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Abstract
The box-ball systems are integrable cellular automata whose long-time behavior is characterized by soliton solutions,
with rich connections to other integrable systems such as the Korteweg-de Vries equation. In this paper, we consider
a multicolor box-ball system with two types of random initial configurations and obtain sharp scaling limits of the
soliton lengths as the system size tends to infinity. We obtain a sharp scaling limit of soliton lengths that turns
out to be more delicate than that in the single color case established in [LLP20]. A large part of our analysis
is devoted to studying the associated carrier process, which is a multidimensional Markov chain on the orthant,
whose excursions and running maxima are closely related to soliton lengths. We establish the sharp scaling of its
ruin probabilities, Skorokhod decomposition, strong law of large numbers and weak diffusive scaling limit to a
semimartingale reflecting Brownian motion with explicit parameters. We also establish and utilize complementary
descriptions of the soliton lengths and numbers in terms of modified Greene-Kleitman invariants for the box-ball
systems and associated circular exclusion processes.
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1. Introduction

1.1. The 𝜅-color BBS

The box-ball systems (BBS) are integrable cellular automata in 1+1 dimension whose longtime behavior
is characterized by soliton solutions. The 𝜅-color BBS is a cellular automaton on the half-integer latticeN,
which we think of as an array of boxes that can fit at most one ball of any of the 𝜅 colors. At each discrete
time 𝑡 ≥ 0, the system configuration is given by a coloring 𝜉 (𝑡) : N→ Z𝜅+1 := Z/(𝜅+1)Z = {0, 1, · · · , 𝜅}
with finite support – that is, such that 𝜉 (𝑡)

𝑥 = 0 for all but finitely many sites x. When 𝜉 (𝑡)
𝑥 = 𝑖, we say

the site x is empty at time t if 𝑖 = 0 and occupied with a ball of color i at time t if 1 ≤ 𝑖 ≤ 𝜅. To
define the time evolution rule, for each 1 ≤ 𝑎 ≤ 𝜅, let 𝐾𝑎 be the operator on the subset (Z𝜅+1)N of all
(𝜅 + 1)-colorings on N with finite support defined as follows:
1. (i) Label the balls of color a from left as 𝑎1, 𝑎2, · · · , 𝑎𝑚.
2. (ii) Starting from 𝑘 = 1 to m, successively move ball 𝑎𝑘 to the leftmost empty site to its right.
Then the time evolution (𝑋𝑡 )𝑡≥0 of the basic 𝜅-color BBS is given by

𝜉 (𝑡+1) = 𝐾1 ◦ 𝐾2 ◦ · · · ◦ 𝐾𝜅 (𝜉 (𝑡) ) ∀𝑡 ≥ 0. (1)

A typical 5-color BBS trajectory is shown below.

𝑡 = 0 : 321000051300411252000000000000000000000000000000 · · ·
𝑡 = 1 : 000321000153000141522000000000000000000000000000 · · ·
𝑡 = 2 : 000000321010530010410522000000000000000000000000 · · ·
𝑡 = 3 : 000000000302115301004100522000000000000000000000 · · ·
𝑡 = 4 : 000000000030002150311041000522000000000000000000 · · ·
𝑡 = 5 : 000000000003000025100310411000522000000000000000 · · ·
𝑡 = 6 : 000000000000300002051003100411000522000000000000 · · ·
𝑡 = 7 : 000000000000030000200510031000411000522000000000 · · ·
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The grounding observation in the 𝜅-color BBS with finitely many balls of positive colors is that the
system eventually decomposes into solitons, which are sequences of consecutive balls of positive and
nonincreasing colors, whose length and content are preserved by the BBS dynamics in all future steps.
For instance, all of the nonincreasing consecutive sequences of balls in 𝜉 (6) in the example (specifically,
3, 2, 51, 31, 411, 522) above are solitons, and they are preserved in 𝜉 (7) up to their location and will be
so in all future configurations. Note that a soliton of length k travels to the right with speed k. Therefore,
the lengths of solitons in a soliton decomposition must be nondecreasing from left to right. In the early
dynamics, longer solitons can collide into shorter solitons (e.g., 321 during 𝑡 = 0, 1, 2) and undergo a
nonlinear interaction.

The soliton decomposition of the BBS trajectory initialized at 𝜉 (0) can be encoded in a Young
diagram Λ = Λ(𝜉 (0) ) having 𝑗 th column equal in length to the 𝑗 th-longest soliton. For instance, the
Young diagram corresponding to the soliton decomposition of the instance of the 5-color BBS given
before is

Λ(𝜉 (0) ) = (2)

Note that the ith row of the Young diagramΛ(𝜉 (0) ) is precisely the number of solitons of length at least i.

1.2. Overview of main results

We consider the 𝜅-color BBS initialized by a random BBS configuration of system size n and analyze the
limiting shape of the random Young diagrams as n tends to infinity. We consider two models that we call
the ‘permutation model’ and ‘independence model’. For both models, we denote the kth row and column
lengths of the Young diagram encoding the soliton decomposition by 𝜌𝑘 (𝑛) and 𝜆𝑘 (𝑛), respectively,

In the permutation model, the BBS is initialized by a uniformly chosen random permutation Σ𝑛 of
colors {1, 2, · · · , 𝑛}. A classical way of associating a Young diagram to a permutation is via the Robinson-
Schensted correspondence (see [Sag01, Ch. 3.1]). A famous result of Baik, Deift and Johansson [BDJ99]
tells us that the row and column lengths of the random Young diagram constructed from Σ𝑛 via the RS
correspondence scale as

√
𝑛. In Theorem 2.1, we show that for the random Young diagram constructed

via BBS, the columns scale as
√
𝑛 but the rows scale as n. Namely,

𝜌𝑘 (𝑛) ∼ 𝑛

𝑘 (𝑘 + 1) , 𝜆𝑘 (𝑛) ∼ 2
√
𝑛

√
𝑘 − 1 +

√
𝑘
. (3)

While the row lengths in RS-constructed Young diagram are related to the longest increasing subse-
quences, we show that the row lengths in the BBS-constructed Young diagram are related to the number
of ascents (Lemma 3.5). This will show that the majority of solitons have a length of order𝑂 (1). Hence,
the row and column scalings in (3) are consistent.

In the independence model, which we denote 𝜉𝑛,p, the colors of the sites in the interval [1, 𝑛]
are independently drawn from a fixed distribution p = (𝑝0, 𝑝1, · · · , 𝑝𝜅 ) on Z𝜅+1. Recently, Lyu and
Kuniba obtained sharp asymptotics for the row lengths as well as their large deviations principle in
this independence model [KL20]. In Theorems 2.4–2.7, we establish a sharp scaling limit for the
column lengths for the independence model, as summarized in Table 1 and as bullet points below.
Let 𝑝∗ := max(𝑝1, . . . , 𝑝𝜅 ) denote the density of the maximum positive color and let r denote the
multiplicity of 𝑝∗ (i.e., number of 𝑝𝑖’s such that 𝑝𝑖 = 𝑝∗ for 𝑖 = 1, . . . , 𝜅).
◦ In the subcritical regime (𝑝0 > 𝑝∗), top soliton lengths have sharp scaling log𝜃 𝑛+ (𝑟 −1) log𝜃 log 𝑛+
𝑂 (1), where 𝜃 = 𝑝∗/𝑝0.

◦ In the critical regime (𝑝0 = 𝑝∗), 𝑛−1/2𝜆1(𝑛) converges weakly to the maximum 𝐿1-norm of a 𝜅-
dimensional semimartingale reflecting Brownian motion (SRBM).
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Table 1. Asymptotic scaling of the ith row length 𝜌𝑖 and the jth column length 𝜆 𝑗 for the independence model with ball density
p = (𝑝0 , 𝑝1 , · · · , 𝑝𝜅 ) and 𝑝∗ = max(𝑝1 , · · · , 𝑝𝜅 ) . The asymptotic soliton lengths undergo a similar ‘double-jump’ phase
transition depending on 𝑝∗ − 𝑝0 as in the 𝜅 = 1 case established in [LLP20], but the scaling inside the subcritical and supercritical
regimes depends on the multiplicity of the maximum positive color 𝑝∗. Sharp asymptotics for the row lengths have been obtained
in [KL20]. 𝑐𝑖’s are constants depending on p and i; Constnts 𝑐, 𝑐′ do not depend on j; D is a nonnegative and nondegenerate
random variable..

◦ In the supercritical regime (𝑝0 < 𝑝∗), 𝜆1(𝑛) = (𝑝∗ − 𝑝0)𝑛 +Θ(
√
𝑛). If 𝑟 = 1, then all subsequent top

solitons are of order log 𝑛; if 𝑟 ≥ 2, they are of order
√
𝑛.

◦ The fluctuation of 𝜆1(𝑛) depends explicitly on a 𝜅-dimensional SRBM, which arises as the diffusive
scaling limit of the associated carrier process.

We establish a similar ‘double-jump’ phase transition for the 𝜅 = 1 case established by Levine, Lyu
and Pike [LLP20]. We find that in the multicolor (𝜅 ≥ 2) case, the maximum positive ball density
𝑝∗ = max(𝑝1, · · · , 𝑝𝜅 ) compared to the zero density 𝑝0 dictates general phase transition structure.
However, we find that the scaling inside the subcritical and supercritical regimes depends on the
multiplicity r of the maximum positive color 𝑝∗. Furthermore, the fluctuation of the top soliton length
𝜆1(𝑛) about its mean behavior is described by a 𝜅-dimensional semimartingale reflecting Brownian
motion (SRBM) lurking behind, whose covariance matrix depends on p explicitly. Such SRBM arises
as the diffusive scaling limit of the associated carrier process.

A large part of our analysis is devoted to studying the associated carrier process, which is a Markov
chain on the 𝜅-dimensional nonnegative integer orthant, whose excursions and running maxima are
closely related to soliton lengths (see Lemmas 3.1-3.2). We establish its sharp scaling of ruin probabili-
ties, strong law of large numbers and weak diffusive scaling limit to an SRBM with explicit parameters
(Theorems 2.3–2.5). We also establish and utilize alternative descriptions of the soliton lengths and
numbers in terms of the modified Greene-Kleitman invariants for the box-ball systems (Lemma 3.5)
and associated circular exclusion processes.

1.3. Background and related works

The 𝜅-color BBS was introduced in [Tak93], generalizing the original 𝜅 = 1 BBS first invented by
Takahashi and Satsuma in 1990 [TS90]. In the most general form of the BBS, each site accommodates
a semistandard tableau of rectangular shape with letters from {0, 1, · · · , 𝜅}, and the time evolution is
defined by successive application of the combinatorial R (cf. [FYO00, HHI+01, KOS+06, IKT12]). For
a friendly introduction to the combinatorial R, see [KL20, Sec. 3]. The 𝜅-color BBS treated in this paper
corresponds to the case where the tableau shape is a single box, which was called the basic 𝜅-color BBS
in [KL20, Kon20]. The BBS is known to arise both from the quantum and classical integrable systems
by the procedures called crystallization and ultradiscretization, respectively. This double origin of the
integrability of BBS lies behind its deep connections to quantum groups, crystal base theory, solvable
lattice models, the Bethe ansatz, soliton equations, ultradiscretization of the Korteweg-de Vries equation,
tropical geometry and so forth; see, for example, the review [IKT12] and the references therein.

BBS with random initial configuration is an emerging topic in the probability literature and has
gained considerable attention with a number of recent works [LLP20, CKST18, KL20, FG18, KL20,
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CS19a, CS19b]. There are roughly two central questions that the researchers are aiming to answer: 1) If
the random initial configuration is one-sided, what is the limiting shape of the invariant random Young
diagram as the system size tends to infinity? 2) If one considers the two-sided BBS (where the initial
configuration is a bi-directional array of balls), what are the two-sided random initial configurations that
are invariant under the BBS dynamics? Some of these questions have been addressed for the basic 1-color
BBS [LLP20, FNRW18, FG18, CKST18] as well as for the multicolor case [KL20, KLO18, Kon20].
More recently, invariant measures of the discrete KdV and Toda-type systems have been investigated
[CS20].

Three important works are strongly related to this paper. In [LLP20], Levine, Lyu and Pike studied
various soliton statistics of the basic 1-color BBS when the system is initialized according to a Bernoulli
product measure with ball density p on the first n boxes. One of their main results is that the length of the
longest soliton is of order log 𝑛 for 𝑝 < 1/2, order

√
𝑛 for 𝑝 = 1/2, and order n for 𝑝 > 1/2. Additionally,

there is a condensation toward the longest soliton in the supercritical 𝑝 > 1/2 regime in the sense that,
for each fixed 𝑗 ≥ 1, the top j soliton lengths have the same order as the longest for 𝑝 ≤ 1/2, whereas
all but the longest have order log 𝑛 for 𝑝 > 1/2. Their analysis is based on geometric mappings from the
associated simple random walks to the invariant Young diagrams, which enable a robust analysis of the
scaling limit of the invariant Young diagram. However, this connection is not apparent in the general
𝜅 ≥ 1 case. In fact, one of the main difficulties in analyzing the soliton lengths in the multicolor BBS
is that within a single regime, there is a mixture of behaviors that we see from different regimes in the
single-color case.

The row lengths in the multicolor BBS are well-understood due to recent works by Kuniba, Lyu
and Okado [KLO18] and Kuniba and Lyu [KL20]. The central observation is that, when the initial
configuration is given by a product measure, the sum of row lengths can be computed via some additive
functional (called ‘energy’) of carrier processes of various shapes, which are finite-state Markov chains
whose time evolution is given by combinatorial R. In [KLO18], the ‘stationary shape’ of the Young
diagram for the most general type of BBS is identified by the logarithmic derivative of a deformed
character of the KR modules (or Schur polynomials in the basic case). In [KL20], for the (basic) 𝜅-color
BBS that we consider in the present paper, it was shown that the row lengths satisfy a large deviations
principle, and hence, the Young diagram converges to the stationary shape at an exponential rate, in the
sense of row scaling.

The central subject of this paper is the column lengths of the Young diagram for the basic 𝜅-color
BBS. We develop two main tools for our analysis, which are a modified version of Greene-Kleitman
invariants for BBS (Section 3.3) and the carrier process (see Definition 2.2). For the independence
model, we obtain the scaling limit of the carrier process as an SRBM [Wil95], and it plays a central role
in our analysis. For the permutation model, the carrier process gives rise to a ‘circular exclusion process’,
which can be regarded as a circular version of the well-known Totally Asymmetric Simple Exclusion
Process (TASEP) on a line (see, for example, [F+18, BFPS07, BFS08]). For its rough description,
consider the following process on the unit circle 𝑆1. Starting from some finite number of points, at each
time, a new point is added to 𝑆1 independently from a fixed distribution, which then deletes the nearest
counterclockwise point already on the circle. Equivalently, one can think of each point in the circle
trying to jump in the clockwise direction. It turns out that this process is crucial in analyzing the
permutation model (Section 4.2), whereas for the independence model, the relevant circular exclusion
process is defined on the integer ring Z𝜅+1 where points can stack up at the same location (Section 3.1).
Interestingly, a cylindric version of Schur functions has been used to study rigged configurations and
BBS [LPS14].

1.4. Organization

In Section 2, we define the carrier process, state the permutation and the independence model for the
𝜅-color BBS, and state our main results. We also provide numerical simulation to validate our results
empirically. In Section 3, we introduce infinite and finite capacity carrier processes for the 𝜅-color BBS
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and state the three key combinatorial lemmas (Lemmas 3.1, 3.3, 3.5). In Section 4, we prove our main
result for the permutation model (Theorem 2.1) by using the modified GK invariants for BBS (Lemma
3.5) and analyzing the associated circular exclusion process. In Section 5, we prove Theorem 2.3 (i)
about the stationary behavior of the subcritical carrier process. Next, in Section 6, we introduce the
‘decoupled carrier process’ and develop the ‘Skorokhod decomposition’ of the carrier process. These
will play critical roles in the analysis in the following sections. In Section 7, we analyze the decoupled
carrier process over the i.i.d. ball configuration. In Section 8, we prove Theorem 2.3 (ii) and Theorem
2.4. In Sections 9 and 10, we establish a linear and diffusive scaling limit of the carrier process, which is
stated in Theorem 2.5. Background on SRBM and an invariance principle for SRBM are also provided
in Section 10. In Section 11, we prove Theorems 2.6 and 2.7. Lastly, in Section 12, we provide postponed
proofs for the combinatorial lemmas stated in Section 3.

1.5. Notation

We use the convention that summation and product over the empty index set equal zero and one,
respectively. For any probability space (Ω,F , P) and any event 𝐴 ∈ F , we let 1(𝐴) denote the indicator
variable of A. Let 𝐶𝑑 (0,∞) denote the space of continuous functions 𝑓 : [0,∞) → R𝑑 endowed with
the topology of uniform convergence on compact intervals. We let tridiagonal𝑑 (𝑎, 𝑏, 𝑐) denote the 𝑑× 𝑑
matrix which has a on its subdiagonal, b on its diagonal and c on its superdiagonal entries, and zeros
elsewhere.

We adopt the notations R+ = [0,∞),N = {1, 2, 3, . . .} and Z≥0 = N∪{0} throughout. For a sequence
of events (𝐴𝑛)𝑛≥1, we say 𝐴𝑛 occurs with high probability if P(𝐴𝑛) → 1 as 𝑛 → ∞. We employ the
Landau notations 𝑂 (·), Ω(·), Θ(·) in the sense of stochastic boundedness. That is, given {𝑎𝑛}∞

𝑛=1 ⊂ R+

and a sequence {𝑊𝑛}∞
𝑛=1 of nonnegative random variables, we say that𝑊𝑛 = 𝑂 (𝑎𝑛) with high probability

if for each 𝜀 > 0, there is a constant 𝐶 ∈ (0,∞) such that P(𝑊𝑛 < 𝐶𝑎𝑛) ≥ 1 − 𝜀 for all sufficiently large
n. We say that 𝑊𝑛 = Ω(𝑎𝑛) if for each 𝜀 > 0, there is a 𝑐 ∈ (0,∞) such that P(𝑊𝑛 > 𝑐𝑎𝑛) ≥ 1 − 𝜀 for
all sufficiently large n, and we say 𝑊𝑛 = Θ(𝑎𝑛) with high probability if 𝑊𝑛 = 𝑂 (𝑎𝑛) and 𝑊𝑛 = Ω(𝑎𝑛)
both with high probability. In all of these Landau notations, we require that the constants 𝑐, 𝐶 do not
depend on n.

2. Statement of results

Our main results concern the asymptotic behavior of top soliton lengths associated with the 𝜅-color BBS
trajectory for two models of random initial configuration 𝜉: (1) 𝜅 = 𝑛 and 𝜉 [1, 𝑛] is a random uniform
permutation of length n; (2) 𝜅 is fixed and 𝜉𝑥 = 𝑖 independently with a fixed probability 𝑝𝑖 , 𝑖 ∈ Z𝜅+1 for
each 𝑥 ∈ [1, 𝑛].

2.1. The permutation model

For the permutation model, let (𝑈𝑥)𝑥≥1 be a sequence of i.i.d. Uniform([0, 1]) random variables. For
each integer 𝑛 ≥ 1, we denote by 𝑉1:𝑛 < 𝑉2:𝑛 < · · · < 𝑉𝑛:𝑛 the order statistics of 𝑈1,𝑈2, · · · ,𝑈𝑛. Then
it is easy to see that the random permutation Σ𝑛 on [𝑛] such that 𝑉𝑖:𝑛 = 𝑈Σ𝑛 (𝑖) for all 1 ≤ 𝑖 ≤ 𝑛 is
uniformly distributed among all permutations on [𝑛]. Define

𝜉𝑛
𝑥 := Σ𝑛 (𝑥) · 1(1 ≤ 𝑥 ≤ 𝑛). (4)

We now state our main result for the permutation model. We obtain a precise first-order asymptotic
for the largest k rows and columns, as stated in the following theorem.

Theorem 2.1 (The permutation model). Let 𝜉𝑛 be the permutation model as above. For each 𝑘 ≥ 1,
denote 𝜌𝑘 (𝑛) = 𝜌𝑘 (𝜉𝑛) and 𝜆𝑘 (𝑛) = 𝜆𝑘 (𝜉𝑛). Then for each fixed 𝑘 ≥ 1, almost surely,
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lim
𝑛→∞

𝑛−1𝜌𝑘 (𝑛) =
1

𝑘 (𝑘 + 1) , lim
𝑛→∞

𝑛−1/2𝜆𝑘 (𝑛) =
2

√
𝑘 − 1 +

√
𝑘
. (5)

Our proof of Theorem 2.1 proceeds as follows. We first establish a combinatorial lemma (Lemma 3.5)
that associates the soliton lengths and numbers with a modified version of Greene-Kleitman invariants
for BBS. We then utilize the tail bounds on longest increasing subsequences in uniformly random
permutations in Baik, Deift and Johansson [BDJ99] for establishing the scaling limit for the lengths
of the columns. For the row lengths, we use the characterization of soliton numbers as an additive
functional of finite-capacity carrier processes [KL20]. Such a process becomes an exclusion process on
the unit circle for the permutation model.

2.2. The independence model

To define the independence model, fix integers 𝑛, 𝜅 ≥ 1. Let p = (𝑝0, 𝑝1, · · · , 𝑝𝜅 ) be a probability
distribution on {0, 1, · · · , 𝜅}. Let 𝜉 = 𝜉p be the sequence (𝜉𝑥)𝑥∈N of i.i.d. random variables 𝜉𝑥 where

P(𝜉𝑥 = 𝑖) = 𝑝𝑖 for 𝑖 = 0, 1, . . . , 𝜅. (6)

For each integer 𝑛 ≥ 1, define 𝜅-color BBS configuration 𝜉𝑛,p of size n by

𝜉
𝑛,p
𝑥 = 𝜉

p
𝑥 · 1(1 ≤ 𝑥 ≤ 𝑛). (7)

We may further assume, without loss of generality, that 𝑝𝑖 > 0 for all 1 ≤ 𝑖 ≤ 𝜅. Indeed, if 𝑝𝑖 = 0 for
some i, then we can omit the color i entirely and consider the system as a (𝜅 − 1)-color BBS by shifting
the colors {𝑖 + 1, · · · , 𝜅} to {𝑖, · · · , 𝜅 − 1}.

Through various combinatorial lemmas (see Section 3), we will establish that the soliton lengths
𝜆 𝑗 (𝑛) of for the i.i.d. model are closely related to the extreme behavior of a Markov chain (𝑊𝑥)𝑥∈N
defined on the nonnegative integer orthant Z𝜅

≥0, which we call the ‘𝜅-color carrier process’. Denote
e𝑖 ∈ Z𝜅 whose coordinates are all zero except the ith coordinate being 1.

Definition 2.2 (𝜅-color carrier process). Let 𝜉 := (𝜉𝑥)𝑥∈N be 𝜅-color ball configuration. The (𝜅-color)
carrier process over 𝜉 is a process (𝑊𝑥)𝑥∈N on the state space Ω := Z𝜅

≥0 defined by the following
evolution rule: Denoting 𝑖 := 𝜉𝑥+1 if 𝜉𝑥+1 ∈ {1, . . . , 𝜅} and 𝑖 := 𝜅 + 1 if 𝜉𝑥+1 = 0,

𝑊𝑥+1 −𝑊𝑥 =

{
e𝑖 − 1(𝑖∗ ≠ 0) e𝑖∗ if 1 ≤ 𝑖 ≤ 𝜅

−1(𝑖∗ ≠ 0) e𝑖∗ if 𝑖 = 𝜅 + 1,
(8)

where 𝑖∗ := sup{1 ≤ 𝑗 < 𝑖 : 𝑊𝑥 ( 𝑗) ≥ 1} with the convention sup ∅ = 0. Unless otherwise mentioned,
we take 𝑊0 = 0 and 𝜉 = 𝜉p with density p = (𝑝0, . . . , 𝑝𝜅 ).

In words, at location x, the carrier holds 𝑊𝑥 (𝑖) balls of color i for 𝑖 = 1, . . . , 𝜅. When a new ball of
color 1 ≤ 𝜉𝑥+1 ≤ 𝜅 is inserted into the carrier𝑊𝑥 , then a ball of the largest available color that is smaller
than 𝜉𝑥 is excluded from𝑊𝑥 ; if there is no such ball in𝑊𝑥 , then no ball is excluded. If 𝜉𝑥+1 = 0, then no
new ball is inserted, and a ball of the largest available color that is smaller than 𝜉𝑥 is excluded from𝑊𝑥 .
The resulting state of the carrier is𝑊𝑥+1. We call the transition rule (8) as the ‘circular exclusion’ (since
a ball in the carrier’s possession is excluded from the carrier upon the insertion of a new ball according
to the circular ordering). One can also view the carrier process as a multitype queuing system, where
𝑊𝑥 denotes the state of the queue and𝑊𝑥 (𝑖) is the number of jobs of ‘cyclic hierarchy’ i to be processed.

A large portion of this paper will be devoted to analyzing scaling limits of the carrier process 𝑊𝑥

over the i.i.d. configuration 𝜉p. In this case, 𝑊𝑥 is a Markov chain on the state space of the nonnegative
integer orthant Ω. See Figure 1 for an illustration.
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Figure 1. State space diagram for the carrier process𝑊𝑥 for 𝜅 = 2. Red arrows illustrate the transition
kernel at the ‘interior’ (gray) and ‘boundary’ (green) points in the state space. A single excursion
(starting and ending at the origin) of ‘height’ 8 is shown in a blue path with arrows.

Theorem 2.3 states the behavior of the carrier process in the subcritical regime 𝑝0 >
max(𝑝1, · · · , 𝑝𝜅 ). Define a function 𝜋 : Ω → R by

𝜋(𝑛1, 𝑛2, · · · , 𝑛𝜅 ) =
𝜅∏

𝑖=1

(
1 − 𝑝𝑖

𝑝0

) (
𝑝𝑖

𝑝0

)𝑛𝑖

. (9)

This is a valid probability distribution on Ω when 𝑝0 > max(𝑝1, · · · , 𝑝𝜅 ) since

∞∑
𝑛1=0

· · ·
∞∑

𝑛𝜅=0

𝜅∏
𝑖=1

(
𝑝𝑖

𝑝0

)𝑛𝑖

=
𝜅∏

𝑖=1

(
1 − 𝑝𝑖

𝑝0

)−1
∈ (0,∞). (10)

Note that 𝜋 is the the product of geometric distributions of means 𝑝𝑖/(𝑝0 − 𝑝𝑖) > 0 for 𝑖 = 1, . . . , 𝜅.

Theorem 2.3 (The carrier process at the subcritical regime). Let 𝑝∗ := max(𝑝1, · · · , 𝑝𝜅 ) and suppose
𝑝0 > 𝑝∗. Let r denote the multiplicity of 𝑝∗ (i.e., number of i’s in {1, . . . , 𝜅} s.t. 𝑝𝑖 = 𝑝∗).

(i) (Convergence) The carrier process 𝑊𝑥 is an irreducible, aperiodic and positive recurrent Markov
chain on Z𝜅

≥0 with 𝜋 in (9) as its unique stationary distribution. Thus, writing 𝑑𝑇 𝑉 for the total
variation distance and denoting the distribution of 𝑊𝑥 by 𝜋𝑥 , then

lim
𝑥→∞

𝑑𝑇 𝑉 (𝜋𝑥 , 𝜋) = 0. (11)

(ii) (Multidimensional Gambler’s ruin) Let 𝑇1 denote the first return time of 𝑊𝑥 to the origin and let
ℎ1 := max0≤𝑥≤𝑇1 ‖𝑊𝑥 ‖1. Then for all 𝑁 ≥ 1, there exists a constant 𝛿 > 0 such that

𝛿

(
𝑁 + 𝑟 − 1
𝑟 − 1

) (
𝑝∗

𝑝0

)𝑁

≤ P(ℎ1 ≥ 𝑁) ≤ 𝐶

(
𝑁 + 𝑟 − 1
𝑟 − 1

) (
𝑝∗

𝑝0

)𝑁

, (12)

where 𝐶 = 1 if 𝑟 = 𝜅 and 𝐶 =
(

𝑝∗

𝑝∗−𝑝 (2)

) 𝜅−𝑟
if 𝑟 < 𝜅 with 𝑝 (2) being the second largest value among

𝑝1, . . . , 𝑝𝜅 .

By using Theorem 2.3, we establish sharp scaling limit of soliton lengths for the independence model
in the subcritical regime, which is stated in Theorem 2.4 below. (See Section 1.5 for a precise definition
of Landau notations.)

Theorem 2.4 (The independence model – Subcritical regime). Fix 𝜅 ≥ 1 and let 𝜉𝑛,p be as the i.i.d.
model above. Denote 𝜆 𝑗 (𝑛) = 𝜆 𝑗 (𝜉𝑛,p), 𝑝∗ := max1≤𝑖≤𝜅 𝑝𝑖 , and 𝑟 := |{1 ≤ 𝑖 ≤ 𝜅 : 𝑝𝑖 = 𝑝∗}|. Suppose
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𝑝0 > 𝑝∗ and denote 𝜃 := 𝑝∗/𝑝0. Then for each fixed 𝑗 ≥ 1,

𝜆 𝑗 (𝑛) = log𝜃 𝑛 + (𝑟 − 1) log𝜃 log 𝑛 + Θ(1). (13)

Furthermore, denote 𝜈𝑛 := (1 + 𝛿𝑛) log𝜃 (𝜎𝑛/(𝑟 − 1)!), where 𝜎 :=
∏𝜅

𝑖=1

(
1 − 𝑝𝑖

𝑝0

)
and 𝛿𝑛 :=

(𝑟−1) log log𝜃 (𝜎𝑛/(𝑟−1)!)+log(𝑟−1)!
log 𝜎𝑛/(𝑟−1)! . Then for all 𝑥 ∈ R,

exp(−𝛿𝜃−𝑥) ≤ lim inf
𝑛→∞

P
(
𝜆 𝑗 (𝑛) ≤ 𝑥 + 𝜈𝑛

)
(14)

≤ lim sup
𝑛→∞

P
(
𝜆 𝑗 (𝑛) ≤ 𝑥 + 𝜈𝑛

)
≤ exp

(
− 𝐶

(𝑟 − 1)! 𝜃
−(𝑥−1)

) 𝑗−1∑
𝑘=0

𝜃−𝑘 (𝑥−1)

𝑘!(𝑟 − 1)! , (15)

where 𝛿 > 0, 𝐶 ≥ 1 are constants in Theorem 2.3.

Next, we turn our attention to the critical and the supercritical regime, where 𝑝0 ≤ max(𝑝1, · · · , 𝑝𝜅 ).
In this regime, the carrier process does not have a stationary distribution, and we are interested in
identifying the limit of the carrier process in the linear and diffusive scales. A natural candidate for the
diffusive scaling limit (if it exists) would be the semimartingale reflecting Brownian motion (SRBM)
[Wil95], whose definition we recall in Section 10. Roughly speaking, an SRBM on a domain 𝑆 ⊆ R𝜅 is
a stochastic process W that admits a Skorokhod-type decomposition

W = 𝑋 + 𝑅𝑌, (16)

where X is a 𝜅-dimensional Brownian motion with drift 𝜃, covariance matrix Σ and initial distribution 𝜈.
The ‘interior process’ X gives the behavior of W in the interior of S. When it is at the boundary of S, it
is pushed instantaneously toward the interior of S along the direction specified by the ‘reflection matrix’
R and an associated ‘pushing process’ Y. We say such W is a SRBM associated with (𝑆, 𝜃, Σ, 𝑅, 𝜈).
If 𝑅 = 𝐼 − 𝑄 for some nonnegative matrix Q with spectral radius less than one, then such W is
unique (pathwise) for possibly degenerate Σ when 𝑆 = R𝜅

≥0 [HR81]. If Σ is nondegenerate and S is a
polyhedron, a necessary and sufficient condition for the existence and uniqueness of such SRBM is that
R is ‘completely-S’ (see Definition 10.2) [Wil95, KW07].

A crucial observation for analyzing the carrier process in the critical and supercritical regimes is the
following. Of all the 𝜅 coordinates of𝑊𝑥 , some have a negative drift and some others do not. We call an
integer 1 ≤ 𝑖 ≤ 𝜅 an unstable color if 𝑝𝑖 ≥ max(𝑝𝑖+1, · · · , 𝑝𝜅 , 𝑝0) and a stable color otherwise. Since
balls of color i can only be excluded by balls of colors in {𝑖 + 1, . . . , 𝜅, 0}, then the coordinate 𝑊𝑥 (𝑖) is
likely to diminish if the color i is stable but not if i is unstable. Denote the set of all unstable colors by
Cp
𝑢 = {𝛼1, · · · , 𝛼𝑟 } with 𝛼1 < · · · < 𝛼𝑟 and let Cp

𝑠 := {0, 1, · · · , 𝜅} \ Cp
𝑢 denote the set of stable colors.

(See Figure 8 for illustration.) By definition, we have

𝑝𝛼1 ≥ 𝑝𝛼2 ≥ · · · ≥ 𝑝𝛼𝑟 ≥ 𝑝𝛼𝑟+1 := 𝑝0. (17)

Now, we will construct a new process 𝑋𝑥 , which we call the ‘decoupled carrier process’ (see Section
6.1), that mimics the behavior of 𝑊𝑥 , but the values of 𝑋𝑥 on the unstable colors are unconstrained and
thus can be negative. Since 𝑊𝑥 is confined in the nonnegative orthant Z𝜅

≥0 but 𝑋𝑥 is not, we need to
add some correction process to 𝑋𝑥 that ‘pushes’ it toward the orthant Z𝜅

≥0 whenever 𝑋𝑥 has some of its
coordinates going to negative. More precisely, in Lemma 6.3, we identify a ‘reflection matrix’ 𝑅 ∈ R𝜅×𝜅

and a ‘pushing process’ 𝑌𝑥 on Z𝜅 such that

𝑊𝑥 = 𝑋𝑥 + 𝑅𝑌𝑥 for 𝑥 ≥ 0, (18)
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Figure 2. Simulation of the carrier process 𝑊𝑥 in diffusive scaling for 𝜅 = 2, 𝑛 = 2 × 105, at three
critical ball densities (left) p = (4/11, 4/11, 3/11), (middle) p = (1/3, 1/3, 1/3) and (right) p =
(4/11, 3/11, 4/11). In all cases, the process converges weakly to a semimartingale reflecting Brownian
motion on R2

≥0 whose covariance matrix is nondegenerate in the middle and degenerate in the other two
cases.

where 𝑌0 = 0, and for each 𝑖 ∈ {1, . . . , 𝜅}, the ith coordinate of 𝑌𝑥 is nondecreasing in x and can only
increase when 𝑊𝑥 (𝑖) = 0. We call the above as a Skorokhod decomposition of the carrier process (Our
definition is motivated by the Skorokhod problem; see Definition 10.3.) This and the classical invariance
principle for SRBM [RW88] are the keys to establishing the following result on the scaling limit of the
carrier process.

Theorem 2.5 (Linear and diffusive scaling limit of the carrier process). Suppose 𝑝0 ≤ max(𝑝1, · · · , 𝑝𝜅 ).
Let 𝛼1 < · · · < 𝛼𝑟 as before and define

𝝁 = (𝜇1, . . . , 𝜇𝜅 ) :=
𝑟∑

𝑗=1
e𝛼𝑗 (𝑝𝛼𝑗 − 𝑝𝛼𝑗+1 ), (19)

where we let 𝑝𝛼𝑟+1 = 𝑝0.

(i) (Linear scaling) Almost surely,

lim
𝑥→∞

𝑥−1𝑊𝑥 = lim
𝑥→∞

𝑥−1
(

max
0≤𝑡≤𝑥

𝑊𝑡 (𝑖) ; 𝑖 = 1, . . . , 𝜅
)
= 𝝁. (20)

(ii) (Diffusive scaling) Let (𝑊 𝑡 )𝑡 ∈R≥0 denote the linear interpolation of (𝑊𝑥 − 𝑥𝝁)𝑥∈N. Then as 𝑛 → ∞,

(𝑥−1/2𝑊 𝑥𝑡 ; 0 ≤ 𝑡 ≤ 1) =⇒ W in 𝐶 ([0, 1]), (21)

where W is an SRBM associated with data (𝑆, 0,Σ, 𝑅, 𝛿0) (see Definition 10.1) with 𝑆 :=
{(𝑥1, . . . , 𝑥𝜅 ) ∈ R𝜅 : 𝑥𝑖 ≥ 0 if 𝜇𝑖 = 0}, Σ the limiting covariance matrix (possibly degenerate) in
(177), 𝑅 := tridiag𝜅 (0, 1,−1), and 𝛿0 the point mass at 0.

In Figures 2 and 3, we provide simulations of the carrier process 𝑊𝑥 = (𝑊𝑥 (1),𝑊𝑥 (2)) for 𝜅 = 2
in various regimes, numerically verifying Theorem 2.5. In Figure 2, we show the carrier process in
diffusive scaling (𝑛−1/2) at three different critical ball densities p. The carrier process in diffusive scaling
converges weakly to an SRBM in R2

≥0, whose covariance matrix depends on p and can be degenerate.
For instance, at p = (4/11, 4/11, 3/11), 𝑊𝑥 (2) is subcritical (since 𝑝2 = 3/11 < 4/11 = 𝑝0), and
𝑊𝑥 (1) is critical, so the SRBM degenerates in the second axes.

In Figure 3, we show the carrier process in diffusive scaling at three different supercritical ball
densities p. The carrier process has a nonzero drift 𝝁 = (𝜇1, 𝜇2) ∈ R2

≥0. If 𝜇1, 𝜇2 > 0, then the centered
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Figure 3. Simulation of the carrier process 𝑊𝑥 in diffusive scaling for 𝜅 = 2, 𝑛 = 2 × 105,
at four supercritical ball densities (𝑎) p = (3/11, 4/11, 4/11), (𝑏) p = (3/11, 5/11, 3/11), (𝑐)
p = (2/11, 5/11, 4/11) and (𝑑) p = (3/11, 6/11, 2/11). The processes grow linearly at least in one
dimension (the top row shows uncentered processes in diffusive scaling). As shown in the second row,
after centering by the mean drift 𝝁, the processes converge weakly to semimartingale reflecting Brow-
nian motion on domains (𝑎) R≥0 × R, (𝑏) R × R≥0, (𝑐) R2 (no reflection) and (𝑑) R × R≥0 (with a
degenerate covariance matrix).

carrier process 𝑊𝑥 − 𝑥𝝁 converges weakly to a 2-dimensional Brownian motion in diffusive scaling. If
either 𝜇1 or 𝜇2 equals zero, then the diffusive scaling limit is an SRBM on R≥0 × R or R × R≥0, which
is the domain S in the statement of Theorem 2.5 (ii). For instance, for p = (3/11, 6/11, 2/11) as in
Figure 3 (d), the SRBM is on domain 𝑆 = R×R≥0 and has a degenerate covariance matrix, since𝑊𝑥 (2)
is subcritical and vanishes in the diffusive scale.

Using the linear and the diffusive scaling limit of the carrier process in Theorem 2.5, we obtain a
sharp scaling limit of soliton lengths for the independence model in the critical and subcritical regimes.
These results are stated in Theorems 2.6 and 2.7 below.

Theorem 2.6 (The independence model – Critical regime). Suppose 𝑝∗ = 𝑝0. Then for each fixed
𝑗 ≥ 1, 𝜆 𝑗 (𝑛) = Θ(

√
𝑛). Furthermore, let Σ be a 𝜅 × 𝜅 covariance matrix defined explicitly in (177) and

𝑅 = tridiag𝜅×𝜅 (0, 1,−1). Let W be a semimartingale reflecting Brownian motion associated with data
(R𝜅

≥0, 0, Σ, 𝑅, 𝛿0) (see Definition 10.1). Then as 𝑛 → ∞,

𝑛−1/2𝜆1(𝑛) =⇒ sup ‖𝑊 ‖1, (22)

where =⇒ denotes weak convergence.

Theorem 2.7 (The independence model – Supercritical regime). Suppose 𝑝∗ > 𝑝0.

