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Abstract

The box-ball systems are integrable cellular automata whose long-time behavior is characterized by soliton solutions,
with rich connections to other integrable systems such as the Korteweg-de Vries equation. In this paper, we consider
a multicolor box-ball system with two types of random initial configurations and obtain sharp scaling limits of the
soliton lengths as the system size tends to infinity. We obtain a sharp scaling limit of soliton lengths that turns
out to be more delicate than that in the single color case established in [LLP20]. A large part of our analysis
is devoted to studying the associated carrier process, which is a multidimensional Markov chain on the orthant,
whose excursions and running maxima are closely related to soliton lengths. We establish the sharp scaling of its
ruin probabilities, Skorokhod decomposition, strong law of large numbers and weak diffusive scaling limit to a
semimartingale reflecting Brownian motion with explicit parameters. We also establish and utilize complementary
descriptions of the soliton lengths and numbers in terms of modified Greene-Kleitman invariants for the box-ball
systems and associated circular exclusion processes.
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1. Introduction
1.1. The «-color BBS

The box-ball systems (BBS) are integrable cellular automata in 1+1 dimension whose longtime behavior
is characterized by soliton solutions. The «-color BBS is a cellular automaton on the half-integer lattice N,
which we think of as an array of boxes that can fit at most one ball of any of the « colors. At each discrete
time > 0, the system configuration is given by acoloring &) : N — Z,,| := Z/(x+1)Z = {0, 1,--- , k}
with finite support — that is, such that & ,(f) = 0 for all but finitely many sites x. When & )(f) =i, we say
the site x is empty at time ¢ if i = 0 and occupied with a ball of color i at time t if 1 < i < «. To
define the time evolution rule, for each 1 < a < «, let K,, be the operator on the subset (Z,)" of all

(k + 1)-colorings on N with finite support defined as follows:

1. (i) Label the balls of color a from left as aj, ap, - - , ay,.
2. (ii) Starting from k = 1 to m, successively move ball ay to the leftmost empty site to its right.

Then the time evolution (X;),»¢ of the basic k-color BBS is given by
f(Hl) =KjoKyo--- OKK(f(I)) Vi > 0. 1)

A typical 5-color BBS trajectory is shown below.

t=0: 321000051300411252000000000000000000000000000000 - - -
t=1: 000321000153000141522000000000000000000000000000 - - -

t=2: 000000321010530010410522000000000000000000000000 - - -
3: 000000000302115301004100522000000000000000000000 - - -
4: 000000000030002150311041000522000000000000000000 - - -
t=5: 000000000003000025 1003 10411000522000000000000000 - - -
6 00000000000030000205 1003 100411000522000000000000 - - -
7 0000000000000300002005 1003 1000411000522000000000 - - -
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The grounding observation in the x-color BBS with finitely many balls of positive colors is that the
system eventually decomposes into solitons, which are sequences of consecutive balls of positive and
nonincreasing colors, whose length and content are preserved by the BBS dynamics in all future steps.
For instance, all of the nonincreasing consecutive sequences of balls in £(®) in the example (specifically,
3,2,51,31,411,522) above are solitons, and they are preserved in &7 up to their location and will be
so in all future configurations. Note that a soliton of length & travels to the right with speed k. Therefore,
the lengths of solitons in a soliton decomposition must be nondecreasing from left to right. In the early
dynamics, longer solitons can collide into shorter solitons (e.g., 321 during ¢t = 0, 1, 2) and undergo a
nonlinear interaction.

The soliton decomposition of the BBS trajectory initialized at £(°) can be encoded in a Young
diagram A = A(£?) having j™ column equal in length to the j"-longest soliton. For instance, the
Young diagram corresponding to the soliton decomposition of the instance of the 5-color BBS given
before is

[ 1]
A(ED) = )

Note that the ith row of the Young diagram A (&?) is precisely the number of solitons of length at least i.

1.2. Overview of main results

We consider the x-color BBS initialized by a random BBS configuration of system size n and analyze the
limiting shape of the random Young diagrams as n tends to infinity. We consider two models that we call
the ‘permutation model’ and ‘independence model’. For both models, we denote the kth row and column
lengths of the Young diagram encoding the soliton decomposition by py (r) and A (n), respectively,

In the permutation model, the BBS is initialized by a uniformly chosen random permutation X" of
colors {1,2,--- ,n}. Aclassical way of associating a Young diagram to a permutation is via the Robinson-
Schensted correspondence (see [Sag01, Ch. 3.1]). A famous result of Baik, Deift and Johansson [BDJ99]
tells us that the row and column lengths of the random Young diagram constructed from X" via the RS
correspondence scale as y/n. In Theorem 2.1, we show that for the random Young diagram constructed
via BBS, the columns scale as v/n but the rows scale as n. Namely,

O
Vk—1+Vk

While the row lengths in RS-constructed Young diagram are related to the longest increasing subse-
quences, we show that the row lengths in the BBS-constructed Young diagram are related to the number
of ascents (Lemma 3.5). This will show that the majority of solitons have a length of order O(1). Hence,
the row and column scalings in (3) are consistent.

In the independence model, which we denote &P, the colors of the sites in the interval [1,n]
are independently drawn from a fixed distribution p = (po, p1,--* , Px) on Z,41. Recently, Lyu and
Kuniba obtained sharp asymptotics for the row lengths as well as their large deviations principle in
this independence model [KL20]. In Theorems 2.4-2.7, we establish a sharp scaling limit for the
column lengths for the independence model, as summarized in Table 1 and as bullet points below.
Let p* := max(py,..., px) denote the density of the maximum positive color and let r denote the
multiplicity of p* (i.e., number of p;’s such that p; = p* fori =1,...,«).

pi(n) ~ Ak (n) 3)

_n
k(k+1)’

o In the subcritical regime (po > p*), top soliton lengths have sharp scaling log, n+ (r —1) log, log n+
O(1), where 8 = p*/po.

o In the critical regime (pg = p*), n~"/2A;(n) converges weakly to the maximum L;-norm of a -
dimensional semimartingale reflecting Brownian motion (SRBM).
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Table 1. Asymptotic scaling of the ith row length p; and the jth column length A; for the independence model with ball density
P = (po, p1> ., Ppx) and p* = max(py, - - -, px). The asymptotic soliton lengths undergo a similar ‘double-jump’ phase
transition depending on p* — pg as in the k = 1 case established in [LLP20], but the scaling inside the subcritical and supercritical
regimes depends on the multiplicity of the maximum positive color p*. Sharp asymptotics for the row lengths have been obtained
in [KL20]. ¢;’s are constants depending on p and i; Constnts c, ¢’ do not depend on j; D is a nonnegative and nondegenerate
random variable.

i>1,j > 2fixed p;(n) A (n) ‘ A
Subcritical phase Simple (p* = p, for unique £) cin + 0(4R) clogn +0(1)
" <po) Non-simple (p* = p, for multiple £) ‘ clogn + ¢’ loglogn + ©(1)
Critical phase (p* = py) cn+0(vn) Dvn + o(v/n) e(vn)
i Simple (p* = p, for unique ¥) O(logn)
hSuperciltlcal cn+ G)(\/ﬁ) cnt @(\/ﬁ)
phase (p* > p,) Non-simple (p* = p, for multiple £) @(‘/7—1)

o In the supercritical regime (pg < p*), 11 (n) = (p* — po)n + O(y/n). If r = 1, then all subsequent top
solitons are of order log n; if » > 2, they are of order vn.

o The fluctuation of 1;(n) depends explicitly on a x-dimensional SRBM, which arises as the diffusive
scaling limit of the associated carrier process.

We establish a similar ‘double-jump’ phase transition for the x = 1 case established by Levine, Lyu
and Pike [LLP20]. We find that in the multicolor (x > 2) case, the maximum positive ball density
p* = max(py,---,py) compared to the zero density pg dictates general phase transition structure.
However, we find that the scaling inside the subcritical and supercritical regimes depends on the
multiplicity r of the maximum positive color p*. Furthermore, the fluctuation of the top soliton length
A1(n) about its mean behavior is described by a x-dimensional semimartingale reflecting Brownian
motion (SRBM) lurking behind, whose covariance matrix depends on p explicitly. Such SRBM arises
as the diffusive scaling limit of the associated carrier process.

A large part of our analysis is devoted to studying the associated carrier process, which is a Markov
chain on the k-dimensional nonnegative integer orthant, whose excursions and running maxima are
closely related to soliton lengths (see Lemmas 3.1-3.2). We establish its sharp scaling of ruin probabili-
ties, strong law of large numbers and weak diffusive scaling limit to an SRBM with explicit parameters
(Theorems 2.3—-2.5). We also establish and utilize alternative descriptions of the soliton lengths and
numbers in terms of the modified Greene-Kleitman invariants for the box-ball systems (Lemma 3.5)
and associated circular exclusion processes.

1.3. Background and related works

The «-color BBS was introduced in [Tak93], generalizing the original « = 1 BBS first invented by
Takahashi and Satsuma in 1990 [TS90]. In the most general form of the BBS, each site accommodates
a semistandard tableau of rectangular shape with letters from {0, 1,--- , x}, and the time evolution is
defined by successive application of the combinatorial R (cf. [FYO00, HHI*01, KOS*06, IKT12]). For
a friendly introduction to the combinatorial R, see [KL.20, Sec. 3]. The k-color BBS treated in this paper
corresponds to the case where the tableau shape is a single box, which was called the basic k-color BBS
in [KL20, Kon20]. The BBS is known to arise both from the quantum and classical integrable systems
by the procedures called crystallization and ultradiscretization, respectively. This double origin of the
integrability of BBS lies behind its deep connections to quantum groups, crystal base theory, solvable
lattice models, the Bethe ansatz, soliton equations, ultradiscretization of the Korteweg-de Vries equation,
tropical geometry and so forth; see, for example, the review [IKT12] and the references therein.

BBS with random initial configuration is an emerging topic in the probability literature and has
gained considerable attention with a number of recent works [LLP20, CKST18, KL.20, FG18, KL20,
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CS19a, CS19b]. There are roughly two central questions that the researchers are aiming to answer: 1) If
the random initial configuration is one-sided, what is the limiting shape of the invariant random Young
diagram as the system size tends to infinity? 2) If one considers the two-sided BBS (where the initial
configuration is a bi-directional array of balls), what are the two-sided random initial configurations that
are invariant under the BBS dynamics? Some of these questions have been addressed for the basic 1-color
BBS [LLP20, FNRW 18, FG18, CKST18] as well as for the multicolor case [KL.20, KLLO18, Kon20].
More recently, invariant measures of the discrete KdV and Toda-type systems have been investigated
[CS20].

Three important works are strongly related to this paper. In [LLP20], Levine, Lyu and Pike studied
various soliton statistics of the basic 1-color BBS when the system is initialized according to a Bernoulli
product measure with ball density p on the first n boxes. One of their main results is that the length of the
longest soliton is of order log n for p < 1/2, order y/n for p = 1/2, and order n for p > 1/2. Additionally,
there is a condensation toward the longest soliton in the supercritical p > 1/2 regime in the sense that,
for each fixed j > 1, the top j soliton lengths have the same order as the longest for p < 1/2, whereas
all but the longest have order log n for p > 1/2. Their analysis is based on geometric mappings from the
associated simple random walks to the invariant Young diagrams, which enable a robust analysis of the
scaling limit of the invariant Young diagram. However, this connection is not apparent in the general
k > 1 case. In fact, one of the main difficulties in analyzing the soliton lengths in the multicolor BBS
is that within a single regime, there is a mixture of behaviors that we see from different regimes in the
single-color case.

The row lengths in the multicolor BBS are well-understood due to recent works by Kuniba, Lyu
and Okado [KLO18] and Kuniba and Lyu [KL20]. The central observation is that, when the initial
configuration is given by a product measure, the sum of row lengths can be computed via some additive
functional (called ‘energy’) of carrier processes of various shapes, which are finite-state Markov chains
whose time evolution is given by combinatorial R. In [KLLO18], the ‘stationary shape’ of the Young
diagram for the most general type of BBS is identified by the logarithmic derivative of a deformed
character of the KR modules (or Schur polynomials in the basic case). In [KL.20], for the (basic) k-color
BBS that we consider in the present paper, it was shown that the row lengths satisfy a large deviations
principle, and hence, the Young diagram converges to the stationary shape at an exponential rate, in the
sense of row scaling.

The central subject of this paper is the column lengths of the Young diagram for the basic k-color
BBS. We develop two main tools for our analysis, which are a modified version of Greene-Kleitman
invariants for BBS (Section 3.3) and the carrier process (see Definition 2.2). For the independence
model, we obtain the scaling limit of the carrier process as an SRBM [Wil95], and it plays a central role
in our analysis. For the permutation model, the carrier process gives rise to a ‘circular exclusion process’,
which can be regarded as a circular version of the well-known Totally Asymmetric Simple Exclusion
Process (TASEP) on a line (see, for example, [F"18, BFPS07, BFS08]). For its rough description,
consider the following process on the unit circle S'. Starting from some finite number of points, at each
time, a new point is added to S' independently from a fixed distribution, which then deletes the nearest
counterclockwise point already on the circle. Equivalently, one can think of each point in the circle
trying to jump in the clockwise direction. It turns out that this process is crucial in analyzing the
permutation model (Section 4.2), whereas for the independence model, the relevant circular exclusion
process is defined on the integer ring Z,.+; where points can stack up at the same location (Section 3.1).
Interestingly, a cylindric version of Schur functions has been used to study rigged configurations and
BBS [LPS14].

1.4. Organization

In Section 2, we define the carrier process, state the permutation and the independence model for the
k-color BBS, and state our main results. We also provide numerical simulation to validate our results
empirically. In Section 3, we introduce infinite and finite capacity carrier processes for the x-color BBS
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and state the three key combinatorial lemmas (Lemmas 3.1, 3.3, 3.5). In Section 4, we prove our main
result for the permutation model (Theorem 2.1) by using the modified GK invariants for BBS (Lemma
3.5) and analyzing the associated circular exclusion process. In Section 5, we prove Theorem 2.3 (i)
about the stationary behavior of the subcritical carrier process. Next, in Section 6, we introduce the
‘decoupled carrier process’ and develop the ‘Skorokhod decomposition’ of the carrier process. These
will play critical roles in the analysis in the following sections. In Section 7, we analyze the decoupled
carrier process over the i.i.d. ball configuration. In Section 8, we prove Theorem 2.3 (ii) and Theorem
2.4.In Sections 9 and 10, we establish a linear and diffusive scaling limit of the carrier process, which is
stated in Theorem 2.5. Background on SRBM and an invariance principle for SRBM are also provided
in Section 10. In Section 1 1, we prove Theorems 2.6 and 2.7. Lastly, in Section 12, we provide postponed
proofs for the combinatorial lemmas stated in Section 3.

1.5. Notation

We use the convention that summation and product over the empty index set equal zero and one,
respectively. For any probability space (2, F,P) and any event A € F, we let 1(A) denote the indicator
variable of A. Let C%(0, o) denote the space of continuous functions f : [0, ) — R? endowed with
the topology of uniform convergence on compact intervals. We let tridiagonal ;(a, b, ¢) denote the d X d
matrix which has a on its subdiagonal, b on its diagonal and c on its superdiagonal entries, and zeros
elsewhere.

We adopt the notations R* = [0, ), N = {1,2,3, ...} and Z>o = NU {0} throughout. For a sequence
of events (A,)n>1, We say A, occurs with high probability if P(A,) — 1 as n — co. We employ the
Landau notations O(+), (-), ©(-) in the sense of stochastic boundedness. That is, given {a,};”, ¢ R*
and a sequence {W,, }” | of nonnegative random variables, we say that W,, = O(a,) with high probability
if for each & > 0, there is a constant C € (0, co) such that P(W,, < Ca,) > 1 — ¢ for all sufficiently large
n. We say that W,, = Q(a,,) if for each € > 0, there is a ¢ € (0, o) such that P(W,, > ca,) > 1 — ¢ for
all sufficiently large n, and we say W,, = ®(a,,) with high probability if W,, = O(a,) and W,, = Q(a,,)
both with high probability. In all of these Landau notations, we require that the constants ¢, C do not
depend on n.

2. Statement of results

Our main results concern the asymptotic behavior of top soliton lengths associated with the x-color BBS
trajectory for two models of random initial configuration &: (1) k = n and £[1, n] is a random uniform
permutation of length n; (2) « is fixed and &, = i independently with a fixed probability p;, i € Z,1 for
eachx € [1,n].

2.1. The permutation model

For the permutation model, let (Uy)yx>1 be a sequence of i.i.d. Uniform([0, 1]) random variables. For
each integer n > 1, we denote by Vi.,, < V., < --+ < V., the order statistics of Uy, Uy, - -+ ,U,. Then
it is easy to see that the random permutation X" on [n] such that V;., = Usn(;) forall 1 <i < nis
uniformly distributed among all permutations on [n]. Define

& =3"(x)-1(1 <x < n). )

We now state our main result for the permutation model. We obtain a precise first-order asymptotic
for the largest k rows and columns, as stated in the following theorem.

Theorem 2.1 (The permutation model). Let £" be the permutation model as above. For each k > 1,
denote py(n) = pr (&™) and A (n) = A, (™). Then for each fixed k > 1, almost surely,
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1 2
lim n~'py(n) = ———— lim n~ %2, (n) =
n—oo

k(k+1)’ n—oo 1/k_l_l_\/%'

Our proof of Theorem 2.1 proceeds as follows. We first establish a combinatorial lemma (Lemma 3.5)
that associates the soliton lengths and numbers with a modified version of Greene-Kleitman invariants
for BBS. We then utilize the tail bounds on longest increasing subsequences in uniformly random
permutations in Baik, Deift and Johansson [BDJ99] for establishing the scaling limit for the lengths
of the columns. For the row lengths, we use the characterization of soliton numbers as an additive
functional of finite-capacity carrier processes [KL.20]. Such a process becomes an exclusion process on
the unit circle for the permutation model.

&)

2.2. The independence model

To define the independence model, fix integers n,x > 1. Let p = (po, p1,--- , Px) be a probability
distribution on {0, 1, - - - , k}. Let & = &P be the sequence (& )xen Of i.i.d. random variables &, where
P(&x =10) = pi fori=0,1,...,«. (6)

For each integer n > 1, define «x-color BBS configuration £P of size n by
YP=8 11 <x <. (7)

We may further assume, without loss of generality, that p; > 0 for all 1 < i < k. Indeed, if p; = 0 for
some i, then we can omit the color i entirely and consider the system as a («k — 1)-color BBS by shifting
the colors {i +1,--+ ,«k}to{i, -+ ,k— 1}

Through various combinatorial lemmas (see Section 3), we will establish that the soliton lengths
Aj(n) of for the i.i.d. model are closely related to the extreme behavior of a Markov chain (Wy)xen
defined on the nonnegative integer orthant Zf,, which we call the ‘k-color carrier process’. Denote
e; € Z* whose coordinates are all zero except the ith coordinate being 1.

Definition 2.2 (k-color carrier process). Let & := (£x)xen be «-color ball configuration. The (k-color)
carrier process over ¢ is a process (Wy)xen on the state space Q := Z¥ defined by the following

evolution rule: Denoting i := &4 if &x01 € {1,...,k}andi:=k+1if & =0,
e,-—l(i*;tO)ei* ifl <i<«k
Wi =Wy = . o (8)
—1@. #0)e;, ifi =«x+1,

where i, := sup{l < j <i : W,(j) = 1} with the convention sup @ = 0. Unless otherwise mentioned,
we take Wy = 0 and & = &P with density p = (po, - - ., P«)-

In words, at location x, the carrier holds W, (i) balls of color i fori = 1, ..., x. When a new ball of
color 1 < &, < «isinserted into the carrier W, then a ball of the largest available color that is smaller
than &, is excluded from W,; if there is no such ball in W, then no ball is excluded. If £, = 0, then no
new ball is inserted, and a ball of the largest available color that is smaller than &, is excluded from W,.
The resulting state of the carrier is W,,;. We call the transition rule (8) as the ‘circular exclusion’ (since
a ball in the carrier’s possession is excluded from the carrier upon the insertion of a new ball according
to the circular ordering). One can also view the carrier process as a multitype queuing system, where
W, denotes the state of the queue and W, (i) is the number of jobs of ‘cyclic hierarchy’ i to be processed.

A large portion of this paper will be devoted to analyzing scaling limits of the carrier process W,
over the i.i.d. configuration £P. In this case, Wy is a Markov chain on the state space of the nonnegative
integer orthant Q. See Figure | for an illustration.
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# color 2 balls | ™

D2

Po

Po P1 # color 1 balls

Figure 1. State space diagram for the carrier process Wy for k = 2. Red arrows illustrate the transition
kernel at the ‘interior’ (gray) and ‘boundary’ (green) points in the state space. A single excursion
(starting and ending at the origin) of ‘height’ 8 is shown in a blue path with arrows.

Theorem 2.3 states the behavior of the carrier process in the subcritical regime po >
max(pi,-- -, px). Define a function 7 : Q — R by

n(nl,nz,---,nk)=]_[(1—p—0)([’)’—;) . ©)

i=1

This is a valid probability distribution on Q when pg > max(py,--- , p,) since
-1
Z Zﬂ( ) —]_[(1— ) € (0, ). (10)
n;=0 n,=0 i= i=1 Po
Note that 7 is the the product of geometric distributions of means p;/(pg — p;) > Ofori=1,...,«.
Theorem 2.3 (The carrier process at the subcritical regime). Let p* := max(py,-- -, px) and suppose

po > p*. Let r denote the multiplicity of p* (i.e., number of i’s in {1, ...,k} s.t. p; = p*).

(i) (Convergence) The carrier process Wy is an irreducible, aperiodic and positive recurrent Markov
chain on Z¥, with ©t in (9) as its unique stationary distribution. Thus, writing drv for the total
variation distance and denoting the distribution of Wy by n., then

lim dry (nx,n) = 0. (11)
X—00

(ii) (Multidimensional Gambler’s ruin) Let T\ denote the first return time of Wy to the origin and let
hy := maxo<x <7, ||Wx|l1- Then for all N > 1, there exists a constant § > 0 such that

s\ N s\ N
5(N+r_1)(p—) < P(h > N) < C(N”_l)(p—) , (12)
r—1 Do r—1 Po

K—r
where C = 1 ifr = kand C = (m) if r < k with p® being the second largest value among
Dls--vs P

By using Theorem 2.3, we establish sharp scaling limit of soliton lengths for the independence model
in the subcritical regime, which is stated in Theorem 2.4 below. (See Section 1.5 for a precise definition
of Landau notations.)

Theorem 2.4 (The independence model — Subcritical regime). Fix « > 1 and let £™P be as the i.i.d.
model above. Denote A;(n) = A;(§™P), p* := max<i<« pi» and r := {1 <i <« : p; = p*}|. Suppose
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po > p* and denote 0 := p*[po. Then for each fixed j > 1,

Aj(n) =loggn+ (r —1)logylogn+O(1). (13)
Furthermore, denote v, := (1 + 6,)logy(on/(r —1)!), where o = :'(:1( - ij—(‘)) and 6, =
r—1)logl on/(r-1)!)+log(r-1)!
(r=1)log Oglgg(an%rq;!” og(r=U! Then for all x € R,
exp(=607") < liminfP(2;(n) < x + v,) (14
n—oo N
-1
C J gfk(xfl)
; . _ —(x-1) -
Shrllsolij(/lj(n) <x+vy) Sexp( (r_l)!e );)k!(r—l)!’ (15)

where 6 > 0, C > 1 are constants in Theorem 2.3.

Next, we turn our attention to the critical and the supercritical regime, where py < max(py,--- , p«)-
In this regime, the carrier process does not have a stationary distribution, and we are interested in
identifying the limit of the carrier process in the linear and diffusive scales. A natural candidate for the
diffusive scaling limit (if it exists) would be the semimartingale reflecting Brownian motion (SRBM)
[Wil95], whose definition we recall in Section 10. Roughly speaking, an SRBM on a domain § € R* is
a stochastic process W that admits a Skorokhod-type decomposition

W=X+RY, (16)

where X is a k-dimensional Brownian motion with drift 8, covariance matrix X and initial distribution v.
The ‘interior process’ X gives the behavior of W in the interior of S. When it is at the boundary of S, it
is pushed instantaneously toward the interior of S along the direction specified by the ‘reflection matrix’
R and an associated ‘pushing process’ Y. We say such W is a SRBM associated with (S, 6, %, R, v).
If R = I — Q for some nonnegative matrix Q with spectral radius less than one, then such W is
unique (pathwise) for possibly degenerate X when § = RY [HR81]. If X is nondegenerate and S is a
polyhedron, a necessary and sufficient condition for the existence and uniqueness of such SRBM is that
R is ‘completely-S’ (see Definition 10.2) [Wil95, KW07].

A crucial observation for analyzing the carrier process in the critical and supercritical regimes is the
following. Of all the x coordinates of W, some have a negative drift and some others do not. We call an
integer 1 < i < k an unstable color if p; > max(p;41,- -+, Pk, po) and a stable color otherwise. Since
balls of color i can only be excluded by balls of colors in {i + 1, .. ., k, 0}, then the coordinate W, (i) is
likely to diminish if the color i is stable but not if i is unstable. Denote the set of all unstable colors by
C? ={ay, - ,a,} witha; <--- <a,andletC? :={0,1,---,k} \ C denote the set of stable colors.
(See Figure 8 for illustration.) By definition, we have

Pay ZPa 2" 2 Pa, 2 Payy = PO- (17

Now, we will construct a new process X,, which we call the ‘decoupled carrier process’ (see Section
6.1), that mimics the behavior of W,, but the values of X, on the unstable colors are unconstrained and
thus can be negative. Since Wy is confined in the nonnegative orthant Z5 ) but X, is not, we need to
add some correction process to X, that ‘pushes’ it toward the orthant Z£ ; whenever X, has some of its
coordinates going to negative. More precisely, in Lemma 6.3, we identify a ‘reflection matrix” R € R¥*¥
and a ‘pushing process’ Y, on Z* such that

W,=X,+RY, forx >0, (18)
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p =(4/11,4/11, 3/11) p=(1/3,1/3,1/3) p=(4/11,3/11,4/11)
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Figure 2. Simulation of the carrier process Wy in diffusive scaling for k = 2, n = 2 x 10°, at three
critical ball densities (left) p = (4/11,4/11,3/11), (middle) p = (1/3,1/3,1/3) and (right) p =
(4/11,3/11,4/11). In all cases, the process converges weakly to a semimartingale reflecting Brownian
motion on R2>0 whose covariance matrix is nondegenerate in the middle and degenerate in the other two
cases.

where Yy = 0, and for each i € {1, ..., «}, the ith coordinate of Y, is nondecreasing in x and can only
increase when W, (i) = 0. We call the above as a Skorokhod decomposition of the carrier process (Our
definition is motivated by the Skorokhod problem; see Definition 10.3.) This and the classical invariance
principle for SRBM [RW88] are the keys to establishing the following result on the scaling limit of the
carrier process.

