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ABSTRACT

We study the problem of synthesizing a core fragment of relational

queries called select-project-join (SPJ) queries from input-output

examples. Search-based synthesis techniques are suited to synthe-

sizing projections and joins by navigating the network of relational

tables but require additional supervision for synthesizing compari-

son predicates. On the other hand, decision tree learning techniques

are suited to synthesizing comparison predicates when the input

database can be summarized as a single labelled relational table. In

this paper, we adapt and interleave methods from the domains of re-

lational query synthesis and decision tree learning, and present an

end-to-end framework for synthesizing relational queries with cat-

egorical and numerical comparison predicates. Our technique guar-

antees the completeness of the synthesis procedure and strongly

encourages minimality of the synthesized program. We present

Libra, an implementation of this technique and evaluate it on a

benchmark suite of 1,475 instances of queries over 159 databases

with multiple tables. Libra solves 1,361 of these instances in an

average of 59 seconds per instance. It outperforms state-of-the-art

program synthesis tools Scythe and PatSQL in terms of both the

running time and the quality of the synthesized programs.

PVLDB Reference Format:

Aaditya Naik, Aalok Thakkar, Adam Stein, Rajeev Alur, and Mayur Naik.

Relational Query Synthesis Z Decision Tree Learning. PVLDB, 17(2): 250 -

263, 2023.

doi:10.14778/3626292.3626306

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/aadityanaik/libra.

1 INTRODUCTION

The problem of learning relational logic programs from input-

output data has beenwidely studied in inductive logic programming

(ILP) and program synthesis [8, 13]. Such programs o�er a variety of

bene�ts by virtue of being explainable, interpretable, generalizable,
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veri�able, and composable. The automated synthesis of such pro-

grams �nds applications in a variety of settings including extracting

and summarizing information from complex relational databases

as well as data exploration and discovery without requiring in-

depth knowledge of the underlying schema [8, 33, 39, 43] (see [42]

for how interactions with human experts on Stack Over�ow to

search for the desired SQL query can be replaced by synthesis from

input-output examples).

These programs involve two core components: joins across mul-

tiple tables in a database, and comparison predicates that �lter

out rows. As such, learning logic queries involves addressing two

fundamental and inter-dependent challenges, which are synthesiz-

ing joins and synthesizing comparison predicates. Recent works

in learning logic programs focus on addressing either of the two

challenges in an automated manner, but not both. To address both

challenges simultaneously, they rely on additional user supervision.

Consider the example of university records of students taking

courses, subjects students are majoring in, and departments in a uni-

versity, as shown in Figure 1. Suppose the user intends to discover

a concept that explains students ‘Alice’ and ‘Bob’, but excludes

‘Charlie’ and ‘David’. The simplest explanation is that ‘Alice’ and

‘Bob’ take an undergraduate course (a course with ID less than

500) in the Engineering school. This explanation can be expressed

as the SQL query shown in Figure 1c. The output examples, both

positive and negative, are represented by entries from a single col-

umn (or a subset of columns) as in Figure 1b. We illustrate the two

aforementioned challenges using this example.

Challenge 1: Learning the Join Policy. Learning the join policy

corresponds to learning the projections and joins that correspond

to the SELECT and FROM clauses in Figure 1c. Search-based query

synthesis techniques have made signi�cant strides in learning rela-

tional queries over multiple tables [27, 28, 39, 40, 43] by e�ectively

enumerating the possible ways in which tables may be joined,

thereby specializing in navigating the network of tables in a re-

lational database. ILP techniques use language bias mechanisms

such as mode declarations and meta-rules while program synthesis

methods enumerate candidate programs using syntactic constraints

or an explicit list of candidate rules to de�ne a hypothesis space and

explore the di�erent key-foreign key pairs to join tables. Example-

guided techniques rely on the underlying patterns in the data to

discover them. All of these techniques struggle to address the chal-

lenge of synthesizing comparison predicates like courseID < 500

or school = Engineering required by the target query.

https://doi.org/10.14778/3626292.3626306
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registration

studentID deptCode courseID

Alice Comp. 201

Alice Chem. 310

Alice Mech. 550

Bob Mech. 320

Bob Mech. 550

Charlie Chem. 310

David Comp. 500

David Mech. 502

Erin Chem. 310

department

deptCode school

Chem. Arts and Science

Comp. Engineering

Math. Arts and Science

Mech. Engineering

major

studentID deptCode

Alice Chem.

Bob Comp.

Charlie Math.

David Chem.

Erin Mech.

(a) Instances of tables registration, department, and major provided as the input relations � .

Positive Labels (ċ+)

Alice

Bob

Negative Labels (ċ−)

Charlie

David

(b) Labeled output examples$+ and$− .

SELECT registration.studentID

FROM registration JOIN department ON

registration.deptCode = department.deptCode

WHERE registration.courseID < 500 AND

department.school = “āĤĝğĤěěĨğĤĝ”

(c) The target SQL query&EX.

Figure 1: Example of a task to synthesize a relational query that takes instances of tables registration, department, and major

(as in 1a) as input relations ą , and outputs a set of student constants that contains all elements of ċ+ and does not contain any

elements in ċ− (as in 1b). The query in 1c is a solution to this task.

Challenge 2: Learning Comparison Predicates. Most query synthe-

sis techniques require additional supervision from the user in the

form of an exhaustive list of constants that may be used in compar-

isons. On the other hand, decision tree learning techniques [30, 44]

solve this problem in a limited setting in which the data is provided

as a single table, where each row represents an instance of the input,

and each column represents a feature of the instance [25, 29]. In

such a setting, the labeling is given by a partition of the instances

into positive and negative examples. These techniques then con-

struct classi�ers using greedy information gain heuristics to search

for and combine locally optimal comparison predicates.

However, using these techniques requires additional user su-

pervision to produce the single table they take as input. This is

typically done by performing key-foreign key joins to construct

such a single table and then applying a feature selection method

[17]. For example, the user would have to provide the table from

Figure 2a to the learning algorithm, along with the correct labels for

each row, to obtain the decision tree in Figure 2b that corresponds

to the WHERE clause in the target query. To obtain this table, the user

must manually join the registration and department tables over

the deptCode column. This process is tedious and prodigal as it re-

quires a careful analysis of the relational database, and errors in the

process can introduce data redundancy and impact the e�ciency of

the learning algorithm. Manually doing so also becomes intractable

for databases with several tables, necessitating the automation of

this process. Additionally, the user must provide accurate labels to

obtain the correct decision tree, though there is no clear way to do

so given only the output examples.

Our Approach. We thus observe a dichotomy of existing tech-

niques — they either support multi-table databases (as with search-

based relational query synthesis) or excel at learning comparison

predicates (as in the case of decision trees), but not both. In this

paper, we leverage the strengths of the two paradigms to design an

end-to-end algorithm for the synthesis of relational queries that

feature both comparison predicates and joins across multiple tables.

Speci�cally, we focus on the class of select-project-join (SPJ) queries

like the one in Figure 1c which constitute an important fragment

of relational algebra [20]. These queries feature equi-joins, that is

joins across tables parameterized by a set of columns (with match-

ing types), as well as categorical and numerical comparisons for

selections.

