n

Check for
Updates

Relational Query Synthesis < Decision Tree Learning

Aaditya Naik
University of Pennsylvania
Philadelphia, US
asnaik@seas.upenn.edu

Rajeev Alur
University of Pennsylvania
Philadelphia, US
alur@seas.upenn.edu

ABSTRACT

We study the problem of synthesizing a core fragment of relational
queries called select-project-join (SPJ) queries from input-output
examples. Search-based synthesis techniques are suited to synthe-
sizing projections and joins by navigating the network of relational
tables but require additional supervision for synthesizing compari-
son predicates. On the other hand, decision tree learning techniques
are suited to synthesizing comparison predicates when the input
database can be summarized as a single labelled relational table. In
this paper, we adapt and interleave methods from the domains of re-
lational query synthesis and decision tree learning, and present an
end-to-end framework for synthesizing relational queries with cat-
egorical and numerical comparison predicates. Our technique guar-
antees the completeness of the synthesis procedure and strongly
encourages minimality of the synthesized program. We present
LIBRA, an implementation of this technique and evaluate it on a
benchmark suite of 1,475 instances of queries over 159 databases
with multiple tables. LIBRA solves 1,361 of these instances in an
average of 59 seconds per instance. It outperforms state-of-the-art
program synthesis tools ScyTHE and PATSQL in terms of both the
running time and the quality of the synthesized programs.

PVLDB Reference Format:

Aaditya Naik, Aalok Thakkar, Adam Stein, Rajeev Alur, and Mayur Naik.
Relational Query Synthesis > Decision Tree Learning. PVLDB, 17(2): 250 -
263, 2023.

doi:10.14778/3626292.3626306

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/aadityanaik/libra.

1 INTRODUCTION

The problem of learning relational logic programs from input-
output data has been widely studied in inductive logic programming
(ILP) and program synthesis [8, 13]. Such programs offer a variety of
benefits by virtue of being explainable, interpretable, generalizable,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 2 ISSN 2150-8097.
doi:10.14778/3626292.3626306

Aalok Thakkar

University of Pennsylvania
Philadelphia, US
athakkar@seas.upenn.edu

250

Adam Stein
University of Pennsylvania
Philadelphia, US
steinad@seas.upenn.edu

Mayur Naik
University of Pennsylvania
Philadelphia, US
mhnaik@seas.upenn.edu

verifiable, and composable. The automated synthesis of such pro-
grams finds applications in a variety of settings including extracting
and summarizing information from complex relational databases
as well as data exploration and discovery without requiring in-
depth knowledge of the underlying schema [8, 33, 39, 43] (see [42]
for how interactions with human experts on Stack Overflow to
search for the desired SQL query can be replaced by synthesis from
input-output examples).

These programs involve two core components: joins across mul-
tiple tables in a database, and comparison predicates that filter
out rows. As such, learning logic queries involves addressing two
fundamental and inter-dependent challenges, which are synthesiz-
ing joins and synthesizing comparison predicates. Recent works
in learning logic programs focus on addressing either of the two
challenges in an automated manner, but not both. To address both
challenges simultaneously, they rely on additional user supervision.

Consider the example of university records of students taking
courses, subjects students are majoring in, and departments in a uni-
versity, as shown in Figure 1. Suppose the user intends to discover
a concept that explains students ‘Alice’ and ‘Bob’, but excludes
‘Charlie’ and ‘David’. The simplest explanation is that ‘Alice’ and
‘Bob’ take an undergraduate course (a course with ID less than
500) in the Engineering school. This explanation can be expressed
as the SQL query shown in Figure 1c. The output examples, both
positive and negative, are represented by entries from a single col-
umn (or a subset of columns) as in Figure 1b. We illustrate the two
aforementioned challenges using this example.

Challenge 1: Learning the Join Policy. Learning the join policy
corresponds to learning the projections and joins that correspond
to the SELECT and FROM clauses in Figure 1c. Search-based query
synthesis techniques have made significant strides in learning rela-
tional queries over multiple tables [27, 28, 39, 40, 43] by effectively
enumerating the possible ways in which tables may be joined,
thereby specializing in navigating the network of tables in a re-
lational database. ILP techniques use language bias mechanisms
such as mode declarations and meta-rules while program synthesis
methods enumerate candidate programs using syntactic constraints
or an explicit list of candidate rules to define a hypothesis space and
explore the different key-foreign key pairs to join tables. Example-
guided techniques rely on the underlying patterns in the data to
discover them. All of these techniques struggle to address the chal-
lenge of synthesizing comparison predicates like courseID < 500
or school = Engineering required by the target query.

https://doi.org/10.14778/3626292.3626306
https://github.com/aadityanaik/libra
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3626292.3626306
https://www.acm.org/publications/policies/artifact-review-and-badging-current

registration
studentID deptCode courselID
Alice Comp. 201 major
Alice Chem. 310 department studentID deptCode
. deptCode school -

Alice Mech. 550 Chem Arts and Science Alice Chem.
Bob Mech. 320 Comp. Engineering Bob Comp.
Bob Mech. 550 Math ’ Arts and Science Charlie Math.

Charlie Chem. 310 Mech. Engineering David Chem.

David Comp. 500 . Erin Mech.

David Mech. 502
Erin Chem. 310

(a) Instances of tables registration, department, and major provided as the input relations I.

Positive Labels (O%) Negative Labels (0O7)
Alice Charlie
Bob David

(b) Labeled output examples O* and O~.

SELECT registration.studentID

FROM registration JOIN department ON
registration.deptCode = department.deptCode

WHERE registration.courseID < 500 AND

department.school = “Engineering”

(c) The target SQL query Qgx.

Figure 1: Example of a task to synthesize a relational query that takes instances of tables registration, department, and major
(as in 1a) as input relations I, and outputs a set of student constants that contains all elements of O* and does not contain any
elements in O~ (as in 1b). The query in 1c is a solution to this task.

Challenge 2: Learning Comparison Predicates. Most query synthe-
sis techniques require additional supervision from the user in the
form of an exhaustive list of constants that may be used in compar-
isons. On the other hand, decision tree learning techniques [30, 44]
solve this problem in a limited setting in which the data is provided
as a single table, where each row represents an instance of the input,
and each column represents a feature of the instance [25, 29]. In
such a setting, the labeling is given by a partition of the instances
into positive and negative examples. These techniques then con-
struct classifiers using greedy information gain heuristics to search
for and combine locally optimal comparison predicates.

However, using these techniques requires additional user su-
pervision to produce the single table they take as input. This is
typically done by performing key-foreign key joins to construct
such a single table and then applying a feature selection method
[17]. For example, the user would have to provide the table from
Figure 2a to the learning algorithm, along with the correct labels for
each row, to obtain the decision tree in Figure 2b that corresponds
to the WHERE clause in the target query. To obtain this table, the user
must manually join the registration and department tables over
the deptCode column. This process is tedious and prodigal as it re-
quires a careful analysis of the relational database, and errors in the
process can introduce data redundancy and impact the efficiency of
the learning algorithm. Manually doing so also becomes intractable
for databases with several tables, necessitating the automation of
this process. Additionally, the user must provide accurate labels to
obtain the correct decision tree, though there is no clear way to do
so given only the output examples.

251

Our Approach. We thus observe a dichotomy of existing tech-
niques — they either support multi-table databases (as with search-
based relational query synthesis) or excel at learning comparison
predicates (as in the case of decision trees), but not both. In this
paper, we leverage the strengths of the two paradigms to design an
end-to-end algorithm for the synthesis of relational queries that
feature both comparison predicates and joins across multiple tables.
Specifically, we focus on the class of select-project-join (SPJ) queries
like the one in Figure 1c which constitute an important fragment
of relational algebra [20]. These queries feature equi-joins, that is
joins across tables parameterized by a set of columns (with match-
ing types), as well as categorical and numerical comparisons for
selections.

Our key insight is to interpret the query synthesis problem as
a search across a two-dimensional space defined by comparison
predicates on one side and candidate joins on the other. To ef-
ficiently search through this space, we introduce an interleaved
approach that allows us to leverage the strengths of both decision
tree learning and search-based synthesis.

This interleaved approach seeks to address the challenge of find-
ing the optimal join policy by enumerating different projection
and join policies as partial queries, each producing a single in-
termediate table over which a decision tree could be learned to
generate the comparison predicates for the target query. We use the
example-guided search strategy [40] to enumerate these queries as
it prioritize joins with fewer tables, thus synthesizing queries that
contain only sufficient and necessary features from the database.

Once we generate a candidate single intermediate table, the next
step is to synthesize comparison predicates. Classical decision tree

studentID deptCode courselID school label
Alice Comp. 201 Engineering v
Alice Chem. 310 Arts and Science X
Alice Mech. 550 Engineering X
Bob Mech. 320 Engineering v
Bob Mech. 550 Engineering X
Charlie Chem. 310 Arts and Science X
David Comp. 500 Engineering X
David Mech. 502 Engineering X
Erin Chem. 310 Arts and Science ?