(i) (Top soliton length in the supercritical regime) It holds that

lim
𝑛→∞

𝑛−1𝜆1(𝑛)
𝑎.𝑠.
= 𝑝∗ − 𝑝0 and 𝜆1(𝑛) = (𝑝∗ − 𝑝0)𝑛 + Θ(

√
𝑛). (23)
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More precisely, let𝛼1 < · · · < 𝛼𝑟 denote the unstable colors and let𝛼𝑟+1 := 0. Let 𝝁 = (𝜇1, . . . , 𝜇𝜅 )
be as in (19) and 𝐽 := {𝑖 : 𝜇𝑖 > 0}. Let W = (W1, . . . ,W 𝜅 ) denote the SRBM in Theorem 2.5
(ii). Then

𝜅∑
𝑖=1

W 𝑖 (1) � lim inf
𝑛→∞

𝜆1(𝑛) − (𝑝∗ − 𝑝0)𝑛√
𝑛

(24)

� lim sup
𝑛→∞

𝜆1(𝑛) − (𝑝∗ − 𝑝0)𝑛√
𝑛

(25)

�
∑
𝑗∈𝐽

𝐵 𝑗 (1) + sup
0≤𝑣≤1

𝜅∑
𝑗∈{1,...,𝜅 }\𝐽

W 𝑖 (𝑣), (26)

where � denotes stochastic dominance and 𝐵 = (𝐵1, . . . , 𝐵𝜅 ) is a Brownian motion in R𝜅 with
zero drift and the same covariance matrix with W .

(ii) (Subsequent soliton lengths in the simple supercritical regime) Suppose 𝑟 = 1. Then for any fixed
𝑗 ≥ 2, 𝜆 𝑗 (𝑛) = Θ(log 𝑛) with high probability.

(iii) (Subsequent soliton lengths in the nonsimple supercritical regime) Suppose 𝑟 ≥ 2. Then for any
fixed 𝑗 ≥ 2, 𝜆 𝑗 (𝑛) = Θ(

√
𝑛) with high probability; that is, for each 𝜀 > 0, there exists constants

𝑐1, 𝑐2 > 0 such that lim inf
𝑛→∞

P(𝜆 𝑗 (𝑛)/
√
𝑛 ∈ [𝑐1, 𝑐2]) ≥ 1 − 𝜀.

Multiple remarks on Theorems 2.4–2.7 are in order. These results extend the ‘double-jump’ phase
transition on soliton lengths for the 𝜅 = 1 case established by Levine, Lyu and Pike [LLP20] to the
multicolor case. As in the 𝜅 = 1 case, we find that there exist three regimes – subcritical (𝜆1(𝑛) =
Θ(log 𝑛)), critical (𝜆1(𝑛) = Θ(

√
𝑛)) and supercritical (𝜆1(𝑛) = Θ(𝑛)) – depending on whether the

maximum ball density 𝑝∗ = max(𝑝1, . . . , 𝑝𝜅 ) exceeds the empty box density 𝑝0. However, we find
that the scaling behavior of the soliton lengths inside each regime is significantly more nuanced in the
multicolor case than in the single-color case.

In the subcritical regime 𝑝∗ < 𝑝0, we find all top soliton lengths 𝜆 𝑗 (𝑛) for 𝑗 ≥ 1 are concentrated
around log𝜃 𝑛 + (𝑟 − 1) log𝜃 log 𝑛, where 𝜃 = 𝑝∗/𝑝0 and r denotes the multiplicity of the maximum
positive color 𝑝∗, and the tail of 𝜆𝑛 (𝑛) has a Gumbel-type tail distribution. While this scaling coincides
with that in the 𝜅 = 1 case for 𝑟 = 1, if 𝑟 ≥ 2, then the top solitons are an asymptotically ‘a tad’ longer
by (𝑟 − 1) log𝜃 log 𝑛, which is caused by the competition between multiple maximal colors.

In the critical regime 𝑝∗ = 𝑝0, we find that 𝜆1(𝑛)/
√
𝑛 ⇒ 𝐷, where the distribution of the nonde-

generate random variable D depends on a SRBM on the orthant R𝜅
≥0 with zero drift and an explicit

covariance matrix Σ. This is the same SRBM to which the entire carrier process converges weakly in
diffusive scaling as in Theorem 2.5. For instance, if 𝑝∗ is uniquely achieved, then the SRBM W is de-
generate in all but one dimension. In particular, for 𝜅 = 1, our result recovers the corresponding result in
[LLP20]. In general, Σ can depend on the entire p, capturing the intertwined interaction between balls
of all colors in the multicolor case.

In the supercritical regime 𝑝∗ > 𝑝0, Theorem 2.7 shows that 𝜆1(𝑛)/𝑛 → 𝑝∗ − 𝑝0 almost surely and
the fluctuation of 𝜆1(𝑛) about its mean is of order

√
𝑛. While a central limit theorem (CLT) for 𝜆1(𝑛)

in the supercritical regime was shown in [LLP20] for the 𝜅 = 1 case, we find in the multicolor case that
the distribution of the fluctuation of 𝜆1(𝑛) does not always satisfy CLT. More precisely, the following
corollary shows that CLT holds for 𝜆1(𝑛) if and only if the ball density is strictly decreasing on the
unstable colors. (Recall (17).)

Corollary 2.8. (Fluctuation of 𝜆1 in the supercritical regime) Keep the same setting as in Theorem 2.4.
Suppose supercritical regime 𝑝∗ > 𝑝0. Let 𝛼1 < · · · < 𝛼𝑟 denote the unstable colors.

(i) Further assume 𝑝𝛼1 > · · · > 𝑝𝛼𝑟 , Then 𝜆1(𝑛) satisfies the following central limit theorem:

𝜆1(𝑛) − (𝑝∗ − 𝑝0)𝑛√
𝑛

=⇒ 𝑁 (0, ‖Σ‖1), (27)
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where the limiting distribution is the normal distribution with mean zero and variance ‖Σ‖1 for Σ
the covariance matrix in Theorem 2.5.

(ii) If 𝑝𝛼𝑗 = 𝑝𝛼𝑗+1 for some 1 ≤ 𝑗 ≤ 𝑟 − 1, then

E

[
lim inf
𝑛→∞

𝜆1(𝑛) − (𝑝∗ − 𝑝0)𝑛√
𝑛

]
> 0. (28)

In particular, 𝜆1(𝑛) does not satisfy the central limit theorem.

Indeed, suppose 𝑝𝛼1 > · · · > 𝑝𝛼𝑟 as in Corollary 2.8 (i). Then Theorem 2.5 states that 𝑥−1/2 (𝑊𝑥−𝝁𝑥)
converges weakly to the (nonreflecting) Brownian motion in R𝜅 with covariance matrix Σ. Hence, in
this case, Theorem 2.7 (i) immediately implies that

𝜆1(𝑛) − (𝑝∗ − 𝑝0)𝑛√
𝑛

=⇒
𝜅∑

𝑖=1
𝐵𝑖 (1), (29)

where 𝐵 = (𝐵1, . . . , 𝐵𝜅 ) is a Brownian motion in R𝜅 with zero drift and covariance matrix Σ in
Theorem 2.5. Since 𝐵(1) is a standard normal vector with mean zero and covariance matrix Σ, the result
in Corollary 2.8 (i) follows.

If we are in the situation as in Corollary 2.8 (ii), then some of the consecutive unstable colors have
the same ball density (i.e., 𝑝𝛼𝑗 = 𝑝𝛼𝑗+1 ). For every such 𝛼 𝑗 , the corresponding coordinate has to remain
nonnegative in the limiting SRBM. So in this case, the fluctuation of 𝜆1 about its mean in the diffusive
scaling has a positive expectation. As an example, consider the case p = (𝑝0, 𝑝1, 𝑝2) with 𝑝1 > 𝑝2 = 𝑝0
(see Figure 3 (b)). In this case, the limiting SRBM𝑊 = (𝑊1,𝑊2) is on the domain R×R≥0, so the lower
bound 𝑊1(1) +𝑊2(1) on the fluctuation in (24) has a positive expectation. This can be understood for
the following reasons. Since 𝑝1 > max(𝑝0, 𝑝2), the number of color 1 balls in the carrier grows linearly
and makes the dominant contribution (of order n) to 𝜆1(𝑛). However, the number of color 2 balls in
the carrier still contributes to 𝜆1(𝑛) by order

√
𝑛 since 𝑝2 = 𝑝0. While the fluctuation of the number of

color 1 balls around its mean (𝑝1 − 𝑝0)𝑛 has mean zero, the contribution of color 2 balls of order
√
𝑛 is

only visible in the diffusive scaling, and it is almost always of a positive amount.
Another interesting behavior of the multicolor BBS is the order of subsequent soliton lengths, 𝜆 𝑗 (𝑛)

for 𝑗 ≥ 2, in the supercritical regime, which depends drastically on the multiplicity r of the maximal
ball density 𝑝∗. That is, 𝜆 𝑗 (𝑛) for all 𝑗 ≥ 2 is of order log 𝑛 if 𝑟 = 1, but they are of order

√
𝑛 if

𝑟 ≥ 2. The former case agrees with the results for the 𝜅 = 1 case in [LLP20]. There, it was shown that
𝜆2(𝑛) comes from the subexcursions of the carrier process below its running maximum. The height of
such subexcursions has exponential tails, so we have order log(𝑛) as the order of the maximum of n
subexponential random variables. However, if 𝑟 ≥ 2 in the multicolor case, the discrepancy between
the number of balls of two maximal colors is of order

√
𝑛 and contributes to 𝜆2(𝑛) (see the proof of

Theorem 2.7 (iii)). We remark that a duality between the subcritical and the supercritical regimes for
𝜅 = 1 was established in [LLP20], in the sense that 𝜆 𝑗+1 in the supercritical regime corresponds to 𝜆 𝑗 in
the subcritical regime for 𝑗 ≥ 1. Our results confirm a similar correspondence still holds asymptotically
for the simple (𝑟 = 1) supercritical regime; but 𝜆 𝑗+1 in the nonsimple (𝑟 ≥ 2) supercritical regime
corresponds to 𝜆 𝑗 in the critical regime.

3. Key combinatorial lemmas

3.1. Infinite capacity carrier process and soliton lengths

The definition of 𝜅-color BBS dynamics we gave in the introduction involves the nonlocal movement of
balls. It can instead be defined using a ‘carrier’, which gives a localized characterization of the process
and reveals a number of important invariants that fully determine the resulting solitons. For the simplest
case 𝜅 = 1, imagine a carrier of infinite capacity sweeps through the time-t configuration 𝜉 (𝑡) from the
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Figure 4. Time evolution of the infinite capacity carrier process (Γ𝑥)𝑥≥0 over the 7-color initial
configuration 𝜉, producing new configuration 𝜉 ′ consisting of existing ball colors. For instance, 𝜉2 = 2,
Γ2 = [2, 0, 0, · · · ], and 𝜉 ′

4 = 5. Notice that 𝜉 ′ can also be obtained by the time evolution of the 7-color
BBS applied to 𝜉.

left, picking up each ball it encounters and depositing a ball into each empty box whenever it can. We
will see that after we run this carrier over 𝜉 (𝑡) , the resulting configuration is in fact 𝜉 (𝑡+1) . Moreover,
the maximum number of balls in the carrier during the sweep is in fact the first soliton length 𝜆1.

Now we introduce the infinite-capacity carrier process and the carrier version of the 𝜅-color BBS
dynamic. Denote

B∞ :=
{
x ∈ {0, 1, · · · , 𝜅}N | x is nonincreasing and has finite support

}
, (30)

which is the set of ‘reversed’ semi-standard Young tableaux of shape 1 ×∞ and letters from {0, . . . , 𝜅}.
Namely, an element in this set is an infinite string of letters consisting of finitely many nonincreasing
nonzero letters followed by an infinite string of zeros. An element x in B∞ describes the state of the
infinite-capacity carrier. If the carrier at state x encounters a new ball of color y, it produces a new
carrier state x′ and a new ball color 𝑦′ according to the ‘circular exclusion rule’: Inserting y into x, 𝑦′

is the largest letter in x with 𝑦′ < 𝑦, and x′ is obtained by replacing the leftmost letter 𝑦′ in x with y.
More precisely, define a map Ψ : B∞ × {0, 1, · · · , 𝜅} → {0, 1, · · · , 𝜅} × B∞, (x, 𝑦) ↦→ (𝑦′, x′) by

(i) Suppose 𝑦 ≥ 1 and denote 𝑖∗ = min{𝑖 ≥ 1 | x(𝑖) < 𝑦}. Then 𝑦′ = x(𝑖∗) and

x′(𝑖) = x(𝑖)1(𝑖 ≠ 𝑖∗) + 𝑦1(𝑖 = 𝑖∗) ∀𝑖 ≥ 1. (31)

(ii) Suppose 𝑦 = 0. Then 𝑦′ = x(1) = max(x) and

x′(𝑖) = x(𝑖 + 1) ∀𝑖 ≥ 1. (32)

Fix a 𝜅-color BBS configuration 𝜉 : N→ {0, 1, · · · , 𝜅}. Fix Γ0 ∈ B∞, and recursively define a new
𝜅-color BBS configuration 𝜉 ′ and a sequence (Γ𝑥)𝑥≥0 of elements of B∞ by

(𝜉 ′
𝑥+1, Γ𝑥+1) = Ψ(Γ𝑥 , 𝜉𝑥+1) ∀𝑥 ∈ N. (33)

We call the sequence (Γ𝑥)𝑥≥0 the infinite capacity carrier process over 𝜉. The carrier state Γ𝑥 is deter-
mined by the balls in the interval [1, 𝑥] (see Figure 4 for an illustration). Unless otherwise mentioned,
we will assume Γ0 = 0 = [0, 0, 0, · · · ] ∈ B∞. The induced update map 𝜉 ↦→ 𝜉 ′ turns out to coincide
with the 𝜅-color BBS evolution (1). See Remark 3.4 for more details.

It is important to note that the carrier process (𝑊𝑥)𝑛∈N we introduced in (8) can be derived from the
infinite-capacity carrier process (Γ𝑥)𝑥∈N above by simply recording the number of balls of each color
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𝑖 = 1, . . . , 𝜅. That is,

𝑊𝑥 = (𝑚1 (Γ𝑥), . . . , 𝑚𝜅 (Γ𝑥)) for all 𝑥 ≥ 0, (34)

where 𝑚𝑖 (Γ𝑥) denotes the number of balls of color (letter) i in Γ𝑥 for 𝑖 = 1, . . . , 𝜅.
Lemma 3.1 below states that the first soliton length 𝜆1 equals the maximum number of balls of

positive colors in the associated carrier process.

Lemma 3.1. Suppose the initial 𝜅-color BBS configuration 𝜉 has finite support. Let (𝑊𝑥)𝑥≥0 and
(Γ𝑥)𝑥≥0 be as before. Then

𝜆1(𝜉) = max
𝑥≥0

‖𝑊𝑥 ‖1 = max
𝑥≥0

(# of positive letters in Γ𝑥). (35)

For 𝜅 = 1, it is possible to precisely characterize all subsequent soliton lengths 𝜆2, 𝜆3, . . . by applying
the ‘excursion operator’ to the carrier process multiple times and taking maximum [LLP20]. Roughly
speaking, given the 1-dimensional carrier process 𝑊 = (𝑊𝑥)𝑥≥0 for 𝜅 = 1, which starts at 0 and takes
value 0 for all large x, let E (𝑊) denote the new lattice path that describes the excursion heights above
the record minimum of W away from the rightmost global maximizer of W. Then 𝜆2 = max(E (𝑊)), and
𝜆3 = max(E2 (𝑊)), and so on. We currently do not have a similar 𝜅-dimensional excursion operator for
exactly describing the subsequent soliton lengths for the general multicolor case. However, we provide
a lower bound on 𝜆 𝑗 in terms of the jth largest ‘excursion height’ of the carrier process, which is enough
to obtain sharp asymptotics for 𝜆 𝑗 in the subcritical regime.

We introduce some notation. Let 0 = (0, 0, · · · , 0) ∈ (Z≥0)𝜅 denote the origin, and write

𝑀𝑛 :=
𝑛∑

𝑥=1
1(𝑊𝑥 = 0) (36)

for the number of visits of 𝑊𝑥 to 0 during [1, 𝑛]. For each 𝑘 ≥ 1, let 𝑇𝑘 denote the time of the kth visit
of 𝑊𝑥 to 0 and set 𝑇0 = 0. We say that the trajectories of 𝑊𝑥 restricted to the time intervals [𝑇𝑘−1, 𝑇𝑘 ]
between consecutive visits to 0 are its excursions. Also note that 𝑀𝑛 defined at (36) equals the number
of complete excursions of the carrier process during [1, 𝑛]. We will define the height of the carrier at
site x by

‖𝑊𝑥 ‖1 = 𝑊𝑥 (1) + · · · +𝑊𝑥 (𝜅), (37)

which equals the number of balls of positive color that the carrier possesses at site x. Define the kth
excursion height ℎ𝑘 and height of the final meander 𝑟𝑛 by

ℎ𝑘 = max
𝑇𝑘−1 ≤𝑡≤𝑇𝑘

‖𝑊𝑥 ‖1, 𝑟𝑛 = max
𝑇𝑀𝑛 ≤𝑡≤𝑛

‖𝑊𝑥 ‖1. (38)

Denote by h1 (𝑛) ≥ h2 (𝑛) ≥ · · · ≥ h𝑀𝑛 (𝑛) the order statistics of the excursion heights ℎ1, · · · , ℎ𝑀𝑛 . We
then have the following lemma.

Lemma 3.2. Soliton decomposition of 𝜉 is obtained as the union of the soliton decomposition of the
support of each excursion of the carrier process over 𝜉. In particular, for 𝑗 , 𝑛 ≥ 1, 𝜆 𝑗 (𝑛) ≥ h 𝑗 (𝑛).

Proofs of Lemmas 3.1 and 3.2 are relagated to Section 12.

3.2. Finite capacity carrier processes and soliton numbers

In [KL20], it is shown that the row lengths of the invariant Young diagram of any 𝜅-BBS trajectory can
be extracted by running carrier processes of finite capacities, as we will summarize in this subsection.
This will provide one of the key combinatorial lemmas in the present paper.
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Figure 5. Time evolution of the capacity-3 carrier process (Γ𝑥)𝑥≥0 over the 7-color initial configuration
𝜉, with new configuration 𝜉 ′ consisting of existing ball colors. For instance, 𝜉2 = 2, Γ2 = [2, 0, 0], and
𝜉 ′

4 = 5. Notice that while 𝜉 is the same as in the example in Figure 4, the new 7-color BBS configuration
𝜉 ′ is different. In this case, the map 𝜉 ↦→ 𝜉 ′ does not agree with the 7-color BBS time evolution.

First, fix an integer parameter 𝑐 ≥ 1 that we call capacity. Denote

B𝑐 = {[𝑥1, · · · , 𝑥𝑐] ∈ {0, 1, · · · , 𝜅}𝑐 | 𝑥1 ≥ · · · ≥ 𝑥𝑐}, (39)

which can also be identified as the set of all (1×𝑐) semistandard tableaux with letters from {0, 1, · · · , 𝜅}.
Define a map Ψ𝑐 : B𝑐 × {0, 1, · · · , 𝜅} → {0, 1, · · · , 𝜅} × B𝑐 , ([𝑥1, · · · , 𝑥𝑐], 𝑦) ↦→ (𝑦′, [𝑥 ′

1, · · · , 𝑥
′
𝑐]) by

the following ‘circular exclusion rule’:

(i) Suppose 𝑦 > 𝑥𝑐 and denote 𝑖∗ = min{𝑖 ≥ 1 | 𝑥𝑖 < 𝑦}. Then 𝑦′ = 𝑥𝑖∗ and

[𝑥 ′
1, · · · , 𝑥

′
𝑐] = [𝑥1, · · · , 𝑥𝑖∗−1, 𝑦, 𝑥𝑖∗+1, · · · , 𝑥𝑐] . (40)

(ii) Suppose 𝑥𝑐 ≥ 𝑦. Then 𝑦′ = 𝑥1 and

[𝑥 ′
1, 𝑥

′
2, · · · , 𝑥

′
𝑐] = [𝑥2, · · · , 𝑥𝑐 , 𝑦] . (41)

Fix a 𝜅-color BBS configuration 𝜉 : N → {0, 1, · · · , 𝜅}. Let Γ0 = [0, · · · , 0] ∈ B𝑐 , and recursively
define a new 𝜅-color BBS configuration 𝜉 ′ and a sequence (Γ𝑥)𝑥≥0 of elements of B𝑐 by

(𝜉 ′
𝑥+1, Γ𝑥+1) = Ψ𝑐 (Γ𝑥 , 𝜉𝑥+1) ∀𝑥 ∈ N. (42)

We call the sequence (Γ𝑥)𝑥≥0 the capacity-c carrier process over 𝜉. See Figure 5 for an illustration.
The following lemma, which is proven in [KL20], gives a closed-form expression of the row sums

of the invariant Young diagram:

Lemma 3.3. Let (𝜉 (𝑡) )𝑡≥0 be a 𝜅-color BBS trajectory such that 𝜉 (0) has finite support. For each 𝑐 ≥ 1,
let (Γ𝑥;𝑐)𝑥≥0 denote the capacity-c carrier process over 𝜉 (𝑡) . Then for all 𝑘 ≥ 1 and 𝑡 ≥ 0, we have

𝜌1 (𝜉 (0) ) + · · · + 𝜌𝑘 (𝜉 (0) ) ≡
∞∑
𝑥=1

1(𝜉 (𝑡)
𝑥 > min Γ𝑥−1;𝑘 ), (43)

where min Γ𝑥−1;𝑘 denotes the smallest letter in Γ𝑥−1;𝑘 .

Proof. See equation (13) and Proposition 4.5 in [KL20]. We also provide a self-contained proof in
Section 12.2. �

Remark 3.4. It is well-known that, if the capacity 𝑐 ≥ 1 is large enough compared to the number of
balls of color ≥ 1 in the system, then the induced update map 𝜉 ↦→ 𝜉 ′ agrees with the 𝜅-color BBS time
evolution (see, for example, [HKT01]). Also, once the capacity c is large enough, the capacity-c carrier
process is equivalent to the infinite capacity carrier process in the sense that they always contain the
same number of each positive letter. Hence, it follows that the map 𝜉 ↦→ 𝜉 ′ defined in (33) coincides with
the 𝜅-color BBS time evolution defined in the introduction. In other words, the 𝜅-color BBS dynamic
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can be equivalently defined by repeatedly applying the infinite-capacity carrier process to the current
ball configuration, analogously as in the 𝜅 = 1 case in [LLP20].

3.3. Modified Greene-Kleitman invariants for BBS

One natural way to associate a Young diagram with a given permutation is to use the celebrated Robinson-
Schensted correspondence (see [Sag01, Ch. 3.1]), which gives a bijection between permutations and
pairs of standard Young tableaux of the same shape. For each permutation 𝜎, record the common
shape of the Young tableaux as ΛRS (𝜎). Let 𝜌RS

𝑖 (𝜎) and 𝜆RS
𝑗 (𝜎) denote its ith row length and its jth

column lengths, respectively. According to Greene’s theorem [Gre82], the sum of the lengths of the first
k columns (resp. rows) of Λ𝑅𝑆 (𝜎) is equal to the length of the longest subsequence in 𝜎 that can be
obtained by taking the union of k decreasing (resp. increasing) subsequences. That is, for each 𝑘 ≥ 1,

𝜌RS
1 (𝜎)) + · · · + 𝜌RS

𝑘 (𝜎)) = max
(���⊔ 𝑘 increasing subsequences of 𝜎

���) , (44)

𝜆RS
1 (𝜎)) + · · · + 𝜆RS

𝑘 (𝜎)) = max
(���⊔ 𝑘 decreasing subsequences of 𝜎

���) . (45)

The quantities on the right-hand sides are called the Greene-Kleitman invariants.
If we consider the 𝜅-color BBS trajectory started at 𝜉 (0) = 𝜎1([1, 𝑛]), then we obtain another Young

diagram Λ(𝜎) := Λ(𝜉 (0) ), whose 𝑗 th column length equals the 𝑗 th longest soliton length. Then a natural
question arises: Do the sums of the first k rows and columns of Λ(𝜎) relate to some type of Greene-
Kleitman invariants? For the rows, we find that the correct modification is to localize the length of an
increasing sequence into the number of ascents in a subsequence. However, for the columns, it turns out
that we just need to impose that the k decreasing subsequences be noninterlacing. In fact, in Lemma
3.5, we establish these modified Greene-Kleitman invariants for BBS in the more general setting when
𝜎 is an arbitrary 𝜅-color BBS configuration with finite support, where having 0’s and repetitions are
both allowed.

Let 𝜉 : N→ {0, 1, · · · , 𝜅} be a 𝜅-color BBS configuration with finite support. For subsets 𝐴, 𝐵 ⊆ N,
denote 𝐴 ≺ 𝐵 if max(𝐴) < min(𝐵). We say 𝐴, 𝐵 are noninterlacing if 𝐴 ≺ 𝐵 or 𝐵 ≺ 𝐴. We say 𝜉 is
nonincreasing on 𝐴 ⊆ N if 𝜉𝑎1 ≥ 𝜉𝑎2 for all 𝑎1, 𝑎2 ∈ 𝐴 such that 𝑎1 ≤ 𝑎2. Denoting the elements of A
by 𝑎1 < 𝑎2 < · · · , define the number of ascents of 𝜉 in A by

NA(𝐴, 𝜉) := 1 +
|𝐴 |∑
𝑖=2

1(𝜉𝑎𝑖−1 < 𝜉𝑎𝑖 ). (46)

Moreover, define the penalized length of A with respect to 𝜉 by

L(𝐴, 𝜉) :=

[
|𝐴| −

max 𝐴∑
𝑖=min 𝐴

1(𝜉𝑖 = 0)
]
1(𝜉 is non-increasing on 𝐴). (47)

Note that the summation in (47) is over the interval [min 𝐴,max 𝐴] ∩Z, which may contain A properly.

Lemma 3.5. Let (𝜉 (𝑡) )𝑡≥0 be a 𝜅-color BBS trajectory such that 𝜉 (0) has finite support. Then for each
𝑘, 𝑡 ≥ 0, we have

𝜌1(𝜉 (0) ) + · · · + 𝜌𝑘 (𝜉 (0) ) ≡ max
𝐴1�···�𝐴𝑘=N

𝑘∑
𝑖=1

NA(𝐴𝑖 , 𝜉
(𝑡) ), (48)

𝜆1(𝜉 (0) ) + · · · + 𝜆𝑘 (𝜉 (0) ) ≡ max
𝐴1 ≺···≺𝐴𝑘 ⊆N

𝑘∑
𝑖=1

L(𝐴𝑖 , 𝜉
(𝑡) ). (49)

The proof of Lemma 3.5 may be found in Section 12.2.
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4. Proof of Theorem 2.1

In this subsection, we prove our first main result, Theorem 2.1. Let Σ𝑛 be a uniformly chosen random
permutation of the set {1, 2, · · · , 𝑛}, and let 𝜉𝑛 = Σ𝑛1([1, 𝑛]) be the random n-color BBS configuration
induced from Σ𝑛. Let 𝜆𝑘 (𝑛) = 𝜆𝑘 (𝜉𝑛) denote the length of the 𝑘 th longest soliton in 𝜉𝑛.

4.1. Proof of Theorem 2.1 for the columns

Our proof of Theorem 2.1 for the columns relies on Lemma 3.5 and the sharp asymptotic of longest
decreasing subsequence of a uniform random permutation due to Baik, Deift and Johansson [BDJ99].

Proof of Theorem 2.1 for the columns. Fix an integer 𝑘 ≥ 1. It suffices to show that, almost surely,

lim
𝑛→∞

𝑛−1/2
𝑘∑

𝑖=1
𝜆𝑖 (𝑛) = 2

√
𝑘. (50)

For each integer 𝑘 ≥ 1, let 𝐿(𝑘) denote the length of the longest increasing subsequence in a uniformly
random permutation of k letters. By Lemma 3.5, recall that

𝜆1(𝑛) + · · · + 𝜆𝑘 (𝑛) = max

{
𝑘∑

𝑖=1
𝐿(𝐴𝑖 , 𝜉

𝑛) | 𝐴1 ≺ · · · ≺ 𝐴𝑘 ⊆ [1, 𝑛]
}
. (51)

We view a random permutation as a ranking among n i.i.d. Uniform([0, 1]) random variables
𝑈1, · · · ,𝑈𝑛. If 𝐴 ⊆ {1, · · · , 𝑛}, then the ranking of 𝑈𝑖 for 𝑖 ∈ 𝐴 gives a uniform random permuta-
tion of A, which we call a random permutation of [𝑛] restricted on A. Moreover, one can also see that
if we restrict a random permutation on multiple disjoint subsets, then these smaller permutations are
independent. Hence, if 𝐴1 ≺ · · · ≺ 𝐴𝑘 are noninterlacing subsets of [0, 𝑛], then the permutations re-
stricted on these subsets are independent. Moreover, since the random permutation model 𝜉𝑛 does not
assign color 0 on any site in [0, 𝑛], for any increasing subsequence 𝐴 ⊆ [0, 𝑛] and its supporting interval
𝐼 = [min 𝐴,max 𝐴],

L(𝐴, 𝜉𝑛) = |𝐴| ≤ |𝐼 | = L(𝐼, 𝜉𝑛) 𝑑
= 𝐿(|𝐼 |). (52)

It follows that

𝑘∑
𝑖=1

𝜆𝑖 (𝑛)
𝑑
= max

{
𝑘∑

𝑖=1
𝐿(𝑛𝑖)

���� 𝑘∑
𝑖=1

𝑛𝑖 = 𝑛, 𝐿(𝑛1), . . . , 𝐿(𝑛𝑘 ) are indepenent

}
. (53)

Baik, Deift and Johansson [BDJ99] proved the following tail bounds for 𝐿(𝑛) (see also equations
(1.7) and (1.8) in [BDJ99] or p. 149 in [Rom15]): There exist positive constants 𝑀, 𝑐, 𝐶 such that for
all 𝑚 ≥ 1,

(Lower tail): P
(
𝑚−1/6(𝐿(𝑚) − 2

√
𝑚) ≤ −𝑡

)
≤ 𝐶 exp(−𝑐𝑡3) for all 𝑡 ∈ [𝑀, 2𝑚1/3]; (54)

(Upper tail): P
(
𝑚−1/6(𝐿(𝑚) − 2

√
𝑚) ≥ 𝑡

)
≤ 𝐶 exp(−𝑐𝑡3/5) for all 𝑡 ∈ [𝑀,𝑚5/6 − 2𝑚1/3] . (55)

Taking 𝑡 = (log𝑚)2, we obtain

P

(
|𝐿(𝑚) − 2

√
𝑚 | ≥ (log𝑚)2𝑚1/6

)
≤ 2𝐶 exp(−𝑐(log𝑚)6/5). (56)
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Fix 𝜀 > 0. Note that if 𝑚 ≥ 𝜀
√
𝑛, then for any fixed 𝑑 > 0,

P

(
|𝐿(𝑚) − 2

√
𝑚 | ≥ (log𝑚)2𝑚1/6

)
= 𝑂 (𝑛−𝑑). (57)

Now, denote the random variable in the right-hand side of (53) by X. We write 𝑋 = max(𝑌, 𝑍), where

𝑌 = max{𝐿(𝑛1) + · · · + 𝐿(𝑛𝑘 ) : 𝑛1 + · · · + 𝑛𝑘 = 𝑛, 𝑛𝑖 ≥ 𝜀
√
𝑛 for all 𝑖}, (58)

𝑍 = max{𝐿(𝑛1) + · · · + 𝐿(𝑛𝑘 ) : 𝑛1 + · · · + 𝑛𝑘 = 𝑛, 𝑛𝑖 < 𝜀
√
𝑛 for at least one 𝑖}. (59)

Denote A := {(𝑛1, . . . , 𝑛𝑘 ) : 𝑛1 + · · · + 𝑛𝑘 = 𝑛, 𝑛𝑖 ≥ 𝜀
√
𝑛 for all 𝑖}. For each 𝜂 = (𝑛1, . . . , 𝑛𝑘 ) ∈ A,

denote 𝑌𝜂 := 𝐿(𝑛1) + · · · + 𝐿(𝑛𝑘 ) and 𝑀𝜂 := 2(√𝑛1 + · · · + √
𝑛𝑘 ). Then by a union bound and (57),

P(|𝑌𝜂 − 𝑀𝜂 | ≥ 𝑘 (log𝑚)2𝑚1/6) = 𝑂 (𝑛−𝑑). (60)

Note that 𝑌 = max𝜂∈A𝑌𝜂 , and since there are at most 𝑛𝑘 partitions of [𝑛] into k intervals, |A| ≤ 𝑛𝑘 . So
by a union bound, we have

P

(��𝑌 − max
𝜂∈A

𝑀𝜂

��) ≤
∑
𝜂∈A
P

(
|𝑌𝜂 − 𝑀𝜂 | ≥ 𝑘 (log𝑚)2𝑚1/6

)
= 𝑂 (𝑛−𝑑) (61)

for any fixed 𝑑 > 0. The deterministic optimization problem

max
𝜂∈A

𝑀𝜂 = max{2
√
𝑛1 + · · · + 2

√
𝑛𝑘 : 𝑛1 + · · · + 𝑛𝑘 = 𝑛, 𝑛𝑖 ≥ 𝜀

√
𝑛∀ i} (62)

achieves its maximum when
∑𝑘

𝑖=1 |𝑛𝑖 − (𝑛/𝑘) | is minimized, in which case we have |𝑛𝑖 − (𝑛/𝑘) | ≤ 1 for
all 1 ≤ 𝑖 ≤ 𝑘 . Denoting the maximizer as 𝑛1, · · · , 𝑛𝑘 , it follows that, for all 1 ≤ 𝑖 ≤ 𝑘 ,

|
√
𝑛𝑖 −

√
𝑛/𝑘 | ≤ 1

√
𝑛𝑖 +

√
𝑛/𝑘

≤ 1
2
√

(𝑛/𝑘) − 1
. (63)

So this yields, for all sufficiently large 𝑛 ≥ 1,

P

(
|𝑌 − 2

√
𝑘𝑛| > 2𝑘 (log 𝑛)2𝑛1/6

)
(64)

≤ P
(
|𝑌 − 2

√
𝑘𝑛| > 𝑘 (log 𝑛)2𝑛1/6 + 𝑘√

(𝑛/𝑘) − 1

)
= 𝑂 (𝑛−𝑑)

for any fixed 𝑑 > 0.
Next, if 𝑛𝑖 < 𝜀

√
𝑛, then we use the trivial upper bound 𝐿(𝑛𝑖) ≤ 𝑛𝑖 ≤ 𝜀

√
𝑛; otherwise, if 𝑛𝑖 > 𝜀

√
𝑛,

we continue to use the tail bound for |𝐿(𝑛𝑖) − 2√𝑛𝑖 | in (57). Hence,

P

(
𝑍 > 2

√
(𝑘 − 1)𝑛 + 2𝑘 (log 𝑛)2𝑛1/6 + 𝑘𝜀

√
𝑛
)
= 𝑂 (𝑛−𝑑), (65)

where the first term bounds the contribution from at most 𝑘 −1 intervals of size ≥ 𝜀
√
𝑛, the second term

is given by the BDJ tail bound in (57) and the last term gives a trivial bound for intervals of size < 𝜀
√
𝑛.

Hence, if we choose 𝜀 < 2/𝑘 (
√
𝑘 − 1 +

√
𝑘), then (64) and (65) give us
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Figure 6. Evolution of a 4-point circular exclusion process. The states in the unit circle are ordered
clockwise. Each newly inserted point (black dot) annihilates the closest preexisting point in the coun-
terclockwise direction (light blue dot).

P(𝑍 > 𝑌 ) ≤ P
(
𝑌 < 2

√
𝑘𝑛 + 2𝑘 (log 𝑛)2𝑛1/6

)
(66)

+ P
(
𝑍 > 2

√
(𝑘 − 1)𝑛 + 2𝑘 (log 𝑛)2𝑛1/6 + 2

√
𝑛

√
𝑘 − 1 +

√
𝑘

)
= 𝑂 (𝑛−𝑑)

for each fixed 𝑑 > 0. Now note that, for each 𝑡 > 0,

P

(�����
(

1
√
𝑛

𝑘∑
𝑖=1

𝜆𝑖 (𝑛)
)
− 2

√
𝑘

����� > 𝑡

)
= P

(
| max(𝑌, 𝑍) − 2

√
𝑘𝑛| > 𝑡

√
𝑛
)

(67)

≤ P
(
|𝑌 − 2

√
𝑘𝑛| > 𝑡

√
𝑛
)
+ P(𝑍 > 𝑌 ).

Hence, by choosing 𝑡 = 1/log 𝑛, for any fixed 𝑑 > 0, (64) and (66) yield

P

(�����
(

1
√
𝑛

𝑘∑
𝑖=1

𝜆𝑖 (𝑛)
)
− 2

√
𝑘

����� > 1
log 𝑛

)
= 𝑂 (𝑛−𝑑). (68)

Then the assertion follows from the Borel-Cantelli lemma. �

4.2. Circular exclusion process and the row lengths

In this subsection, we prove Theorem 2.1 for the rows. By Lemma 3.3, this can be done by analyzing
the carrier process over the uniform random permutation 𝜉𝑛. Let X := (𝑈𝑥)𝑥≥1 be a sequence of i.i.d.
Uniform([0, 1]) random variables. For each capacity 𝑘 ≥ 1, we may define the carrier process (𝚪𝑥)𝑥≥0
over X using the same ‘circular exclusion rule’ we used to define the map Ψ in Section 3.2. More
precisely, denote C𝑘 = {(𝑥1, · · · , 𝑥𝑘 ) ∈ [0, 1]𝑘 | 𝑥1 ≥ · · · ≥ 𝑥𝑘 }. Define a map 𝜙 : C𝑘 × [0, 1] → C𝑘 ,
[𝑥1, · · · , 𝑥𝑘 , 𝑦] ↦→ [𝑥′

1, · · · , 𝑥
′
𝑘 ] by

(i) If 𝑦 > 𝑥𝑘 , then denote 𝑖∗ = min{𝑖 ≥ 1 | 𝑥𝑖 < 𝑦} and let

[𝑥 ′
1, · · · , 𝑥

′
𝑘 ] = [𝑥1, · · · , 𝑥𝑖∗−1, 𝑦, 𝑥𝑖∗+1, · · · , 𝑥𝑘 ] . (69)

(ii) If 𝑥𝑘 ≥ 𝑦, then [𝑥′
1, · · · , 𝑥

′
𝑘 ] = [𝑥2, · · · , 𝑥𝑘 , 𝑦].

Then the k-point circular exclusion process (𝚪𝑥)𝑥≥0 over X is defined recursively by

𝚪𝑥+1 = 𝜙(𝚪𝑥 ,𝑈𝑥+1). (70)

See Figure 6 for an illustration. Note that (𝚪𝑥)𝑥≥0 forms a Markov chain on state space C𝑘 . When
𝚪0 = [0, 0, · · · , 0], we call (𝚪𝑥)𝑥≥0 the carrier process over X with capacity k.
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In the following lemma, which will be proved in Section 4.3, we show that the k-point circular
exclusion process converges to its unique stationary measure 𝜋, which is the distribution of the order
statistics from k i.i.d. Uniform([0, 1]) variables.

Lemma 4.1. Fix an integer 𝑘 ≥ 1 and let (𝚪𝑥)𝑥≥0 denote the k-point circular exclusion process with
an arbitrary initial configuration.

(i) Let 𝜋 denote the distribution of the order statistics from k i.i.d. uniform random variables on [0, 1].
Then 𝜋 is the unique stationary distribution for the Markov chain (𝚪𝑥)𝑥≥0.

(ii) For each 𝑥 ≥ 0, let 𝜋𝑥 denote the distribution of 𝚪𝑥 . Then 𝜋𝑥 converges to 𝜋 in total variation
distance. More precisely,

𝑑𝑇 𝑉 (𝜋𝑥 , 𝜋) := sup
𝐴⊆[0,1]𝑘

|𝜋𝑥 (𝐴) − 𝜋(𝐴) | ≤
(
1 − 1

(2𝑘)𝑘−1𝑘!

) �𝑥/𝑘 �
, (71)

where the supremum runs over all Lebesgue measurable subsets 𝐴 ⊆ [0, 1]𝑘 .

