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Abstract—The frequency measurement and rate of
change of frequency (RoCoF) calculations are important
for active power, frequency control, and frequency-related
protection in power system operations. With the rapid de-
crease in inertia under modern power systems, however,
multiple power variations introduced by variable renew-
able energy bring large RoCoF and introduce oscillations
in frequency measurements. To shed light on this issue,
this article proposes a frequency measurement and RoCoF
analysis technology, as well as the sensitivity analysis for
the real low-inertia power grid. First, a real-world event in
an island power grid is analyzed as an example, and an
event numerical model is estimated considering four un-
certainties, including event RoCoF, oscillation magnitude,
oscillation frequency, and underfrequency load-shedding
threshold. Then, a sensitivity analysis is performed using
the Sobol indices method and quasi-Monte Carlo simula-
tions to identify the dominant uncertainties based on the
event model. The dominant uncertainties are compared to
provide a guideline for the frequency estimation algorithm
selection under different event cases. This algorithm is
compared with an enhanced zero-crossing algorithm and
gives a 3.41% better RoCoF error rate. Finally, an experi-
ment is conducted using universal grid analyzers to vali-
date the simulation results and the theoretical analysis.
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I. INTRODUCTION

T
HANKS to fast technology developments, distributed

energy resources (DERs) and inverter-based resources

(IBRs) are widely deployed in different kinds of power grids [1],

making the load-generation balance more volatile. This is exac-

erbated if the inertia of the power grid is low, such as in an

island grid. For example, the plan for the Hawaiian Islands is

to use 100% renewable energy by the year 2045 [2], and most

of that energy is expected to come from IBRs and DERs. The

deployment of IBRs and DERs will further decrease the system

inertia. This will cause fast frequency drops and higher rates of

change of frequency (RoCoF) [3] during frequency events, such

as a sudden generator trip. The IBRs will play a critical role in the

fast frequency response and frequency-related protection, such

as underfrequency load shedding, in the future power grid [4].

In addition, battery energy storage systems (BESSs) are being

installed at multiple locations. These BESSs will participate in

the frequency control by applying droop controls [5] or other

methods, but the time delay and coordination among BESSs

could cause frequency oscillations [6], which would lead to a

reduced calculation accuracy of the RoCoF.

To support these functions, the precise measurement and

fast-response capabilities of frequency and RoCoF are the keys

to preventing the false detection and tripping caused by inac-

curate measurements. An example is the Blue Cut Fire event

that happened in California, where the frequency measurements

triggered an erroneous trip [7]. IEEE standard 60255-118-1 [8]

provides measurement performance requirements, but there

is no specified algorithm for frequency measurements. Zero-

crossing-based algorithms are basic algorithms that calculate

the frequency by measuring the time duration of cycles [9].

A phase-locked loop (PLL) is another well-known technology

to calculate the frequency in synchronized phasor measure-

ments [10]; however, the performances of both zero-crossing and

PLL-based algorithms suffer from the noise and transient factors

in the power system. Discrete Fourier transform (DFT)-based

algorithms have a relatively low computational requirement for

frequency estimation [11]. DFT-based algorithms can be further

improved by solving the off-nominal conditions [12], [13] and

widening the frequency measurement range [14]. In a low-inertia
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power system, both fast frequency dropping and oscillations

exist as a result of the high proportion of DERs. But the tradeoffs

between the fast frequency dropping speed and the frequency

measurement accuracy in low-inertia power systems pose a new

challenge to the selection of window parameters of the DFT

method.

Precise measurements of RoCoF are critical for low-inertia

power systems for applications including real-time system iner-

tia estimation, fast frequency control, and event detection [15].

Based on this consideration, RoCoF is a fundamental measure-

ment for phasor measurement units (PMUs), as listed in [8].

RoCoF is also a common measurement for other power system

sensors, such as digital fault recorders (DFRs) and relays; how-

ever, most of these sensors calculate RoCoF by simply using two

adjacent frequency measurements. To precisely measure RoCoF,

some RoCoF estimation algorithms have been proposed that can

be categorized into instantaneous and window-based algorithms.