Our key insight is to interpret the query synthesis problem as

a search across a two-dimensional space de�ned by comparison

predicates on one side and candidate joins on the other. To ef-

�ciently search through this space, we introduce an interleaved

approach that allows us to leverage the strengths of both decision

tree learning and search-based synthesis.

This interleaved approach seeks to address the challenge of �nd-

ing the optimal join policy by enumerating di�erent projection

and join policies as partial queries, each producing a single in-

termediate table over which a decision tree could be learned to

generate the comparison predicates for the target query. We use the

example-guided search strategy [40] to enumerate these queries as

it prioritize joins with fewer tables, thus synthesizing queries that

contain only su�cient and necessary features from the database.

Once we generate a candidate single intermediate table, the next

step is to synthesize comparison predicates. Classical decision tree



studentID deptCode courseID school label

Alice Comp. 201 Engineering ✓

Alice Chem. 310 Arts and Science ×
Alice Mech. 550 Engineering ×
Bob Mech. 320 Engineering ✓

Bob Mech. 550 Engineering ×
Charlie Chem. 310 Arts and Science ×
David Comp. 500 Engineering ×
David Mech. 502 Engineering ×
Erin Chem. 310 Arts and Science ?

(a) The result of joining registration and department over the deptCode

columns of each table.

courseID < 500?

×school = Engineering?

✓ ×

~4B =>

~4B =>

(b) A decision tree for classifying rows of the table in Figure 2a.

It can be �attened to a Boolean formula (courseID < 500) '
(school = Engineering) .

Figure 2: Each candidate join can be translated to a single table. The table in 2a represents the join of registration and

department tables. The label column denotes the ideal labels which result in learning the decision tree in Figure 2b. The user

can annotate the rows of this table as positive (✓) or negative (×) to support decision tree learning. On running a decision tree

algorithm on it, we get the tree in Figure 2b.

learning techniques require the rows of the intermediate table to

be labeled, while in our setting, only certain constants (or tuples of

constants) are labeled. There is no straightforward way to handle

this discrepancy without additional user supervision. We funda-

mentally modify the classical decision tree learning algorithm ID3

[30] by changing the de�nition of entropy and information gain

used by it and present it in Section 3.2.

Together, the search for candidate joins and the modi�ed deci-

sion tree learning procedure can work in tandem to synthesize the

relational queries with categorical and numerical comparisons. In

practice, our algorithm synthesizes queries that are general (that is,

it does not over�t the data) and of minimal size. We also prove the

completeness of the algorithm—it synthesizes a query consistent

with the training data i� there exists such a query. We implement

this interleaved approach as Libra, and evaluate it on a benchmark

suite of 1,475 instances of SPJ queries from the Spider [46] and

Geography [12, 21, 47] datasets over 160 di�erent databases, each

with multiple tables. Libra solves 1,361 of these instances with a

timeout of 10 minutes per task, and takes 58.9 seconds on average

per instance. We also compare with state-of-the-art tools Scythe

and PatSQL that can synthesize select-project-join queries. They

can solve 195 and 673 instances, and take 139.50 and 23.13 seconds

on average per task respectively. All the benchmarks solved by the

baselines are also solved by at least one instance of our framework,

and our framework additionally solves a signi�cantly larger set of

the total benchmarks which the baselines fail to solve.

In summary, our work makes the following contributions:

(1) We propose a novel approach to split the relational query syn-

thesis problem into two separate sub-problems: synthesizing

joins and learning comparison predicates.

(2) We implement Libra, an end-to-end synthesis tool that realizes

this algorithm, and demonstrate that it outperforms state-of-

the-art approaches on a variety of tasks in terms of synthesis

time as well as the quality of the synthesized programs.

(3) Further, we show that the algorithm is complete and in practice

generates general and minimal queries.

2 PROBLEM FORMULATION

In this section, we brie�y review the syntax and semantics of rela-

tional queries and formulate the synthesis problem.

2.1 Syntax and Semantics

In this paper, we study select-project-join queries where selection

supports categorical and numerical comparisons, and all joins are

equi-joins. We will use SQL syntax to denote all queries.

To de�ne the syntax of these queries, we �rst �x a set of input

tables and a set of output tables. For simplicity, the columns of

each table are of either of the kinds: categorical, numerical, and

uncomparable.

The syntax of the select-project-join queries is de�ned by the

grammar in Figure 3. The JOIN operator featured in this query is

an equi-join, that is a join parameterized by a set of columns Ă .

Comparisons of the form (Đ .ę = ġ) or (Đ .ę ≠ ġ) are supported only
for columns of the categorical kind, all other comparisons are

only supported for the numerical kind, and no comparisons are

supported for the uncomparable kind.

For this paper, the size of a query č is de�ned as the sum

of the number of input tables that are joined in it (that is the

expansion of non-terminal Ć ) and the size of the comparisons

for the selection operator (Ă) in disjunctive normal form. For in-

stance, the size of the query čEX is 4 as it has a join of two ta-

bles (registration and department) and two comparison opera-

tors (registration.courseID g 500) and (department.school =

“āĤĝğĤěěĨğĤĝ”).
The semantics for these queries are as de�ned in classical works

on relational algebra [1, 10, 20]. We denote the set of tuples pro-

duced by query č on input tables ą as çčè(ą ). In this paper we

consider the set-semantics and not bag-semantics, that is, a relation

is a set of literals with the same predicate (such as registration,

instructor, and department).

2.2 Query Synthesis Problem

Our ultimate goal is to synthesize a select-project-join query (in the

syntax of Figure 3) that is consistent with the given input-output



& :- SELECT ()1 .21, . . .)Ĥ .2Ĥ ) FROM � WHERE f

� :- ) | � JOIN ) ON \

f :- ) .2 ∽ : | f1 AND f2 | f1 OR f2

\ :- )1 .21 = )2 .22 | \1 AND \2

∽ :- = | ≠ | < | f | > | g

Figure 3: Grammar for select-project-join queries. T ranges

over tables, c ranges over column names, and k ranges over

constant values. The grammar does not feature operators for

negation, aggregation, or ordering.

examples. In this context, an example consists of input and output

tuples; the user has labeled the output tuples as either positive

or negative. The objective then is to synthesize a program that is

consistent with the examples, that is, a program that derives all of

the positive tuples and none of the negative tuples.

Problem 2.1 (Query Synthesis). Given input tables ą and a set of

output tuples partitioned as ċ+ and ċ− , return a query č such that

ċ+ ¦ çčè(ą ) and ċ− ∩ çčè(ą ) = ∅, if such a query exists, and

unsat otherwise.

We further re�ne the problem speci�cation by identifying the

columns of the input tables ą as either numerical, categorical, or

uncomparable. numerical columns support ordered comparisons

while categorical supports only equality checks. Consider the

running example from the Introduction as in Figure 1. Given the

input tables ą as registration, department, and major, we aim

to synthesize a query č such that it generates both the positively

labelled tuples in ċ+ (Alice and Bob) and neither of the negatively

labelled tuples in ċ− (Charlie and David). The query čEX in Fig-

ure 1c is an example of such a query. Here, courseID is numerical

while school is categorical.

3 ALGORITHM

In this section we describe the end-to-end Libra algorithm, which

takes input-output examples ā = (ą ,ċ+,ċ−) as input and returns a
relational query č consistent with ā, that is, it solves Problem 2.1.

Algorithm 1 summarises the procedure and Figure 4 presents its

architecture.