Now we derive Theorem 2.1 for the row asymptotics.

Proof of Theorem 2.1 for the rows. Let X = (𝑈𝑥)𝑥≥1 denote an infinite sequence of i.i.d.
Uniform([0, 1]) random variables, Σ𝑛 be the random permutation on [𝑛] induced by 𝑈1, · · · ,𝑈𝑛, and
𝜉𝑛 = Σ𝑛1([1, 𝑛]) be the random n-color BBS configuration as defined at (4). Fix an integer 𝑘 ≥ 1 and
let (𝚪𝑥)𝑥≥0 be the k-point circulr exclusion process over X. Also, let (Γ𝑥)𝑥≥0 be the capacity-k carrier
process over 𝜉𝑛 as defined in Section 3.2. By construction, for each 1 ≤ 𝑥 ≤ 𝑛, we have

1(𝜉𝑛 (𝑥) > min Γ𝑥−1) = 1(𝑈𝑥 > min 𝚪𝑥−1). (72)

Thus, according to Lemma 3.3, almost surely,

𝑛−1 (𝜌1(𝜉𝑛) + · · · + 𝜌𝑘 (𝜉𝑛)) = 𝑛−1
𝑛∑

𝑥=1
1(𝑈𝑥 > min 𝚪𝑥−1). (73)

By Lemma 4.1 and Markov chain ergodic theorem, almost surely,

lim
𝑛→∞

𝑛−1(𝜌1(𝜉𝑛) + · · · + 𝜌𝑘 (𝜉𝑛)) = P(𝑈𝑘+1 > min(𝑈1, · · · ,𝑈𝑘 )) =
𝑘

𝑘 + 1
. (74)

Then the assertion follows. �

4.3. Stationarity and convergence of the circular exclusion process

We prove Lemma 4.1 in this subsection. We will assume the stationarity of the circular exclusion process
as asserted in the following proposition, which will be proved at the end of this section.

Proposition 4.2. Fix an integer 𝑘 ≥ 1 and let 𝜋 denote the distribution of the order statistics from k i.i.d.
uniform random variables on [0, 1]. Then 𝜋 is a stationary distribution of the k-point circular exclusion
process.

Proof of Lemma 4.1. For convergence, we use a standard coupling argument. Namely, fix arbitrary
distributions 𝜋0 and 𝜋̄0 on C𝑘 and let X = (Ux)x≥1 denote a sequence of i.i.d. Uniform([0, 1]) variables.
Let (𝚪𝑥)𝑥≥0 be k-point circular exclusion processes over X with initial distribution 𝜋0 and let (𝚪̄𝑥)𝑥≥0 be
k-point circular exclusion processes over X with initial distribution 𝜋-0. These two processes are naturally
coupled since they evolve simultaneously over the same environment X. Let 𝜏 = inf{𝑥 ≥ 0 | 𝚪𝑥 = 𝚪̄𝑥}
denote the first meeting time of the two chains (see Figure 7). By the coupling, 𝚪𝑠 = 𝚪̄𝑠 and 𝑠 ≤ 𝑥 imply
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Figure 7. Joint evolution of two 3-point circular exclusion processes. The states in the unit circle
are ordered clockwise. A newly inserted point annihilates one of the closest preexisting points in the
counterclockwise direction. Blue (resp., red) dots represent points that are shared (resp., not shared) in
both processes. The two chains meet after the fifth transition.

𝚪𝑥 = 𝚪̄𝑥 . A standard argument shows

𝑑𝑇 𝑉 (𝜋𝑥 , 𝜋̄𝑥) ≤ P(𝚪𝑥 ≠ 𝚪̄𝑥) = P(𝜏 > 𝑥), (75)

where 𝜋𝑥 and 𝜋̄𝑥 denote the distributions of 𝚪𝑥 and 𝚪̄𝑥 . We claim that

P(𝜏 > 𝑡) ≤ P(𝚪0 ≠ 𝚪̄0)
(
1 − 1

(2𝑘)𝑘−1𝑘!

) �𝑡/𝑘 �
. (76)

According to Proposition 4.2, this will imply Lemma 4.1 by choosing 𝜋̄0 = 𝜋.
To bound the tail probability of meeting time 𝜏, we will show that two circular exclusion processes

‘synchronize’ after k steps with probability at least 1/𝑘!, in the sense that

P(𝚪𝑥+𝑘 = 𝚪̄𝑥+𝑘 | 𝚪𝑥 ≠ 𝚪̄𝑥) ≥ 1
(2𝑘)𝑘−1𝑘!

for all 𝑥 ≥ 0. (77)

Then the claim (76) follows since

P(𝜏 > 𝑁𝑘) = P(𝚪𝑁 𝑘 ≠ 𝚪̄𝑁 𝑘 | 𝚪0 ≠ 𝚪̄0)P(𝚪0 ≠ 𝚪̄0) (78)

≤ P(𝚪0 ≠ 𝚪̄0)
𝑁∏
𝑖=1
P(𝚪𝑖𝑘 ≠ 𝚪̄𝑖𝑘 | 𝚪 (𝑖−1)𝑘 ≠ 𝚪̄ (𝑖−1)𝑘 ) (79)

≤ P(𝚪0 ≠ 𝚪̄0)
(
1 − 1

(2𝑘)𝑘−1𝑘!

)𝑁

. (80)

We begin with the following simple observation for a sufficient condition of meeting. Let X =
(𝑈𝑡 )𝑡≥1 be a sequence of i.i.d. Uniform([0, 1]) variables. Fix 𝑡 ≥ 1 and let 𝚪𝑥 = [𝑥1, · · · , 𝑥𝑘 ] and
𝚪̄𝑥 = [𝑥1, · · · , 𝑥𝑘 ] be arbitrary elements of C𝑘 . Superpose the two k-point configurations into a one
2𝑘-point configuration 0 ≤ 𝑦1 ≤ 𝑦2 ≤ · · · ≤ 𝑦2𝑘 ≤ 1. For a special case, suppose 𝑦2𝑘 < 1. Observe that
on the event {𝑦2𝑘 < 𝑈𝑡+𝑘 < · · · < 𝑈𝑡+1 ≤ 1}, we have

𝚪𝑥+𝑘 = [𝑈𝑡+1,𝑈𝑡+2, · · · ,𝑈𝑡+𝑘 ] = 𝚪̄𝑥+𝑘 , (81)

as all of the k points in 𝚪𝑥 and 𝚪𝑥 will be successively annihilated from the largest to the smallest by
inserting 𝑈𝑡+1, · · · ,𝑈𝑡+𝑘 .

For the general case, regard each𝑈𝑠 as a uniformly chosen point from the unit circle 𝑆1. Then the 2𝑘
points 𝑦1, · · · , 𝑦2𝑘 will divide 𝑆1 into disjoint arcs of lengths, say, ℓ1, · · · , ℓ𝑚, for some 2 ≤ 𝑚 ≤ 2𝑘 .
If the points 𝑈𝑡+1, · · · ,𝑈𝑡+𝑘 are strictly decreasing in the counterclockwise order within one of the m

https://doi.org/10.1017/fms.2024.74 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.74


Forum of Mathematics, Sigma 23

arcs, then by circular symmetry and a similar observation, we will have 𝚪𝑥+𝑘 = 𝚪̄𝑥+𝑘 . Noting that

P

(
𝑈𝑡+1, · · · ,𝑈𝑡+𝑘 are strictly decreasing in the

counterclockwise order within an arc of length ℓ

)
=
ℓ𝑘

𝑘!
(82)

and ℓ1 + · · · + ℓ𝑚 = 1, Hölder’s inequality yields

P
(
𝚪𝑥+𝑘 = 𝚪̄𝑥+𝑘 | 𝚪𝑥 = [𝑥1, · · · , 𝑥𝑘 ], 𝚪̄𝑥 = [𝑥1, · · · , 𝑥𝑘 ]

)
(83)

≥
𝑚∑
𝑖=1

ℓ𝑘𝑖
𝑘!

≥ 1
𝑘!

(ℓ1 + · · · + ℓ𝑚)𝑘

𝑚𝑘−1 =
1

𝑚𝑘−1𝑘!
≥ 1

(2𝑘)𝑘−1𝑘!
.

This shows the assertion. �

Lastly in this section, we prove Proposition 4.2.

Proof of Proposition 4.2. We show 𝜋 is a stationary distribution for the Markov chain (𝚪𝑠)𝑠≥0. Let
𝑋(1) < 𝑋(2) < · · · < 𝑋(𝑘) be the order statistics from k i.i.d. uniform RVs on [0, 1]. Let Y be an
independent Uniform([0, 1]) random variable. After a new point Y is inserted to the preexisting list of
k points 𝑋(1) < 𝑋(2) < · · · < 𝑋(𝑘) , the updated list of points will be

𝑋(1) < · · · < 𝑋(𝐼−1) < 𝑌 < 𝑋(𝐼+1) < · · · < 𝑋(𝑘) , (84)

where 𝐼 ∈ {1, 2, · · · , 𝑘} is the random index such that 𝑌 ∈ (𝑋(𝐼 ) , 𝑋(𝐼+1) ). For 𝐼 = 𝑘 , the interval
(𝑋(𝑘) , 𝑋(𝑘+1) ) denotes the union of (0, 𝑋(1) ) and (𝑋(𝑘) , 1). In this case, the point 𝑋(𝑘) is deleted and Y
is added as the smallest or largest point depending on which sub-intervals it falls.

We claim that (84) is still the order statistics from k i.i.d. uniforms on [0, 1], which would prove that
the distribution of k i.i.d. uniform points remains invariant under the transition rule. To show this, take
a bounded test function 𝑓 : [0, 1]𝑘 → R. First, we write

E
[
𝑓 (𝑋(1) , · · · , 𝑋(𝐼−1) , 𝑌 , 𝑋(𝐼+1) , · · · , 𝑋(𝑘) )

]
(85)

=
𝑘∑

𝑖=1
E[ 𝑓 (𝑋(1) , · · · , 𝑋(𝑖−1) , 𝑌 , 𝑋(𝑖+1) , · · · , 𝑋(𝑘) )1𝑌 ∈(𝑋(𝑖) ,𝑋(𝑖+1) ) ] (86)

=
𝑘−1∑
𝑖=1

1
𝑘!

∫
𝑧1< · · ·<𝑧𝑖<𝑦<𝑧𝑖+1< · · ·<𝑧𝑘

𝑓 (𝑧1, · · · , 𝑧𝑖−1, 𝑦, 𝑧𝑖+1, · · · , 𝑧𝑘 ) 𝑑𝑧1 · · · 𝑑𝑧𝑘𝑑𝑦 (87)

+ 1
𝑘!

∫
𝑧1< · · ·<𝑧𝑘<𝑦

𝑓 (𝑧1, · · · , 𝑧𝑘−1, 𝑦) 𝑑𝑧1 · · · 𝑑𝑧𝑘𝑑𝑦 (88)

+ 1
𝑘!

∫
𝑦<𝑧1< · · ·<𝑧𝑘

𝑓 (𝑦, 𝑧1, · · · , 𝑧𝑘−1) 𝑑𝑧1 · · · 𝑑𝑧𝑘𝑑𝑦. (89)

Integrating out 𝑧𝑖 and denoting 𝑧0 := 0,

=
𝑘−1∑
𝑖=1

1
𝑘!

∫
𝑧1< · · ·<𝑧𝑖−1<𝑦<𝑧𝑖+1< · · ·<𝑧𝑘

𝑓 (𝑧1, · · · , 𝑧𝑖−1, 𝑦, 𝑧𝑖+1, · · · , 𝑧𝑘 ) (𝑦 − 𝑧𝑖−1) (90)

𝑑𝑧1 · · · 𝑧𝑖−1𝑧𝑖+1 · · · 𝑑𝑧𝑘𝑑𝑦 (91)

+ 1
𝑘!

∫
𝑧1< · · ·<𝑧𝑘−1<𝑦

𝑓 (𝑧1, · · · , 𝑧𝑘−1, 𝑦) (𝑦 − 𝑧𝑘−1) 𝑑𝑧1 · · · 𝑑𝑧𝑘−1𝑑𝑦 (92)

+ 1
𝑘!

∫
𝑦<𝑧1< · · ·<𝑧𝑘−1

𝑓 (𝑦, 𝑧1, · · · , 𝑧𝑘−1) (1 − 𝑧𝑘−1) 𝑑𝑧1 · · · 𝑑𝑧𝑘−1𝑑𝑦. (93)
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We then rename y as 𝑧𝑖 for the first integral above and as 𝑧𝑘 for the second integral above. For the
last integral, we rename y as 𝑧1 and 𝑧𝑖 as 𝑧𝑖+1 for 𝑖 = 1, . . . , 𝑘 − 1. This gives

=
1
𝑘!

∫
𝑧1< · · ·<𝑧𝑘

𝑓 (𝑧1, · · · , 𝑧𝑘 )
[
(1 − 𝑧𝑘 ) +

(
𝑘−1∑
𝑖=1

𝑧𝑖 − 𝑧𝑖−1

)
+ (𝑧𝑘 − 𝑧𝑘−1)

]
𝑑𝑧1 · · · 𝑑𝑧𝑘 (94)

= E
[
𝑓 (𝑋(1) , · · · , 𝑋(𝐼−1) , 𝑋(𝐼 ) , 𝑋(𝐼+1) , · · · , 𝑋(𝑘) )

]
. (95)

This shows the assertion. �

5. Proof of Theorem 2.3(i)

We prove Theorem 2.3 (i) in this section. Recall the probability distribution 𝜋 in (9). We assume
𝑝0 > 𝑝∗ := max(𝑝1, . . . , 𝑝𝜅 ) in the following proof.

Proof of Theorem 2.3 (i). We first show the irreducibility and aperiodicity of the chain 𝑊𝑥 . For its
irreducibility, fix x, y ∈ B∞ and write y = [𝑦1, 𝑦2, · · · ]. Since all elements of B∞ have finite support,
there exists an integer 𝑚 ≥ 1 such that x(𝑖) ≡ 0 and y(𝑖) ≡ 0 for all 𝑖 ≥ 𝑚. Then note that

P(Γ𝑥+2𝑚 = y | Γ𝑥 = x) (96)
≥ P

(
𝜉p(𝑥 + 1) = 0, · · · , 𝜉p (𝑥 + 𝑚) = 0, 𝜉p (𝑥 + 𝑚 + 1) = 𝑦1, · · · , 𝜉p(𝑥 + 2𝑚) = 𝑦𝑚

)
(97)

= 𝑝𝑚
0 𝑝𝑦1 · · · 𝑝𝑦𝑚 > 0. (98)

Since x, y ∈ B∞ were arbitrary, this shows the Markov chain 𝑊𝑥 is also irreducible. Then for its
aperiodicity, it is enough to observe that

P
(
Γ𝑥+1 = [0, 0, · · · ] | Γ𝑥 = [0, 0, · · · ]

)
= 𝑝0 > 0. (99)

Next, we show that 𝜋 is a stationary distribution for (𝑊𝑥)𝑡≥0. The uniqueness of stationary distribution
and convergence in total variation distance will then follow from general results of countable state space
Markov chain theory (see, for example, [LP17, Thm. 21.13 and Thm. 21.16]). We work with the original
carrier process Γ𝑥 . For each x ∈ B∞ and 𝑖 ∈ {0, 1, · · · , 𝜅}, denote

exp(wt(x)) =
𝜅∏

𝑖=1

(
𝑝𝑖

𝑝0

)𝑚𝑖 (x)
, exp(wt(𝑖)) = 𝑝𝑖 . (100)

Recall the definition of the map Ψ : B∞ × {0, 1, · · · , 𝜅} → {0, 1, · · · , 𝜅} × B∞ given in Section
3.1. Note that for each pair (x, 𝑦) ∈ B∞ × {0, 1, · · · , 𝜅} and (𝑦′, x′) ∈ {0, 1, · · · , 𝜅} × B∞ such that
Ψ(x, 𝑦) = (𝑦′, x′), 𝑦′ = 𝑦′(x, 𝑦), we have

exp(wt(x)) exp(wt(𝑦)) = 𝑝𝑦 𝑝
−‖x‖1
0

𝜅∏
𝑖=1

𝑝𝑚𝑖 (x)
𝑖 (101)

= 𝑝𝑦′ 𝑝−‖x′ ‖1
0

𝜅∏
𝑖=1

𝑝𝑚𝑖 (x′)
𝑖 = exp(wt(𝑦′)) exp(wt(x′)). (102)

Indeed, the total number of each letter 1 ≤ 𝑖 ≤ 𝜅 in both pairs (x, 𝑦) and (𝑦′, x′) is the same. So if
𝑦′ ≥ 1, then some ball of positive color in x is replaced by a ball of positive color 𝑦′, so ‖x‖1 = ‖x′‖1
and the above identity holds. If 𝑦′ = 0 and 𝑦 ≥ 1, then x′ has one more ball of color y than x does, so
the above identity holds; if 𝑦′ = 𝑦 = 0, then both x′ and x do not contain any ball of positive color, so
the above identity holds.
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Now, observe that for each fixed x′ ∈ B∞, Ψ gives a bijection between {0, 1, · · · , 𝜅} × {x′} and its
inverse image under Ψ. If we denote the second coordinate of Ψ by Ψ2, then this yields∑

(x,𝑦) ∈B∞×{0,1, · · · ,𝜅 }
Ψ2 (x,𝑦)=x′

exp(wt(x)) exp(wt(𝑦)) =
∑

(x,𝑦) ∈B∞×{0,1, · · · ,𝜅 }
Ψ2 (x,𝑦)=x′

exp(wt(𝑦′(x, 𝑦))) exp(wt(x′)) (103)

= exp(wt(x′))
∑

𝑦′ ∈{0,1, · · · ,𝜅 }
exp(wt(𝑦′)) (104)

= exp(wt(x′)). (105)

Dividing both sides by∑
x∈B∞

exp(wt(x)) =
∞∑

𝑛1=0
· · ·

∞∑
𝑛𝜅=0

𝜅∏
𝑖=1

(
𝑝𝑖

𝑝0

)𝑛𝑖

=
𝜅∏

𝑖=1

(
1 − 𝑝𝑖

𝑝0

)−1
> 0, (106)

we get ∑
(x,𝑖) ∈B∞×{0,1, · · · ,𝜅 }

Ψ2 (x,𝑖)=x′

𝜋(𝑚1 (x), · · · , 𝑚𝜅 (x))𝑝𝑖 = 𝜋(𝑚1 (x′), · · · , 𝑚𝜅 (x′)). (107)

This shows that 𝜋 is a stationary distribution of the Markov chain (𝑊𝑥)𝑥≥0, as desired.
Lastly, positive recurrence follows from the irreducibility and the existence of stationary distribution

[LP17, Thm. 21.13]. Convergence of the distribution of 𝑊𝑥 to the stationary distribution in total
variation distance then follows from the irreducibility, aperiodicity and positive recurrence (see [LP17,
Thm. 21.16]). �

Remark 5.1. The statement and the proof of Theorem 2.3 (i) are reminiscent of [KL20, Thm. 1],
where the authors show that for all p = (𝑝0, · · · , 𝑝𝜅 ), the (finite) capacity-c carrier process over 𝜉p is
irreducible with unique stationary distribution

𝜋𝑐 (x) =
1
𝑍𝑐

𝜅∏
𝑖=0

𝑝𝑚𝑖 (x)
𝑖 , x ∈ B∞, (108)

where 𝑍𝑐 denotes the partition function. In fact, their result applies to more general finite-capacity
carriers whose state space is the set 𝐵 (𝑎)

𝑐 (𝜅) of all semistandard tableaux of rectangular shape (𝑐 × 𝑎)
with letters from {0, 1, · · · , 𝜅}. In this general case, the partition function 𝑍𝑐 = 𝑍 (𝑎)

𝑐 (𝜅, p) is identified
with the Schur polynomial associated with the (𝑎 × 𝑐) Young tableau with constant entries c and
parameters 𝑝0, 𝑝1, · · · , 𝑝𝜅 .

6. The Skorohkod decomposition of the carrier process

In this section, we develop the Skorohkod decomposition of the carrier process, which we briefly
mentioned in the introduction. The idea is to write the carrier process, which is confined in the
nonnegative integer orthant Z𝜅

≥0, as the sum of a less confined process and a boundary correction.
Namely, let (𝑊𝑥)𝑥≥0 be the carrier process over an arbitrary ball configuration 𝜉 as in (8). We seek for
the following decomposition

𝑊𝑥 = 𝑋𝑥 + 𝑅𝑌𝑥 for 𝑥 ≥ 0, (109)

where
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Figure 8. Illustration of the original circular exclusion rule (left) and its decoupled version (right) for
𝜅 = 7 and ball density p = (.1, .1, .25, .05, .15, .2, .1, .05). We take the set of exceptional colors C𝑒

to be the set of unstable colors Cp
𝑢 = {2, 5, 6}. For instance, in the decoupled carrier process, inserting

new balls of color 5 into the carrier only excludes existing balls of colors 2, 3 and 4.

1. (𝑋𝑥)𝑥≥0 is the ‘decoupled carrier process’, which is a version of the carrier process that allows the
number of balls of certain ‘exceptional colors’ to be negative;

2. 𝑅 = tridiag𝜅 (0, 1,−1) is the 𝜅 × 𝜅 ‘reflection matrix’ (see (118));
3. (𝑌𝑥)𝑥≥0 is the ‘pushing process’: 𝑌0 = 0 and for each 𝑖 ∈ {1, . . . , 𝜅}, the ith coordinate of 𝑌𝑥 is

nondecreasing in x and can only increase when 𝑊𝑥 (𝑖) = 0.

We will first introduce the decoupled carrier process (𝑋𝑥)𝑥≥0 in Section 6.1 and establish its basic
properties in Proposition 6.2. In Section 6.2, we will introduce the reflection matrix R and the pushing
process (𝑌𝑥)𝑥≥0 and verify the Skorohkod decomposition (109) in Lemma 6.3. All results in this section
are for a deterministic ball configuration 𝜉.

6.1. Definition of the decoupled carrier process

In this section, we introduce a ‘decoupled version’ of the carrier process𝑊𝑥 in (8), which will be critical
in proving Theorem 2.3 (ii) as well as Theorems 2.6–2.7.

To illustrate the idea, consider the carrier process 𝑊𝑥 with 𝜅 = 2 as in Figure 1. While the transition
kernel for this Markov chain depends on whether it is in the interior or at the boundary of the state space
Z2

≥0, we may consider a similar Markov chain on the entire integer lattice Z2 that only uses the kernel in
the interior, by allowing the counts of color 1 and 2 balls in𝑊𝑥 to be negative. In the general construction
of decoupled carrier processes, we will allow the freedom to choose positive colors 𝛼1 < · · · < 𝛼𝑟 in
{1, . . . , 𝜅} whose count can be negative. Recall that inserting a ball of color i to the carrier 𝑊𝑛 will
exclude the largest color 𝑖∗ in 𝑊𝑛 that is less than i. In the decoupled carrier process, the color wheel
Z𝜅+1 is divided into intervals [0, 𝛼1], [𝛼1, 𝛼2], . . . , [𝛼𝑟 , 𝜅], and inserting a color i in (𝛼 𝑗 , 𝛼 𝑗+1] can only
exclude a color in the interval [𝛼 𝑗 , 𝛼 𝑗+1]. Hence, the interaction between colors in distinct intervals is
‘decoupled’. See Figure 8 for an illustration.

Definition 6.1 (Decoupled carrier process). Let 𝜉 := (𝜉𝑥)𝑥∈N be 𝜅-color ball configuration and fix a set
C𝑒 ⊆ {1, . . . , 𝜅} of ‘exceptional colors’. Let

Ω := {(𝑥1, . . . , 𝑥𝜅 ) ∈ Z𝜅 : 𝑥𝑖 ≥ 0 if 𝑖 ∉ C𝑒}. (110)

The decoupled carrier process over 𝜉 associated with C𝑒 is a process (𝑋𝑥)𝑥∈N on the state space Ω
defined as follows. If C𝑒 = ∅, then we take 𝑋𝑥 ≡ 𝑊𝑥 , where 𝑊𝑥 is the carrier process in (8). Suppose
C𝑒 = {𝛼1, . . . , 𝛼𝑟 } for some 𝑟 ≥ 1 with 𝛼1 < · · · < 𝛼𝑟 . Denote 𝛼𝑟+1 := 𝜅+1. Having defined 𝑋1, . . . , 𝑋𝑥 ,
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denote 𝑖 := 𝜉𝑥+1 if 𝜉𝑥+1 ∈ {1, . . . , 𝜅} and 𝑖 := 𝜅 + 1 if 𝜉𝑥+1 = 0. Then

𝑋𝑥+1 − 𝑋𝑥 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e𝑖 − 1(𝑖∗ ≠ 0) e𝑖∗ if 1 ≤ 𝑖 ≤ 𝛼1

e𝑖 − e𝑖′ if 𝛼1 < 𝑖 ≤ 𝜅

−e𝑖′ if 𝑖 = 𝜅 + 1,
(111)

where 𝑖∗ := sup{ 𝑗 : 1 ≤ 𝑗 < 𝑖, 𝑋𝑥 ( 𝑗) ≥ 1} (with the convention sup ∅ = 0) and

𝑖′ :=

{
𝛼 𝑗 if 𝛼 𝑗 < 𝑖 ≤ 𝛼 𝑗+1 and 𝑋𝑥 (𝛼 𝑗 ) = · · · = 𝑋𝑥 (𝑖 − 1) ≤ 0
𝑞 if 𝛼 𝑗 < 𝑞 < 𝑖 ≤ 𝛼 𝑗+1 and 𝑋𝑥 (𝑞) ≥ 1, 𝑋𝑥 (𝑞 + 1) = · · · = 𝑋𝑥 (𝑖 − 1) = 0.

(112)

Unless otherwise mentioned, we take 𝑋0 = 0 and 𝜉 = 𝜉p with density p = (𝑝0, . . . , 𝑝𝜅 ).

It is helpful to compare the recursion (111) for the decoupled carrier process to that of the carrier
process in (8). Notice that in (8), inserting i into 𝑊𝑥 can decrease by one at coordinate 𝑖∗ only when
𝑊𝑥 (𝑖∗) ≥ 1. Hence,𝑊𝑥 is confined in the nonnegative orthant Z𝜅

≥0. In comparison, when a ball of color
i is inserted to the decoupled carrier 𝑋𝑥 , it decreases by one at coordinate, say ℓ ∈ {𝑖′, 𝑖∗}. If ℓ ∉ C𝑒,
then the above construction ensures that 𝑋𝑥 (ℓ) ≥ 1. From this, one can observe that 𝑋𝑥 ( 𝑗) ≥ 0 for
all 𝑥 ≥ 0 whenever 𝑗 ∉ C𝑒. In contrast, if ℓ ∈ C𝑒, then 𝑋𝑥+1(ℓ) = 𝑋𝑥 (ℓ) − 1 regardless of whether
𝑋𝑥 (ℓ) ≥ 1. Hence, 𝑋𝑥 can take negative values on the exceptional colors. We call the recursion in (111)
as the ‘decoupled circular exclusion’.

In the proposition below, we establish a basic coupling result between the carrier and the decouple
carrier processes. For its proof, we will introduce the following notation. Define the following function
𝑓𝑊 : Z𝜅

≥0 × {0, . . . , 𝜅} → {0, . . . , 𝜅} as

𝑓𝑊 (w, 𝑦) :=

{
0 if [𝑊0 = w and 𝜉1 = 𝑦 =⇒ 𝑊1 −𝑊0 = e𝑦]
𝑗 if [𝑊0 = w and 𝜉1 = 𝑦 =⇒ 𝑊1 −𝑊0 = e𝑦 − e 𝑗 or − e 𝑗 ] .

(113)

Roughly speaking, if 𝑓𝑊 (w, 𝑦) = 𝑗 , then j is the color of the ball that is excluded when a ball of
color y is inserted into the carrier of state w. The circular exclusion rule says 𝑓𝑊 (w, 𝑦) = sup{𝑖 :
1 ≤ 𝑖 < 𝑦, w(𝑖) ≥ 1} with the convention 𝜅 + 1 ≡ 0 and sup ∅ = 0. Similarly, define a function
𝑓𝑋 : Ω × {0, . . . , 𝜅} → {0, . . . , 𝜅} as

𝑓𝑋 (w, 𝑦) :=

{
0 if [𝑋0 = w and 𝜉1 = 𝑦 =⇒ 𝑋1 − 𝑋0 = e𝑦]
𝑗 if [𝑋0 = w and 𝜉1 = 𝑦 =⇒ 𝑋1 − 𝑋0 = e𝑦 − e 𝑗 or − e 𝑗 ] .

(114)

Intuitively, if 𝑓𝑋 (w, 𝑦) = 𝑗 , then j is the color of the ball that is excluded when a ball of color y is
inserted into the decoupled carrier of state w.

For each 𝑥 ∈ N, define 𝑋̂𝑥 ∈ Z𝜅
≥0 by

𝑋̂𝑥 (𝑖) := 𝑋𝑥 (𝑖) − min
0≤𝑠≤𝑥

𝑋𝑠 (𝑖) for all 𝑖 = 1, . . . , 𝜅. (115)

Note that 𝑋̂𝑥 (𝑖) ≥ max(0, 𝑋𝑥 (𝑖)) for all i by definition and 𝑋0 = 0. Also, 𝑋̂𝑥 (𝑖) ≡ 𝑋𝑥 (𝑖) for all 𝑖 ∉ C𝑒

since 𝑋𝑥 (𝑖) ≥ 0 for all 𝑥 ∈ N and all 𝑖 ∉ C𝑒.

Proposition 6.2 (Basic coupling between the carrier and the decoupled carrier processes). Let (𝑊𝑥)𝑥≥0
be the carrier process in (8) and let (𝑋𝑥)𝑥≥0 be the decoupled carrier process in (111) associated with
C𝑒 = {𝛼1, . . . , 𝛼𝑟 } for some 𝑟 ≥ 1. Suppose these two processes evolve over the same ball configuration
𝜉 and 𝑊0 = 𝑋0 = 0 ∈ Z𝜅

≥0. Then the following hold.
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(i) 𝑊𝑥 (𝑖) = 𝑋𝑥 (𝑖) for all 𝛼𝑟 < 𝑖 ≤ 𝜅 and 𝑥 ≥ 0. Furthermore,

𝑊𝑥 (𝛼𝑟 ) = 𝑋𝑥 (𝛼𝑟 ) if 𝑋1(𝛼𝑟 ), . . . , 𝑋𝑥−1 (𝛼𝑟 ) ≥ 1. (116)

(ii) 𝑊𝑥 (𝑖) ≤ 𝑋̂𝑥 (𝑖) for all 1 ≤ 𝑖 ≤ 𝜅 and 𝑥 ≥ 0. Furthermore, for each 𝑥 ≥ 0, denoting 𝑦 := 𝜉𝑥+1 if
𝜉𝑥+1 ∈ {1, . . . , 𝜅} and 𝑦 := 𝜅 + 1 if 𝜉𝑥+1 = 0,

𝑓𝑊 (𝑊𝑥 , 𝜉𝑥+1) ≤ 𝑓𝑋 (𝑋𝑥 , 𝜉𝑥+1) < 𝑦. (117)

Proof. In this proof, we denote 𝑦𝑋 := 𝑓𝑋 (𝑋𝑥 , 𝜉𝑥+1) and 𝑦𝑊 := 𝑓𝑊 (𝑊𝑥 , 𝑦). Note that 𝑦𝑊 , 𝑦𝑋 ∈ [0, 𝜉𝑥+1)
(recall that sup ∅ = 0).

The second part of (i) follows from the first part of (i) and definition. Now we show the first part
of (i) by induction on 𝑥 ≥ 0. For 𝑥 = 0, we have 𝑊0 = 𝑋0 = 0. Denote ℓ := 𝛼𝑟 and suppose
𝑊𝑥 (𝑖) = 𝑋𝑥 (𝑖) for all ℓ < 𝑖 ≤ 𝜅 for some 𝑥 ≥ 0. If 𝑦 ≤ ℓ, then inserting a ball of color y into
the carrier 𝑊𝑥 and the decoupled carrier 𝑋𝑥 does not affect their state for colors strictly larger than
ℓ. Hence, 𝑊𝑥+1(𝑖) = 𝑊𝑥 (𝑖) = 𝑋𝑥 (𝑖) = 𝑋𝑥+1(𝑖) for all ℓ < 𝑖 ≤ 𝜅. So suppose 𝑦 > ℓ. In this case,
𝑦𝑊 = sup{1 ≤ 𝑗 < 𝑦 : 𝑊𝑥 ( 𝑗) ≥ 1} and 𝑦𝑋 = max{ℓ, sup{1 ≤ 𝑗 < 𝑦 : 𝑋𝑥 ( 𝑗) ≥ 1}}. Note that 𝑊𝑥+1
is obtained from 𝑊𝑥 by increasing its value on color y by one and decreasing its value on color 𝑦𝑊 by
one. If 𝑦𝑊 > ℓ, then by the induction hypthesis, 𝑦𝑊 = 𝑦𝑋 , so 𝑋𝑥+1 is obtained from 𝑋𝑥 |(ℓ,𝜅 ] = 𝑊𝑥 |(ℓ,𝜅 ]
by the same way, so 𝑋𝑥+1 |(ℓ,𝜅 ] = 𝑊𝑥+1 |(ℓ,𝜅 ] . Otherwise, suppose 𝑦𝑊 ≤ ℓ. Then 𝑋𝑥+1 is obtained from
𝑋𝑥 |(ℓ,𝜅 ] = 𝑊𝑥 |(ℓ,𝜅 ] by increasing its value on color y by one and decreasing its value on color ℓ by one.
Hence, 𝑊𝑥+1 |(ℓ,𝜅 ] = 𝑋𝑥+1 |(ℓ,𝜅 ] , as desired.

Now we prove (ii) by an induction on 𝑥 ≥ 0. The base step when 𝑥 = 0 follows by definition
(𝑊0 = 𝑋̂0 = 𝑋̂ = 0 and 0 = 𝑦𝑊 ≤ 𝑦𝑋 < 𝑦). For the induction step, suppose𝑊𝑥 ≤ 𝑋̂𝑥 coordinatewise for
some 𝑥 ≥ 0. We first show that 𝑦𝑊 ≤ 𝑦𝑋 < 𝑦. That 𝑦𝑋 < 𝑦 follows from the definition (111). To show
𝑦𝑊 ≤ 𝑦𝑋 , we assume 𝑦𝑊 ≥ 1 since otherwise the claim holds trivially. Since a ball of color 𝑦𝑊 ≥ 1
is excluded from the carrier 𝑊𝑥 , we have 𝑊𝑥 (𝑦𝑊 ) ≥ 1. If 𝑦𝑊 ∉ C𝑒, then by the induction hypothesis,
1 ≤ 𝑊𝑥 (𝑦𝑊 ) ≤ 𝑋𝑥 (𝑦𝑊 ), so it follows that 𝑦𝑊 ≤ 𝑦𝑋 . Otherwise, suppose 𝑦𝑊 ∈ C𝑒. Then since 𝑦𝑋 is
at least the largest exceptional color that is < 𝑦, it follows that 𝑦𝑊 ≤ 𝑦𝑋 , as desired.

It remains to show 𝑊𝑥+1 ≤ 𝑋̂𝑥+1 coordinatewise. First suppose 𝑦𝑊 = 0. Then 𝑊𝑥 (1) = · · · =
𝑊𝑥 (𝑦−1) = 0, so𝑊𝑥+1 (1) = · · · = 𝑊𝑥+1 (𝑦−1) = 0 and𝑊𝑥+1−𝑊𝑥 = e𝑦 . Hence,𝑊𝑥+1(𝑖) = 0 ≤ 𝑋̂𝑥+1 (𝑦)
for all 1 ≤ 𝑖 < 𝑦. Noting that 𝑋𝑥+1(𝑦) = 𝑋𝑥 (𝑦) + 1, by definition, we have 𝑋̂𝑥+1(𝑦) = 𝑋̂𝑥 (𝑦) + 1. Then
by the induction hypothesis, we have 𝑊𝑥+1 (𝑦) = 𝑊𝑥 (𝑦) + 1 ≤ 𝑋̂𝑥 (𝑦) + 1 = 𝑋̂𝑥+1 (𝑦). Furthermore,
𝑊𝑥+1 (𝑖) = 𝑊𝑥 (𝑖) ≤ 𝑋̂𝑥 (𝑖) = 𝑋̂𝑥+1 (𝑖) for all 𝑦 < 𝑖 ≤ 𝜅, where the middle inequality is from the
induction hypothesis and the equalities are from the definition. Thus, we have shown that 𝑊𝑥+1 ≤ 𝑋̂𝑥+1
coordinatewise.

Lastly, we suppose 𝑦𝑊 ≥ 1 and show 𝑊𝑥+1 ≤ 𝑋̂𝑥+1 coordinatewise. Then 1 ≤ 𝑦𝑊 ≤ 𝑦𝑋 < 𝑦,
𝑊𝑥+1 − 𝑊𝑥 = e𝑦 − e𝑦𝑊 and 𝑋𝑥+1 − 𝑋𝑥 = e𝑦 − e𝑦𝑋 . By the induction hypothesis and the definition,
we only need to verify 𝑊𝑥+1(𝑦𝑋 ) ≤ 𝑋̂𝑥+1 (𝑦𝑋 ). This holds when 𝑦𝑊 = 𝑦𝑋 since then 𝑊𝑥+1 (𝑦𝑋 ) =
𝑊𝑥 (𝑦𝑋 ) − 1 ≤ 𝑋̂𝑥 (𝑦𝑋 ) − 1 ≤ 𝑋̂𝑥+1 (𝑦𝑋 ). So we may assume 𝑦𝑊 < 𝑦𝑋 . By definition of 𝑦𝑊 , we have
𝑊𝑥 (𝑦𝑊 + 1) = · · · = 𝑊𝑥 (𝑦 − 1) = 0, and so𝑊𝑥+1 (𝑦𝑊 + 1) = · · · = 𝑊𝑥+1 (𝑦 − 1) = 0. Then by definition,
𝑊𝑥+1 (𝑦𝑋 ) = 0 ≤ 𝑋̂𝑥+1(𝑦𝑋 ). This completes the induction. �

6.2. Proof of the Skorokhod decomposition of the carrier process

Now we give an explicit construction of the Skorokhod decomposition of (𝑊𝑥)𝑥≥0. First, let R be the
𝜅 × 𝜅 tridiagonal matrix with 0 on the subdiagonal, 1 on the main diagonal and -1 on the superdiagonal
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entries:

𝑅 := tridiag𝜅 (0, 1,−1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0
0 1 −1 0
...

. . .

0 · · · 0 1 −1
0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝐼 −𝑄, (118)

where I is the 𝜅 × 𝜅 identity matrix and 𝑄 = 𝐼 − 𝑅. Notice that the spectral radius of Q is zero for all
𝜅 ≥ 2 being an upper triangular matrix with zero diagonal entries. The above reflection matrix also has
the property of being ‘completely-S’; see Definition 10.2 and the proof of Theorem 2.5 for justification.