For instantaneous algorithms, Romano and Paolone [16] in-

troduce an enhanced interpolated DFT-based RoCoF measure-

ment algorithm, and Derviškadić et al. [17] introduce an itera-

tive interpolated DFT-based algorithm. Both use two adjacent

frequency measurements to calculate the instantaneous RoCoF.

The benefit of instantaneous algorithms is the low response time,

but the accuracy of the RoCoF measurement is relatively low.

In contrast, window-based algorithms use a set of frequency

measurements to more accurately estimate the RoCoF. Wright

et al. [18] use a phase step correction algorithm to remove

the frequency spikes, thus increasing the RoCoF measurement

accuracy. Singh and Pal [19] apply a DFT-based frequency mea-

surement algorithm and then use a Kalman filter to increase the

RoCoF measurement accuracy. A low-pass filter is implemented

on the RoCoF measurements to obtain a smooth RoCoF mea-

surement curve in [20]. Furthermore, a Taylor–Fourier model

is used to calculate accurate RoCoFs in [21]. The window size

of window-based algorithms is another interesting topic and a

critical factor for RoCoF calculation. In [22], the recommended

window size is from 0.1 to 0.5 s for power systems with large

inertia. A small window, such as 0.1 s, is usually selected for

microgrids or power systems with low inertia [23]. However,

targeting on the RoCoF used in inertia estimation applications,

the window size of the frequency calculation algorithm can be

larger to reduce the disturbance from oscillations and enhance

the measurement robustness.

These methods above are mainly applied to power grids with

large inertia; however, it is challenging to accurately measure

both the real-time frequency and RoCoF in low-inertia power

systems because the frequency can drop quickly and has serious

oscillations. Additionally, for frequency control and protection

applications, the RoCoF calculation needs to be finished be-

fore the frequency reaches the underfrequency load-shedding

threshold. Importantly, the inconsistency of control can cause

oscillations and noises in frequency measurements, which can

lead to disturbances and thus add difficulty to the frequency and

RoCoF calculations. One of the critical parameters for both the

frequency and RoCoF calculation algorithm is the window size

selection. In a low inertia power system, its fast frequency drop-

ping requires short window size algorithms while the frequency

oscillations require long window size algorithms. The existing

frequency and RoCoF estimation algorithms discussed above

have not fully considered the tradeoffs among the frequency

response time, accuracy, and robustness against oscillations. To

the best of our knowledge, there is a lack of a thorough discussion

on the frequency and RoCoF calculation algorithms from the

aspect of the window size design in low-inertia power systems

with high deployments of IBRs and BESSs.

This article proposes a sensitivity analysis to address the

optimal frequency measurement algorithm and find the domi-

nant uncertain factor for both frequency and RoCoF calculations.

The contributions of this article are summarized as follows.

1) An analysis is conducted on a real-world generation trip

event that occurred within an island power system. In

order to accurately represent this event, an event numeri-

cal model is developed, accounting for four uncertainties:

a) event RoCoF, b) time-varying oscillation magnitude,

c) oscillation frequency, and d) underfrequency load-

shedding threshold.

2) In order to determine an appropriate window size and

effectively balance the uncertainties, a sensitivity anal-

ysis is proposed utilizing the Sobol indices method in

conjunction with quasi-Monte Carlo technologies.

3) To validate the effectiveness of the proposed method, an

experimental test bench is established using two universal

grid analyzers and an Omicron power source. A series

of comparative experiments are conducted under various

conditions, including different cycles, noise levels, pa-

rameters of the numerical event model, and frequency

calculation methods.

The rest of the article is organized as follows. Section II

presents real-world events. Then, the frequency and RoCoF

measurement algorithms are proposed in Section III. The sensi-

tivity analysis is conducted in Section IV. Hardware experiments

are introduced in Section V. Finally, Section VI concludes this

article.