(a) The result of joining registration and department over the deptCode

columns of each table.

courseID < 500?

yes no

‘ school = Engineering? ‘

ml

(b) A decision tree for classifying rows of the table in Figure 2a.
It can be flattened to a Boolean formula (courseID < 500) A
(school = Engineering).

Figure 2: Each candidate join can be translated to a single table. The table in 2a represents the join of registration and
department tables. The label column denotes the ideal labels which result in learning the decision tree in Figure 2b. The user
can annotate the rows of this table as positive (V) or negative (X) to support decision tree learning. On running a decision tree

algorithm on it, we get the tree in Figure 2b.

learning techniques require the rows of the intermediate table to
be labeled, while in our setting, only certain constants (or tuples of
constants) are labeled. There is no straightforward way to handle
this discrepancy without additional user supervision. We funda-
mentally modify the classical decision tree learning algorithm ID3
[30] by changing the definition of entropy and information gain
used by it and present it in Section 3.2.

Together, the search for candidate joins and the modified deci-
sion tree learning procedure can work in tandem to synthesize the
relational queries with categorical and numerical comparisons. In
practice, our algorithm synthesizes queries that are general (that is,
it does not overfit the data) and of minimal size. We also prove the
completeness of the algorithm—it synthesizes a query consistent
with the training data iff there exists such a query. We implement
this interleaved approach as LiBra, and evaluate it on a benchmark
suite of 1,475 instances of SP] queries from the SPIDER [46] and
GEOGRAPHY [12, 21, 47] datasets over 160 different databases, each
with multiple tables. LIBRA solves 1,361 of these instances with a
timeout of 10 minutes per task, and takes 58.9 seconds on average
per instance. We also compare with state-of-the-art tools SCYTHE
and PATSQL that can synthesize select-project-join queries. They
can solve 195 and 673 instances, and take 139.50 and 23.13 seconds
on average per task respectively. All the benchmarks solved by the
baselines are also solved by at least one instance of our framework,
and our framework additionally solves a significantly larger set of
the total benchmarks which the baselines fail to solve.

In summary, our work makes the following contributions:

(1) We propose a novel approach to split the relational query syn-
thesis problem into two separate sub-problems: synthesizing
joins and learning comparison predicates.

(2) We implement LIBRA, an end-to-end synthesis tool that realizes
this algorithm, and demonstrate that it outperforms state-of-
the-art approaches on a variety of tasks in terms of synthesis
time as well as the quality of the synthesized programs.

(3) Further, we show that the algorithm is complete and in practice
generates general and minimal queries.

252

2 PROBLEM FORMULATION

In this section, we briefly review the syntax and semantics of rela-
tional queries and formulate the synthesis problem.

2.1 Syntax and Semantics

In this paper, we study select-project-join queries where selection
supports categorical and numerical comparisons, and all joins are
equi-joins. We will use SQL syntax to denote all queries.

To define the syntax of these queries, we first fix a set of input
tables and a set of output tables. For simplicity, the columns of
each table are of either of the kinds: categorical, numerical, and
uncomparable.

The syntax of the select-project-join queries is defined by the
grammar in Figure 3. The JOIN operator featured in this query is
an equi-join, that is a join parameterized by a set of columns 6.
Comparisons of the form (T.c = k) or (T.c # k) are supported only
for columns of the categorical kind, all other comparisons are
only supported for the numerical kind, and no comparisons are
supported for the uncomparable kind.

For this paper, the size of a query Q is defined as the sum
of the number of input tables that are joined in it (that is the
expansion of non-terminal J) and the size of the comparisons
for the selection operator (o) in disjunctive normal form. For in-
stance, the size of the query Qgx is 4 as it has a join of two ta-
bles (registration and department) and two comparison opera-
tors (registration.courselID > 500) and (department.school =
“Engineering”).

The semantics for these queries are as defined in classical works
on relational algebra [1, 10, 20]. We denote the set of tuples pro-
duced by query Q on input tables I as [Q](I). In this paper we
consider the set-semantics and not bag-semantics, that is, a relation
is a set of literals with the same predicate (such as registration,
instructor, and department).

2.2 Query Synthesis Problem

Our ultimate goal is to synthesize a select-project-join query (in the
syntax of Figure 3) that is consistent with the given input-output

-~ SELECT (Ty.c1,...Tp.cn) FROM J WHERE &
T |J JOINT ON @

- T.c- k| oy AND oy | o1 OR 07

- Ti.ci =Tr.co | 61 AND 6,

=l#l<l<|>]2

© o —« ©O

Figure 3: Grammar for select-project-join queries. T ranges
over tables, c ranges over column names, and k ranges over
constant values. The grammar does not feature operators for
negation, aggregation, or ordering.

examples. In this context, an example consists of input and output
tuples; the user has labeled the output tuples as either positive
or negative. The objective then is to synthesize a program that is
consistent with the examples, that is, a program that derives all of
the positive tuples and none of the negative tuples.

Problem 2.1 (Query Synthesis). Given input tables I and a set of
output tuples partitioned as O and O™, return a query Q such that
O* C [Q](I) and O~ N [Q](I) = 0, if such a query exists, and
unsat otherwise.

We further refine the problem specification by identifying the
columns of the input tables I as either numerical, categorical, or
uncomparable. numerical columns support ordered comparisons
while categorical supports only equality checks. Consider the
running example from the Introduction as in Figure 1. Given the
input tables I as registration, department, and major, we aim
to synthesize a query Q such that it generates both the positively
labelled tuples in O* (Alice and Bob) and neither of the negatively
labelled tuples in O~ (Charlie and David). The query Qgx in Fig-
ure 1c is an example of such a query. Here, courseID is numerical
while school is categorical.

3 ALGORITHM

In this section we describe the end-to-end LiBrA algorithm, which
takes input-output examples E = (I, 0%, 07) as input and returns a
relational query Q consistent with E, that is, it solves Problem 2.1.
Algorithm 1 summarises the procedure and Figure 4 presents its
architecture.

We start with an example-guided search to construct a partial
query with projection and joins (and without the comparisons for
the selection operator). This partial query is constructed by ana-
lyzing patterns of co-occurrence of constants in the input-output
examples Section 3.1 formalizes these patterns as enumeration con-
texts that can be translate into partial queries with projection and
join operators. These correspond to the step 2 of the algorithm.

To synthesize categorical and numerical comparisons for the
selection operator we turn to supervised learning. We maintain the
enumeration contexts in a priority queue L ordered by increasing
size, where the size of each context is given by the number of tuples
forming that context. For each context C in L, we convert C into
a single table T through a join of the input relation tables that
occur in C. This is followed by the modified decision tree learning
procedure (DTL) which completes the query. This corresponds to
step 4a-4c.

253

Algorithm 1 LiBra(l, O%,07), where I is the set of input tuples,
and O* and O~ are the sets of positively and negatively labeled
output tuples respectively.

(1) Set ans = unsat and N = co.
(2) For an arbitrary t € O, let C; be the initial contexts that
explain ¢ as defined in Equation 1.
(3) Initialize the priority queue as L = Cy.
(4) While L is non-empty:
(a) Pick the smallest size element C € L, and remove it
from the queue: L := L\{C}.
(b) If |C| > N, exit the loop and go to Step 5.
(c) For each table T¢ constructed using Equation 4:
(i) Let T be a node of an empty decision tree. Run
DTL(T, T, 0%, 07).
(ii) fDTL(T, T, 0%, O7) returns a tree A such that
|A] +|C| £ N and entropy of |A| is 0,
(A) Setans = Q(T¢, A) as defined in Equation 6.
(B) Set N =|C| +|A|.
For each tuple ¢’ that shares a constant with a tuple in
C, update:

@

L=Lu{CuU{t'}}.

(5) Return ans.

In step 4d, we expand the context by one tuple. This corresponds
to considering a join with an additional table. Therefore, the steps
4a-4c explore comparison predicates and step 4d explores joins. We
thus search through the two-dimensional search space.

Throughout the algorithm, we maintain the size of the query Q as
variable N and guarantee that the query Q has minimal size among
all queries consistent with the input-output example (subject to
the optimality of the decision tree). Additionally, if no such query
exists, the algorithm terminates and returns unsat. We prove this
completeness result in Theorem 3.1.

