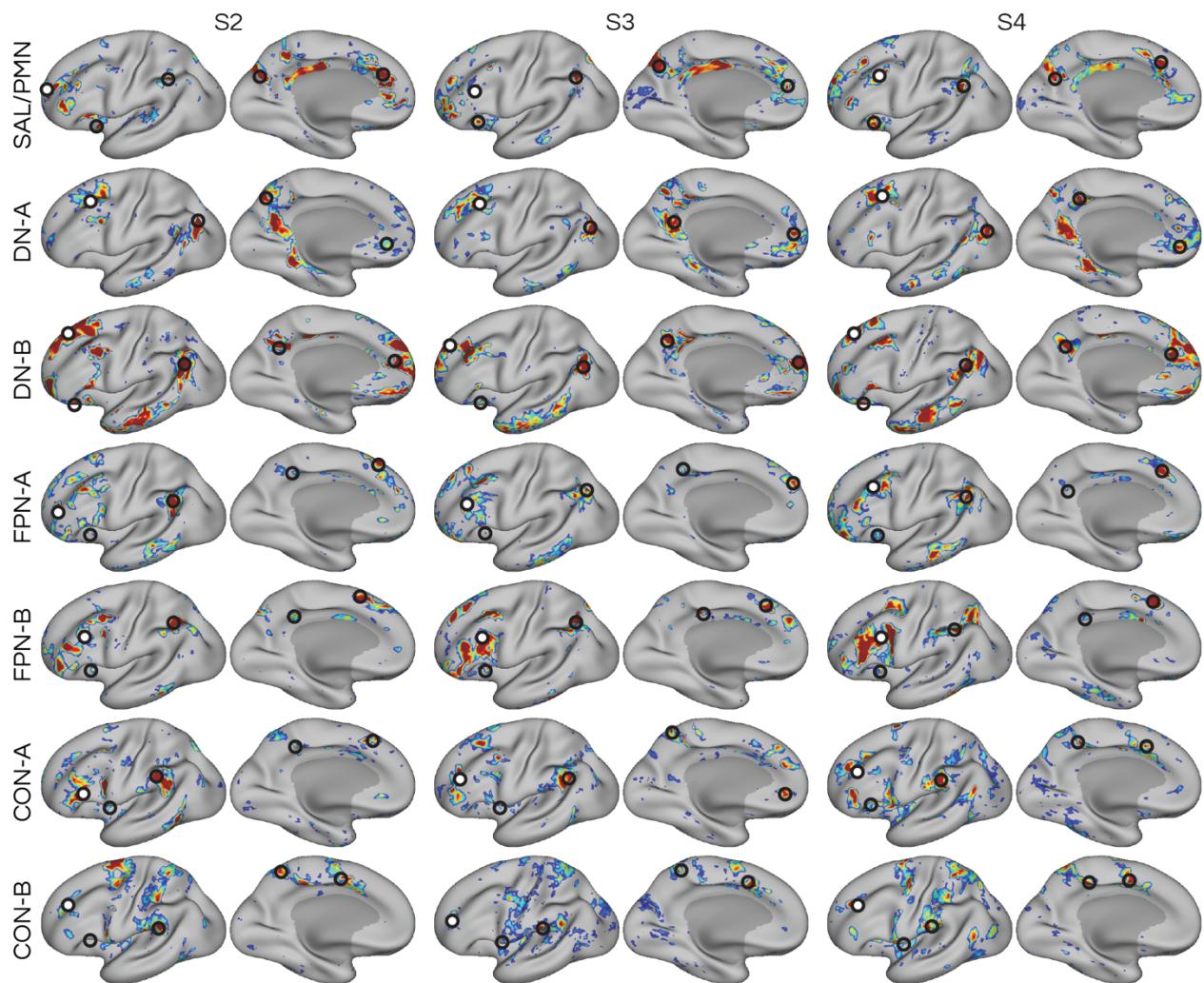
1328 79. T. Yarkoni, D. M. Barch, J. R. Gray, T. E. Conturo, T. S. Braver, BOLD Correlates of