Next, we define the pushing process (𝑌𝑥)𝑥≥0 on Z𝜅
≥0 recursively as follows: Set 𝑌0 = 0. Having

defined 𝑌𝑥 , denoting 𝑦𝑊 := 𝑓𝑊 (𝑊𝑥 , 𝜉𝑥+1) (see (113)) and 𝑦𝑋 := 𝑓𝑋 (𝑋𝑥 , 𝜉𝑥+1) (see (114)), define

𝑌𝑥+1 − 𝑌𝑥 :=

{
0 if 𝑦𝑊 = 𝑦𝑋

e𝑦𝑊 +1 + · · · + e𝑦𝑋 if 𝑦𝑊 < 𝑦𝑋 .
(119)

Note that (119) covers all cases since 𝑦𝑊 ≤ 𝑦𝑋 due to Proposition 6.2. From the definition, it is clear
that every coordinate of 𝑌𝑥 is nondecreasing. Also, clearly, 𝑌𝑥 is determined by the first x ball colors
𝜉1, . . . , 𝜉𝑥 .
Lemma 6.3 (Skorokhod decomposition of the carrier process). Let 𝑊𝑥 , 𝑋𝑥 , R and 𝑌𝑥 as before. Then
(i) 𝑊𝑥 = 𝑋𝑥 + 𝑅𝑌𝑥 for all 𝑥 ≥ 0;
(ii) 𝑌0 = 0 and for each 𝑖 ∈ {1, . . . , 𝜅}, the ith coordinate of 𝑌𝑥 is nondecreasing in x and can only

increase when 𝑊𝑥 (𝑖) = 0; that is,
∑

𝑥≥0 1(𝑊𝑥 (𝑖) ≥ 1) (𝑌𝑥+1 (𝑖) − 𝑌𝑥 (𝑖)) = 0.
Proof. Let 𝑦 := 𝜉𝑥+1 if 𝜉𝑥+1 ≠ 0 and 𝑦 := 𝜅 + 1 if 𝜉𝑥+1 = 0. Also let 𝑦𝑊 := 𝑓𝑊 (𝑊𝑥 , 𝜉𝑥+1) and
𝑦𝑋 := 𝑓𝑋 (𝑋𝑥 , 𝜉𝑥+1) (see (113) and (114)). We first show (ii). According to (117) in Proposition 6.2, we
have 𝑦𝑊 ≤ 𝑦𝑋 < 𝑦. Also, by the definition of 𝑦𝑊 , we have𝑊𝑥 (𝑦𝑊 + 1) = · · · = 𝑊𝑥 (𝑦 − 1) = 0. Hence,
if 𝑌𝑥+1 (𝑖) − 𝑌𝑥 (𝑖) > 0, then 𝑖 ∈ {𝑦𝑊 + 1, . . . , 𝑦 − 1}, and hence, 𝑊𝑥 (𝑖) = 0. This shows (ii).

Next, we show (i) by induction on 𝑥 ≥ 0. It holds trivially when 𝑥 = 0, so suppose for the induction
step that it holds for some 𝑥 ≥ 0. We wish to show that

𝑊𝑥+1 = 𝑋𝑥+1 + 𝑅𝑌𝑥+1. (120)

From (113)–(114), note that

(𝑊𝑥+1 −𝑊𝑥) − (𝑋𝑥+1 − 𝑋𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 𝑦𝑊 = 𝑦𝑋

e𝑦𝑋 − e𝑦𝑊 if 1 ≤ 𝑦𝑊 < 𝑦𝑋

e𝑦𝑋 if 0 = 𝑦𝑊 < 𝑦𝑋 .

(121)

If 𝑦𝑊 = 𝑦𝑋 , then 𝑅(𝑌𝑥+1 − 𝑌𝑥) = 0, so (120) holds by the induction hypothesis. Next, suppose
1 ≤ 𝑦𝑊 < 𝑦𝑋 . Note that

𝑅(𝑌𝑥+1 − 𝑌𝑥) = 𝑅(e𝑦𝑊 +1 + · · · + e𝑦𝑋 ) (122)
= (e𝑦𝑊 +1 − e𝑦𝑊 ) + (e𝑦𝑊 +2 − e𝑦𝑊 +1) + · · · + (e𝑦𝑋 − e𝑦𝑋−1) (123)
= e𝑦𝑋 − e𝑦𝑊 . (124)

Lastly, suppose 0 = 𝑦𝑊 < 𝑦𝑋 . Then

𝑅(𝑌𝑥+1 − 𝑌𝑥) = 𝑅(e1 + · · · + e𝑦𝑋 ) (125)
= e1 + (e2 − e1) + (e3 − e2) + · · · + (e𝑦𝑋 − e𝑦𝑋−1) = e𝑦𝑋 . (126)

Hence, in all cases, the induction step holds by the induction hypothesis, (121) and (119). �
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7. Probabilistic analysis of the decoupled carrier process

In the previous section, we defined the decoupled carrier process (𝑋𝑥)𝑥≥0 associated with an arbitrary
set C𝑒 = {𝛼1, . . . , 𝛼𝑟 } ⊆ {1, . . . , 𝜅} of exceptional colors over a deterministic ball configuration 𝜉. In this
section, we establish various important probabilistic results for the decoupled carrier process (𝑋𝑥)𝑥≥0
over the i.i.d. ball configuration 𝜉p with a particular choice of the associated set C𝑒 of exceptional colors.

7.1. Decomposition of the decoupled carrier process

Let p = (𝑝0, . . . , 𝑝𝜅 ) be the ball density at each site. We choose the set of exceptional colors C𝑒 so that
it satisfies the following ‘stability condition’:

For all 1 ≤ 𝑗 ≤ 𝑟, max{𝑝𝑖 : 𝛼 𝑗 < 𝑖 < 𝛼 𝑗+1} < 𝑝𝛼𝑗+1 , (127)

where we set 𝛼0 = 0 = 𝛼𝑟+1. Since balls of a nonexceptional color i in (𝛼 𝑗 , 𝛼 𝑗+1) can be excluded by
balls of color 𝛼 𝑗+1 in the decoupled carrier, the above condition ensures that (𝑋𝑥 (𝑖))𝑥≥0 do not blow
up. A canonical choice of such C𝑒 is the set of unstable colors Cp

𝑢 that we defined above the statement
of Theorem 2.5.

Define the following processes:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑋𝑥 := The decoupled carrier process over 𝜉 = 𝜉 𝑝 associated with C𝑒 satisfying (127)
𝑋𝑠

𝑥 := (1(𝑖 ∉ C𝑒) 𝑋𝑥 (𝑖) ; 𝑖 = 1, . . . , 𝜅) (⊲ The ‘stable part’ of 𝑋𝑥)
𝑋𝑢

𝑥 := (1(𝑖 ∈ C𝑒) 𝑋𝑥 (𝑖) ; 𝑖 = 1, . . . , 𝜅) (⊲ The ‘unstable part’ of 𝑋𝑥).
(128)

Namely, 𝑋𝑠
𝑥 (resp., 𝑋𝑢

𝑥 ) agrees with 𝑋𝑥 on the nonexceptional (resp., exceptional) colors but its coordi-
nates on exceptional (resp., nonexceptional) colors are zero. Clearly, we have the following decomposi-
tion:

𝑋𝑥 = 𝑋𝑠
𝑥 + 𝑋𝑢

𝑥 for all 𝑥 ≥ 0. (129)

In Lemma 7.1, we will show that (𝑋𝑠
𝑥)𝑥≥0 defines an irreducible Markov chain whose empirical

distribution converges to its unique stationary distribution 𝜋𝑠 defined as

𝜋𝑠 (𝑛1, . . . , 𝑛𝜅
)
=

∏
𝑗∈Cp

𝑢

1(𝑛 𝑗 = 0)
𝑟∏

𝑗=0

⎡⎢⎢⎢⎢⎣
∏

𝛼𝑗<𝑖<𝛼𝑗+1

(
1 − 𝑝𝑖

𝑝𝛼𝑗+1

) (
𝑝𝑖

𝑝𝛼𝑗+1

)𝑛𝑖
⎤⎥⎥⎥⎥⎦ , (130)

where we set 𝛼0 = 0 = 𝛼𝑟+1. Hence, the expression in the bracket above is a nondegenerate geometric
distribution. Thus, the above is the product of 𝜅 − 𝑟 geometric distributions, so it is indeed a probability
distribution on Ω𝑠 . Comparing (130) with (9), we see that the exceptional color 𝛼 𝑗+1 plays the role of
color 0 for the nonexceptional colors in the interval (𝛼 𝑗 , . . . , 𝛼 𝑗+1).

Lemma 7.1. Let (𝑋𝑠
𝑥)𝑥≥0 be the process defined in (128). Then it is an aperiodic Markov chain on the

state space Z𝜅
≥0 and has a unique communicating class with unique stationary distribution 𝜋𝑠 defined

in (130). Furthermore, if we denote the distribution of 𝑋𝑠
𝑥 by 𝜋𝑠

𝑥 , then

lim
𝑥→∞

𝑑𝑇 𝑉 (𝜋𝑠
𝑥 , 𝜋

𝑠) = 0. (131)

Proof. First we show (𝑋𝑠
𝑥)𝑥≥0 defines a Markov chain. Clearly, the full decoupled carrier process

(𝑋𝑥)𝑥≥0 over 𝜉 = 𝜉p defines a Markov chain on Z𝜅 . Hence, it is enough to show that 𝑋𝑠
𝑥+1 is determined

from 𝑋𝑠
𝑥 and 𝜉𝑥+1 for each 𝑥 ≥ 0. Fix 𝑥 ≥ 0 and denote 𝑦 := 𝜉𝑥+1. Fix a nonexceptional color i. Let j

be such that 𝛼 𝑗 < 𝑖 < 𝛼 𝑗+1. If 𝑦 ∉ [𝑖, 𝛼 𝑗+1], then 𝑋𝑠
𝑥+1 (𝑖) = 𝑋𝑠

𝑥 (𝑖). If 𝑦 = 𝑖, then 𝑋𝑠
𝑥+1 (𝑖) = 𝑋𝑠

𝑥 (𝑖) + 1.
If 𝑦 ∈ (𝑖, 𝛼 𝑗+1], then 𝑋𝑠

𝑥+1 (𝑖) − 𝑋𝑠
𝑥 (𝑖) = −1 if 𝑋𝑠

𝑥 (𝑖) ≥ 1 and 𝑋𝑠
𝑥 (𝑖 + 1) = · · · = 𝑋𝑠

𝑥 (𝛼 𝑗+1 − 1) = 0;
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otherwise, 𝑋𝑠
𝑥+1(𝑖) − 𝑋𝑠

𝑥 (𝑖) = 0. In all cases, 𝑋𝑠
𝑥+1 (𝑖) is determined by 𝑋𝑠

𝑥 and y. Since i was an arbitrary
nonexceptional color, this verifies that (𝑋𝑠

𝑥)𝑥≥0 is a Markov chain.
Next, let Ω𝑠 denote the subset of Z𝜅

≥0 consisting of all points whose coordinates on exceptional colors
are zeroed out. Clearly, (𝑋𝑠

𝑥)𝑥≥0 lives in Ω𝑠 . We show the irreducibility of the chain (𝑋𝑠
𝑥)𝑥≥0 on Ω𝑠 .

Aperiodicity will follow from irreducibility by noting that 0 ∈ Ω𝑠 is aperiodic. Observe that 𝑋𝑠
𝑥 visits

every state eventually in Ω𝑠 with positive probability starting from the initial state 0. Hence, it suffices
to show the converse transition. Fix x = (𝑥1, . . . , 𝑥𝜅 ) ∈ Ω𝑠 . Denote 𝑛1 = 𝑥1 + · · · + 𝑥𝛼1−1, which is
the number of balls of color in [1, 𝛼1). Observe that inserting 𝑛1 balls of color 𝛼1 into the decoupled
carrier 𝑋𝑥 removes all balls of colors in [1, 𝛼1) and leaves with 𝑥𝛼1 + 𝑛1 balls of color 𝛼1. Next, we
insert 𝑥𝛼1 + 𝑛1 + 𝑛2 balls of color 𝛼2 into the decoupled carrier, where 𝑛2 = 𝑥𝛼1+1 + · · · + 𝑥𝛼2−1. This
will remove all remaining balls of colors in [1, 𝛼2) and leave 𝑥𝛼2 + (𝑥𝛼1 + 𝑛1 + 𝑛2) balls of color 𝛼2.
Repeating this process, we can remove all balls of stable colors in the decoupled carrier, so 𝑋𝑠

𝑥 visits 0
with a positive probability.

Next, we can verify that 𝜋𝑠 is a stationary distribution of (𝑋𝑠
𝑥)𝑥≥0 by using a similar argument as in

the proof of Theorem 2.3 (i). The key idea is the following: The evolution of balls of colors in (𝛼 𝑗 , 𝛼 𝑗+1)
in the decoupled carrier 𝑋𝑥 depends only on balls of colors in (𝛼 𝑗 , 𝛼 𝑗+1] and inserting balls of color
𝛼 𝑗+1 can exclude any color in that interval. Moreover, the ‘stable component’ 𝑋𝑠

𝑥 of 𝑋𝑥 does not count
the number of balls of color 𝛼 𝑗+1 and recall the ‘stability condition’ (127). So one can treat 𝛼 𝑗+1 as color
0 in the subcritical carrier. We omit the details.

Lastly, the convergence of the empirical distribution in (131) follows from the same soft argument
given at the end of the proof of Theorem 2.3 (i). �

Next, we introduce a representation of the decoupled carrier process as a (truncated) partial sums
process. By Lemma 7.1, (𝑋𝑠

𝑥 , 𝜉𝑥+1)𝑥≥0 defines an aperiodic Markov chain on Z𝜅
≥0 × {0, . . . , 𝜅} with

unique stationary distribution 𝜋𝑠 ⊗p. For each ℓ ∈ {1, . . . , 𝜅}, define a functional 𝑔ℓ : Z𝜅 ×{0, . . . , 𝜅} →
Z by

𝑔ℓ (w, 𝑖) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 𝑖 = ℓ

−1
if 𝛼 𝑗 ≤ ℓ < 𝑖 ≤ 𝛼 𝑗+1 for some 𝑗 ∈ {0, . . . , 𝑟 − 1}

and w(ℓ + 1) = · · · = w(𝑖 − 1) = 0
−1 if 𝛼𝑟 ≤ ℓ, 𝑖 = 0, and w(ℓ + 1) = · · · = w(𝑖 − 1) = 0
0 otherwise,

(132)

where we denoted 𝛼0 := 0. It is easy to verify that, for each ℓ ∈ {1, . . . , 𝜅} and 𝑥 ≥ 0,

𝑋𝑥+1 (ℓ) =
{
𝑋𝑥 (ℓ) + 𝑔ℓ (𝑋𝑠

𝑥 , 𝜉𝑥+1) if ℓ ∈ C𝑒

max(0, 𝑋𝑥 (ℓ) + 𝑔ℓ (𝑋𝑠
𝑥 , 𝜉𝑥+1)) if ℓ ∉ C𝑒 .

(133)

In words, the random variable 𝑔ℓ (𝑋𝑠
𝑥 , 𝜉𝑥+1) gives the increment of 𝑋𝑥+1(ℓ) for exceptional ℓ; for

nonexceptional ℓ, the same holds but with additional truncation at 0 to ensure the value of 𝑋𝑥 (ℓ) stays
nonnegative. In particular, we can view 𝑋𝑥 (ℓ) for nonexceptional ℓ as a Lindley process in queuing
theory.

Another consequence of the observation in (133) is that the decoupled carrier process 𝑋𝑢
𝑥 on the

exceptional colors (the unstable component of 𝑋𝑥) can be written as an additive function of the Markov
chain (𝑋𝑠

𝑥 , 𝜉𝑥+1)𝑥≥0:

𝑋𝑢
𝑥 =

𝑥∑
𝑧=1

∑
ℓ∈{𝛼1 ,...,𝛼𝑟 }

𝑔ℓ (𝑋𝑠
𝑧 , 𝜉𝑧+1) eℓ . (134)

This representation will be used critically in Sections 7, 9 and 10.
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In the following proposition, we compute the stationary expectation of the increments 𝑔ℓ (𝑋𝑠
𝑥 , 𝜉𝑥+1)

in (133).

Proposition 7.2 (Bias of the decoupled carrier). Let 𝑔ℓ be the function in (132). Then

E𝜋𝑠⊗p [𝑔ℓ (𝑋𝑠
𝑥 , 𝜉𝑥+1)] = 𝑝ℓ − 𝑝ℓ+ , (135)

where ℓ+ is the smallest exceptional color strictly larger than ℓ. (If ℓ > 𝛼𝑟 , then take ℓ+ = 0.)

Proof. Fix 𝑗 ∈ {0, . . . , 𝑟} and 𝛼 𝑗 ≤ ℓ < 𝛼 𝑗+1. Denote ℓ+ := 𝛼 𝑗+1, where we take 𝛼0 = 0 and
𝛼𝑟+1 = 𝜅 + 1 ≡ 0 (mod 𝜅 + 1). Denote 𝜁𝑥 := 𝑔ℓ (𝑋𝑠

𝑥 , 𝜉𝑥+1). It is clear from the definition that

P𝜋𝑠⊗p(𝜁𝑥 = 1) = 𝑝ℓ . (136)

It remains to show

P𝜋𝑠⊗p(𝜁𝑥 = −1) = 𝑝ℓ+ . (137)

To this end, observe that

P𝜋𝑠⊗p(𝜁𝑥 = −1) = 𝑝ℓ+1 +
ℓ+∑

𝑖=ℓ+2
P𝜋𝑠 (𝑋𝑠

𝑥 (ℓ + 1) = · · · = 𝑋𝑠
𝑥 (𝑖 − 1) = 0) 𝑝𝑖 . (138)

Since 𝑋𝑠
𝑥 is distributed as the stationary distribution 𝜋𝑠 for all 𝑥 ≥ 0,

E𝜋𝑠

[ ∑
ℓ<𝑖<ℓ+

𝑋𝑠
𝑥+1(𝑖) −

∑
ℓ<𝑖<ℓ+

𝑋𝑠
𝑥 (𝑖)

]
= 0. (139)

Let T denote the random variable in the expectation above. Then

P𝜋𝑠⊗p(𝑇 = −1) =
(
1 − P𝜋𝑠

( ∑
ℓ<𝑖<ℓ+

𝑋𝑠
𝑥 (𝑖) = 0

))
𝑝ℓ+ , (140)

P𝜋𝑠⊗p(𝑇 = 1) = 𝑝ℓ+1 +
ℓ+−1∑
𝑖=ℓ+2

P𝜋𝑠 (𝑋𝑠
𝑥 (ℓ + 1) = · · · = 𝑋𝑠

𝑥 (𝑖 − 1) = 0) 𝑝𝑖 . (141)

Since 𝑇 ∈ {−1, 0, 1} and (139) holds, this yields

𝑝ℓ+ = 𝑝ℓ+1 +
ℓ+∑

𝑖=ℓ+2
P𝜋𝑠 (𝑋𝑠

𝑥 (ℓ + 1) = · · · = 𝑋𝑠
𝑥 (𝑖 − 1) = 0) 𝑝𝑖 . (142)

Note that the right-hand side equals P 𝜋̃⊗p (𝜁𝑥 = −1) in (138), as desired. This shows the assertion. �

7.2. Finite moments of return times of the decoupled carrier process

The main goal of this section is to prove Theorem 7.3 below, which shows that the first return time to
the origin of the stable part of the decoupled carrier process (𝑋𝑠

𝑥)𝑥≥0 has finite moments of all orders.
In fact, we prove this result in a more general setting that includes the excursions of 𝑋𝑥 (𝑖) under the past
maximum for exceptional colors i with a positive drift. (Handling such a general setting will be useful
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in the proof of Proposition 9.2.) Define a new process (𝑋𝑥)𝑥≥0 on Z𝜅
≥0 by

𝑋𝑥 (𝑖) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑋𝑥 (𝑖) if 𝑖 ∉ C𝑒

max0≤𝑡≤𝑥 𝑋
𝑢
𝑡 (𝑖) − 𝑋𝑢

𝑥 (𝑖) if 𝑖 = 𝛼 𝑗 ∈ C𝑒 for some 𝑗 and 𝑝𝛼𝑗 > 𝑝𝛼𝑗+1

0 otherwise.
(143)

Notice that (𝑋𝑥)𝑥≥0 defines a Markov chain on the nonnegative orthant Z𝜅
≥0.

Theorem 7.3. Let (𝑋𝑥)𝑥≥0 be the Markov chain on Z𝜅
≥0 in (143). Assume (128) holds. Let 𝜏 denote

its first return time to the origin. Then 𝜏 has finite moments of all orders. Furthermore, (𝑋𝑥)𝑥≥0 is
irreducible, aperiodic and positive recurrent, and has a unique stationary distribution.

We recall the following geometric ergodic theorem for Markov chains on a countable state space. It
is an important tool for showing finite exponential moments of return times.

Theorem 7.4 (Geometric Ergodic theorem; Special case of Theorem 15.0.1 in [MT12]). Let (X𝑡 )𝑡≥0
be a Markov chain on a countable state space Ω with transition kernel P, which is irreducible and
aperiodic. Then the following conditions are equivalent:

(i) There exists a state 𝑥 ∈ Ω such that the return time of the chain to x has a finite exponential moment;
(ii) The chain is geometrically ergodic; that is, there exists a function 𝑉 : Ω → [1,∞), constant

𝜀 ∈ (0, 1) and a finite set C such that

𝑃𝑉 (𝑥) ≤ (1 − 𝜀)𝑉 (𝑥) for all 𝑥 ∈ Ω \ C . (144)

In order to prove Theorem 7.3, we will establish a general lemma on the first return time of Markov
chains defined on the nonnegative integer orthant that abstracts important structure of the subcritical
carrier process 𝑊𝑥 . Its proof is relegated to the end of this section.

Lemma 7.5. Let 𝑍𝑥 = (𝑍𝑥 (1), . . . , 𝑍𝑥 (𝑑)) be an aperiodic and irreducible Markov chain on 𝑍𝑑
≥0.

Suppose 𝑍0 = 0 and assume the following three properties:

(A1) (Geometric ergodicity of top coordinate) The return time of 𝑍𝑥 (𝑑) to zero has a finite exponential
moment.

(A2) (Hierarchical dependence) There is a sequence of i.i.d. random variables (𝜉𝑥)𝑥∈N with distribution
p and functions 𝑓𝑖 : Z𝑑−𝑖−1 × R→ {−1, 0, 1} such that

𝑍𝑥+1 (𝑖) = max(0, 𝑍𝑥 (𝑖) + 𝑓𝑖 (𝑍>𝑖
𝑥 , 𝜉𝑥+1)) for all 𝑥 ∈ N and 𝑖 ∈ {0, . . . , 𝑑 − 1}, (145)

where 𝑍>𝑖
𝑥 := (𝑍𝑥 (𝑖 + 1), . . . , 𝑍𝑥 (𝑑)). Furthermore, 𝑍>𝑖

𝑥 has a unique stationary distribution,
say 𝜆>𝑖 .

(A3) (Coordinatewise negative drift) For all 𝑖 = 0, . . . , 𝑑 − 1,

E𝜆>𝑖 ⊗p
[
𝑓𝑖 (𝑍>𝑖

𝑥 , 𝜉𝑥+1)
]
< 0. (146)

Now fix 𝑖 ∈ {0, . . . , 𝑑 − 1}. For each 𝑗 ≥ 1, let 𝜏𝑗 be the jth return time of (𝑍>𝑖
𝑥 )𝑥≥0 to the origin. Then

𝜏1 has finite moments of all orders. Furthermore, denote 𝑅 𝑗 := 𝑍𝜏 𝑗 (𝑖) for 𝑗 ≥ 0. Then (𝑅 𝑗 ) 𝑗≥1 is a
Markov chain on Z≥0 such that there exists constants 𝑐, 𝐾 > 0 for which

sup
𝑚≥𝐾
E[𝑅1 − 𝑅0 | 𝑅0 = 𝑚] ≤ −𝑐. (147)

In addition, (𝑅 𝑗 ) 𝑗≥1 is geometrically ergodic (see Theorem 7.4).

We now deduce Theorem 7.3 assuming Lemma 7.5.
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Proof of Theorem 7.3. Let Cp
𝑢 denote the set of unstable colors, which is empty in the subcrit-

ical regime 𝑝0 > max(𝑝1, . . . , 𝑝𝜅 ) and nonempty in the critical and the supercritical regimes
𝑝0 ≤ max(𝑝1, . . . , 𝑝𝜅 ). In the latter case, we let 𝛼1 < · · · < 𝛼𝑟 denote the unstable colors. For each
𝑥 ≥ 0, we write 𝑋𝑥 = (𝑌𝑥 (0), 𝑌𝑥 (1), . . . , 𝑌𝑥 (𝑟)), where

𝑌𝑥 (0) :=
(
𝑋𝑥 (1), · · · , 𝑋𝑥 (𝛼1 − 1)

)
, (148)

and for each 𝑗 ∈ {1, . . . , 𝑟} (setting 𝑝𝛼𝑟+1 = 𝑝0),

𝑌𝑥 ( 𝑗) :=

{(
𝑋𝑥 (𝛼 𝑗 ), 𝑋𝑥 (𝛼 𝑗 + 1), · · · , 𝑋𝑥 (𝛼 𝑗+1 − 1)

)
if 𝑝𝛼𝑗 = 𝑝𝛼𝑗+1(

max1≤𝑠≤𝑥 𝑋𝑠 (𝛼 𝑗 ) − 𝑋𝑥 (𝛼 𝑗 ), 𝑋𝑥 (𝛼 𝑗 + 1), · · · , 𝑋𝑥 (𝛼 𝑗+1 − 1)
)

if 𝑝𝛼𝑗 > 𝑝𝛼𝑗+1 .
(149)

We will show that for each j, the return time to the origin of (𝑌𝑥 ( 𝑗))𝑥≥0 has finite moments of all orders.
Then by an inductive argument (see the proof of Lemma 7.5), it follows that the return time of (𝑋𝑥)𝑥≥0
also has finite moments of all orders.

Denote 𝑅𝑥 := 𝑌𝑥 ( 𝑗). Note that 𝑅𝑥 is a Markov chain on Zℓ+−ℓ
≥0 with ℓ = 𝛼 𝑗 . We wish to show that the

return time to the origin of 𝑅𝑥 has finite moments of all orders. We will only show this for the case of
𝑝𝛼𝑗 > 𝑝𝛼𝑗+1 , as a similar and simpler argument will show the desired statement for the case 𝑝𝛼𝑗 = 𝑝𝛼𝑗+1 .

First, consider a partial sums process 𝑆𝑛 =
∑𝑛

𝑘=1 𝜂𝑘 , 𝑆0 = 0, where the increments 𝜂𝑘 take values
from {−1, 0, 1} and they are not necessarily i.i.d. Consider the new process 𝑆𝑛 := max1≤𝑘≤𝑛 𝑆𝑘 − 𝑆𝑛,
which measures the height of the excursion of (𝑆𝑘 )1≤𝑘≤𝑛 below the running maximum. Note that 𝑆𝑛

satisfies the following recursion:

𝑆𝑛 − 𝑆𝑛−1 =

{
−𝜂𝑛 if 𝜂𝑛 = −1 or 𝑆𝑛−1 ≥ 1,
0 if 𝑆𝑛−1 = 0 and 𝜂𝑛 ∈ {0, 1}.

(150)

Equivalently, we have

𝑆𝑛 = max(0, 𝑆𝑛−1 − 𝜂𝑛). (151)

Now suppose ℓ = ℓ+ − 1 so that 𝑅𝑥 := max1≤𝑠≤𝑥 𝑋𝑠 (ℓ) − 𝑋𝑥 (ℓ). In this case, 𝑋𝑥 (ℓ) a simple random
walk on Z with positive drift 𝑝ℓ − 𝑝ℓ+ > 0, so 𝑅𝑥 is a birth-deach chain on Z≥0 with negative drift
𝑝ℓ+ − 𝑝ℓ < 0. In this case, the claim follows immediately. Hence, we may assume ℓ < ℓ+ − 1. Notice
that (𝑋𝑥 (ℓ+ − 1))𝑥∈N is a birth-deach chain on Z≥0 which moves to the right with probability 𝑝ℓ+−1 and
to the left with probability 𝑝ℓ+ . Since ℓ < ℓ+ −1, by the choice of ℓ and ℓ+, we have 𝑝ℓ+−1 < 𝑝ℓ+ . Hence,
𝑋𝑥 (ℓ+ − 1) has negative drift 𝑝ℓ+−1 − 𝑝ℓ+ < 0 on Z>0. Thus, the return time to the origin of 𝑋𝑥 (ℓ+ − 1)
has a finite exponential moment. This verifies the hypothesis (A1) in Lemma 7.5; (A2) follows from
the observation in the previous paragraph and (133); (A3) follows from Proposition 7.2. Therefore, by
Lemma 7.5, we deduce that the return time to the origin of 𝑅𝑥 has finite moments of all orders.

One can easily check the irreducibility of 𝑋 𝑥 by using a similar argument as in the proof of Lemma
7.1. Aperiodicity is clear, as one can stay at the origin in one step when a color 0 is encountered. We
have established that the return time to the origin of 𝑋 𝑥 has finite moments of all orders. This implies
that the chain is positive recurrent. Hence, the chain has a stationary distribution [LLP20, Thm. 21.13],
and it is unique from the irreducibility and Kac’s theorem [LLP20, Lem. 21.12]. �

We now prove Lemma 7.5. The argument is soft and inductive in nature.

Proof of Lemma 7.5. We first claim the following:

For each 𝑖 ∈ {0, . . . , 𝑑 − 1}, the first return time of (𝑍>𝑖
𝑥 )𝑥≥0

to some state x has a finite exponential moment. (152)
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We show the (152) by induction on 𝑖 = 𝑑 −1, . . . , 0. Fix 𝑖 ∈ {0, . . . , 𝑑 −1}. The base step for 𝑖 = 𝑑 −1 is
given by the hypothesis (A1). For the induction step, suppose the first return time of (Z>𝑖

𝑥 )𝑥≥0 to some
state x′ has a finite exponential moment. Let 𝜏𝑗 denote the jth return time of (𝑍>𝑖

𝑥 )𝑥≥0 to x′. Consider a
new process

(𝑄 𝑗 , x′) := (𝑍𝜏 𝑗 (𝑖), 𝑍𝜏 𝑗 (𝑖 + 1), . . . , 𝑍𝜏 𝑗 (𝑑)). (153)

By the strong Markov property, this defines a Markov chain (𝑄 𝑗 ) 𝑗≥1 on Z≥0.
Step 1. (147) holds for (𝑄 𝑗 ) 𝑗≥1. We would like to show

sup
𝑚≥𝐾
E[𝑄1 −𝑄0 |𝑄0 = 𝑚] ≤ −𝑐 (154)

for some constants 𝑐, 𝐾 > 0. Instead of 𝑍𝑥 (𝑖), we consider its ‘untruncated version’

𝑍 𝑥 (𝑖) :=
𝑗∑

ℓ=1
𝑓𝑖 (𝑍>𝑖

𝑥 , 𝜉𝑥+1) (155)

with 𝑍0(𝑖) = 0. (Note that 𝑍 𝑥 (0) = 𝑍𝑥 (0) by the hypothesis.) Since (𝑍>𝑖
𝑥 )𝑥≥0 is a Markov chain by the

hypothesis (A2), by the strong Markov property, excursions from x for the recurrent chain 𝑍>𝑖
𝑥 are i.i.d.

Hence, 𝑄 𝑗 := 𝑍 𝜏 𝑗 (𝑖) for 𝑗 ≥ 1 forms a random walk, whose increments are i.i.d. and have the same
distribution as 𝑄1. We claim that this random walk has a negative drift:

E[𝑄1] < 0. (156)

To see this, first, note that

lim
𝑥→∞

1
𝑥
𝑍 𝑥 (𝑖) = E𝜆>𝑖 ⊗p [ 𝑓𝑖 (𝑍>𝑖

0 , 𝜉1)] =: 𝛼 < 0 (157)

by the hypothesis (A3). Since 𝜏1, 𝜏2 −𝜏1, 𝜏3 −𝜏2, . . . are i.i.d. by the strong Markov property and since 𝜏1
has a finite exponential moment by the induction hypothesis, 𝜏𝑗 → ∞ almost surely. So 𝑍 𝜏 𝑗/𝜏𝑗 → 𝛼 < 0
almost surely. Also, to the strong law of large numbers and the previous results,

E[𝑄1] = lim
𝑗→∞

𝑄 𝑗

𝑗
= lim

𝑗→∞

𝑍 𝜏 𝑗

𝜏𝑗

𝜏𝑗

𝑗
= 𝛼E[𝜏1] < 0. (158)

This shows the claim.
Now note that

E[𝑄1 −𝑄0 | 𝑊0 = 𝑚] = E[𝑍𝜏1 (𝑖) − 𝑍0 (𝑖) | 𝑍0(𝑖) = 𝑚] (159)
= E[(𝑍𝜏1 (𝑖) − 𝑍0 (𝑖))1𝜏1 ≤𝑚 | 𝑍0(𝑖) = 𝑚] (160)

+ E[(𝑍𝜏1 (𝑖) − 𝑍0 (𝑖))1𝜏1>𝑚 | 𝑍0 (𝑖) = 𝑚] (161)

= E[𝑍 𝜏11𝜏1 ≤𝑚] + E[(𝑍𝜏1 (𝑖) − 𝑍0 (𝑖))1𝜏1>𝑚 | 𝑍0(𝑖) = 𝑚] (162)

= E[𝑍 𝜏1] − E[𝑍 𝜏11𝜏1>𝑚] + E[(𝑍𝜏1 (𝑖) − 𝑍0 (𝑖))1𝜏1>𝑚 | 𝑍0(𝑖) = 𝑚] . (163)

For the third equality, we have used the fact that 𝜏1 ≤ 𝑚 and 𝑍0 (𝑖) = 𝑚 in conjunction with the hypothesis
imply 𝑍𝑥 (𝑖) ≥ 0 for all 0 ≤ 𝑥 ≤ 𝜏1. Note that |𝑍 𝜏1 | ≤ 𝜏1 and 𝜏1 has a finite expectation by the induction
hypothesis, so E[𝑍 𝜏11𝜏1>𝑚] → 0 as 𝑚 → ∞ by the dominated convergence theorem. Also,

E[(𝑍𝜏1 (𝑖) − 𝑍0 (𝑖))1𝜏1>𝑚 | 𝑍0 (𝑖) = 𝑚] ≤ E[(𝜏1 − 𝑚)+1𝜏1>𝑚], (164)
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so again by the dominated convergence theorem, the above tends to zero as 𝑚 → ∞. Since E[𝑍 𝜏1] < 0
by (156), we have shown (154).

Step 2. (𝑄 𝑗 ) 𝑗≥1 is geometrically ergodic. Next, we show that the Markov chain (𝑄 𝑗 ) 𝑗≥0 on Z≥0 is
geometrically ergodic. To this end, first note that |𝑄 𝑗+1 − 𝑄 𝑗 | ≤ 𝜏𝑗+1 − 𝜏𝑗 , so it has finite exponential
moment by the hypothesis. By the dominated convergence theorem,

lim
𝛽↘0
E

[ exp(𝛽(𝑄 𝑗+1 −𝑄 𝑗 )) − 1
𝛽

����𝑄 𝑗 = 𝑚

]
= E[𝑄 𝑗+1 −𝑄 𝑗 |𝑄 𝑗 = 𝑚] . (165)

Let 𝑐, 𝐾 > 0 be the constants in (154). Then by choosing sufficiently small 𝛽 > 0, we can find 𝜀 > 0
such that

E[exp(𝛽(𝑄 𝑗+1 −𝑄 𝑗 )) | 𝑄 𝑗 = 𝑚] ≤ 1 − 𝜀 ∀m ≥ 𝐾. (166)

So, by taking𝑉 (𝑥) = exp(𝛽𝑥), we have 𝑃𝑉 (𝑥) ≤ (1−𝜀)𝑉 (𝑥) for all x outside the finite set {0, 1, · · · , 𝐾},
verifying the geometric ergodicity condition for the chain 𝑄 𝑗 .

Step 3. Completing the induction step. By the geometric ergodic theorem (Theorem 7.4), the first
return time 𝜎 of the geometrically ergodic chain (𝑄 𝑗 ) 𝑗≥1 to some sate 𝑥 ′ ∈ Z≥0 has a finite exponential
moment. Denote x = (𝑥 ′, x′) ∈ Z𝑑−𝑖

≥0 . We now show that the first return time S of the chain (𝑍 ≥𝑖
𝑥 )𝑥≥0 to

the state x has a finite exponential moment. Note that 𝑆 = 𝜏𝜎 . Since 𝜎 has a finite exponential moment,
there exists a constant 𝑐 > 0 such that P(𝜎 = 𝑙) ≤ 𝑒−𝑐𝑙 for all ℓ ≥ 1. Also, by the induction hypothesis,
𝜏1 has a finite exponential moment. Hence, there exists 𝐴 > 1 such that E[𝐴𝜏1] < ∞. By choosing A
sufficiently close to 1, and applying dominated convergence, we can assume E[𝐴2𝜏1] ≤ 𝑒𝑐/2. Now by
Cauchy-Schwarz,

E[𝐴𝑆] = E[𝐴𝜏𝜎 ] =
∞∑
𝑙=1
E[𝐴𝜏𝑙1𝜎=𝑙] ≤

∞∑
𝑙=1

√
E[𝐴2𝜏𝑙 ]

√
P(𝜎 = 𝑙) (167)

=
∞∑
𝑙=1

√
E[𝐴2𝜏1]𝑙

√
P(𝜎 = 𝑙) ≤

∞∑
𝑙=1

𝑒𝑐𝑙/4𝑒−𝑐𝑙/2 =
∞∑
𝑙=1

𝑒−𝑐𝑙/4 < ∞. (168)

This shows that S has a finite exponential moment, as desired. Thus far, we have shown (152).
Step 4. Concluding for the return time to the origin. Fix 𝑖 ∈ {0, 1, . . . , 𝑑 − 1}. By (152), there

exists a state x ∈ Z𝑑−𝑖
≥0 such that the first return time 𝜏1 of (Z>𝑖

𝑥 )𝑥≥0 to x has a finite exponential moment.
Thus, 𝜏1 has finite moments of all orders. It is well-known that, for any recurrent and irreducible Markov
chain on a countable state space, if for any state i the first moment of the first return time is finite,
then this also applies to any other state. This generalizes to moments of all orders of the first return
time [HJR53]. Therefore, we can conclude that the first return time of (Z>𝑖

𝑥 )𝑥≥0 to the origin has finite
moments of all orders.

Lastly, let 𝜎𝑗 denote the jth return time of (𝑍>𝑖
𝑥 )𝑥≥0 to the origin and denote 𝑅 𝑗 := 𝑍𝜏 𝑗 (0) for 𝑗 ≥ 1.

We know that 𝜎1 has finite moments of all orders. We can repeat Steps 1–2 above for the chain (𝑅 𝑗 ) 𝑗≥1
to conclude (147) and its geometric ergodicity. This completes the proof. �

Remark 7.6. In [ADOS11], Aurzada, Döring, Ortgiese and Scheutzow show that having a finite expo-
nential moment for first return times is actually not a class property. Hence, in the proof of Lemma 7.5,
knowing that the first return time to some state x has a finite exponential moment does not necessarily
imply that the first return time to the origin also has a finite exponential moment.

7.3. Linear and diffusive scaling limit of the decoupled carrier process

In this section, we establish linear and diffusive scaling limits of the decoupled carrier process. We start
with an illustrating example.
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Example 7.7. Suppose C𝑒 = {1, . . . , 𝜅} so that all positive colors are exceptional. Denote 𝜂𝑥 :=
𝑋𝑥 − 𝑋𝑥−1 for 𝑥 ≥ 1. Then (𝜂𝑘 )𝑘≥1 are i.i.d. random vectors in Z𝜅 with the following distribution:

P(𝜂𝑖 = −e𝜅 ) = 𝑝0, P(𝜂𝑖 = e1) = 𝑝1, P
(
𝜂𝑖 = e 𝑗 − e 𝑗−1

)
= 𝑝 𝑗 for 𝑗 = 2, . . . , 𝜅. (169)

Then note that

𝝁 := E[𝜂𝑖] = −𝑝0e𝜅 + 𝑝1e1 +
𝜅∑

𝑗=2
(e 𝑗 − e 𝑗−1)𝑝 𝑗 (170)

= e1 (𝑝1 − 𝑝2) + e2 (𝑝2 − 𝑝3) + · · · + e𝜅 (𝑝𝜅 − 𝑝0), (171)

Σ := E
[
𝜂𝑖𝜂

𝑇
𝑖

]
= e𝜅e𝑇𝜅 𝑝0 + e1e𝑇1 𝑝1 +

𝜅∑
𝑗=2

(e 𝑗 − e 𝑗−1) (e 𝑗 − e 𝑗−1)𝑇 𝑝 𝑗 (172)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑝1 + 𝑝2 −𝑝2 0
−𝑝2 𝑝2 + 𝑝3 −𝑝3 0

0 −𝑝3 𝑝3 + 𝑝4

0
. . . −𝑝𝜅

−𝑝𝜅 𝑝𝜅 + 𝑝0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (173)

In this case, the decoupled carrier process (𝑋𝑥)𝑥≥0 is a Markov chain on Z𝜅 with the mean and the
covariance matrix of the increments 𝜂𝑥 given as above. Then the linear interpolation of the linear
interpolation of the d-dimensional process ( 1√

𝑛
(𝑋𝑛 − 𝑛𝝁)𝑛∈N converges weakly to the d-dimensional

Brownian motion with covariance matrix Σ (see, for example, [DMR94, Thm. 1] and the following
remark). Note that 𝝁 = 0 if 𝑝0 = 𝑝1 = · · · = 𝑝𝜅 = 1/(𝜅 + 1), which is a special case of the critical
regime for the multicolor BBS (i.e., 𝑝0 = max(𝑝1, . . . , 𝑝𝜅 )). See the simulation in Figure 2 for 𝜅 = 2
and uniform ball density. �.