II. REAL-WORLD EVENT ANALYSIS

Island power systems usually have low system inertia lim-

ited by the size of the island. Deployment of IBRs, such as

photovoltaics, will further reduce the system inertia, which

could result in a very high RoCoF during frequency events. In

addition, some IBRs, such as BESSs, with fast frequency support

functions, might try to inject power into the power systems when

the frequency is lower than a predefined threshold, which could

cause a frequency oscillation if the cooperation among multiple

BESSs is not well designed.

A. Real-World Events

A real-world event recorded by DFRs is shown in Fig. 1 on

Kauai Island on November 21, 2021 [24]. It is a major generation

trip event (more than 60% of instantaneous generators tripped)

for a 60-MW-scale power system. The event was confirmed by

utility DFR data in four locations and one UGA throughout the

island. This event is the most serious generation trip event in the

year 2021 on Kauai Island where both the oscillation magnitude
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Fig. 1. Real-world frequency event from an island power system.

TABLE I
REAL-WORLD EXAMPLE EVENT INFORMATION

and frequency dropping speed are the highest. The detailed event

information can be found in Table I.

As shown in Fig. 1, at the very beginning of this event, there

is a fast frequency drop caused by a generation trip, which is

marked by the green rectangle. The maximum event RoCoF is

observed to be roughly 15 Hz/s. Then, a frequency oscillation

(outlined in red) can be observed during the frequency recovery

stage, which is believed to be caused by the BESS power

injection from multiple plants after the generation trip event. The

oscillation frequency is between 19 and 20 Hz, and the largest

oscillation magnitude is approximately 0.3 Hz. This oscillation

lasts for more than 1 min at nearly constant amplitude (only 3

s are shown here), which brings challenges to the calculation of

the RoCoF.

At the initial part of the frequency drop, a BESS power

injection can be observed at approximately 59.85 Hz. This value

can be different depending on the setting of the BESS controllers.

Even though this event is a major generation trip event, it did not

trigger significant underfrequency load shedding (the threshold

frequency is 59.2 Hz for a 5-cycle duration) because of the fast

responses from the BESSs. In the meantime, the BESS power

injection also caused frequency oscillations.

B. Event Numerical Modeling

The motivation for establishing the numerical general event

model is to simulate a wider range of event scenarios based on

the available information from island events in low-inertia power

systems. The targeted events primarily involve generation trips

and load shedding, both of which are critical and commonly en-

countered. According to the real generation trip event discussed

in Section II-A, characterized by both RoCoF and frequency

oscillations, it is essential to incorporate these aspects into the

model. The voltage waveform of the event within a 5-s interval

can be represented as a discrete-time signal with a sampling rate

fs, expressed by the following equation:

Sig[n] =
√
2Vamp cos(a[n])

a[n] =

{

a[n− 1] + 2πf0
fs

, if n <= ns

a[n− 1] + 2πfe
fs

, if n > ns

fe = f0 ±Mf sin

[

2πfo s c(n− ns)

fs

]

±∆f

∆f =
RoCoF

fs
(1)

where Vamp denotes the voltage magnitude, a[n] represents the

voltage phase at discrete time n (with a[0] initialized as 0), f0
corresponds to the nominal frequency, fe denotes the frequency

following the event occurrence, ns signifies the event starting

time (constrained between 0 and 5 s), Mf is the time-varying

frequency magnitude of the oscillation, fosc denotes the oscil-

lation frequency, ∆f represents the frequency change after the

event, and RoCoF represents the RoCoF value during the event,

excluding the oscillatory component. In the subsequent analysis,

the oscillation frequency is considered part of the ground truth

frequency, although the ground truth RoCoF value does not take

the frequency oscillation into account, as the focus lies on esti-

mating the inertia. Besides, the magnitudeMf and the frequency

change ∆f can be settled as zero to model the generation trips,

load shedding, or oscillation component, respectively.

III. FREQUENCY AND ROCOF CALCULATION

A. Frequency Calculation

The frequency calculation algorithm is a critical point for

RoCoF estimation. Among existing frequency calculation algo-

rithms, DFT-based algorithms are the most commonly used [25];

however, different computation windows of the phasor angle will

influence the frequency estimation. To address this issue, a re-

cursive DFT-based frequency estimation algorithm is proposed.