We start with an example-guided search to construct a partial

query with projection and joins (and without the comparisons for

the selection operator). This partial query is constructed by ana-

lyzing patterns of co-occurrence of constants in the input-output

examples Section 3.1 formalizes these patterns as enumeration con-

texts that can be translate into partial queries with projection and

join operators. These correspond to the step 2 of the algorithm.

To synthesize categorical and numerical comparisons for the

selection operator we turn to supervised learning. We maintain the

enumeration contexts in a priority queue Ĉ ordered by increasing

size, where the size of each context is given by the number of tuples

forming that context. For each context ÿ in Ĉ, we convert ÿ into

a single table Đ2 through a join of the input relation tables that

occur in ÿ . This is followed by the modi�ed decision tree learning

procedure (DTL) which completes the query. This corresponds to

step 4a-4c.

Algorithm 1 Libra(ą ,ċ+,ċ−), where ą is the set of input tuples,
and ċ+ and ċ− are the sets of positively and negatively labeled

output tuples respectively.

(1) Set ėĤĩ = unsat and Ċ = ∞.

(2) For an arbitrary Ī ∈ ċ+, let CC be the initial contexts that
explain Ī as de�ned in Equation 1.

(3) Initialize the priority queue as Ĉ = CC .
(4) While Ĉ is non-empty:

(a) Pick the smallest size element ÿ ∈ Ĉ, and remove it

from the queue: Ĉ := Ĉ\{ÿ}.
(b) If |ÿ | > Ċ , exit the loop and go to Step 5.

(c) For each table Đ� constructed using Equation 4:

(i) Let ¦ be a node of an empty decision tree. Run

DTL(Đ� ,¦,ċ
+,ċ−).

(ii) If DTL(Đ� ,¦,ċ
+,ċ−) returns a tree � such that

|�| + |ÿ | f Ċ and entropy of |�| is 0,
(A) Set ėĤĩ = č (Đ� ,�) as de�ned in Equation 6.
(B) Set Ċ = |ÿ | + |�|.

(d) For each tuple Ī ′ that shares a constant with a tuple in

ÿ , update:

Ĉ = Ĉ ∪ {ÿ ∪ {Ī ′}}.

(5) Return ėĤĩ .

In step 4d, we expand the context by one tuple. This corresponds

to considering a join with an additional table. Therefore, the steps

4a-4c explore comparison predicates and step 4d explores joins. We

thus search through the two-dimensional search space.

Throughout the algorithm, wemaintain the size of the queryč as

variable Ċ and guarantee that the queryč has minimal size among

all queries consistent with the input-output example (subject to

the optimality of the decision tree). Additionally, if no such query

exists, the algorithm terminates and returns unsat. We prove this

completeness result in Theorem 3.1.

Problem 2.1 is known to be co-NP complete in the case of queries

without selection with categorical or numerical operators [40], and

therefore we propose Algorithm 1 that runs in EXPTIME. Observe

that the DTL sub-process is analogous to the ID3 algorithm and

hence its running time is ċ (Ĥģ logģ), where Ĥ is the cardinality

of input tuples ą andģ is the total size of output tuples ċ+ and ċ−

[31]. Therefore, Algorithm 2 runs in time polynomial in the size of

the input. In step 4, for each contextÿ in queue Ĉ, we construct the

possible tablesĐ� which are polynomial in the size of the input and

for each of them the process DTL is called exactly once. Observe

that a context can be dequeued from Ĉ at most once and hence, the

number of calls to Algorithm 2 are at most polynomial in the total

number of possible contexts. As any subset of the input tuples ą can

be considered as a context, the end-to-end algorithm has EXPTIME

complexity.

3.1 Example-Guided Enumeration of Projection
and Joins

An enumeration context is a non-empty subset of the input tuples,

ÿ ¦ ą . The shaded part of Figure 5 corresponds to the context

ÿ = {(Alice, Comp., 201), (Comp.,Engineering)}. An enumeration



Examples

Input-output
examples

Enumerator

Decision Tree
Learning

⋯

Minimal?

Solution

No
Candidate Join

Yes

Figure 4: Architecture of the Libra algorithm. The algorithm interleaves decision tree learning of comparison predicates with

example-guided enumeration of candidate joins. Throughout, we maintain the size of the program and check against this size

to ensure that the synthesized query is minimal among all consistent queries (subject to optimality of decision tree learning).

(Alice, Mech., 550)

(Alice, Comp., 201)

(David, Comp., 500)

(Mech., Engineering)

(Comp., Engineering)

(Alice, Chem.)

(Charlie,Math.)

Figure 5: A collection of rows of the input table ą . Two rows are shown connected with an edge if they share a constant. The

shaded part represents a context ÿ ¦ ą which corresponds to the join in Equation 2.

context ÿ ¦ ą is said to explain a tuple Ī ∈ ċ+ when for each

column ę of Ī , there is a tuple Ī2 ∈ ÿ such that for some column ę′

in Ī2 , we have Ī .ę = Ī2 .ę
′.

Given a tuple Ī ∈ ċ+, we construct the initial set of enumeration

contexts for step 2 of Algorithm 1 by considering enumeration

contexts:

CC = {{Ī2 : for each column ę of Ī,

there exists a column ę′ of Ī2 such that Ī .ę = Ī2 .ę
′}}

(1)

In step 4d we extend a context ÿ by adding a tuple Ī ′ such that

for some Ī ∈ ÿ , there is an edge Ī → Ī ′ ∈ ā with appropriate labels.

One can translate a context ÿ = {Ī1, . . . , Ī=} and an output tuple Ī

into a partial query with projection and joins.

Consider the output ‘Alice’ that is explained by the context

ÿ = {(Alice, Comp., 201), (Comp., Engineering)}

. This can be translated to the query:

SELECT registration.studentID

FROM registration JOIN department

ON registration.deptCode = department.deptCode

(2)

This is because the constant ‘Alice’ occurs in the column studentID

of registration, and the tuples from the tables registration and

department share a constant for the columns department.deptCode

and registration.deptCode. In general, given an output tuple Ī

and a context ÿ ¦ ą , we �rst consider the sequence of columns

(Đc1 .ęc1 , . . .Đcġ .ęcġ ) from where we get the constants in Ī . These

will correspond to the columns for the projection operator. For each

tuple Ī8 in ÿ , we consider the table Đ8 . These will correspond to

the tables to be joined. In order to construct the parameters for

the join, for each Ī8 ∈ ÿ , let ā8 be the set of predicates of the form

(Ī8 .ę = Ī ′ .ę′) where Ī ′ ∈ {Ī1, . . . , Ī8−1}. Then, we can construct the

queries of the form:

SELECT (Đc1 .ęc1 , . . .Đcġ .ęcġ )

FROM (. . . (Đ1 JOIN Đ2 ON Ă2) . . . JOIN Đ= ON Ă=)
(3)

Where each Ă8 is a conjunction of comparison predicates that

label edges in ā8 . We consider all possible non-empty subsets of the

labels in ā8 , and therefore, for each pair (Ī,ÿ) of output tuple and
context, there may be multiple candidate joins.