Problem 2.1 is known to be co-NP complete in the case of queries
without selection with categorical or numerical operators [40], and
therefore we propose Algorithm 1 that runs in EXPTIME. Observe
that the DTL sub-process is analogous to the ID3 algorithm and
hence its running time is O(nmlog m), where n is the cardinality
of input tuples I and m is the total size of output tuples O* and O~
[31]. Therefore, Algorithm 2 runs in time polynomial in the size of
the input. In step 4, for each context C in queue L, we construct the
possible tables T which are polynomial in the size of the input and
for each of them the process DTL is called exactly once. Observe
that a context can be dequeued from L at most once and hence, the
number of calls to Algorithm 2 are at most polynomial in the total
number of possible contexts. As any subset of the input tuples I can
be considered as a context, the end-to-end algorithm has EXPTIME
complexity.

3.1 Example-Guided Enumeration of Projection
and Joins
An enumeration context is a non-empty subset of the input tuples,

C C I. The shaded part of Figure 5 corresponds to the context
C = {(Alice, Comp., 201), (Comp.,Engineering)}. An enumeration

Enumerator

Candidate Join

Input-output Decision Tree

No
Yes

examples Learning

Solution

>

Minimal?

Figure 4: Architecture of the L1BRA algorithm. The algorithm interleaves decision tree learning of comparison predicates with
example-guided enumeration of candidate joins. Throughout, we maintain the size of the program and check against this size
to ensure that the synthesized query is minimal among all consistent queries (subject to optimality of decision tree learning).

(Alice, Mech., 550)

(Mech., Engineering) ‘

(Alice, Chem.)

(Alice, Comp., 201)

(Comp., Engineering) |

(Charlie,Math.)

(David, Comp., 500)

Figure 5: A collection of rows of the input table I. Two rows are shown connected with an edge if they share a constant. The
shaded part represents a context C C I which corresponds to the join in Equation 2.

context C C I is said to explain a tuple ¢ € O* when for each
column c of ¢, there is a tuple ¢, € C such that for some column ¢’
in t;, we have t.c = t..c’.

Given a tuple t € OF, we construct the initial set of enumeration
contexts for step 2 of Algorithm 1 by considering enumeration
contexts:

Cr = {{tc : for each column c of ¢,

there exists a column ¢’ of t. such that t.c = t..c’}}
(1)

In step 4d we extend a context C by adding a tuple ¢’ such that
for some t € C, there is an edge t — t’ € E with appropriate labels.
One can translate a context C = {t1,...,t,} and an output tuple ¢
into a partial query with projection and joins.

Consider the output ‘Alice’ that is explained by the context

C = {(Alice, Comp., 201), (Comp., Engineering)}
. This can be translated to the query:
SELECT registration.studentID
FROM registration JOIN department

ON registration.deptCode = department.deptCode
@)

This is because the constant ‘Alice’ occurs in the column studentID
of registration, and the tuples from the tables registrationand
department share a constant for the columns department.deptCode
and registration.deptCode. In general, given an output tuple t
and a context C C I, we first consider the sequence of columns
(T, -€ny5 - - - Ty .Cry.) from where we get the constants in ¢. These
will correspond to the columns for the projection operator. For each
tuple t; in C, we consider the table T;. These will correspond to
the tables to be joined. In order to construct the parameters for

254

the join, for each t; € C, let E; be the set of predicates of the form
(tj.c=t'.c") where t’ € {t1,...,ti—1}. Then, we can construct the
queries of the form:

SELECT (T, -Crys - - - Trp-Cy.)

3
FROM (...(T; JOIN T3 ON 62) ...JOIN Ty, ON 6,) ®)

Where each 6; is a conjunction of comparison predicates that
label edges in E;. We consider all possible non-empty subsets of the
labels in E;, and therefore, for each pair (t, C) of output tuple and
context, there may be multiple candidate joins.

3.2 Supervised Learning of Comparisons for
Selection

We now turn to decision trees to add a selection operator to the
query in Equation 3. Our approach is motivated by the Iterative
Dichotomiser 3 (ID3) algorithm for learning decision trees [30]. We
first need to convert the tables T, . . ., Tj; in context C into one single
table Tc. This is achieved by implementing the join in Equation 3,
that is we consider the output of the SQL query:

SELECT * FROM (... (Ty JOIN T, ON @) ...JOIN T,, ON 6,) (4)

This join produces a single table. As before, each context corre-
sponds to multiple joins and hence there are multiple candidates
for Tc. We consider all of them in our search.

We start by introducing some notation. Let y be the schema of
the output tuples, that is the types of the columns from which we
draw output tuples. Let 7y (Tc) represent the projection of T¢ to

the columns in y. Then, the entropy of a node N is defined as:
|7y (Tc) N O™

|7y (Te) N (O U O7)|
|7y (Te) N O~ |

|y (Te) N (0T U O7)|

p =P(0%|my(Tc), 0" UO7) =

n=P(O" |, (Tc), otuo) =

S(N) = — (plogy p + nlog, n)

Here, we restrict our analysis to output tuples that occur in OF or
O~ only. Consider the joined table in Figure 2a. We can compute
the entropy of the node with label (school = Engineering):

1
p = P({Alice, Bob}|{Alice, Bob, Charlie, David}) = 5
1
n = P({Charlie, David}|{Alice, Bob, Charlie, David}) = 3
1 1 1 1
S(N) = - Elogz §+§10g2§ =1

Here, we do not consider ‘Erin. This is our first concrete modifi-
cation to the decision tree learning algorithm.

A comparison predicate a splits the table T¢ into two: o4(T¢)
which comprises of rows that satisfy a and 0-4(T¢) which com-
prises of rows that do not satisfy a. Let o4(T¢) correspond to a
node L and 0-4(T¢) correspond to a node R. Then we can compute
their entropies S(L) and S(R) just as above. Consider the predicate
(school = Engineering) which splits the joined table in Figure 2a
into two tables as shown in Figure 6. Let 0(school=Engineering) (TC)
form node L and 0 (school=Engineering) (Ic) form node R. The en-
tropies S(L) and S(R) are 0.918 and 1 respectively.

We can now compute the information gain. Information gain is
defined as the difference between the entropy of the node and the
weighted sum of the entropy of its children. That is, the information
gain at node N is of the form:

IG(N) = S(N) = (aS(L) + pS(R))

where « + f# = 1. In a classical setting, the coefficients « and f are
the ratio of the number of rows corresponding to the child nodes
L and R. In our study, we focus on projection, and only the tuples
in O* and O~ . For ease of notation, let |y (o4(Tc)) N (OY UO7) |,
the number of rows in 0,4(T), projected to columns y, that occur in
either O* or O™ be A, (and analogously for o-4(T¢) be A-4). Then
information gain at Node N with comparison predicate a is defined
as:

Aa A-a
Tatia O i

In our running example, A, is 3 and A-, is 2. This gives us an
information gain of 0.0328. The change in the weighted sum is our
second concrete modification to decision tree learning.

The decision tree learning algorithm as described in Algorithm 2
starts with the table T and node N as an input. We introduce node
N so we can call this procedure recursively. If Ot or O~ is empty,
we return the trivial tree with N as the only node. Otherwise, we
construct a set of comparison predicates of the form (T.c - k),
where T.c is a column of the table T, k is a constant that occurs
in the column T.c, and - is a comparison operator (in our case
either =, <, or <. Then, similar to the classical algorithm, we pick
a comparison predicate a that maximizes the information gain

IG(N,a) = S(N) —

S(R) ©)

255

Algorithm 2 DTL(T, N,O%,07), where T is a table, N is a node,
and O* and O~ are the sets of positively and negatively labeled
tuples respectively.

1)

If O* is empty, label N with X, return the leaf node N, and
terminate.
If O~ is empty, label N with v/, return the leaf node N, and
terminate.
Otherwise, let A = {}.
For each column cin T,

(a) if c is of the categorical type, then for each constant

k in column c, update:

A=AU{(Tc=k)}

@

®)
©

(b) if c is of the numerical type, then for each constant k
in column ¢, update:

A=AU{(T.c<k),(T.c<k)}
5)

For each a € A, compute IG(N, a) using the formula in
Equation 5.

Find a predicate a for which IG(N, a) is maximum. If the
maximum for IG(N, a) is 0, label N as ?, return the leaf
node N, and terminate the process.

Otherwise, label N with predicate a and create new nodes
L and R as left child and right child of N respectively.

(8) Recursively compute:

A = DTL(04(T), L, 0" N 1y (04(T)), 0™ N 1y (0a(T))) and

Ag = DTL(0-4(T). R, 0% 0 1 (6-a(T)), 0™ N 1y (6-a(T))).
where y is the sequence of projected columns for the output.

(9) Return the tree with root node N, left sub-tree Ay, and right
sub-tree Ag.

(6)

@

IG(N, a). If no comparison predicate can maximize the information
gain beyond 0, we return the trivial tree with N as the only node,
labeled with “?’ and terminate the process. This is the case where
there is no classifier for the given input data.