According to the voltage/current signals in (1), the phasor can

be calculated in a recursive DFT method [26]

X(t) =
1√
2
[Xc(t) + jXs(t)]

ϕ(t) = tan−1 −Xs(t)

Xc(t)

Xc(t) =
2

N

t
∑

k=t−N

Sig(k) cos

(

2π

N
k

)

Xs(t) =
2

N

t
∑

k=t−N

Sig(k) sin

(

2π

N
k

)

(2)

where X(t) is the DFT of the voltage/current signals, N stands

for the number of samples per cycle, and t is the time stamp, the

Xc(t) and Xs(t) are the real and imaginary parts, respectively.
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To reduce the calculation burden, a recursive method is used to

update the voltage/current phasor

Xc(t+ 1) = Xc(t) +
2

N
[Sig(t+ 1)− Sig(t+ 1−N)]

cos

(

2π

N
t

)

Xs(t+ 1) = Xs(t) +
2

N
[Sig(t+ 1)− Sig(t+ 1−N)]

sin

(

2π

N
t

)

. (3)

To obtain the frequency, the fitting method is used. Assuming

the voltage/current phasor angle varies following a quadratic

function:

ϕ(t) = a0 + a1t+ a2t
2 (4)

where a0 to a2 are coefficients. The primary reason for utilizing

the quadratic function (second-order polynomial function) is to

decrease the estimated frequency error because the real-world

phase angles are actually nonlinear functions as a result of

noises, oscillations, and disturbances [27]. Given a phasor com-

putation window of M , the phasor angles in the window can be

used to calculate a0 to a2 as

ϕ =

£

¤

¤

¤

¥

1 1 1
1 2 22

...
...

...

1 M M2

¦

§

§

§

¨

£

¥

a0
a1
a2

¦

¨ . (5)

By using the least-squares error solution, a0 to a2 can be

calculated. In this way, the frequency can be estimated as

f = f0 +
1

2π
Nf0 (a1 + 2a2Nf0t) (6)

where t is the time instant for the frequency.

B. RoCoF Calculation

After estimating the frequency, the RoCoF is commonly

calculated by using the frequency difference in the two adjacent

estimated frequencies in PMUs; however, this RoCoF cannot

represent the true RoCoF when the event occurs.

In an island power system with low inertia, the frequency can

drop very quickly after the loss of a generator. For example,

the frequency dropped from 60 to 59.1 Hz within 50 ms

in the event shown in Fig. 1. Because there is a predefined

underfrequency load-shedding threshold, the frequency mea-

sured after this threshold could be invalid for RoCoF estimation

purposes because the load shedding already happened, and

thus, a fixed RoCoF estimation window becomes meaningless.

An accurate RoCoF should be calculated using the measured

frequency before reaching the underfrequency load-shedding

threshold.

To calculate the most accurate RoCoF for a given event,

the starting point of the RoCoF is fixed at the beginning of

the event, and the ending point of the RoCoF can be located

at the underfrequency load-shedding threshold. This choice

makes the most of the very short time window avail-

able to obtain a reliable RoCoF value in low-inertia power

systems.

Furthermore, to improve the RoCoF estimation accuracy, a

first-order least-squares error method is used for the curve fitting

with frequency measurements. First, the frequency is assumed

to be represented as follows:

f(t) = b0 + b1t (7)

where b0 and b1 are the intercept and slope coefficients, respec-

tively. The objective is to calculate b1, which is actually the

RoCoF. Given the K frequency measurements in the computa-

tion window, the frequency can be represented as

f = Kb =

£

¤

¤

¤

¥

1 1
1 2
...

...

1 K

¦

§

§

§

¨

[

b0
b1

]

(8)

where bi can be calculated as

b =
[

KTK
]−1

KTf . (9)

Because
[

KTK
]−1

KT depends on the starting and the ending

points of the RoCoF window, it can vary with different events.