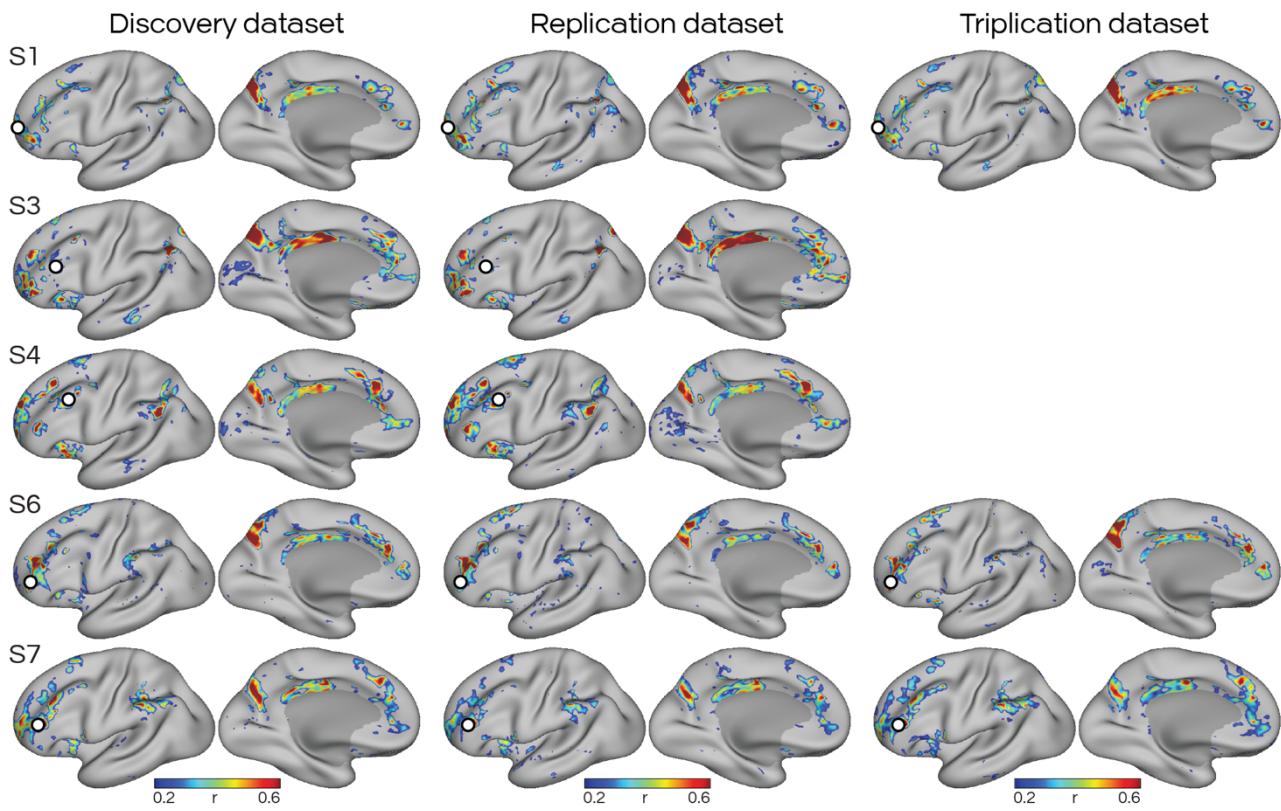

1329 Trial-by-Trial Reaction Time Variability in Gray and White Matter: A Multi-Study fMRI

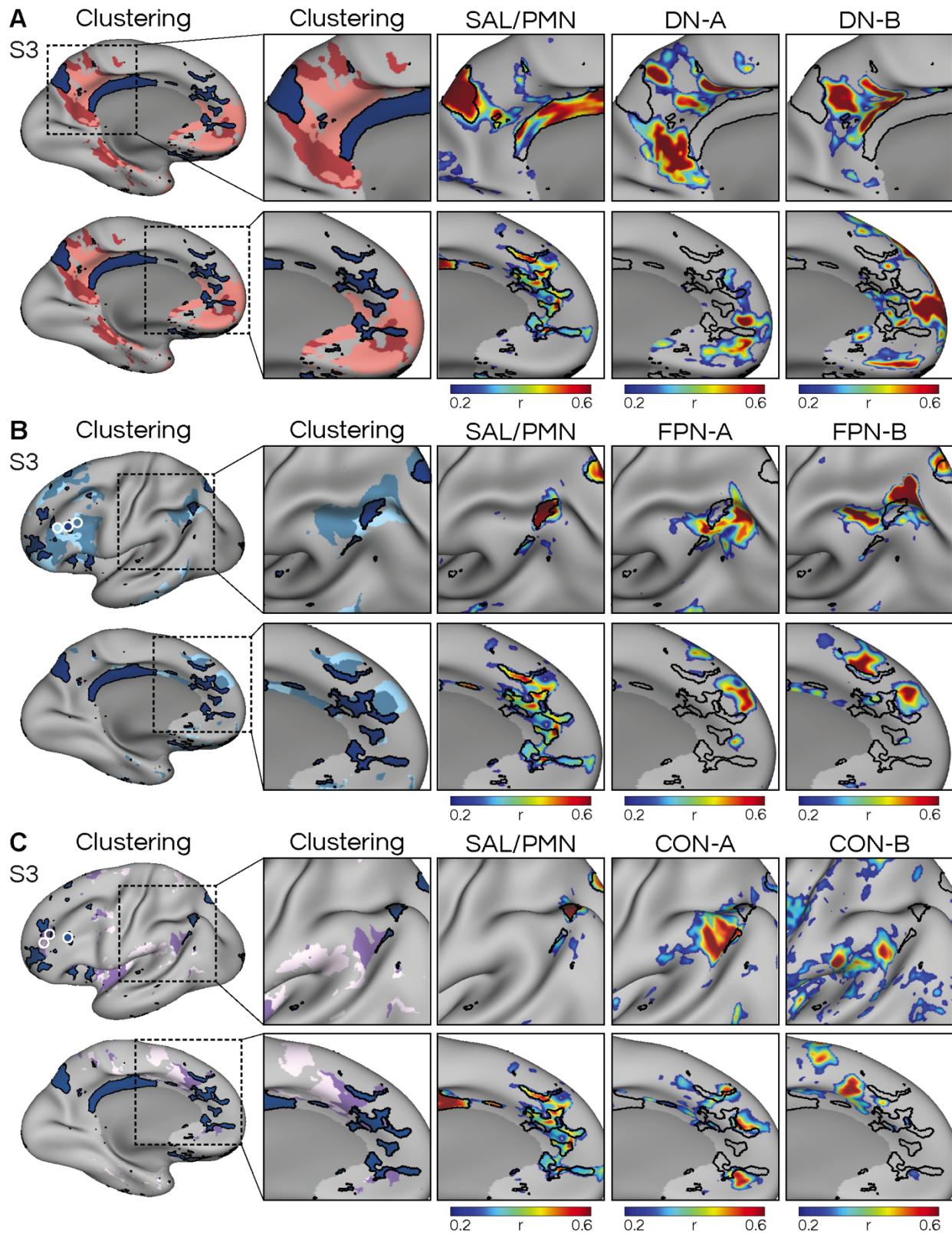
1330 Analysis. *PLOS ONE*. **4**(1), e4257 (2009).