Theorem 2.5 (Linear and diffusive scaling limit of the carrier process). Suppose pg < max(py,--+ , px).
Let ) < --- < a, as before and define

Il:(ﬂla-~-’/'lK) :zzeaj(paj_pajﬂ), (19)
j=1

where we let p,,., = po.

(i) (Linear scaling) Almost surely,

lim x‘lWx = lim x‘l(max W:(i);i=1,...,k| = pu. (20)

X—00 X—00 0<t<x
(ii) (Diffusive scaling) Let (W), cRs, denote the linear interpolation of (Wy —xpt)xen. Then asn — oo,
(xVPWy 0<t<1)= W in C([0,1]), (21)

where W is an SRBM associated with data (S,0,%,R,8) (see Definition 10.1) with S :=
{(x1,...,x¢) €R® 1 x; 2 0 if u; = 0}, X the limiting covariance matrix (possibly degenerate) in
(177), R := tridiag, (0, 1, —1), and 8¢ the point mass at 0.

In Figures 2 and 3, we provide simulations of the carrier process W, = (W, (1), W,(2)) for « = 2
in various regimes, numerically verifying Theorem 2.5. In Figure 2, we show the carrier process in
diffusive scaling (n~'/?) at three different critical ball densities p. The carrier process in diffusive scaling
converges weakly to an SRBM in R2>0, whose covariance matrix depends on p and can be degenerate.
For instance, at p = (4/11,4/11,3/11), W,(2) is subcritical (since p, = 3/11 < 4/11 = py), and
W, (1) is critical, so the SRBM degenerates in the second axes.

In Figure 3, we show the carrier process in diffusive scaling at three different supercritical ball
densities p. The carrier process has a nonzero drift g = (u;, uz) € R2>0. If w1, o > 0, then the centered
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p=/11,4/11,4/11) p=(3/11,511,3/11) p=(211,511,4/11) P=(3/11,6/11,2/11)
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P =(3/11,4/11,4/11) (centered) P = (3/11,5/11, 3/11) (centered) P = (2/11,5/11, 4/11) (centered) P =(3/11, 6/11, 2/11) (centered)
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Figure 3. Simulation of the carrier process Wy in diffusive scaling for k = 2, n = 2 x 10°,

at four supercritical ball densities (a) p = (3/11,4/11,4/11), (b) p = (3/11,5/11,3/11), (c)
p = (2/11,5/11,4/11) and (d) p = (3/11,6/11,2/11). The processes grow linearly at least in one
dimension (the top row shows uncentered processes in diffusive scaling). As shown in the second row,
after centering by the mean drift u, the processes converge weakly to semimartingale reflecting Brow-
nian motion on domains (a) Rso X R, (b) R X R, (¢) R? (no reflection) and (d) R x Rsq (with a
degenerate covariance matrix).

carrier process Wy — xu converges weakly to a 2-dimensional Brownian motion in diffusive scaling. If
either u; or uy equals zero, then the diffusive scaling limit is an SRBM on R3¢ X R or R X R0, which
is the domain § in the statement of Theorem 2.5 (ii). For instance, for p = (3/11,6/11,2/11) as in
Figure 3 (d), the SRBM is on domain S = R X R ¢ and has a degenerate covariance matrix, since W, (2)
is subcritical and vanishes in the diffusive scale.

Using the linear and the diffusive scaling limit of the carrier process in Theorem 2.5, we obtain a
sharp scaling limit of soliton lengths for the independence model in the critical and subcritical regimes.
These results are stated in Theorems 2.6 and 2.7 below.

Theorem 2.6 (The independence model — Critical regime). Suppose p* = po. Then for each fixed
J =1, 2j(n) = ©(yn). Furthermore, let ¥ be a k X k covariance matrix defined explicitly in (177) and
R = tridiag,, (0, 1, —=1). Let W be a semimartingale reflecting Brownian motion associated with data
(R¥,0,%, R, 6¢) (see Definition 10.1). Then as n — oo,

>0°
n~221(n) = sup [W]ls, (22)
where = denotes weak convergence.
Theorem 2.7 (The independence model — Supercritical regime). Suppose p* > po.

(i) (Top soliton length in the supercritical regime) It holds that

a.s.

lim n'A1(n) 2 p*—po and  A(n) = (p* - po)n +O(Vn). (23)
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More precisely, let ) < - -+ < a, denote the unstable colors and let a1 := 0. Let p = (uy, . . . , ty)
beasin(19)andJ = {i : p; > 0}. Let W = (W', ..., W¥) denote the SRBM in Theorem 2.5
(ii). Then .
) 1 —(p, —
S Wi1) < tim inp 2L = P2 = P (24)
‘= n—oo \/ﬁ
A —(p« —
n—o00 vﬁ
< Z B/(1) + sup Z W), (26)
; 0o<v<l .
jeJ je{l,..., kK P\J
where < denotes stochastic dominance and B = (Bl, ..., B¥) is a Brownian motion in R* with

zero drift and the same covariance matrix with V.

(ii) (Subsequent soliton lengths in the simple supercritical regime) Suppose r = 1. Then for any fixed
J =2, Aj(n) = ©(log n) with high probability.

(iii) (Subsequent soliton lengths in the nonsimple supercritical regime) Suppose r > 2. Then for any
fixed j > 2, 1;(n) = ©(~\/n) with high probability; that is, for each & > 0, there exists constants
c1, ¢ > 0 such that li,ﬂigfp(ﬁj(n)/‘/ﬁ €[c,e]) 2 1-e

Multiple remarks on Theorems 2.4-2.7 are in order. These results extend the ‘double-jump’ phase
transition on soliton lengths for the x = 1 case established by Levine, Lyu and Pike [LLP20] to the
multicolor case. As in the k = 1 case, we find that there exist three regimes — subcritical (1;(n) =
®(logn)), critical (1;(n) = ©(+/n)) and supercritical (11(n) = ©(n)) — depending on whether the
maximum ball density p* = max(py,..., px) exceeds the empty box density po. However, we find
that the scaling behavior of the soliton lengths inside each regime is significantly more nuanced in the
multicolor case than in the single-color case.

In the subcritical regime p* < po, we find all top soliton lengths A;(n) for j > 1 are concentrated
around log, n + (r — 1) log, logn, where 6 = p*/po and r denotes the multiplicity of the maximum
positive color p*, and the tail of 1,,(n) has a Gumbel-type tail distribution. While this scaling coincides
with that in the « = 1 case for r = 1, if r > 2, then the top solitons are an asymptotically ‘a tad’ longer
by (r — 1) log, log n, which is caused by the competition between multiple maximal colors.

In the critical regime p* = pg, we find that 1;(n)/+/n = D, where the distribution of the nonde-
generate random variable D depends on a SRBM on the orthant RY, with zero drift and an explicit
covariance matrix 2. This is the same SRBM to which the entire carrier process converges weakly in
diffusive scaling as in Theorem 2.5. For instance, if p* is uniquely achieved, then the SRBM W is de-
generate in all but one dimension. In particular, for « = 1, our result recovers the corresponding result in
[LLP20]. In general,  can depend on the entire p, capturing the intertwined interaction between balls
of all colors in the multicolor case.

In the supercritical regime p* > po, Theorem 2.7 shows that 1 (n)/n — p* — po almost surely and
the fluctuation of A;(n) about its mean is of order 4/n. While a central limit theorem (CLT) for A (n)
in the supercritical regime was shown in [LLP20] for the x = 1 case, we find in the multicolor case that
the distribution of the fluctuation of 1;(n) does not always satisfy CLT. More precisely, the following
corollary shows that CLT holds for A;(n) if and only if the ball density is strictly decreasing on the
unstable colors. (Recall (17).)

Corollary 2.8. (Fluctuation of A, in the supercritical regime) Keep the same setting as in Theorem 2.4.
Suppose supercritical regime p* > pg. Let a) < --- < a, denote the unstable colors.

(i) Further assume po, > -+ > pq,, Then 1 (n) satisfies the following central limit theorem:

A1(n) = (p« — po)n
N

= N0, IZ]l). 27)
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where the limiting distribution is the normal distribution with mean zero and variance ||Z||| for £
the covariance matrix in Theorem 2.5.
(i) Ifpa; = Pay,, Jor some 1 < j <r—1, then

Elim inf 2100 = (P = Po)n
n—oo \/ﬁ

In particular, A1(n) does not satisfy the central limit theorem.

> 0. (28)

Indeed, suppose pq, > - -+ > pq, asin Corollary 2.8 (i). Then Theorem 2.5 states thatx~1/ 2(Wx — ux)
converges weakly to the (nonreflecting) Brownian motion in R with covariance matrix X. Hence, in
this case, Theorem 2.7 (i) immediately implies that

A1(n) = (p« — po)n S i
7 = ;B (1), (29)

where B = (Bl, ..., B%) is a Brownian motion in R¥ with zero drift and covariance matrix X in
Theorem 2.5. Since B(1) is a standard normal vector with mean zero and covariance matrix X, the result
in Corollary 2.8 (i) follows.

If we are in the situation as in Corollary 2.8 (ii), then some of the consecutive unstable colors have
the same ball density (i.e., pa; = pa;,,)- For every such a;, the corresponding coordinate has to remain
nonnegative in the limiting SRBM. So in this case, the fluctuation of 4; about its mean in the diffusive
scaling has a positive expectation. As an example, consider the case p = (po, p1, p2) With p; > p2 = po
(see Figure 3 (b)). In this case, the limiting SRBM W = (W, Wz) is on the domain R XR 5, so the lower
bound W!(1) + W2(1) on the fluctuation in (24) has a positive expectation. This can be understood for
the following reasons. Since p; > max(pg, p2), the number of color 1 balls in the carrier grows linearly
and makes the dominant contribution (of order n) to 1;(n). However, the number of color 2 balls in
the carrier still contributes to A (n) by order v/n since p; = po. While the fluctuation of the number of
color 1 balls around its mean (p| — po)n has mean zero, the contribution of color 2 balls of order v/ is
only visible in the diffusive scaling, and it is almost always of a positive amount.

Another interesting behavior of the multicolor BBS is the order of subsequent soliton lengths, A ;(n)
for j > 2, in the supercritical regime, which depends drastically on the multiplicity r of the maximal
ball density p*. That is, Aj(n) for all j > 2 is of order logn if r = 1, but they are of order vn if
r > 2. The former case agrees with the results for the « = 1 case in [LLP20]. There, it was shown that
Az(n) comes from the subexcursions of the carrier process below its running maximum. The height of
such subexcursions has exponential tails, so we have order log(n) as the order of the maximum of n
subexponential random variables. However, if » > 2 in the multicolor case, the discrepancy between
the number of balls of two maximal colors is of order 4/n and contributes to A(n) (see the proof of
Theorem 2.7 (iii)). We remark that a duality between the subcritical and the supercritical regimes for
k = 1 was established in [LLP20], in the sense that A ;,; in the supercritical regime corresponds to 4; in
the subcritical regime for j > 1. Our results confirm a similar correspondence still holds asymptotically
for the simple (» = 1) supercritical regime; but A in the nonsimple (» > 2) supercritical regime
corresponds to 4; in the critical regime.

3. Key combinatorial lemmas
3.1. Infinite capacity carrier process and soliton lengths

The definition of k-color BBS dynamics we gave in the introduction involves the nonlocal movement of
balls. It can instead be defined using a ‘carrier’, which gives a localized characterization of the process
and reveals a number of important invariants that fully determine the resulting solitons. For the simplest
case k = 1, imagine a carrier of infinite capacity sweeps through the time-¢ configuration £(*) from the
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Figure 4. Time evolution of the infinite capacity carrier process (I'y)xso over the T-color initial
configuration &, producing new configuration &' consisting of existing ball colors. For instance, &5 = 2,
I =12,0,0,---], and &) = 5. Notice that £’ can also be obtained by the time evolution of the 7-color
BBS applied to .

left, picking up each ball it encounters and depositing a ball into each empty box whenever it can. We
will see that after we run this carrier over £, the resulting configuration is in fact £*!). Moreover,
the maximum number of balls in the carrier during the sweep is in fact the first soliton length ;.

Now we introduce the infinite-capacity carrier process and the carrier version of the x-color BBS
dynamic. Denote

B = {x €{0,1,--- ,K}N | x is nonincreasing and has finite support}, (30)

which is the set of ‘reversed’ semi-standard Young tableaux of shape 1 X co and letters from {0, .. ., x}.
Namely, an element in this set is an infinite string of letters consisting of finitely many nonincreasing
nonzero letters followed by an infinite string of zeros. An element x in B, describes the state of the
infinite-capacity carrier. If the carrier at state x encounters a new ball of color y, it produces a new
carrier state x” and a new ball color y’ according to the ‘circular exclusion rule’: Inserting y into X, y’
is the largest letter in X with y’ < y, and X’ is obtained by replacing the leftmost letter y' in X with y.
More precisely, define amap W : B, X {0,1,--- ,k} = {0,1,--- ,k} X B, (X,y) — (¥',X’) by

(i) Suppose y > 1 and denote i* = min{i > 1 | x(i) < y}. Then y’ = x(i*) and
X' (i) =x()1G # i)+ y1( =i") Vi > 1. 31
(ii)) Suppose y = 0. Then y’ = x(1) = max(x) and
x'(i) =x(i+1) Vi > 1. (32)

Fix a k-color BBS configuration ¢ : N — {0, 1,--- , «}. Fix [y € Bw, and recursively define a new
k-color BBS configuration £’ and a sequence (I'y)y>0 of elements of B, by

(§;+1’ Cyv1) = Y(Tx, Exv1) Vx € N. (33)

We call the sequence (I'y)x >0 the infinite capacity carrier process over &. The carrier state Iy is deter-
mined by the balls in the interval [1, x] (see Figure 4 for an illustration). Unless otherwise mentioned,
we will assume I'y = 0 = [0,0,0,---] € Bs. The induced update map & +— &’ turns out to coincide
with the k-color BBS evolution (1). See Remark 3.4 for more details.

It is important to note that the carrier process (W, ), en We introduced in (8) can be derived from the
infinite-capacity carrier process (I'y)yen above by simply recording the number of balls of each color
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i=1,...,k Thatis,
Wy =(m(Ty),...,m(Ty)) forallx >0, (34)

where m; (I"y) denotes the number of balls of color (letter) i in I'y fori =1,..., .
Lemma 3.1 below states that the first soliton length 4; equals the maximum number of balls of
positive colors in the associated carrier process.

Lemma 3.1. Suppose the initial k-color BBS configuration ¢ has finite support. Let (Wy)y >0 and
(T'y)x>0 be as before. Then

A1(€) = max ||Wy||; = max(# of positive letters inTy). (35)
x>0 x>0
For « = 1, it is possible to precisely characterize all subsequent soliton lengths A5, A3, ... by applying

the ‘excursion operator’ to the carrier process multiple times and taking maximum [LLP20]. Roughly
speaking, given the 1-dimensional carrier process W = (Wy)x»0 for k = 1, which starts at 0 and takes
value O for all large x, let £(W) denote the new lattice path that describes the excursion heights above
the record minimum of W away from the rightmost global maximizer of W. Then A, = max(E(W)), and
A3 = max(E%(W)), and so on. We currently do not have a similar x-dimensional excursion operator for
exactly describing the subsequent soliton lengths for the general multicolor case. However, we provide
a lower bound on A; in terms of the jth largest ‘excursion height’ of the carrier process, which is enough
to obtain sharp asymptotics for A; in the subcritical regime.
We introduce some notation. Let 0 = (0,0, ---,0) € (Zx()* denote the origin, and write

M, = Zf 1(Wy = 0) (36)

for the number of visits of W, to 0 during [1, n]. For each k > 1, let Ty denote the time of the kth visit
of W, to 0 and set Ty = 0. We say that the trajectories of W, restricted to the time intervals [T} _1, Tk ]
between consecutive visits to 0 are its excursions. Also note that M,, defined at (36) equals the number
of complete excursions of the carrier process during [1,n]. We will define the height of the carrier at
site x by

”Wx”l =Wx(1)+"’+Wx(K)7 37

which equals the number of balls of positive color that the carrier possesses at site x. Define the kth
excursion height hy and height of the final meander r,, by

hy = max_ [[Wlls, rp=_max |[Wll. (38)
Ti—1 <t <Ty T, <t<n
Denote by hy(n) > ho(n) > --- > hy, (n) the order statistics of the excursion heights Ay, - - - , hag,. We

then have the following lemma.

Lemma 3.2. Soliton decomposition of & is obtained as the union of the soliton decomposition of the
support of each excursion of the carrier process over &. In particular, for j,n > 1, 1;(n) > h;(n).

Proofs of Lemmas 3.1 and 3.2 are relagated to Section 12.

3.2. Finite capacity carrier processes and soliton numbers

In [KL20], it is shown that the row lengths of the invariant Young diagram of any x-BBS trajectory can
be extracted by running carrier processes of finite capacities, as we will summarize in this subsection.
This will provide one of the key combinatorial lemmas in the present paper.

https://doi.org/10.1017/fms.2024.74 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.74

16 J. Lewis et al.

&2 0|2(5|7|3|2|6|1|0|2|5|5|7|6|0(0|6|2|3|]0|0|O0
& 0025|003 |7|6|1|2|2|5|5|7|6|0|0[2|6|3|0

Figure 5. Time evolution of the capacity-3 carrier process (I'x)x >0 over the T-color initial configuration
&, with new configuration &' consisting of existing ball colors. For instance, & =2, T = [2,0,0], and
&, = 5. Notice that while ¢ is the same as in the example in Figure 4, the new T-color BBS configuration
&’ is different. In this case, the map & — &' does not agree with the T-color BBS time evolution.

First, fix an integer parameter ¢ > 1 that we call capacity. Denote
BC :{[Xl,"' 7xC] € {071’ aK}C |x1 = ZxC}9 (39)

which can also be identified as the set of all (1x¢) semistandard tableaux with letters from {0, 1, - - - , x}.
Deﬁneamap lI‘C . BC X {O’ 15“ . 5K} - {09 1"“ ’K} XBC9 ([x13“' :xc]’)’) and (y” [‘xi’. o 9‘x£‘]) by
the following ‘circular exclusion rule’:

(i) Suppose y > x. and denote i* = min{i > 1 | x; < y}. Then y" = x;+ and
[x{7' o 7x£'] = [x]"“ ’xi**l7y7'xi*+l5. o ?xC]‘ (40)

(ii) Suppose x. > y. Then y’ = x| and

[x{, x5, -, xl] = [x2,- -+ ,xe, ). 41)
Fix a k-color BBS configuration ¢ : N — {0,1,--- ,«}. Let Iy = [0,--- ,0] € B, and recursively
define a new «-color BBS configuration ¢’ and a sequence (I'y )y >0 of elements of B, by

(‘f;_,_l, Cov1) = We(Dx, Exv1) Vx € N. (42)

We call the sequence (I'y), >0 the capacity-c carrier process over &. See Figure 5 for an illustration.
The following lemma, which is proven in [KL.20], gives a closed-form expression of the row sums
of the invariant Young diagram:

Lemma 3.3. Let (£),50 be a k-color BBS trajectory such that £° has finite support. For each ¢ > 1,
let (Ty.c)x0 denote the capacity-c carrier process over €. Then for all k > 1 and t > 0, we have

PrE) + 4 pr(€0) = Y 1 > minTooip), (43)
x=1

where min I'x_1.x denotes the smallest letter in T'x_.x.

Proof. See equation (13) and Proposition 4.5 in [KL20]. We also provide a self-contained proof in
Section 12.2. O

Remark 3.4. It is well-known that, if the capacity ¢ > 1 is large enough compared to the number of
balls of color > 1 in the system, then the induced update map & — &’ agrees with the x-color BBS time
evolution (see, for example, [HKTO1]). Also, once the capacity c is large enough, the capacity-c carrier
process is equivalent to the infinite capacity carrier process in the sense that they always contain the
same number of each positive letter. Hence, it follows that the map & — &’ defined in (33) coincides with
the k-color BBS time evolution defined in the introduction. In other words, the x-color BBS dynamic
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can be equivalently defined by repeatedly applying the infinite-capacity carrier process to the current
ball configuration, analogously as in the « = 1 case in [LLP20].

3.3. Modified Greene-Kleitman invariants for BBS

One natural way to associate a Young diagram with a given permutation is to use the celebrated Robinson-
Schensted correspondence (see [SagO1, Ch. 3.1]), which gives a bijection between permutations and
pairs of standard Young tableaux of the same shape. For each permutation o, record the common
shape of the Young tableaux as Ags (o). Let pR°(0) and /IJRS (o) denote its ith row length and its jth
column lengths, respectively. According to Greene’s theorem [Gre82], the sum of the lengths of the first
k columns (resp. rows) of Ags(o) is equal to the length of the longest subsequence in ¢ that can be
obtained by taking the union of k decreasing (resp. increasing) subsequences. That is, for each k > 1,

plfs (o) +---+ plljs((r)) = max(“_l k increasing subsequences of o") (44)
Alfs (o) +---+ /11,35(0')) = max(“_l k decreasing subsequences of o-)). (45)

The quantities on the right-hand sides are called the Greene-Kleitman invariants.

If we consider the x-color BBS trajectory started at £°) = ¢-1([1, n]), then we obtain another Young
diagram A (o) := A(£©), whose j™ column length equals the j™ longest soliton length. Then a natural
question arises: Do the sums of the first k rows and columns of A(co) relate to some type of Greene-
Kleitman invariants? For the rows, we find that the correct modification is to localize the length of an
increasing sequence into the number of ascents in a subsequence. However, for the columns, it turns out
that we just need to impose that the k decreasing subsequences be noninterlacing. In fact, in Lemma
3.5, we establish these modified Greene-Kleitman invariants for BBS in the more general setting when
o is an arbitrary «x-color BBS configuration with finite support, where having 0’s and repetitions are
both allowed.

Leté: N — {0,1,---,x} be a k-color BBS configuration with finite support. For subsets A, B C N,
denote A < B if max(A) < min(B). We say A, B are noninterlacing if A < Bor B < A. We say ¢ is
nonincreasing on A C Nif &, > &, for all a1, a, € A such that a1 < a,. Denoting the elements of A

by a; < ap < -- -, define the number of ascents of & in A by
|A]
NA(A,§) =1+ ) 1, , < £a). (46)
i=2
Moreover, define the penalized length of A with respect to & by
max A
L(A,¢) = ||A] - Z 14 = O)ll(f is non-increasing on A). 47
i=min A

Note that the summation in (47) is over the interval [min A, max A] N Z, which may contain A properly.

Lemma 3.5. Let (£),50 be a k-color BBS trajectory such that £ has finite support. Then for each
k,t >0, we have

k
p1ED) +- 4 i (6 = Alu@ggkzN%NA(Ai,§<’>), (48)
A E) 4+ (0 = Al<;p3§ng;L(Ai,§<f>). (49)

The proof of Lemma 3.5 may be found in Section 12.2.
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4. Proof of Theorem 2.1

In this subsection, we prove our first main result, Theorem 2.1. Let £" be a uniformly chosen random
permutation of the set {1,2,--- ,n}, and let £" = £"1([1, n]) be the random n-color BBS configuration
induced from . Let A (n) = A (£") denote the length of the k' longest soliton in &”.

4.1. Proof of Theorem 2.1 for the columns

Our proof of Theorem 2.1 for the columns relies on Lemma 3.5 and the sharp asymptotic of longest
decreasing subsequence of a uniform random permutation due to Baik, Deift and Johansson [BDJ99].