Next, we compute the mean and the variance of the increments of the unstable part of the decoupled
carrier process.

Proposition 7.8 (Mean and limiting covariance matrix). Let (𝑋𝑥)𝑥≥0 be the decoupled carrier process
in (128). Denote 𝜁𝑥 := 𝑋𝑢

𝑥 − 𝑋𝑢
𝑥−1 for 𝑥 ≥ 1. Then the following hold:

(i) We have

𝝁 := E𝜋𝑠⊗p [𝜁1] ≡ e𝛼1 (𝑝𝛼1 − 𝑝𝛼2) + e𝛼2 (𝑝𝛼2 − 𝑝𝛼3) + · · · + e𝛼𝑟 (𝑝𝛼𝑟 − 𝑝𝛼0), (174)

E𝜋𝑠⊗p
[
𝜁1𝜁

𝑇
1
]
=

∑
ℓ∈{𝛼1 ,...,𝛼𝑟 }

eℓe𝑇ℓ
'()𝑝ℓ +

∑
ℓ<𝑞≤ℓ+

𝑝𝑞

∏
ℓ< 𝑗<𝑞

(
1 −

𝑝 𝑗

𝑝ℓ+

)*+, (175)

−
∑

ℓ∈{𝛼1 ,...,𝛼𝑟−1 }
(eℓe𝑇ℓ+ + eℓ+e𝑇ℓ ) 𝑝ℓ+

∏
ℓ< 𝑗<ℓ+

(
1 −

𝑝 𝑗

𝑝ℓ+

)
. (176)

(ii) Define the ‘limiting covariance matrix’ Σ ∈ R𝜅×𝜅 as

Σ := lim
𝑛→∞

𝑛−1
E𝜋𝑠⊗p

[
(𝑋𝑢

𝑛 − 𝑛𝝁) (𝑋𝑢
𝑛 − 𝑛𝝁)𝑇

]
. (177)

Then Σ is well-defined, nonzero, symmetric and positive semidefinite.
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Proof. We first show (i). The stationary expectation of 𝜁1 can be easily verified from Proposition 7.2.
Denote 𝑚 (𝑎,𝑏) (𝑋𝑠

𝑥) :=
∑

𝑎<𝑖<𝑏 𝑋
𝑠
𝑥 (𝑖), which is set to zero if 𝑏 ≤ 𝑎 + 1. From (134), we can write

𝜁𝑥 =
∑

ℓ∈{𝛼1 ,...,𝛼𝑟 }
eℓ

'()1(𝜉𝑥 = ℓ) −
∑

ℓ+1≤𝑞≤ℓ+

1(𝜉𝑥 = 𝑞)1
(
𝑚 (ℓ,𝑞) (𝑋𝑠

𝑥−1) = 0
)*+,. (178)

Then it is straightforward to compute

𝜁𝑥𝜁
𝑇
𝑥 =

∑
ℓ∈{𝛼1 ,...,𝛼𝑟 }

eℓe𝑇ℓ

⎡⎢⎢⎢⎢⎣1(𝜉𝑥 = ℓ) +
∑

ℓ+1≤𝑞≤ℓ+

1(𝜉𝑥 = 𝑞)1
(
𝑚 (ℓ,𝑞) (𝑋𝑠

𝑥−1) = 0
)⎤⎥⎥⎥⎥⎦ (179)

−
∑

ℓ∈{𝛼1 ,...,𝛼𝑟−1 }
(eℓe𝑇ℓ+ + eℓ+e𝑇ℓ )1(𝜉𝑥 = ℓ+)1

(
𝑚 (ℓ,ℓ+) (𝑋𝑠

𝑥−1) = 0
)
. (180)

Thus, by taking the stationary expectation of 𝜁𝑥𝜁
𝑇
𝑥 in conjunction with (130), we obtain the second

identity in (i).
Lastly, we show (ii). Assuming Σ is well-defined and that it is symmetric and positive semidefinite is

clear from the definition. Next, we argue that Σ is well-defined. Let 𝜁𝑥 := 𝜁𝑥 − E[𝜁𝑥]. For 𝑖 ≥ 0, let 𝜎𝑖

denote the number of steps that the Markov chain 𝑍𝑥 takes until it returns to the origin for the 𝑖+1st time,
By strong Markov property, 𝜎𝑖’s are i.i.d. Furthermore, the excursions of 𝑍𝑥 from the origin (that is, 𝑍𝑥

restricted on the time intervals [0, 𝜎0], [𝜎0, 𝜎1], . . . ) are i.i.d. Furthermore, by Theorem 7.3 and the fact
that 𝜉𝑥’s are i.i.d. with distribution p = (𝑝0, . . . , 𝑝𝜅 ), 𝑝0 > 0 (in fact, we assume min(𝑝1, . . . , 𝑝𝜅 ) > 0),
it follows that 𝜎0 has finite moments of all orders. Hence, there exists some 𝜆 > 0 such that E[𝜆𝜎0] < ∞.
Moreover, by Kac’s theorem [LLP20, Lem. 21.12],

lim
𝑛→∞

1
E[𝜎1]

= 𝜋𝑠 ⊗ p(0, 0) = 𝜋𝑠 (0) 𝑝0, (181)

where the stationary distribution 𝜋𝑠 is explicitly given in (130).
Now consider decomposing the trajectory of 𝑍𝑥 into excursions from the origin. Write 𝑠𝑖 :=∑𝜎𝑖+1−1

𝑘=𝜎𝑖
𝜁𝑘 𝜁

𝑇
𝑘 . By the strong Markov property, 𝑠1, 𝑠2, . . . are i.i.d. and also note that E[𝑠𝑖] = 0. Denote

Σ𝑛 := E
[
(𝑋𝑢

𝑛 − 𝑛𝝁) (𝑋𝑢
𝑛 − 𝑛𝝁)𝑇

]
. Observe that

Σ𝜎𝑛 = E
[
(𝑋𝑢

𝜎𝑛
− 𝜎𝑛𝝁) (𝑋𝑢

𝜎𝑛
− 𝜎𝑛𝝁)𝑇

]
= E

[
(𝑠1 + · · · + 𝑠𝑛)(𝑠1 + · · · + 𝑠𝑛)𝑇

]
= 𝑛E[𝑠1𝑠

𝑇
1 ] . (182)

So by the elementary renewal theorem, almost surely,

lim
𝑛→∞

1
𝜎𝑛

Σ𝜎𝑛 = lim
𝑛→∞

𝑛

𝜎𝑛
E[𝑠1𝑠

𝑇
1 ] =

E[𝑠1𝑠
𝑇
1 ]

E[𝜎1]
= 𝑝0𝜋

𝑠 (0) E[𝑠1𝑠
𝑇
1 ] . (183)

To show the convergence holds along the whole sequence, let 𝑇 (𝑛) denote the total number of visits
of 𝑍𝑥 to the origin in the first n steps. Denote 𝑟𝑛 :=

∑𝑛
𝑘=𝜎𝑇 (𝑛)

𝜁𝑘 𝜁
𝑇
𝑘 . Then since 𝑠1, . . . , 𝑠𝑇 (𝑛) , 𝑟𝑛 are

independent and E[𝑠𝑖] = 0,

Σ𝑛 = E
[ (
𝑠1 + · · · + 𝑠𝑇 (𝑛) + 𝑟𝑛

) (
𝑠1 + · · · + 𝑠𝑇 (𝑛) + 𝑟𝑛

)𝑇 ]
= Σ𝜎𝑇 (𝑛) + E[𝑟𝑛𝑟𝑇𝑛 ] . (184)

Denote Λ𝑛 := E
[∑𝑛

𝑥=1‖𝜁𝑥𝜁
𝑇
𝑥 ‖

]
, which is nondecreasing in n. Then similar argument as before shows

that 1
𝜎𝑛

Λ𝜎𝑛 converges a.s., and by the monotonicity of Λ𝑛, an elementary renewal theory argument
shows that 𝑛−1Λ𝑛 converges as 𝑛 → ∞. Now by Jensen’s inequality,

‖E[𝑟𝑛𝑟𝑇𝑛 ]‖ ≤ Λ𝑛 − Λ𝜎𝑇 (𝑛) . (185)
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Since 𝜎𝑇 (𝑛) ≤ 𝑛 ≤ 𝜎𝑇 (𝑛)+1 and E[𝜎1] < ∞, it follows that 𝜎𝑇 (𝑛) /𝑛 → 1 a.s. as 𝑛 → ∞. Hence,
dividing both sides of (185) by n and letting 𝑛 → ∞ shows that 𝑛−1‖E[𝑟𝑛𝑟𝑇𝑛 ]‖ → 0 as 𝑛 → ∞. Then
from (184), we deduce

lim
𝑛→∞

𝑛−1Σ𝑛 = lim
𝑛→∞

𝜎𝑇 (𝑛)

𝑛

1
𝜎𝑇 (𝑛)

Σ𝜎𝑇 (𝑛) + lim
𝑛→∞
E[𝑟𝑛𝑟𝑇𝑛 ] (186)

= lim
𝑛→∞

𝜎−1
𝑛 Σ𝜎𝑛 (187)

= 𝑝0𝜋
𝑠 (0) E[𝑠1𝑠

𝑇
1 ] (188)

= 𝜋𝑠 (0) 𝑝0 E
[
(𝜁1 + · · · + 𝜁𝜎1) (𝜁1 + · · · + 𝜁𝜎1)𝑇

]
. (189)

Finally, since 𝜁𝑥’s are uniformly bounded and 𝜎1 has a finite expectation, the last expression is a matrix
with finite entries by Wald’s identity. From this formula, it is also easy to verify that Σ is nonzero. �

Now we establish linear and diffusive scaling limits of the decoupled carrier process on unstable
colors. This is the main outcome of this section.

Proposition 7.9 (Limit theorems for the decoupled carrier process on unstable colors). Let (𝑋𝑥)𝑥≥0 be
the decoupled carrier process in (128). Denote 𝜁𝑥 := 𝑋𝑢

𝑥 − 𝑋𝑢
𝑥−1 for 𝑥 ≥ 1. Then the following hold.

(i) (SLLN) Almost surely,

lim
𝑛→∞

𝑛−1𝑋𝑛 = e𝛼1 (𝑝𝛼1 − 𝑝𝛼2) + e𝛼2 (𝑝𝛼2 − 𝑝𝛼3 ) + · · · + e𝛼𝑟 (𝑝𝛼𝑟 − 𝑝𝛼0) := 𝝁. (190)

(ii) (FCLT) Let (𝑋 𝑣 )𝑣 ∈R≥0 denote the linear interpolation of the lattice path (𝑋𝑥 − 𝑥𝝁)𝑥∈N. Let 𝐵 =
(𝐵𝑡 : 0 ≤ 𝑡 ≤ 1) denote the standard Brownian motion. Then as 𝑛 → ∞,

(𝑛−1/2𝑋𝑛𝑡 ; 0 ≤ 𝑣 ≤ 1) =⇒ (𝐵𝑡 ; 0 ≤ 𝑡 ≤ 1) in 𝐶 ([0, 1]), (191)

where 𝐵 = (𝐵𝑣 : 0 ≤ 𝑣 ≤ 1) is the Brownian motion in R𝜅 with mean zero and covariance matrix
Σ defined in (177). Here =⇒ denotes weak convergence in 𝐶 ([0, 1]).

Proof. Recall the decomposition 𝑋𝑥 = 𝑋𝑢
𝑥 + 𝑋𝑠

𝑥 . From Lemma 7.1 and Theorem 7.3, we know that
𝑋𝑠

𝑥 is a geometrically mixing Markov chain on a subset of Z𝜅
≥0 with unique stationary distribution 𝜋𝑠

in (130). Hence, 𝑛−1𝑋𝑠
𝑛 converges to zero almost surely. Also, the linear interpolation of (𝑋𝑠

𝑥)𝑥∈N in
diffusive scaling converges almost surely to zero in 𝐶 ([0, 1]). Thus, it is enough to verify (i) and (ii)
with 𝑋𝑛 replaced by 𝑋𝑢

𝑛 .
Recall the Markov additive function representation (134) of 𝑋𝑢

𝑥 , where the underlying Markov chain
(𝑋𝑠

𝑥 , 𝜉𝑥)𝑥≥0 has the unique stationary distribution 𝜋𝑢 ⊗ p and is geometrically ergodic (see Theorem
7.3). Thus, (i) follows from the standard Markov chain ergodic theorem for positive Harris chains (see,
for example, [MT12, Thm. 17.1.7]). Recall that the limiting covariance matrix Σ defined in (177) is well-
defined and nontrivial by Proposition 7.8. Then (ii) follows from the functional CLT for multivariate
strongly mixing processes (see, for example, [DMR94, Thm. 1] and the following remark). See also
[RS10, Thm. 3.1]. For a functional central limit theorem for additive functionals (univariate) of a positive
Harris chain, see [MT12, Thm. 17.4.4 and eq. (17.38)]. �

8. Proofs of Theorem 2.3(ii) and Theorem 2.4

We prove Theorem 2.3 (ii) and Theorem 2.4 in this section. Throughout this section, we fix a probability
distribution p = (𝑝0, 𝑝1, · · · , 𝑝𝜅 ) on {0, 1, · · · , 𝜅}, and let (𝑊𝑥)𝑥≥0 be the carrier process in (8) over
the i.i.d. configuration 𝜉 = 𝜉p.
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8.1. Strong stability of the subcritical carrier process

In order to prove Theorem 2.3 (ii), we need stronger stability properties of the carrier process than
what is stated in Theorem 2.3. More specifically, (1) if 𝑊0 = 0, then its first return time to the origin
has finite moments of all orders; and (2) if 𝑊0 ∼ 𝜋 and conditional on ‖𝑊0‖1 = 𝑁 , it has a uniformly
positive probability to visit the origin before it visits ‘level’ 𝑁 + 1. These results are established in the
following proposition. In the remainder of this section, we will denote 𝑊 ≥𝑎

𝑥 := (𝑊𝑥 (𝑎), . . . ,𝑊𝑥 (𝜅))
and 𝑊<𝑎

𝑥 := (𝑊𝑥 (1), . . . ,𝑊𝑥 (𝑎 − 1)) and use similar notation for 𝑋 ≥𝑎
𝑥 and 𝑋<𝑎

𝑥 . This is the content of
Proposition 8.1 below, and proving this result is the main goal of this section.
Proposition 8.1. Suppose 𝑝0 > 𝑝∗ := max(𝑝1, · · · , 𝑝𝜅 ) and let (𝑊𝑥)𝑥≥0 be the carrier process over
𝜉p. The following hold.
(i) The first return time of 𝑊𝑥 to the origin has finite moments of all orders.
(ii) For each 𝑚 ∈ N, let 𝜏𝑚 = inf{𝑥 ≥ 1 : ‖𝑊𝑥 ‖1 = 𝑚}. There exists constants 𝐿0, 𝑁0 ≥ 1 and 𝑐0 > 0

such that

inf
𝑁 ≥𝑁0

P𝜋

(
𝜏0 < min(𝜏𝑁 , 𝑐0𝑁

2 + 𝐿0) | ‖𝑊0‖1 = 𝑁
)
> 0. (192)

We prove a series of lemmas in order to prepare for the proof of Proposition 8.1.
Lemma 8.2 (Birth-deach chain domination of excursions of the carrier). Let (𝑊𝑥)𝑥≥0 be the carrier
process in (8) and suppose 𝑝0 > 𝑝∗ := max(𝑝1, . . . , 𝑝𝜅 ). Fix 𝑎 ∈ {1, . . . , 𝜅} and define a birth-deach
chain (𝑆𝑥)𝑥≥0 on Z≥0 by 𝑆0 := 𝑊𝑥 (𝑎) and

𝑆𝑥+1 − 𝑆𝑥 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝜉𝑥+1 = 𝑎

−1 if 𝜉𝑥+1 = 0 and 𝑆𝑥 ≥ 1
0 otherwise.

(193)

Note that (𝑆𝑥)𝑥≥0 is a birth-death chain on Z≥0 with negative drift 𝑝𝑎 − 𝑝0 < 0. For all 𝑥 ≥ 0,

‖𝑊 ≥𝑎
𝑥 ‖1 ≤ 𝑆𝑥 if min

0≤𝑡≤𝑥
𝑊𝑡 (𝑎) ≥ 1. (194)

Proof. The proposition says that as long as the carrier has at least one ball of color a, then the total load
‖𝑊 ≥𝑎

𝑥 ‖1 is dominated by 𝑆𝑥 . This is easy to verify by induction. The inequality could be violated when
𝑊𝑥 (𝑎) = 0, since then the total load can increase by inserting balls of color > 𝑎 while 𝑆𝑥 does not. �

In the statement and proofs below, we denote Px(·) = P(· |𝑊0 = x).
Lemma 8.3 (Quadratic first hitting time of the origin of the subcritical carrier). Let (𝑊𝑥)𝑥≥0 be the
carrier process in (8) and suppose 𝑝0 > 𝑝∗ := max(𝑝1, . . . , 𝑝𝜅 ). There exists a constant 𝑐 > 0 such that

inf
x∈Z𝜅≥0

Px (‖𝑊𝑥 ‖1 = 0 for some 𝑥 ≤ 𝑐‖x‖2
1 ) > 0. (195)

Proof. We prove the assertion by induction on 𝜅. If 𝜅 = 1, then the assertion follows easily since𝑊𝑥 then
is a birth-deach chain on Z≥0 with negative bias 𝑝1 − 𝑝0 < 0 (e.g., see Lemma 8.5). For the induction
step, note that𝑊 ≥2

𝑥 behaves as the subcritical carrier process with ball colors {0, 2, 3, . . . , 𝜅}. That is, it
evolves by the circular exclusion restricted on colors {0, 2, . . . , 𝜅} while ignoring balls of color 1. Thus,
𝑊 ≥2

𝑥 is a lazy version of a carrier process with subcritical ball density as max(𝑝2, . . . , 𝑝𝜅 ) < 𝑝0. Let
𝜏𝑖 for 𝑖 = 1, 2, · · · denote the ith time that 𝑊 ≥2

𝑥 returns to the origin. By the strong Markov property,
𝜏𝑖+1 − 𝜏𝑖 for 𝑖 ≥ 1 are i.i.d., and they have finite moments of all orders by Lemma 7.5. Also, by the
induction hypothesis, there exists a constant 𝑐1 > 0 such that

inf
x∈Z𝜅−1

≥0

Px (𝜏1 ≤ 𝑐1‖x‖2
1 ) > 0. (196)
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Denote 𝑄𝑖 := 𝑊𝜏𝑖 (1) for 𝑖 ≥ 1. Then (𝑄𝑖)𝑖≥1 is a Markov chain on Z≥0. Denote 𝜎 := inf{𝑖 ≥ 1 :
𝑄𝑖 ≤ 𝐿}, where 𝐿 ≥ 1 is a constant. Let 𝑀 := ‖𝑊0‖1 and let 𝑐2 > 0 be a constant to be determined.
Introduce the following events:

𝐸1 := {𝜏1 ≤ 𝑐1𝑀
2}, (197)

𝐸2 :=
{

max
1≤𝑘≤�2𝑐2𝑀 �

|𝜏𝑖+1 − 𝜏𝑖 | < 𝑀
}
, (198)

𝐸3 := {𝑊𝜏1 (1) ≤ 2𝑀}, (199)
𝐸4 := {𝜎 ≤ 𝑐2𝑊𝜏1 (1)}. (200)

These events depend on constants 𝑀, 𝐿, 𝑐2 > 0 that we will subsequently choose below. Note that

𝜎𝜏 = 𝜏1 +
𝜎−1∑
𝑖=1

(𝜏𝑖+1 − 𝜏𝑖) ≤ 𝜏1 + 𝜎 max
1≤𝑖≤𝜎

(𝜏𝑖+1 − 𝜏𝑖), (201)

so 𝜎 ≤ 2𝑐2𝑀 on 𝐸3 ∩ 𝐸4. Hence, 𝜏𝜎 ≤ (𝑐1 + 2𝑐2)𝑀2 on 𝐸 :=
⋂4

𝑖=1 𝐸𝑖 . Also note that ‖𝑊𝜏𝜎 ‖1 =
𝑊𝜏𝜎 (1) = 𝑄𝜎 ≤ 𝐿. Hence, denoting 𝑐 := (𝑐1 + 2𝑐2) ∨ 1,{

‖𝑊𝑥 ‖1 ≤ 𝐿 for some 𝑥 ≤ 𝑐𝑀2} ⊇ 𝐸. (202)

Moreover,

Px (‖𝑊𝑥 ‖1 = 0 for some 𝑥 ≤ 𝑐𝑀2 + 𝐿) ≥ 𝑝𝐿
0 Px (‖𝑊𝑥 ‖1 ≤ 𝐿 for some 𝑥 ≤ 𝑐𝑀2). (203)

Furthermore, since 𝑐 ≥ 1,

inf
‖x‖1<𝑀

Px (‖𝑊𝑥 ‖1 = 0 for some 𝑥 ≤ 𝑐‖x‖2
1 + 𝐿) ≥ 𝑝𝑀

0 . (204)

Therefore, it suffices to show that for some constant 𝑀0 ≥ 1,

inf
𝑀 ≥𝑀0

inf
‖x‖1=𝑀

Px (𝐸) > 0. (205)

Since 𝐸1 has a uniformly positive probability by the induction hypothesis (196), it is enough to show
that 𝐸2, 𝐸3, 𝐸4 have high probaiblity to occur.

For 𝐸2, since 𝜏𝑖+1 − 𝜏𝑖 for 𝑖 ≥ 1 are i.i.d. and have finite moments of all orders, it follows that 𝐸2
occurs with a high probability if M is sufficiently large. To see this, note that

P(𝐸2) = (1 − P(𝜏2 − 𝜏1 ≥ 𝑀)) �2𝑐2𝑀 � ≥
(
1 − E[(𝜏2 − 𝜏1)2]

𝑀2

) �2𝑐2𝑀 �
→ 1 as 𝑀 → ∞. (206)

For 𝐸3, by Lemma 8.2, on the event that𝑊𝜏1 (1) > 2𝑀 , a negatively biased birth-death chain (𝑆𝑥)𝑥≥0
on Z≥0 makes an up-crossing of height at least M in 𝑐1𝑀

2 steps, so

1 − Px (𝐸3) ≤ P
(

max
0≤𝑥≤�𝑐1𝑀 2 �

𝑆𝑥 > 𝑀

���� 𝑆0 = 0
)
. (207)

Since 𝑆𝑥 is a negatively biased simple random walk, the probability in the last expression is exponentially
small in M.

For 𝐸4, by Lemma 7.5, there are constants 𝐾, 𝑐3 > 0 such that

sup
𝑚≥𝐾
E[𝑄1 −𝑄0 |𝑄0 = 𝑚] ≤ −𝑐3. (208)
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By Lemma 8.5, 𝜎 ≤ 𝑐4𝑄1 = 𝑐4𝑊𝜏1 (1) occurs with probability at least 1− 1
𝑐3𝑐4

for some constant 𝑐4 > 0.
Hence, by choosing 𝐿 ≥ 𝐾 , 𝑐2 ≥ 𝑐4, and letting 𝑐4 sufficiently large, 𝐸4 occurs with a high probability.
This shows the assertion. �

Lemma 8.4 (Growth of (sub-)critical carrier). Let (𝑊𝑥)𝑥≥0 be the carrier process in (8) with arbitrary
initial state 𝑊0 and suppose 𝑝0 ≥ 𝑝∗ := max(𝑝1, . . . , 𝑝𝜅 ). Then for each 𝜀 > 0, almost surely,

lim sup
𝑛→∞

𝑛−1 max
0≤𝑥≤𝑛

‖𝑊𝑥 ‖1 ≤ 𝜀. (209)

Proof. Suppose 𝑊0 = (𝑊0 (1), . . . ,𝑊0 (𝜅)) is arbitrary and write 𝑀 := ‖𝑊0‖1. We may prepend to the
ball configuration 𝜉 the following sequence:

(𝜅, . . . , 𝜅︸���︷︷���︸
𝑊0 (𝜅)

, 𝜅 − 1, . . . , 𝜅 − 1︸��������������︷︷��������������︸
𝑊0 (𝜅−1)

, . . . , 1, . . . , 1︸���︷︷���︸
𝑊0 (1)

) (210)

and denote the extended configuration 𝜉 = (𝜉1, . . . , 𝜉𝑀 , 𝜉1, 𝜉2, . . . ). Let 𝑊̃ denote the carrier process
with zero initial state run on 𝜉. Then after scanning the first M in the extended configuration, the new
carrier 𝑊̃ attains exactly the same state 𝑊0 (i.e., 𝑊̃𝑀 = 𝑊0), and thereafter, it undergoes the same
dynamics as W (i.e., 𝑊̃𝑥+𝑀 = 𝑊𝑥 for all 𝑥 ≥ 0). Furthermore, max0≤𝑥≤𝑛‖𝑊𝑥 ‖1 ≤ max0≤𝑥≤𝑛+𝑀 ‖𝑊̃𝑥 ‖1,
so it is enough to show the assertion for 𝑊̃ . For simplicity, below we will denote 𝑊̃ and 𝜉 as W and 𝜉,
respectively, and assume that the first M entries of 𝜉 may be deterministic.

Fix 𝜀 > 0. By Lemmas 3.1 and 3.5,

max
0≤𝑥≤𝑛

‖𝑊𝑥 ‖1 = 𝜆1(𝑛) = max
𝐴1 ⊆[0,𝑛]

𝐿(𝐴1, 𝜉), (211)

where the right-hand side equals the penalized length of the longest nonincreasing subsequence
in 𝜉 (𝑛) := (𝜉0, 𝜉1, . . . , 𝜉𝑛). Let 𝐷𝑖 (𝑥1, 𝑥2) denote the number of i’s minus the number of 0’s in
(𝜉𝑥1 , 𝜉𝑥1+1, . . . , 𝜉𝑥2 ). If 𝜆1(𝑛) ≥ 𝜀𝑛 + 𝑀 , then 𝐷𝑖 (𝑥1, 𝑥2) ≥ 𝜀𝑛/𝜅 for some i and 𝑀 < 𝑥1 ≤ 𝑥2 ≤ 𝑛.
Note that 𝐷𝑖 (𝑥1, 𝑥2) is the sum of 𝑥2 − 𝑥1 i.i.d. Bernoulli variables with success probability 𝑝𝑖 − 𝑝0 ≤ 0.
Hence, by union bound and Hoeffding’s inequality,

P(𝜆1 (𝑛) ≥ 𝜀𝑛 + 𝑀) ≤
𝜅∑

𝑖=1

∑
𝑀<𝑥1 ≤𝑥2 ≤𝑛

P(𝐷𝑖 (𝑥1, 𝑥2) ≥ 𝜀𝑛/𝜅) (212)

≤ 𝜅𝑛2 exp(−𝑐𝑛) (213)

for some constant 𝑐 > 0. By Borel-Cantelli lemma, it follows that lim sup
𝑛→∞

𝜆1(𝑛)/𝑛 ≤ 𝜀 almost surely.

Then the assertion follows. �

We remark Theorem 2.5, which will be proved in Section 10, establishes the exact asymptotic
max0≤𝑥≤𝑛‖𝑊𝑥 ‖1 ∼ 𝐶

√
𝑛 for some constant 𝐶 > 0.

Lemma 8.5 (Drift and bound on hitting time). Let (𝑌𝑡 )𝑡≥0 be a Markov chain on Z≥0 with transition
kernel P. Suppose E𝑥 [|𝑌𝑡 |] < ∞ for all 𝑥, 𝑡 ≥ 0 and there exists constants 𝑐, 𝐿 > 0 such that

E𝑥 [𝑌1 − 𝑥] ≤ −𝑐 for all 𝑥 ≥ 𝐿. (214)

Let 𝜏 := inf{𝑡 ≥ 0 : 𝑌𝑡 ≤ 𝐿}. Then

P𝑥 (𝜏 ≥ 𝐶𝑥) ≤ 1
𝑐𝐶

for all 𝑥 ≥ 0 and 𝐶 > 0. (215)
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Proof. For any function 𝑔 : Z≥0 → R, denote 𝑃𝑔(𝑥) :=
∑

𝑦 𝑔(𝑦)𝑃(𝑥, 𝑦) and 𝑃𝑌 := 𝑃 id(𝑌 ). Note that
the condition (214) reads

𝑃𝑥 − 𝑥 ≤ −𝑐 for all 𝑥 ∉ [0, 𝐿] . (216)

Define the compensator (𝐾𝑡 )𝑡≥0 of (𝑌𝑡 )𝑡≥0 as 𝐾0 = 0 and

𝐾𝑛 :=
𝑛−1∑
𝑘=0

(𝑃𝑌𝑘 − 𝑌𝑘 ). (217)

Then 𝑌𝑛 − 𝐾𝑛 is a martingale with respect to the natural filtration (F𝑡 )𝑡≥0, F𝑡 := 𝜎(𝑌0, . . . , 𝑌𝑡 ). Also
note that by (216), 𝐾𝑛∧𝜏 ≤ −𝑐(𝑛 ∧ 𝜏), for if 𝑘 < 𝑛 ∧ 𝜏, then 𝑃𝑌𝑘 −𝑌𝑘 ≤ −𝑐. Now using the martingale
condition,

𝑥 = E𝑥 [𝑌0 − 𝐾0] = E𝑥 [𝑌𝑛∧𝜏 − 𝐾𝑛∧𝜏] ≥ 𝑐 E𝑥 [𝑛 ∧ 𝜏] . (218)

Now if 𝑛 ≥ 𝐶𝑥, then {𝜏 ≥ 𝐶𝑥} = {𝑛 ∧ 𝜏 ≥ 𝐶𝑥}. Hence, by Markov’s inequality, by choosing 𝑛 ≥ 𝐶𝑥,
we can conclude as

P𝑥 (𝜏 ≥ 𝐶𝑥) = P𝑥 (𝑛 ∧ 𝜏 ≥ 𝐶𝑥) ≤ E𝑥 [𝑛 ∧ 𝜏]
𝐶𝑥

≤ 1
𝑐𝐶

. (219)

�
We now prove Proposition 8.1.

Proof of Proposition 8.1. Part (i) follows immediately from Theorem 7.3 with C𝑒 = ∅. Such choice
of the set C𝑒 of the exceptional colors satisfies the stability condition (127) in the subcritical regime
𝑝0 > 𝑝∗.

Next, we show (ii). Suppose the maximum ball density 𝑝∗ is achieved at positive colors 𝑖1 ≤ 𝑖2 ≤
· · · ≤ 𝑖𝑟 . That is,

𝑝0 > 𝑝𝑖1 = · · · = 𝑝𝑖𝑟 > max{𝑝 𝑗 : 1 ≤ 𝑗 ≤ 𝜅, , 𝑗 ∉ {𝑖1, . . . , 𝑖𝑟 }}. (220)

Denote C∗ := {𝑖1, . . . , 𝑖𝑟 }. Fix 𝜆 ∈ (0, 1) and define a set

X𝜆,𝑀 :=
{
x = (𝑥1, . . . , 𝑥𝜅 ) ∈ Z𝜅

≥0 : ‖x‖1 = 𝑀, 𝑥𝑖1 ≥ 𝜆𝑀
}
. (221)

We will omit 𝜆 from the subscript of the above sets unless otherwise mentioned. By Proposition 8.6,

P𝜋 (‖𝑊0‖1 = 𝑁) = Θ

((
𝑁 + 𝑟 − 1
𝑟 − 1

) (
𝑝∗

𝑝0

)𝑁
)
. (222)

Noting that

P𝜋 (𝑊0 ∈ X𝑁 | ‖𝑊0‖1 = 𝑁) = P𝜋 (𝑊0 ∈ X𝑁 )
P𝜋 (‖𝑊0‖1 = 𝑁) (223)

≥ P𝜋 (‖𝑊0‖1 = 𝑁 −  𝜆𝑁!)
P𝜋 (‖𝑊0‖1 = 𝑁)

(
𝑝∗

𝑝0

)  𝜆𝑁 !
, (224)

it follows that

inf
𝑁 ≥1
P𝜋 (𝑊0 ∈ X𝑁 | ‖𝑊0‖1 = 𝑁) ≥ 𝑐∗ > 0 (225)

for some constant 𝑐∗ = 𝑐∗(𝜆) > 0.
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For each x ∈ Z𝜅
≥0, let Px denote the law of (𝑊𝑥)𝑥≥0 with 𝑊0 = x. We claim that there exist constants

𝐿0, 𝑀0 ≥ 1 and 𝜆, 𝑐0 > 0 such that

inf
𝑀 ≥𝑀0

inf
x∈X𝑀

Px

(
𝜏0 < min(𝜏𝑀+𝐿0 , 𝑐0𝑀

2)
)
> 0. (226)

Due to (225), this is enough to conclude (192). Indeed, since 𝑊0 ∈ X𝑁 implies ‖𝑊0‖1 = 𝑁 , (225)
implies

P𝜋 (· | ‖𝑊0‖1 = 𝑁) ≥ 𝑐∗P𝜋 (· |𝑊0 ∈ X𝑁 ) ≥ 𝑐∗ inf
x∈X𝑁

P𝜋 (·). (227)

Also note that, for any integer 𝐿0 ≥ 1,

Px

(
𝜏0 < min(𝜏𝑁 , 𝑐0𝑁

2 + 𝐿0)
)

≥ 𝑝𝐿0
0 Py

(
𝜏0 < min(𝜏𝑁+𝐿0 , 𝑐0𝑁

2)
)
, (228)

where y ∈ X𝑁−𝐿0 is the carrier state obtained by inserting 𝐿0 0’s into the carrier with state x. This yields

inf
𝑁 ≥𝑁0

P𝜋

(
𝜏0 < min(𝜏𝑁 , 𝑐0𝑁

2 + 𝐿0) | ‖𝑊0‖1 = 𝑁
)

≥ 𝑐∗ inf
𝑁 ≥𝑁0

inf
x∈X𝑁−𝐿0

Px

(
𝜏0 < min(𝜏𝑁+𝐿0 , 𝑐0𝑁

2)
)
,

where the right-hand side is positive due to (226) by choosing 𝑁0 = 𝑀0 + 𝐿0.
For the rest of the proof, we will show (226). Let 𝑎 := 𝑖1, 𝜌 := inf{𝑥 ≥ 0 : 𝑊𝑥 (𝑖1) = 0} and

𝜏0 := inf{𝑥 ≥ 0 : ‖𝑊𝑥 ‖1 = 0}. According to Lemma 8.3, there exists a constant 𝑐0 > 0 such that
𝜏0 ≤ 𝑐0‖𝑊0‖2

1 with a positive probability. Denote 𝑀 := ‖𝑊0‖1 and fix 𝜀, 𝐿 > 0. Define the following
events:

𝐴1 := {𝜏0 ≤ 𝑐0𝑀
2}, (229)

𝐴2 :=
{
‖𝑊 ≥𝑎

𝑥 ‖1 ≤ 𝑀 + 𝐿

2
− 2𝜀𝑥 for all 𝑥 ∈ [0, 𝜌]

}
, (230)

𝐴3 :=
{
‖𝑊<𝑎

𝑥 ‖1 ≤ 𝐿

2
+ 𝜀𝑥 for all 𝑥 ≥ 0

}
, (231)

𝐴4 := {‖𝑊𝑥 ‖1 ≤ 𝑀 for all 𝑥 ∈ [𝜌, 𝜏0]}. (232)

Note that {
‖𝑊𝑥 ‖1 hits 0 before it hits 𝑀 + 𝐿 for some 𝑥 ≤ 𝑐0𝑀

2} ⊇ 𝐴 :=
4⋂

𝑖=1
𝐴𝑖 . (233)

Thus, it suffices to show that, for 𝑀0, 𝐿 sufficiently large and 𝜀 > 0 sufficiently small,

inf
𝑀 ≥𝑀0

inf
x∈X𝑀

Px(𝐴) > 0. (234)

To this effect, first note that 𝐴1 occurs with a uniformly positive probability by Lemma 8.3. Next, we
observe that 𝐴2 and 𝐴3 occur with high probability. For 𝐴2, according to Lemma 8.2, ‖𝑊 ≥𝑎

𝑥 ‖1 ≤ 𝑆𝑥 for
all 𝑥 ∈ [0, 𝜌), where (𝑆𝑥)𝑠≥0 is a biased random walk on Z with a negative drift 𝑝𝑎 − 𝑝0 < 0. Let 𝜌′

denote the first time that (𝑆𝑥)𝑠≥0 hits the origin. Then 𝜌 ≤ 𝜌′ by the coupling, so

Px (𝐴𝑐
2 ) ≤ P

(
𝑆𝑥 > 𝑆0 + 𝐿

2
− 2𝜀𝑥 for some 𝑥 ≥ 0

)
. (235)

The right-hand side above is the probability that a biased simple random walk on Zwith mean increment
𝑝𝑎 − 𝑝0 +2𝜀 starts at zero and ever reaches height 𝐿/2. We choose 𝜀 > 0 small so that 𝑝𝑎 − 𝑝0 +2𝜀 < 0.
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Then by gambler’s ruin for a negatively biased simple random walk onZ, this probability is exponentially
small in L. Thus, by choosing L large and 𝜀 > 0 small, we can make inf𝑀 ≥1,x∈X𝑀 Px (𝐴2) arbitrarily
close to one.

For 𝐴3, let 𝑋𝑥 denote the decoupled carrier process with exceptional colors C𝑒 = {𝑎}. Then by
Proposition 6.2, ‖𝑊<𝑎

𝑥 ‖1 ≤ ‖ 𝑋̂<𝑎
𝑥 ‖1 = ‖𝑋<𝑎

𝑥 ‖1 for all 𝑥 ≥ 0. Note that ‖𝑊<𝑎
0 ‖1 ≤ (1 − 𝜆)𝑀 since

𝑊0 ∈ X𝑀 . Moreover, note that 𝑋<𝑎
𝑥 behaves exactly as the subcritical carrier process with ball colors in

{1, . . . , 𝑎} and balls of color a acting as the empty box. That is, 𝑋<𝑎
𝑥 evolves by the circular exclusion

restricted on colors {1, . . . , 𝑎} while ignoring balls of colors in {𝑎 + 1, . . . , 𝜅, 0}. Thus, 𝑋<𝑎
𝑥 is a

lazy version of a carrier process with subcritical ball density as max(𝑝1, . . . , 𝑝𝑖1−1) < 𝑝𝑖1 . Thus, by
Lemma 8.4, lim sup

𝑛→∞
max0≤𝑥≤𝑛 𝑛

−1‖𝑋<𝑎
𝑥 ‖1 ≤ 𝜀 almost surely. Hence, 𝐴3 occurs with high probability

for any fixed 𝜀 > 0 if L is large enough.
Next, we show that

⋂4
𝑖=1 𝐴𝑖 occur with a uniformly positive probability. By definition, 𝜌 < 𝜏0. By

the definition of the set X𝑀 in (221), we get 𝑊0 (𝑎) ≥ 𝜆𝑀 . Since 𝑊𝑥 (𝑎) can decrease at most by one, it
follows that 𝜌 ≥ 𝜆𝑀 almost surely. On 𝐴2 ∩ 𝐴3, ‖𝑊𝜌‖1 ≤ 𝑀 (1 − 𝜆𝜀) + 𝐿. Thus,

𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ 𝐴𝑐
4 (236)

⊆ {‖𝑊𝑥 ‖1 makes an up-crossing from 𝑀 (1 − 𝜆𝜀) + 𝐿 to 𝑀 + 𝐿 in 𝑐0𝑀
2 steps} (237)

⊆
⋃

1≤𝑖≤𝜅

{𝑊𝑥 (𝑖) makes an up-crossing of length 𝑀𝜆𝜀/𝜅 in 𝑐0𝑀
2 steps}. (238)

By the coupling (194) in Lemma 8.2, the last up-crossing probability is exponentially small in M. This
shows

Px

( 4⋂
𝑖=1

𝐴𝑖

)
≥ Px

( 3⋂
𝑖=1

𝐴𝑖

)
− 𝑒−𝑂 (𝑀 ) . (239)

Since 𝐴1 has uniformly positive probability and 𝐴2 ∩ 𝐴3 has a high probability, by union bound, the
above is uniformly positive for M sufficiently large. This finishes the proof. �

8.2. Order statistics of the excursion heights and multidimensional Gambler’s ruin

According to Theorem 2.3 (i), the carrier process (𝑊𝑥)𝑥≥0 in the subcritical regime 𝑝0 >
max(𝑝1, · · · , 𝑝𝜅 ) will visit the origin 0 := (0, 0, · · · , 0) ∈ (Z≥0)𝜅 infinitely often with finite mean
excursion time 𝜋(0)−1. Namely, the number 𝑀𝑛 of visits of 𝑊𝑥 to 0 during [1, 𝑛] (defined in (36))
satisfies

𝑀𝑛

𝑛
→ 𝜋(0) =

𝜅∏
𝑖=1

(
1 − 𝑝𝑖

𝑝0

)
a.s. as 𝑛 → ∞ (240)

by Theorem 2.3 (i) and the Markov chain ergodic theorem.
According to Lemma 3.1, the first soliton length 𝜆1(𝑛) is essentially the same as the maximum of

the first 𝑀𝑛 excursion heights of the carrier process. Roughly speaking, each excursion height is 𝑂 (1)
with an exponential tail. Since there are 𝑀𝑛 ∼ 𝜋(0)𝑛 i.i.d. excursions, their maximum height behaves
as 𝑂 (log 𝑛).