Then, the RoCoF can be derived from b. The advantage of the

RoCoF calculation is that it can be implemented in the embedded

device firmware.

IV. SENSITIVITY ANALYSIS

The robustness of the proposed method is critical for practical

applications. To verify the uncertainty under a range of fre-

quency event characteristics, a sensitivity analysis is performed

to quantitatively study the influences of various event parameters

and determine the dominant parameters.

The window size of the DFT-based method is an important

parameter that determines the accuracy of the frequency mea-

surement. To determine the optimal frequency estimation algo-

rithm and window size (M ), the window size of the DFT-based

algorithm varied from 1 to 6 ac line cycles (e.g., 1/60 s to 0.1 s

in U.S. power grids.).

In addition to the window size, other uncertainties in this sen-

sitivity analysis are the event RoCoF, the oscillation magnitude,

the oscillation frequency, and the underfrequency load-shedding

threshold. The analyzed range of these four uncertainties is

determined based on the real-world event discussed in Section II,

as listed in Table II. The real-world event is considered as the

serious case in this study so that its parameters are considered as

the upper limits. They are named from S1 to S4, and the cycle

number of the window size is an integer uncertainty that will be

analyzed separately. The distributions of the uncertainties are

assumed to be uniform.

Based on the frequency and RoCoF estimation algorithm

discussed in Section III, a nonlinear relationship exists between

the uncertainties and the estimated measurements, frequency,

and RoCoF.
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TABLE II
RANGES OF PARAMETERS INFLUENCING UNCERTAINTY

To reveal this relationship, a variation-based Sobol method

[28] is used in this article for a global sensitivity analysis. The

sensitivity coefficients, i.e., Sobol indices, are used to represent

the amount of variance of uncertainty to the total variance.

The quasi-Monte Carlo algorithm with quasi-random samples is

adopted to estimate the first-order Sobol indices because of its

faster convergence speed. The frequency measurement reporting

rate is assumed to be 120 Hz based on the IEEE C37.118.1

2018 [8].

To evaluate the calculation performances, two different kinds

of indexes are established as the target of the sensitivity analysis:

1) the frequency error, Freqerr, and 2) the RoCoF error, RoCoFerr.

They are calculated as

Freqerr = | Freqest − Freqref |
RoCoFerr = | RoCoFest − RoCoFref | (10)

where Freqest and RoCoFest are the frequency and RoCoF

estimated by the DFT-based algorithm and curve fitting, and

Freqref and RoCoFref are the frequency and RoCoF references

predefined in the simulated event models listed in (1). Because

the target for the frequency is to precisely measure the dynamic

frequency, whereas the target for the RoCoF is to estimate the in-

ertia, Freqref is defined as the frequency considering oscillations,

whereas RoCoFref is defined as the RoCoF without oscillations.

To justify the performance of the estimated RoCoF, a better

frequency estimation algorithm should have both a low Freqerr

and a low RoCoFerr.

A. First-Order Sensitivity Indices

The first-order Sobol indices under different DFT window

sizes are illustrated graphically in Figs. 2 and 3, respectively.

A larger Sobol sensitivity indicates a larger effect of the param-

eter on the measurement uncertainty. Note that the underfre-

quency load-shedding threshold (S4) is not used in the frequency

error calculation.

It can be observed that S1 and S2 have the dominant Sobol

sensitivities among the four parameters studied. In addition, S1

increases when the DFT window size increases. In contrast,

S2 decreases when the DFT window size increases. This is

understandable because when the DFT window size increases,

the algorithm becomes more robust against the oscillation and

more sensitive toward the event RoCoF for both frequency and

RoCoF errors.

Fig. 2. First-order Sobol indices for the frequency error under different
DFT window sizes.

Fig. 3. First-order Sobol indices for the RoCoF error under different
DFT window sizes.

Fig. 4. Joint Sobol indices for 2-cycle DFT-based frequency estimation
algorithm.