Proof of Theorem 2.1 for the columns. Fix an integer k > 1. It suffices to show that, almost surely,

k
lim n~1/2 Z Ai(n) = 2Vk. (50)
n—oo pa

For each integer k > 1, let L(k) denote the length of the longest increasing subsequence in a uniformly
random permutation of k letters. By Lemma 3.5, recall that

k
A(n)+ -+ Ak (n) =maX{Z L(A;, M)A < <A C [l,n]}. 5D

i=1

We view a random permutation as a ranking among n i.i.d. Uniform([0, 1]) random variables
Up,---,U,. If A C {1,---,n}, then the ranking of U; for i € A gives a uniform random permuta-
tion of A, which we call a random permutation of [n] restricted on A. Moreover, one can also see that
if we restrict a random permutation on multiple disjoint subsets, then these smaller permutations are
independent. Hence, if A| < --- < Ay are noninterlacing subsets of [0, n], then the permutations re-
stricted on these subsets are independent. Moreover, since the random permutation model £” does not
assign color 0 on any site in [0, n], for any increasing subsequence A C [0, n] and its supporting interval
I =[min A, max A],

L(A,£") = |A] < |I] = L(1,&") £ L(|1)). (52)

It follows that

i 2(n) & max{zk: L(n;)
i=1 i=1

Baik, Deift and Johansson [BDJ99] proved the following tail bounds for L(n) (see also equations
(1.7) and (1.8) in [BDJ99] or p. 149 in [Rom15]): There exist positive constants M, ¢, C such that for
allm > 1,

k
Z n; =n, L(ny),...,L(ng) are indepenent}. (53)

i=1

(Lower tail): P(m—1/6(L(m) —-2vm) < —z) < Cexp(—ct®) forallt € [M,2m']; (54)

(Upper tail): P(m*I/G(L(m) —-2vm) > t) < Cexp(—ct3/5) forallz € [M,m>% —2m'?].  (55)
Taking ¢ = (log m)?, we obtain

]P’(|L(m) —2vm| > (log m)2m1/6) < 2C exp(=c(log m)®/%). (56)
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Fix & > 0. Note that if m > £+/n, then for any fixed d > 0,
P(|L(m) _ovm| > (logm)2m1/6) = 0(n ). (57)

Now, denote the random variable in the right-hand side of (53) by X. We write X = max(Y, Z), where

Y =max{L(n;)+---+L(ng) : ny +---+ng =n,n; > e\n for all i}, (58)
Z =max{L(n)) +---+L(ng) :ny +---+ng =n,n; <evn for at least one i}. (59)
Denote A := {(ny,...,nx) : ny+---+ng =n, n; > eynforalli}. Foreachn = (ny,...,n;) € A,

denote Y, := L(n;) + - - - + L(ny) and M;, := 2(4/n1 + - - - + y/nx). Then by a union bound and (57),
P(|Y, — M| > k(logm)*m'/®) = 0(n™9). (60)

Note that ¥ = max;c4 Y}, and since there are at most nk partitions of [n] into k intervals, |.A| < n*. So
by a union bound, we have

_ _ 2_1/6\ _ —-d
P(|Y ryt}}ng,A)s;P(lYn M,| > k(log m)®m )—O(n ) 61)

for any fixed d > 0. The deterministic optimization problem

maﬁM,7 =max{2ny + - +2vng 1 ny+---+ng =n,n; > eVnV i} (62)
ne

achieves its maximum when Z{;l |n; — (n/k)| is minimized, in which case we have |n; — (n/k)| < 1 for

all 1 <7 < k. Denoting the maximizer as ny, - - - , ng, it follows that, forall 1 <i < k,
Ny L — (63)
Vi +nfk — 2y(n/k) =1
So this yields, for all sufficiently large n > 1,
P(|Y—2w@| > 2k(1ogn)2n1/6) (64)

k

V(n/k) =1

< ]P’(lY —2Vkn| > k(logn)*n'/® + ) =0(n %

for any fixed d > 0.
Next, if n; < e4/n, then we use the trivial upper bound L(n;) < n; < ev/n; otherwise, if n; > e/n,
we continue to use the tail bound for |L(n;) — 24/n;| in (57). Hence,

P(Z > 24/(k — ) + 2k (log n)2n"/® + ksx/ﬁ) =0, (65)

where the first term bounds the contribution from at most k — 1 intervals of size > &4/, the second term
is given by the BDJ tail bound in (57) and the last term gives a trivial bound for intervals of size < e+/n.
Hence, if we choose ¢ < 2/k(Vk -1+ \/E), then (64) and (65) give us
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States
Circular .
exclusion

Iy, U1 | V) (Tey1,Uey2) Livz

Figure 6. Evolution of a 4-p0mt circular exclusion process. The states in the unit circle are ordered
clockwise. Each newly inserted point (black dot) annihilates the closest preexisting point in the coun-
terclockwise direction (light blue dot).

P(Z>7Y) < P(Y < 2Vkn + 2k (log n)2n1/6) (66)
+P(Z > 24/(k = 1)n + 2k(log n)?*n'/® + %)
=0(n™)

for each fixed d > 0. Now note that, for each ¢ > 0,

]P( (%gai(m) -2k

Hence, by choosing ¢ = 1/log n, for any fixed d > 0, (64) and (66) yield

> t) - P(| max(Y, Z) — 2Vkn| > m/ﬁ) 67)

< P(|Y —2Vkn| > z\/ﬁ) +P(Z > Y).

k
1 1
Pl{[—= ) a(n)|-2Vk|> — | =0@n™). 68
((WZ 1<n>) VK| > o] = 0™ (68)
Then the assertion follows from the Borel-Cantelli lemma. O

4.2. Circular exclusion process and the row lengths

In this subsection, we prove Theorem 2.1 for the rows. By Lemma 3.3, this can be done by analyzing
the carrier process over the uniform random permutation £". Let X := (U, ),>] be a sequence of i.i.d.
Uniform( [0, 1]) random variables. For each capacity k > 1, we may define the carrier process (I'x)x>0
over X using the same ‘circular exclusion rule’ we used to define the map ¥ in Section 3.2. More
precisely, denote Cx = {(x1,--- ,xx) € [0,1]% | x; > --- > x¢}. Define a map ¢ : Cx x [0,1] — Cx,
e, ok, y] o [, oo, xp] by

(i) If y > xg, then denote i* = min{i > 1 | x; < y} and let

['xi7 e 7-x],(] = ['xl’ X1 Y XiFl, 7-xk]' (69)
(i) If xx >y, then [x], -~ ,x;] = [x2,- -+, Xz, ¥].
Then the k-point circular exclusion process (I'x)x>0 over X is defined recursively by

x+l ¢(Fx’ Ux+l) (70)

See Figure 6 for an illustration. Note that (I'y),>o forms a Markov chain on state space Cx. When
Iy =1[0,0,---,0], we call (I'y)x>0 the carrier process over X with capacity k.
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In the following lemma, which will be proved in Section 4.3, we show that the k-point circular
exclusion process converges to its unique stationary measure &, which is the distribution of the order
statistics from k i.i.d. Uniform([0, 1]) variables.

Lemma 4.1. Fix an integer k > 1 and let (I'y)x>0 denote the k-point circular exclusion process with
an arbitrary initial configuration.

(i) Let it denote the distribution of the order statistics from k i.i.d. uniform random variables on [0, 1].
Then 1 is the unique stationary distribution for the Markov chain (I'y)x>0.

(ii) For each x > 0, let my denote the distribution of T'x. Then my converges to © in total variation
distance. More precisely,

I Lx/k]
dry (nx,m) := Ags[l(l)g]k |7 (A) = m(A)] < (1—m) ) (71)
where the supremum runs over all Lebesgue measurable subsets A C [0, 1]¥.
Now we derive Theorem 2.1 for the row asymptotics.
Proof of Theorem 2.1 for the rows. Let X = (Uy)y»>1 denote an infinite sequence of i.i.d.
Uniform([0, 1]) random variables, X" be the random permutation on [#] induced by Uy, - - - , Uy, and

& =Z"1([1,n]) be the random n-color BBS configuration as defined at (4). Fix an integer k > 1 and
let (I'x)x>0 be the k-point circulr exclusion process over X. Also, let (I'y), >0 be the capacity-k carrier
process over & as defined in Section 3.2. By construction, for each 1 < x < n, we have

1(£"(x) > minl'y_;) = 1(Uy > min[,_;). (72)

Thus, according to Lemma 3.3, almost surely,
n
n(pr (") + -+ pr (€M) =n7' Y AUy > minTyy). (73)
x=1

By Lemma 4.1 and Markov chain ergodic theorem, almost surely,

L . k
Jim n Yp1(€M) + -+ + pi(EM) = P(Ugyy > min(Uy, -+, Uy)) = T+l (74
Then the assertion follows. O

4.3. Stationarity and convergence of the circular exclusion process

We prove Lemma 4.1 in this subsection. We will assume the stationarity of the circular exclusion process
as asserted in the following proposition, which will be proved at the end of this section.

Proposition 4.2. Fix an integer k > 1 and let © denote the distribution of the order statistics from k i.i.d.
uniform random variables on [0, 1]. Then rt is a stationary distribution of the k-point circular exclusion
process.

Proof of Lemma 4.1. For convergence, we use a standard coupling argument. Namely, fix arbitrary
distributions 7o and 7y on Cy and let X = (U,),»] denote a sequence of i.i.d. Uniform([0, 1]) variables.
Let (T'x)x>0 be k-point circular exclusion processes over X with initial distribution 7o and let (I ), »¢ be
k-point circular exclusion processes over X with initial distribution 7-9. These two processes are naturally
coupled since they evolve simultaneously over the same environment X. Let 7 = inf{x > 0 | T, = I',;}
denote the first meeting time of the two chains (see Figure 7). By the coupling, I'y = T’y and s < x imply
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Figure 7. Joint evolution of two 3-point circular exclusion processes. The states in the unit circle
are ordered clockwise. A newly inserted point annihilates one of the closest preexisting points in the
counterclockwise direction. Blue (resp., red) dots represent points that are shared (resp., not shared) in
both processes. The two chains meet after the fifth transition.

I, =T,. A standard argument shows
dry (ms, ) <P(y £1T) =P(1 > x), (75)

where 7, and 7, denote the distributions of T, and T',. We claim that

Lt/k]
! ) (76)

P(r>t) <Py # fo)(l - m

According to Proposition 4.2, this will imply Lemma 4.1 by choosing 7y = «.
To bound the tail probability of meeting time 7, we will show that two circular exclusion processes
‘synchronize’ after k steps with probability at least 1/k!, in the sense that

_ _ 1

P(Fx+k = Fx+k | FX * Fx) > m forall x > 0. (77)
Then the claim (76) follows since
P(t > Nk) =P(T'ny # ka | Tp # fg)P(ro * fo) (78)
—_ N —_ —
< P(To # To) [ [P(Pix # Dok | Doy # Ty (79)
i=1
1 N

<P(Ty#To)|1 - ———+—] . 80
(To 0)( (2k)’<1k!) (80)
We begin with the following simple observation for a sufficient condition of meeting. Let X =
(_U,),Zl be a sequence of i.i.d. Uniform([0, 1]) variables. Fix r > 1 and let T'y = [x,---,xx] and
I'y =[x, -, %] be arbitrary elements of Ci. Superpose the two k-point configurations into a one

2k-point configuration 0 < y; < y, < --- < yor < 1. For a special case, suppose yx < 1. Observe that
on the event {yyr < Upyp < --+ < Uy < 1}, we have

Lypr = [Ut+1>Ut+2,"' ,Ut+k] =Ty, (81)

as all of the & points in I'y and I',, will be successively annihilated from the largest to the smallest by
inserting Uz41, - -+, Upsk.

For the general case, regard each Uy as a uniformly chosen point from the unit circle S'. Then the 2k
points yq, - -, yor Will divide S! into disjoint arcs of lengths, say, €1, - , £y, for some 2 < m < 2k.
If the points U;41, - - - , Ui are strictly decreasing in the counterclockwise order within one of the m
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arcs, then by circular symmetry and a similar observation, we will have I'y,; = I',,x. Noting that

Uit1, -+, Upyr are strictly decreasing in the _ ﬁ 82)
counterclockwise order within an arc of length £ ~ k!
and ¢ + - - - +{,, = 1, Holder’s inequality yields
IP)(I‘x+k:1__‘)c+k | = [)C],"- ,Xk], FX: ['ilv"' Jzk]) (83)
m [k k
ZZLZL(&-F +fm) _ 1 > 1 .
— k!~ k! mk-1 mk=1kl = (2k)k-1k!
im
This shows the assertion. O

Lastly in this section, we prove Proposition 4.2.

Proof of Proposition 4.2. We show  is a stationary distribution for the Markov chain (I'y);»0. Let
X1y < X(@2) < -+ < X(x) be the order statistics from k i.i.d. uniform RVs on [0, 1]. Let Y be an
independent Uniform ([0, 1]) random variable. After a new point Y is inserted to the preexisting list of
k points X(1) < X(2) < -+ < X(x), the updated list of points will be

X(]) < ~'-<X(1_1) <Y<X([+1) < e <X(k), (84)

where I € {1,2,---,k} is the random index such that ¥ € (X(), X(7+1)). For I = k, the interval
(X(x)» X(k+1)) denotes the union of (0, X(1)) and (X(x), 1). In this case, the point X(y) is deleted and ¥
is added as the smallest or largest point depending on which sub-intervals it falls.

We claim that (84) is still the order statistics from k i.i.d. uniforms on [0, 1], which would prove that
the distribution of k i.i.d. uniform points remains invariant under the transition rule. To show this, take
a bounded test function f : [0, 1]%¥ — R. First, we write

E[f(Xays- X1, Y. Xay, -+ X)) (85)
k
= ZE[f(X(l),“' cX(i-1), Yo X(irnys s Xao) Dy ex gy X)) ] (86)
1
=), fzis . zicts ¥ Zivls - 5 2k) dzy -+ - dzgdy (87)
i= k 21 < <Zi <Y<Zi41 < <Zk
1
2 f(zi, -, zk-1,y) dzy - - - dzgdy (88)
<<z <y
k_/ fOnz1, -+ zk=1) dzy - - - dzgdy. (89)
* y<z1<--<Zk

Integrating out z; and denoting zq := 0,

— 1
:ZF/ i ziet, Yo Zists o 2k (Y — Zie1) (90)
V< <Z 1 <Y<Zi41 < <Zk

=1
dzy -+ zi-1Zi+1 - - dzgdy on

1

- f, 2, ) (Y = 2k-1) dzy - - - dzg—1dy (92)

k! 21 < <Zk-1<Yy

1
+F‘/ fOz sz (1 = zx-1) dzy - - - dzg-rdy. (93)
P Jy<zy<-<Zk-1
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We then rename y as z; for the first integral above and as z; for the second integral above. For the

last integral, we rename y as z; and z; as z;4+ fori = 1,...,k — 1. This gives
k-1
1
=4 Sz, sz [(L—zi) + Zzi—ZH +(zk = zk-1) | dz1 - - dzi (94)
C <<z i=1
=E[f (X X-1), X1y, Xr+1ys - Xk |- 95)
This shows the assertion. O

5. Proof of Theorem 2.3(i)

We prove Theorem 2.3 (i) in this section. Recall the probability distribution 7 in (9). We assume
po > p* :=max(py,..., py) in the following proof.

Proof of Theorem 2.3 (i). We first show the irreducibility and aperiodicity of the chain W,. For its
irreducibility, fix X,y € B, and write y = [y, y2,---]. Since all elements of B, have finite support,
there exists an integer m > 1 such that x(i/) = 0 and y(i) = O for all i > m. Then note that

P(1—‘)(+2m =Yy I I, = X) (96)
>P(EP(x+1)=0,-- ,Px+m) =0, x+m+ 1) =y, ,E(x+2m) = y) 97)
=pg' Py Py > 0. (98)

Since x,y € B, were arbitrary, this shows the Markov chain W, is also irreducible. Then for its
aperiodicity, it is enough to observe that

P(Tx1 =1[0,0,---]| Tx = [0,0,---]) = po > 0. 99)

Next, we show that r is a stationary distribution for (W, ),>0. The uniqueness of stationary distribution
and convergence in total variation distance will then follow from general results of countable state space
Markov chain theory (see, for example, [LLP17, Thm. 21.13 and Thm. 21.16]). We work with the original

carrier process I'y. Foreachx € B, and i € {0, 1,--- , «}, denote
K i m; (X)
expon() = [ [[2] . expowtn = . (100
i=1
Recall the definition of the map ¥ : Be X {0,1,--- ,k} — {0,1,---,«} X B given in Section

3.1. Note that for each pair (x,y) € Bo X {0,1,--- ,«} and (y’,x") € {0,1,---,k} X By such that
Y(x,y) = (y,x"),y" = y'(x,y), we have

exp(wt(x)) exp(wt(y)) = PyP(;HXH' n P;ni(x) (101)
i=1

= oy P = exp(wi(y)) exp(wi(x)).  (102)

i=1

Indeed, the total number of each letter 1 < i < « in both pairs (x,y) and (y’,x’) is the same. So if
y” > 1, then some ball of positive color in x is replaced by a ball of positive color y’, so [|x||; = ||x||;
and the above identity holds. If y’ = 0 and y > 1, then x” has one more ball of color y than x does, so
the above identity holds; if y’* = y = 0, then both x’ and x do not contain any ball of positive color, so
the above identity holds.
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Now, observe that for each fixed x” € B, ¥ gives a bijection between {0, 1,- -, x} x {x’} and its
inverse image under . If we denote the second coordinate of ¥ by ¥,, then this yields

S epwx)epwt(y) = Y exp(wi(y (x.3)) exp(wi(x)) (103)
(x,y) €Boox{0,1,--- ,k } (X,y) €Beox{0,1,-- &}
¥, (x,y)=x' Y, (x,y)=x’
=exp(wi(x)) ). exp(wt(y")) (104)
y'€{0,1,--- ,k}
= exp(wt(x)). (105)
Dividing both sides by
0 o K S\ K !
> exp(wi(x)) = 3 Y (ﬂ) - (1 - ﬂ) >0, (106)
X€Bo m=0 =0 i=1 \PO i=1 po
we get
m(m (), me(X))pi = w(mi(X), -, me(x")). (107)
(x,) €Beox{0,1,--+ .k}
¥, (x,i)=x

This shows that 7 is a stationary distribution of the Markov chain (Wy), >0, as desired.

Lastly, positive recurrence follows from the irreducibility and the existence of stationary distribution
[LP17, Thm. 21.13]. Convergence of the distribution of W, to the stationary distribution in total
variation distance then follows from the irreducibility, aperiodicity and positive recurrence (see [LP17,
Thm. 21.16]). O

Remark 5.1. The statement and the proof of Theorem 2.3 (i) are reminiscent of [KL20, Thm. 1],
where the authors show that for all p = (pg, - , p«), the (finite) capacity-c carrier process over &P is
irreducible with unique stationary distribution

K

1 _
ﬂc(x):z—np:"’(x), X € Beo, (108)
€ =0

where Z. denotes the partition function. In fact, their result applies to more general finite-capacity
carriers whose state space is the set Bﬁ“) (k) of all semistandard tableaux of rectangular shape (¢ X a)

with letters from {0, 1, - - - , x}. In this general case, the partition function Z, = ZC(“) (k, p) is identified
with the Schur polynomial associated with the (a X ¢) Young tableau with constant entries ¢ and
parameters po, p1,- - » P-

6. The Skorohkod decomposition of the carrier process

In this section, we develop the Skorohkod decomposition of the carrier process, which we briefly
mentioned in the introduction. The idea is to write the carrier process, which is confined in the
nonnegative integer orthant Z5, as the sum of a less confined process and a boundary correction.
Namely, let (W, )y >0 be the carrier process over an arbitrary ball configuration £ as in (8). We seek for

the following decomposition
Wy=X,+RY, forx>0, (109)

where
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Figure 8. Illustration of the original circular exclusion rule (left) and its decoupled version (right) for
k =7 and ball density p = (.1, .1, .25, .05, .15, .2, .1, .05). We take the set of exceptional colors C,
10 be the set of unstable colors C® = {2, 5, 6}. For instance, in the decoupled carrier process, inserting
new balls of color 5 into the carrier only excludes existing balls of colors 2,3 and 4.

1. (Xx)x>0 is the ‘decoupled carrier process’, which is a version of the carrier process that allows the
number of balls of certain ‘exceptional colors’ to be negative;

2. R =tridiag, (0, 1, —1) is the « X « ‘reflection matrix’ (see (118));

3. (Yyx)x»0 is the ‘pushing process’: Yy = 0 and for each i € {1,...,«}, the ith coordinate of Y, is
nondecreasing in x and can only increase when W, (i) = 0.

We will first introduce the decoupled carrier process (X, )y>0 in Section 6.1 and establish its basic
properties in Proposition 6.2. In Section 6.2, we will introduce the reflection matrix R and the pushing
process (Y )x>0 and verify the Skorohkod decomposition (109) in Lemma 6.3. All results in this section
are for a deterministic ball configuration &.

6.1. Definition of the decoupled carrier process

In this section, we introduce a ‘decoupled version’ of the carrier process W in (8), which will be critical
in proving Theorem 2.3 (ii) as well as Theorems 2.6-2.7.

To illustrate the idea, consider the carrier process W, with x = 2 as in Figure 1. While the transition
kernel for this Markov chain depends on whether it is in the interior or at the boundary of the state space
Zio, we may consider a similar Markov chain on the entire integer lattice Z> that only uses the kernel in
the interior, by allowing the counts of color 1 and 2 balls in W, to be negative. In the general construction
of decoupled carrier processes, we will allow the freedom to choose positive colors a; < -+ < @, in
{1,...,«} whose count can be negative. Recall that inserting a ball of color i to the carrier W,, will
exclude the largest color i, in W,, that is less than i. In the decoupled carrier process, the color wheel
Zy+1 is divided into intervals [0, a1], [e1, @2], ..., [@,, ], and inserting a color i in (a, @+1] can only
exclude a color in the interval [a, @;,1]. Hence, the interaction between colors in distinct intervals is
‘decoupled’. See Figure 8 for an illustration.

Definition 6.1 (Decoupled carrier process). Let & := (£x)xen be k-color ball configuration and fix a set
Ce € {1,...,«} of ‘exceptional colors’. Let

Q:={(x1,...,x) €Z" : x; >0ifi ¢ C.}. (110)

The decoupled carrier process over ¢ associated with C, is a process (Xy)yen on the state space Q
defined as follows. If C, = 0, then we take X, = W,, where W, is the carrier process in (8). Suppose
Ce ={ai,...,a,}forsomer > 1 witha; < --- < a,.Denote @, := k+1. Having defined X1, .. ., X,

https://doi.org/10.1017/fms.2024.74 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.74

Forum of Mathematics, Sigma 27

denote i := &,y if éxq1 € {1,...,k}andi := k + 1 if &x41 = 0. Then

e —1(i.#0)e;, ifl<i<a

Xes1 — Xy :=q€; —ep ifa; <i<«k (111)

—e; ifi=K+l,

where i, :=sup{j : 1 < j <i, X,(j) = 1} (with the convention sup @ = 0) and
. aj ifej<i<ajand X (aj)=---=X(i-1)<0 (112)
i =

g ife;<g<i<ajgandX (q)>1,X(g+1)=---=X,(i-1)=0.

Unless otherwise mentioned, we take X = 0 and & = &P with density p = (po, - . ., P«)-

It is helpful to compare the recursion (111) for the decoupled carrier process to that of the carrier
process in (8). Notice that in (8), inserting i into W, can decrease by one at coordinate i, only when
W, (i.) > 1. Hence, W is confined in the nonnegative orthant Z’;O. In comparison, when a ball of color
i is inserted to the decoupled carrier Xy, it decreases by one at coordinate, say £ € {i’,i.}. If £ ¢ Ce,
then the above construction ensures that X, (¢) > 1. From this, one can observe that X, (j) > 0 for
all x > 0 whenever j ¢ C.. In contrast, if £ € C,, then X,;1(f) = X, (£) — 1 regardless of whether
X, (€) = 1. Hence, X, can take negative values on the exceptional colors. We call the recursion in (111)
as the ‘decoupled circular exclusion’.

In the proposition below, we establish a basic coupling result between the carrier and the decouple
carrier processes. For its proof, we will introduce the following notation. Define the following function
fw IZ;OX{O,...,K} — {0,...,k} as

0 if[Wo=wandé =y = W;-W;=e,]

Sw(w,y) = {j (113)

if [ Wo=wandé =y = W;-Wy=e,—ejor —e;].

Roughly speaking, if fw (w,y) = j, then j is the color of the ball that is excluded when a ball of
color y is inserted into the carrier of state w. The circular exclusion rule says fw (w,y) = sup{i :
1 <i < y,w(i) > 1} with the convention x + 1 = 0 and sup® = 0. Similarly, define a function
fx :Qx{0,...,k} = {0,...,«} as

if [ Xo=wandé; =y = X;-Xo=e,] (114)
if [ Xo=wandé; =y = X;-Xo=e,—¢;or —¢;].

0
Tx(w,y) = { :
J
Intuitively, if fx(w,y) = j, then j is the color of the ball that is excluded when a ball of color y is
inserted into the decoupled carrier of state w.
For each x € N, define X, € ZX , by

X (i) =X (i) -  min_ X,(i) foralli=1,...,«. (115)

Note that X, (i) > max(0, X, (i)) for all i by definition and Xo = 0. Also, X, (i) = X, (i) forall i ¢ C,
since X (i) > Oforallx e Nand all i ¢ C,.

Proposition 6.2 (Basic coupling between the carrier and the decoupled carrier processes). Let (Wy)x>0
be the carrier process in (8) and let (Xy)y>0 be the decoupled carrier process in (111) associated with
Ce ={ay,...,a,} for somer > 1. Suppose these two processes evolve over the same ball configuration
& and Wy = Xo = 0 € Z%. Then the following hold.
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i) Wi(@) = X, (i) forall a, <i < k and x > 0. Furthermore,

Wilay) = Xx(ar) if Xi(ar),..., Xx1(ap) 2 1. (116)

(i) We(i) < Xc(i) forall 1 <i < k and x > 0. Furthermore, for each x > 0, denoting y := &y if
Exvi€{l,...,ktandy :=k+1if&x1 =0,

Sw Wy, €x1) < fx(Xx,éxq1) <. (117)

Proof. Inthis proof, we denote yx := fx (Xx,&x+1) and yw = fiy (Wy,y). Note that yw, yx € [0, Exr1)
(recall that sup @ = 0).

The second part of (i) follows from the first part of (i) and definition. Now we show the first part
of (i) by induction on x > 0. For x = 0, we have Wy = Xy = 0. Denote { := «, and suppose
Wi(i) = Xx(i) for all £ < i < « for some x > 0. If y < ¢, then inserting a ball of color y into
the carrier W, and the decoupled carrier X, does not affect their state for colors strictly larger than
€. Hence, Wy, 1(i) = Wyi(i) = Xx(i) = Xy41(@) for all £ < i < k. So suppose y > £. In this case,
yw =sup{l £ j <y : Wi(j) = 1} and yx = max{{,sup{l < j <y : X,(j) = 1}}. Note that W,
is obtained from W, by increasing its value on color y by one and decreasing its value on color yy by
one. If yw > ¢, then by the induction hypthesis, yw = yx, so X, is obtained from X|¢ «] = Wx|(£,«]
by the same way, s0 X,11|(¢.«] = Wxs1l(¢,«]- Otherwise, suppose yw < £. Then X, is obtained from
Xxl(e,¢] = Wxl(e,«) by increasing its value on color y by one and decreasing its value on color £ by one.
Hence, Wxi1l(e,«] = Xx+1l(¢,«]> as desired.