To make this estimate more precise, we analyze the order statistics of the excursion heights of the
carrier process during [1, 𝑛]. For this, let ℎ1:𝑚 ≥ ℎ2:𝑚 ≥ · · · ≥ ℎ𝑚:𝑚 denote the order statistics of the
first m excursion heights ℎ1, · · · , ℎ𝑚. The strong Markov property ensures that these excursion heights
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are i.i.d., so we have

P{ℎ 𝑗:𝑚 ≤ 𝑁} =
𝑗−1∑
ℓ=0

(
𝑚

ℓ

)
P(ℎ1 ≤ 𝑁)𝑚−ℓ

P(ℎ1 > 𝑁)ℓ , 𝑗 = 1, · · · , 𝑚. (241)

In the simplest case 𝜅 = 1, the distribution function of the excursion height ℎ1 follows from the standard
gambler’s ruin probability and is given by

P(ℎ1 ≤ 𝑁) =
(
1 − 1 − 2𝑝

𝜃𝑁+1 − 1

)
1(𝑁 ≥ 0), (242)

where 𝜃 = 𝑝0/𝑝1 (see [LLP20, Sec. 4]). In order to obtain sharp asymptotics for top soliton lengths in
the multicolor case, we need a similar result for a generalized gambler’s ruin problem. That is, we need
an asymptotic expression of the probability that the subcritical carrier process reaches ‘height’ N (see
(37)) before coming back to the origin.

However, solving the ‘carrier’s ruin’ problem asymptotically for 𝑁 → ∞ seems to be a nontrivial
problem. The essential issue is that the subcritical carrier process for 𝜅 ≥ 2 may have a positive drift on
a boundary of its state space. For instance, consider the 𝜅 = 2 carrier process as in Figure 1. Assuming
𝑝0 > max(𝑝1, 𝑝2), the carrier process has a drift toward the origin in the interior and the right boundary
of the state space Z2

≥0, but this is not necessarily true when there is no ball of color 1 (e.g., consider
p = (0.4, 0.3, 0.3)). A standard martingale argument for the gambler’s ruin problem for 𝜅 = 1 does not
seem to readily apply for the general 𝜅 ≥ 2 dimensional case for this reason. Another standard approach
is the one-step analysis, which is computationally challenging since it involves inverting a large matrix
(with blocks of expanding sizes) at every N, and one needs to obtain an asymptotic expression of the
solution of a 𝑁 𝜅 × 𝑁 𝜅 linear equation as 𝑁 → ∞.

Despite the technical difficulties we mentioned above, as stated in Theorem 2.3 (ii), we are able to
obtain exact asymptotic expression on the probability that an excursion reaches height N as 𝑁 → ∞.
Our analysis uses a novel idea of ‘stationary balancing’, which we believe to be useful for solving other
multidimensional ruin problems. A major technical component we will use in the proof is Proposition
8.1(ii).

The following combinatorial observation will be used in the proof of Theorem 2.3 (ii) below. It states
that if we have k independent geometric random variables of parameters 𝑝1/𝑝0, . . . , 𝑝𝜅/𝑝0, and if we
condition on their sum being N, then the total mass should be concentrated on the most probable colors.
We note that in the statement, the 1 − 𝑝𝑖

𝑝0
terms are omitted from the product since they are all between

1 − 𝑝∗

𝑝0
and 1. The proof is given at the end of this section.

Proposition 8.6. Let 𝑝0 > 𝑝∗ = max(𝑝1, . . . , 𝑝𝜅 ). Let r denote the number of i’s in {1, . . . , 𝜅} such that
𝑝𝑖 = 𝑝∗. If 𝑝1 = · · · = 𝑝𝜅 , then ∑

𝑥1+···+𝑥𝜅=𝑁

𝜅∏
𝑖=1

(
𝑝𝑖

𝑝0

) 𝑥𝑖

=

(
𝑝∗

𝑝0

)𝑁 (
𝑁 + 𝜅 − 1
𝜅 − 1

)
. (243)

Suppose 𝑟 < 𝜅 and let 𝑝 (2) denote the second largest value among 𝑝1, . . . , 𝑝𝜅 . Then(
𝑝∗

𝑝0

)𝑁 (
𝑁 + 𝑟 − 1
𝑟 − 1

)
≤

∑
𝑥1+···+𝑥𝜅=𝑁

𝜅∏
𝑖=1

(
𝑝𝑖

𝑝0

) 𝑥𝑖

≤
(
𝑝∗

𝑝0

)𝑁 (
𝑁 + 𝑟 − 1
𝑟 − 1

) (
𝑝∗

𝑝∗ − 𝑝 (2)

) 𝜅−𝑟

. (244)

We are now ready to prove Theorem 2.3 (ii).

Proof of Theorem 2.3 (ii). Fix two disjoint subsets 𝐴, 𝐵 ⊆ Z𝜅
≥0. Let 𝜏𝑖 for 𝑖 ≥ 1 denote the ith time that

the Markov chain (𝑊𝑥)𝑥≥0 hits the union 𝐴 ∪ 𝐵. Then by strong Markov property, the subsequential
process𝑊𝑖 := 𝑊𝜏𝑖 for 𝑖 ≥ 1 is a Markov chain on the state space 𝐴∪𝐵. Since (𝑊𝑥)𝑥≥0 is irreducible and
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aperiodic, so is the restricted chain (𝑊𝑖)𝑖≥1. So if the restricted chain has a stationary distribution, it has
to be unique. Note that the following probability distribution 𝜋𝐴∪𝐵 on 𝐴 ∪ 𝐵 is a stationary distribution
for (𝑊𝑖)𝑖≥1:

𝜋𝐴∪𝐵 (x) = 𝜋(x)/𝜋(𝐴 ∪ 𝐵) for x ∈ 𝐴 ∪ 𝐵, (245)

where for each subset 𝑅 ⊆ Z𝜅
≥0, we denote 𝜋(𝑅) :=

∑
y∈𝑅 𝜋(y). Here, 𝜋 is the stationary distribution for

the subcritical carrier process defined in (9). This can be justified by using the Markov chain ergodic
theorem (see, for example, [AF02, Sec. 2.7.1]).

Let (𝑊 ′
𝑥)𝑥≥0 be a carrier process on the ball configuration 𝜉p but initialized as 𝑊 ′

0 ∼ 𝜋𝐴∪𝐵. If we
restrict this chain at hitting times of 𝐴∪𝐵, then the restricted chain is stationary with distribution 𝜋𝐴∪𝐵.
That is, if we denote the ith time that 𝑊 ′

𝑡 visits 𝐴 ∪ 𝐵 as 𝜏′
𝑖 , then 𝑊 ′

0 and 𝑊 ′
𝜏′

1
has the same distribution

𝜋𝐴∪𝐵. The key idea is to treat the restricted stationary process (𝑊 ′
𝜏′
𝑖
)𝑖≥0 as if it is a two-state process on

{𝐴, 𝐵} and then derive a ‘balance equation’ for the mass transport between A and B.
By using (245),

P
(
𝑊 ′

𝑥 visits 𝐵 before 𝐴
)
= P

(
𝑊 ′

𝜏′
1
∈ 𝐵

)
= 𝜋𝐴∪𝐵 (𝐵) = 𝜋(𝐵)

𝜋(𝐴 ∪ 𝐵) . (246)

This gives

𝜋𝐴∪𝐵 (𝐵) = P
(
𝑊 ′

𝑥 visits 𝐵 before 𝐴
)

(247)
= P

(
𝑊 ′

𝑥 visits 𝐵 before 𝐴, 𝑊 ′
0 ∈ 𝐴

)
+ P

(
𝑊 ′

𝑡 visits 𝐵 before 𝐴, 𝑊 ′
0 ∈ 𝐵

)
(248)

= P

(
𝑊 ′

𝑥 visits 𝐵 before 𝐴

����𝑊 ′
0 ∈ 𝐴

)
𝜋𝐴∪𝐵 (𝐴) (249)

+ P
(
𝑊 ′

𝑥 visits 𝐵 before 𝐴

����𝑊 ′
0 ∈ 𝐵

)
𝜋𝐴∪𝐵 (𝐵). (250)

Simplifying using (245), we obtain the following ‘balance equation’:

P

(
(𝑊 ′

𝑥)𝑥≥1 visits 𝐵 before 𝐴

����𝑊 ′
0 ∈ 𝐴

)
(251)

= P

(
(𝑊 ′

𝑥)𝑥≥1 visits 𝐴 before 𝐵
����𝑊 ′

0 ∈ 𝐵

)
𝜋(𝐵)
𝜋(𝐴) . (252)

Now we specialize in the above result. Take 𝐴 = {0} and 𝐵 = {x ∈ Z𝜅
≥0 : ‖x‖1‖1 = 𝑁}. Note that

P
(
(𝑊 ′

𝑥)𝑥≥1 visits 𝐵 before 0 |𝑊 ′
0 = 0

)
= P(ℎ1 ≥ 𝑁). (253)

Recalling the the formula for 𝜋 in (9), it follows that

P(ℎ1 ≥ 𝑁) = P
(
𝑊 ′

𝑥 visits 0 before 𝐵 |𝑊 ′
0 ∈ 𝐵

) ∑
𝑥1+···+𝑥𝜅=𝑁

𝜅∏
𝑖=1

(
𝑝𝑖

𝑝0

) 𝑥𝑖

, (254)

where the sum is over all integers 𝑥1, . . . , 𝑥𝜅 ≥ 0 that sum to N. The above along with Proposition 8.6
is enough to deduce the upper bound in (12).

To obtain a lower bound of matching order, we need to show that the probability in the right-hand
side of (254) is uniformly positive for all sufficiently large N. This requires a substantial analysis, which
we have done in proving Proposition 8.1. By this result, there exists a constant 𝛿 > 0 such that

lim inf
𝑁 ≥1

P
(
(𝑊 ′

𝑥)𝑥≥1 visits 0 before 𝐵 |𝑊 ′
0 ∈ 𝐵

)
> 𝛿 > 0. (255)

Then the assertion follows from (254), (255) and Proposition 8.6. �

https://doi.org/10.1017/fms.2024.74 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.74


48 J. Lewis et al.

Proof of Proposition 8.6. Suppose we have real numbers 𝑎1 = 𝑎2 = · · · = 𝑎𝑟 ≥ 𝑎𝑟+1 ≥ · · · ≥ 𝑎𝜅 > 0.
Note that ∑

𝑥1+···+𝑥𝜅=𝑁

𝑎𝑥1
1 · · · 𝑎𝑥𝜅

𝜅 = 𝑎𝑁
1

∑
𝑥1+···+𝑥𝜅=𝑁

(
𝑎𝑟+1
𝑎1

) 𝑥𝑟+1

· · ·
(
𝑎𝜅

𝑎1

) 𝑥𝜅

= 𝑎𝑁
1

𝑁∑
𝑞=0

(
𝑞 + 𝑟 − 1
𝑟 − 1

) ∑
𝑥𝑟+1+···+𝑥𝜅=𝑁−𝑞

(
𝑎𝑟+1
𝑎1

) 𝑥𝑟+1

· · ·
(
𝑎𝜅

𝑎1

) 𝑥𝜅

. (256)

If 𝑎1 = · · · = 𝑎𝜅 , then the above expression equals to 𝑎𝑁
1

(𝑁+𝜅−1
𝜅−1

)
. Hence, if 𝑝1 = · · · = 𝑝𝜅 , we get (243).

We now assume 𝑎1 = · · · = 𝑎𝑟 > 𝑎𝑟+1 ≥ · · · ≥ 𝑎𝜅 for some 𝑟 ∈ {1, . . . , 𝜅}. Then the last expression
in (256) is at most

𝑎𝑁
1

𝑁∑
𝑞=0

(
𝑞 + 𝑟 − 1
𝑟 − 1

) ∑
𝑥𝑟+1+···+𝑥𝜅=𝑁−𝑞

(
𝑎𝑟+1
𝑎1

)𝑁−𝑞

(257)

= 𝑎𝑁
1

𝑁∑
𝑞=0

(
𝑞 + 𝑟 − 1
𝑟 − 1

) (
𝑁 − 𝑞 + 𝜅 − 𝑟 − 1

𝜅 − 𝑟 − 1

) (
𝑎𝑟+1
𝑎1

)𝑁−𝑞

(258)

≤ 𝑎𝑁
1

(
𝑁 + 𝑟 − 1
𝑟 − 1

) [∑
𝑛≥0

(
𝑛

𝜅 − 𝑟 − 1

) (
𝑎𝑟+1
𝑎1

)𝑛−(𝜅−𝑟−1)
]
. (259)

Note that the sum in the bracket above equals

(
𝑎1
𝑎𝑟+1

) (𝜅−𝑟−1) ∑
𝑛≥0

(
𝑛

𝜅 − 𝑟 − 1

) (
𝑎𝑟+1
𝑎1

)𝑛

=

(
𝑎1
𝑎𝑟+1

) (𝜅−𝑟−1)
(
𝑎𝑟+1
𝑎1

) (𝜅−𝑟−1)(
1 − 𝑎𝑟+1

𝑎1

) 𝜅−𝑟 =

(
𝑎1

𝑎1 − 𝑎𝑟+1

) 𝜅−𝑟

, (260)

where we used the generating function
∑

𝑛≥0
(𝑛
𝑘

)
𝑦𝑛 = 𝑦𝑘

(1−𝑦)𝑘+1 (with
(𝑛
𝑘

)
= 0 for 𝑛 < 𝑘). Hence, it follows

that ∑
𝑥1+···+𝑥𝜅=𝑁

𝜅∏
𝑖=1

(
𝑝𝑖

𝑝0

) 𝑥𝑖

≤
(
𝑝∗

𝑝0

)𝑁 (
𝑁 + 𝑟 − 1
𝑟 − 1

) (
𝑝∗

𝑝∗ − 𝑝 (2)

) 𝜅−𝑟

. (261)

For the lower bound, note that the last expression in (256) is at least

𝑎𝑁
1

𝑁∑
𝑞=0

(
𝑞 + 𝑟 − 1
𝑟 − 1

) ∑
𝑥𝑟+1+···+𝑥𝜅=𝑁−𝑞

(
𝑎𝜅

𝑎1

)𝑁−𝑞

(262)

= 𝑎𝑁
1

𝑁∑
𝑞=0

(
𝑞 + 𝑟 − 1
𝑟 − 1

) (
𝑁 − 𝑞 + 𝜅 − 𝑟 − 1

𝜅 − 𝑟 − 1

) (
𝑎𝜅

𝑎1

)𝑁−𝑞

≥ 𝑎𝑁
1

(
𝑁 + 𝑟 − 1
𝑟 − 1

)
. (263)

Hence, we get ∑
𝑥1+···+𝑥𝜅=𝑁

𝜅∏
𝑖=1

(
𝑝𝑖

𝑝0

) 𝑥𝑖

≥
(
𝑝∗

𝑝0

)𝑁 (
𝑁 + 𝑟 − 1
𝑟 − 1

)
. (264)

This shows the assertion. �
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8.3. Proof of Theorem 2.4

Now that we have the asymptotic soliton to the ‘carrier’s ruin’ problem (Theorem 2.3(ii)), we are ready
to obtain sharp scaling limit for the top soliton lengths in the subcritical regime, as stated in Theorem 2.4.
To do so, we first obtain the following scaling limit of h 𝑗 (𝑛) using a similar argument to that developed
in [LLP20]. For instance, the maximum excursion height h1 (𝑛) of the subcritical carrier process during
[0, 𝑛] scales like (1 + 𝑜(1)) log 𝑛, where its tail follows the Gumbel distribution up to a constant shift.
The tail cannot have a tight scaling limit due to a rounding error even in the 𝜅 = 1 case; see [LLP20,
Remark 5.5].
Proposition 8.7. Suppose 𝑝0 > 𝑝∗ := max(𝑝1, · · · , 𝑝𝜅 ). Let r denote the multiplicity of 𝑝∗, 𝜃 :=
𝑝0/𝑝∗, and 𝜎 := 𝜋(0) > 0 (see (240)). Let 𝜈𝑛 := (1 + 𝛿𝑛) log𝜃 (𝜎𝑛/(𝑟 − 1)!), where we set 𝛿𝑛 :=
(𝑟−1) log log𝜃 (𝜎𝑛/(𝑟−1)!)+log(𝑟−1)!

log 𝜎𝑛/(𝑟−1)! . Fix 𝑗 ≥ 1 and 𝑥 ∈ R. Then

lim sup
𝑛→∞

[
exp

(
− 𝐶

(𝑟 − 1)! 𝜃
−(𝑥−1) ) ( 𝑗−1∑

ℓ=0

𝜃−ℓ𝑥

ℓ!(𝑟 − 1)!

)]−1 (
P
{
h 𝑗 (𝑛) ≤ 𝑥 + 𝜈𝑛

}
+ 𝑜(1)

)
≤ 1, (265)

lim inf
𝑛→∞

[
exp

(
− 𝛿

(𝑟 − 1)! 𝜃
−(𝑥−1) ) ( 𝑗−1∑

ℓ=0

𝜃−ℓ (𝑥−1)

ℓ!(𝑟 − 1)!

)]−1 (
P
{
h 𝑗 (𝑛) ≤ 𝑥 + 𝜈𝑛

}
+ 𝑜(1)

)
≥ 1, (266)

where constants 𝛿 > 0 and 𝐶 ≥ 1 are as in the Theorem 2.3 (ii).
Proof. Fix 𝜀 ∈ (0, 𝜎) and let 𝑏𝑛 = �(𝜎 − 𝜀)𝑛�. As 𝑀𝑛/𝑛 → 𝜎 a.s. (see (240)), we have that 𝑀𝑛 ≥ 𝑏𝑛

for all sufficiently large n almost surely. Hence, for each fixed 𝑥 ∈ R,

P
(
h 𝑗 (𝑛) ≤ 𝑥 + 𝜈𝑛

)
≤ P

(
ℎ 𝑗:𝑏𝑛 ≤ 𝑥 + 𝜈𝑛

)
+ 𝑜(1). (267)

Furthermore, according to Theorem 2.3 (ii) and (241),

P
(
ℎ 𝑗:𝑏𝑛 ≤ 𝑥 + 𝜈𝑛

)
(268)

≤
𝑗−1∑
ℓ=0

(
𝑏𝑛

ℓ

) (
1 −

𝐶
( �𝑥+𝜈𝑛 �+𝑟−1

𝑟−1
)

𝜃 �𝑥+𝜈𝑛 �

)𝑏𝑛−ℓ ( ( �𝑥+𝜈𝑛 �+𝑟−1
𝑟−1

)
𝜃 �𝑥+𝜈𝑛 �

)ℓ

(269)

=

(
1 −

𝐶
( �𝑥+𝜈𝑛 �+𝑟−1

𝑟−1
)

𝜃 �𝑥+𝜈𝑛 �+1

)𝑏𝑛 𝑗−1∑
ℓ=0

𝑏−ℓ
𝑛

(
𝑏𝑛

ℓ

) (
1 −

𝐶
( �𝑥+𝜈𝑛 �+𝑟−1

𝑟−1
)

𝜃 �𝑥+𝜈𝑛 �

)−ℓ ( ( �𝑥+𝜈𝑛 �+𝑟−1
𝑟−1

)
𝑏𝑛

𝜃 �𝑥+𝜈𝑛 �

)ℓ

. (270)

Since 𝜈𝑛 = (1 + 𝛿𝑛) log𝜃 (𝜎𝑛/(𝑟 − 1)!), note that

log
(
𝜎𝜈𝑟−1

𝑛 𝑛

𝜃𝜈𝑛

)
= (𝑟 − 1) log(1 + 𝛿𝑛) + (𝑟 − 1) log log𝜃 (𝜎𝑛/(𝑟 − 1)!) + log(𝑟 − 1)! (271)

+ 𝛿𝑛 (log(𝑟 − 1)! − log𝜎𝑛) (272)
= (𝑟 − 1) log(1 + 𝛿𝑛) → 0 as 𝑛 → ∞, (273)

where the second equality uses the definition of 𝛿𝑛 and the limit follows since 𝛿𝑛 = 𝑜(1). Using Stirling’s
approximation,

(𝑁+𝑟−1
𝑟−1

)
= (1 + 𝑜(1))𝑁𝑟−1/(𝑟 − 1)! as 𝑁 → ∞, we get

lim
𝑛→∞

𝜃 �𝑥+𝜈𝑛 �

𝜃𝜈𝑛
log

(
1 −

𝐶
( �𝑥+𝜈𝑛 �+𝑟−1

𝑟−1
)

𝜃 �𝑥+𝜈𝑛 �

)𝑏𝑛

= − lim
𝑛→∞

𝑏𝑛𝐶
( �𝑥+𝜈𝑛 �+𝑟−1

𝑟−1
)

𝜃𝜈𝑛
(274)

= − lim
𝑛→∞

1
(𝑟 − 1)!

(
�𝑥 + 𝜈𝑛�

𝜈𝑛

)𝑟−1 𝑏𝑛𝐶𝜈
𝑟−1
𝑛

𝜃𝜈𝑛
(275)

= −
𝐶 (1 − 𝜀

𝜎 )
(𝑟 − 1)! . (276)
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Similarly,

lim
𝑛→∞

𝜃 �𝑥+𝜈𝑛 �

𝜃𝜈𝑛

( �𝑥+𝜈𝑛 �+𝑟−1
𝑟−1

)
𝑏𝑛

𝜃 �𝑥+𝜈𝑛 � =
(1 − 𝜀

𝜎 )
(𝑟 − 1)! . (277)

Writing 𝜂𝑛 = (𝑥 + 𝜈𝑛) − �𝑥 + 𝜈𝑛� ∈ [0, 1), since 𝜃 > 1,

𝜃𝑥−1 ≤ 𝜃 �𝑥+𝜈𝑛 �

𝜃𝜈𝑛
= 𝜃𝑥𝜃−𝜂𝑛 ≤ 𝜃𝑥 . (278)

Also note that lim𝑛→∞ 𝑏−ℓ
𝑛

(𝑏𝑛
ℓ

)
= 1

ℓ! . From the above computations, we deduce

lim sup
𝑛→∞

exp
(

𝐶

(𝑟 − 1)!

(
1 − 𝜀

𝜎

)
𝜃−𝑥+1

) (
1 −

𝐶
( �𝑥+𝜈𝑛 �+𝑟−1

𝑟−1
)

𝜃 �𝑥+𝜈𝑛 �

)𝑏𝑛

≤ 1, (279)

lim sup
𝑛→∞

(𝑟 − 1)!
1 − 𝜀

𝜎

𝜃𝑥−1
( �𝑥+𝜈𝑛 �+𝑟−1

𝑟−1
)
𝑏𝑛

𝜃 �𝑥+𝜈𝑛 � ≤ 1. (280)

Then we obtain

lim sup
𝑛→∞

[
exp

(
− 𝐶

(𝑟 − 1)!

(
1 − 𝜀

𝜎

)
𝜃−(𝑥−1)

) ( 𝑗−1∑
ℓ=0

(1 + 𝜀)
(
1 − 𝜀

𝜎

)ℓ 𝜃−ℓ (𝑥−1)

ℓ!(𝑟 − 1)!

)]−1

(281)

× P
(
ℎ 𝑗:𝑏𝑛 ≤ 𝑥 + 𝜈𝑛

)
(282)

≤ 1. (283)

Therefore, letting 𝜀 ↘ 0 and using (267) give the limsup in the statement. A similar argument using
𝑏𝑛 =  (𝜎 + 𝜀)𝑛! shows the liminf in the statement. �

Now we are ready to establish sharp scaling for the top soliton lengths in the subcritical regime.

Proof of Theorem 2.4. Let 𝜈𝑛 be as in Theorem 2.4. Note that

𝜈𝑛 = log𝜃 𝑛 + (𝑟 − 1) log𝜃 log 𝑛 + 𝑐 + 𝑜(1) (284)

for some constant c. Hence, the asymptotic (13) for 𝜆 𝑗 (𝑛) follows from (14).
Now we derive (14). Fix 𝑗 ≥ 1 and 𝑥 ∈ R. Then by Proposition 8.7,

lim inf
𝑛→∞

P(h1(𝑛) ≤ 𝑥 + 𝜈𝑛) ≥ exp(−𝛿𝜃−𝑥), (285)

lim sup
𝑛→∞

P
(
h 𝑗 (𝑛) ≤ 𝑥 + 𝜈𝑛

)
≤ exp

(
− 𝐶

(𝑟 − 1)!𝜃
−(𝑥−1)

) 𝑗−1∑
𝑘=0

𝜃−𝑘 (𝑥−1)

𝑘!(𝑟 − 1)! . (286)

Moreover, recall the quantities 𝑀𝑛 and 𝑟𝑛 in (36) and (38), respectively. By Lemma 3.1,

h1 (𝑛) = max{ℎ1, · · · , ℎ𝑀𝑛 } ≤ 𝜆1(𝑛) ≤ max{ℎ1, · · · , ℎ𝑀𝑛+1}. (287)

Also, note that

0 ≤ P(h1 (𝑛) ≤ 𝑥 + 𝜈𝑛) − P(max{ℎ1, · · · , ℎ𝑀𝑛+1} ≤ 𝑥 + 𝜈𝑛) ≤ P(ℎ𝑀𝑛+1 > h1(𝑛)) = 𝑜(1). (288)

It follows that

P(𝜆1 (𝑛) ≤ 𝑥 + 𝜈𝑛) = P(h1 (𝑛) ≤ 𝑥 + 𝜈𝑛) + 𝑜(1). (289)
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Moreover, since 𝜆1(𝑛) ≥ 𝜆 𝑗 (𝑛) ≥ h 𝑗 (𝑛) by Lemma 3.1,

P(𝜆1(𝑛) ≤ 𝑥 + 𝜈𝑛) ≤ P
(
𝜆 𝑗 (𝑛) ≤ 𝑥 + 𝜈𝑛

)
≤ P

(
h 𝑗 (𝑛) ≤ 𝑥 + 𝜈𝑛

)
. (290)

Then (285)–(286) show (14), as desired. �

9. The linear scaling limit of the carrier process

In this section, we prove Theorem 2.5 (i), concerning the linear scaling limit of the carrier process 𝑊𝑥

in (8).
Throughout this section, we assume 𝑝0 ≤ 𝑝∗ = max(𝑝1, . . . , 𝑝𝜅 ). In this case, the set Cp

𝑠 of unstable
colors (defined above the statement of Theorem 2.5) is nonempty. Let 𝛼1 < · · · < 𝛼𝑟 denote the unstable
colors. Let (𝑋𝑥)𝑥≥0 be the decoupled carrier process in (128) with C𝑒 = Cp

𝑢 . Recall the process ( 𝑋̂𝑥)𝑥≥0
in (115).

We first show that the coordinate 𝑋𝑥 (ℓ) for ℓ an unstable color of supercritical density behaves like
a random walk with a positive drift.

Proposition 9.1. Fix 𝑗 ∈ {1, . . . , 𝑟} and denote ℓ := 𝛼 𝑗 , ℓ+ := 𝛼 𝑗+1. If 𝑝ℓ > 𝑝ℓ+ , then 𝑀̄ :=
− inf𝑘∈N 𝑋𝑘 (ℓ) has a finite exponential moment.

Proof. Recall that (𝑋𝑥 (ℓ))𝑥≥0 is a Markov additive functional with increments 𝑔ℓ (𝑋𝑠
𝑥 , 𝜉𝑥+1) (see (133)).

Under the hypothesis, it has a positive bias E𝜋𝑠⊗p [𝑔ℓ (𝑋𝑠
𝑥 , 𝜉𝑥+1)] = 𝛼 := 𝑝ℓ − 𝑝ℓ+ > 0 (see Proposition

7.2). Hence, one can expect that 𝑋𝑥 (ℓ) will essentially behave as a simple random walk on Z with a
positive bias. Since 𝑀̄ measures the height of the excursion of 𝑋𝑥 (ℓ) below the x-axis, it should have a
finite exponential moment. Below we give a rigorous justification.

Consider the Markov chain

𝑌𝑥 :=
(
𝑋𝑥 (ℓ + 1), · · · , 𝑋𝑥 (ℓ+ − 1)

)
. (291)

Let 𝜏𝑗 := 𝑗 for 𝑗 ≥ 0 if ℓ+1 = ℓ+; Otherwise, let 𝜏𝑗 be the jth return time of
(
𝑋𝑥 (ℓ+1), · · · , 𝑋𝑥 (ℓ+ −1)

)
to the origin. By strong Markov property, 𝜏1, 𝜏2−𝜏1, 𝜏3−𝜏2, . . . are i.i.d., and they have finite moments of
all orders by Lemma 7.5. Let 𝑅 𝑗 := 𝑋𝜏 𝑗 (ℓ) for 𝑗 ≥ 1. Then (𝑅 𝑗 ) 𝑗≥1 is a random walk. Let 𝜂𝑖 := 𝑅𝑖−𝑅𝑖−1
denote the increments. It has a positive drift as

E[𝜂1] = lim
𝑗→∞

𝑅 𝑗

𝑗
= lim

𝑗→∞

𝑋𝜏 𝑗 (ℓ)
𝜏𝑗

𝜏𝑗

𝑗
= 𝛼 E[𝜏1] > 0, (292)

where the first two equalities use the strong law of large numbers and the Markov chain ergodic theorem.
Next, we claim that 𝑋𝑥 (ℓ) returns to the origin only finitely many times almost surely. First note

that by the strong law of large numbers, 𝑛−1𝑅𝑛 → 𝛼 > 0 almost surely. Hence, 𝑛−1𝑅𝑛 > 𝛼/2 infinitely
often almost surely. Note that for each 𝑗 ≥ 1, since 𝜏𝑗+1 − 𝜏𝑗 is independent from 𝑅 𝑗 and has the same
distribution as 𝜏1, by Chebyshev’s inequality,

P
(
𝑋𝑥 (ℓ) = 0 for some 𝑥 ∈ [𝜏𝑗 , 𝜏𝑗+1)

)
≤ P(𝑅 𝑗 ≤ 𝜏𝑗+1 − 𝜏𝑗 ) (293)
≤ E[P(𝜏𝑗+1 − 𝜏𝑗 ≥ 𝑅 𝑗 | 𝑅 𝑗 )] (294)
≤ E[𝑅−2

𝑗 E[𝜏2
1 ]] (295)

≤ E[𝜏2
1 ]

(
(𝛼 𝑗/2)−2 + 𝑐P(𝑅 𝑗 ≤ (𝛼/2) 𝑗)

)
, (296)

where the last inequality follows by partitioning on two cases depending on 𝑅 𝑗 ≤ (𝛼/2) 𝑗 or 𝑅 𝑗 >
(𝛼/2) 𝑗 . If we denote 𝜂𝑖 := E[𝜂𝑖] − 𝜂𝑖 , then 𝜂𝑖’s are mean zero i.i.d., so, noting that E[𝑅𝑛] = 𝛼𝑛,
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P(𝑅𝑛 ≤ (𝛼/2)𝑛) ≤ P(E[𝑅𝑛] − 𝑅𝑛 ≥ (𝛼/2)𝑛) (297)

≤ P
(

𝑛∑
𝑖=1

−𝜂𝑖 ≥ (𝛼/2)𝑛
)

(298)

≤ P'()
(

𝑛∑
𝑖=1

−𝜂𝑖

)4

≥ (𝛼/2)4𝑛4*+, (299)

≤
𝐶 (E[𝜂2

1]
2 + E[𝜂4

1])
𝑛2 (300)

for some constant 𝐶 > 0. Note that for the last inequality, we have used Chebyshev’s inequality along
with the fact that only the 𝑂 (𝑛2) terms of the form 𝜂2

𝑖 𝜂
2
𝑗 for 𝑖 ≠ 𝑗 and 𝜂4

𝑖 have nonzero expectations.
Sincet |𝜂1 | ≤ 𝜏1 has a finite moments of all orders, so does 𝜂1. Thus, (293) implies∑

𝑗≥1
P
(
𝑍𝑥 (0) = 0 for some 𝑥 ∈ [𝜏𝑗 , 𝜏𝑗+1)

)
< ∞. (301)

By the Borel-Cantelli lemma, it follows that 𝑋𝑥 (ℓ) visits the origin only finitely many times almost
surely. This shows the claim.

Now we conclude that 𝑀̄ has a finite exponential moment. For this, we use the general result by
Hansen [Han06] about the running maximum of a random walk with negative drift – that if the running
maximum is uniformly bounded almost surely, then the supremum of the running maximum has a finite
exponential moment. We apply this result to the random walk (−𝑅 𝑗 ) 𝑗≥1. According to the claim, it
follows that sup𝑥≥0 −𝑋𝑥 (ℓ) = − inf𝑥≥0 𝑋𝑥 (ℓ) is almost surely finite. Hence, sup 𝑗≥1 −𝑅 𝑗 is almost surely
finite, so by [Han06, Thm. 2.1], sup 𝑗≥1 −𝑅 𝑗 = − inf 𝑗≥1 𝑅 𝑗 has a finite exponential moment. Since the
increments of 𝑅 𝑗 have finite exponential moments, we can conclude that − inf𝑥≥0 𝑋𝑥 (ℓ) also has a finite
exponential moment. �

Proposition 9.2. Let 𝑗 ∈ {1, . . . , 𝑟} be arbitrary with ℓ := 𝛼 𝑗 , ℓ+ := 𝛼 𝑗+1, and 𝑝ℓ > 𝑝ℓ+ . Then for each
integer 𝑑 ≥ 1, there exists a constant 𝑐 > 0 such that for all 𝑛 ≥ 1 and 𝑠 > 0,

P

(
max

0≤𝑡≤𝑛
𝑋𝑡 (ℓ) − 𝑋𝑛 (ℓ) ≥ 𝑠

)
≤ exp(−𝑐𝑠), (302)

P

(���� max
0≤𝑡≤𝑛

𝑋̂𝑡 (ℓ) − 𝑋𝑛 (ℓ)
���� ≥ 𝜀

)
≤ exp(−𝑐𝑠).

Proof. Consider the following Markov chain

𝑌𝑥 :=
(

max
1≤𝑠≤𝑥

𝑋𝑠 (ℓ) − 𝑋𝑥 (ℓ), 𝑋𝑥 (ℓ + 1), · · · , 𝑋𝑥 (ℓ+ − 1)
)

(303)

on Zℓ+−ℓ
≥0 . Note that 𝑌0 = 0. Let 𝜏 denote the first return time of 𝑌𝑥 to the origin. In Theorem 7.3, we

have shown that 𝜏 has finite moments of all orders. Let 𝐿1, 𝐿2, . . . denote the lengths of excursions of
𝑌𝑥 to the origin. Since 𝐿𝑘 ≥ 1 for all 𝑘 ≥ 1, 𝑀𝑛 ≤ 𝑛. Let ℎ1, ℎ2, · · · denote its subsequent excursion
heights of 𝑌𝑥 . Since ℎ1 ≤ 𝐿1 = 𝜏, and using the elementary inequality,

1 − (1 − 𝑎)𝑛 ≤ 𝑛𝑎 for 𝑎 ∈ (0, 1), (304)

for each 𝑠 > 0,

P

(���� max
1≤𝑡≤𝑛

𝑋𝑡 (ℓ) − 𝑋𝑛 (ℓ)
���� ≥ 𝑠

)
≤ P(‖𝑌𝑛‖1 ≥ 𝑠) (305)

≤ P
(
max(ℎ1, . . . , ℎ𝑀𝑛 ) ≥ 𝑠

)
(306)
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≤ P(max(ℎ1, . . . , ℎ𝑛) ≥ 𝑠) (307)
≤ 1 − (1 − P(ℎ1 ≥ 𝑠))𝑛 (308)
≤ 𝑛 P(ℎ1 ≥ 𝑠) (309)
≤ 𝑛 P(𝜏 ≥ 𝑠). (310)

Note that P(𝜏 ≥ 𝑠) is exponentially small in s. Hence, the first inequality in (302) follows.
Next, we show the second inequality in (302). By definition of 𝑋̂𝑥 , we have

P

(���� max
1≤𝑠≤𝑥

𝑋̂𝑠 (ℓ) − 𝑋𝑥 (ℓ)
���� ≥ 𝑠

)
= P

(���� max
0≤𝑠≤𝑥

(
𝑋𝑠 (ℓ) − min

0≤𝑡≤𝑠
𝑋𝑡 (ℓ)

)
− 𝑋𝑥 (ℓ)

���� ≥ 𝑠

)
(311)

≤ P
(

max
0≤𝑠≤𝑥

𝑋𝑠 (ℓ) − 𝑋𝑥 (ℓ) ≥ 𝑠/2
)

(312)

+ P
(

max
0≤𝑠≤𝑥

(
− min

0≤𝑡≤𝑠
𝑋𝑡 (ℓ)

)
≥ 𝑠/2

)
. (313)

The second term in the last expression is exponentially small in s due to Proposition 9.1. Hence, the
second inequality in (302) follows from the above and the first equality in (302). �

The following lemma shows half of Theorem 2.5 (i).

Lemma 9.3. Let 𝝁 = (𝜇1, . . . , 𝜇𝜅 ) :=
∑𝑟

𝑗=1 e𝛼𝑗 (𝑝𝛼𝑗 − 𝑝𝛼𝑗+1 ). For 𝑖 = 1, . . . , 𝜅, almost surely,

lim sup
𝑛→∞

𝑛−1
(

max
0≤𝑡≤𝑛

𝑊𝑡 (𝑖)
)

≤ 𝜇𝑖 . (314)

Proof. By Proposition 6.2,

max
0≤𝑡≤𝑥

𝑊𝑥 (𝑖) ≤ max
0≤𝑡≤𝑥

𝑋̂𝑥 (𝑖) 𝑖 = 1, . . . , 𝜅, (315)

where 𝑋̂𝑥 (𝑖) = 𝑋𝑥 (𝑖) − min0≤𝑠≤𝑥 𝑋𝑠 (𝑖). Let 𝜏0 := 0, let 𝜏𝑗 for 𝑗 ≥ 1 denote the jth return time of
𝑋𝑠

𝑥 to the origin, and let ℎ 𝑗 denote the maximum value of ‖𝑋𝑠
𝑠 ‖1 during the interval [𝜏𝑗−1, 𝜏𝑗 ]. By

the strong Markov property, ℎ 𝑗 ’s are i.i.d. By Lemma 7.1, (𝑋𝑠
𝑥)𝑥≥0 is a Markov chain on Z𝜅

≥0 with a
unique stationary distribution, and its return time to the origin, say 𝜏, has finite moments of all order by
Theorem 7.3.