1331 80. A. M. Winkler, G. R. Ridgway, G. Douaud, T. E. Nichols, S. M. Smith, Faster

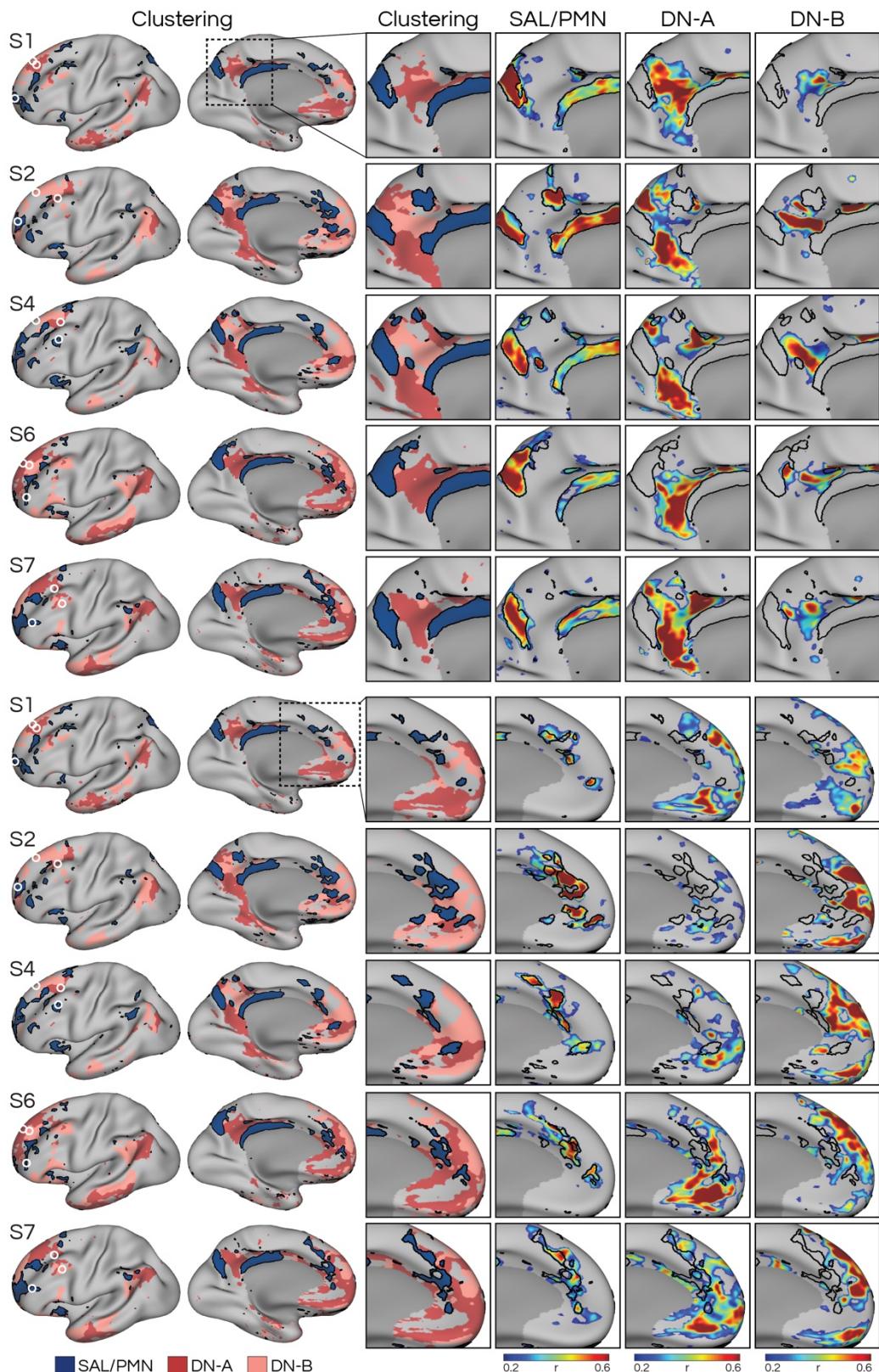
1332 permutation inference in brain imaging. *NeuroImage*. **141**, 502–516 (2016).