Now we prove (ii) by an induction on x > 0. The base step when x = 0 follows by definition
(Wo=Xo=X=0and0 = yw < yx < y). For the induction step, suppose W, < X, coordinatewise for
some x > 0. We first show that yy < yx < y. That yx < y follows from the definition (111). To show
yw < yx, we assume yw > 1 since otherwise the claim holds trivially. Since a ball of color yy > 1
is excluded from the carrier Wy, we have W, (yw) > 1. If yw ¢ C., then by the induction hypothesis,
1 < Wi(yw) < Xx(yw), so it follows that yy < yx. Otherwise, suppose yw € C.. Then since yy is
at least the largest exceptional color that is < y, it follows that yw < yx, as desired.

It remains to show W,,; < X, coordinatewise. First suppose yw = 0. Then W, (1) = --- =
Wx(y_ 1) =0,50 Wiy (1) =+ = Wiy (y=1)=0and Wy 1 —W, = €y. Henfze, Wit (l')AZ 0< Xx+l )
forall 1 < i < y. Noting that X,,1(y) = X,x(y) + 1, by definition, we have X,,;(y) = X;(y) + 1. Then
by the induction hypothesis, we have Wy41(y) = Wi(y) + 1 < X, (y) + 1 = X,11(y). Furthermore,
W1 (i) = Wi(i) < Xc(i) = Xep1(i) for all y < i < «, where the middle inequality is from the
induction hypothesis and the equalities are from the definition. Thus, we have shown that Wy, < b/
coordinatewise.

Lastly, we suppose yw > 1 and show W, < X_x+1 coordinatewise. Then 1 < yw < yx <y,
Wis1 — Wy = ey, — ey, and X,; — X, = e, — e,,. By the induction hypothesis and the definition,
we only need to verify Wys1(yx) < Xet1(yx). This holds when yw = yx since then Wiy (yx) =
Wi(yx) =1 < Xe(yx) = 1 < X1 (yx). So we may assume yw < yx. By definition of yy , we have
Wilyw+1)=---=W,(y—1)=0,and so W41 (yw + 1) = -+ = Wy41(y — 1) = 0. Then by definition,
Wis1(vx) =0 < Xyi1(yx). This completes the induction. O

6.2. Proof of the Skorokhod decomposition of the carrier process

Now we give an explicit construction of the Skorokhod decomposition of (W, ),xo. First, let R be the
k X k tridiagonal matrix with O on the subdiagonal, 1 on the main diagonal and -1 on the superdiagonal
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entries:
1-10
01 -10
R := tridiag, (0, 1,-1) = |: =1-0, (118)
0---01-1
0 -+ 01

where [ is the k X « identity matrix and Q = I — R. Notice that the spectral radius of Q is zero for all
k > 2 being an upper triangular matrix with zero diagonal entries. The above reflection matrix also has
the property of being ‘completely-S’; see Definition 10.2 and the proof of Theorem 2.5 for justification.
Next, we define the pushing process (Yy)y>0 on Z’;O recursively as follows: Set ¥y = 0. Having
defined Yy, denoting yw := fiw (Wx, &x41) (see (113)) and yx := fx (Xx, Ex+1) (see (114)), define

0 if yw = yx
Y1 — Yy = ] (119)
o * {eyw+1+~--+eyx if yw < yx.

Note that (119) covers all cases since yw < yx due to Proposition 6.2. From the definition, it is clear
that every coordinate of Y, is nondecreasing. Also, clearly, Y, is determined by the first x ball colors

&1, Ex

Lemma 6.3 (Skorokhod decomposition of the carrier process). Let Wy, X, R and Y as before. Then

(i) Wy =X, +RY, forallx > 0;
(ii) Yo = 0 and for each i € {1,...,«}, the ith coordinate of Y, is nondecreasing in x and can only
increase when Wy (i) = 0; that is, Y50 L(Wx (i) = 1)(Yes1(0) — Y5 () = 0.

Proof. Lety := &y if Expp # 0and y = k+ 1 if &y = 0. Also let yw := fiy (Wy, Expr) and
vx = fx (Xx, &xs1) (see (113) and (114)). We first show (ii). According to (117) in Proposition 6.2, we
have yw < yx < y. Also, by the definition of yy , we have W, (yw +1) =--- = W, (y — 1) = 0. Hence,
if Y1 (i) =Yy (i) > 0, theni € {yw +1,...,y— 1}, and hence, W, (i) = 0. This shows (ii).

Next, we show (i) by induction on x > 0. It holds trivially when x = 0, so suppose for the induction
step that it holds for some x > 0. We wish to show that

Wit = Xyp1 + RY 4. (120)
From (113)—(114), note that
0 if yw = yx
(Wx+1 - Wx) - (Xx+1 - Xx) =1Cx ~Cyw if1 < Yw < YyYx (121)
€yx lf():yw <YVyx.

If yw = yx, then R(Yy+1 — Yx) = 0, so (120) holds by the induction hypothesis. Next, suppose
1 < yw < yx. Note that

R(Yx41 —Yyx) =R(eyw+1 +"'+eyx) (122)
= (eyw+l - eyw) + (eyw+2 - eyW+1) +-- 4+ (eyx - eyx—l) (123)
=€y — €y, . (124)

Lastly, suppose 0 = yw < yx. Then

R(Yx+1 —Yx) =R(61 +-~+eyX) (125)
=ej+(ex—ej)+(e3—e)+- -+ (e —€y 1) =e,,. (126)
Hence, in all cases, the induction step holds by the induction hypothesis, (121) and (119). O
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7. Probabilistic analysis of the decoupled carrier process

In the previous section, we defined the decoupled carrier process (X, )y >0 associated with an arbitrary
setCe = {ay,...,a,} C{l,...,«} of exceptional colors over a deterministic ball configuration £. In this
section, we establish various important probabilistic results for the decoupled carrier process (X )x>0
over the i.i.d. ball configuration &P with a particular choice of the associated set C, of exceptional colors.

7.1. Decomposition of the decoupled carrier process

Let p = (po, . .., p«) be the ball density at each site. We choose the set of exceptional colors C, so that
it satisfies the following ‘stability condition’:

Foralll <j <r, max{p; : @j <i<aji1} < paj,» (127)

where we set @g = 0 = @,,1. Since balls of a nonexceptional color 7 in (@, @;4+1) can be excluded by
balls of color a1 in the decoupled carrier, the above condition ensures that (X (i))x>0 do not blow
up. A canonical choice of such C, is the set of unstable colors C? that we defined above the statement
of Theorem 2.5.

Define the following processes:

X, := The decoupled carrier process over & = &P associated with C, satisfying (127)
Xy =G ¢C) Xs(D)si=1,...,k) (> The ‘stable part’ of X ) (128)
X¢i=(1@GeC)Xc(i);i=1,...,k) (> The ‘unstable part’ of X,).

Namely, X3 (resp., X¥) agrees with X, on the nonexceptional (resp., exceptional) colors but its coordi-
nates on exceptional (resp., nonexceptional) colors are zero. Clearly, we have the following decomposi-
tion:

X=X+ X¥ for all x > 0. (129)

In Lemma 7.1, we will show that (X3),»0 defines an irreducible Markov chain whose empirical
distribution converges to its unique stationary distribution 7* defined as

Pl = [0 =0 1) [T (1-225) (2| (130

jgcg j=0 (l‘j<i<a’j+1

where we set @g = 0 = a,+1. Hence, the expression in the bracket above is a nondegenerate geometric
distribution. Thus, the above is the product of k — r geometric distributions, so it is indeed a probability
distribution on €°. Comparing (130) with (9), we see that the exceptional color a1 plays the role of
color 0 for the nonexceptional colors in the interval (« G ea Q1)

Lemma 7.1. Let (X$)x>0 be the process defined in (128). Then it is an aperiodic Markov chain on the
state space Z, and has a unique communicating class with unique stationary distribution n* defined
in (130). Furthermore, if we denote the distribution of X3 by ., then

lim dry (7, %) = 0. (131)
X—00

Proof. First we show (X3)y>o defines a Markov chain. Clearly, the full decoupled carrier process
(Xx)x>0 over & = £P defines a Markov chain on Z*. Hence, it is enough to show that X?, is determined
from X3 and &4 for each x > 0. Fix x > 0 and denote y := &,41. Fix a nonexceptional color i. Let j
be such that @; <i < ;. If y ¢ [i, @], then X7, (7)) = X3(). If y =, then X3, (i) = X3() + 1.
If y € (i,@j41], then X3 (i) = X3(i) = -1if X3(@) > 1and X3(i+1) = = X3(ajs1 = 1) = 0;
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otherwise, X? | (i) — X3 (i) = 0. In all cases, X7 (i) is determined by X} and y. Since i was an arbitrary
nonexceptional color, this verifies that (X2 )0 is a Markov chain.

Next, let ©* denote the subset of Z | consisting of all points whose coordinates on exceptional colors
are zeroed out. Clearly, (X$)y»0 lives in Q°. We show the irreducibility of the chain (X3)x»0 on QF.
Aperiodicity will follow from irreducibility by noting that 0 € QF is aperiodic. Observe that X3 visits
every state eventually in Q° with positive probability starting from the initial state 0. Hence, it suffices
to show the converse transition. Fix x = (xi,...,x,) € Q°. Denote n; = x| + -+ + Xq,-1, Which is
the number of balls of color in [1, @;). Observe that inserting n; balls of color @) into the decoupled
carrier X, removes all balls of colors in [1, @) and leaves with x,, + n; balls of color @;. Next, we
insert x,, + n + ny balls of color a; into the decoupled carrier, where ny = x4,41 + - - - + Xq,—1. This
will remove all remaining balls of colors in [1, @2) and leave x4, + (xq, + 11 + n2) balls of color a;.
Repeating this process, we can remove all balls of stable colors in the decoupled carrier, so X3 visits 0
with a positive probability.

Next, we can verify that 7° is a stationary distribution of (X$),>0 by using a similar argument as in
the proof of Theorem 2.3 (i). The key idea is the following: The evolution of balls of colors in (e, @j4+1)
in the decoupled carrier X, depends only on balls of colors in (a, ;1] and inserting balls of color
@41 can exclude any color in that interval. Moreover, the ‘stable component” X3 of X, does not count
the number of balls of color @1 and recall the “stability condition’ (127). So one can treat @, as color
0 in the subcritical carrier. We omit the details.

Lastly, the convergence of the empirical distribution in (131) follows from the same soft argument
given at the end of the proof of Theorem 2.3 (i). O

Next, we introduce a representation of the decoupled carrier process as a (truncated) partial sums

process. By Lemma 7.1, (X3, &x+1)x>0 defines an aperiodic Markov chain on Zf ) x {0,...,«k} with
unique stationary distribution 7° ®p. Foreach £ € {1,. .., k}, define a functional g¢ : Z*x{0, ..., k} —
Z by
1 ifi=¢
1 ifa; <€ <i<ajforsomeje{0,...,r—1}
gl (w,i) = andw(l+1)=---=w(i-1)=0 (132)
-1 ifa,<i=0,andw(f+1)=---=w(i-1)=0

0 otherwise,

where we denoted @ := 0. It is easy to verify that, for each € € {1,...,«} and x > 0,
X, (6) + gf (X3, if £ € C
Xx+1(€)= x( )+g ( x gx;—l)s 1 € Ce (133)
max(O, Xx(f) +8 (Xx7§x+1)) if £ ¢ Ce.

In words, the random variable g[(X;,fo) gives the increment of X,,;(£) for exceptional ¢; for
nonexceptional ¢, the same holds but with additional truncation at O to ensure the value of X, (€) stays
nonnegative. In particular, we can view X, (£) for nonexceptional ¢ as a Lindley process in queuing
theory.

Another consequence of the observation in (133) is that the decoupled carrier process Xy on the
exceptional colors (the unstable component of X, ) can be written as an additive function of the Markov
chain (X3, £x+1)x20:

xe=3" 3 (X E)e (134)

This representation will be used critically in Sections 7, 9 and 10.
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In the following proposition, we compute the stationary expectation of the increments g (X S Exel)
in (133).

Proposition 7.2 (Bias of the decoupled carrier). Let g¢ be the function in (132). Then
Epsaplg’ (X3, &xa)] = pe = pes, (135)
where €* is the smallest exceptional color strictly larger than €. (If ¢ > «,, then take £* = 0.)

Proof. Fix j € {0,...,r} and @; < £ < «aj41. Denote ¢* := @1, where we take oo = 0 and
ar+1 = k+1 =0 (modk + 1). Denote ¢, := gf(Xj, &x+1)- It is clear from the definition that

Prsgp(dx =1) = pe. (136)
It remains to show
Prsgp({x =—1) = pe-+. (137)
To this end, observe that
o+
Proop(fe = =1) = peri+ D P (X3(C+1) =+ = X{(i = 1) = 0) pi. (138)
i=0+2

Since X? is distributed as the stationary distribution * for all x > 0,

E s Z xs,,6) - Z X5(i)| =o0. (139)
C<i<t C<i<tt
Let T denote the random variable in the expectation above. Then
Prop(T'=~1) = (1 —Pns( PR =0))pf+, (140)
C<i<lt
-1
Proap(T=1)=pra+ ) Pas(X3(C+1)=--- = X3(i = 1) =0) pi. (141)
i=0+2
Since T € {-1,0, 1} and (139) holds, this yields
€+
per=peai+ ) P (Xy(L+1) = = X3(i = 1) = 0) py. (142)
i=0+2

Note that the right-hand side equals Pzgp({x = —1) in (138), as desired. This shows the assertion. DO

7.2. Finite moments of return times of the decoupled carrier process

The main goal of this section is to prove Theorem 7.3 below, which shows that the first return time to
the origin of the stable part of the decoupled carrier process (X3 )0 has finite moments of all orders.
In fact, we prove this result in a more general setting that includes the excursions of X (i) under the past
maximum for exceptional colors i with a positive drift. (Handling such a general setting will be useful
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in the proof of Proposition 9.2.) Define a new process (fx)xzo on Z£ ) by

X, (D) ifi ¢ C,
fx(i) = maxo< <x X () — XY (i) ifi=a; €C, forsome jand po; > pay,, (143)
0 otherwise.

Notice that (}?x)x >0 defines a Markov chain on the nonnegative orthant Z .

Theorem 7.3. Let ()?x)xzo be the Markov chain on Z, in (143). Assume (128) holds. Let T denote

its first return time to the origin. Then T has finite moments of all orders. Furthermore, (X )xs0 is
irreducible, aperiodic and positive recurrent, and has a unique stationary distribution.

We recall the following geometric ergodic theorem for Markov chains on a countable state space. It
is an important tool for showing finite exponential moments of return times.

Theorem 7.4 (Geometric Ergodic theorem; Special case of Theorem 15.0.1 in [MT12]). Let (X;)s>0
be a Markov chain on a countable state space Q with transition kernel P, which is irreducible and
aperiodic. Then the following conditions are equivalent:

(i) There exists a state x € Q such that the return time of the chain to x has a finite exponential moment;
(ii) The chain is geometrically ergodic; that is, there exists a function V : Q — [1,0), constant
€ € (0, 1) and a finite set C such that

PV(x) < (1-¢)V(x) forallx e Q\C. (144)

In order to prove Theorem 7.3, we will establish a general lemma on the first return time of Markov
chains defined on the nonnegative integer orthant that abstracts important structure of the subcritical
carrier process W,. Its proof is relegated to the end of this section.

Lemma 7.5. Let Z, = (Zx(1),...,Z(d)) be an aperiodic and irreducible Markov chain on Z‘;O.
Suppose Zy = 0 and assume the following three properties:

(A1) (Geometric ergodicity of top coordinate) The return time of Z (d) to zero has a finite exponential
moment.

(A2) (Hierarchical dependence) There is a sequence of i.i.d. random variables (£ )xen with distribution
p and functions f; : Z47"1 x R — {-1,0, 1} such that

Zys1 (i) = max(0, Z, (i) + f;(Z7", éxy1)) forallx e Nandie {0,...,d -1}, (145)

where Z7' := (Zy(i +1),...,Zx(d)). Furthermore, Z;' has a unique stationary distribution,
say 1%,
(A3) (Coordinatewise negative drift) For alli =0, ...,d — 1,

Epigplfi(Z3', €xin)] < 0. (146)

Now fixi € {0,...,d — 1}. For each j > 1, let T; be the jth return time of (Z7")x> to the origin. Then
71 has finite moments of all orders. Furthermore, denote Rj := Z.,(i) for j > 0. Then (R;);>1 is a
Markov chain on Zs( such that there exists constants ¢, K > 0 for which

sup E[R; — Rg| Ry =m] < —c. (147)

m>K
In addition, (R});>1 is geometrically ergodic (see Theorem 7.4).

We now deduce Theorem 7.3 assuming Lemma 7.5.
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Proof of Theorem 7.3. Let C? denote the set of unstable colors, which is empty in the subcrit-
ical regime py > max(py,...,p,) and nonempty in the critical and the supercritical regimes
po < max(pi,...,py). In the latter case, we let @) < --- < @, denote the unstable colors. For each
x > 0, we write Xy = (Y5 (0),Yx(1),...,Yx(r)), where

Y, (0) := (Xx(l)’ e, Xo(ag - 1))’ (148)

and for each j € {1,...,r} (setting po,,, = po),

¥.07) = {(Xx(aj), Xe(aj+ 1), Xe(aj = 1) ifPa; = Pasr (140

(maX1SSSX Xs(aj) - Xx(aj): Xx(a'j +1),---, Xx(a’j+1 - 1)) ifpaj > Daji-

We will show that for each j, the return time to the origin of (Y, (j))x >0 has finite moments of all orders.
Then by an inductive argument (see the proof of Lemma 7.5), it follows that the return time of (Xx)x>0
also has finite moments of all orders.

Denote R, := Yy (). Note that Ry is a Markov chain on Z{ ;¢ with £ = a;. We wish to show that the
return time to the origin of R, has finite moments of all orders. We will only show this for the case of
Pa; > Paj,» as asimilar and simpler argument will show the desired statement for the case po; = pa;,, -

First, consider a partial sums process S, = 22:1 Nk, So = 0, where the increments 1, take values
from {-1,0, 1} and they are not necessarily i.i.d. Consider the new process §n = maxXi<k<n Sk — Sn,
which measures the height of the excursion of (Si);<x<n below the running maximum. Note that En
satisfies the following recursion:

- - iy ifga=—lorS,_; > 1,
Sp =S =g I m T Ot (150)
0 if S,-1 =0and n, € {0, 1}.
Equivalently, we have
Sp = max(0, Sp_1 = 7). (151)

Now suppose € = £* — 1 so that R, := maxj<gs<x Xs(£) — Xx(£). In this case, X, (£) a simple random
walk on Z with positive drift p, — pe+ > 0, so R, is a birth-deach chain on Z>( with negative drift
pe+ — pe < 0. In this case, the claim follows immediately. Hence, we may assume ¢ < £* — 1. Notice
that (X, (" — 1))xen is a birth-deach chain on Zso which moves to the right with probability p¢+_; and
to the left with probability p¢+. Since £ < £* — 1, by the choice of € and €*, we have pg+_; < p¢+. Hence,
X, (€* — 1) has negative drift pg+_1 — pp+ < 0 on Z. Thus, the return time to the origin of X, (£* —1)
has a finite exponential moment. This verifies the hypothesis (A1) in Lemma 7.5; (A2) follows from
the observation in the previous paragraph and (133); (A3) follows from Proposition 7.2. Therefore, by
Lemma 7.5, we deduce that the return time to the origin of R, has finite moments of all orders.

One can easily check the irreducibility of X by using a similar argument as in the proof of Lemma
7.1. Aperiodicity is clear, as one can stay at the origin in one step when a color 0 is encountered. We
have established that the return time to the origin of X has finite moments of all orders. This implies
that the chain is positive recurrent. Hence, the chain has a stationary distribution [LLP20, Thm. 21.13],
and it is unique from the irreducibility and Kac’s theorem [LLP20, Lem. 21.12]. O

We now prove Lemma 7.5. The argument is soft and inductive in nature.
Proof of Lemma 7.5. We first claim the following:

For eachi € {0, ...,d — 1}, the first return time of (Z7%) >0

. : 152
to some state x has a finite exponential moment. (152)
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We show the (152) by inductiononi =d—1,...,0.Fixi € {0,...,d —1}. The base step fori = d — 1 is
given by the hypothesis (A1). For the induction step, suppose the first return time of (Z>%), >0 to some
state x” has a finite exponential moment. Let 7; denote the jth return time of (Z7")y>0 to x’. Consider a
new process

(0j,X) 1= (Ze, (i), Ze, (i + 1), . .., Ze, (). (153)

By the strong Markov property, this defines a Markov chain (Q;);>1 on Zxo.
Step 1. (147) holds for (Q;);>1. We would like to show

sup E[Q1 — Qo[ Qo =m] < —¢ (154)

m>K

for some constants ¢, K > 0. Instead of Z, (i), we consider its ‘untruncated version’
f— j .
Zoi) = ) (27 En) (155)
=1

with Zo (i) = 0. (Note that Z, (0) = Z,(0) by the hypothesis.) Since (Z),»0 is a Markov chain by the
hypothesis (A2), by the strong Markov property, excursions from x for the recurrent chain Z' are i.i.d.
Hence, Q0 = 771« (i) for j > 1 forms a random walk, whose increments are i.i.d. and have the same

distribution as Q. We claim that this random walk has a negative drift:
E[Q,] < 0. (156)

To see this, first, note that

N E i
lim ;Zx(l) =Epigplfi(Z5". )] =@ <0 57)
by the hypothesis (A3). Since 71, 72 — 71, T3 — T2, . . . arei.i.d. by the strong Markov property and since 1
has a finite exponential moment by the induction hypothesis, 7; — oo almost surely. So Z-, /7; — @ <0
almost surely. Also, to the strong law of large numbers and the previous results,

_ 0, Ze T
E[Q] = lim — = lim — - = 0E[7{] < 0. (158)
J—00 ] J—00 Tj ]

This shows the claim.
Now note that

E[Q1 = Qo | Wo =m] =E[Z,(i) = Zo(i) | Zo(i) = m] (159)
=E[(Z+,()) = Zo(D) 1z, <m | Zo(i) = m] (160)

+E[(Z7, (D) = Zo(D)Lr;5>m | Zo(i) =m] (161)

=E[Z1e,<m) + E[(Z7, (D) = Zo(i) ey 5m | Zo(i) = m] (162)

=E[Z] - ElZr 1y5m] + E[(Z7,(0) = Zo()1eysm | Zo(i) =m].  (163)
For the third equality, we have used the fact that 71 < m and Z (/) = m in conjunction with the hypothesis
imply Z, (i) > O for all 0 < x < 7;. Note that |Z,,| < 7 and 7y has a finite expectation by the induction

hypothesis, so E[ZT1 17,5>m] — 0as m — oo by the dominated convergence theorem. Also,

E[(Z7, (i) = Zo()Aey>m | Zo(i) = m] < E[(11 = m) 1r>m], (164)
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so again by the dominated convergence theorem, the above tends to zero as m — oo. Since E[ZTI] <0
by (156), we have shown (154).

Step 2. (Q);>1 is geometrically ergodic. Next, we show that the Markov chain (Q);>0 on Zy is
geometrically ergodic. To this end, first note that [Q .1 — Q| < 741 — 7;, so it has finite exponential
moment by the hypothesis. By the dominated convergence theorem,

lim B exp(B(Qjs1 —0j)) —1
B\O B

Qj:m]:E[Qj+l_Qj|Qj:m]- (165)

Let ¢, K > 0 be the constants in (154). Then by choosing sufficiently small 8 > 0, we can find £ > 0
such that

Elexp(B(Qjs1 —Q;)) |Qj=m]<1-&  Vm =K. (166)

So, by taking V(x) = exp(Bx), we have PV (x) < (1—¢)V(x) for all x outside the finite set {0, 1,--- , K},
verifying the geometric ergodicity condition for the chain Q.

Step 3. Completing the induction step. By the geometric ergodic theorem (Theorem 7.4), the first
return time o of the geometrically ergodic chain (Q;);»1 to some sate x” € Z¢ has a finite exponential
moment. Denote x = (x/,x") € Z‘iai . We now show that the first return time S of the chain (Z7), > to
the state x has a finite exponential moment. Note that S = 7. Since o has a finite exponential moment,
there exists a constant ¢ > 0 such that P(o- = [) < e~ for all £ > 1. Also, by the induction hypothesis,
71 has a finite exponential moment. Hence, there exists A > 1 such that E[A™'] < co. By choosing A
sufficiently close to 1, and applying dominated convergence, we can assume E[A27] < ¢¢/2. Now by
Cauchy-Schwarz,

E[AS] =E[A77] = Z]E [A"1,.] Z VE[A21]P(o = 1) (167)
=1 =1
Z E[A2T]IP(o =) < Z eClAe=cli2 = Z e~ < oo, (168)

1=1 =1 =1

This shows that S has a finite exponential moment, as desired. Thus far, we have shown (152).

Step 4. Concluding for the return time to the origin. Fix i € {0,1,...,d — 1}. By (152), there
exists a state X € Zia" such that the first return time 7 of (Z;i )x>0 to X has a finite exponential moment.
Thus, 71 has finite moments of all orders. It is well-known that, for any recurrent and irreducible Markov
chain on a countable state space, if for any state i the first moment of the first return time is finite,
then this also applies to any other state. This generalizes to moments of all orders of the first return
time [HJR53]. Therefore, we can conclude that the first return time of (Z;i)x >0 to the origin has finite
moments of all orders.