Otherwise, we split the table T on predicate a as tables o,4(T)
and 0-4(T), introduce child nodes L and R corresponding to them,
and call the DTL process recursively on the children of N. When
we call DTL on the L and R nodes, we ensure that the Ot and O~
are updated to the output tuples that occur in 0,4(T) and 0-4(T).

On executing the DTL procedure on our running algorithm, we
get a tree as in Figure 7. Observe that it has a redundant right
subtree, and one of the leaves is labeled ‘?’. Instead, the desired tree
is the one in Figure 2b.

The problem of finding a minimal decision tree, or even approxi-
mating it, is NP-complete [36]. Therefore we opt for a greedy search
that is computationally efficient. Instead of considering all possi-
ble Boolean combinations of comparison predicates, Algorithm 2
makes locally optimal decisions, enabling it to handle large data-sets
efficiently and produces satisfactory results in practice. While it is
possible that locally optimal choices may not lead to the smallest
decision tree, it most often leads to a good enough solution that
is succinct and general, as observed in Section 4 The soundness
check of Algorithm 1 also ensures that while DTL may generate a
larger tree, the synthesized query will always be consistent with

Tc with (school = Engineering)
studentID deptCode courselD school
Alice Comp. 201 Engineering
Bob Mech. 320 Engineering
Alice Mech. 550 Engineering
Bob Mech. 550 Engineering
David Comp. 500 Engineering
David Mech. 502 Engineering

(a) Table with rows of T that satisfy the predicate (school
Engineering).

Tc with —(school = Engineering)
studentID deptCode courselD school
Alice Chem. 310 Arts and Science
Charlie Chem. 310 Arts and Science
Erin Chem. 310 Arts and Science

(b) Table with rows of Tc that do not satisfy the predicate (school =
Engineering).

Figure 6: In order to compute the information gain of a comparison predicate at a given node, we split the rows at the node into
two parts, those that satisfy the predicate and the others that don’t. Here, we have split the joined table T (from Figure 2a) on

the predicate (school = Engineering).

courseID < 500?

yes no
‘ school = Engineering? ‘ courseID < 5027
yes no yes no
AN S

Figure 7: The decision tree generated by the DTL on T (from
Figure 2a) with O* = {Alice, Bob} and O~ = {Charlie, David}.

the given input-output examples. Greedy heuristics based on infor-
mation gain commonly used in decision tree learning and search
algorithms for this reason [30, 37, 38].

By using the greedy heuristic, DTL generates a perfect separator
between O and O™, however, we only need a partial separator. That
is, we seek a relational query Q that captures some derivation for
each tuple in O, and no derivation for any tuple in O~. We do not
have a stronger requirement that Q should capture all derivations
for tuples in O*. On the other hand, the decision tree attempts to
branch till every node is at entropy 0, that is every node either leads
to tuples in OF or O~ exclusively, instead of stopping when there
is at least one leaf node corresponding to every tuple in O*. As our
setting allows for a weaker notion of separation, we can further
trim the decision trees.

More concretely, the right branch of the root node in the tree in
Figure 2b corresponds to rows with studentID values in {Alice, Bob
David}, as all three of them are taking courses with courseID > 500.
DTL naturally assumes that one needs to branch further to separate
Alice and Bob from David. However, it is not necessary as the node
labeled v'can explain Alice and Bob. Similarly, at the leaf labeled
‘?, the projected column has values {Alice, Charlie}, and we do not
have any comparison predicate that separates them.

We implement an lazy version of DTL to achieve the trimmed
decision trees. This is our third modification to classical decision
tree learning. In the DTL process, we introduce a set of unexplained
output tuples O, initialized to O* and a first-in-first-out (FIFO)
queue that maintains a list of nodes, initialized to {N}. Through-
out the algorithm, we update 0’ by removing the output tuples
that are already explained by a particular leaf of the decision tree.

256

While there exist any unexplained tuples, we dequeue a node from
the queue and branch it out as described in Algorithm 2. Instead
of calling the process recursively, we enqueue the children and
then eventually get to them only when there are unexplained tu-
ples. This lazy evaluation allows us to generate smaller trees with
fewer redundancies. With this modification, we get the desired tree
depicted in Figure 2b.

In summary, we make three modifications to adapt the classical
decision tree learning algorithm to our setting: we first modify
the entropy formula in order to support partial labeling, we then
change the weights in the information gain formula to overcome
the ambiguity that results from projections and partial labeling,
and finally, we implement a lazy version of DTL to generate small
decision trees that act as partial separators between Ot and O~ to
avoid producing redundancies. Note that these modifications do not
compromise any guarantees about termination of the procedure or
size of the learned decision tree [29].

3.3 Interleaving Decision Tree Learning with
Example-Guided Search for Joins

A decision tree A can then be converted to a boolean formula op
in disjunctive normal form. For each leaf of the tree that is marked
v/, we consider a clause that is composed of the conjunction of
the predicate at its parent node (if the node is a left child, and the
negation of the predicate otherwise). And then, we construct the
disjunction of each of these clauses. For example, we can translate
the tree in Figure 2b to the formula (courseID < 500) A (school =
Engineering). The negations, if any, can be removed by considering
the negated comparison operators (#, >, and >).

Therefore we can convert a joined table T and decision tree A
into a query Q(T¢, A) by using the boolean formula o to complete
the query in Equation 3. This gives us the query:

SELECT (T.cy, ..., T.cg)
FROM (... (Ty JOIN T ON 64) ...JOIN T, ON 8,_1)
WHERE op

(6)

Figure 4 summarizes LIBRA. The end-to-end algorithm guaran-
tees completeness:

THEOREM 3.1 (COMPLETENESS). If there exists a relational query
consistent with the input-output example E = (I,0%,07), then LiBra
produces a query Q consistent with E.

The proof of this theorem relies on the completeness of the
example-guided enumeration and the completeness of decision
tree learning. We assume the reader is familiar with the analogous
guarantees for example-guided synthesis of conjunctive queries
[40], and those for classical decision trees. Observe that if a context
C explains a tuple t, then all contexts C’ 2 C, also explain ¢. We
can consider the largest context C = I, that is, the set of all input
tuples, to prove the following lemma:

LEMMA 3.2. If there exists a relational query consistent with the
input-output example E = (I, OF,07), then there exist a decision tree
A with predicates of the form (T.c —~ k) where T is an input table, c
is a column of T, and k is a constant in the column c, such that the
query Q(Ty, A) is consistent with E.

It follows from the completeness of example-guided enumeration
that a decision tree must exist, however, it remains to show that the
predicates for the decision tree must be of the said form. Without
loss of generality, suppose the comparison predicate is of the form
(T.c > k1), where k; does not occur in c¢. The arguments for other
comparison operators is analogous. Observe that must exist the
greatest lower bound ky of k1 in ¢ (that is, ks = max{k € ¢ : k <
k1}). Replacing the predicate by (T.c > k) does not change the
semantics of the query with respect to input I, as there are no
constants in between k; and k;. By systematically replacing the
predicates in a query consistent with E, we can prove that there
must exist a query where the selection operator corresponds to a
decision tree of the said form. As we exhaustively enumerate all
possible predicates, we can guarantee:

LEMMA 3.3. GivenatableT, anodeN and output tuples partitioned
as O% and O™, if there exists a decision tree that separates O" from
O™, then DTL(T, N, 0%, 0~) will return such a tree.

Together, Lemma 3.2 and Lemma 3.3 can prove Theorem 3.1.

Additionally, observe that at each step of the algorithm, we
maintain the constant N that tracks the size of the query. As the
contexts are maintained in increasing order of size, the number of
joins in the enumerated queries is always increasing.

4 EVALUATION

We have implemented the L1BRA algorithm in Scala. In this section,
we evaluate it on a large-scale benchmark suite. First, we measure
the performance of our algorithm compared to state-of-the-art
synthesis tools. We do so by comparing the number of instances
solved by each tool and the time taken by each tool to do so. Next,
we evaluate the generality of the solutions generated by each tool.
To do so at scale, we leverage Occam’s razor to use the succinctness
of a query as a proxy of how specific a query is to the training
data. We then test the sensitivity of LIBRA to partial labels. We do
so by dropping a fraction of labels and evaluating the number of
instances solved by LIBRA. As such, we propose to answer three
main research questions:

Q1. Performance: How effective is LIBRA on synthesis tasks from
different domains in terms of synthesis time?

257

Table 1: Statistics of the SPIDER and GEOGRAPHY benchmarks.
There are 159 databases in SPIDER and 1 in GEOGRAPHY, over
which the minimum, maximum, and median number of ta-
bles, rows, and columns are reported.