3.2 Supervised Learning of Comparisons for
Selection

We now turn to decision trees to add a selection operator to the

query in Equation 3. Our approach is motivated by the Iterative

Dichotomiser 3 (ID3) algorithm for learning decision trees [30]. We

�rst need to convert the tablesĐ1, . . . ,Đ= in contextÿ into one single

table Đ� . This is achieved by implementing the join in Equation 3,

that is we consider the output of the SQL query:

SELECT ∗ FROM (. . . (Đ1 JOIN Đ2 ON Ă2) . . . JOIN Đ= ON Ă=) (4)

This join produces a single table. As before, each context corre-

sponds to multiple joins and hence there are multiple candidates

for Đ� . We consider all of them in our search.

We start by introducing some notation. Let Ā be the schema of

the output tuples, that is the types of the columns from which we

draw output tuples. Let ÿW (Đ� ) represent the projection of Đ� to



the columns in Ā . Then, the entropy of a node Ċ is de�ned as:

Ħ = Č (ċ+ |ÿW (Đ� ),ċ
+ ∪ċ−) =

|ÿW (Đ� ) ∩ċ+ |

|ÿW (Đ� ) ∩ (ċ+ ∪ċ−) |

Ĥ = Č (ċ− |ÿW (Đ� ),ċ
+ ∪ċ−) =

|ÿW (Đ� ) ∩ċ− |

|ÿW (Đ� ) ∩ (ċ+ ∪ċ−) |

ď (Ċ ) = −
(

Ħ log2 Ħ + Ĥ log2 Ĥ
)

Here, we restrict our analysis to output tuples that occur in ċ+ or

ċ− only. Consider the joined table in Figure 2a. We can compute

the entropy of the node with label (school = Engineering):

Ħ = Č ({ýĢğęě, þĥĘ}|{ýĢğęě, þĥĘ,ÿℎėĨĢğě, ĀėĬğĚ}) =
1

2

Ĥ = Č ({ÿℎėĨĢğě, ĀėĬğĚ}|{ýĢğęě, þĥĘ,ÿℎėĨĢğě, ĀėĬğĚ}) =
1

2

ď (Ċ ) = −

(

1

2
log2

1

2
+
1

2
log2

1

2

)

= 1

Here, we do not consider ‘Erin.’ This is our �rst concrete modi�-

cation to the decision tree learning algorithm.

A comparison predicate ė splits the table Đ� into two: Ă0 (Đ� )
which comprises of rows that satisfy ė and Ă¬0 (Đ� ) which com-

prises of rows that do not satisfy ė. Let Ă0 (Đ� ) correspond to a

node Ĉ and Ă¬0 (Đ� ) correspond to a node Ď. Then we can compute

their entropies ď (Ĉ) and ď (Ď) just as above. Consider the predicate
(school = Engineering) which splits the joined table in Figure 2a

into two tables as shown in Figure 6. Let Ă (school=Engineering) (Đ� )
form node Ĉ and Ă¬(school=Engineering) (Đ� ) form node Ď. The en-

tropies ď (Ĉ) and ď (Ď) are 0.918 and 1 respectively.

We can now compute the information gain. Information gain is

de�ned as the di�erence between the entropy of the node and the

weighted sum of the entropy of its children. That is, the information

gain at node Ċ is of the form:

ąă (Ċ ) = ď (Ċ ) − (Ăď (Ĉ) + ÿď (Ď))

where Ă + ÿ = 1. In a classical setting, the coe�cients Ă and ÿ are

the ratio of the number of rows corresponding to the child nodes

Ĉ and Ď. In our study, we focus on projection, and only the tuples

in ċ+ and ċ− . For ease of notation, let |ÿW (Ă0 (Đ� )) ∩
(

ċ+ ∪ċ− ) |,
the number of rows in Ă0 (Đ ), projected to columns Ā , that occur in

either ċ+ or ċ− be ą0 (and analogously for Ă¬0 (Đ� ) be ą¬0). Then
information gain at Node Ċ with comparison predicate ė is de�ned

as:

ąă (Ċ, ė) = ď (Ċ ) −

(

ą0

ą0 + ą¬0
ď (Ĉ) +

ą¬0

ą0 + ą¬0
ď (Ď)

)

(5)

In our running example, ą0 is 3 and ą¬0 is 2. This gives us an

information gain of 0.0328. The change in the weighted sum is our

second concrete modi�cation to decision tree learning.

The decision tree learning algorithm as described in Algorithm 2

starts with the table Đ and node Ċ as an input. We introduce node

Ċ so we can call this procedure recursively. If ċ+ or ċ− is empty,

we return the trivial tree with Ċ as the only node. Otherwise, we

construct a set of comparison predicates of the form (Đ .ę ∽ ġ),
where Đ .ę is a column of the table Đ , ġ is a constant that occurs

in the column Đ .ę , and ∽ is a comparison operator (in our case

either =, <, or f. Then, similar to the classical algorithm, we pick

a comparison predicate ė that maximizes the information gain

Algorithm 2 DTL(Đ, Ċ,ċ+,ċ−), where Đ is a table, Ċ is a node,

and ċ+ and ċ− are the sets of positively and negatively labeled

tuples respectively.

(1) If ċ+ is empty, label Ċ with ×, return the leaf node Ċ , and

terminate.

(2) Ifċ− is empty, label Ċ with ✓, return the leaf node Ċ , and

terminate.

(3) Otherwise, let ý = {}.
(4) For each column ę in Đ ,

(a) if ę is of the categorical type, then for each constant

ġ in column ę , update:

ý = ý ∪ {(Đ .ę = ġ)}

(b) if ę is of the numerical type, then for each constant ġ

in column ę , update:

ý = ý ∪ {(Đ .ę < ġ), (Đ .ę f ġ)}

(5) For each ė ∈ ý, compute ąă (Ċ, ė) using the formula in

Equation 5.

(6) Find a predicate ė for which ąă (Ċ, ė) is maximum. If the

maximum for ąă (Ċ, ė) is 0, label Ċ as ?, return the leaf

node Ċ , and terminate the process.

(7) Otherwise, label Ċ with predicate ė and create new nodes

Ĉ and Ď as left child and right child of Ċ respectively.

(8) Recursively compute:

�! = DTL(Ă0 (Đ ), Ĉ,ċ
+ ∩ ÿW (Ă0 (Đ )),ċ

− ∩ ÿW (Ă0 (Đ ))) and

�' = DTL(Ă¬0 (Đ ), Ď,ċ
+ ∩ ÿW (Ă¬0 (Đ )),ċ

− ∩ ÿW (Ă¬0 (Đ ))),

whereĀ is the sequence of projected columns for the output.

(9) Return the tree with root node Ċ , left sub-tree �! and right

sub-tree �' .

ąă (Ċ, ė). If no comparison predicate can maximize the information

gain beyond 0, we return the trivial tree with Ċ as the only node,

labeled with ‘?’ and terminate the process. This is the case where

there is no classi�er for the given input data.

Otherwise, we split the table Đ on predicate ė as tables Ă0 (Đ )
and Ă¬0 (Đ ), introduce child nodes Ĉ and Ď corresponding to them,

and call the DTL process recursively on the children of Ċ . When

we call DTL on the Ĉ and Ď nodes, we ensure that the ċ+ and ċ−

are updated to the output tuples that occur in Ă0 (Đ ) and Ă¬0 (Đ ).
On executing the DTL procedure on our running algorithm, we

get a tree as in Figure 7. Observe that it has a redundant right

subtree, and one of the leaves is labeled ‘?’. Instead, the desired tree

is the one in Figure 2b.