1333

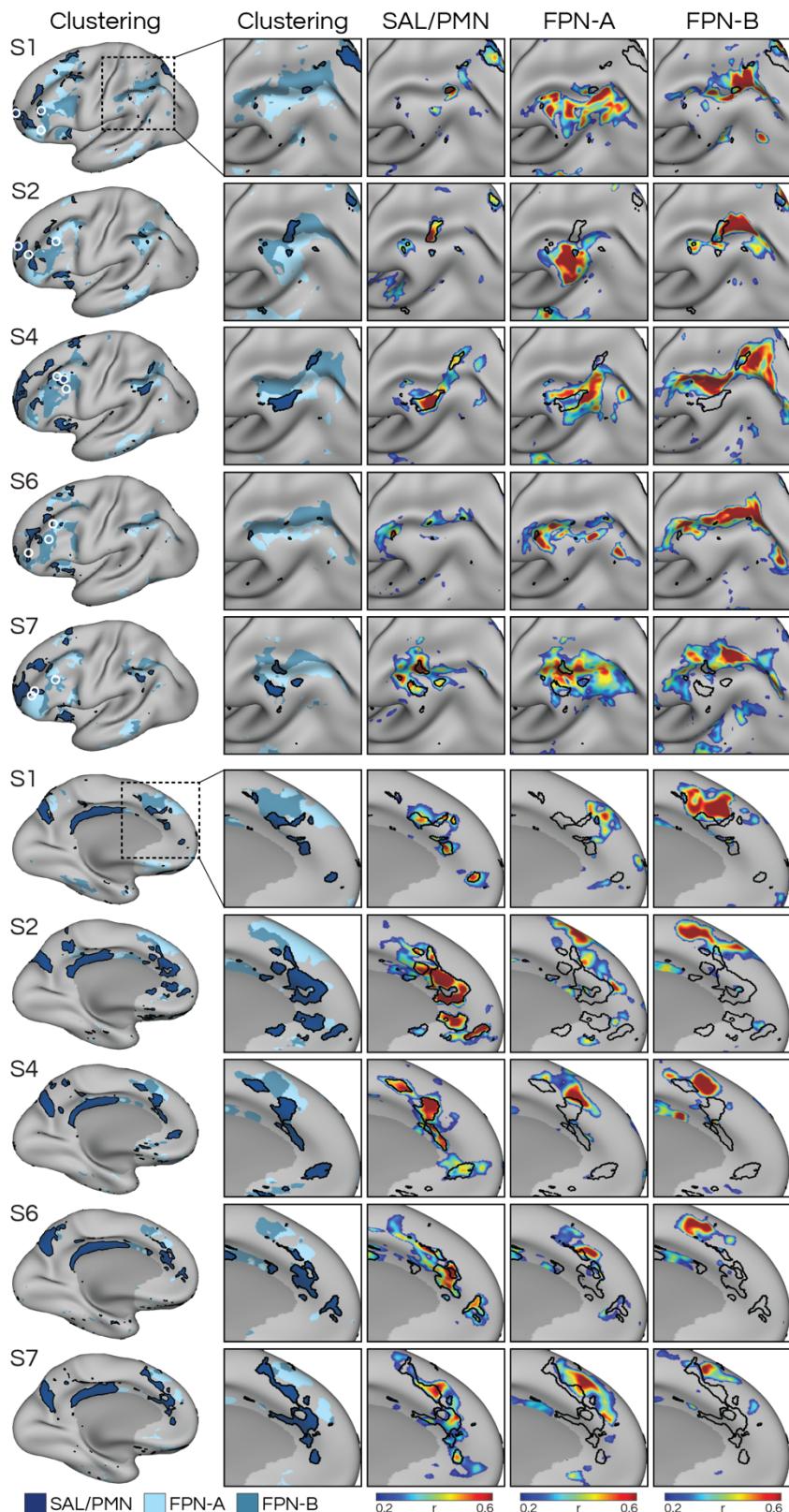

Supp. Fig. S1: Good data quality was achieved in the high-resolution 7T Natural Scenes Dataset, but signal dropout may have affected detection of a salience/parietal memory network (SAL/PMN) region in the lateral temporal cortex, Related to Fig. 4. The left columns show the functional connectivity map of the SAL/PMN defined using a seed-based approach (seeds shown as white circles), and the right columns show the temporal signal-to-noise ratio (tSNR) maps for all six NSD participants (rows). The tSNR maps show that good data quality and coverage was achieved by the high-field 7T protocol, despite the small voxel size (1.8 mm isotropic). Signal dropout regions (cooler colors) can be seen in the temporal pole, lateral temporal cortex, and ventromedial prefrontal cortex. Insets show a zoom-in of the lateral temporal cortex. The white lines trace the idiosyncratic shape of vertices affected by signal dropout in each individual. In 3 subjects (S1, S3, S4), evidence for a region of the SAL/PMN was detected in close proximity to the dropout, raising the prospect that a lateral temporal SAL/PMN region may have been missed in the other participants. Analysis of UK Biobank data containing 4,181 participants also suggested the presence of this SAL/PMN region (see Fig. 4C).


Supp. Fig. S2: Seed-based functional connectivity at high resolution reproducibly defines the SAL/PMN in multiple cortical zones, Related to Fig. 2, reinforcing that the SAL/PMN is a distributed association network. Five estimates of the SAL/PMN are shown in four participants (with the remaining two subjects shown in Fig. 2). Seeds (white circles) were selected from five cortical zones, including the rostral prefrontal cortex (rPFC), posteromedial cortex (including precuneus; PCU), medial prefrontal cortex (mPFC), inferior parietal lobule (IPL), and anterior insula (aINS). Note that differences between the seeds are expected, as correlation values are inflated near the seed. Despite these differences, each of the seeds replicate a similar distribution of regions.