Dataset # Tables # Rows # Columns
Min 2 8 6
SPIDER Max 26 553693 352
Median 4 40 19
GeoGrAPHY Count 8 937 30

Q2. Succinctness: How large are the programs synthesized by
LiBrRA compared to the reference solution?
Sensitivity to Partial Labels: How is the performance of

LiBra affected by partial labels?

03.

We discuss our benchmark suite in Section 4.1 and the baselines
against which we compare LIBRA in Section 4.2 along with the
setup for each. We present our findings in Sections 4.3, 4.4, and 4.5.
We performed all experiments on a Linux server with an 18-core,
36-thread, 3 GHz Xeon Gold 6154 CPU and 394 GB of RAM.

4.1 Benchmarks

In order to effectively evaluate L1BRA, we put together a benchmark
suite of SPJ instances with the following requirements based on
our problem statement: first, the queries must be over a variety of
different databases; second, some of them must query more than
one table; and last, some of them must contain at least a compar-
ison with a constant. Upon exploring various query datasets, we
find the SPIDER [46] and GEOGRAPHY [12, 21, 47] datasets to con-
tain queries that satisfy our requirements. We, therefore, evaluate
L1BRrA on the set of all SP] instances from the SPIDER [46] and GE-
OGRAPHY [12, 21, 47] datasets. SPIDER is an open-access large-scale
manually annotated dataset. There are 1,203 SPJ instances in the
SpPIDER dataset over 159 databases. On the other hand, GEOGRAPHY
is a dataset of SQL queries about US geography. We use version
4 of the modified SQL dataset for GEOGRAPHY from [12, 21, 47].
Additional statistics for each benchmark are provided in Table 1.
Upon deduplication of the queries, we extract 272 SPJ instances, all
over the same database, giving us a total of 1,475 instances over
both datasets. For each benchmark, we consider the tables from its
corresponding database as the input tables and the result of running
the ground truth query over that database as the output table.

Each benchmark has 2 to 26 input tables (with a median of 8),
each with 1 to 352 columns (with a median of 30), containing 8
to around 553k tuples in the input tables (with a median of 937).
Additionally, each benchmark is labeled with a ground truth query
that serves as a reference solution. This reference solution is used
to obtain the output examples for the corresponding benchmark.
Overall, the reference solutions feature a join of at most 6 tables
and the use of at most 3 predicates.

4.2 Baselines and Setup

We compare LIBRA against baselines that are at least as expressive
as LiBRra itself. We therefore compare LIBRA against the following
baselines in Sections 4.3 and 4.4: SCYTHE [43], which synthesizes
SQL queries using enumerative search, and PATSQL [39], which uses

relational algebra properties to perform a more scalable enumera-
tive search. Both these baselines are more expressive than LIBRA,
supporting aggregations, group-by operators, nested queries, etc.
However, in order to support these operators, they also require
more human supervision. On the other hand, while LIBRA uses
insights from EGS such as the example-guided enumeration tech-
nique, a large majority of the benchmarks require the generation
of queries that include comparisons, which EGS does not support.
We therefore do not compare with EGS in our evaluations.

For each benchmark, we provide each tool with the correspond-
ing input and output tables as described in Section 4.1. We initialize
O™ as the set of all expected output tuples. ScyTHE and PATSQL
require exhaustive labeling, i.e. any tuple not labeled as O* is con-
sidered to be O, so we initialize O~ to be all tuples of appropriate
arity that do not occur in O* for each tool. The benchmarks are la-
beled with a reference solution which identifies each column of the
input tables as either categorical, numerical, or uncomparable.

For the baselines ScyTHE and PATSQL, the user is required to
specify constants that may occur in the comparison predicates. We
recover the list of constants that occur in the reference solution
and provide it to the two baselines as additional supervision which
is not provided to LIBRA.

4.3 Q1: Performance

We run LiBra, ScYTHE, and PATSQL on all 1,475 benchmarks with
a timeout of 10 minutes and summarize the performance of each
tool in a cactus plot in Figure 8. From this figure, we see that LIBRA
solves the most number of benchmarks, solving 1,361 out of 1,475
in an average of 58.9 seconds, and solves 1,097 of those within 10
seconds. Of the 1,361 solved benchmarks, 1,090 are SPJ instances
from the SPIDER dataset, while 271 are from the GEOGRAPHY dataset.

The plot for LiBra plateaus at 600 seconds since it searches for
a minimal solution to a benchmark, but returns the best solution
found so far when it times out. PATSQL is outperformed by LiBRra,
solving 673 benchmarks in an average of 23.13 seconds, and 548 in
10 seconds. SCYTHE solves only 195 benchmarks, in an average of
139.50 seconds, and only 15 in 10 seconds. All of the benchmarks
solved by PATSQL and ScYTHE are instances from the SPIDER dataset;
neither tool solves a single instance from the GEoGraPHY dataset.
Also, PATSQL solves 2 benchmarks unsolved by LiBra, while all
benchmarks solved by ScYTHE are solved by LiBra and PATSQL.

Among the benchmarks that L1BRA uniquely solves, a significant
portion of the benchmarks have ground truths involving many
joins, but with a few shared constants between tables, leading to
a sparse tuple co-occurrence graph while there are syntactically
many possible joins. The following generated query which LiBrA
is the only one to produce (and which happens to match the ref-
erence solution) shows how the example-guided technique allows
for learning very large queries and combined with decision tree
learning allows for learning complex SPJ queries:

SELECT employee.emp_fname, class.class_room
FROM (((class JOIN employee ON class.prof_num = employee.emp_num)
JOIN professor ON employee.emp_num = professor.emp_num)
JOIN department ON department.dept_code = professor.dept_code)
WHERE department.dept_name = “Accounting”

258

The example-guided strategy used by LiBRA allows it to explore
solutions of a larger size more quickly than syntax-guided strate-
gies since the smaller joins that are syntactically valid but don’t
explain any output tuple are skipped. This results in LIBRA solv-
ing benchmarks with reference solutions of a larger size where
other baselines would require a longer time to search through the
hypothesis space despite the additional supervision provided.

However, it is difficult to scale L1BRA over larger input databases.
The largest benchmark solved by Libra consists of 5303 tuples in its
input, in 4 tables and 26 columns, and 20 tuples in its output. The size
of its target query is 5. On the other hand, for the 114 benchmarks
unsolved by LIBRA, over 70% have more than 5,000 tuples, and all
have tables with over 20 columns, with a median of 64 columns.
LiBRA faces two main issues when solving these benchmarks. First,
it may struggle to build the tuple co-occurrence graph that it uses
to enumerate contexts, and second, frequently occurring constants
can result in a large number of contexts being enumerated. The
second case is true for the 2 benchmarks that PATSQL solved which
were unsolved by LIBRA, since they contained 43 and 20 columns,
with 103 and 577 rows respectively. However, the ground truth
solutions for those benchmarks could be easily explored by syntax-
guided processes, with one of the benchmarks consisting only of
joins, and so PATSQL was able to synthesize them.

4.4 Q2: Succinctness

We now turn to evaluating the quality of the programs in terms
of succinctness. Algorithm 1 is sound by construction, that is the
synthesized query is always consistent with the training data. In
order to inspect for generalizability, we use the size of the query as
a measure of its specificity with respect to the training data, where
a more succinct query is assumed to be less specific to the particular
data, and we rely on Occam’s razor to assess over-fitting.

As discussed in Section 2.1, the size of the query is defined as the
sum of the number of tables joined and the number of comparison
predicates in the selection operator in the disjunctive normal form
(DNF). We summarize the size of the programs synthesized by both
instances of LIBRA and the baselines in Figure 9.

We observe that 1,339 of the 1,361 programs (around 99%) syn-
thesized by L1BRA are minimal, that is, the size of the query is equal
to or smaller than that of the reference solution. In 271 of the 1,361
programs, LIBRA generates a smaller query than the reference solu-
tion. This is a peculiar case common to programming-by-examples
where the input-output examples under-specify the task. That is,
the input-output examples do not feature all the cases that the
synthesis tool should consider. For example, consider the bench-
mark where the input table campuses consists of columns for the
id, campus, location, county, and year for a set of college campuses,
and the input table csu_fees consists of columns for campus, year,
and campus fee for a set of campuses. The reference solution is:

SELECT campusfee FROM campuses
JOIN csu_fees ON campuses.id = csu_fees.campus
WHERE (campuses.campus = “San Francisco State University”)

AND (csu_fees.year = 1996)

6001 - Scythe

—A— PATSQL
500{ —@- Libra
400 1

300 A

time (s)

200 1

100 A

0 200 400

600

800 1000 1200 1361

solved instances

Figure 8: Performance of LIBRA against SCcYyTHE and PATSQL on the 1,475 benchmarks from the SPIDER and GEOGRAPHY
datasets. Each data point (n, t) for a tool indicates that it solved n benchmarks each within ¢ seconds.