The problem of �nding a minimal decision tree, or even approxi-

mating it, is NP-complete [36]. Therefore we opt for a greedy search

that is computationally e�cient. Instead of considering all possi-

ble Boolean combinations of comparison predicates, Algorithm 2

makes locally optimal decisions, enabling it to handle large data-sets

e�ciently and produces satisfactory results in practice. While it is

possible that locally optimal choices may not lead to the smallest

decision tree, it most often leads to a good enough solution that

is succinct and general, as observed in Section 4 The soundness

check of Algorithm 1 also ensures that while DTL may generate a

larger tree, the synthesized query will always be consistent with



Đ� with (school = Engineering)

studentID deptCode courseID school

Alice Comp. 201 Engineering

Bob Mech. 320 Engineering

Alice Mech. 550 Engineering

Bob Mech. 550 Engineering

David Comp. 500 Engineering

David Mech. 502 Engineering

(a) Table with rows of )ÿ that satisfy the predicate (school =

Engineering) .

Đ� with ¬(school = Engineering)

studentID deptCode courseID school

Alice Chem. 310 Arts and Science

Charlie Chem. 310 Arts and Science

Erin Chem. 310 Arts and Science

(b) Table with rows of)ÿ that do not satisfy the predicate (school =

Engineering) .

Figure 6: In order to compute the information gain of a comparison predicate at a given node, we split the rows at the node into

two parts, those that satisfy the predicate and the others that don’t. Here, we have split the joined table Đ� (from Figure 2a) on

the predicate (school = Engineering).

courseID < 500?

school = Engineering? courseID f 502?

✓ ? × ✓

~4B =>

~4B => ~4B =>

Figure 7: The decision tree generated by the DTL onĐ� (from

Figure 2a) withċ+
= {Alice,Bob} andċ−

= {Charlie,David}.

the given input-output examples. Greedy heuristics based on infor-

mation gain commonly used in decision tree learning and search

algorithms for this reason [30, 37, 38].

By using the greedy heuristic, DTL generates a perfect separator

betweenċ+ andċ− , however, we only need a partial separator. That

is, we seek a relational query č that captures some derivation for

each tuple in ċ+, and no derivation for any tuple in ċ− . We do not

have a stronger requirement that č should capture all derivations

for tuples in ċ+. On the other hand, the decision tree attempts to

branch till every node is at entropy 0, that is every node either leads

to tuples in ċ+ or ċ− exclusively, instead of stopping when there

is at least one leaf node corresponding to every tuple in ċ+. As our

setting allows for a weaker notion of separation, we can further

trim the decision trees.

More concretely, the right branch of the root node in the tree in

Figure 2b corresponds to rows with studentID values in {Alice, Bob

David}, as all three of them are taking courses with courseID g 500.

DTL naturally assumes that one needs to branch further to separate

Alice and Bob from David. However, it is not necessary as the node

labeled ✓can explain Alice and Bob. Similarly, at the leaf labeled

‘?,’ the projected column has values {Alice,Charlie}, and we do not

have any comparison predicate that separates them.

We implement an lazy version of DTL to achieve the trimmed

decision trees. This is our third modi�cation to classical decision

tree learning. In the DTL process, we introduce a set of unexplained

output tuples ċ?, initialized to ċ+ and a �rst-in-�rst-out (FIFO)

queue that maintains a list of nodes, initialized to {Ċ }. Through-
out the algorithm, we update ċ? by removing the output tuples

that are already explained by a particular leaf of the decision tree.

While there exist any unexplained tuples, we dequeue a node from

the queue and branch it out as described in Algorithm 2. Instead

of calling the process recursively, we enqueue the children and

then eventually get to them only when there are unexplained tu-

ples. This lazy evaluation allows us to generate smaller trees with

fewer redundancies. With this modi�cation, we get the desired tree

depicted in Figure 2b.

In summary, we make three modi�cations to adapt the classical

decision tree learning algorithm to our setting: we �rst modify

the entropy formula in order to support partial labeling, we then

change the weights in the information gain formula to overcome

the ambiguity that results from projections and partial labeling,

and �nally, we implement a lazy version of DTL to generate small

decision trees that act as partial separators between ċ+ and ċ− to

avoid producing redundancies. Note that these modi�cations do not

compromise any guarantees about termination of the procedure or

size of the learned decision tree [29].

3.3 Interleaving Decision Tree Learning with
Example-Guided Search for Joins

A decision tree � can then be converted to a boolean formula Ă�
in disjunctive normal form. For each leaf of the tree that is marked

✓, we consider a clause that is composed of the conjunction of

the predicate at its parent node (if the node is a left child, and the

negation of the predicate otherwise). And then, we construct the

disjunction of each of these clauses. For example, we can translate

the tree in Figure 2b to the formula (courseID < 500) ' (school =

Engineering). The negations, if any, can be removed by considering

the negated comparison operators (≠, >, and g).
Therefore we can convert a joined table Đ� and decision tree �

into a queryč (Đ� ,�) by using the boolean formula Ă� to complete

the query in Equation 3. This gives us the query:

SELECT (Đ .ę1, . . . ,Đ .ę: )

FROM (. . . (Đ1 JOIN Đ2 ON Ă1) . . . JOIN Đ= ON Ă=−1)

WHERE Ă�

(6)

Figure 4 summarizes Libra. The end-to-end algorithm guaran-

tees completeness:



Theorem 3.1 (Completeness). If there exists a relational query

consistent with the input-output example ā = (ą ,ċ+,ċ−), then Libra
produces a query č consistent with ā.

The proof of this theorem relies on the completeness of the

example-guided enumeration and the completeness of decision

tree learning. We assume the reader is familiar with the analogous

guarantees for example-guided synthesis of conjunctive queries

[40], and those for classical decision trees. Observe that if a context

ÿ explains a tuple Ī , then all contexts ÿ′ § ÿ , also explain Ī . We

can consider the largest context ÿ = ą , that is, the set of all input

tuples, to prove the following lemma:

Lemma 3.2. If there exists a relational query consistent with the

input-output example ā = (ą ,ċ+,ċ−), then there exist a decision tree
� with predicates of the form (Đ .ę ∽ ġ) where Đ is an input table, ę

is a column of Đ , and ġ is a constant in the column ę , such that the

query č (Đ� ,�) is consistent with ā.

It follows from the completeness of example-guided enumeration

that a decision tree must exist, however, it remains to show that the

predicates for the decision tree must be of the said form. Without

loss of generality, suppose the comparison predicate is of the form

(Đ .ę > ġ1), where ġ1 does not occur in ę . The arguments for other

comparison operators is analogous. Observe that must exist the

greatest lower bound ġ2 of ġ1 in ę (that is, ġ2 = max{ġ ∈ ę : ġ <

ġ1}). Replacing the predicate by (Đ .ę > ġ2) does not change the
semantics of the query with respect to input ą , as there are no

constants in between ġ1 and ġ2. By systematically replacing the

predicates in a query consistent with ā, we can prove that there

must exist a query where the selection operator corresponds to a

decision tree of the said form. As we exhaustively enumerate all

possible predicates, we can guarantee:

Lemma 3.3. Given a tableĐ , a nodeĊ and output tuples partitioned

as ċ+ and ċ− , if there exists a decision tree that separates ċ+ from

ċ− , then DTL(Đ, Ċ,ċ+,ċ−) will return such a tree.