Now note that, for each 𝑠 > 0,

P

(
max

0≤𝑡≤𝑛
‖𝑋𝑠

𝑡 ‖1 ≥ 𝑠

)
≤ P(max(ℎ1, . . . , ℎ𝑛) ≥ 𝑠) = 1 − (1 − P(ℎ1 ≥ 𝑠))𝑛 (316)

≤ 𝑛 P(ℎ1 ≥ 𝑠) ≤ 𝑛 P(𝜏 ≥ 𝑠). (317)

Now choosing 𝑠 = 𝑛1/4, it follows that P
(
𝑛−1/2 max0≤𝑡≤𝑛‖𝑋𝑠

𝑡 ‖1 ≥ 𝑛−1/4) is summable, so by the Borel-
Cantelli lemma,

lim
𝑛→∞

𝑛−1/2 max
0≤𝑡≤𝑛

‖𝑋𝑠
𝑡 ‖1 = 0 a.s. (318)

Combining with (315) and recalling 𝑋̂𝑥 (𝑖) = 𝑋𝑥 (𝑖) for 𝑖 ∈ Cp
𝑠 , we deduce (314) for all 𝑖 ∈ Cp

𝑠 .
By the argument in the previous paragraph, we may assume the set Cp

𝑢 of unstable colors is nonempty,
and it remains to show the statement for unstable colors. Fix 𝑗 ∈ {1, . . . , 𝑟} and let ℓ = 𝛼 𝑗 , ℓ+ = 𝛼 𝑗+1
(with 𝛼𝑟+1 = 0). Since ℓ is an unstable color, 𝑝ℓ ≥ 𝑝ℓ+ . First, suppose 𝑝ℓ > 𝑝ℓ+ . Then Propositions 9.2
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and 7.9 imply

lim
𝑛→∞

𝑛−1 max
1≤𝑡≤𝑛

𝑋̂𝑡 (ℓ) = lim
𝑛→∞

𝑛−1𝑋𝑛 (ℓ) = 𝑝ℓ − 𝑝ℓ+ (319)

almost surely. Then the assertion follows from (315).
It remains to consider the case 𝑝ℓ = 𝑝ℓ+ . In this case, we wish to show

lim sup
𝑛→∞

𝑛−1
(

max
0≤𝑡≤𝑛

𝑊𝑡 (ℓ)
)
= 0. (320)

Rewrite (315) as

max
0≤𝑡≤𝑥

𝑊𝑥 (ℓ) ≤ max
0≤𝑡≤𝑥

(
𝑋𝑡 (ℓ) − min

0≤𝑘≤𝑡
𝑋𝑘 (ℓ)

)
≤ max

0≤𝑡≤𝑥
𝑋𝑡 (ℓ) + max

0≤𝑡≤𝑥
(−𝑋𝑡 (ℓ)). (321)

Hence, it suffices to show

lim sup
𝑛→∞

𝑛−1
(

max
0≤𝑡≤𝑛

𝑋𝑡 (ℓ)
)
= lim sup

𝑛→∞
𝑛−1

(
max

0≤𝑡≤𝑛
−𝑋𝑡 (ℓ)

)
= 0. (322)

First assume ℓ+1 = ℓ+. In this case 𝑋𝑥 (ℓ) is a lazy simple random walk on Z. Hence, by the reflection
principle,

P

(
max

0≤𝑡≤𝑛
(−𝑋𝑡 (ℓ)) ≥ 𝑎

)
≤ 2P(−𝑋𝑛 (ℓ) ≥ 𝑎) ≤ exp(−𝑎

2

𝑛
). (323)

The right-hand side is exponentially small in a by the bounded difference inequality. So taking 𝑎 = 𝑛2/3

and applying the Borel-Cantelli lemma show that 𝑛−1 max0≤𝑡≤𝑛 (−𝑋𝑡 (ℓ)) converges to zero almost surely.
By a symmetric argument, the same conclusion holds for 𝑛−1 max0≤𝑡≤𝑛 𝑋𝑡 (ℓ). Hence, this verifies the
assertion.

Lastly, suppose ℓ + 1 < ℓ+. In this case, 𝑋𝑥 (ℓ) is not a random walk. Instead, from (133), we can
write it as a Markov additive functional:

𝑋𝑥 (ℓ) =
𝑥∑

𝑡=0
𝑔ℓ (𝑋𝑠

𝑡 , 𝜉𝑡+1). (324)

Moreover, the increment 𝑔ℓ (𝑋𝑠
𝑡 , 𝜉𝑡+1) does not depend on the whole 𝑋𝑠

𝑡 , but only on

𝑌𝑡 :=
(
𝑋𝑡 (ℓ + 1), · · · , 𝑋𝑡 (ℓ+ − 1)

)
. (325)

Let 𝜏0 = 0 and 𝜏𝑖 for 𝑖 ≥ 1 denote the ith return time of 𝑌𝑥 to the origin. According to Theorem 7.3, 𝜏1
(and hence all 𝜏𝑖’s) have a finite moments of all orders.

Consider the process 𝑅𝑖 := −𝑋𝜏𝑖 (ℓ). By the strong Markov property, the sequence 𝑅𝑖 for 𝑖 ≥ 1 is a
random walk. Denote its increment 𝜂𝑖 := 𝑅𝑖 − 𝑅𝑖−1. Then 𝜂𝑖 has finite moments of all orders since each
𝜏𝑖 − 𝜏𝑖−1 does so, and 𝑋𝑥 (ℓ) changes at most by one in x. Moreover, by the strong law of large numbers
and the Markov chain ergodic theorem,

E[𝜂1] = lim
𝑛→∞

𝑅𝑛

𝑛
= lim

𝑛→∞

𝜏𝑛
𝑛

(−𝑋𝜏𝑛 (ℓ) )
𝜏𝑛

= E[𝜏1] E𝜋𝑠⊗p [𝑔ℓ (𝑋𝑠
𝑥 , 𝜉𝑥+1)] = 0. (326)

Hence 𝑅𝑖 is a mean-zero random walk.
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Denote 𝑀 := max(𝜏1, 𝜏2 − 𝜏1, . . . , 𝜏𝑛 − 𝜏𝑛−1). Since this is the maximum of i.i.d. random variables
of finite moments of all orders, union bound and Chebyshev’s inequality and (304) give

P(𝑀 ≥ 𝑎) = 1 − (1 − P(𝜏1 ≥ 𝑎))𝑛 ≤ 𝑛 P(𝜏1 ≥ 𝑎) = 𝑂 (𝑛 𝑎−𝑑) (327)

for any integer 𝑑 ≥ 1. Also, since the increments 𝑋𝑠+1 (ℓ) − 𝑋𝑠 (ℓ) are bounded by 1,

max
0≤𝑠≤𝑛

𝑅𝑠 ≥ max
0≤𝑠≤𝜏𝑛

−𝑋𝑠 (ℓ) − 𝑀 ≥ max
0≤𝑠≤𝑛

−𝑋𝑠 (ℓ) − 𝑀. (328)

Hence, combining the above inequalities and using Kolmogorov’s maximal inequality, for any 𝑏 > 1/
√
𝑛,

P

(
𝑛−1 max

0≤𝑠≤𝑛
−𝑋𝑠 (ℓ) ≥ 𝑏

)
≤ P

(
max

0≤𝑠≤𝑛
𝑅𝑠 (ℓ) ≥ 𝑛𝑏 − 𝑀

)
(329)

≤ P
(

max
0≤𝑠≤𝑛

𝑅𝑠 (ℓ) ≥ 𝑛𝑏 −
√
𝑛

)
+ P

(
𝑀 >

√
𝑛
)

(330)

=
𝑛Var(𝜂1)
(𝑛𝑏 −

√
𝑛)2 +𝑂 (𝑛−2). (331)

Then taking 𝑏 = 𝑛−1/6 and denoting 𝑇𝑛 := max0≤𝑠≤𝑛 −𝑋𝑠 (ℓ), we get

P

(
𝑛−1𝑇𝑛 ≥ 𝑛−1/3

)
≤ 𝑐

𝑛2/3 (332)

for some constant 𝑐 > 0. Notice that 𝑇𝑛 is nondecreasing in n. By Borel-Cantelli Lemma and (332), we
have that 𝑛−2𝑇𝑛2 → 0 almost surely. Fix 𝑘 ≥ 1 and let 𝑛 = 𝑛(𝑘) denote the largest inetger such that
𝑛2 ≤ 𝑘 < (𝑛 + 1)2. Then using monotonicity,

𝑛2

(𝑛 + 1)2
𝑇𝑛2

𝑛2 ≤ 𝑇𝑘

𝑘
≤

𝑇(𝑛+1)2

(𝑛 + 1)2
(𝑛 + 1)2

𝑛2 . (333)

Taking 𝑘 → ∞, we deduce that 𝑘−1𝑇𝑘 → 0 almost surely as 𝑘 → ∞. Therefore, it follows that
𝑛−1 max0≤𝑡≤𝑛 (−𝑋𝑡 (ℓ)) converges to zero almost surely. By a symmetric argument, the same conclusion
holds for 𝑛−1 max0≤𝑡≤𝑛 𝑋𝑡 (ℓ). This completes the proof. �

Now we are ready to prove Theorem 2.5 (i).

Proof of Theorem 2.5 (i). We wish to show that

lim
𝑛→∞

𝑛−1𝑊𝑛 = 𝝁 a.s. (334)

Note that by Lemma 9.3,

lim sup
𝑛→∞

𝑛−1𝑊𝑛 ≤ 𝝁 a.s., (335)

where we interpret the inequality componentwise. Recall the Skorokhod decomposition𝑊𝑥 = 𝑋𝑥 +𝑅𝑌𝑛

in Lemma 6.3. We first consider the case when 𝜅 ≥ 3. Then writing 𝑅 = 𝐼 −𝑄 with𝑄 = tridiag𝜅 (0, 0, 1)
and using the identity (𝐼 − 𝑄) (𝐼 + 𝑄 + 𝑄2 + . . . ) = 𝐼, we see that 𝑅−1 is the following upper diagonal
matrix whose nonzero entries equal to one:

𝑅−1 = 𝐼 +𝑄 + · · · +𝑄𝜅−1. (336)

Write

𝑛−1𝑌𝑛 = 𝑅−1(𝑛−1𝑊𝑛 − 𝑛−1𝑋𝑛). (337)
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Then by using (335) and the fact that lim𝑛→∞ 𝑛−1𝑋𝑛 = 𝝁 a.s. (see Proposition 7.9),

a := lim sup
𝑛→∞

(𝑛−1𝑊𝑛 − 𝑛−1𝑋𝑛) ≤ 0, (338)

where we applied limsup as well as inequality componentwise. It is crucial to note that 𝑅−1 has
nonnegative entries. Hence,

lim sup
𝑛→∞

𝑛−1𝑌𝑛 = 𝑅−1a ≤ 0. (339)

But since each 𝑌𝑛 is a nonnegative vector by definition, it follows that lim𝑛→∞ 𝑛−1𝑌𝑛 = 0 almost surely.
Then using the Skorokhod decomposition once more, we get

lim
𝑛→∞

𝑛−1𝑊𝑛 = 𝝁 + 𝑅 lim
𝑛→∞

𝑛−1𝑌𝑛 = 𝝁 (340)

almost surely, as desired.
It remains to verify (334) for the case when 𝜅 = 1, 2. Denote y := lim sup

𝑛→∞
𝑛−1𝑌𝑛. Suppose 𝜅 = 2.

Then the Skorokhod decomposition and (338) yield[
1 −1
0 1

]
y = a ≤ 0. (341)

Note that y ≥ 0 since 𝑌𝑛 ≥ 0 for all 𝑛 ≥ 1. Then it is easy to see that y must equal 0. The case for 𝜅 = 1
can be argued similarly. �

10. The diffusive scaling limit of the carrier process

In this section, we prove Theorem 2.5 (ii) on the diffusive scaling limit of the carrier process in the
critical and the supercritical regime. The definition of SRBM below is adapted from [Wil98, Def. 3.1].
Definition 10.1 (Semimartingale reflecting Brownian motion). Fix an integer 𝜅 ≥ 1 and a subset
𝐽 ⊆ {1, . . . , 𝜅}. Let 𝑆 := {(𝑥1, . . . , 𝑥𝜅 ) ∈ R𝜅 : 𝑥𝑖 ≥ 0 for all 𝑖 ∈ 𝐽} and let B denote the Borel 𝜎-
algebra on S, 𝜈 is a probability measure on (𝑆,B), 𝜃 is a constant vector in R𝜅 , Σ is a 𝜅 × 𝜅 covariance
matrix (symmetric and positive semidefinite1) and R is a 𝜅 × 𝜅 matrix. A semimartingale reflecting
Brownian motion (SRBM) associated with the data (𝑆, 𝜃, Σ, 𝑅, 𝜈) is an {F𝑡 }-adapted, 𝜅-dimensional
process W defined on some probability space (Ω,F , P) and filtration {F𝑡 ; 𝑡 ≥ 0} (an increasing family
of sub-𝜎-algebras of F) such that
(i) 𝑊 = 𝑋 + 𝑅𝑌 , P-a.s.;
(ii) P-a.s., W has continuous paths and 𝑊 (𝑡) ∈ 𝑆 for all 𝑡 ≥ 0;
(iii) Under P,

(a) X is a 𝜅-dimensional Brownian motion with drift vector 𝜃, covariance matrix Σ and 𝑋 (0) ∼ 𝜈;
(b) {𝑋 (𝑡) − 𝑋 (0) − 𝜃𝑡,F𝑡 ; 𝑡 ≥ 0} is a martingale;

(iv) Y is an {F𝑡 }-adapted, 𝜅-dimensional process such that P-a.s. for 𝑖 = 1, . . . , 𝜅,
(a) 𝑌𝑖 (0) = 0;
(b) 𝑌𝑖 is continuous and nondecreasing;
(a) 𝑌𝑖 can increase only when W is on the face 𝐹𝑖 := {𝑥 ∈ 𝑆 : 𝑥𝑖 = 0}, i.e.,

∫ ∞
0 1(𝑊𝑖 (𝑠) > 0)

𝑑𝑌𝑖 (𝑠) = 0.
Roughly speaking, an SRBM 𝑊 = 𝑋 + 𝑅𝑌 behaves like the Brownian motion X in the interior of

the domain S, and it is confined to the domain by the instantaneous ‘reflection’ (or ‘pushing’) at the
boundary, where the direction of such ‘reflection’ on the ith face 𝐹𝑖 is given by the ith column of the

1We allow the covariance matrix to be degenerate.
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reflection matrix R. Note that in Definition 10.1, the domain S only requires coordinates in the set J be
nonnegative, while it is standard to take S to be the nonnegative orthant R𝜅

≥0. We take this slightly more
general domain to analyze the diffusive scaling limit of the centered carrier process𝑊 𝑡 in Theorem 2.5,
which can take negative values in coordinates corresponding to unstable colors.

A classical result of Reiman and Williams [RW88] (see also [Wil98, Thm. 3.1]) shows that an SRBM
associated with (𝑆, 𝜃,Σ, 𝑅, 𝜈) with 𝑆 = R𝜅

≥0 and Σ nondegenerate uniquely exists if and only if the
reflection matrix R is completely-S (see Definition 10.2). Roughly speaking, this condition means that
at any boundary point of S, there exists a nonnegative linear combination of the reflection directions
(i.e., columns of R) that points to the interior of S. When Σ is degenerate, then SRBM still exists but
may not be unique.
Definition 10.2 (Completely-S). A matrix 𝑅 ∈ R𝑑×𝑑 is completely-S if for every principal submatrix 𝑅0
of R, there is a nonnegative vector 𝑥0 such that 𝑅0𝑥0 has strictly positive coordinates. Here, a principal
submatrix of R is a matrix obtained by deleting all rows and columns of R with indices in some proper
subset set I � {1, . . . , 𝑑} (possibly empty).

It is critical to notice that the reflection matrix R in (118) that gives a Skorokhod decomposition of
the carrier process 𝑊𝑥 as in Lemma 6.3 has the following property: For 𝜅 ≥ 3, 𝑅 = 𝐼 −𝑄, where Q has
a spectral radius less than one. In this case, we can say a lot about SRBM with a more direct argument.
The first step is to recall that the problem that defines SRBM in Definition 10.1 is a particular instance
of the classical Skorokhod problem stated below.
Definition 10.3 (Skorokod Problem). Fix a subset 𝐽 ⊆ {1, . . . , 𝜅} and let 𝑆 := {(𝑥1, . . . , 𝑥𝜅 ) ∈ R𝜅 :
𝑥𝑖 ≥ 0 for all 𝑖 ∈ 𝐽}. Let 𝐶𝑆 denote the subspace of 𝐶𝜅 (0,∞) consisting of paths x with 𝑥(0) ∈ 𝑆.
Fix matrix 𝑅 ∈ R𝜅×𝜅 and 𝑥 ∈ 𝐶𝑆 . A pair (𝑧, 𝑦) ∈ 𝐶𝜅 (0,∞) × 𝐶𝜅 (0,∞) is a solution of the Skorohod
problem for x w.r.t. R if the following conditions hold:
(i) 𝑧(𝑡) = 𝑥(𝑡) + 𝑅 𝑦(𝑡) for all 𝑡 ≥ 0.
(ii) 𝑧(𝑡) ∈ 𝑆 for all 𝑡 ≥ 0.
(iii) For 𝑖 = 1, . . . , 𝜅, 𝑦𝑖 (0) = 0, 𝑦𝑖 (𝑡) is nondecreasing, and

∫ ∞
0 1(𝑖 ∈ 𝐽)1(𝑧𝑖 (𝑡) ≥ 0) 𝑑𝑦𝑖 (𝑡) = 0 .

When the reflection matrix R can be written as 𝑅 = 𝐼 −𝑄 where Q is nonnegative and has a spectral
radius less than one, then there is a unique solution (𝑧, 𝑦) to the Skorokhod problem for each path x and
the map 𝑥 ↦→ (𝑧, 𝑦) (the Skorohod map) is continuous. This result is stated and proved in Theorem 10.4.
Theorem 10.4 (Harrison and Reiman ’81). Let 𝑆 = R𝑑 × R𝜅−𝑑

≥0 and 𝐶𝑆 be as in Definition 10.3.
Suppose the reflection matrix R can be written as 𝑅 = 𝐼 − 𝑄, where Q is nonnegative and has a
spectral radius of less than one. Then for each path 𝑥 ∈ 𝐶𝑆 , there exists a unique pair of functions
(𝑧, 𝑦) ∈ 𝐶𝜅 (0,∞) × 𝐶𝜅 (0,∞) that solves the Skorokhod problem in Definition 10.3. Furthermore,
denoting 𝑧 = 𝜙(𝑥) and 𝑦 = 𝜓(𝑥), both 𝜙 and 𝜓 are continuous mappings 𝐶𝑆 → 𝐶𝜅 (0,∞).
Proof. The original result [HR81, Thm. 1] is stated for 𝑆 = R𝜅

≥0, where in our setting we allow S to be
the intersection of axes-parallel half-spaces in R𝜅 . A minor modification of the proof of [HR81, Thm.
1] will show the minor extension as stated above. We sketch the argument for completeness.

Without loss of generality, assume 𝑆 = R𝑑 × R𝜅−𝑑
≥0 for some 𝑑 ∈ {0, . . . , 𝜅}. Denote 𝐶 = 𝐶𝜅 (0,∞)

and fix 𝑥 ∈ 𝐶𝑆 . Let 𝐶0 be the set of paths 𝑦 ∈ 𝐶 such that 𝑦(0) = 0 and nondecreasing componentwise.
Define a map 𝜋 = 𝜋𝑥 : 𝐶0 → 𝐶0 such that

𝜋(𝑦)𝑖 (𝑡) =
{

0 if 𝑖 = 1, . . . , 𝑑
sup0≤𝑠≤𝑡 [𝑦(𝑠)𝑄 − 𝑥(𝑠)]+ if 𝑖 = 𝑑 + 1, . . . , 𝜅.

(342)

Then one can check that (𝑧, 𝑦) is a solution to the Skorokhod problem if and only if

𝑦 ∈ 𝐶0, 𝑦 = 𝜋(𝑦), 𝑧 = 𝑥 + (𝐼 −𝑄)𝑦. (343)

One can then argue that there is a unique solution 𝑦 ∈ 𝐶0 such that 𝑦 = 𝜋(𝑦).
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To this end, for each square matrix Q, we let ‖𝑄‖∞ denote its maximum absolute row sum. Since Q is
nonnegative and has spectral radius < 1, there exists a positive diagonal matrix Λ such that 𝑄̃ := Λ−1𝑄Λ
satisfies ‖𝑄̃‖∞ < 1 [Vei69, Lem. 3]. Observe that (𝑧, 𝑦) satisfies (343) if and only if (𝑧Λ, 𝑦Λ) satisfies
(343) with x and Q replaced by Λ𝑥 and 𝑄̃. Thus, without loss of generality, we may assume ‖𝑄‖∞ < 1.

Now fix 𝑇 ≥ 0 and define 𝐶0 [0, 𝑇] and 𝐶𝑆 [0, 𝑇] in the obvious way. These are complete metric
spaces endowed with the norm

‖𝑦‖ := max
1≤ 𝑗≤𝜅

sup
0≤𝑡≤𝑇

|𝑦 𝑗 (𝑡) |. (344)

Then one can show that the map 𝜋 is a contraction on 𝐶0 [0, 𝑇]:

‖𝜋(𝑦) − 𝜋(𝑦′)‖ ≤ ‖𝑄‖∞ ‖𝑦 − 𝑦′‖. (345)

Since ‖𝑄‖∞ < 1, it follows that 𝜋 is a contraction mapping, implying that there is a unique fixed point
𝑦 ∈ 𝐶0.

Now to show the continuity of the mapping 𝑥 ↦→ 𝜙(𝑥), we observe that 𝜙(𝑥), being the unique
fixed point of 𝑦 = 𝜋𝑥 (𝑦) of the contraction mapping 𝜋, can be explicitly constructed as the limit of
𝑦𝑛 (𝑥) := 𝜋𝑛

𝑥 (𝑦0) with 𝑦0 ≡ 0. Then note that for 𝑥, 𝑥 ′ ∈ 𝐶0 [0, 𝑇],

‖𝑦𝑛+1 (𝑥) − 𝑦𝑛+1 (𝑥 ′)‖ ≤ ‖𝑥 − 𝑥 ′‖ + ‖𝑄‖∞ ‖𝑦𝑛 (𝑥) − 𝑦𝑛 (𝑥 ′)‖. (346)

By an induction and taking 𝑛 → ∞, we get ‖𝜙(𝑥) − 𝜙(𝑥′)‖ ≤ 1
1−‖𝑄 ‖∞ ‖𝑥 − 𝑥 ′‖. Thus 𝜙 is 1

1−‖𝑄 ‖∞ -
Lipschitz continuous on 𝐶0 [0, 𝑇]. Since T was arbitrary, this implies continuity of 𝜙 on 𝐶0 (0,∞).
Thus, 𝜙 is continuous on 𝐶𝜅 (0,∞) in the topology of uniform convergence on compact intervals. The
continuity of the mapping 𝑥 ↦→ 𝜓(𝑥) is clear from the last identity in (343). �

In the proof of Theorem 10.4, we have used the fact that if Q is a matrix of spectral radius less
than one, then there exists a positive diagonal matrix Λ such that Λ−1𝑄Λ has maximum absolute row
sum strictly less than one, appealing to [Vei69, Lem. 3]. In our case, 𝑄 = tridiag𝜅 (0, 0, 1), and we can
directly take Λ to have diagonal entries Λ(𝑖, 𝑖) = 𝜅 − 𝑖 + 1 for 𝑖 = 1, . . . , 𝜅, in which case the maximum
absolute row sum equals 𝜅−1

𝜅 < 1.

Proof of Theorem 2.5 (ii). For this proof, we will appeal to the continuity of the Skorokod map 𝑥 ↦→
(𝑦, 𝑧) we established in Theorem 10.4. Let 𝐽 = {1, . . . , 𝜅} \ {𝛼 𝑗 ; 𝑗 = 1, . . . , 𝑟, 𝑝𝛼𝑗 > 𝑝𝛼𝑗+1 } and
𝑆 := {(𝑥1, . . . , 𝑥𝜅 ) ∈ R𝜅 : 𝑥𝑖 ≥ 0 for all 𝑖 ∈ 𝐽}. Let 𝝁 = (𝜇1, . . . , 𝜇𝜅 ) :=

∑𝑟
𝑗=1 e𝛼𝑗 (𝑝𝛼𝑗 − 𝑝𝛼𝑗+1 ). Then

𝝁 is nonzero in its jth coordinate if and only if 𝑗 ∈ 𝐽. Recall the Skorokhod decomposition of the carrier
process 𝑊𝑥 in Lemma 6.3:

𝑊 𝑥 = 𝑋 𝑥 + 𝑅𝑌𝑥 for 𝑥 ∈ 𝑁, (347)

where we denoted𝑊 𝑥 = 𝑊𝑥 − 𝑥𝝁 and 𝑋 𝑥 = 𝑋𝑥 − 𝑥𝝁. Since𝑊𝑥 ∈ R𝜅
≥0, we have𝑊 𝑠 ∈ 𝑆 for all 𝑠 ∈ R≥0.

Note that (347) gives a Skorokhod decomposition of the centered carrier process (𝑊 𝑥)𝑥∈N. Namely, for
each 𝑖 ∈ 𝐽, 𝑌𝑥 (𝑖) can increase only if 𝑊 𝑥 (𝑖) = 0. This is because for 𝑖 ∈ 𝐽, 𝑊 𝑥 (𝑖) = 𝑊𝑥 (𝑖), and by
Lemma 6.3, we know that 𝑌𝑥 (𝑖) increases only if 𝑊𝑥 (𝑖) = 0. From (347), we deduce

𝑊𝑛 (𝑡) = 𝑋𝑛 (𝑡) + 𝑅𝑌𝑛 (𝑡) for 𝑡 ∈ R≥0, (348)

where 𝑊𝑛, 𝑋𝑛 and 𝑌𝑛 are the linear interpolations of 1√
𝑛
(𝑊𝑥 − 𝑥𝝁), 1√

𝑛
(𝑋𝑥 − 𝑥𝝁), and 1√

𝑛
𝑌𝑥 .

Since 𝑅 = tridiag𝜅 (0, 1,−1), we can write 𝑅 = 𝐼 −𝑄, where 𝑄 = tridiag𝜅 (0, 0, 1), so Q has spectral
radius zero for all 𝜅 ≥ 1 since 𝑄𝜅 is zero. Denoting 𝑥 ↦→ (𝜙(𝑥), 𝜓(𝑥)) by the Skorohod mapping as in
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Theorem 10.4, according to (348), for each 𝑛 ≥ 1, we have

𝜙(𝑋𝑛) = 𝑊𝑛 and 𝜓(𝑋𝑛) = 𝑌𝑛. (349)

That is, the pair (𝑊𝑛, 𝑌𝑛) is the unique solution of the Skorokhod problem for 𝑋𝑛 with respect to the
reflection matrix R. Recall that by Proposition 7.9, 𝑋𝑛 converges weakly to the Brownian motion B in
R𝜅 with zero drift and covariance matrix Σ. By continuity of the Skorohod mapping, it follows that

𝑊𝑛 =⇒ lim
𝑛→∞

𝜙(𝑋𝑛) = 𝜙(𝐵), (350)

𝑌𝑛 =⇒ lim
𝑛→∞

𝜓(𝑋𝑛) = 𝜓(𝐵). (351)

In particular, 𝑊𝑛 converges weakly to the SRBM associated with data (𝑆, 0, Σ, 𝑅, 𝛿0), as desired. �

11. Proofs of Theorems 2.7 and 2.7

In this section, we establish scaling limits of the top soliton lengths for the i.i.d. model in the critical
and the supercritical regimes.

By now, it is easy to deduce Theorem 2.6.

Proof of Theorem 2.6. Suppose 𝑝0 = max(𝑝1, · · · , 𝑝𝜅 ). Then Cp
𝑢 = {0 ≤ 𝑖 ≤ 𝜅 : 𝑝𝑖 = 𝑝0}, and we

may write Cp
𝑢 = {𝛼0, · · · , 𝛼𝑟 } with 0 = 𝛼0 < 𝛼1 < · · · < 𝛼𝑟 . Then the weak convergence of the

diffusively scaled first soliton length in (22) follows from Lemma 3.1, Theorem 2.5 and the continuous
mapping theorem.

Next, we justify that 𝜆 𝑗 (𝑛) = Θ(𝑛) with high probability for all 𝑗 ≥ 1. The upper bound follows since
𝜆 𝑗 (𝑛) ≤ 𝜆1(𝑛) = 𝑂 (

√
𝑛) with high probability. For the lower bound, we use the fact that the carrier

process in the critical regime converges weakly to an SRBM as in Theorem 2.5. In particular, there
are excursions of the carrier process of height (i.e., the 𝐿1-norm) at least 𝑐

√
𝑛 with high probability

if 𝑐 > 0 is small enough. Then the lower bound 𝜆1(𝑛) = Ω(
√
𝑛) with high probability follows from

Lemma 3.2. �

In the rest of this section, we prove Theorem 2.7. Throughout, we will assume 𝑝∗ =
max(𝑝1, · · · , 𝑝𝜅 ) > 𝑝0. Let 𝛼1 < · · · < 𝛼𝑟 denote the unstable colors. Under the hypothesis, it holds
that 𝑝𝛼1 = 𝑝∗.

Proof of Theorem 2.7 (i). Let 𝝁 = (𝜇1, . . . , 𝜇𝜅 ) be as in Theorem 2.5. By Lemma 3.1 and Theorem
2.5, almost surely,

lim
𝑛→∞

𝑛−1𝜆1(𝑛) = lim
𝑛→∞

𝑛−1‖𝑊𝑛‖1 = ‖𝝁‖1 (352)

= (𝑝𝛼1 − 𝑝𝛼2 ) + (𝑝𝛼2 − 𝑝𝛼3) + · · · + (𝑝𝛼𝑟 − 𝑝0) = 𝑝∗ − 𝑝0. (353)

Next, recall the Skorokhod decomposition 𝑊𝑥 = 𝑋𝑥 + 𝑅𝑌𝑥 in Lemma 6.3. Define 𝑡 (𝑛) :=
arg max0≤𝑡≤𝑛‖𝑊𝑡 ‖1. Let J denote the set of indices 𝑖 ∈ {1, . . . , 𝜅} such that 𝜇𝑖 > 0. Then 𝜇𝑖 = 0
if 𝑖 ∉ 𝐽, so

𝜆1(𝑛) − 𝑛‖𝝁‖1 =
𝜅∑

𝑖=1
𝑊𝑡 (𝑛) (𝑖) − 𝑛𝜇𝑖 (354)

=
∑
𝑖∈𝐽

𝑊𝑡 (𝑛) (𝑖) − 𝑛𝜇𝑖 + max
0≤𝑡≤𝑛

∑
𝑖∉𝐽

𝑊𝑡 (𝑖). (355)
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By Proposition 6.2, it follows that∑
𝑖∈𝐽

𝑊𝑛 (𝑖) − 𝑛𝜇𝑖 +
∑
𝑖∉𝐽

𝑊𝑛 (𝑖) ≤ 𝜆1(𝑛) − 𝑛𝝁 ≤
∑
𝑖∈𝐽

𝑋̂𝑡 (𝑛) (𝑖) − 𝑛𝜇𝑖 + max
0≤𝑡≤𝑛

∑
𝑖∉𝐽

𝑊𝑡 (𝑖). (356)

Recall that the linear interpolation of 𝑛−1/2(𝑊𝑛 − 𝑛𝝁) converges weakly to the SRBM with specified
data as in Theorem 2.5. Hence, the lower bound in Theorem 2.7 (i) follows from above. For the upper
bound, we use Proposition 9.2 to note that, almost surely,

lim
𝑛→∞

𝑛−1/2

�����∑
𝑖∈𝐽

𝑋̂𝑡 (𝑛) (𝑖) −
∑
𝑖∈𝐽

𝑋𝑡 (𝑛) (𝑖)

����� = 0. (357)

Hence, almost surely,

lim sup
𝑛→∞

𝑛−1/2
∑
𝑖∈𝐽

( 𝑋̂𝑡 (𝑛) (𝑖) − 𝑛𝜇𝑖) + 𝑛−1/2 max
0≤𝑡≤𝑛

∑
𝑖∉𝐽

𝑊𝑡 (𝑖) (358)

= lim sup
𝑛→∞

𝑛−1/2
∑
𝑖∈𝐽

(𝑋𝑛 (𝑖) − 𝑛𝜇𝑖) + 𝑛−1/2 max
0≤𝑡≤𝑛

∑
𝑖∉𝐽

𝑊𝑡 (𝑖). (359)

Recall that by Proposition 7.9, the linear interpolation of 𝑛−1/2(𝑋𝑛−𝑛𝝁) converges to a Brownian motion
on R𝜅 with mean zero and an explicit covariance matrix Σ. Also, by Theorem 2.5 and the continuous
mapping theorem,

𝑛−1/2 max
0≤𝑡≤𝑛

∑
𝑖∉𝐽

𝑊𝑡 (𝑖) =⇒ sup
0≤𝑣≤1

∑
𝑖∉𝐽

𝑊 𝑣 (𝑣), (360)

where 𝑊 = (𝑊1, . . . ,𝑊 𝜅 ) is the SRBM in Theorem 2.5. Thus, the upper bound in (24) follows by the
continuous mapping theorem. �

Next, we complete the proof of Theorem 2.7 (ii)–(iii). To this effect, it suffices to show the following
statement.

Theorem 11.1. Suppose 𝑝∗ > 𝑝0 and fix 𝑗 ≥ 2. Then the following hold.

(i) Suppose 𝑝𝑖 = 𝑝∗ for a unique 1 ≤ 𝑖 ≤ 𝜅. Then 𝜆 𝑗 (𝑛) = Θ(log 𝑛) with high probability.
(ii) Suppose 𝑝𝑖 = 𝑝∗ at least two distinct colors 1 ≤ 𝑖 ≤ 𝜅. Then 𝜆 𝑗 (𝑛) = Θ(

√
𝑛) with high probability.

We begin with the following definition. For 0 ≤ 𝑖, 𝑗 ≤ 𝜅 and a finite subset 𝐻 ⊆ N, define a random
variable 𝐷𝑖, 𝑗 (𝐻) by

𝐷𝑖, 𝑗 (𝐻) =
∑
𝑥∈𝐻

[1(𝜉p (𝑥) = 𝑖) − 1(𝜉p (𝑥) = 𝑗)], (361)

which equals the difference of the number of color i and color j balls in H given by 𝜉p.

Proposition 11.2. Fix 1 ≤ 𝑖, 𝑗 ≤ 𝜅 and suppose 𝑝𝑖 > 𝑝 𝑗 . Fix a finite subset 𝐻 ⊆ N. Then for any
constant 𝐶 > 0,

P
(
𝐷 𝑗 ,𝑖 (𝐻) ≥ 2𝐶 log 𝑛

)
≤ exp(−𝐶 (𝑝𝑖 − 𝑝 𝑗 ) log 𝑛) (362)

for all 𝑛 ≥ 1.

Proof. Let 𝜀 = 𝑝𝑖 − 𝑝 𝑗 > 0 and denote |𝐻 | = 𝑚. Note that E[𝐷 𝑗 ,𝑖 (𝐻)] = −𝜀𝑚. Since 𝐷 𝑗 ,𝑖 (𝐻) is a sum
of i.i.d. increments with absolute value at most one, by Hoeffding’s inequality,

P(𝐷 𝑗 ,𝑖 (𝐻) − E[𝐷 𝑗 ,𝑖 (𝐻)] ≥ 𝑡) ≤ 𝑒−𝑡2/(2𝑚) (363)
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for any 𝑡 > 0. Let 𝑡 = 𝜀𝑚 + 2𝐶 log 𝑛. Then 𝑡/𝑚 ≥ 𝜀, so

P(𝐷 𝑗 ,𝑖 (𝐻) ≥ 2𝐶 log 𝑛) = P(𝐷 𝑗 ,𝑖 (𝐻) − E[𝐷 𝑗 ,𝑖 (𝐻)] ≥ 𝑡) ≤ 𝑒−(𝜀/2)𝑡 ≤ 𝑒−𝜀𝐶 log 𝑛. (364)

This shows the assertion. �

Proof of Theorem 11.1. Denote 𝜉 := 𝜉𝑛,p. Our argument is based on Lemma 3.5. In this proof, for
integers 𝑎 < 𝑏, an ‘interval’ [𝑎, 𝑏] will refer to the set {𝑎, 𝑎 + 1, . . . , 𝑏}. We say a subset 𝐴 ⊆ N is
a nonincreasing subsequence if 𝜉 is nonincreasing on A. The ‘support’ of A is the interval of integers
[min(𝐴),max(𝐴)].

We first show the upper bounds in (i) and (ii). It suffices to obtain bounds on𝜆2 (𝑛) in the corresponding
regimes. Recall the formula for 𝜆1(𝑛) + 𝜆2(𝑛) given by Lemma 3.5:

𝜆1(𝑛) + 𝜆2(𝑛) = max
𝐴1 ≺𝐴2 ⊆[1,𝑛]

L(𝐴1, 𝜉) + L(𝐴2, 𝜉). (365)

Let 𝐴1 ≺ 𝐴2 be an optimal choice of subsequences that achieves 𝜆1(𝑛) + 𝜆2(𝑛) according to (365). Let
𝐼 = [𝑎, 𝑏] and 𝐽 = [𝑐, 𝑑] denote the supporting intervals of 𝐴1 and 𝐴2, respectively. We split 𝐴1 into
successive disjoint sub-subsequences 𝐴′

𝜅 , 𝐴
′
𝜅−1, · · · , 𝐴

′
1, where in each 𝐴′

ℓ , we only pick the balls of
color ℓ in 𝐴1. Let 𝐼 𝑗 := [min 𝐴′

𝑗 ,max 𝐴′
𝑗 ]. This gives a noninterlacing partition of 𝐼 = 𝐼𝜅 � · · · � 𝐼1.

We split 𝐴2 similarly and obtain a noninterlacing partition 𝐽 = 𝐽𝜅 � · · · � 𝐽1 similarly. This gives us a
partition of the whole interval [1, 𝑛] into the following collection of disjoint sub-intervals

H = {[1, 𝑎 − 1], 𝐼𝜅 , 𝐼𝜅−1, · · · , 𝐼1, [𝑏 + 1, 𝑐 − 1], 𝐽𝜅 , 𝐽𝜅−1, · · · , 𝐽1, [𝑑 + 1, 𝑛]}, (366)

ordered from left to right.
For 𝜆1(𝑛), we choose a sub-optimal nonincreasing subsequence 𝐴(𝑖) by choosing all balls of color i

in [1, 𝑛]. Then 𝜆1(𝑛) ≥ L(𝐴(𝑖) , 𝜉) by Lemma 3.5, so (365) yields

𝜆2(𝑛) ≤ L(𝐴1, 𝜉) + L(𝐴2, 𝜉) − L(𝐴 (𝑖) , 𝜉). (367)

Then breaking the right-hand side of (367) into sub-intervals given by the partition in (366), we may
write

L(𝐴1, 𝜉) + L(𝐴2, 𝜉) − L(𝐴 (𝑖) , 𝜉) =
∑
𝐻 ∈H

𝑓 (𝐻), (368)

where if 𝐻 = 𝐼 𝑗 or 𝐽 𝑗 (1 ≤ 𝑗 ≤ 𝑘),

𝑓 (𝐻) := (number of balls of color 𝑗 in 𝐻 − number of balls of color 0 in 𝐻) (369)
− (number of balls of color 𝑖 in 𝐻 − number of balls of color 0 in 𝐻) (370)

= 𝐷 𝑗 ,𝑖 (𝐻), (371)

else if 𝐻 = [1, 𝑎 − 1], [𝑏 + 1, 𝑐 − 1] or [𝑑 + 1, 𝑛],

𝑓 (𝐻) := (number of balls of color 0 in 𝐻 − number of balls of color 𝑖 in 𝐻) (372)
= 𝐷0,𝑖 (𝐻). (373)

Now suppose that 𝑝𝑖 is the unique maximum among 𝑝1, · · · , 𝑝𝜅 and assume 𝑝𝑖 > 𝑝0. Note that H
contains 2𝜅 + 3 intervals. Noting that 𝐷𝑖,𝑖 (𝐻) = 0, a union bound and Proposition 11.2 give

P

( ∑
𝐻 ∈H

𝑓 (𝐻) ≥ 2(2𝜅 + 3)𝐶 log 𝑛

)
≤

∑
[𝑠,𝑡 ] ⊆[1,𝑛]

∑
0≤ℓ≤𝜅

ℓ≠𝑖

P
(
𝐷ℓ,𝑖 ([𝑠, 𝑡]) ≥ 2𝐶 log 𝑛

)
(374)

≤ 3𝑛2
∑

0≤ℓ≤𝜅
ℓ≠𝑖

exp(−𝐶 (𝑝𝑖 − 𝑝ℓ) log 𝑛) (375)
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for any fixed constant 𝐶 > 0. For sufficiently large constant 𝐶 > 0, the last expression tends to zero as
𝑛 → ∞, so this shows 𝜆2 = 𝑂 (log 𝑛) with high probability.