Lastly, let o-; denote the jth return time of (Z;")x > to the origin and denote R := Z:;(0) for j > 1.
We know that o has finite moments of all orders. We can repeat Steps 1-2 above for the chain (R);>1
to conclude (147) and its geometric ergodicity. This completes the proof. O

Remark 7.6. In [ADOS11], Aurzada, Doring, Ortgiese and Scheutzow show that having a finite expo-
nential moment for first return times is actually not a class property. Hence, in the proof of Lemma 7.5,
knowing that the first return time to some state x has a finite exponential moment does not necessarily
imply that the first return time to the origin also has a finite exponential moment.

7.3. Linear and diffusive scaling limit of the decoupled carrier process

In this section, we establish linear and diffusive scaling limits of the decoupled carrier process. We start
with an illustrating example.
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Example 7.7. Suppose C, = {l,...,«} so that all positive colors are exceptional. Denote 7, :=
X, — X1 forx > 1. Then (g )r»1 are i.i.d. random vectors in Z* with the following distribution:

P(T]i :—eK)ng, P(T]i :el)zpl, P(ni:ej—ej_l) ij fOl"j=2,...,K. (169)

Then note that

K
w=E[ni] = —poex + pre1 + Z(ej —ej-1)p; (170)
=
=e1(p1—p2) +ex(p2—p3)+- - +e(px — po), (171)
K
2 :=E[nin] | = ecel po+ere] p1 + Z(ej —ej_1)(ej —e;—) p; (172)
=

pL+p2 —p2 0
-p2 p2+ps -p3 O
= 0 —p3 p3tp4 ) (173)

0 P«
—Px Pk T Do

In this case, the decoupled carrier process (Xx)x>0 is @ Markov chain on Z* with the mean and the
covariance matrix of the increments 77, given as above. Then the linear interpolation of the linear
interpolation of the d-dimensional process (\/LE(X,[ — ni)yen converges weakly to the d-dimensional
Brownian motion with covariance matrix X (see, for example, [DMR94, Thm. 1] and the following
remark). Note that g = 0 if pg = p; = -+ = p, = 1/(x + 1), which is a special case of the critical
regime for the multicolor BBS (i.e., po = max(py,..., p«)). See the simulation in Figure 2 for x = 2
and uniform ball density. a.

Next, we compute the mean and the variance of the increments of the unstable part of the decoupled
carrier process.

Proposition 7.8 (Mean and limiting covariance matrix). Let (Xx)x>0 be the decoupled carrier process
in (128). Denote {x = Xy — X_, for x > 1. Then the following hold:

(i) We have
H = Eﬂ5®p[§1] =€y (Pay —Pa) t€a,(Pay = Pas) ++  +eq, (Pa, — Pay)> (174)
pi
Boepllid] | = >, eef|pe+ D pg | ] (1 - ’+) (175)
tefar,..ar} t<q=tt  t<j<q pt
- Z (ecel. +eprel) pyr ﬂ (1 _ by ) (176)
te{a j<l* per
],.4.,(1,«,1} {)<j<[
(i) Define the ‘limiting covariance matrix’ X € R**¥ as
> = lim n_lEﬂsg,p[(X,‘l‘ —-np) (X - nu)T]. 77

Then X is well-defined, nonzero, symmetric and positive semidefinite.
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Proof. We first show (i). The stationary expectation of | can be easily verified from Proposition 7.2.
Denote m4,p) (X3) = Xa<i<p X5 (D), which is set to zero if b < a + 1. From (134), we can write

L= Y elE=0- D 1 =g lmeg (X5 ) =0) | (178)

te{ay,...,ar} t+l<g<t*

Then it is straightforward to compute

Lol= ) el [1E =0+ D 1=l mg (X3 ) =0) (179)

te{ay,..., a} (+1<g<l*

- Z (ecel. +epel )1(¢x = EH 1 (mppry (X5_,) = 0). (180)

te{ay,...,ar1}

Thus, by taking the stationary expectation of £,¢7 in conjunction with (130), we obtain the second
identity in (i).

Lastly, we show (ii). Assuming X is well-defined and that it is symmetric and positive semidefinite is
clear from the definition. Next, we argue that X is well-defined. Let 7 = ¢ — E[{«]. Fori > 0, let o
denote the number of steps that the Markov chain Z, takes until it returns to the origin for the i + 1st time,
By strong Markov property, o;’s are i.i.d. Furthermore, the excursions of Z, from the origin (that is, Z,
restricted on the time intervals [0, 0], [00, 01], . . . ) are i.i.d. Furthermore, by Theorem 7.3 and the fact
that &,’s are i.i.d. with distribution p = (po, ..., p«), po > 0 (in fact, we assume min(py,..., px) > 0),
it follows that oy has finite moments of all orders. Hence, there exists some A > 0 such that E[17°] < oo.
Moreover, by Kac’s theorem [LLP20, Lem. 21.12],

1
lim —— =7° ®p(0,0) = 7°(0) po, (181)
noses Efor]

where the stationary distribution 7* is explicitly given in (130).

Now consider decomposing the trajectory of Z, into excursions from the origin. Write s; :=

Z‘T”'_] fkg:]{ By the strong Markov property, s1, s, . .. are i.i.d. and also note that E[s;] = 0. Denote

k=0',j

X, = ]E[(X,’f —np) (XY - n,u)T]. Observe that
Lo, =E[(XS, —oum)(Xy, —0up) | =E[(s1 4 +52) (51 +- - +52)" | =nE[s1s]]. (182

So by the elementary renewal theorem, almost surely,

1 E[s;sT
lim —3%,, = lim —E[s;s7] = L5191
n—oo gy, " n—o gy, E[O’l]

= por® (0) E[s157 |. (183)

To show the convergence holds along the whole sequence, let T'(n) denote the total number of visits
of Z, to the origin in the first n steps. Denote r,, := ZZ:aT(,,) Zké:;{ Then since s1, ..., 57 (), 7n are
independent and E[s;] = 0,

T
DI E[(sl oSy ) (S1 ST () +70) ] = Zorm +E[rnr£]. (184)
Denote A, := E[Z;’:l £ T ||] , which is nondecreasing in n. Then similar argument as before shows
that ULHAU” converges a.s., and by the monotonicity of A,, an elementary renewal theory argument

shows that n=' A,, converges as n — co. Now by Jensen’s inequality,

IE[rarp 1l < Ap = A (185)

OT (n)*
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Since o7 (n) < n < orm+1 and E[o] < oo, it follows that o7 (,)/n — 1 as. as n — oo. Hence,
dividing both sides of (185) by n and letting n — oo shows that n~!||E[r,,#I ||| — 0 as n — co. Then
from (184), we deduce

ormn |1

lim n7'%, = lim —— S0y + lim E[r,r) ] (186)
n—oo n—oo n O—T(n) n—oo
= lim 0, '%,, (187)
n—oo
= porr® (0) E[s1s] ] (188)
=7 (0) poB[({i + -+ Lo) (i + -+ o) ] (189)

Finally, since ,’s are uniformly bounded and o; has a finite expectation, the last expression is a matrix
with finite entries by Wald’s identity. From this formula, it is also easy to verify that X is nonzero. O

Now we establish linear and diffusive scaling limits of the decoupled carrier process on unstable
colors. This is the main outcome of this section.

Proposition 7.9 (Limit theorems for the decoupled carrier process on unstable colors). Let (X )x>0 be
the decoupled carrier process in (128). Denote {x := Xy — X\, for x > 1. Then the following hold.

(i) (SLLN) Almost surely,

hm n_IXn = ed] (plll - pa/z) + e(tz(pttz - pag) +-o-t e(tr (pdr - pa/o) =M. (190)

n—oo

(ii) (FCLT) Let (YV)VE]RZO denote the linear interpolation of the lattice path (X — xpt)xen. Let B =
(B : 0 <t < 1) denote the standard Brownian motion. Then as n — oo,

(X, :0<v<1)= (B,;0<1<1)in C([0,1]), (191)

where B = (B, : 0 <v < 1) is the Brownian motion in R* with mean zero and covariance matrix
Y defined in (177). Here = denotes weak convergence in C ([0, 1]).

Proof. Recall the decomposition X, = XY + X;. From Lemma 7.1 and Theorem 7.3, we know that
X3 is a geometrically mixing Markov chain on a subset of Z, with unique stationary distribution 7*
in (130). Hence, n‘lX,i converges to zero almost surely. Also, the linear interpolation of (X3)yen in
diffusive scaling converges almost surely to zero in C([0, 1]). Thus, it is enough to verify (i) and (ii)
with X, replaced by X}/

Recall the Markov additive function representation (134) of X%, where the underlying Markov chain
(X3, &x)x>0 has the unique stationary distribution 7% ® p and is geometrically ergodic (see Theorem
7.3). Thus, (i) follows from the standard Markov chain ergodic theorem for positive Harris chains (see,
for example, [MT12, Thm. 17.1.7]). Recall that the limiting covariance matrix Z defined in (177) is well-
defined and nontrivial by Proposition 7.8. Then (ii) follows from the functional CLT for multivariate
strongly mixing processes (see, for example, [DMR94, Thm. 1] and the following remark). See also
[RS10, Thm. 3.1]. For a functional central limit theorem for additive functionals (univariate) of a positive
Harris chain, see [MT12, Thm. 17.4.4 and eq. (17.38)]. ]

8. Proofs of Theorem 2.3(ii) and Theorem 2.4

We prove Theorem 2.3 (ii) and Theorem 2.4 in this section. Throughout this section, we fix a probability
distribution p = (po, p1,---,p«) on {0, 1,--- ,«}, and let (W,),>0 be the carrier process in (8) over
the i.i.d. configuration & = £P.
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8.1. Strong stability of the subcritical carrier process

In order to prove Theorem 2.3 (ii), we need stronger stability properties of the carrier process than
what is stated in Theorem 2.3. More specifically, (1) if Wy = 0, then its first return time to the origin
has finite moments of all orders; and (2) if Wy ~ & and conditional on ||Wy||; = N, it has a uniformly
positive probability to visit the origin before it visits ‘level’ N + 1. These results are established in the
following proposition. In the remainder of this section, we will denote WZ¢ := (Wy(a), ..., Wy(k))
and W4 := (W, (1),...,Wy(a — 1)) and use similar notation for X3¢ and X:¢. This is the content of
Proposition 8.1 below, and proving this result is the main goal of this section.

Proposition 8.1. Suppose py > p* := max(py,---, px) and let (Wy)x>0 be the carrier process over
&P, The following hold.

(i) The first return time of Wy to the origin has finite moments of all orders.
(ii) For eachm € N, let 1, = inf{x > 1 : ||W,||; = m}. There exists constants Lo, Ny > 1 and ¢y > 0
such that

inf P,r(ro < min(ty, coN? + Lo) | [Wolli = N) > 0. (192)
N >Ny

We prove a series of lemmas in order to prepare for the proof of Proposition &.1.
Lemma 8.2 (Birth-deach chain domination of excursions of the carrier). Let (Wy)x>o be the carrier
process in (8) and suppose py > p* = max(py,...,px). Fixa € {1,...,«} and define a birth-deach
chain (Sy)x>0 on Zso by So := Wy (a) and
1 if Exv1=a
Sxe1 =Sx=9-1 ifé&1=0and Sy > 1 (193)
0  otherwise.

Note that (Sy)x>0 is a birth-death chain on Z>o with negative drift p, — po < 0. For all x > 0,

Wl < Sy if min Wi(a) > 1. (194)
0<t<x

Proof. The proposition says that as long as the carrier has at least one ball of color a, then the total load
[IWZ4 ||, is dominated by S,. This is easy to verify by induction. The inequality could be violated when
W, (a) = 0, since then the total load can increase by inserting balls of color > a while S, does not. O

In the statement and proofs below, we denote Py (-) = P(- | Wy = x).

Lemma 8.3 (Quadratic first hitting time of the origin of the subcritical carrier). Let (Wy),>o be the
carrier process in (8) and suppose po > p* := max(pi, ..., p«). There exists a constant ¢ > 0 such that

i%f Px(||Wx|l; = 0 for some x < c||x||%) > 0. (195)
X€ ’;0

Proof. We prove the assertion by induction on «. If « = 1, then the assertion follows easily since W, then
is a birth-deach chain on Z 5 with negative bias p; — po < 0 (e.g., see Lemma 8.5). For the induction

step, note that szz behaves as the subcritical carrier process with ball colors {0,2,3, ..., k}. That is, it
evolves by the circular exclusion restricted on colors {0, 2, . . ., k} while ignoring balls of color 1. Thus,
W22 is a lazy version of a carrier process with subcritical ball density as max(pa, ..., p«) < po. Let

7, fori = 1,2,--- denote the ith time that W22 returns to the origin. By the strong Markov property,
Ti+1 — 7; for i > 1 are i.i.d., and they have finite moments of all orders by Lemma 7.5. Also, by the

induction hypothesis, there exists a constant c¢; > 0 such that

inf Px(ty < c1lx[I?) > o. (196)

X€Z§;
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Denote Q; := W, (1) fori > 1. Then (Q;);»; is a Markov chain on Z5(. Denote o := inf{i > 1 :
Q; < L}, where L > 1 is a constant. Let M := ||Wy||; and let ¢, > O be a constant to be determined.
Introduce the following events:

Ei :={1 <c1M?}, (197)
Ep:={ max = It —7l <M}, (198)
E3 = {Wq, (1) < 2M}, (199)
E4 = {0 < W4, (1)}. (200)

These events depend on constants M, L, c; > 0 that we will subsequently choose below. Note that

o-1
or =711+ ) (41 —7;) £ 71 +0 mMax (141 — 7;), (201)
= 1<i<o

so o < 2coM on Ez N E4. Hence, 75 < (¢1 +2¢2)M? on E = ﬂ?:l E;. Also note that |W,_||; =
W:,. (1) = Qs < L. Hence, denoting ¢ := (c| +2¢3) V 1,

{IIW,ll; <L forsome x < cM?} D E. (202)
Moreover,
Py(||Wyll1 = 0 for some x < cM?+ L) > pé Px(|[Wy|li < L for some x < cM?). (203)
Furthermore, since ¢ > 1,

inf  Py(]|Wx|l; = 0 for some x < c||x||]2 +L) > pg/l. (204)
lIx[l <M

Therefore, it suffices to show that for some constant My > 1,

inf inf Py(E) > 0. (205)
M>My |x|=M

Since E; has a uniformly positive probability by the induction hypothesis (196), it is enough to show
that E5, E3, E4 have high probaiblity to occur.

For E5, since 7;41 — 7; for i > 1 are i.i.d. and have finite moments of all orders, it follows that E»
occurs with a high probability if M is sufficiently large. To see this, note that

—1 asM — oo. (206)

E[(r, - 11)?] ) et
M?2

B(Ey) = (1= B(rs -7 > M))2M) > (1 .

For E3, by Lemma 8.2, on the event that W, (1) > 2M, a negatively biased birth-death chain (Sy)x>0
on Z( makes an up-crossing of height at least M in c; M? steps, so

1 —Px(E3) < P( max S,>M
0<x<|ciM?)

So = 0). (207)

Since S is a negatively biased simple random walk, the probability in the last expression is exponentially
small in M.
For E,4, by Lemma 7.5, there are constants K, c3 > 0 such that

sup E[Q1 — Q0| Qo =m] < —c3. (208)

m>K
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ByLemma 8.5, 0 < ¢4Q1 = c4Wy, (1) occurs with probability at least 1 — 3— for some constant c4 > 0.
Hence, by choosing L > K, ¢y > c4, and letting c4 sufficiently large, E4 occurs with a high probability.
This shows the assertion. m]

Lemma 8.4 (Growth of (sub-)critical carrier). Let (Wy)x>0 be the carrier process in (8) with arbitrary

initial state Wy and suppose py > p* := max(pi, ..., p«). Then for each € > 0, almost surely,
limsup n~' max [|Wy|); < €. (209)
n—oo 0<x<n

Proof. Suppose Wy = (Wy(1), ..., Wy(k)) is arbitrary and write M := ||Wy||;. We may prepend to the
ball configuration £ the following sequence:

(Kyooskok—1,...,k=1,...,1,...,1) (210)
—_— —— —_— ———
Wo (k) Wo(k—1) Wo (1)
and denote the extended configuration & = (£1,...,&x,&1,&2,...). Let W denote the carrier process

with zero initial state run on £. Then after scanning the first M in the extended configuration, the new
carrier W attains exactly the same state Wy (i.e., Wy = Wp), and thereafter, it undergoes the same
dynamics as W (i.e., Wy4ps = W, for all x > 0). Furthermore, maxXg<y <, ||Wx|1 < max0<x<n+M||W 1,
so it is enough to show the assertion for W. For simplicity, below we will denote W and & as W and &,
respectively, and assume that the first M entries of £ may be deterministic.

Fix £ > 0. By Lemmas 3.1 and 3.5,

max [|[Wylli =41(n) = max L(Ay,¢), (211
0<x<n A1€[0,n]
where the right-hand side equals the penalized length of the longest nonincreasing subsequence
in &£(n) = (&,&1,...,&n). Let Di(xy,x2) denote the number of i’s minus the number of 0’s in
(ExysExytls - -2 €xy). If A1 (n) = en+ M, then D;(x;,x2) > en/x for some i and M < x; < xp < n.

Note that D;(x1, x2) is the sum of x; — x i.i.d. Bernoulli variables with success probability p; — po < 0.
Hence, by union bound and Hoeffding’s inequality,

P(A1(n) = en+ M) < Z Z P(D;(x1,x3) > en/«) (212)
i=1 M<x;<x;<n
< kn® exp(—cn) (213)

for some constant ¢ > 0. By Borel-Cantelli lemma, it follows that limsup A;(n)/n < & almost surely.
n—oo

Then the assertion follows. O

We remark Theorem 2.5, which will be proved in Section 10, establishes the exact asymptotic
maxg<x<n||Wxlli ~ Cy/n for some constant C > 0.

Lemma 8.5 (Drift and bound on hitting time). Let (Y;);>0 be a Markov chain on Zxq with transition
kernel P. Suppose Ex[|Y;|] < oo for all x,t > 0 and there exists constants c, L > 0 such that

E [Y) —x] £ —¢ forallx > L. (214)

Lett:=inf{t >0 : Y; < L}. Then

1
Py(t = Cx) < e forallx > 0 and C > 0. (215)
c

https://doi.org/10.1017/fms.2024.74 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.74

Forum of Mathematics, Sigma 43

Proof. For any function g : Z>o — R, denote Pg(x) := X, g(y)P(x,y) and PY := Pid(Y). Note that
the condition (214) reads

Px—-x < —c forall x ¢ [0, L]. (216)

Define the compensator (K;);>o of (¥;);>0 as Ko = 0 and

n—1
Ky = Z(PYk ~Yo). (217)
k=0

Then Y,, — K,, is a martingale with respect to the natural filtration (F;);»0, F; = (Yo, ...,Y:). Also
note that by (216), Kuar < —c(n A7), forif k < n A 7, then PYy — Yy < —c. Now using the martingale
condition,

x =Ex[Yo — Ko] = Ex[Yunr — Knazl 2 cEx[n A T]. (218)

Now if n > Cx, then {7t > Cx} = {n A 7 = Cx}. Hence, by Markov’s inequality, by choosing n > Cx,
we can conclude as
Ex[n A 1
Po(r> Cx)=Py(nAT>Cx) < xiATl 1 (219)
Cx cC

]
‘We now prove Proposition 8.1.

Proof of Proposition 8.1. Part (i) follows immediately from Theorem 7.3 with C, = (. Such choice
of the set C,. of the exceptional colors satisfies the stability condition (127) in the subcritical regime

m gegp(t,. we show (ii). Suppose the maximum ball density p* is achieved at positive colors i} < iy <
-+ <i,. That is,
po>piy=--=p,>max{p; : 1 <j<«k ,jé&{i1,....ir}}. (220)
Denote C* := {iy,...,i,}. Fix 2 € (0, 1) and define a set
Xom = {x=(x1,...,x0) €25, ¢ x|l = M, x;, > AM}. (221)

We will omit A from the subscript of the above sets unless otherwise mentioned. By Proposition 8.6,

N+r-1 \N
P (IWolli = N) = © ( )(”—) ) (222)
r—1 Do
Noting that
Pr(Wy € Xn)
Pr,(Wy € X Wolh =N) = ————=— (223)
x( ~N | Woll ) . ([Woli = V)
Br([Wolli =N — mm)(p_*)“m 224
- P ([Wolli = N) Po ’
it follows that
]\i]n>f1 Pr(Wo € An [[IWolli =N) 2 ¢c. >0 (225)

for some constant ¢, = ¢.(1) > 0.
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For each x € Z% ), let Py denote the law of (Wy)x >0 with Wy = x. We claim that there exist constants

Lo, My > 1 and A, ¢y > 0 such that

. . . 2
b inf By (T() < min(tazez,, coM )) > 0. (226)

Due to (225), this is enough to conclude (192). Indeed, since Wy € Xx implies ||[Wyll; = N, (225)
implies

Brl: [ IWolli = N) 2 e.Pr(-|Wo € Xy) 2 ¢, inf Ba(). (227)

Also note that, for any integer Lo > 1,
PX(TO < min(ty, coN? + Lo)) > plop, (To < min(tys,, CONZ)), (228)
wherey € Xn_p, is the carrier state obtained by inserting Lo 0’s into the carrier with state x. This yields

ian(T < min(ty, coN*> + L Wi :N)Zc* inf inf P(T < min(7 ch)
ot B {70 (tn,co 0) | IWolli I et P 0 (TN+Ly» CON7) ),

where the right-hand side is positive due to (226) by choosing Ng = My + Ly.
For the rest of the proof, we will show (226). Let a := i}, p := inf{x > 0 : W,(i;) = 0} and

19 = inf{x > 0 : ||[W,|i = 0}. According to Lemma 8.3, there exists a constant ¢y > 0 such that
T9 < c0||W0||f with a positive probability. Denote M := ||Wp||; and fix &, L > 0. Define the following
events:
A= {0 < coM?}, (229)
L
Ay = {||Wx>“||1 < M+E—28x for all x € [O,p]}, (230)
<a L
Ay e {nwx I 2 exforally > 0}, @31)
Ay = {||Wy|l1 £ M forallx € [p,10]}. (232)
Note that
4
{IW,l; hits 0 before it hits M + L for some x < coM?} 2 A := ﬂ A;. (233)

i=1

Thus, it suffices to show that, for M), L sufficiently large and & > 0 sufficiently small,

L inf Bx(4) > 0. (234)

To this effect, first note that A| occurs with a uniformly positive probability by Lemma 8.3. Next, we
observe that A, and A3 occur with high probability. For Aj, according to Lemma 8.2, [[WZ4||; < S, for
all x € [0, p), where (Sy)s>0 is a biased random walk on Z with a negative drift p, — pg < 0. Let p’
denote the first time that (Sy )50 hits the origin. Then p < p’ by the coupling, so

L
Px(AS) < P[Sy > So + 7" 2&x for some x > 0. (235)

The right-hand side above is the probability that a biased simple random walk on Z with mean increment
Pa — Po+2¢ starts at zero and ever reaches height L/2. We choose & > 0 small so that p, — po +2¢& < 0.
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Then by gambler’s ruin for a negatively biased simple random walk on Z, this probability is exponentially
small in L. Thus, by choosing L large and & > 0 small, we can make infas > xex,, Px(A2) arbitrarily
close to one.

For A3, let X, denote the decoupled carrier process with exceptional colors C, = {a}. Then by
Proposition 6.2, W[l < IX50li = IX34|l; for all x > 0. Note that [|[W;“|l; < (1 — )M since
Wo € Xr. Moreover, note that X T¢ behaves exactly as the subcritical carrier process with ball colors in
{1,...,a} and balls of color a acting as the empty box. That is, X3¢ evolves by the circular exclusion
restricted on colors {1,...,a} while ignoring balls of colors in {a + 1,...,«,0}. Thus, X% is a
lazy version of a carrier process with subcritical ball density as max(p1, ..., pi,—1) < pi,- Thus, by
Lemma 8.4, lim supmaxg<y<, n~' | X5¢|; < & almost surely. Hence, A3 occurs with high probability

n—oo

for any fixed € > 0 if L is large enough.

Next, we show that ﬂ?:l A; occur with a uniformly positive probability. By definition, p < 79. By
the definition of the set X, in (221), we get Wy(a) = AM. Since W, (a) can decrease at most by one, it
follows that p > AM almost surely. On A, N Az, [|W, ||} < M(1 — A¢) + L. Thus,

AlNAyNA3N AZ (236)

C {||Wq|l; makes an up-crossing from M (1 — Ae) + L to M + L in coM? steps} (237)

c U {W, (/) makes an up-crossing of length Mg/« in coM? steps}. (238)
1<i<k

By the coupling (194) in Lemma 8.2, the last up-crossing probability is exponentially small in M. This
shows

Px

ﬁ Ai) > Py
i=1

3
ﬂ Ai) —_ oM (239)
i=1

Since A; has uniformly positive probability and A, N Az has a high probability, by union bound, the
above is uniformly positive for M sufficiently large. This finishes the proof. O

8.2. Order statistics of the excursion heights and multidimensional Gambler’s ruin

According to Theorem 2.3 (i), the carrier process (Wy)yso in the subcritical regime po >

max(py,- -, px) Will visit the origin 0 := (0,0,---,0) € (Zxo)” infinitely often with finite mean
excursion time 7(0)~'. Namely, the number M,, of visits of W, to 0 during [1,#] (defined in (36))
satisfies
Mn . Di
2 —>7r(0):l_[(l——) as. asn— oo (240)
n pPo

i=1

by Theorem 2.3 (i) and the Markov chain ergodic theorem.

According to Lemma 3.1, the first soliton length 1, (n) is essentially the same as the maximum of
the first M,, excursion heights of the carrier process. Roughly speaking, each excursion height is O (1)
with an exponential tail. Since there are M,, ~ 7(0)n i.i.d. excursions, their maximum height behaves
as O(logn).