Together, Lemma 3.2 and Lemma 3.3 can prove Theorem 3.1.

Additionally, observe that at each step of the algorithm, we

maintain the constant Ċ that tracks the size of the query. As the

contexts are maintained in increasing order of size, the number of

joins in the enumerated queries is always increasing.

4 EVALUATION

We have implemented the Libra algorithm in Scala. In this section,

we evaluate it on a large-scale benchmark suite. First, we measure

the performance of our algorithm compared to state-of-the-art

synthesis tools. We do so by comparing the number of instances

solved by each tool and the time taken by each tool to do so. Next,

we evaluate the generality of the solutions generated by each tool.

To do so at scale, we leverage Occam’s razor to use the succinctness

of a query as a proxy of how speci�c a query is to the training

data. We then test the sensitivity of Libra to partial labels. We do

so by dropping a fraction of labels and evaluating the number of

instances solved by Libra. As such, we propose to answer three

main research questions:

Q1. Performance: How e�ective is Libra on synthesis tasks from

di�erent domains in terms of synthesis time?

Table 1: Statistics of the Spider andGeography benchmarks.

There are 159 databases in Spider and 1 in Geography, over

which the minimum, maximum, and median number of ta-

bles, rows, and columns are reported.

Dataset # Tables # Rows # Columns

Spider

Min 2 8 6

Max 26 553693 352

Median 4 40 19

Geography Count 8 937 30

Q2. Succinctness: How large are the programs synthesized by

Libra compared to the reference solution?

Q3. Sensitivity to Partial Labels: How is the performance of

Libra a�ected by partial labels?

We discuss our benchmark suite in Section 4.1 and the baselines

against which we compare Libra in Section 4.2 along with the

setup for each. We present our �ndings in Sections 4.3, 4.4, and 4.5.

We performed all experiments on a Linux server with an 18-core,

36-thread, 3 GHz Xeon Gold 6154 CPU and 394 GB of RAM.

4.1 Benchmarks

In order to e�ectively evaluate Libra, we put together a benchmark

suite of SPJ instances with the following requirements based on

our problem statement: �rst, the queries must be over a variety of

di�erent databases; second, some of them must query more than

one table; and last, some of them must contain at least a compar-

ison with a constant. Upon exploring various query datasets, we

�nd the Spider [46] and Geography [12, 21, 47] datasets to con-

tain queries that satisfy our requirements. We, therefore, evaluate

Libra on the set of all SPJ instances from the Spider [46] and Ge-

ography [12, 21, 47] datasets. Spider is an open-access large-scale

manually annotated dataset. There are 1,203 SPJ instances in the

Spider dataset over 159 databases. On the other hand, Geography

is a dataset of SQL queries about US geography. We use version

4 of the modi�ed SQL dataset for Geography from [12, 21, 47].

Additional statistics for each benchmark are provided in Table 1.

Upon deduplication of the queries, we extract 272 SPJ instances, all

over the same database, giving us a total of 1,475 instances over

both datasets. For each benchmark, we consider the tables from its

corresponding database as the input tables and the result of running

the ground truth query over that database as the output table.

Each benchmark has 2 to 26 input tables (with a median of 8),

each with 1 to 352 columns (with a median of 30), containing 8

to around 553k tuples in the input tables (with a median of 937).

Additionally, each benchmark is labeled with a ground truth query

that serves as a reference solution. This reference solution is used

to obtain the output examples for the corresponding benchmark.

Overall, the reference solutions feature a join of at most 6 tables

and the use of at most 3 predicates.

4.2 Baselines and Setup

We compare Libra against baselines that are at least as expressive

as Libra itself. We therefore compare Libra against the following

baselines in Sections 4.3 and 4.4: Scythe [43], which synthesizes

SQL queries using enumerative search, and PatSQL [39], which uses



relational algebra properties to perform a more scalable enumera-

tive search. Both these baselines are more expressive than Libra,

supporting aggregations, group-by operators, nested queries, etc.

However, in order to support these operators, they also require

more human supervision. On the other hand, while Libra uses

insights from EGS such as the example-guided enumeration tech-

nique, a large majority of the benchmarks require the generation

of queries that include comparisons, which EGS does not support.

We therefore do not compare with EGS in our evaluations.

For each benchmark, we provide each tool with the correspond-

ing input and output tables as described in Section 4.1. We initialize

ċ+ as the set of all expected output tuples. Scythe and PatSQL

require exhaustive labeling, i.e. any tuple not labeled as ċ+ is con-

sidered to be ċ− , so we initialize ċ− to be all tuples of appropriate

arity that do not occur in ċ+ for each tool. The benchmarks are la-

beled with a reference solution which identi�es each column of the

input tables as either categorical, numerical, or uncomparable.

For the baselines Scythe and PatSQL, the user is required to

specify constants that may occur in the comparison predicates. We

recover the list of constants that occur in the reference solution

and provide it to the two baselines as additional supervision which

is not provided to Libra.

4.3 Q1: Performance

We run Libra, Scythe, and PatSQL on all 1,475 benchmarks with

a timeout of 10 minutes and summarize the performance of each

tool in a cactus plot in Figure 8. From this �gure, we see that Libra

solves the most number of benchmarks, solving 1,361 out of 1,475

in an average of 58.9 seconds, and solves 1,097 of those within 10

seconds. Of the 1,361 solved benchmarks, 1,090 are SPJ instances

from the Spider dataset, while 271 are from the Geography dataset.

The plot for Libra plateaus at 600 seconds since it searches for

a minimal solution to a benchmark, but returns the best solution

found so far when it times out. PatSQL is outperformed by Libra,

solving 673 benchmarks in an average of 23.13 seconds, and 548 in

10 seconds. Scythe solves only 195 benchmarks, in an average of

139.50 seconds, and only 15 in 10 seconds. All of the benchmarks

solved by PatSQL and Scythe are instances from the Spider dataset;

neither tool solves a single instance from the Geography dataset.

Also, PatSQL solves 2 benchmarks unsolved by Libra, while all

benchmarks solved by Scythe are solved by Libra and PatSQL.

Among the benchmarks that Libra uniquely solves, a signi�cant

portion of the benchmarks have ground truths involving many

joins, but with a few shared constants between tables, leading to

a sparse tuple co-occurrence graph while there are syntactically

many possible joins. The following generated query which Libra

is the only one to produce (and which happens to match the ref-

erence solution) shows how the example-guided technique allows

for learning very large queries and combined with decision tree

learning allows for learning complex SPJ queries:

SELECT employee.emp_fname, class.class_room

FROM ( ( (class JOIN employee ON class.prof_num = employee.emp_num)

JOIN professor ON employee.emp_num = professor.emp_num)

JOIN department ON department.dept_code = professor.dept_code)

WHERE department.dept_name = “�22>D=C8=6”

The example-guided strategy used by Libra allows it to explore

solutions of a larger size more quickly than syntax-guided strate-

gies since the smaller joins that are syntactically valid but don’t

explain any output tuple are skipped. This results in Libra solv-

ing benchmarks with reference solutions of a larger size where

other baselines would require a longer time to search through the

hypothesis space despite the additional supervision provided.