B. Second-Order Sensitivity Indices

As illustrated in Figs. 2 and 3, S1 and S2 are the two dom-

inant uncertainties resulting from their large values among the

first-order Sobol indices. To further verify this, the joint Sobol

indices for every two uncertainties (e.g., S12 means the joint

Sobol indices for S1 and S2) for the 2- and 6-cycle DFT-based

algorithms are illustrated in Figs. 4 and 5, where the RoCoF

error is used as the target.

As shown in Figs. 4 and 5, S12 is much larger than the

other joint Sobol indices for the 2-cycle DFT-based algorithm,
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Fig. 5. Joint Sobol indices for 6-cycle DFT-based frequency estimation
algorithm.

whereas S12, S13, and S14 are larger than the other joint Sobol

indices for the 6-cycle DFT-based algorithm. This result matches

the illustrations in Figs. 2 and 3. Because S12 is relatively

large for both algorithms, a more detailed study on these two

uncertainties, i.e., S1 and S2, is given using 2- and 6-cycle

DFT-based algorithms. During this study, the S3 and S4 are

set to their respective mean values within their range to ensure

they do not influence the study.

To verify the frequency error, the performance of both the

frequency and RoCoF measurements for 2- and 6-cycle DFT-

based algorithms is presented in Fig. 6(a) and (b). The 2-cycle

DFT-based algorithm has a better frequency measurement per-

formance when the oscillation magnitude is high. In addition, it

has a better RoCoF measurement performance when the event

RoCoF is low and the oscillation magnitude is low. Additionally,

the 6-cycle DFT-based algorithm gives a lower frequency error

when the oscillation magnitude is low. Meanwhile, it has a

very smooth overall performance for the RoCoF measurement

error. This verifies that the 2-cycle DFT-based algorithm is more

accurate for the instantaneous frequency measurement, whereas

the 6-cycle DFT-based algorithm is more robust against oscil-

lations and event RoCoF changes for the inertia-based RoCoF

measurements.

To gain further insight from this figure, there is an intersection

line between the two surfaces generated from the two algorithms.

If Fig. 6(a) and (b) are reduced to 2-D versions, they clearly

illustrate these intersection curves, as given in Fig. 6(c) and

(d), where the green area shows where the 6-cycle DFT-based

algorithm will have better performance, and the blue area in-

dicates where the two-cycle DFT algorithm will be a better

choice. As shown in these figures, the 2-cycle DFT algorithm

will have a more precise frequency estimation if the oscillation

magnitude is high, whereas it has a better RoCoF estimation

if the event RoCoF reference value is very high because of the

benefits of the short DFT window; however, the oscillation mag-

nitude can have a large influence on the RoCoF estimation from

the two-cycle DFT algorithm because the measured RoCoF can

be the oscillation RoCoF instead of the true event RoCoF. On the

other hand, the RoCoF estimation of the 6-cycle DFT algorithm

is much more robust against the oscillation magnitude changes;

however, the accuracy of the frequency estimation is reduced

with a large oscillation magnitude as a result of the large DFT

window size.

This can be an easy guideline for the end user to select

the best-performing algorithm if they know the event RoCoF

range and the oscillation magnitude range. Here, 2- and 6-cycle

DFT-based algorithms are used because they represent typical

window lengths for PMUs. The end user can also customize the

algorithm window length by redrawing this figure.

C. Influence of Other Uncertainties

To further study the influence of S3 and S4 (oscillation

frequency and underfrequency load-shedding threshold) on the

performance surface, two cases are studied: 1) the oscillation

frequency is increased from 10 to 15 Hz, and 2) the underfre-

quency load-shedding threshold is increased from 59 to 59.5 Hz.

The RoCoF error is chosen as the performance target because

S4 is only available for the RoCoF error.

In the first case, the 2-D versions of the performance surface

for the 2- and 6- cycle DFT-based algorithms are shown in

Fig. 6(e). This shows that the overall performance curves are

similar to Fig. 6(d). By changing the oscillation frequency, the

intersection curve shape changes. When the oscillation magni-

tude value is high, the 2-cycle DFT-based algorithm covers a

larger area than the 6-cycle DFT-based algorithm.