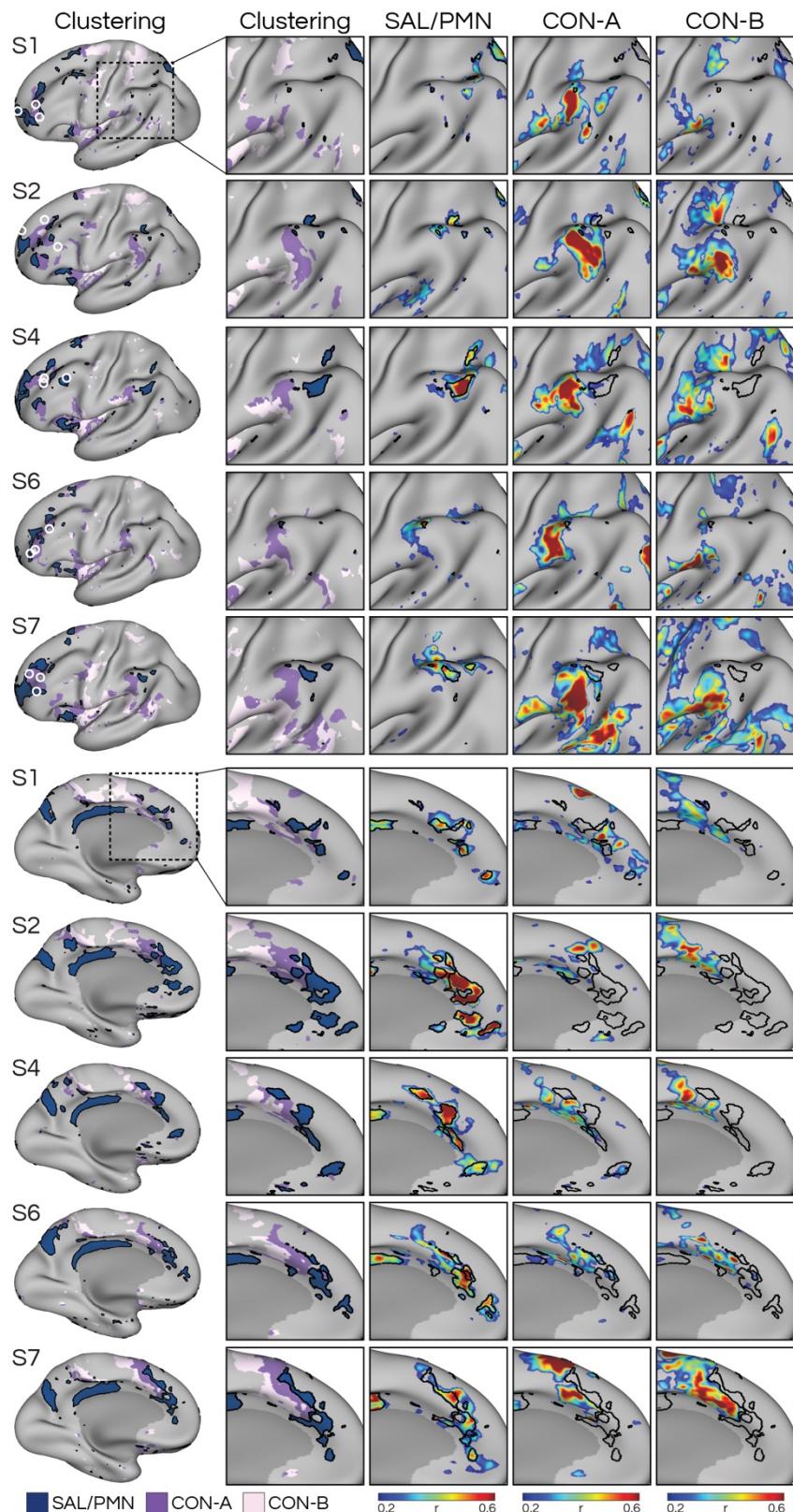
Supp. Fig. S3: Seed-based network estimation confirms the SAL/PMN is distinct from nearby distributed networks, Related to Fig. 3. Seeds were initially selected from the rostral prefrontal cortex (white circles) in each individual (S2, S3 & S4 shown here as examples) targeting seven distributed networks (rows): the SAL/PMN, default network A (DN-A), default network B (DN-B), frontoparietal network A (FPN-A), frontoparietal network B (FPN-B), cingulo-opercular network A (CON-A), and cingulo-opercular network B (CON-B). Next, seeds (black hollow circles) were selected targeting regions of each network in four other cortical zones (anterior insula, inferior parietal lobule, precuneus, medial prefrontal cortex) for the statistical dissociation analyses in Fig. 3. One exception was DN-A which only contained 3 zones as the network did not display an insula region.