However, it is di�cult to scale Libra over larger input databases.

The largest benchmark solved by Libra consists of 5303 tuples in its

input, in 4 tables and 26 columns, and 20 tuples in its output. The size

of its target query is 5. On the other hand, for the 114 benchmarks

unsolved by Libra, over 70% have more than 5,000 tuples, and all

have tables with over 20 columns, with a median of 64 columns.

Libra faces two main issues when solving these benchmarks. First,

it may struggle to build the tuple co-occurrence graph that it uses

to enumerate contexts, and second, frequently occurring constants

can result in a large number of contexts being enumerated. The

second case is true for the 2 benchmarks that PatSQL solved which

were unsolved by Libra, since they contained 43 and 20 columns,

with 103 and 577 rows respectively. However, the ground truth

solutions for those benchmarks could be easily explored by syntax-

guided processes, with one of the benchmarks consisting only of

joins, and so PatSQL was able to synthesize them.

4.4 Q2: Succinctness

We now turn to evaluating the quality of the programs in terms

of succinctness. Algorithm 1 is sound by construction, that is the

synthesized query is always consistent with the training data. In

order to inspect for generalizability, we use the size of the query as

a measure of its speci�city with respect to the training data, where

a more succinct query is assumed to be less speci�c to the particular

data, and we rely on Occam’s razor to assess over-�tting.

As discussed in Section 2.1, the size of the query is de�ned as the

sum of the number of tables joined and the number of comparison

predicates in the selection operator in the disjunctive normal form

(DNF). We summarize the size of the programs synthesized by both

instances of Libra and the baselines in Figure 9.

We observe that 1,339 of the 1,361 programs (around 99%) syn-

thesized by Libra are minimal, that is, the size of the query is equal

to or smaller than that of the reference solution. In 271 of the 1,361

programs, Libra generates a smaller query than the reference solu-

tion. This is a peculiar case common to programming-by-examples

where the input-output examples under-specify the task. That is,

the input-output examples do not feature all the cases that the

synthesis tool should consider. For example, consider the bench-

mark where the input table campuses consists of columns for the

id, campus, location, county, and year for a set of college campuses,

and the input table csu_fees consists of columns for campus, year,

and campus fee for a set of campuses. The reference solution is:

SELECT campusfee FROM campuses

JOIN csu_fees ON campuses.id = csu_fees.campus

WHERE (campuses.campus = “(0= �A0=28B2> (C0C4 *=8E4AB8C~”)

AND (csu_fees.year = 1996)
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Since 99% of the queries generated by Libra are minimal, there is very little visible unhatched bar.

Instead of this solution, Libra generates the query:

SELECT campusfee FROM csu_fees

WHERE (csu_fees.campus = “18”)

This is because the campus name “San Francisco State University"

occurs only once in campuses with id “18", and the only row with

campus “18" in csu_fees has year of 1996. Therefore, the conjunc-

tion on both the campus name and year is unnecessary and there

is also no longer a need for the join of campuses with csu_fees

since selecting campus “18" directly from csu_fees is su�cient.

There are 22 benchmarks where the size of the query generated

by Libra is larger than the reference solution. Onmanual inspection

of these benchmarks, we observe that the larger size is due to the

sub-optimal size of the decision tree generated byDTL. As discussed

before, the problem of �nding a minimal decision tree is intractable

and hence we adopt a greedy heuristic-based search. Therefore,

any minimality guarantee will be subject to the performance of

the decision tree, but we quantitatively observe that 99% of the

synthesized programs are minimal.

For the baselines, we observe that the size of the synthesized

programs is usually large. In contrast to Libra, only 115 of the

673 (17%) programs synthesized by PatSQL are minimal, and only

99 of the 195 (51%) programs synthesized by Scythe are minimal.

Figure 9 shows the number of benchmarks each tool �nds a solution

for at each reference benchmark size shown on the x-axis, and the

subset of these solutions which are minimal is shown in a bright

color. We see Libra consistently outputs minimal solutions across

program sizes while PatSQL and Scythe do not output minimal

programs when the reference solution has size 2-4.

4.5 Sensitivity to Partial Labels

We conduct experiments in order to evaluate the ability of Libra

to solve problems with partial labels. Since neither PatSQL nor

Scythe support partial labels, we do not compare Libra with them.

We run sensitivity experiments by dropping a fraction of both

positive and negative labels. To do this, we choose the desired

fraction X% of labels to be dropped. We then choose with uniform

randomness X% of the positive and X% of the negative tuples, and

drop them from the instance. Dropping these tuples e�ectively

simulates a partially labeled instance, since these tuples are now

labeled as unknown. We then ask Libra to solve these instances.

This process is repeated for each benchmark with increasingly
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Figure 10: Libra sensitivity to partial labeling. The number of

benchmarks perfectly solved is shown in red and the average

F1 score of the generated queries is shown in blue. Libra

continues to generate good solutions with over 0.88 F1 score

with only 30% of the labels provided.

larger fractions of dropped tuples, from 10% to 70%. We conduct this

experiment three times for each fraction to account for randomness.

We measure both the average F1 score of the solved benchmarks

(shown in blue in Figure 10) and the number of perfectly solved

benchmarks, i.e. solved with an F1 score of 1.0 (shown in red in

Figure 10). We see from Figure 10 that the number of perfectly

solved examples drops from 1090 by around 7.8% when 10% of the

tuples are removed, and drops by around 46.8% when 70% of those

tuples are removed. The average F1 score remains relatively high,

dropping by only 0.12 points when 70% of the labels are removed.

This shows that even after removing a signi�cant proportion of

labels, positive or negative, Libra can synthesize queries that come

close to representing user intent, even if the synthesized query is

not the target solution itself.

5 RELATEDWORK

Wediscuss relatedwork on the synthesis of relational queries, induc-

tive logic programming (ILP), decision tree learning, and example-

guided search.

5.1 Synthesis of Relational Queries

Program synthesis and Inductive Logic Programming have made

signi�cant progress in the synthesis of rules from input-output

examples. Each of these techniques specializes to support speci�c

features (such as aggregation, invented predicates, recursive predi-

cates, etc.) and require additional instance-speci�c supervision in

the form of templates such as predicate signatures, mode declara-

tions, or candidate rules.

GenSynth [28] is an evolutionary search-based approach for

synthesizing Datalog programs. The evolutionary strategy main-

tains a population of candidate programs that are incrementally

mutated to optimize the �tness score for those programs. Gen-

Synth can synthesize recursive predicates when the signatures of

invented predicates are speci�ed (unless they coincide with that

of an input or output relation). Scythe [43] and PatSQL [39] are

enumerative techniques that require the exhaustive list of constants

that may occur in the selection operator and the list of aggregation

operators that may be used by the query. Scythe uses a two-phase

approach where it �rst searches for partial queries that can po-

tentially explain the training data, and then instantiates them and

ranks the results. PatSQL also adopts a two-phase approach, but it

additionally uses properties of relational algebra to rewrite the par-

tial queries so that a combinatorial blow-up (due to the projection

operator) can be avoided.

While Scythe and PatSQL are both two-phase approaches, they

di�er from Libra in two concrete ways. Both the phases for Libra

are data-driven (the �rst phase is built on EGS while the second is

a modi�ed decision tree learning algorithm) while Scythe and Pat-

SQL use enumerative techniques that do not take the input-output

data into consideration. And secondly, the interaction between the

two phases in Libra are interleaved so as to minimize the number

of joins and the number of comparison predicates, while PatSQL

and Scythe run sequentially.