To make this estimate more precise, we analyze the order statistics of the excursion heights of the
carrier process during [1, n]. For this, let k., > hoyy > -+ = hym denote the order statistics of the
first m excursion heights Ay, - - - , hy,. The strong Markov property ensures that these excursion heights
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are i.i.d., so we have

j-1
{hjm < N} = ('Z)P(hl SN"B(n > N =1 (241)
=0

In the simplest case x = 1, the distribution function of the excursion height /; follows from the standard
gambler’s ruin probability and is given by

P(h; < N) = )1(1\7 > 0), (242)

( QNT
where 6 = po/pi (see [LLP20, Sec. 4]). In order to obtain sharp asymptotics for top soliton lengths in
the multicolor case, we need a similar result for a generalized gambler’s ruin problem. That is, we need
an asymptotic expression of the probability that the subcritical carrier process reaches ‘height’ N (see
(37)) before coming back to the origin.

However, solving the ‘carrier’s ruin’ problem asymptotically for N — oo seems to be a nontrivial
problem. The essential issue is that the subcritical carrier process for k > 2 may have a positive drift on
a boundary of its state space. For instance, consider the x = 2 carrier process as in Figure 1. Assuming
po > max(py, p2), the carrier process has a drift toward the origin in the interior and the right boundary
of the state space Z>0, but this is not necessarily true when there is no ball of color 1 (e.g., consider

= (0.4,0.3,0.3)). A standard martingale argument for the gambler’s ruin problem for xk = 1 does not
seem to readily apply for the general x > 2 dimensional case for this reason. Another standard approach
is the one-step analysis, which is computationally challenging since it involves inverting a large matrix
(with blocks of expanding sizes) at every N, and one needs to obtain an asymptotic expression of the
solution of a N* X N linear equation as N — co.

Despite the technical difficulties we mentioned above, as stated in Theorem 2.3 (ii), we are able to
obtain exact asymptotic expression on the probability that an excursion reaches height N as N — oo.
Our analysis uses a novel idea of ‘stationary balancing’, which we believe to be useful for solving other
multidimensional ruin problems. A major technical component we will use in the proof is Proposition

8.1(ii).
The following combinatorial observation will be used in the proof of Theorem 2.3 (ii) below. It states
that if we have k independent geometric random variables of parameters p|/po, ..., p«/po, and if we

condition on their sum being N, then the total mass should be concentrated on the most probable colors.
We note that in the statement, the 1 — % terms are omitted from the product since they are all between

1 -2 and 1. The proof is given at the end of this section.

po
Proposition 8.6. Lef py > p* = max(py, ..., p«). Let r denote the number of i’s in {1, . . ., k} such that
pi=pAfpr="---=py then

5 e

X1+-+x=N i=1

Suppose r < k and let p'® denote the second largest value among p1, . . ., p«. Then
p*NN+r—1) Z 1—[ ) ( N+r—1( p* e
— < —_— . (244)
(po) ( r—1 i ( ) ( r—1 )p—p(”)

We are now ready to prove Theorem 2.3 (ii).

Proof of Theorem 2.3 (ii). Fix two disjoint subsets A, B C Z¥ . Let 7; fori > 1 denote the ith time that
the Markov chain (Wy)x>o hits the union A U B. Then by strong Markov property, the subsequential
process W; =W, -, fori > 11is a Markov chain on the state space AU B. Since (Wy )y is irreducible and

https://doi.org/10.1017/fms.2024.74 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.74

Forum of Mathematics, Sigma 47

aperiodic, so is the restricted chain (VT/l- )i>1- So if the restricted chain has a stationary distribution, it has
to be unique. Note that the following probability distribution 74,p on A U B is a stationary distribution
for (Wy)ix1:

maug(X) = n(x)/m(A U B) forx e AUB, (245)

where for each subset R C Z£ ), we denote 7(R) := Yyeg 7(y). Here, x is the stationary distribution for
the subcritical carrier process defined in (9). This can be justified by using the Markov chain ergodic
theorem (see, for example, [AF02, Sec. 2.7.1]).

Let (W{)x>0 be a carrier process on the ball configuration ¢P but initialized as W ~ maup. If we
restrict this chain at hitting times of A U B, then the restricted chain is stationary with distribution m4p.

That is, if we denote the ith time that W visits A U B as 7/, then W(; and W;, has the same distribution
1

maup- The key idea is to treat the restricted stationary process (W;_{)iz() as if it is a two-state process on

{A, B} and then derive a ‘balance equation’ for the mass transport between A and B.

By using (245),
P(W/, visits B before A) = P(W’ € B) = rap(B) = B (246)
x T AVB 7(AUB)
This gives
maug(B) = P(W,, visits B before A) (247)
= P(W/, visits B before A, W, € A) +P(W; visits B before A, W[ € B) (248)
= P(W)’c visits B before A ‘ W, € A) maug(A) (249)
+ P(W)’C visits B before A ‘ W, € B) maug(B). (250)

Simplifying using (245), we obtain the following ‘balance equation’:

]P((W)’C)le visits B before A ‘ W, € A) (251)

n(B)
(A)

Now we specialize in the above result. Take A = {0} and B = {x € Z¥, : [|x[[1[[1 = N}. Note that

= P((W )x>1 Visits A before B ’ W, € B) (252)

P((Wy)x>1 visits B before 0| W = 0) = P(h; > N). (253)

Recalling the the formula for x in (9), it follows that

K Xi
P(h; > N) = P(W/ visits 0 before B | W, € B) Z ]_[(ﬂ) , (254)
X1+ axe=N i=1 \PO
where the sum is over all integers x1, ..., x, > 0 that sum to N. The above along with Proposition 8.6

is enough to deduce the upper bound in (12).

To obtain a lower bound of matching order, we need to show that the probability in the right-hand
side of (254) is uniformly positive for all sufficiently large N. This requires a substantial analysis, which
we have done in proving Proposition 8.1. By this result, there exists a constant ¢ > 0 such that

li}rvn>i?f P((Wy)x>1 visits 0 before B| W € B) > 6 > 0. (255)

Then the assertion follows from (254), (255) and Proposition 8.6. m]

https://doi.org/10.1017/fms.2024.74 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.74

48 J. Lewis et al.

Proof of Proposition 8.6. Suppose we have real numbers a; =ay = -+ =a, > dpy1 = -+

Note that

Xr+l Xk
z : z : ar] Ay
a)lcl .. axK :a]lv (_) ...(_)
N\ al ay

X1+ +x=N X1+ X =

N
_aNZ (q+r_ 1) Z (ar+1 )Xr+l (a/( )XK
=a cee | — .
- a
q=0 r 1 Xp41 e +x=N—q a1 !

N#1). Hence, if py = -+

> a, forsomer € {1,...,

Ifa; = - - - = ay, then the above expression equals to a{v (
Wenow assume a; =---=d, > Q] = - -
in (256) is at most

< q+r Ayl N-=q
z : +r - z : r+
( r—1 ) ( ai )
Xpp1t++x=N—q

B Z g+r—1\(N—g+«x—-r—-1\[{a,4 N-q
=4 r—1 k—r—1 aj

N+r-1 n aril n=(i=r=1)
<aV .
_al( r—1 )[Z(K—r—l)( a1)

n>0

Note that the sum in the bracket above equals

(k—r-1)
(k=r-1) n (k=r-1) (ur+1)
ord D! M G I o I e e
Arsl Sh\k=r=1J\ a ars (1 _ a(:_—;—l)K_r aj — ary
h d th ting function 3,50 (7)y" = 2 (with (%)
where we used the generating func w0 ()" = G55 .
that

Y I i e P

X1+ +x=N i=1

For the lower bound, note that the last expression in (256) is at least

AN 2 ()

Xp1+-+xk=N—q

:aNi g+r—1\[N-g+k—-r—1)lax N_q>aN N+r-1
1 r—1 k—r—1 aj -l r-1 |

Hence, we get

% LG = ()

X1+-+x=N i=1

This shows the assertion.

https://doi.org/10.1017/fms.2024.74 Published online by Cambridge University Press

(256)

= px, We get (243).
k}. Then the last expression

(257)

(258)

(259)

) - (260)

= 0forn < k). Hence, it follows

(261)

262)

(263)

(264)
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8.3. Proof of Theorem 2.4

Now that we have the asymptotic soliton to the ‘carrier’s ruin’ problem (Theorem 2.3(ii)), we are ready
to obtain sharp scaling limit for the top soliton lengths in the subcritical regime, as stated in Theorem 2.4.
To do so, we first obtain the following scaling limit of h;(n) using a similar argument to that developed
in [LLP20]. For instance, the maximum excursion height h; (n) of the subcritical carrier process during
[0, n] scales like (1 + o(1)) log n, where its tail follows the Gumbel distribution up to a constant shift.
The tail cannot have a tight scaling limit due to a rounding error even in the x = 1 case; see [LLP20,
Remark 5.5].

Proposition 8.7. Suppose py > p* := max(py,---,p«). Let r denote the multiplicity of p*, 0 :
po/p*, and o = w(0) > O (see (240)). Let v, = (1 + 6,)logy(on/(r — 1)!), where we set 6,
(r—l)loglogg((rn/(r—l)!)+10g(r—l)!. Fixj > 1 and x € R. Then

logon/(r-1)!
- _1
, C oy 0~
hnm_>sol:p exp (- (r_l)!e ) Z::m (P{h;(n) <x+v,}+0(1) <1, (265)
o S 7(x 1) j-l f(x 1)
lim inf |exp ( - =’ ;) TEEY P{hj(n) <x+vatto(D)) 21, (266)

where constants 6 > 0 and C > 1 are as in the Theorem 2.3 (ii).

Proof. Fixe € (0,0) and let b,, = [ (0 — €)n]. As M,,/n — o a.s. (see (240)), we have that M,, > b,,
for all sufficiently large n almost surely. Hence, for each fixed x € R,

P(h;(n) < x+vy) <P(hjp, <x+vy)+o0(1). (267)

Furthermore, according to Theorem 2.3 (ii) and (241),

P(hjp, <x+vn) (268)
j-1 Lx+v, J+r-1 by-t Lx+v, J+r—1 4
bn C( r—1 ) ( r—1 )
< ; ( £ ) 1- Qlx+va] QLx+vn ] (269)
C(Lx+v,,J+r 1 n j— C(Lx+\;,l_J1+r—1) -t (Lx+1;,,_Jl+r—1)bn 4
=\1- 9[x+vnj+1 (Z: QLx+va] gLlx+vn] ’ (270)
Since v,, = (1 +6,) logy(on/(r — 1)!), note that
avi~ln
log v =(r—1)log(1+6,)+ (r—1)loglog,(on/(r—1)!) +log(r — 1)! (271)
+ 6, (log(r — 1)! —logon) (272)
=(r-1log(l+6,) —0 asn — oo, (273)

where the second equality uses the definition of §,, and the limit follows since d,, = o(1). Using Stirling’s
approximation, (Y~ =1 +0(1)N""/(r—1)!as N — oo, we get

an(I_x+v,,J+r—l)

by
T A e | RO e )
,,12130 Vn 1Og(l - gLlx+vn] - nlE;IOIO Qvn (274)
1 Lx + v, ] r-l b,Cvi!
=, el ( v ) Iz @7
c(l-=
- —(r_—l)‘f,. (276)
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Similarly,
gyl (betmdirly (1 - 2
T gl - oDl @77)
Writing 17,, = (x +v,) — |[x +v,] € [0, 1), since 6 > 1,
| 0|_x+v,,J
0 < o =007 < 9%, (278)
Also note that lim,, o b;[ (bf") = %. From the above computations, we deduce
Lx+v, J+r-1 by
: c €\ —x+1 C( r—1 )
llisgpexp(m(l - ;)9 - s (279)
Lx+vy, J+r-1
. (r=1)! 71( -1 )bn
limsup g1 <1 280
o

Then we obtain

-1
C ge—t’(x—l)
mslon(-G S-Sl )| e

X P(hjp, <X+ V) (282)

<1 (283)

Therefore, letting £ ~\, 0 and using (267) give the limsup in the statement. A similar argument using
= [(o + €)n] shows the liminf in the statement. O

Now we are ready to establish sharp scaling for the top soliton lengths in the subcritical regime.
Proof of Theorem 2.4. Let v, be as in Theorem 2.4. Note that
vp =loggn+ (r —1)logylogn+c+o(1) (284)

for some constant c. Hence, the asymptotic (13) for A;(n) follows from (14).
Now we derive (14). Fix j > 1 and x € R. Then by Proposition 8.7,

liminf P(hy(n) < x +v,,) > exp(—-607%), (285)
n—o00
C (x-1) k(x 1)
. —(X—
llnmﬁsoljp]P( (n) <x+v,) < exp( o 1)'0 )Z AICESIE (286)

Moreover, recall the quantities M, and r,, in (36) and (38), respectively. By Lemma 3.1,
hy(n) = max{hy, -, hp, } < A1(n) < max{hy,---, hpg,41}- (287)
Also, note that
0 <P(hi(n) <x+v,) —P(max{hy, - ,hpm,+1} <x+v,) <P(hp,+1 > hi(n)) =0(1). (288)
It follows that

P(A,(n) < x +vy) = P(h(n) < x +vy) +0(1). (289)
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Moreover, since A1 (n) > A;(n) > h;(n) by Lemma 3.1,
P(A1(n) < x+v,) <P(1j(n) <x+vy) <P(hj(n) <x+vy,). (290)

Then (285)—(286) show (14), as desired. m]

9. The linear scaling limit of the carrier process

In this section, we prove Theorem 2.5 (i), concerning the linear scaling limit of the carrier process W,
in (8).

Throughout this section, we assume pg < p* = max(p1,..., p«). In this case, the set C} of unstable
colors (defined above the statement of Theorem 2.5) is nonempty. Let | < - - - < @, denote the unstable
colors. Let (X, )x>0 be the decoupled carrier process in (128) with C, = CF. Recall the process (X, )x>0
in (115).

We first show that the coordinate X, (¢) for £ an unstable color of supercritical density behaves like
a random walk with a positive drift.

Proposition 9.1. Fix j € {1,...,r} and denote ¢ = «j, {* = @ju1. If pe > pe+, then M =
—infy ey Xk (€) has a finite exponential moment.

Proof. Recall that (X, (£))xs0 is a Markov additive functional with increments g¢ (X %, Ex+1) (see (133)).
Under the hypothesis, it has a positive bias E s gp [ g (X3, &x41)] = @ := pe — pe+ > 0 (see Proposition
7.2). Hence, one can expect that X, (£) will essentially behave as a simple random walk on Z with a
positive bias. Since M measures the height of the excursion of X, (£) below the x-axis, it should have a
finite exponential moment. Below we give a rigorous justification.

Consider the Markov chain

Y, = (Xx(é’+ 1), -+, X (€t - 1)). (291)
Lett;:=jforj > 0if{+1= £*; Otherwise, let 7; be the jth return time of (Xx(é’+ 1), -, Xe(£F = 1))
to the origin. By strong Markov property, 71, 72— 71, T3 — T2, . . . arei.i.d., and they have finite moments of

all orders by Lemma 7.5. Let R; := X, (¢) for j > 1. Then (R;);> is arandom walk. Letn; := R; —R;—;
denote the increments. It has a positive drift as

_j: m ij(f)‘r_]

S — g =aE[r] > 0, (292)
] J—00 Tj ]

E[m] = lim
]—)DO

where the first two equalities use the strong law of large numbers and the Markov chain ergodic theorem.

Next, we claim that X, (€) returns to the origin only finitely many times almost surely. First note
that by the strong law of large numbers, n~'R,, — a > 0 almost surely. Hence, n~'R,, > a/2 infinitely
often almost surely. Note that for each j > 1, since 74 — 7; is independent from R; and has the same
distribution as 71, by Chebyshev’s inequality,

P(Xx(£) = 0 for some x € [1},7j+1)) < P(R; < Tjs1 — T) (293)
< E[P(T]‘H -T2 Rj |R])] (294)
< E[R;*E[7{]] (295)
< E[?] ((aj/z)-2 +cP(R; < (a/Z)j)), (296)

where the last inequality follows by partitioning on two cases depending on R; < (a/2)j or R; >
(a/2)j.1f we denote 7j; := E[n;] — n;, then 77;’s are mean zero i.i.d., so, noting that E[R,,| = an,
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P(R, < (a/2)n) < P(E[Ry] — Rn > (a/2)n) (297)
< P(Z -7, > (a//2)n) (298)
I:L )
<P (Z —ﬁi) > (@/2)*n* (299)
i=1
~212 —4
< C(E[nl]n; E[7,] (300)

for some constant C > 0. Note that for the last inequality, we have used Chebyshev’s inequality along
with the fact that only the O(n?) terms of the form 77;77; for i # j and 7j} have nonzero expectations.
Sincet |n1| < 7| has a finite moments of all orders, so does 77;. Thus, (293) implies

ZP(ZX(O) = 0 for some x € [}, 7j41)) < oo. (301)
j=1

By the Borel-Cantelli lemma, it follows that X ({) visits the origin only finitely many times almost
surely. This shows the claim.

Now we conclude that M has a finite exponential moment. For this, we use the general result by
Hansen [Han06] about the running maximum of a random walk with negative drift — that if the running
maximum is uniformly bounded almost surely, then the supremum of the running maximum has a finite
exponential moment. We apply this result to the random walk (—R;);>1. According to the claim, it
follows that sup, o —Xx (€) = —inf >0 X, (¢) is almost surely finite. Hence, sup ;>1 —R; is almost surely
finite, so by [Han06, Thm. 2.1], sup;,; —R; = —inf;> R; has a finite exponential moment. Since the
increments of R; have finite exponential moments, we can conclude that — inf > X () also has a finite
exponential moment. O

Proposition 9.2. Let j € {1,...,r} be arbitrary with € := aj, {* := @41, and p¢ > pe+. Then for each
integer d > 1, there exists a constant ¢ > 0 such that for alln > 1 and s > 0,

P(Orga} X, (6) — X, (€) > s) < exp(—cs), (302)

1

Proof. Consider the following Markov chain

max X;(£) — X, (€)

0<t<n

> 8) < exp(—cs).

Y, = (lmax X, () = X (€), Xo(E+1), -+, X (€4 - 1)) (303)

<s<x
on Z{;O_[. Note that Yy = 0. Let 7 denote the first return time of Y, to the origin. In Theorem 7.3, we
have shown that 7 has finite moments of all orders. Let Ly, L, ... denote the lengths of excursions of
Y, to the origin. Since Ly > 1 for all k > 1, M,, < n. Let hy, hy,--- denote its subsequent excursion

heights of Y. Since h; < L; = 7, and using the elementary inequality,
1-(1-a)* <na forae(0,1), (304)

for each s > 0,

P(‘f?f‘f X (6) = Xu(0)

2 S) <P(Yulli = 5) (305)

< P(max(hy,..., hp,) > 5) (306)
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< P(max(hy,...,h,) > ) (307)
<1-(1=P(h; =29))" (308)
<nP(h; = s) (309)
<nP(r >s). (310)

Note that P(7 > s) is exponentially small in s. Hence, the first inequality in (302) follows.
Next, we show the second inequality in (302). By definition of X, we have

P(‘lrgaf X (0) — X (0)] = s) = P(‘Orgaz; (Xs(f) - Orgiil X,(Z)) - X (0| > s) (311)
< P(Orllng X;(0) = Xx(€) > s/Z) (312)
+IP’( max (— min Xt({’)) > s/2). (313)

0<s<x 0<r<s

The second term in the last expression is exponentially small in s due to Proposition 9.1. Hence, the
second inequality in (302) follows from the above and the first equality in (302). m}

The following lemma shows half of Theorem 2.5 (i).

Lemma 9.3. Let = (uy,..., 1) = Z;zl €o;(Pa; — Pay,)- Fori=1,...,k almost surely,

limsupn_l(max W,(i)) < u;. (314)
n— 00 0<t<n
Proof. By Proposition 6.2,
max Wy (i) < max X,(i) i=1,...,«, (315)
0<r<x 0<t<x

where X, (i) = X, (i) — ming<s<yx Xs(i). Let 19 := 0, let 7; for j > 1 denote the jth return time of
X3 to the origin, and let /; denote the maximum value of || X7||; during the interval [7;_;,7;]. By
the strong Markov property, /;’s are i.i.d. By Lemma 7.1, (X3)>0 is a Markov chain on Z, with a
unique stationary distribution, and its return time to the origin, say 7, has finite moments of all order by
Theorem 7.3.

Now note that, for each s > 0,

P( max || XS, > s) < P(max(hy,...,h,) = 5)=1— (1 =P(h; > 5))" (316)

0<t<n

<nP(h; =25) <nP(r >5). (317)

Now choosing s = n!/4, it follows that P(n~1/2 max<,<x || X{|li > n~'/#) is summable, so by the Borel-
Cantelli lemma,

n—oo

lim n~'/? Urga}nHXf”l =0 as. (318)

Combining with (315) and recalling X, (i) = X, (i) fori € C?, we deduce (314) for all i € CP.

By the argument in the previous paragraph, we may assume the set C?, of unstable colors is nonempty,
and it remains to show the statement for unstable colors. Fix j € {1,...,r} andlet £ = o, £* = a4y
(with @41 = 0). Since ¢ is an unstable color, py > pg+. First, suppose pgs > p¢+. Then Propositions 9.2
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and 7.9 imply

lim n~! max X;(¢) = Jlim n 1X,(6) = pe — per (319)

n—oo 1<t<n

almost surely. Then the assertion follows from (315).
It remains to consider the case py = p¢+. In this case, we wish to show

limsupn™! ( max W,(é’)) =0. (320)
n—oo 0<t<n
Rewrite (315) as
0max Wi (€) < Jmax (X,({’) - mkm Xk(é’)) < Jmax X,({’) + Jnax ( X (0)). (321)
<t<x
Hence, it suffices to show
lim sup n! ( max X,(f)) = limsupn~ ( max —X,(f)) =0. (322)
n—oo 0< n—oo 0<t<n
First assume £+ 1 = £*. In this case X, (¢) is a lazy simple random walk on Z. Hence, by the reflection
principle,
a2
P( max (—X,(£)) > a) <2P(—=X, () > a) < exp(——). (323)
0<r<n n

The right-hand side is exponentially small in a by the bounded difference inequality. So taking a = n?/3

and applying the Borel-Cantelli lemma show that 7! maxg<; <, (—X; (£)) converges to zero almost surely.
By a symmetric argument, the same conclusion holds for n~! maxy<; <, X, (£). Hence, this verifies the
assertion.

Lastly, suppose € + 1 < ¢*. In this case, X, ({) is not a random walk. Instead, from (133), we can
write it as a Markov additive functional:

Xe(0) = D8 (X}, &), (324)
t=0

Moreover, the increment g¢(X?, &.1) does not depend on the whole X?, but only on
Y= (X, (€+1),-+, X (€5 = 1)). (325)

Let 19 = 0 and 7; for i > 1 denote the ith return time of Y, to the origin. According to Theorem 7.3, 7
(and hence all 7;’s) have a finite moments of all orders.

Consider the process R; := —X7,({). By the strong Markov property, the sequence R; fori > 1isa
random walk. Denote its increment 77; := R; — R;_1. Then n; has finite moments of all orders since each
7; — T;—1 does so, and X, (£) changes at most by one in x. Moreover, by the strong law of large numbers
and the Markov chain ergodic theorem,

R X
Bl ] = tim R0 = iy T CXm0)
n—oo n n—o n Tn

= E[11] Exsoplg’ (X3 €xr1)] = 0. (326)
Hence R; is a mean-zero random walk.

https://doi.org/10.1017/fms.2024.74 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.74

Forum of Mathematics, Sigma 55

Denote M := max(t, T — 71, ..., Tn — Tu—1). Since this is the maximum of i.i.d. random variables
of finite moments of all orders, union bound and Chebyshev’s inequality and (304) give
P(M>a)=1-(1-P(t; >a)" <nP(r; > a)=0ma?) (327)

for any integer d > 1. Also, since the increments X1 (£) — X, (£) are bounded by 1,

max Ry > max —-X,({)-M > 0max -X,(£) - M. (328)
<s=<n

0<s<n 0<s<T,

Hence, combining the above inequalities and using Kolmogorov’s maximal inequality, for any b > 1/+/n,

P(n~! max —X,(¢) > b) < P( max Rg(€) > nb - M) (329)
0<s<n 0<s<n
< P(Omax Ry(£) > nb — «/ﬁ) +B(M > n) (330)
<s<n
n Var(n) )
=——— 1+ 0({mn). 331
(b — vn)? (™) (331)
Then taking b = n~/¢ and denoting T}, := maxo<y<, —X;(£), we get
— _ Cc
]P(n T, >n 1/3) <5 (332)

for some constant ¢ > (. Notice that 7,, is nondecreasing in n. By Borel-Cantelli Lemma and (332), we
have that n2T,, — 0 almost surely. Fix k > 1 and let n = n(k) denote the largest inetger such that
n* < k < (n+1)%. Then using monotonicity,

n? Ty < T < T2 (n+ 1)2.

n+1)2n2 = k ~ (n+1)2 n? (333)

Taking k — oo, we deduce that kT, — 0 almost surely as k — oo. Therefore, it follows that
n~! maxo<;<n (—X; (£)) converges to zero almost surely. By a symmetric argument, the same conclusion
holds for n~! maxg<; <, X; (€). This completes the proof. O

Now we are ready to prove Theorem 2.5 (i).