Number of benchmarks

1 2 3

Il Scythe
Emm PatSQL
B Libra
Reference
4 5 6 7

Size of the target query
Figure 9: Sizes of generated programs for LIBRA, SCYTHE, and PATSQL. The bars represent the benchmarks with reference
solutions of a given size that are solved by each tool, and the hatched bar represents the subset of these queries that are minimal.
Since 99% of the queries generated by LIBRA are minimal, there is very little visible unhatched bar.

Instead of this solution, LIBRA generates the query:

SELECT campusfee FROM csu_fees
WHERE (csu_fees.campus = “18”)

This is because the campus name “San Francisco State University"
occurs only once in campuses with id “18", and the only row with
campus “18" in csu_fees has year of 1996. Therefore, the conjunc-
tion on both the campus name and year is unnecessary and there
is also no longer a need for the join of campuses with csu_fees
since selecting campus “18" directly from csu_fees is sufficient.

There are 22 benchmarks where the size of the query generated
by L1BRaA is larger than the reference solution. On manual inspection
of these benchmarks, we observe that the larger size is due to the
sub-optimal size of the decision tree generated by DTL. As discussed
before, the problem of finding a minimal decision tree is intractable
and hence we adopt a greedy heuristic-based search. Therefore,
any minimality guarantee will be subject to the performance of
the decision tree, but we quantitatively observe that 99% of the
synthesized programs are minimal.

For the baselines, we observe that the size of the synthesized
programs is usually large. In contrast to LiBRa, only 115 of the

259

673 (17%) programs synthesized by PATSQL are minimal, and only
99 of the 195 (51%) programs synthesized by SCYTHE are minimal.
Figure 9 shows the number of benchmarks each tool finds a solution
for at each reference benchmark size shown on the x-axis, and the
subset of these solutions which are minimal is shown in a bright
color. We see LIBRA consistently outputs minimal solutions across
program sizes while PATSQL and ScYTHE do not output minimal
programs when the reference solution has size 2-4.

4.5 Sensitivity to Partial Labels

We conduct experiments in order to evaluate the ability of LiBRA
to solve problems with partial labels. Since neither PATSQL nor
ScYTHE support partial labels, we do not compare LiBrA with them.

We run sensitivity experiments by dropping a fraction of both
positive and negative labels. To do this, we choose the desired
fraction X% of labels to be dropped. We then choose with uniform
randomness X% of the positive and X% of the negative tuples, and
drop them from the instance. Dropping these tuples effectively
simulates a partially labeled instance, since these tuples are now
labeled as unknown. We then ask LiBRaA to solve these instances.
This process is repeated for each benchmark with increasingly

1100
1.00 »
]
o)
0.98 1 1000 o
o
[
® 2
50.96 o
3 900 ¢
”n [
-~ o
& 0.94 >
2 =
g 800 3
g 0.92 g
700 ©
0.909 3
£
600 2
0.88 1 =

0 10 20 30 40 50

Percent of labels removed

60

Figure 10: LIBRA sensitivity to partial labeling. The number of
benchmarks perfectly solved is shown in red and the average
F1 score of the generated queries is shown in blue. LiBrA
continues to generate good solutions with over 0.88 F1 score
with only 30% of the labels provided.

larger fractions of dropped tuples, from 10% to 70%. We conduct this
experiment three times for each fraction to account for randomness.

We measure both the average F1 score of the solved benchmarks
(shown in blue in Figure 10) and the number of perfectly solved
benchmarks, i.e. solved with an F1 score of 1.0 (shown in red in
Figure 10). We see from Figure 10 that the number of perfectly
solved examples drops from 1090 by around 7.8% when 10% of the
tuples are removed, and drops by around 46.8% when 70% of those
tuples are removed. The average F1 score remains relatively high,
dropping by only 0.12 points when 70% of the labels are removed.

This shows that even after removing a significant proportion of
labels, positive or negative, LIBRA can synthesize queries that come
close to representing user intent, even if the synthesized query is
not the target solution itself.

5 RELATED WORK

We discuss related work on the synthesis of relational queries, induc-
tive logic programming (ILP), decision tree learning, and example-
guided search.

5.1 Synthesis of Relational Queries

Program synthesis and Inductive Logic Programming have made
significant progress in the synthesis of rules from input-output
examples. Fach of these techniques specializes to support specific
features (such as aggregation, invented predicates, recursive predi-
cates, etc.) and require additional instance-specific supervision in
the form of templates such as predicate signatures, mode declara-
tions, or candidate rules.

GENSYNTH [28] is an evolutionary search-based approach for
synthesizing Datalog programs. The evolutionary strategy main-
tains a population of candidate programs that are incrementally
mutated to optimize the fitness score for those programs. GEN-
SYNTH can synthesize recursive predicates when the signatures of
invented predicates are specified (unless they coincide with that
of an input or output relation). SCyTHE [43] and PATSQL [39] are
enumerative techniques that require the exhaustive list of constants
that may occur in the selection operator and the list of aggregation

260

operators that may be used by the query. SCcYTHE uses a two-phase
approach where it first searches for partial queries that can po-
tentially explain the training data, and then instantiates them and
ranks the results. PATSQL also adopts a two-phase approach, but it
additionally uses properties of relational algebra to rewrite the par-
tial queries so that a combinatorial blow-up (due to the projection
operator) can be avoided.

While ScyTHE and PATSQL are both two-phase approaches, they
differ from LIBRA in two concrete ways. Both the phases for LiBRA
are data-driven (the first phase is built on EGS while the second is
a modified decision tree learning algorithm) while ScyTHE and PAT-
SQL use enumerative techniques that do not take the input-output
data into consideration. And secondly, the interaction between the
two phases in LIBRA are interleaved so as to minimize the number
of joins and the number of comparison predicates, while PatSQL
and Scythe run sequentially.

Additionally, the problem of synthesis of relational queries has
been studied in an interactive setting [2, 42], and from natural
language [11, 23, 45] and other specifications [5, 49].

5.2 Inductive Logic Programming

ILASP [27], a constraint solving-based approach, can synthesize
recursive Answer Set Programs producing constraints over the
hypothesis space. The hypothesis space for ILASP is defined using
mode declarations that bound the number of joins and variables in
the synthesized rules. Extensions of ILASP can support noisy data.
Popper [9] is a constraint solving ILP technique that implements
the ’learning from failures’ strategy. It supports Answer Set Pro-
grams and Prolog syntax and can reason about lists, numbers, and
textual data. Similar to ILASP, Popper uses mode declarations to
restrict the expressiveness of the queries, and requires instance-
specific supervision from the user in form of these modes.
First-Order Inductive Learner (FOIL) [32] is an iterative algo-
rithm that searches for a first-order clause that maximally covers a
set of positive examples while minimizing the number of negative
examples covered. QuickFOIL [48] is a parallel and scalable imple-
mentation of the FOIL algorithm and supports scalable and robust
learning using parallelization. While FOIL and QuickFOIL do not
restrict the hypothesis space using mode declarations, they employ
greedy heuristics that do not explore the space of all possible rules
and hence cannot guarantee the completeness of the search.
These techniques also do not support numerical reasoning as
required for the synthesis of comparison predicates. In order to
support such predicates, the user must augment the input database
with additional tables corresponding to each comparison constant,
causing a blow-up in space and significant increases in run-time.

5.3 Decision Tree Learning

In this paper, we implement a straightforward decision tree learn-
ing algorithm based on the Iterative Dichotomiser 3 (ID3) algo-
rithm [30]. Several modifications and extensions of this algorithm
have been studied [34, 35, 38]. The applications of decision trees
for invariant synthesis [14, 24] as well as to support noisy and un-
certain data [15, 41] have been studied. Ideas and algorithms from
these works can be integrated into query synthesis.

MRDTL is a decision tree learning algorithm that supports the
multi-table setting [18]. However, it assumes a primary table whose

rows are labeled as positive and negative examples. In that respect,
it supports joins (by drawing information from other tables in the
database) and comparison predicates (through the decision tree),
but not projection. It differs from our setting, especially in the case
where projection may draw columns from different tables.

The problem of summarising a multi-table input database in a
single table is studied in the context of supervised learning. Ham-
let [25] is a system of handcrafted decision rules to predict joins
across the input database so analysts balance between performance
and accuracy. ARDA [7] proposes a framework for automated rela-
tional data augmentation which can discover joins of input tables
efficiently and improve the performance of predictive models in a
multi-table setting.