Additionally, the problem of synthesis of relational queries has

been studied in an interactive setting [2, 42], and from natural

language [11, 23, 45] and other speci�cations [5, 49].

5.2 Inductive Logic Programming

ILASP [27], a constraint solving-based approach, can synthesize

recursive Answer Set Programs producing constraints over the

hypothesis space. The hypothesis space for ILASP is de�ned using

mode declarations that bound the number of joins and variables in

the synthesized rules. Extensions of ILASP can support noisy data.

Popper [9] is a constraint solving ILP technique that implements

the ’learning from failures’ strategy. It supports Answer Set Pro-

grams and Prolog syntax and can reason about lists, numbers, and

textual data. Similar to ILASP, Popper uses mode declarations to

restrict the expressiveness of the queries, and requires instance-

speci�c supervision from the user in form of these modes.

First-Order Inductive Learner (FOIL) [32] is an iterative algo-

rithm that searches for a �rst-order clause that maximally covers a

set of positive examples while minimizing the number of negative

examples covered. QuickFOIL [48] is a parallel and scalable imple-

mentation of the FOIL algorithm and supports scalable and robust

learning using parallelization. While FOIL and QuickFOIL do not

restrict the hypothesis space using mode declarations, they employ

greedy heuristics that do not explore the space of all possible rules

and hence cannot guarantee the completeness of the search.

These techniques also do not support numerical reasoning as

required for the synthesis of comparison predicates. In order to

support such predicates, the user must augment the input database

with additional tables corresponding to each comparison constant,

causing a blow-up in space and signi�cant increases in run-time.

5.3 Decision Tree Learning

In this paper, we implement a straightforward decision tree learn-

ing algorithm based on the Iterative Dichotomiser 3 (ID3) algo-

rithm [30]. Several modi�cations and extensions of this algorithm

have been studied [34, 35, 38]. The applications of decision trees

for invariant synthesis [14, 24] as well as to support noisy and un-

certain data [15, 41] have been studied. Ideas and algorithms from

these works can be integrated into query synthesis.

MRDTL is a decision tree learning algorithm that supports the

multi-table setting [18]. However, it assumes a primary table whose



rows are labeled as positive and negative examples. In that respect,

it supports joins (by drawing information from other tables in the

database) and comparison predicates (through the decision tree),

but not projection. It di�ers from our setting, especially in the case

where projection may draw columns from di�erent tables.

The problem of summarising a multi-table input database in a

single table is studied in the context of supervised learning. Ham-

let [25] is a system of handcrafted decision rules to predict joins

across the input database so analysts balance between performance

and accuracy. ARDA [7] proposes a framework for automated rela-

tional data augmentation which can discover joins of input tables

e�ciently and improve the performance of predictive models in a

multi-table setting.

Applications of decision tree learning in program synthesis have

been studied in the context of syntax-guided search for programs

with conditional operators. EUSolver [3]uses a divide-and-conquer

technique that �rst enumerates expressions that are consistent with

a subset of input-output examples and then constructs a decision

tree to combine these expressions using conditional predicates in

order to scalably synthesize complex programs. DryadSynth [19]

is a synthesis tool for conditional linear integer arithmetic (CLIA)

programs that uses decision trees to represent conditional programs

and uses a combination of enumerative and symbolic reasoning

techniques to synthesize them. E3Solver [22], a uni�cation-based

solver for programming-by-example enumerates an expression for

each example and then incrementally identi�es uni�cation strate-

gies for them using decision trees.While these tools combine search-

based synthesis and decision trees, they do not tackle the challenge

of learning relational queries over multiple tables.

5.4 Example-Guided Search

Example-guided and data-driven search techniques have previously

been used for synthesizing relational queries, regular expressions,

string transformations, and spreadsheet operators.

EGS [40] is an end-to-end synthesis engine for conjunctive

queries that feature only projection and equi-joins. As discussed in

Section 3.1, the search technique for joins in Libra is motivated by

this work. However, we di�er from it primarily in the way in which

we summarize the data and explore the input tables. In particular,

EGS constructs a constant co-occurrence graph and then uses the

ExplainCell procedure that explains an output tuple in a column-

by-column fashion. Instead, we do not need any such construction

and explain all columns of an output tuple at once based on our

construction of the initial context.

FlashFill [16], a tool available in Microsoft Excel which synthe-

sizes string transformations using input-output pairs to generate

trace expressions and then uses these expressions to construct a

program that is consistent with the training data. This is analogous

to our construction of partial queries (with only join and projection)

from input-output examples, and then using a modi�ed decision

tree to add a selection operator.

Beyond program synthesis, example-guided search techniques

have also been used for domains such as graph search and gram-

matical inference [4, 6].

6 LIMITATIONS AND FUTURE WORK

We discuss some limitations of Libra in this section. First, Libra

does not support aggregation operators and nested queries. While it

is certainly a desirable feature, including support for such operators

can be extremely computationally expensive, and may require sac-

ri�cing other features to be supported. For instance, while Scythe

and PatSQL do support aggregation, they do so at the cost of addi-

tional supervision. Second, the underlying algorithm of Libra is not

incremental, and as such does not support incremental updates to

the input database. However, since for most cases, the turnaround

time of Libra is relatively low, Libra can be rerun upon every

update to the database. Third, as discussed in Section 4.3, Libra

struggles to scale up as the sizes of the input database and the

number of constants increase. Syntax-guided approaches face simi-

lar di�culties as highlighted by the performance of PatSQL and

Scythe, especially when synthesizing target queries that involve

large numbers of joins. Works such as [26] explore joinable tables

in a database, but require additional heuristics. In the future, we in-

tend to further explore the issue of �nding optimal joins to address

problems with scalability.

7 CONCLUSION

We have presented a novel approach to the problem of synthesizing

select-project-join queries from input-output examples. Our insight

is to view this problem as a two-dimensional search for synthe-

sizing joins and learning comparison predicates. We designed an

example-guided enumerator to synthesize joins and modify the

classical decision tree learning technique to learn predicates (while

maintaining the guarantees about the termination of the procedure

and size of the learned tree). We then propose a way to interleave

the two to synthesize relational queries with categorical and numer-

ical comparison predicates. We show that our algorithm strongly

encourages minimality of the synthesized program and we prove

the completeness of its search. We implement the algorithm in a

tool named Libra and evaluate it to show that it outperforms state-

of-the-art approaches on a variety of tasks in terms of synthesis

time as well as the quality of the programs.

We outline three lines of future research for this work. Firstly, we

would like to extend Libra to support the full SQL syntax includ-

ing disjunction (union), aggregation operators, and nested queries.

Secondly, the short synthesis time of Libra creates an opportunity

to develop an interactive interface that allows the user to provide

real-time feedback on the synthesized query. This allows the user

to start with a small input-output example and progressively add

more complexity to cover all features of the desired query. And

�nally, the insight of example-guided search for candidate joins

can be developed agnostic to the downstream supervised learning

task (as done for Hamlet and ARDA [7, 25]). This can allow us

to develop an end-to-end system that can translate a multi-table

database to a single augmented table that can balance performance

with generalizability.
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