Proof of Theorem 2.5 (i). We wish to show that

lim n~'W, = as. (334)
n—oo
Note that by Lemma 9.3,
limsupn™'W, < pu as., (335)

where we interpret the inequality componentwise. Recall the Skorokhod decomposition W, = X + RY},
in Lemma 6.3. We first consider the case when k > 3. Then writing R = I — Q with Q = tridiag, (0,0, 1)
and using the identity (I — Q)(I + Q + Q> +...) = I, we see that R™! is the following upper diagonal
matrix whose nonzero entries equal to one:

R'=I1+Q0+---+0“ 1. (336)
Write

n Y, =R ' (n'W, - n7'X,,). (337)
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Then by using (335) and the fact that lim, . 771 X,, = p a.s. (see Proposition 7.9),

a = limsup(n~'W, —n7'X,) <0, (338)

n—o0

where we applied limsup as well as inequality componentwise. It is crucial to note that R~! has
nonnegative entries. Hence,

limsupn~'Y, = R"'a < 0. (339)

n—oo

But since each Y, is a nonnegative vector by definition, it follows that lim,,_,, n~'¥;, = 0 almost surely.
Then using the Skorokhod decomposition once more, we get
lim n”'W, = g+ R lim n”'Y, = (340)
n—oo n—oo

almost surely, as desired.
It remains to verify (334) for the case when x = 1,2. Denote y := limsupn~'Y,,. Suppose k = 2.

n—oo

Then the Skorokhod decomposition and (338) yield

[é _11]y =a<0. (341)

Note thaty > 0 since ¥,, > 0 for all n > 1. Then it is easy to see that y must equal 0. The case for « = 1
can be argued similarly. O

10. The diffusive scaling limit of the carrier process

In this section, we prove Theorem 2.5 (ii) on the diffusive scaling limit of the carrier process in the
critical and the supercritical regime. The definition of SRBM below is adapted from [Wil98, Def. 3.1].

Definition 10.1 (Semimartingale reflecting Brownian motion). Fix an integer x > 1 and a subset
JcA{l,...,k}. Let S := {(x1,...,x¢) € R : x; > 0 foralli € J} and let B denote the Borel o-
algebra on S, v is a probability measure on (S, B), € is a constant vector in R, X is a x X k covariance
matrix (symmetric and positive semidefinite!) and R is a k X xk matrix. A semimartingale reflecting
Brownian motion (SRBM) associated with the data (S, 0, %, R, v) is an {F;}-adapted, x-dimensional
process W defined on some probability space (€2, F,P) and filtration {F;;¢ > 0} (an increasing family
of sub-c-algebras of F) such that

(i) W =X +RY, P-as,;

(ii) P-a.s., W has continuous paths and W(t) € S for all t > 0;

(iii) Under P,
(a) X is a k-dimensional Brownian motion with drift vector 8, covariance matrix X and X (0) ~ v;
(b) {X(#) — X(0) — 6¢t, F;;t = 0} is a martingale;

(iv) Y is an {F;}-adapted, xk-dimensional process such that P-a.s. fori = 1,...,«,
(a) Y;(0) =0;
(b) Y; is continuous and nondecreasing;
(a) Y; can increase only when W is on the face F; := {x € § : x; = 0}, i.e., fow 1(W;(s) > 0)

dY;(s) =0.

Roughly speaking, an SRBM W = X + RY behaves like the Brownian motion X in the interior of
the domain S, and it is confined to the domain by the instantaneous ‘reflection’ (or ‘pushing’) at the
boundary, where the direction of such ‘reflection’ on the ith face F; is given by the ith column of the

'We allow the covariance matrix to be degenerate.
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reflection matrix R. Note that in Definition 10.1, the domain S only requires coordinates in the set J be
nonnegative, while it is standard to take S to be the nonnegative orthant RY ). We take this slightly more

general domain to analyze the diffusive scaling limit of the centered carrier process W, in Theorem 2.5,
which can take negative values in coordinates corresponding to unstable colors.

A classical result of Reiman and Williams [RW88] (see also [Wil98, Thm. 3.1]) shows that an SRBM
associated with (S, 0,2, R,v) with § = R’;O and X nondegenerate uniquely exists if and only if the
reflection matrix R is completely-S (see Definition 10.2). Roughly speaking, this condition means that
at any boundary point of S, there exists a nonnegative linear combination of the reflection directions
(i.e., columns of R) that points to the interior of S. When X is degenerate, then SRBM still exists but
may not be unique.

Definition 10.2 (Completely-S). A matrix R € R%*9 is completely-S if for every principal submatrix Ry
of R, there is a nonnegative vector x( such that Roxg has strictly positive coordinates. Here, a principal
submatrix of R is a matrix obtained by deleting all rows and columns of R with indices in some proper
subset set Z C {1,...,d} (possibly empty).

It is critical to notice that the reflection matrix R in (118) that gives a Skorokhod decomposition of
the carrier process Wy as in Lemma 6.3 has the following property: For « > 3, R = I — Q, where Q has
a spectral radius less than one. In this case, we can say a lot about SRBM with a more direct argument.
The first step is to recall that the problem that defines SRBM in Definition 10.1 is a particular instance
of the classical Skorokhod problem stated below.

Definition 10.3 (Skorokod Problem). Fix a subset J C {1,...,«} and let S := {(xy,...,x,) € R :
x; > 0 foralli € J}. Let Cs denote the subspace of C¥(0, o) consisting of paths x with x(0) € S.
Fix matrix R € R**¥ and x € Cgs. A pair (z,y) € C¥(0, 00) x C¥(0, o) is a solution of the Skorohod
problem for x w.r.t. R if the following conditions hold:

(i) z(t) =x(t)+ Ry(t) forallt > 0.
(ii) z(¢r) € Sforall¢ > 0.
(iii) Fori=1,...,«, y;(0) =0, y;(¢) is nondecreasing, and fooo 1(i € H1(z;(t) =2 0)dy;(r) =0.

When the reflection matrix R can be written as R = I — Q where Q is nonnegative and has a spectral
radius less than one, then there is a unique solution (z, y) to the Skorokhod problem for each path x and
the map x — (z, y) (the Skorohod map) is continuous. This result is stated and proved in Theorem 10.4.

Theorem 10.4 (Harrison and Reiman ’81). Ler § = R? x R’;)d and Cs be as in Definition 10.3.
Suppose the reflection matrix R can be written as R = I — Q, where Q is nonnegative and has a
spectral radius of less than one. Then for each path x € Cs, there exists a unique pair of functions
(z,y) € C*(0,00) X C*(0, 00) that solves the Skorokhod problem in Definition 10.3. Furthermore,
denoting 7 = ¢(x) and y = Y (x), both ¢ and  are continuous mappings Cs — C*(0, o).

Proof. The original result [HR81, Thm. 1] is stated for § = R, where in our setting we allow S to be
the intersection of axes-parallel half-spaces in R*. A minor modification of the proof of [HR81, Thm.
1] will show the minor extension as stated above. We sketch the argument for completeness.

Without loss of generality, assume S = R4 x R’;Bd for some d € {0, ...,«}. Denote C = C¥(0, o)
and fix x € Cs. Let Cy be the set of paths y € C such that y(0) = 0 and nondecreasing componentwise.

Define a map © = 7w, : Cy — Cj such that

0 ifi=1,...,d
m(y)i(1) = + e (342)
SUPg<s < [¥(8)Q —x(5)]" ifi=d+1,...,«
Then one can check that (z, y) is a solution to the Skorokhod problem if and only if
yeC, y=n(y), z=x+{-0)y. (343)

One can then argue that there is a unique solution y € Cy such that y = 7 (y).
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To this end, for each square matrix Q, we let || Q|| denote its maximum absolute row sum. Since Q is
nonnegative and has spectral radius < 1, there exists a positive diagonal matrix A such that 0 := A"'QA
satisfies [|Q]loo < 1 [Vei69, Lem. 3]. Observe that (z, y) satisfies (343) if and only if (zA, yA) satisfies
(343) with x and Q replaced by Ax and Q. Thus, without loss of generality, we may assume ||Q|e < 1.

Now fix T > 0 and define Cy[0,T] and Cs[0,T] in the obvious way. These are complete metric
spaces endowed with the norm

|l = max Jup, ly; ()] (344)

Then one can show that the map 7 is a contraction on Cy[0, T]:

() =7 < 1@l [y = ¥II- (345)

Since ||Q]| < 1, it follows that 7 is a contraction mapping, implying that there is a unique fixed point
y € Cp.

Now to show the continuity of the mapping x — ¢(x), we observe that ¢(x), being the unique
fixed point of y = m,(y) of the contraction mapping 7z, can be explicitly constructed as the limit of
y"(x) := 2" (y°) with y* = 0. Then note that for x, x" € Cy[0,T],

1™ () = Y™ IS I =211+ Q1 lly" () = 3" (). (346)

By an induction and taking n — oo, we get ||¢(x) — #(x')| < mllx — x’||. Thus ¢ is m-
Lipschitz continuous on Cy[0,T]. Since T was arbitrary, this implies continuity of ¢ on Cy(0, o).
Thus, ¢ is continuous on C*(0, o) in the topology of uniform convergence on compact intervals. The
continuity of the mapping x — i (x) is clear from the last identity in (343). O

In the proof of Theorem 10.4, we have used the fact that if Q is a matrix of spectral radius less
than one, then there exists a positive diagonal matrix A such that A~'QA has maximum absolute row
sum strictly less than one, appealing to [Vei69, Lem. 3]. In our case, Q = tridiag, (0,0, 1), and we can
directly take A to have diagonal entries A(i,i) =k —i+1fori=1,...,«, in which case the maximum
absolute row sum equals “= < 1.

Proof of Theorem 2.5 (ii). For this proof, we will appeal to the continuity of the Skorokod map x +—
(y,2) we established in Theorem 10.4. Let J = {1,...,«} \ {a;;j = 1,...,7, pa; > Pa;.,} and
S:={(x1,...,x) €ER : x; =0foralli e J}. Let g = (g, ..., 1) := Z] le% (Paj = Pay,,)- Then
M is nonzero in its jth coordinate if and only if j € J. Recall the Skorokhod decomposition of the carrier
process Wy in Lemma 6.3:

Wy=X,+RY, forxeN, (347)

where we denoted W, = W, —xpu and X, = X, —xp. Since W, € R%,, we have W, € Sforall s € Rs.

Note that (347) gives a Skorokhod decomposition of the centered carrier process | (W )xen. Namely, for
each i € J, Y, (i) can increase only if W, (i) = 0. This is because for i € J, W, (i) = W, (i), and by
Lemma 6.3, we know that Y, (¢) increases only if W, (i) = 0. From (347), we deduce

W(1) = X"(1) + RY"(t) fort € Rso, (348)
where W", X" and Y" are the linear interpolations of \/LE(WX —xu), ‘/Lﬁ(Xx —xpu), and ‘/LZYX
Since R = tridiag, (0, 1, —1), we can write R = [ — Q, where Q = tridiag, (0,0, 1), so Q has spectral

radius zero for all k > 1 since Q¥ is zero. Denoting x — (¢(x), ¥ (x)) by the Skorohod mapping as in
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Theorem 10.4, according to (348), for each n > 1, we have
d(X")=W" and y(X)=Y" (349)
That is, the pair (W",Y™) is the unique solution of the Skorokhod problem for X" with respect to the

reflection matrix R. Recall that by Proposition 7.9, X" converges weakly to the Brownian motion B in
RX with zero drift and covariance matrix . By continuity of the Skorohod mapping, it follows that

W" = lim ¢(X") = ¢(B), (350)
Y" = lim ¢(X") = y(B). (351)

In particular, wn converges weakly to the SRBM associated with data (S, 0, %, R, dy), as desired. m|

11. Proofs of Theorems 2.7 and 2.7

In this section, we establish scaling limits of the top soliton lengths for the i.i.d. model in the critical
and the supercritical regimes.
By now, it is easy to deduce Theorem 2.6.

Proof of Theorem 2.6. Suppose py = max(p1,---,p,). ThenC? = {0 <i < «: p; = po}, and we
may write C5 = {@,---,a,} with 0 = ap < @; < --- < a,. Then the weak convergence of the
diffusively scaled first soliton length in (22) follows from Lemma 3.1, Theorem 2.5 and the continuous
mapping theorem.

Next, we justify that A (n) = ©(n) with high probability for all j > 1. The upper bound follows since
A;(n) < A1(n) = O(y/n) with high probability. For the lower bound, we use the fact that the carrier
process in the critical regime converges weakly to an SRBM as in Theorem 2.5. In particular, there
are excursions of the carrier process of height (i.e., the L-norm) at least cy/n with high probability
if ¢ > 0 is small enough. Then the lower bound A;(n) = Q(+/n) with high probability follows from
Lemma 3.2. m]

In the rest of this section, we prove Theorem 2.7. Throughout, we will assume p* =
max(py,---,p«) > po- Let @) < --- < @, denote the unstable colors. Under the hypothesis, it holds
that p,, = p*.

Proof of Theorem 2.7 (i). Let u = (uy, ..., u,) be as in Theorem 2.5. By Lemma 3.1 and Theorem
2.5, almost surely,

lim n~' 1 (n) = lim n~' W[l = llulh (352)
n—oo n—o0o
= (pm - paz) + (Paz - pa3) +- 4 (Pa, - po) = p* — Po- (353)
Next, recall the Skorokhod decomposition W, = X, + RY, in Lemma 6.3. Define #(n) :=
arg maxg<, <, ||W;|l1. Let J denote the set of indices i € {1,...,«} such that y; > 0. Then y; = 0
ifi ¢ J, so
A (n) = nllll =" Wi (i) = ns (354)
i=1
= ZJ] Wi (1) = np + max ; W, (i). (355)
L 1

https://doi.org/10.1017/fms.2024.74 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.74

60 J. Lewis et al.

By Proposition 6.2, it follows that

Z W (i) — ny; +ZW (i) < A41(n) —nu < th(n)(l) —nu; + max ZW,(: (356)

ieJ i¢J ieJ

Recall that the linear interpolation of n~'/2(W,, — nu) converges weakly to the SRBM with specified
data as in Theorem 2.5. Hence, the lower bound in Theorem 2.7 (i) follows from above. For the upper
bound, we use Proposition 9.2 to note that, almost surely,

tim 77213 Ry (D) = ) Xeny ()] = 0. (357)
" ieJ ieJ
Hence, almost surely,
-1/2 _
h;r:l—?olip n ;(Xt(n) (i) = nu;) +n~ n<1ax Z W, (i) (358)
= i 12N (X, () - W, 35
im sup ;( (i) —nui) +n” rgtagn Z ¢ (0). (359)

Recall that by Proposition 7.9, the linear interpolation of n~'/2(X,, —nu) converges to a Brownian motion
on R* with mean zero and an explicit covariance matrix X. Also, by Theorem 2.5 and the continuous
mapping theorem,

max Z W (i) = sup ZWV (v), (360)

O<t<n 0<v<ligy
where W = (W', ..., W¥) is the SRBM in Theorem 2.5. Thus, the upper bound in (24) follows by the
continuous mapping theorem. |

Next, we complete the proof of Theorem 2.7 (ii)—(iii). To this effect, it suffices to show the following
statement.

Theorem 11.1. Suppose p* > po and fix j > 2. Then the following hold.

(i) Suppose p; = p* for a unique 1 < i < k. Then A;(n) = O(logn) with high probability.
(ii) Suppose p; = p* at least two distinct colors 1 < i < k. Then Aj(n) = ©(«/n) with high probability.

We begin with the following definition. For 0 < i, j < k and a finite subset H C N, define a random
variable D; ;(H) by
Dij(H) = ) 1P ) =) - 1(E°(x) = /)], (361)
xeH
which equals the difference of the number of color i and color j balls in H given by &P.

Proposition 11.2. Fix 1 < i,j < «k and suppose p; > p;. Fix a finite subset H C N. Then for any
constant C > 0,

P(D;,(H) > 2Clogn) < exp(—C(p; — p;)logn) (362)

foralln > 1.

Proof. Lete = p; — p; > 0 and denote |H| = m. Note that E[D; ; (H)] = —em. Since D ;(H) is a sum
of i.i.d. increments with absolute value at most one, by Hoeffding’s inequality,

P(D, (H) - E[D;;(H)] > 1) < e/ (363)
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forany t > 0. Lett = em +2Clogn. Thent/m > ¢, so
P(D;(H) > 2Clogn) = P(D;;(H) —E[D;(H)] > 1) < e”(¢/2" < g=8Clogn, (364)
This shows the assertion. O

Proof of Theorem 11.1. Denote ¢ := &P, Our argument is based on Lemma 3.5. In this proof, for
integers a < b, an ‘interval’ [a, b] will refer to the set {a,a +1,...,b}. We say a subset A C N is
a nonincreasing subsequence if ¢ is nonincreasing on A. The ‘support’ of A is the interval of integers
[min(A), max(A)].

We first show the upper bounds in (i) and (ii). It suffices to obtain bounds on 1, (n) in the corresponding
regimes. Recall the formula for A (n) + 1,(n) given by Lemma 3.5:

Ai(n) + A2(n) = e T L(A1, &) +L(A2,9). (365)

Let A; < A; be an optimal choice of subsequences that achieves A (n) + A2(n) according to (365). Let
I = [a,b] and J = [c, d] denote the supporting intervals of A; and A, respectively. We split A; into
successive disjoint sub-subsequences A/, A’ IRPEEE ,A;, where in each AZ’ we only pick the balls of
color £ in Ajy. Let I; := [min A; max A’, ] ThlS gives a noninterlacing partition of 7 = [, U --- U [;.
We split A, similarly and obtain a noninterlacing partition J = J, U --- U J; similarly. This gives us a
partition of the whole interval [1, n] into the following collection of disjoint sub-intervals

H={[l,a-1],1x, Le-1, - L1, [b+1,c = 1], Jus Juc1, -+ 1, [d + 1, n]}, (366)

ordered from left to right.
For A (n), we choose a sub-optimal nonincreasing subsequence A?) by choosing all balls of color i
in [1,n]. Then A;(n) > L(AY, ¢) by Lemma 3.5, so (365) yields

() < L(A1L€) +L(42.6) - (47, §). (367)
Then breaking the right-hand side of (367) into sub-intervals given by the partition in (366), we may
write
L(A1,€) +L(A2,€) ~L(AD,&) = 3" f(H), (368)
HeH

where if H =1;orJ; (1 <j<k),

f(H) := (number of balls of color j in H — number of balls of color 0 in H) (369)
— (number of balls of color i in H — number of balls of color 0 in H) (370)
=D;.(H), (371)

elseif H=[l,a—-1], [b+1,c—1] or [d + 1,n],

f(H) := (number of balls of color 0 in H — number of balls of color i in H) (372)
=Dy (H). (373)
Now suppose that p; is the unique maximum among p1, - - - , px and assume p; > po. Note that H

contains 2« + 3 intervals. Noting that D; ;(H) = 0, a union bound and Proposition 11.2 give

P Z f(H) > 2(2k +3)Clogn| < Z Z (De.i([s.1]) = 2Clogn) (374)

HeH [s, ] 0<C<x

< 3n? Z exp(=C(p; — p¢) logn) (375)

0<l<k
{#i
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for any fixed constant C > 0. For sufficiently large constant C > 0, the last expression tends to zero as
n — oo, so this shows 4, = O(logn) with high probability.

Next, suppose p; = p* at least two distinct colors 1 < i < «. If we compare the number of balls of
color j in H € H minus the number of balls of color i in H. By using a similar argument, D ; (H) is
O (log n) with high probability as long as p; < p*. If p; = p*. Then by the triangle inequality,

D;:(H) < max |D;([s.t])] <2 max |D;;([1,1])]. (376)
1<s<t<n 1<t<n

In this case, D ;([1,¢]) is a symmetric random walk with ¢ increments. Hence, for some large enough
constant C > 0, the right-hand side of (376) is at most C+/n with probability at least 1 — & by the
functional central limit theorem. This shows that 1> (n) = O(4/n) with probability at least 1 — &.

Now we prove the lower bounds in (i) and (ii). Fix j > 2. Let Ay, ..., Aj_; denote an optimal choice
of noninterlacing subsets of [1, n] such that

j-1
() +---+ 4,1 (n) :ZL(Ai,f). (377)
i=1

Denote I; := [minA;,max A;] fori = 1,...,r — 1, so that I,...,I;_; are noninterlacing supporting
intervals for Aj,...,A;_;. For each interval J = [s,1], let No(J) denote the maximum number of
consecutive 0’s in the sequence &5, &g41, - - ., & For each integer 1 < € < «, let My(J) denote the
maximum number of £’s (not necessarily consecutive) in the sequence &g, &gy, - - ., & We will use
these notations for the rest of the proof.

Fix a constant 0 < ¢ < 1/(310gp51). We first show that P(4;(n)/logn > c1) = 1 — o(1). To this
end, we claim that

P(No(I;) = cilogn forsomei=1,...,r—1) =1-o0(1). (378)

Note thatif No(;) > c; logn, then we can split the nonincreasing subsequence A; into two nonincreasing
subsequences A’ and A’ by removing the ¢ log n consecutive zeros in the supporting interval /;. Then
Ap <...A; 1 <Al <Al <--- < Aj_1isanoninterlacing collection of nonincreasing subsequences,
whose total penalized length has now increased by atleast ¢ log n. Thus, by Lemma 3.5, 4;(n) > c1 logn
with high probability if the claim (378) holds.

Now we show (378). Fix a constant 0 < ¢ < p* — po. Since L(4;,&) < |I;],

Jj-1
P(Z L] < czn) <SP (n) + -+ ;1 (n) < can) < P(A1(n) < can). (379)
i=1

Since A;(n)/n — p* — po > c; a.s. by Theorem 2.7 (i), the above probability is of order o(1).
Next, by using a union bound,

j-1
P(Z |I;] = can, No(I;) < cilogn foralli=1,...,j - 1) (380)
i=1

j-1
<P U {Z |Ji| > can, No(J;) < ¢ lognforallizl,...,j—l} (381)

./1<~~~<Jj,|§[l,n] i=1

-1
<P g U{|Ji| > 2 Ny < e 1ogn} (382)

9
r—1
J1<---<Jj,1§[l,n] i=1
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< (r—1Dn?t? Z P(No(J) < c1 logn) (383)
Jc[l,nl, [J|>2;

< (r = D2 DP(No([1,n]) < 1 logn), (384)

where J; and J above denote deterministic intervals. We can subdivide the interval [1, n] into consecutive
subintervals Ki, K>, ... of length [c;logn]. There are at least | —*—| such subintervals, and they
[cilogn]

log
can be fully occupied with balls of color 0 independently with probability p,
O<cp < 1/(310gpO ),

. Hence, recalling

legoem |
B(No([1,n]) < erlogn) < (1- ") 7™ (385)

< exp( ‘”"g”L < exp(-n'"). (386)

cllognJ)

Therefore, (384) is of order o(1). Now (378) follows by a union bound. In particular, this completes the
proof of (i).

Finally, suppose po, = pa, = p* for some 1 < @) < a2 < k. Fix € > 0. We will show that there
exists a constant ¢ = c¢(&, j) > 0 such that

limian(n_l/z/lj(n) > c) >1-s. (387)
n—oo
To this end, we split each A; into successive disjoint sub-subsequences A; ., -, A; 2, A; 1, where in

each A; ¢, we only pick the balls of color £ in A;. Denote I; , := [min A; ., max A; ¢]. By (379) and a
union bound,

P(|1i,g| > K(Jc,zi’l) forsomel <i<j—landl<¢< K) =1-o(1). (388)

Fix 6 > 0. Partition [0, n] into intervals Ji := [kdn, (k + 1)6n] of equal length |6n]. We can choose &
small enough so that any fixed interval of length ‘2"1) in [1,n] contains Jy for some 1 < k < [67].
Foreach 1 < ¢ < «, choose ¢, € {i},iz} \ {€}. Fix a constant @ > 0 and define the following event:

Exe = {nl%x n" D¢ ([(k = 1)|on), klon] +1])| > a}. (389)

Since D; ;, on these disjoint intervals are i.i.d., by the functional central limit theorem, we have

/s8] « e
lim inf P( () [ \Exe] 2 1-3 (390)

n—oo
k=1 ¢=1

as long as the constant @ > 0 is small enough. By a union bound, for all n > 1 sufficiently large,
P({Jx C I; ¢ forsome k,i,(} NEx¢) > 1-¢. (391)
We now claim that
{Jk C I; ¢ for some k, i, {’} NEre C{2;(n) > avn}, (392)
which is enough to conclude the desired lower bound 1;(n) = Q(+/n). To show this claim, suppose

the event on the left-hand side above holds. Denote I; ; = [e, f]. The maximum of D, ¢, in the event
Ey ¢ occurs at site m in Ji, so we may split the interval [e, f] into [e,m] and [m + 1, f]. Suppose
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Dey ([e,m]) = av/n. Let A; , and AJr denote the subsequences formed by picking up all £’s in [e, m]
and all £,’s in [m + 1, f], respectwely Now define two nonincreasing subsequences A/, A’ by

Al{ = [Ai,K""7Ai,€+13Al Z’A ] Al{, = [Aif—h""Ai,l] if £ > £, (393)
Al = [Aiks o Anens AL L AL = AT f Aje-ts - A T < L
Together with the other j — 2 subsequences Ay,...,A;_1, Ai+1,...,A 1, these j noninterlacing and
nonincreasing subsequences achieve total penalized lengths at least 11 (n) + - -+ + Aj_1(n) + ay/n. By
Lemma 3.5, this implies A;(n) > avn. If D¢ ([e,m]) < —a+vn, then let A, 70 and A, denote the
subsequences formed by picking up all £,’s in [e,m] and all £’s in [m + 1, f], respectwely, and define
Az, = [Al',K7""Ai,f+l, 1_f] AN . [ALK’A’ [—l,n-,Ai,l] if € > ¢, (394)
All = [Ai,K7""Ai,€+l’Al€9A ] Al” : [Ai,t’—l,“-’Ai,l] if € <{,.
In this case, we can also conclude A (n) > a+/n similarly. This completes the proof. O

12. Proofs of combinatorial lemmas

In this section, we establish various combinatorial statements about the k-color BBS dynamics and the
associated carrier processes. Our main goal is to show Lemmas 3.1, 3.2 and 3.5. We also provide an
elementary and self-contained proof of Lemma 3.3, which has been proved in the more general form in
[KL20, Prop. 4.5] using connections with combinatorial R.

12.1. Proof of Lemmas 3.1 and 3.2

In this subsection, we prove Lemmas 3.1 and 3.2. We rely on the finite-capacity carriers (see Section 3.2)
and Lemma 3.3. We need an additional combinatorial observation about the ‘coupling’ between the
carrier processes of capacity ¢ and ¢ + 1 over the same BBS configuration, which is stated below.