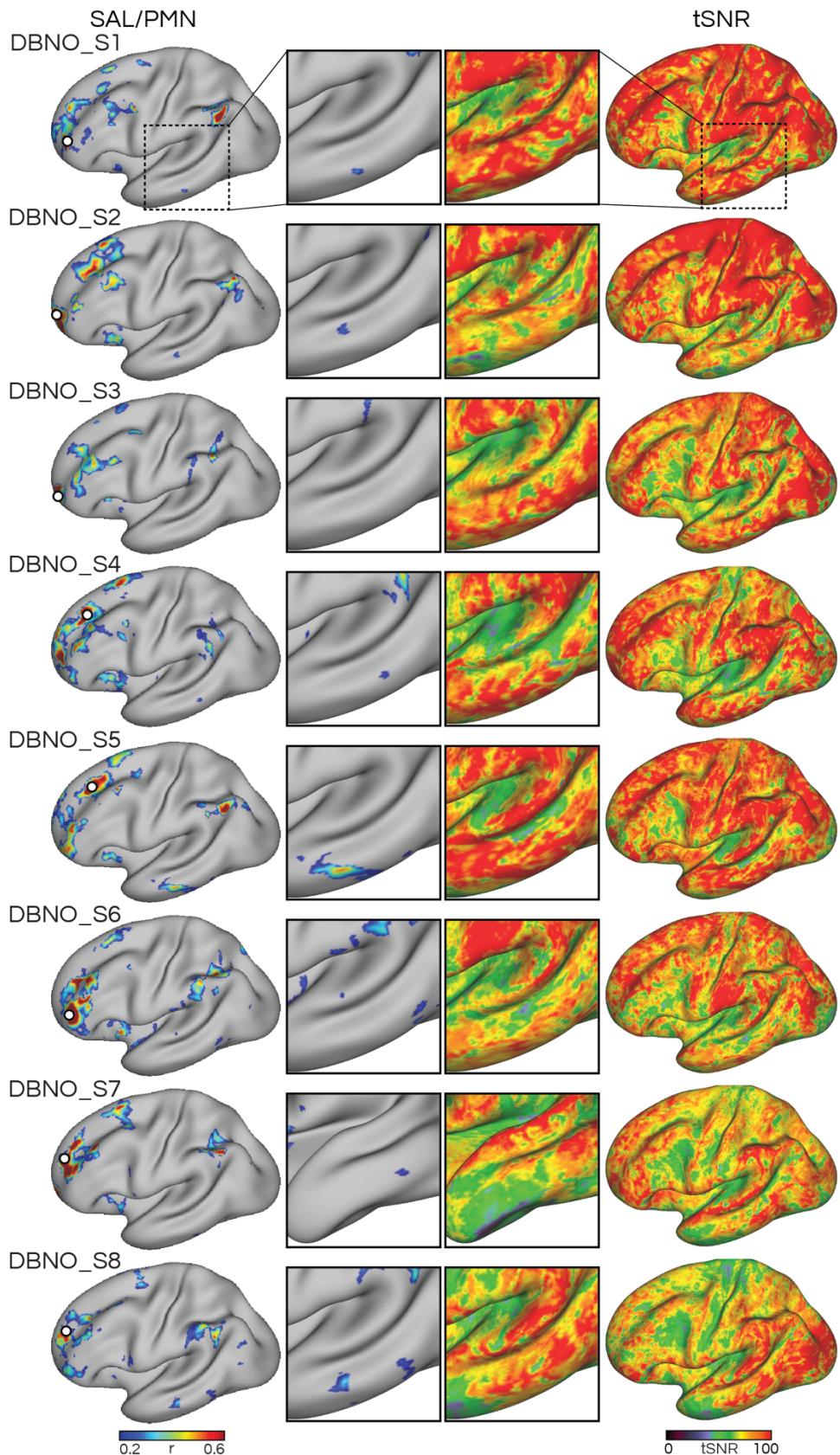


Supp. Fig. S4: The distributed organization of SAL/PMN is replicated and triplicated in the left-out data, Related to Fig. 3. Once statistical analysis had been run in the left-out validation data (Fig. 3), the seeds selected from the discovery dataset (white circles) were applied to the left-out datasets in each subject for replication and triplication. The estimates demonstrate that SAL/PMN reproducibly includes regions distributed throughout multiple cortical zones, including medial prefrontal and anterior insula.



Supp. Fig. S5: Detailed anatomy reveals that SAL/PMN regions are interdigitated with but distinct from networks within the canonical default (DN), frontoparietal control (FPN), and cingulo-opercular (CON) networks. Related to Fig. 1, 2, and 3. A. Left column shows the clustering-defined networks from Fig. 1 and the location of manually selected seeds (white circles) initially used to define the networks. The full seed-based maps from these seeds are shown in Supp. Fig. S3. A representative participant (S3) is shown, with the remaining 5 shown in Supp. Fig. S6. Right insets show a zoom-in of the posteromedial (top row) and


anteromedial (bottom) cortex of clustering (1st inset) and seed-based estimates of each network (remaining insets) to highlight that the correlated regions of SAL/PMN occupy distinct patches of the cortical mantle compared to DN-A and DN-B. The black lines represent the boundaries of the SAL/PMN calculated from the clustering approach, to serve as landmarks for comparing across panels. **B.