In the second case, again, the 2-D version of the perfor-

mance surface for the 2- and 6-cycle DFT-based algorithms is

shown in Fig. 6(f). In contrast, by changing the underfrequency

load-shedding threshold, the intersection curve changes in the

opposite direction. In this case, when the underfrequency load-

shedding threshold is high, the 2-cycle DFT-based algorithm

covers a larger area than the 6-cycle DFT-based algorithm.

V. EXPERIMENTAL VALIDATION

A. Verification Through Hardware Test Bench

To verify the sensitivity analysis in Section III, a series of

experiments were conducted. An experimental test bench is set

up as illustrated in Figs. 7 and 8.

The Omicron power source is used to generate ideal synchro-

nized voltage signals by using the global positioning system

(GPS) and a timing source (SEK-2488 satellite-synchronized

network clock). The voltage signal is using a frequency profile

similar to the one in (1). Then, two UGAs [29] with 2- and

6-cycle DFT-based algorithms deployed are connected to the

Omicron power source (256 plus) through a power strip. The

UGAs are named UGA 1 and UGA 2. Note that these two

UGAs can also provide high-speed synchrophasors, and they

are connected to separate GPS units as well. They stream the

synchrophasor measurements to the router and then directly to

the server in real time. The data acquisition of UGAs is designed

with 16-b ADC, 5760-Hz sampling rate, and antialiasing filters.

Detailed UGA hardware design can be found in [29]. The

primary reason for choosing 5760 Hz is that typically a rate

of 48 samples per cycle is required to detect the fluctuations

and this value should be an integer multiple of the fundamental

frequency. A photo of this test bench is also shown in Fig. 8.

The GPS, power strip, and router are not shown in this photo.
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Fig. 6. Performance surfaces of frequency measurements and RoCoF measurements for 2- and 6-cycle DFT-based algorithms. (a) Performance
surfaces of frequency measurements. (b) Performance surfaces of RoCoF measurements. (c) 2-D version of the best-performing algorithm
surface of frequency measurements for 2- and 6-cycle DFT-based algorithms. (d) 2-D version of the best-performing algorithm surface of RoCoF
measurements for 2- and 6-cycle DFT-based algorithms. (e) 2-D version of the best-performing algorithm surface for 2- and 6-cycle DFT-based
algorithms under case one. (f) 2-D version of the best-performing algorithm surface for 2- and 6-cycle DFT-based algorithms under case two.

Fig. 7. Experiment test bench setup schematic.

Fig. 8. Experiment test bench setup.

Because it is time-consuming to verify the entire perfor-

mance curves shown in Fig. 6, four test points are selected

from Fig. 6(b), which are located at four corners. For each

test point, the oscillation frequency and underfrequency load-

shedding threshold are set as 10 and 59 Hz, respectively. The

measured frequency traces for each of the four tests under both

2- and 6-cycle DFT-based methods are illustrated in Fig. 9. The

measured frequencies verify that the 2-cycle DFT-based method

can precisely measure the frequency oscillations and the 6-cycle

DFT-based method can precisely measure RoCoFs.

Because there are only four points per surface, the non-

linear dynamics cannot be fully shown. The experimental

results have been put together with the simulation curves in

Fig. 10. This shows the experimental results basically match

the simulation results, but there is an average 4.08% difference

between the simulation and experiment that is caused by the

nonidealities in the experiment, such as filters in the sampling

circuit and the power signal accuracy. Through this compari-

son, the accuracy of the proposed sensitivity analysis has been

verified.

B. Benchmarking Algorithm Comparison

To verify the performance of the proposed DFT-based algo-

rithm, a comparison between an enhanced zero-crossing fre-

quency estimation algorithm [30] and the 6-cycle DFT-based

algorithm is given with the RoCoF error to be the target. The os-

cillation frequency is 10 Hz, the RoCoF is 1 Hz/s, and the under-

frequency load-shedding threshold is 59 Hz for this comparison.