Applications of decision tree learning in program synthesis have
been studied in the context of syntax-guided search for programs
with conditional operators. EUSOLVER [3]uses a divide-and-conquer
technique that first enumerates expressions that are consistent with
a subset of input-output examples and then constructs a decision
tree to combine these expressions using conditional predicates in
order to scalably synthesize complex programs. DRYADSYNTH [19]
is a synthesis tool for conditional linear integer arithmetic (CLIA)
programs that uses decision trees to represent conditional programs
and uses a combination of enumerative and symbolic reasoning
techniques to synthesize them. E3SOLVER [22], a unification-based
solver for programming-by-example enumerates an expression for
each example and then incrementally identifies unification strate-
gies for them using decision trees. While these tools combine search-
based synthesis and decision trees, they do not tackle the challenge
of learning relational queries over multiple tables.

5.4 Example-Guided Search

Example-guided and data-driven search techniques have previously
been used for synthesizing relational queries, regular expressions,
string transformations, and spreadsheet operators.

EGS [40] is an end-to-end synthesis engine for conjunctive
queries that feature only projection and equi-joins. As discussed in
Section 3.1, the search technique for joins in LIBRA is motivated by
this work. However, we differ from it primarily in the way in which
we summarize the data and explore the input tables. In particular,
EGS constructs a constant co-occurrence graph and then uses the
ExpLAINCELL procedure that explains an output tuple in a column-
by-column fashion. Instead, we do not need any such construction
and explain all columns of an output tuple at once based on our
construction of the initial context.

FlashFill [16], a tool available in Microsoft Excel which synthe-
sizes string transformations using input-output pairs to generate
trace expressions and then uses these expressions to construct a
program that is consistent with the training data. This is analogous
to our construction of partial queries (with only join and projection)
from input-output examples, and then using a modified decision
tree to add a selection operator.

Beyond program synthesis, example-guided search techniques
have also been used for domains such as graph search and gram-
matical inference [4, 6].

261

6 LIMITATIONS AND FUTURE WORK

We discuss some limitations of LIBRA in this section. First, LIBRA
does not support aggregation operators and nested queries. While it
is certainly a desirable feature, including support for such operators
can be extremely computationally expensive, and may require sac-
rificing other features to be supported. For instance, while SCYTHE
and PATSQL do support aggregation, they do so at the cost of addi-
tional supervision. Second, the underlying algorithm of L1BRrA is not
incremental, and as such does not support incremental updates to
the input database. However, since for most cases, the turnaround
time of LIBRA is relatively low, LIBRA can be rerun upon every
update to the database. Third, as discussed in Section 4.3, LIBRA
struggles to scale up as the sizes of the input database and the
number of constants increase. Syntax-guided approaches face simi-
lar difficulties as highlighted by the performance of PATSQL and
ScYTHE, especially when synthesizing target queries that involve
large numbers of joins. Works such as [26] explore joinable tables
in a database, but require additional heuristics. In the future, we in-
tend to further explore the issue of finding optimal joins to address
problems with scalability.

7 CONCLUSION

We have presented a novel approach to the problem of synthesizing
select-project-join queries from input-output examples. Our insight
is to view this problem as a two-dimensional search for synthe-
sizing joins and learning comparison predicates. We designed an
example-guided enumerator to synthesize joins and modify the
classical decision tree learning technique to learn predicates (while
maintaining the guarantees about the termination of the procedure
and size of the learned tree). We then propose a way to interleave
the two to synthesize relational queries with categorical and numer-
ical comparison predicates. We show that our algorithm strongly
encourages minimality of the synthesized program and we prove
the completeness of its search. We implement the algorithm in a
tool named LiBRA and evaluate it to show that it outperforms state-
of-the-art approaches on a variety of tasks in terms of synthesis
time as well as the quality of the programs.

We outline three lines of future research for this work. Firstly, we
would like to extend L1BRrA to support the full SQL syntax includ-
ing disjunction (union), aggregation operators, and nested queries.
Secondly, the short synthesis time of LIBRA creates an opportunity
to develop an interactive interface that allows the user to provide
real-time feedback on the synthesized query. This allows the user
to start with a small input-output example and progressively add
more complexity to cover all features of the desired query. And
finally, the insight of example-guided search for candidate joins
can be developed agnostic to the downstream supervised learning
task (as done for Hamlet and ARDA [7, 25]). This can allow us
to develop an end-to-end system that can translate a multi-table
database to a single augmented table that can balance performance
with generalizability.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful suggestions
that significantly improved the paper. This research was supported
by NSF grant #2107429.

REFERENCES

(1]
(2]
(3]

[4

=

[9

=

[10]
[11]

[12

[13]

[14

[15]

[16]

(17

(18]

[19

[20

[21

[22]

[23]

[24

[25]

Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.
Addison-Wesley, Boston, MA.

Azza Abouzied. 2013. Example-Driven Query Synthesis. Ph.D. Dissertation. Yale
University. https://proxy.lib.umich.edu/login

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling enumera-
tive program synthesis via divide and conquer. In International conference on tools
and algorithms for the construction and analysis of systems. Springer, 319-336.
Dana Angluin. 1987. Learning Regular Sets from Queries and Counterexamples.
Inf. Comput. 75, 2 (1987), 87-106.

Christopher Baik, Zhongjun Jin, Michael Cafarella, and H. V. Jagadish. 2020.
Duoquest: A Dual-Specification System for Expressive SQL Queries. In Proceed-
ings of the 2020 ACM SIGMOD International Conference on Management of Data
(Portland, OR, USA) (SIGMOD °20). Association for Computing Machinery, New
York, NY, USA, 2319-2329. https://doi.org/10.1145/3318464.3389776

Daniel Brélaz. 1979. New Methods to Color the Vertices of a Graph. Commun.
ACM 22, 4 (1979), 251-256. https://doi.org/10.1145/359094.359101

Nadiia Chepurko, Ryan Marcus, Emanuel Zgraggen, Raul Castro Fernandez, Tim
Kraska, and David Karger. 2020. ARDA: Automatic Relational Data Augmentation
for Machine Learning. Proc. VLDB Endow. 13, 9 (may 2020), 1373-1387. https:
//doi.org/10.14778/3397230.3397235

Andrew Cropper and Sebastijan Dumancic. 2020. Inductive logic programming
at 30: a new introduction. arXiv preprint arXiv:2008.07912 (08 2020).

Andrew Cropper and Rolf Morel. 2021. Learning programs by learning from
failures. Machine Learning 110, 4 (Feb. 2021), 801-856. https://doi.org/10.1007/
510994-020-05934-z

C Date. 2009. SQL and Relational Theory: How to Write Accurate SQL Code.
O’Reilly Media, Inc.

Ramya Durvasula. 2022. An Interactive Approach to Generating SQL Queries from
Natural Language. Ph.D. Dissertation. Massachusetts Institute of Technology.
Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ra-
manathan, Sesh Sadasivam, Rui Zhang, and Dragomir Radev. 2018. Improving
Text-to-SQL Evaluation Methodology. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers) (Mel-
bourne, Victoria, Australia). 351-360. http://aclweb.org/anthology/P18-1033
Artur d’Avila Garcez, Marco Gori, Luis C Lamb, Luciano Serafini, Michael
Spranger, and Son N Tran. 2019. Neural-symbolic computing: An effective
methodology for principled integration of machine learning and reasoning.
arXiv preprint arXiv:1905.06088 (2019).

Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. 2016. Learning
Invariants Using Decision Trees and Implication Counterexamples. SIGPLAN
Not. 51, 1 (jan 2016), 499-512. https://doi.org/10.1145/2914770.2837664

Aritra Ghosh, Naresh Manwani, and P. S. Sastry. 2017. On the Robustness of
Decision Tree Learning Under Label Noise. In Advances in Knowledge Discovery
and Data Mining, Jinho Kim, Kyuseok Shim, Longbing Cao, Jae-Gil Lee, Xuemin
Lin, and Yang-Sae Moon (Eds.). Springer International Publishing, Cham, 685—
697.

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using
Input-Output Examples. SIGPLAN Not. 46, 1 (2011), 317-330. https://doi.org/10.
1145/1926385.1926423

Isabelle Guyon, Masoud Nikravesh, Steve Gunn, and Lotfi A. Zadeh (Eds.). 2006.
Feature Extraction. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-
540-35488-8

Leiva Hector. 2002. MRDTL: A multi-relational decision tree learning algorithm.
Master’s thesis. Iowa State University.

Kangjing Huang, Xiaokang Qiu, Peiyuan Shen, and Yanjun Wang. 2020. Recon-
ciling Enumerative and Deductive Program Synthesis. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation
(London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 1159-1174. https://doi.org/10.1145/3385412.3386027

Tomasz Imielinski and Witold Lipski. 1984. The relational model of data and
cylindric algebras. J. Comput. System Sci. 28, 1 (1984), 80-102. https://doi.org/
10.1016/0022-0000(84)90077-1

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke
Zettlemoyer. 2017. Learning a Neural Semantic Parser from User Feedback.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers) (Vancouver, Canada). 963-973. http://www.
aclweb.org/anthology/P17-1089

M. Ammar Ben Khadra. 2017. E3Solver: decision tree unification by enumeration.
arXiv:arXiv:1710.07021

Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020. Natural
language to SQL: where are we today? Proceedings of the VLDB Endowment 13,
10 (2020), 1737-1750.