** Insets show a zoom-in of the intraparietal sulcus (top row; zoom-in insets are rotated for better visualization within the intraparietal sulcus) and medial prefrontal cortex (bottom) showing the distinction between SAL/PMN and FPN-A and FPN-B. **C.** Insets show a zoom-in of the intraparietal sulcus (top) and medial prefrontal cortex (bottom) comparing SAL/PMN and CON-A and CON-B. The remaining five participants are shown in Supp. Fig. S7—S8.


Supp. Fig. S6: Detailed anatomy of the salience/parietal memory network (SAL/PMN) reveals regions that are closely-knit with but distinct from networks within the canonical default network (DN) in additional individuals, Related to Fig. 1, 2, and 3. Figure formatted according to Supp. Fig. S5A. A representative individual S3 is shown in Supp. Fig. S5A.

Supp. Fig. S7: Detailed anatomy of the salience/parietal memory network (SAL/PMN) reveals regions that are closely-knit with but distinct from networks within the canonical frontoparietal control network (FPN) in additional individuals, Related to Fig. 1, 2, and 3. Figure formatted according to Supp. Fig. S5B. A representative individual S3 is shown in Supp. Fig. S5B.

Supp. Fig. S8: Detailed anatomy of the salience/parietal memory network (SAL/PMN) reveals regions that are closely-knit with but distinct from the cingulo-opercular network (CON) in additional individuals, Related to Fig. 1, 2, and 3. Figure formatted according to Supp. Fig. S5C. A representative individual S3 is shown in Supp. Fig. S5C. See also targeted analysis of these networks in Fig. 6A.