Note that both algorithms are using the first-order least-squares

error method to calculate the RoCoF from the frequency. As il-

lustrated in Fig. 11, the RoCoF error rate of the DFT-based algo-

rithm is lower than that of the enhanced zero-crossing one from

different oscillation magnitude cases. RoCoFerate is calculated

as

RoCoFerate =

∣

∣

∣

∣

RoCoFe s t − RoCoFref

RoCoFref

∣

∣

∣

∣

. (11)
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Fig. 9. (a) Frequency measurement under 2-cycle DFT method.
(b) Frequency measurement under 6-cycle DFT method.

Fig. 10. Experimental validation with 2- and 6-cycle DFT-based algo-
rithms.

Fig. 11. Algorithm comparison between zero-crossing and 6-cycle
DFT methods.

Fig. 12. RoCoF error rate under different SNR levels.

The average error rate from the 6-cycle DFT is 3.41% better

than the enhanced zero-crossing algorithm. The main reason is

that the magnitude of the oscillation will affect the accuracy of

the zero-crossing point, thereby introducing calculation errors.

C. Influence of Noise Levels

Another source of uncertainty in the frequency and RoCoF

measurements is the noise level in the sampled voltage or current

waveform. In most PMU devices, there will be hardware or

software filters to reduce the noise level; however, minor noise

on the sampled waveform will still influence the frequency

and RoCoF estimations. The noise level has not been added

to the uncertainties in the sensitivity analysis because noise on

waveforms is a common uncertainty for all situations, which is

not unique for events from low-inertia power systems.

To study the influence of the noise level, white noise from a

60- to 80-dB signal-to-noise ratio (SNR) has been added to the

event model in (1). Note that the noise level used is a common

SNR range for power grids. It has a relatively low SNR value

when the power grid size becomes smaller. Again, the RoCoF

error is used as the performance target. Fig. 12 illustrates the

average RoCoFerate for three algorithms under different noise

levels, where the RoCoF is 1 Hz/s, the oscillation is 10 Hz,

the oscillation magnitude is 0.15 Hz, and the underfrequency

load-shedding threshold is 59 Hz, showing a clear conclusion

that all three algorithms are not sensitive to noise levels.

D. Influence of Sampling Rate

The sampling rate utilized in this article is 5760 Hz, which

is to be constant with the UGA hardware. However, the DFT-

based frequency estimation algorithm is actually sensitive to

the sampling rate. In order to illustrate the influence, Fig. 13

presents the frequency errors from two DFT-based algorithms

under a 60-Hz grid signal with 60-dB noise among different

sampling rates. It is very clear that a higher sampling rate can

lead to a lower frequency error for both 2- and 6-cycle DFT-based

algorithms. However, there exists an obvious tradeoff between

the calculation burden increase and the decrease in error here.

VI. CONCLUSION

To enhance the measurement accuracy of frequency and

RoCoF in low-inertia power systems, this article presented a
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Fig. 13. Frequency error under different sampling rates with 2- and
6-cycle DFT-based algorithms.

real-time, optimal frequency, and RoCoF measurement algo-

rithm and proposed the sensitivity analysis method for selecting

the parameters. A field event from an island grid was treated as

the starting point for a case study. An event numerical model was

first designed and introduced based on a real-world event. Then,

to study the dominant uncertainties in the event, a Sobol index

and a quasi-Monte-Carlo-simulation-based sensitivity analysis

with DFT-based algorithms were presented. From the results

of the sensitivity analysis, it can be concluded that the 6-cycle

DFT-based frequency estimation algorithm is more robust for

RoCoF estimations of underfrequency oscillations, whereas the

2-cycle DFT-based frequency estimation algorithm has a more

precise estimation for the instantaneous frequency estimations.

The end user can choose their unique algorithm depending on

the characteristics of the target events. Finally, an experiment

with UGAs was conducted to verify the effectiveness of the

proposed method in which the average error difference is only

4.08% between the theoretical analysis and the simulation re-

sults. By comparing the RoCoF estimation performance between

the 6-cycle DFT-based frequency estimation algorithm and an

enhanced zero-crossing algorithm, a 3.41% overall performance

improvement was observed.
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