Proposition 12.1. Let ¢ : N — Z,,1 be any k-color BBS configuration with finite support. Denote by
(Ty:c)x>0 and (x.c+1)r>0 the carrier processes over & with finite capacities ¢ and ¢ + 1, respectively.
Then for any t > 0, I'x.. viewed as a c-dimensional vector is obtained by omitting a single coordinate
in Ix.c+1 viewed as a ¢ + 1-dimensional vector.

Proof. Fix a k-color BBS configuration ¢ : N — Z,,;. Let (I'x.c )x>0 and (I'y.c+1)x>1 denote the carrier
processes over ¢ with finite capacities ¢ and ¢ + 1, respectively. We will show the assertion by induction
on x > 0. For x = 0, both carriers are filled with zeros, so omitting any entry of .41 gives I'p.c.
For the induction step, suppose the assertion holds for some x > 0. Denote S = I'y.¢, T = I'x41:c € B,
and S” = I'y.c41, 7" = [xt1:041 € Besr. Recall that the entries in carrier states are nonincreasing from
left, which is the opposite of the convention for semistandard Young tableaux (as used in [KL20] and
[KLO18]).

By the induction hypothesis, we may assume that S can be obtained from 7 by omitting its j,th
entry T(j.) = r. Let B and A be the blocks to the left and right of the entry 7'(j.) of T. Hence, S is the
concatenation of the blocks B and A (see Figure 9 left). Let g := &£.41.

First, suppose that g does not exceed the smallest entry of 7. In this case, inserting ¢ into T replaces
the largest entry of 7, so 77 is given by T’(j) =T(j + 1) for 1 < j < candT'(c+ 1) = g. We also have
S'(j)=S(j+1)for1 <j<candS’(c) = g. It follows that S’ is obtained by omitting the same entry
r=T"(j.—1) from7T".

Second, suppose that g exceeds the smallest entry of 7, so that 7’ is computed from the pair (7, q)
using the reverse bumping. If ¢ replaces some entry of A or B in T to get 7’, then the same replacement
occurs to compute S’ from the pair (S, ¢). Hence, in this case, S’ is obtained by omitting r = 77(j.)
from 7’. Otherwise, g replaces r in T to get T’ (see in Figure 9 right). Then g must replace the largest
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sl & | 4 | s 8 Jafalql

T | B [r] 4 | T’
Figure 9. (Left) S € B, is obtained from T € B..1 by omitting an entry r. (Right) After inserting q
into T and S according to the circular exclusion rule, one can still omit a single entry from the larger
tableau to get the smaller one.

B |Q|a3‘ a2|a1|

entry of A in S to get S’. Then S’ is obtained from 7’ by deleting the largest entry in A. This shows the
assertion. O

Proof of Lemma 3.1. Fix a k-color BBS configuration ¢ : N — Z,,;. For each integer ¢ > 1, let

(Tx:c)x>0 denote the capacity-c carrier process over £. Let (I'x)x>0 denote the infinite capacity carrier
process over €. We also write

M = maé((# of nonzero entries in I'y.) (395)
52

Note that from Lemma 3.3, we can deduce that for any 1 < j < p;(£),

LE =1k =1 pe(@) > ) =maX{k -

Er(é) = Ex—1(&) +J'}, (396)

where Ej (&) is defined in (405).
Let 7. be the first time ¢ that the carrier I'y.. is completely full with nonzero entries and Xo(x+1) > 0
does not exceed the smallest entry of I'y... More precisely, let

T = inf {x > 0| Ty contains all positive entries and 0 < &y < min [y, (x)}. (397)

We let 7. = oo if the set on the right-hand side is empty. Note that if we consider two carrier processes
I'y.c and I'y.c41, then 7. + 1 is the first time that they contain distinct sets of nonzero entries. Moreover,
I'7.+1.c+1 has ¢ + 1 nonzero entries. Hence, if ¢ > M, then 7. = oo, and the two carrier processes have
the same set of nonzero entries for all times. It follows that

E. = Const. Ve > M. (398)

Hence, 11(£) < M by (396).

However, note that x* := 7p7_; < oo and &,+,1 does not exceed the smallest entry in I'y«.ps—1 by
definition of Tas—1. S0 1(&x+41 > minIl'yepr—1) = 0. Also, since I'y+.ps—1 and I'y=.ps share the same
positive entries, I'y+.ps is obtained from I'x+.ps—; by augmenting O to its right. Since &4+4; > O by
definition of x*, we have 1(£x+41 > min'y-.3s) = 1. Moreover, by Proposition 12.1,

1(§x+1 > min Fx;c) 2 1(§x+1 > min 1—‘x;c—l) (399)

forall ¢ > 1 and x > 0. It follows that Ep; > Ejps—; + 1. Hence, by (396), we deduce 1;(£) > M. This
shows A1 (&) = M, as desired. O

Proof of Lemma 3.2. Fix a «-color BBS configuration ¢ with finitely many balls of positive colors.
Let W := (Wy)x>0 be the carrier process over &. Let Ty := 0 and let T for k > 1 denote the
kth site that the carrier returns to the origin. Define sub-configurations £V := (&, &,...,ér,_1),
£ = (é1,, €141, - - - é1,-1), and so on. Let N denote the number of nontrivial excursions of the carrier
process W. Then & is the concatenation of £V, . . ., £(N). We wish to show that the soliton decomposition

https://doi.org/10.1017/fms.2024.74 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.74

66 J. Lewis et al.

of & is the union of the soliton decomposition of &£()’s. Equivalently, we wish to show that

N
pe (&) = Z pe(E®) forallc > 1. (400)

To show the claim (400) above, let (I'x.c)x>0 denote the capacity-c carrier process over &. By
Proposition 12.1, we have I'r.. = 0 for all £ > 0. In words, the capacity-c carrier resets to empty at

each site 7. Hence, if we let (F,ﬁ’i} )1, <x<T;. denote the capacity-c carrier process over & ()| then

(O <xeri = ()i <<t (401)
It follows that
Z 1(& > minTyo) = Z > 1™ > minr®, ). (402)
x=1 k=1 Tj_1<x<Ty
By Lemma 3.3, the above yields
N
PLE) ++pe(€) = D p1(EF) +o 4 pe(e®). (403)
k=1

The above holds for all ¢ > 1. By using induction in ¢, one can then deduce (400).
The second part of the assertion that A;(n) > h;(n) is immediate from the first part we have just
shown above and in Lemma 3.1. |

12.2. Proof of Lemmas 3.3 and 3.5

Recall the notations introduced in Section 3.3. For any «x-color BBS configuration X : N — Z,,; with
finite support and integer k > 1, we denote

k
Ri(®) = | max Z] NA(ALE),  Li(@):= | max Z L(4;,£). (404)
Lastly, we also denote
Ex() = ) 1(& > minT 1), (405)
s=1

where (I'y.;;);»0 is the capacity-i carrier process over &. We set Ro(£) = Lo(¢) = Ep(€) = 0 for
convenience. In this subsection, we will show with an elementary argument that the above quantities
associated with a k-color BBS configuration are invariant under time evolution. This will lead to the
proof of Lemmas 3.5 and 3.3.

We remark that the invariants Ex (&) are called the energy. They were first introduced in [FYOO00]
for the xk = 1 BBS and were recently used to define an energy matrix for the general x-color BBS that
characterizes the full set of invariants. Time invariance of the energy (and also the energy matrix) in
the literature is usually shown by using the alternative characterization of the BBS dynamics in terms
of combinatorial R and connections to the Yang-Baxter equation [FYOO00, IKT12, KIL.20, KLO18].

Recall the BBS evolution rule defined in the introduction: Fori = x,k — 1, -- - , 1, the balls of color i
each make one jump to the right, into the first available empty box (site with color 0), with balls that start
to the left jumping before balls that start to their right. (This is the map K; defined in the introduction.)
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A single step of k-color BBS evolution X — X’ is defined by
& =KjoKyo---0K(&). (406)

We propose two ways to simplify the x-color BBS dynamics. First, using the cyclic symmetry of the
system, we can reformulate the update of a k-color BBS configuration in terms of « applications of a
single rule. Namely, let 7, denote the following update rule for BBS configurations with finite support:
all the balls of color « jump according to the rule K,, and we relabel each of them with color 1 and
increase the positive colors of all other balls by 1. Then we have

KioKyo---0Ki (&)= (T)* (). (407)

Second, we introduce ‘standardization’ of BBS dynamics, which allows us to only consider BBS
configurations with no repeated use of any positive color. Namely, given a x-color BBS configuration
& N = Z,, of finite support, we define its standardization to be the following map € : N — Z: For
each 1 <i < «, let m; denote the number of balls in X of color i. Then to produce &, we relabel first the
color 1 balls from 1 to m; from right to left (so that the leftmost ball that was previously colored 1 is
now colored m), and then the original color 2 balls are relabeled with colors m; + 1 to m| + m, from
right to left, and so on. Thus, if N = 2:.;1 m; is the total number of balls of positive color, then f is an
N-color BBS configuration with each color in {1, - - - , N} used for exactly one ball.

Proposition 12.2. Let & and & denote a k-color BBS configuration with finite support and its standard-
ization, respectively. Then the following hold.

(i) Standardization preserves the number of ascents, noninterlacing nonincreasing sequences, and
their penalized lengths. In particular, for each k > 1,

Ri(€) = Re(§),  Li(§) = Li(). (408)

(ii) & and & give the same soliton partition (i.e., A(&) = A(€)).

Proof. By construction, standardization preserves ordering in the following sense: for y < z, one has
&y < & if and only if &(y) < &(z). Thus, a given sequence of balls has an ascent in X if and only if
it has an ascent in &, and likewise, a given sequence of balls is nonincreasing in & if and only if it is
nonincreasing in £. Part (i) follows immediately.

To show (ii), denote by ¢’ and (£)’ the BBS configurations obtained by applying one step of the BBS
evolution rule to & and £, respectively. Since standardization does not change the location of balls, it
suffices to show that standardization commutes with BBS time evolution rules; that is,

& =& (409)

To see this, observe that for the evolution & — &, after all balls of color « have jumped, they return to
the same left-right order as before: if some ball of color «, say in position x, jumped over some other ball
of color «, say in position y, to land in position z (so x < y < z), it must be the case that sites between y
and z were occupied. Therefore, when it is time for the ball in position y to jump, it jumps over all sites
in (v, z]. Hence, in the first step, the balls of color « in the previous step are triggered one by one from
left, and since they restore the same left-right order, they will continue to be triggered in this order in
all future steps. This exactly agrees with the time evolution £ — &’. This shows (409), as desired. O

In the following proposition, we show the time-invariance of the three quantities associated with a
given BBS configuration. This will show most of Lemma 3.5.

Proposition 12.3. Let & be an arbitrary k-color BBS configuration of finite support. Fix j > 1. The
Jfollowing hold.

(i) E;(&) = E;j(Tc(£)).
(ii) R;(&) = E;(&).
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(iii) L;(&) = L;(Tc(£)).
(iv) If (1), denotes the k-color BBS trajectory with & = &, then for all t > 1,

E;j(€")=R;(€") = E;(6).  Lj(¢")=L;(). (410)
We first derive Lemmas 3.5 and 3.3 assuming Proposition 12.3.

Proof of Lemma 3.3 and 3.5. Let (¢),50 be a k-color BBS trajectory such that &, has finite support.
We take T > 1 large enough so that at time 7, the system decomposes into noninteracting solitons whose
lengths are nondecreasing from left. We can reformulate the condition that a k-color BBS configuration
has reached its soliton decomposition as follows: Suppose two consecutive solitons are separated by g
0’s, where the left and right solitons have length [/ and r, where ‘length’ of a soliton is its number of
balls of positive colors. Suppose the gap is small (i.e., g < [). In order for the left soliton to be preserved
during the update £ - £+ all balls in the left soliton must be dropped by the carrier before any
balls in the right soliton are dropped. It follows that for each i > 1, the following ‘separation condition’
must hold at time 7"

The ith largest entry of the right soliton is strictly larger @l
than the 7 + gth largest entry of the left soliton.

When « = 1, this simply asserts that each soliton of length / must be followed by at least / empty sites.
This is not the case for ¥ > 1, as illustrated in the example

-+-00433200431100- - - . (412)

For each k > 1, let Ax denote the length of the kth-longest soliton and let p; denote the number of
solitons of length > k. They both form the same Young diagram, whose kth column and row lengths
are given by Ay and pg, respectively.

For each j > 1, let (Is;)s»0 denote the capacity-j carrier process on ¢ (1), As the carrier process over
£ runs over a soliton of length &, the carrier obtains min(k, j) contribution to the energy. When the
carrier was empty at the beginning of the soliton, this is clear, and otherwise, it is still true due to the
separation condition (411). Hence, we have

0o J
Ej(¢M) = min(Ax, j) = ) px. (413)
k=1 k=1

Then by Proposition 12.3, we deduce

J
Ri(€") = Ej(¢") = E;¢ M) = ) pu (414)
k=1

for all # > 0, as desired. In the general case, the above equations hold due to the separation condition
(411). This shows Lemma 3.3 as well as the first equation in Lemma 3.5.

Similarly, for the second equation in Lemma 3.5, it suffices to show Lj(f(T)) =Ar+---+4;. Itis
easy tosee L; (£ Ty > Ay 442 ;7 by choosing the j longest nonincreasing sequences given by the top j
solitons. It remains to show the converse inequality; choose a collection of noninterlacing nonincreasing
subsequences on supports Ay, A, - - -, A; that achieves L ; (£T)). We may assume that [A;|+- -+ |Aj]
is as small as possible, where | - | means (nonpenalized) cardinality. We claim that every A; is contained
in the support of a single soliton (where it has positive colors). Then clearly the maximum sum of
penalized lengths is achieved when A;’s are the support of the j longest nonincreasing sequences given
by the solitons, which shows the assertion.
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To show the claim, for each i > 1, let u; denote the maximal nonincreasing subsequence of positive
colors in the ith longest soliton in £7). Schematically, we can write &7 as

T w30 0up0---0ug00 - - . (415)

Let /; denote the number of 0’s between u;,; and u;.

Suppose for contradiction that some Ay, intersects with two u;’s. Let i be as small as possible so that
Ay intersects with u;,1 and u;. We first suppose the case when the two solitons have a sufficient gap (i.e.,
liz1 = A;41). Let Al’( =Ar\ . Then Ay, -+, Ap_q, A/’(, Ay, -+, Aj is a sequence of noninterlacing
nonincreasing subsequences in &) with a strictly smaller total number of elements than the original
sequence. Moreover, this new sequence achieves the optimum L j(§<T)) since

L(A,, 7)) 2 LAk, €)=y +1; 2 L(Ag, €7)). (416)

Namely, omitting all elements of u;;; from Ay deletes at most |u;4;| positive numbers but at least
l; > |u;41] zeros. This contradicts the minimality of the original sequence Ay, --- , A;. This shows the
claim. Lastly, when the gap between the solitons is small (i.e., /;+1 < 4;3+1), one can argue similarly by
using the separation condition (411). This shows the claim, as desired. [

Lastly in this subsection, we prove Proposition 12.3.

Proof of Proposition 12.3. (iv) immediately follows from (i)—(iii). According to Proposition 12.2, the
assertion is valid for arbitrary BBS if and only if it is true for the standardized system with initial
configuration &, where each positive color is used exactly once. Hence, without loss of generality, we
may assume that each positive color in ¢ is used exactly once. Furthermore, in proving (i)—(iii), we may
assume that there is a ball of color « in &, since otherwise, the cyclic update rule 7, simply increases all
positive colors by 1. Since all the invariants depend only on the relative ordering between ball colors, the
assertion holds trivially. We will also denote &’ = T, (&). For any string u of integers in {0, 1, ..., x—1},
we let u” denote the string obtained by incrementing the positive integers in u by one.

(i) Suppose &, = « and the ball of color « is in a contiguous block of balls whose labels are uxkvOw for
some words u, v. Note that u and w consist of integers in {0, ...,« — 1}, while v is either empty
or only has positive integers < k. After the update & +— &’ := T, (£), we reach an arrangement in
which u, v and w have had their labels incremented, the space between them is empty (¢, = 0) and
1 follows v. Let y be the site such that £§ = 1. Here is a schematic:

configuration ‘ arrangement

& = Te(&) [ w -] 0 [V -] 1W

Consider running the capacity-j carrier over & and 7, (¢) and computing their energies E; (&)
and E;(¢'). Let the corresponding carrier processes be denoted by I' := (I'y) x>0 and I'” := (I'}.); >0,
respectively. Observe that up to ‘time’ x— 1, the two carriers go through the equivalent environments
uand w’, so I’ _, can be obtained from I'y_; by adding 1 to all positive colors in the latter carrier.
It follows that the contributions to the energies of both carry up to this point are the same.

Next, after inserting &, = « and &, = O into these carriers, we get carrier states [y =
[x,A,0---0] and I';, = [A’,0---0] for some (possibly empty) positive decreasing sequence A
(see Figure 10 left). This only adds 1 to the energy for the carrier I'. Also note that, since « is
the unique largest color in the system, it sits in the carrier I and does not interact with any other
incoming balls thereafter. We can think of this as the capacity of the carrier I being decreased
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Figure 10. Two capacity-j carriers over & and &' = T (&). They end up with the same energy.

to j — 1 after time x. Then over the interval (x, o), the carriers go through the input [vOw] and
[v1w’], respectively.

Ignoring « in the carrier I' and shift by 1, they both have the same dynamics (and hence the
same contribution to the energy) until the first time x* that 'y~ is full and a new ball of color
&x+41 = g > minTy+. In this case, g + 1 replaces 0 in I';., but it replaces « in I'y+. If such x*
is not encountered up to the location y of 1 in ¢&’, then at site y, 0 replaces the maximum entry
in Iy, but 1 replaces 0 in I'}, so this makes up the energy gap of 1 between the two carriers.
Otherwise, suppose there exists such x* between x and y. Then we can write the carrier states as
[y« = [k, B] and I';. = [B + 1, 0] for some positive decreasing sequence B of length j — 1. Then
since £x+41 = ¢ > min [+, inserting g (resp., g + 1) into I'y+ (resp., I'...) replaces « (resp., 0), only
adding 1 to the energy for I'". Then I'y+41 = [B,¢q] and I, , = [B + 1,4 + 1] and all colors in I/
are at least 2, so inserting O and 1 at site y does not increment energies of both carriers. Hence,
they end up with the same energy. This shows the assertion.

(ii) Let (I'y)x>0 denote the capacity-j carrier process over &. We will partition the sites that contain
balls of positive colors into j disjoint sets Ay, ..., A; such thatif x € A; and the energy E; increases
when inserting the ball £, into the carrier I'y_1, then either x is the rightmost (smallest) element of
A; or there exists a unique y € A; such that (y, x) counts as an ascent in A;. The existence of such
subsets Ay, ..., A; implies that

J
R;(£) = ) NA(A;,€) > E;(é). (417)

i=1

For this proof, we will consider sites with color zero as having a ball of color zero. We will
recursively construct sets A(x),...,A;(x) for x > 0 as follows. Initially, make all j sets to be
empty. Consider the ball at site x with color &, (we may simply call it the ‘ball £,”) is inserted into
the carrier I'y_;. There are j positions in I'y_; at which &, can be placed after the insersion, and let
r(x) € {1,...,j} denote that position. Note that »(x) < j if and only if & > min T’y if and only if

E; increase by one. Now define A1(x),...,A;(x) as follows: Fori =1,..., j,
Ai(x -1 U if =i
I r(x) < j: Ay = {AE DU (o) =i (418)
Ai(x-1) if r(x) #1,
Ai_ Nx—1)U ifi=7j
Mrey=j: A= DU A 419)
A1 (mod j)(x = 1) ifi# .

That is, if the energy E; increases by inserting the ball £, into the carrier I'y_;, which occurs
exactly when r(x) < j, we append x to the set A;(x — 1) where the new ball &, is placed atin ['_j.
Otherwise, the new ball &, is inserted in position j, and all the other balls are shifted to the left
by one, while the ball at position 1 is dropped out. In this case, we first shift the indices of all sets
Ai(x—1),...,A;j(x = 1) by =1 modulo j, and then append x to the set with index j (previously of
index 1).

Then clearly, A;’s are disjoint and partitions N. Moreover, we claim that it has the required
properties. Indeed, suppose that the energy E; increases when inserting the ball & into the carrier
I'v_1 (e, & > minT'x_y). Then &, replaces some ball &, (possibly 0) in I',_;. Then necessarily,
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&y < &,. Moreover, if &, is inserted in the ith position in I'y_, then the ball &, it is replacing should
also be in the ith position in I'y_;. By construction, we have y,x € A;. So (y, x) is an ascent in A;,

as desired.
For the other direction, suppose that R (¢) is achieved by a collection of disjoint sets A7, --- , A”,
that are different from the sets Ay, - - - , A; computed by the carrier process. Find the first place that

they differ, say that x belongs to A; but to A;. for i* # i. Then perform the following surgery: let

([1,x] N A) U ((x,00) NAL) if =i
AV =3([Lx] NA-) U ((x,00) NA)) i€ =i (420)

A/

¢ otherwise.

Then by construction, this new collection of sets A7’,---, A’/ has at least as many ascents as the
A’-sequences do, and the point of disagreement with the A’s is moved later. Therefore, repeating
this process eventually produces the sets Ay, - - - , Ax and does not decrease the number of ascents.
This shows R;(£) < E (&), as desired.

(iii) Let L‘}ew == L;j(¢£). We wish to show L; = L?ew. We begin by showing that L; < L"°". In the
original system &, fix a set of k noninterlacing decreasing subsequences whose sum of penalized
lengths is the maximum value L ;. We will produce a set of noninterlacing decreasing subsequences
in & that have the same sum of penalized lengths. We call the unique ball of color « in &’ by simply
k. Suppose « is in position a, and that positions a + 1,a + 2, ..., b — 1 have balls in them, but that
position b is empty; let I = {a, - - - , b — 1}. There are cases, depending on two different questions:
whether « is part of a decreasing subsequence, or is in the interval spanned by a decreasing
subsequence, or neither; and whether there is a decreasing subsequence whose interval spans b, or
one that ends in / with no other sequence that spans b, or neither.

If k belongs to a decreasing subsequence, it is the largest entry. Therefore, removing it decreases
the length by 1 and does not add a penalty (because the gap created is not in the interior of any
remaining sequence). If « is in the interval spanned by a decreasing subsequence but does not
belong to it, removing « introduces a gap and so penalizes the length of that sequence by 1. If
neither holds, removing « does not change the penalized lengths of any subsequences. Adding 1 to
every ball label does not change the penalized lengths of any subsequences. If a sequence spans b,
then inserting the new ball 1 removes a gap from that sequence, and so increases its penalized
length by 1. If a sequence ends in / and no subsequence spans b, then the 1 inserted in position
b can be appended to this sequence; there are no gaps in /, so this increases the penalized length
by 1. And if neither holds, then inserting 1 does not change the penalized lengths of any of the
subsequences. Then, it is enough to observe that in either of the cases that result in a decrease of 1,
it is necessarily the case that some sequence ends in / or spans b. Thus, L;‘.ew > Lj, as claimed.

Finally, to show that actually L‘]‘.eW = L;, we apply the ‘reverse-complement’ operation, re-
versing the order of Z and the order of the labels. This preserves decreasing subsequences, the
noninterlacing relation between them and their penalized lengths; moreover, one time-step in the
reverse-complement is exactly the reverse-complement of one inverse time-step in the original.
Thus also, L‘}ew < L;. This shows L; = L;‘.e‘”, as desired. o

13. Open questions and final remarks
In this section, we discuss some open problems and future directions.

Two-sided limiting shape of the Young diagrams. Many of the known results in scaling limits of
invariant Young diagrams of randomized BBS ([LLP20, KI.20, KLO18] and the present paper) concern
rescaling of the first finite rows or columns. Is it possible to jointly scale the rows and columns and
obtain the proper two-sided limiting shape of the Young diagram as in the case of the Plancherel measure
[KKRE8] [T002]? This question is not entirely obvious since the top rows (soliton numbers) obey the
laws of large numbers, whereas the top columns (soliton lengths) obey extreme value statistics.
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Column length scaling of higher order invariant Young diagrams. The «x-color BBS is known to have
k-tuple of invariant Young diagrams, where the ‘higher order’ Young diagrams describe the internal
degrees of the freedom of the solitons [KL.20]. It is our future work to extend the methods and results in
the present paper for the first-order Young diagram of the x-color BBS into higher-order Young diagrams.

Generalization to discrete KdV. One of the most well-known integrable nonlinear partial differential
equations is the Korteweg-de Vries (KdV) equation:

Uy + 06Uty + tyyyx =0, 421)

where u = u(x,t) is a function of two continuous parameters x and ¢, and the lower indexes denote
derivatives with respect to the specified variables. In 1981, Hirota [Hir81] introduced the following
discrete KdV (dKdV) equation that arises from KdV by discretizing space and time:

§ S
Vit = = —= +yiil (422)
yi+1 yk

A further discretization of the continuous box state in dKdV leads to the ultradiscrete KdV (udKdV)
equation, which corresponds to the « = 1 BBS by Takahashi-Satsuma [TS90]:

n-1
U = min|1 - U, Z (Ut -uh|, (423)
k=—c0

where U, denotes the number of balls at time # in box .

The scaling limit of soliton numbers and lengths of various BBS with random initial configuration
has been studied extensively [LLP20, KL.20, KLO18], including the present paper. Hence, a natural open
question is to generalize the similar program to the case of discrete KdV (as opposed to ultradiscrete).
For instance, suppose we initialize dKdV (422) so that the first n box states are independent Exp(1)
random variables and evolve the system until solitons come out. What is the scaling limit of the soliton
lengths and numbers as n — c0? Can we at least obtain estimates on their expectation? These are much
harder questions for dKdV because not everything decomposes into solitons: just like in the usual KdV,
there is chaotic ‘radiation’ left behind.
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