Supp. Fig. S9: Good data quality was achieved in the multi-echo 3T data (DBNO), with reduced dropout, Related to Fig. 5. Nonetheless, the seed-based map showed limited evidence for a SAL/PMN region in the lateral temporal cortex. The left columns show the functional connectivity map of the SAL/PMN defined using a seed-based approach (seeds shown as white circles), and the right columns show the temporal signal-

to-noise ratio (tSNR) maps for all eight individuals (rows). Insets show a zoom-in of the lateral temporal cortex. All subjects, except one (DBNO_S3) show a few vertices in the lateral temporal cortex that correlated above $r > 0.2$ with the rest of SAL/PMN, supporting that a lateral temporal region may exist here that is part of SAL/PMN. The inset of DBNO_S7 is rotated for better visualization of the region which was more ventral. Analysis of UK Biobank data containing 4,181 participants also suggested the presence of a PMN region here (see Fig. 4C). It is possible that despite improvements in tSNR, the 3T multi-echo data is of insufficient resolution or contrast to noise to reveal the SAL/PMN region robustly.

Supplementary Table S1: Extensive high-quality resting-state data were analyzed for each participant, and divided into discovery, replication, and triplication datasets, Related to STAR Methods. The table presents the number of good quality runs, a total amount of data included, and quality control metrics for the discovery, replication, and triplication datasets for each individual. The quality metrics include signal-to-noise ratio (tSNR), maximum absolute head motion (max motion), and maximum framewise displacement (max FD). The mean values are presented, with standard deviations in parentheses. Runs that fell below our quality control criteria were excluded from the full dataset, leading to the complete exclusion of 2 of the NSD subjects (S5 and S8).

	S1	S2	S3	S4	S6	S7
<i>Discovery dataset</i>						
# of runs	17	6	8	6	7	6
amount of data (min)	85	30	40	30	35	30
tSNR	165.14 (38.39)	134.52 (53.72)	157.24 (36.48)	141.65 (26.54)	99.19 (23.36)	157.58 (37.79)
max motion (mm)	0.43 (0.11)	0.74 (0.26)	0.48 (0.17)	0.67 (0.30)	0.68 (0.16)	0.54 (0.18)
max FD (mm)	0.26 (0.06)	0.38 (0.05)	0.26 (0.07)	0.22 (0.09)	0.18 (0.05)	0.15 (0.04)
<i>Replication dataset</i>						
# of runs	9		8	6	6	6
amount of data (min)	45		40	30	30	30
tSNR	147.71 (33.03)	—	159.79 (51.20)	153.77 (35.57)	108.33 (14.36)	178.97 (45.88)
max motion	0.36 (0.06)		0.59 (0.23)	0.62 (0.33)	0.64 (0.30)	0.61 (0.22)
max FD	0.22 (0.03)		0.28 (0.04)	0.19 (0.08)	0.14 (0.04)	0.15 (0.03)
<i>Triplication dataset</i>						
# of runs	9			6	6	
amount of data (min)	45			30	30	
tSNR	148.94 (27.47)	—	—	—	123.52 (35.30)	133.95 (33.50)
max motion	0.39 (0.14)				0.68 (0.25)	0.56 (0.21)
max FD	0.24 (0.05)				0.14 (0.07)	0.15 (0.05)

Supplementary Table S2: High quality resting-state data were analyzed in an independent 3T validation dataset (Detailed Brain Network Organization study or DBNO) that included eight participants, Related to STAR Methods. The table presents the number of runs included, total amount of data, and quality control metrics including signal-to-noise ratio (tSNR), maximum absolute head motion (max motion), and maximum framewise displacement (max FD), for the resting-state runs of the DBNO data. The mean values are shown, with standard deviations in parentheses.

	DBNO_01	DBNO_02	DBNO_03	DBNO_04	DBNO_05	DBNO_06	DBNO_07	DBNO_08
# of runs	8	8	8	8	10	7	7	7
amount of data (min)	56	56	56	56	70	49	49	49
tSNR	244.88 (32.30)	306.05 (29.55)	279.88 (28.56)	283.91 (54.29)	249.28 (32.77)	251.54 (47.55)	249.13 (31.17)	226.11 (34.55)
max motion (mm)	0.40 (0.29)	0.56 (0.21)	0.71 (0.46)	0.57 (0.29)	0.72 (0.33)	0.85 (0.28)	0.35 (0.20)	0.74 (0.36)
max FD (mm)	0.11 (0.04)	0.10 (0.03)	0.13 (0.07)	0.16 (0.04)	0.18 (0.05)	0.17 (0.03)	0.14 (0.09)	0.18 (0.03)