Siddharth Krishna, Christian Puhrsch, and Thomas Wies. 2015. Learning invari-
ants using decision trees. arXiv preprint arXiv:1501.04725 (2015).

Arun Kumar, Jeffrey Naughton, Jignesh M. Patel, and Xiaojin Zhu. 2016. To
Join or Not to Join? Thinking Twice about Joins before Feature Selection. In

262

@
i

'S
2

[41

[42

=
&

(44

[45

[46]

[47

[48

[49

Proceedings of the 2016 International Conference on Management of Data (San
Francisco, California, USA) (SIGMOD ’16). Association for Computing Machinery,
New York, NY, USA, 19-34. https://doi.org/10.1145/2882903.2882952

Arun Kumar, Jeffrey Naughton, Jignesh M Patel, and Xiaojin Zhu. 2016. To join
or not to join? thinking twice about joins before feature selection. In Proceedings
of the 2016 International Conference on Management of Data. 19-34.

Mark Law, Alessandra Russo, and Krysia Broda. 2020. The ILASP system for
Inductive Learning of Answer Set Programs. CoRR abs/2005.00904 (2020).
Jonathan Mendelson, Aaditya Naik, Mukund Raghothaman, and Mayur Naik.
2021. GENSYNTH: Synthesizing Datalog Programs without Language Bias.
Proceedings of the AAAI Conference on Artificial Intelligence 35, 7 (May 2021),
6444-6453. https://ojs.aaai.org/index.php/AAAl/article/view/16799

Tom M. Mitchell. 1997. Machine Learning. McGraw-Hill, New York.

J. R. Quinlan. 1986. Induction of decision trees. Machine Learning 1, 1 (1986).

J. R. Quinlan. 1986. Induction of decision trees. Machine Learning 1, 1 (1986),
81-106.

J. R. Quinlan. 1990. Learning logical definitions from relations. Machine Learning
5, 3 (Aug. 1990), 239-266. https://doi.org/10.1007/bf00117105

Mukund Raghothaman, Jonathan xMendelson, David Zhao, Mayur Naik, and
Bernhard Scholz. 2020. Provenance-guided synthesis of Datalog programs. In
Proceedings of the ACM Symposium on Principles of Programming Languages
(POPL).

Lior Rokach and Oded Maimon. 2005. Top-Down Induction of Decision Trees
Classifiers—-A survey. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on (2005), 487.

Lior Rokach and Oded Maimon. 2013. Data Mining with Decision Trees. WORLD
SCIENTIFIC. https://doi.org/10.1142/9097

Detlef Sieling. 2008. Minimization of decision trees is hard to approximate. J.
Comput. System Sci. 74, 3 (May 2008), 394-403. https://doi.org/10.1016/j.jcss.
2007.06.014

Jiang Su and Harry Zhang. 2006. A Fast Decision Tree Learning Algorithm. In
Proceedings of the 21st National Conference on Artificial Intelligence - Volume 1
(Boston, Massachusetts) (AAAI'06). AAAI Press, 500-505.

Shan Suthaharan. 2016. Decision Tree Learning. Springer US, Boston, MA, 237-
269. https://doi.org/10.1007/978-1-4899-7641-3_10

Keita Takenouchi, Takashi Ishio, Joji Okada, and Yuji Sakata. 2021. PATSQL:
Efficient Synthesis of SQL Queries from Example Tables with Quick Inference
of Projected Columns. Proc. VLDB Endow. 14, 11 (jul 2021), 1937-1949. https:
//doi.org/10.14778/3476249.3476253

Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur, Mayur Naik, and
Mukund Raghothaman. 2021. Example-Guided Synthesis of Relational Queries. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (Virtual, Canada) (PLDI 2021). Association
for Computing Machinery, New York, NY, USA, 1110-1125. https://doi.org/10.
1145/3453483.3454098

Smith Tsang, Ben Kao, Kevin Y. Yip, Wai-Shing Ho, and Sau Dan Lee. 2011.
Decision Trees for Uncertain Data. IEEE Transactions on Knowledge and Data
Engineering 23, 1 (2011), 64-78. https://doi.org/10.1109/TKDE.2009.175
Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Interactive Query
Synthesis from Input-Output Examples. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD
’17). Association for Computing Machinery, New York, NY, USA, 1631-1634.
https://doi.org/10.1145/3035918.3058738

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthesizing Highly
Expressive SQL Queries from Input-Output Examples. SIGPLAN Not. 52, 6 (jun
2017), 452-466. https://doi.org/10.1145/3140587.3062365

Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi
Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou,
Michael Steinbach, David J. Hand, and Dan Steinberg. 2007. Top 10 algorithms
in data mining. Knowledge and Information Systems 14, 1 (Dec. 2007), 1-37.
https://doi.org/10.1007/s10115-007-0114-2

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. 2017. SQLizer:
Query Synthesis from Natural Language. Proc. ACM Program. Lang. 1, OOPSLA,
Article 63 (oct 2017), 26 pages. https://doi.org/10.1145/3133887

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, et al. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and
text-to-sql task. arXiv preprint arXiv:1809.08887 (2018).

John M. Zelle and Raymond J. Mooney. 1996. Learning to Parse Database Queries
Using Inductive Logic Programming. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence - Volume 2 (Portland, Oregon). 1050-1055.
http://dl.acm.org/citation.cfm?id=1864519.1864543

Qiang Zeng, Jignesh M. Patel, and David Page. 2014. QuickFOIL: Scalable
Inductive Logic Programming. Proc. VLDB Endow. 8, 3 (nov 2014), 197-208.
https://doi.org/10.14778/2735508.2735510

Xiangyu Zhou, Rastislav Bodik, Alvin Cheung, and Chenglong Wang. 2022.
Synthesizing Analytical SQL Queries from Computation Demonstration. In

https://proxy.lib.umich.edu/login
https://doi.org/10.1145/3318464.3389776
https://doi.org/10.1145/359094.359101
https://doi.org/10.14778/3397230.3397235
https://doi.org/10.14778/3397230.3397235
https://doi.org/10.1007/s10994-020-05934-z
https://doi.org/10.1007/s10994-020-05934-z
http://aclweb.org/anthology/P18-1033
https://doi.org/10.1145/2914770.2837664
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1007/978-3-540-35488-8
https://doi.org/10.1007/978-3-540-35488-8
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1016/0022-0000(84)90077-1
https://doi.org/10.1016/0022-0000(84)90077-1
http://www.aclweb.org/anthology/P17-1089
http://www.aclweb.org/anthology/P17-1089
https://arxiv.org/abs/arXiv:1710.07021
https://doi.org/10.1145/2882903.2882952
https://ojs.aaai.org/index.php/AAAI/article/view/16799
https://doi.org/10.1007/bf00117105
https://doi.org/10.1142/9097
https://doi.org/10.1016/j.jcss.2007.06.014
https://doi.org/10.1016/j.jcss.2007.06.014
https://doi.org/10.1007/978-1-4899-7641-3_10
https://doi.org/10.14778/3476249.3476253
https://doi.org/10.14778/3476249.3476253
https://doi.org/10.1145/3453483.3454098
https://doi.org/10.1145/3453483.3454098
https://doi.org/10.1109/TKDE.2009.175
https://doi.org/10.1145/3035918.3058738
https://doi.org/10.1145/3140587.3062365
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1145/3133887
http://dl.acm.org/citation.cfm?id=1864519.1864543
https://doi.org/10.14778/2735508.2735510

Proceedings of the 43rd ACM SIGPLAN International Conference on Program- Association for Computing Machinery, New York, NY, USA, 168-182. https:
ming Language Design and Implementation (San Diego, CA, USA) (PLDI 2022). //doi.org/10.1145/3519939.3523712

263

https://doi.org/10.1145/3519939.3523712
https://doi.org/10.1145/3519939.3523712

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Syntax and Semantics
	2.2 Query Synthesis Problem

	3 Algorithm
	3.1 Example-Guided Enumeration of Projection and Joins
	3.2 Supervised Learning of Comparisons for Selection
	3.3 Interleaving Decision Tree Learning with Example-Guided Search for Joins

	4 Evaluation
	4.1 Benchmarks
	4.2 Baselines and Setup
	4.3 Q1: Performance
	4.4 Q2: Succinctness
	4.5 Sensitivity to Partial Labels

	5 Related Work
	5.1 Synthesis of Relational Queries
	5.2 Inductive Logic Programming
	5.3 Decision Tree Learning
	5.4 Example-Guided Search

	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References