Next, suppose 𝑝𝑖 = 𝑝∗ at least two distinct colors 1 ≤ 𝑖 ≤ 𝜅. If we compare the number of balls of
color j in 𝐻 ∈ H minus the number of balls of color i in H. By using a similar argument, 𝐷 𝑗 ,𝑖 (𝐻) is
𝑂 (log 𝑛) with high probability as long as 𝑝 𝑗 < 𝑝∗. If 𝑝 𝑗 = 𝑝∗. Then by the triangle inequality,

𝐷 𝑗 ,𝑖 (𝐻) ≤ max
1≤𝑠≤𝑡≤𝑛

��𝐷 𝑗 ,𝑖 ([𝑠, 𝑡])
�� ≤ 2 max

1≤𝑡≤𝑛

��𝐷 𝑗 ,𝑖 ([1, 𝑡])
��. (376)

In this case, 𝐷 𝑗 ,𝑖 ([1, 𝑡]) is a symmetric random walk with t increments. Hence, for some large enough
constant 𝐶 > 0, the right-hand side of (376) is at most 𝐶

√
𝑛 with probability at least 1 − 𝜀 by the

functional central limit theorem. This shows that 𝜆2(𝑛) = 𝑂 (
√
𝑛) with probability at least 1 − 𝜀.

Now we prove the lower bounds in (i) and (ii). Fix 𝑗 ≥ 2. Let 𝐴1, . . . , 𝐴 𝑗−1 denote an optimal choice
of noninterlacing subsets of [1, 𝑛] such that

𝜆1(𝑛) + · · · + 𝜆 𝑗−1(𝑛) =
𝑗−1∑
𝑖=1

L(𝐴𝑖 , 𝜉). (377)

Denote 𝐼𝑖 := [min 𝐴𝑖 ,max 𝐴𝑖] for 𝑖 = 1, . . . , 𝑟 − 1, so that 𝐼1, . . . , 𝐼 𝑗−1 are noninterlacing supporting
intervals for 𝐴1, . . . , 𝐴 𝑗−1. For each interval 𝐽 = [𝑠, 𝑡], let 𝑁0 (𝐽) denote the maximum number of
consecutive 0’s in the sequence 𝜉𝑠 , 𝜉𝑠+1, . . . , 𝜉𝑡 . For each integer 1 ≤ ℓ ≤ 𝜅, let 𝑀ℓ (𝐽) denote the
maximum number of ℓ’s (not necessarily consecutive) in the sequence 𝜉𝑠 , 𝜉𝑠+1, . . . , 𝜉𝑡 . We will use
these notations for the rest of the proof.

Fix a constant 0 < 𝑐1 < 1/(3 log 𝑝−1
0 ). We first show that P(𝜆 𝑗 (𝑛)/log 𝑛 ≥ 𝑐1) = 1 − 𝑜(1). To this

end, we claim that

P(𝑁0 (𝐼𝑖) ≥ 𝑐1 log 𝑛 for some 𝑖 = 1, . . . , 𝑟 − 1) = 1 − 𝑜(1). (378)

Note that if𝑁0 (𝐼𝑖) ≥ 𝑐1 log 𝑛, then we can split the nonincreasing subsequence 𝐴𝑖 into two nonincreasing
subsequences 𝐴′

𝑖 and 𝐴′′
𝑖 by removing the 𝑐1 log 𝑛 consecutive zeros in the supporting interval 𝐼𝑖 . Then

𝐴1 ≺ . . . 𝐴𝑖−1 ≺ 𝐴′
𝑖 ≺ 𝐴′′

𝑖 ≺ · · · ≺ 𝐴 𝑗−1 is a noninterlacing collection of nonincreasing subsequences,
whose total penalized length has now increased by at least 𝑐1 log 𝑛. Thus, by Lemma 3.5,𝜆 𝑗 (𝑛) ≥ 𝑐1 log 𝑛
with high probability if the claim (378) holds.

Now we show (378). Fix a constant 0 < 𝑐2 < 𝑝∗ − 𝑝0. Since L(𝐴𝑖 , 𝜉) ≤ |𝐼𝑖 |,

P

(
𝑗−1∑
𝑖=1

|𝐼𝑖 | < 𝑐2𝑛

)
≤ P

(
𝜆1(𝑛) + · · · + 𝜆 𝑗−1(𝑛) < 𝑐2𝑛

)
≤ P(𝜆1 (𝑛) < 𝑐2𝑛). (379)

Since 𝜆1(𝑛)/𝑛 → 𝑝∗ − 𝑝0 > 𝑐2 a.s. by Theorem 2.7 (i), the above probability is of order 𝑜(1).
Next, by using a union bound,

P

(
𝑗−1∑
𝑖=1

|𝐼𝑖 | ≥ 𝑐2𝑛, 𝑁0 (𝐼𝑖) < 𝑐1 log 𝑛 for all 𝑖 = 1, . . . , 𝑗 − 1

)
(380)

≤ P'()
⋃

𝐽1 ≺···≺𝐽 𝑗−1 ⊆[1,𝑛]

{
𝑗−1∑
𝑖=1

|𝐽𝑖 | ≥ 𝑐2𝑛, 𝑁0 (𝐽𝑖) < 𝑐1 log 𝑛 for all 𝑖 = 1, . . . , 𝑗 − 1

}*+, (381)

≤ P'()
⋃

𝐽1 ≺···≺𝐽 𝑗−1 ⊆[1,𝑛]

𝑗−1⋃
𝑖=1

{
|𝐽𝑖 | ≥

𝑐2𝑛

𝑟 − 1
, 𝑁0(𝐽𝑖) < 𝑐1 log 𝑛

}*+, (382)
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≤ (𝑟 − 1)𝑛2(𝑟−2)
∑

𝐽 ⊆[1,𝑛], |𝐽 | ≥ 𝑐2𝑛
𝑟−1

P(𝑁0 (𝐽) < 𝑐1 log 𝑛) (383)

≤ (𝑟 − 1)𝑛2(𝑟−1)
P(𝑁0 ([1, 𝑛]) < 𝑐1 log 𝑛), (384)

where 𝐽𝑖 and J above denote deterministic intervals. We can subdivide the interval [1, 𝑛] into consecutive
subintervals 𝐾1, 𝐾2, . . . of length  𝑐1 log 𝑛!. There are at least � 𝑛

𝑐1 log 𝑛 � such subintervals, and they
can be fully occupied with balls of color 0 independently with probability 𝑝

 𝑐1 log 𝑛!
0 . Hence, recalling

0 < 𝑐1 < 1/(3 log 𝑝−1
0 ),

P(𝑁0 ([1, 𝑛]) < 𝑐1 log 𝑛) ≤
(
1 − 𝑝

𝑐1 log 𝑛
0

) � 𝑛
𝑐1 log𝑛 �

(385)

≤ exp
(
−𝑝𝑐1 log 𝑛

0 � 𝑛

𝑐1 log 𝑛
�
)

≤ exp(−𝑛1/3). (386)

Therefore, (384) is of order 𝑜(1). Now (378) follows by a union bound. In particular, this completes the
proof of (i).

Finally, suppose 𝑝𝛼1 = 𝑝𝛼2 = 𝑝∗ for some 1 ≤ 𝛼1 < 𝛼2 ≤ 𝜅. Fix 𝜀 > 0. We will show that there
exists a constant 𝑐 = 𝑐(𝜀, 𝑗) > 0 such that

lim inf
𝑛→∞

P

(
𝑛−1/2𝜆 𝑗 (𝑛) ≥ 𝑐

)
≥ 1 − 𝜀. (387)

To this end, we split each 𝐴𝑖 into successive disjoint sub-subsequences 𝐴𝑖,𝜅 , · · · , 𝐴𝑖,2, 𝐴𝑖,1, where in
each 𝐴𝑖,ℓ , we only pick the balls of color ℓ in 𝐴𝑖 . Denote 𝐼𝑖,ℓ := [min 𝐴𝑖,ℓ ,max 𝐴𝑖,ℓ]. By (379) and a
union bound,

P

(
|𝐼𝑖,ℓ | ≥

𝑐2𝑛

𝜅( 𝑗 − 1) for some 1 ≤ 𝑖 ≤ 𝑗 − 1 and 1 ≤ ℓ ≤ 𝜅

)
= 1 − 𝑜(1). (388)

Fix 𝛿 > 0. Partition [0, 𝑛] into intervals 𝐽𝑘 := [𝑘𝛿𝑛, (𝑘 + 1)𝛿𝑛] of equal length �𝛿𝑛�. We can choose 𝛿
small enough so that any fixed interval of length 𝑐2𝑛

𝜅 ( 𝑗−1) in [1, 𝑛] contains 𝐽𝑘 for some 1 ≤ 𝑘 ≤ �𝛿−1�.
For each 1 ≤ ℓ ≤ 𝜅, choose ℓ∗ ∈ {𝑖1, 𝑖2} \ {ℓ}. Fix a constant 𝛼 > 0 and define the following event:

𝐸𝑘,ℓ :=
{
max
𝑡≤𝛿𝑛

𝑛−1/2��𝐷ℓ,ℓ∗

(
[(𝑘 − 1) �𝛿𝑛�, 𝑘 �𝛿𝑛� + 𝑡]

) �� ≥ 𝛼

}
. (389)

Since 𝐷𝑖,𝑖∗ on these disjoint intervals are i.i.d., by the functional central limit theorem, we have

lim inf
𝑛→∞

P

( �1/𝛿�⋂
𝑘=1

𝜅⋂
ℓ=1

𝐸𝑘,ℓ

)
≥ 1 − 𝜀

2
(390)

as long as the constant 𝛼 > 0 is small enough. By a union bound, for all 𝑛 ≥ 1 sufficiently large,

P
({
𝐽𝑘 ⊆ 𝐼𝑖,ℓ for some 𝑘, 𝑖, ℓ

}
∩ 𝐸𝑘,ℓ

)
≥ 1 − 𝜀. (391)

We now claim that {
𝐽𝑘 ⊆ 𝐼𝑖,ℓ for some 𝑘, 𝑖, ℓ

}
∩ 𝐸𝑘,ℓ ⊆ {𝜆 𝑗 (𝑛) ≥ 𝛼

√
𝑛}, (392)

which is enough to conclude the desired lower bound 𝜆 𝑗 (𝑛) = Ω(
√
𝑛). To show this claim, suppose

the event on the left-hand side above holds. Denote 𝐼𝑖,ℓ = [𝑒, 𝑓 ]. The maximum of 𝐷ℓ,ℓ∗ in the event
𝐸𝑘,ℓ occurs at site m in 𝐽𝑘 , so we may split the interval [𝑒, 𝑓 ] into [𝑒, 𝑚] and [𝑚 + 1, 𝑓 ]. Suppose
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𝐷ℓ,ℓ∗ ( [𝑒, 𝑚]) ≥ 𝛼
√
𝑛. Let 𝐴−

𝑖,ℓ and 𝐴+
𝑖,ℓ denote the subsequences formed by picking up all ℓ’s in [𝑒, 𝑚]

and all ℓ∗’s in [𝑚 + 1, 𝑓 ], respectively. Now define two nonincreasing subsequences 𝐴′
𝑖 , 𝐴

′′
𝑖 by{

𝐴′
𝑖 := [𝐴𝑖,𝜅 , . . . , 𝐴𝑖,ℓ+1, 𝐴

−
𝑖,ℓ , 𝐴

+
𝑖,ℓ], 𝐴′′

𝑖 := [𝐴𝑖,ℓ−1, . . . , 𝐴𝑖,1] if ℓ > ℓ∗

𝐴′
𝑖 := [𝐴𝑖,𝜅 , . . . , 𝐴𝑖,ℓ+1, 𝐴

−
𝑖,ℓ], 𝐴′′

𝑖 := [𝐴+
𝑖,ℓ , 𝐴𝑖,ℓ−1, . . . , 𝐴𝑖,1] if ℓ < ℓ∗.

(393)

Together with the other 𝑗 − 2 subsequences 𝐴1, . . . , 𝐴𝑖−1, 𝐴𝑖+1, . . . , 𝐴 𝑗−1, these j noninterlacing and
nonincreasing subsequences achieve total penalized lengths at least 𝜆1(𝑛) + · · · + 𝜆 𝑗−1 (𝑛) + 𝛼

√
𝑛. By

Lemma 3.5, this implies 𝜆 𝑗 (𝑛) ≥ 𝛼
√
𝑛. If 𝐷ℓ,ℓ∗ ( [𝑒, 𝑚]) ≤ −𝛼

√
𝑛, then let 𝐴−

𝑖,ℓ and 𝐴+
𝑖,ℓ denote the

subsequences formed by picking up all ℓ∗’s in [𝑒, 𝑚] and all ℓ’s in [𝑚 + 1, 𝑓 ], respectively, and define{
𝐴′

𝑖 := [𝐴𝑖,𝜅 , . . . , 𝐴𝑖,ℓ+1, 𝐴
−
𝑖,ℓ], 𝐴′′

𝑖 := [𝐴+
𝑖,ℓ , 𝐴𝑖,ℓ−1, . . . , 𝐴𝑖,1] if ℓ > ℓ∗,

𝐴′
𝑖 := [𝐴𝑖,𝜅 , . . . , 𝐴𝑖,ℓ+1, 𝐴

−
𝑖,ℓ , 𝐴

+
𝑖,ℓ], 𝐴′′

𝑖 := [𝐴𝑖,ℓ−1, . . . , 𝐴𝑖,1] if ℓ < ℓ∗.
(394)

In this case, we can also conclude 𝜆 𝑗 (𝑛) ≥ 𝛼
√
𝑛 similarly. This completes the proof. �

12. Proofs of combinatorial lemmas

In this section, we establish various combinatorial statements about the 𝜅-color BBS dynamics and the
associated carrier processes. Our main goal is to show Lemmas 3.1, 3.2 and 3.5. We also provide an
elementary and self-contained proof of Lemma 3.3, which has been proved in the more general form in
[KL20, Prop. 4.5] using connections with combinatorial R.

12.1. Proof of Lemmas 3.1 and 3.2

In this subsection, we prove Lemmas 3.1 and 3.2. We rely on the finite-capacity carriers (see Section 3.2)
and Lemma 3.3. We need an additional combinatorial observation about the ‘coupling’ between the
carrier processes of capacity c and 𝑐 + 1 over the same BBS configuration, which is stated below.
Proposition 12.1. Let 𝜉 : N → Z𝜅+1 be any 𝜅-color BBS configuration with finite support. Denote by
(Γ𝑥;𝑐)𝑥≥0 and (Γ𝑥;𝑐+1)𝑡≥0 the carrier processes over 𝜉 with finite capacities c and 𝑐 + 1, respectively.
Then for any 𝑡 ≥ 0, Γ𝑥;𝑐 viewed as a c-dimensional vector is obtained by omitting a single coordinate
in Γ𝑥;𝑐+1 viewed as a 𝑐 + 1-dimensional vector.
Proof. Fix a 𝜅-color BBS configuration 𝜉 : N→ Z𝜅+1. Let (Γ𝑥;𝑐)𝑥≥0 and (Γ𝑥;𝑐+1)𝑥≥1 denote the carrier
processes over 𝜉 with finite capacities c and 𝑐 + 1, respectively. We will show the assertion by induction
on 𝑥 ≥ 0. For 𝑥 = 0, both carriers are filled with zeros, so omitting any entry of Γ0;𝑐+1 gives Γ0;𝑐 .
For the induction step, suppose the assertion holds for some 𝑥 ≥ 0. Denote 𝑆 = Γ𝑥;𝑐 , 𝑇 = Γ𝑥+1;𝑐 ∈ B𝑐

and 𝑆′ = Γ𝑥;𝑐+1, 𝑇
′ = Γ𝑥+1;𝑐+1 ∈ B𝑐+1. Recall that the entries in carrier states are nonincreasing from

left, which is the opposite of the convention for semistandard Young tableaux (as used in [KL20] and
[KLO18]).

By the induction hypothesis, we may assume that S can be obtained from T by omitting its 𝑗∗th
entry 𝑇 ( 𝑗∗) = 𝑟. Let B and A be the blocks to the left and right of the entry 𝑇 ( 𝑗∗) of T. Hence, S is the
concatenation of the blocks B and A (see Figure 9 left). Let 𝑞 := 𝜉𝑥+1.

First, suppose that q does not exceed the smallest entry of T. In this case, inserting q into T replaces
the largest entry of T, so 𝑇 ′ is given by 𝑇 ′( 𝑗) = 𝑇 ( 𝑗 + 1) for 1 ≤ 𝑗 ≤ 𝑐 and 𝑇 ′(𝑐 + 1) = 𝑞. We also have
𝑆′( 𝑗) = 𝑆( 𝑗 + 1) for 1 ≤ 𝑗 < 𝑐 and 𝑆′(𝑐) = 𝑞. It follows that 𝑆′ is obtained by omitting the same entry
𝑟 = 𝑇 ′( 𝑗∗ − 1) from 𝑇 ′.

Second, suppose that q exceeds the smallest entry of T, so that 𝑇 ′ is computed from the pair (𝑇, 𝑞)
using the reverse bumping. If q replaces some entry of A or B in T to get 𝑇 ′, then the same replacement
occurs to compute 𝑆′ from the pair (𝑆, 𝑞). Hence, in this case, 𝑆′ is obtained by omitting 𝑟 = 𝑇 ′( 𝑗∗)
from 𝑇 ′. Otherwise, q replaces r in T to get 𝑇 ′ (see in Figure 9 right). Then q must replace the largest
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Figure 9. (Left) 𝑆 ∈ B𝑐 is obtained from 𝑇 ∈ B𝑐+1 by omitting an entry r. (Right) After inserting q
into T and S according to the circular exclusion rule, one can still omit a single entry from the larger
tableau to get the smaller one.

entry of A in S to get 𝑆′. Then 𝑆′ is obtained from 𝑇 ′ by deleting the largest entry in A. This shows the
assertion. �

Proof of Lemma 3.1. Fix a 𝜅-color BBS configuration 𝜉 : N → Z𝜅+1. For each integer 𝑐 ≥ 1, let
(Γ𝑥;𝑐)𝑥≥0 denote the capacity-c carrier process over 𝜉. Let (Γ𝑥)𝑥≥0 denote the infinite capacity carrier
process over 𝜉. We also write

𝑀 = max
𝑠≥0

(# of nonzero entries in Γ𝑠 .) (395)

Note that from Lemma 3.3, we can deduce that for any 1 ≤ 𝑗 ≤ 𝜌1(𝜉),

𝜆 𝑗 (𝜉) = |{𝑘 ≥ 1 : 𝜌𝑘 (𝜉) ≥ 𝑗}| = max
{
𝑘 ≥ 1

���� 𝐸𝑘 (𝜉) ≥ 𝐸𝑘−1(𝜉) + 𝑗

}
, (396)

where 𝐸𝑘 (𝜉) is defined in (405).
Let 𝜏𝑐 be the first time t that the carrier Γ𝑥;𝑐 is completely full with nonzero entries and 𝑋0(𝑥+1) > 0

does not exceed the smallest entry of Γ𝑥;𝑐 . More precisely, let

𝜏𝑐 := inf
{
𝑥 ≥ 0 | Γ𝑥;𝑐 contains all positive entries and 0 < 𝜉𝑥+1 ≤ min Γ𝑥;𝑐 (𝑥)

}
. (397)

We let 𝜏𝑐 = ∞ if the set on the right-hand side is empty. Note that if we consider two carrier processes
Γ𝑥;𝑐 and Γ𝑥;𝑐+1, then 𝜏𝑐 + 1 is the first time that they contain distinct sets of nonzero entries. Moreover,
Γ𝜏𝑐+1;𝑐+1 has 𝑐 + 1 nonzero entries. Hence, if 𝑐 ≥ 𝑀 , then 𝜏𝑐 = ∞, and the two carrier processes have
the same set of nonzero entries for all times. It follows that

𝐸𝑐 = 𝐶𝑜𝑛𝑠𝑡. ∀𝑐 ≥ 𝑀. (398)

Hence, 𝜆1(𝜉) ≤ 𝑀 by (396).
However, note that 𝑥∗ := 𝜏𝑀−1 < ∞ and 𝜉𝑥∗+1 does not exceed the smallest entry in Γ𝑥∗;𝑀−1 by

definition of 𝜏𝑀−1. So 1(𝜉𝑥∗+1 > min Γ𝑥∗;𝑀−1) = 0. Also, since Γ𝑥∗;𝑀−1 and Γ𝑥∗;𝑀 share the same
positive entries, Γ𝑥∗;𝑀 is obtained from Γ𝑥∗;𝑀−1 by augmenting 0 to its right. Since 𝜉𝑥∗+1 > 0 by
definition of 𝑥∗, we have 1(𝜉𝑥∗+1 > min Γ𝑥∗;𝑀 ) = 1. Moreover, by Proposition 12.1,

1(𝜉𝑥+1 > min Γ𝑥;𝑐) ≥ 1(𝜉𝑥+1 > min Γ𝑥;𝑐−1) (399)

for all 𝑐 ≥ 1 and 𝑥 ≥ 0. It follows that 𝐸𝑀 ≥ 𝐸𝑀−1 + 1. Hence, by (396), we deduce 𝜆1(𝜉) ≥ 𝑀 . This
shows 𝜆1(𝜉) = 𝑀 , as desired. �

Proof of Lemma 3.2. Fix a 𝜅-color BBS configuration 𝜉 with finitely many balls of positive colors.
Let 𝑊 := (𝑊𝑥)𝑥≥0 be the carrier process over 𝜉. Let 𝑇0 := 0 and let 𝑇𝑘 for 𝑘 ≥ 1 denote the
kth site that the carrier returns to the origin. Define sub-configurations 𝜉 (1) := (𝜉0, 𝜉1, . . . , 𝜉𝑇1−1),
𝜉 (2) := (𝜉𝑇1 , 𝜉𝑇1+1, . . . , 𝜉𝑇2−1), and so on. Let N denote the number of nontrivial excursions of the carrier
process W. Then 𝜉 is the concatenation of 𝜉 (1) , . . . , 𝜉 (𝑁 ) . We wish to show that the soliton decomposition
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of 𝜉 is the union of the soliton decomposition of 𝜉 (𝑖) ’s. Equivalently, we wish to show that

𝜌𝑐 (𝜉) =
𝑁∑

𝑘=1
𝜌𝑐 (𝜉 (𝑘) ) for all 𝑐 ≥ 1. (400)

To show the claim (400) above, let (Γ𝑥;𝑐)𝑥≥0 denote the capacity-c carrier process over 𝜉. By
Proposition 12.1, we have Γ𝑇𝑘 ;𝑐 = 0 for all 𝑘 ≥ 0. In words, the capacity-c carrier resets to empty at
each site 𝑇𝑘 . Hence, if we let (Γ (𝑘)

𝑥;𝑐 )𝑇𝑘−1 ≤𝑥<𝑇𝑘 denote the capacity-c carrier process over 𝜉 (𝑘) , then

(Γ (𝑘)
𝑥;𝑐 )𝑇𝑘−1 ≤𝑥<𝑇𝑘 = (Γ𝑥;𝑐)𝑇𝑘−1 ≤𝑥<𝑇𝑘 . (401)

It follows that

𝑁∑
𝑥=1

1(𝜉𝑠 > min Γ𝑥−1;𝑐) =
𝑁∑

𝑘=1

∑
𝑇𝑘−1<𝑥≤𝑇𝑘

1(𝜉 (𝑘)
𝑠 > min Γ (𝑘)

𝑥−1;𝑐). (402)

By Lemma 3.3, the above yields

𝜌1(𝜉) + · · · + 𝜌𝑐 (𝜉) =
𝑁∑

𝑘=1
𝜌1(𝜉 (𝑘) ) + · · · + 𝜌𝑐 (𝜉 (𝑘) ). (403)

The above holds for all 𝑐 ≥ 1. By using induction in c, one can then deduce (400).
The second part of the assertion that 𝜆 𝑗 (𝑛) ≥ h 𝑗 (𝑛) is immediate from the first part we have just

shown above and in Lemma 3.1. �

12.2. Proof of Lemmas 3.3 and 3.5

Recall the notations introduced in Section 3.3. For any 𝜅-color BBS configuration 𝑋 : N→ Z𝜅+1 with
finite support and integer 𝑘 ≥ 1, we denote

𝑅𝑘 (𝜉) := max
𝐴1�···�𝐴𝑘

𝑘∑
𝑖=1

NA(𝐴𝑖 , 𝜉), 𝐿𝑘 (𝜉) := max
𝐴1 ≺···≺𝐴𝑘 ⊆N

𝑘∑
𝑖=1

L(𝐴𝑖 , 𝜉). (404)

Lastly, we also denote

𝐸𝑘 (𝜉) :=
∞∑
𝑠=1

1(𝜉𝑠 > min Γ𝑠−1;𝑘 ), (405)

where (Γ𝑥;𝑖)𝑡≥0 is the capacity-i carrier process over 𝜉. We set 𝑅0(𝜉) = 𝐿0 (𝜉) = 𝐸0 (𝜉) = 0 for
convenience. In this subsection, we will show with an elementary argument that the above quantities
associated with a 𝜅-color BBS configuration are invariant under time evolution. This will lead to the
proof of Lemmas 3.5 and 3.3.

We remark that the invariants 𝐸𝑘 (𝜉) are called the energy. They were first introduced in [FYO00]
for the 𝜅 = 1 BBS and were recently used to define an energy matrix for the general 𝜅-color BBS that
characterizes the full set of invariants. Time invariance of the energy (and also the energy matrix) in
the literature is usually shown by using the alternative characterization of the BBS dynamics in terms
of combinatorial R and connections to the Yang-Baxter equation [FYO00, IKT12, KL20, KLO18].

Recall the BBS evolution rule defined in the introduction: For 𝑖 = 𝜅, 𝜅 − 1, · · · , 1, the balls of color i
each make one jump to the right, into the first available empty box (site with color 0), with balls that start
to the left jumping before balls that start to their right. (This is the map 𝐾𝑖 defined in the introduction.)
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A single step of 𝜅-color BBS evolution 𝑋 ↦→ 𝑋 ′ is defined by

𝜉 ′ := 𝐾1 ◦ 𝐾2 ◦ · · · ◦ 𝐾𝜅 (𝜉). (406)

We propose two ways to simplify the 𝜅-color BBS dynamics. First, using the cyclic symmetry of the
system, we can reformulate the update of a 𝜅-color BBS configuration in terms of 𝜅 applications of a
single rule. Namely, let T𝜅 denote the following update rule for BBS configurations with finite support:
all the balls of color 𝜅 jump according to the rule 𝐾𝜅 , and we relabel each of them with color 1 and
increase the positive colors of all other balls by 1. Then we have

𝐾1 ◦ 𝐾2 ◦ · · · ◦ 𝐾𝜅 (𝜉) = (T𝜅 )𝜅 (𝜉). (407)

Second, we introduce ‘standardization’ of BBS dynamics, which allows us to only consider BBS
configurations with no repeated use of any positive color. Namely, given a 𝜅-color BBS configuration
𝜉 : N→ Z𝜅+1 of finite support, we define its standardization to be the following map 𝜉 : N→ Z≥0: For
each 1 ≤ 𝑖 ≤ 𝜅, let 𝑚𝑖 denote the number of balls in X of color i. Then to produce 𝜉, we relabel first the
color 1 balls from 1 to 𝑚1 from right to left (so that the leftmost ball that was previously colored 1 is
now colored 𝑚1), and then the original color 2 balls are relabeled with colors 𝑚1 + 1 to 𝑚1 + 𝑚2 from
right to left, and so on. Thus, if 𝑁 =

∑𝜅
𝑖=1 𝑚𝑖 is the total number of balls of positive color, then 𝜉 is an

N-color BBS configuration with each color in {1, · · · , 𝑁} used for exactly one ball.
Proposition 12.2. Let 𝜉 and 𝜉 denote a 𝜅-color BBS configuration with finite support and its standard-
ization, respectively. Then the following hold.
(i) Standardization preserves the number of ascents, noninterlacing nonincreasing sequences, and

their penalized lengths. In particular, for each 𝑘 ≥ 1,

𝑅𝑘 (𝜉) = 𝑅𝑘 (𝜉), 𝐿𝑘 (𝜉) = 𝐿𝑘 (𝜉). (408)

(ii) 𝜉 and 𝜉 give the same soliton partition (i.e., Λ(𝜉) = Λ(𝜉)).
Proof. By construction, standardization preserves ordering in the following sense: for 𝑦 < 𝑧, one has
𝜉𝑦 < 𝜉𝑧 if and only if 𝜉 (𝑦) < 𝜉 (𝑧). Thus, a given sequence of balls has an ascent in X if and only if
it has an ascent in 𝜉, and likewise, a given sequence of balls is nonincreasing in 𝜉 if and only if it is
nonincreasing in 𝜉. Part (i) follows immediately.

To show (ii), denote by 𝜉 ′ and (𝜉)′ the BBS configurations obtained by applying one step of the BBS
evolution rule to 𝜉 and 𝜉, respectively. Since standardization does not change the location of balls, it
suffices to show that standardization commutes with BBS time evolution rules; that is,

𝜉 ′ = (𝜉)′. (409)

To see this, observe that for the evolution 𝜉 ↦→ 𝜉 ′, after all balls of color 𝜅 have jumped, they return to
the same left-right order as before: if some ball of color 𝜅, say in position x, jumped over some other ball
of color 𝜅, say in position y, to land in position z (so 𝑥 < 𝑦 < 𝑧), it must be the case that sites between y
and z were occupied. Therefore, when it is time for the ball in position y to jump, it jumps over all sites
in (𝑦, 𝑧]. Hence, in the first step, the balls of color 𝜅 in the previous step are triggered one by one from
left, and since they restore the same left-right order, they will continue to be triggered in this order in
all future steps. This exactly agrees with the time evolution 𝜉 ↦→ 𝜉 ′. This shows (409), as desired. �

In the following proposition, we show the time-invariance of the three quantities associated with a
given BBS configuration. This will show most of Lemma 3.5.
Proposition 12.3. Let 𝜉 be an arbitrary 𝜅-color BBS configuration of finite support. Fix 𝑗 ≥ 1. The
following hold.
(i) 𝐸 𝑗 (𝜉) = 𝐸 𝑗 (T𝜅 (𝜉)).
(ii) 𝑅 𝑗 (𝜉) = 𝐸 𝑗 (𝜉).
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(iii) 𝐿 𝑗 (𝜉) = 𝐿 𝑗 (T𝜅 (𝜉)).
(iv) If (𝜉 (𝑡) )𝑡≥0 denotes the 𝜅-color BBS trajectory with 𝜉 = 𝜉0, then for all 𝑡 ≥ 1,

𝐸 𝑗 (𝜉 (𝑡) ) = 𝑅 𝑗 (𝜉 (𝑡) ) ≡ 𝐸 𝑗 (𝜉), 𝐿 𝑗 (𝜉 (𝑡) ) ≡ 𝐿 𝑗 (𝜉). (410)

We first derive Lemmas 3.5 and 3.3 assuming Proposition 12.3.

Proof of Lemma 3.3 and 3.5. Let (𝜉 (𝑡) )𝑡≥0 be a 𝜅-color BBS trajectory such that 𝜉0 has finite support.
We take𝑇 ≥ 1 large enough so that at time T, the system decomposes into noninteracting solitons whose
lengths are nondecreasing from left. We can reformulate the condition that a 𝜅-color BBS configuration
has reached its soliton decomposition as follows: Suppose two consecutive solitons are separated by g
0’s, where the left and right solitons have length l and r, where ‘length’ of a soliton is its number of
balls of positive colors. Suppose the gap is small (i.e., 𝑔 < 𝑙). In order for the left soliton to be preserved
during the update 𝜉 (𝑇 ) ↦→ 𝜉 (𝑇 +1) , all balls in the left soliton must be dropped by the carrier before any
balls in the right soliton are dropped. It follows that for each 𝑖 ≥ 1, the following ‘separation condition’
must hold at time T:

The 𝑖th largest entry of the right soliton is strictly larger
than the 𝑖 + 𝑔th largest entry of the left soliton. (411)

When 𝜅 = 1, this simply asserts that each soliton of length l must be followed by at least l empty sites.
This is not the case for 𝜅 > 1, as illustrated in the example

· · · 00433200431100 · · · . (412)

For each 𝑘 ≥ 1, let 𝜆𝑘 denote the length of the kth-longest soliton and let 𝜌𝑘 denote the number of
solitons of length ≥ 𝑘 . They both form the same Young diagram, whose kth column and row lengths
are given by 𝜆𝑘 and 𝜌𝑘 , respectively.

For each 𝑗 ≥ 1, let (Γ𝑠; 𝑗 )𝑠≥0 denote the capacity-j carrier process on 𝜉 (𝑡) . As the carrier process over
𝜉 (𝑡) runs over a soliton of length k, the carrier obtains min(𝑘, 𝑗) contribution to the energy. When the
carrier was empty at the beginning of the soliton, this is clear, and otherwise, it is still true due to the
separation condition (411). Hence, we have

𝐸 𝑗 (𝜉 (𝑇 ) ) =
∞∑

𝑘=1
min(𝜆𝑘 , 𝑗) =

𝑗∑
𝑘=1

𝜌𝑘 . (413)

Then by Proposition 12.3, we deduce

𝑅 𝑗 (𝜉 (𝑡) ) = 𝐸 𝑗 (𝜉 (𝑡) ) = 𝐸 𝑗 (𝜉 (𝑇 ) ) =
𝑗∑

𝑘=1
𝜌𝑘 (414)

for all 𝑡 ≥ 0, as desired. In the general case, the above equations hold due to the separation condition
(411). This shows Lemma 3.3 as well as the first equation in Lemma 3.5.

Similarly, for the second equation in Lemma 3.5, it suffices to show 𝐿 𝑗 (𝜉 (𝑇 ) ) = 𝜆1 + · · · + 𝜆 𝑗 . It is
easy to see 𝐿 𝑗 (𝜉 (𝑇 ) ) ≥ 𝜆1 + · · ·+𝜆 𝑗 by choosing the j longest nonincreasing sequences given by the top j
solitons. It remains to show the converse inequality; choose a collection of noninterlacing nonincreasing
subsequences on supports 𝐴1, 𝐴2, · · · , 𝐴 𝑗 that achieves 𝐿 𝑗 (𝜉 (𝑇 ) ). We may assume that |𝐴1 | + · · · + |𝐴 𝑗 |
is as small as possible, where | · | means (nonpenalized) cardinality. We claim that every 𝐴𝑖 is contained
in the support of a single soliton (where it has positive colors). Then clearly the maximum sum of
penalized lengths is achieved when 𝐴𝑖’s are the support of the j longest nonincreasing sequences given
by the solitons, which shows the assertion.
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To show the claim, for each 𝑖 ≥ 1, let u𝑖 denote the maximal nonincreasing subsequence of positive
colors in the ith longest soliton in 𝜉 (𝑇 ) . Schematically, we can write 𝜉 (𝑇 ) as

𝜉 (𝑇 ) : · · · u30 · · · 0u20 · · · 0u100 · · · . (415)

Let 𝑙𝑖 denote the number of 0’s between u𝑖+1 and u𝑖 .
Suppose for contradiction that some 𝐴𝑘 intersects with two u𝑖’s. Let i be as small as possible so that

𝐴𝑘 intersects with u𝑖+1 and u𝑖 . We first suppose the case when the two solitons have a sufficient gap (i.e.,
𝑙𝑖+1 ≥ 𝜆𝑖+1). Let 𝐴′

𝑘 = 𝐴𝑘 \ u𝑖+1. Then 𝐴1, · · · , 𝐴𝑘−1, 𝐴
′
𝑘 , 𝐴𝑘+1, · · · , 𝐴 𝑗 is a sequence of noninterlacing

nonincreasing subsequences in 𝜉 (𝑡) with a strictly smaller total number of elements than the original
sequence. Moreover, this new sequence achieves the optimum 𝐿 𝑗 (𝜉 (𝑇 ) ) since

L(𝐴′
𝑘 , 𝜉

(𝑇 ) ) ≥ L(𝐴𝑘 , 𝜉
(𝑇 ) ) − u𝑖+1 + 𝑙𝑖 ≥ L(𝐴𝑘 , 𝜉

(𝑇 ) ). (416)

Namely, omitting all elements of u𝑖+1 from 𝐴𝑘 deletes at most |u𝑖+1 | positive numbers but at least
𝑙𝑖 ≥ |u𝑖+1 | zeros. This contradicts the minimality of the original sequence 𝐴1, · · · , 𝐴 𝑗 . This shows the
claim. Lastly, when the gap between the solitons is small (i.e., 𝑙𝑖+1 < 𝜆𝑖+1), one can argue similarly by
using the separation condition (411). This shows the claim, as desired. �

Lastly in this subsection, we prove Proposition 12.3.

Proof of Proposition 12.3. (iv) immediately follows from (i)–(iii). According to Proposition 12.2, the
assertion is valid for arbitrary BBS if and only if it is true for the standardized system with initial
configuration 𝜉, where each positive color is used exactly once. Hence, without loss of generality, we
may assume that each positive color in 𝜉 is used exactly once. Furthermore, in proving (i)–(iii), we may
assume that there is a ball of color 𝜅 in 𝜉, since otherwise, the cyclic update rule T𝜅 simply increases all
positive colors by 1. Since all the invariants depend only on the relative ordering between ball colors, the
assertion holds trivially. We will also denote 𝜉 ′ = T𝜅 (𝜉). For any string u of integers in {0, 1, . . . , 𝜅−1},
we let u′ denote the string obtained by incrementing the positive integers in u by one.

(i) Suppose 𝜉𝑥 = 𝜅 and the ball of color 𝜅 is in a contiguous block of balls whose labels are u𝜅v0w for
some words u, v. Note that u and w consist of integers in {0, . . . , 𝜅 − 1}, while v is either empty
or only has positive integers < 𝜅. After the update 𝜉 ↦→ 𝜉 ′ := T𝜅 (𝜉), we reach an arrangement in
which u, v and w have had their labels incremented, the space between them is empty (𝜉 ′

𝑥 = 0) and
1 follows v. Let y be the site such that 𝜉 ′

𝑦 = 1. Here is a schematic:

configuration arrangement
𝜉 [ · · · u · · · ] 𝜅 [ · · · v · · · ] 0 w

𝜉 ′ = T𝜅 (𝜉) [ · · · u′ · · · ] 0 [ · · · v′ · · · ] 1 w′

Consider running the capacity-j carrier over 𝜉 and T𝜅 (𝜉) and computing their energies 𝐸 𝑗 (𝜉)
and 𝐸 𝑗 (𝜉 ′). Let the corresponding carrier processes be denoted by Γ := (Γ𝑥)𝑥≥0 and Γ′ := (Γ′

𝑥)𝑡≥0,
respectively. Observe that up to ‘time’ 𝑥−1, the two carriers go through the equivalent environments
u and u′, so Γ′

𝑥−1 can be obtained from Γ𝑥−1 by adding 1 to all positive colors in the latter carrier.
It follows that the contributions to the energies of both carry up to this point are the same.

Next, after inserting 𝜉𝑥 = 𝜅 and 𝜉 ′
𝑥 = 0 into these carriers, we get carrier states Γ𝑥 =

[𝜅, 𝐴, 0 · · · 0] and Γ′
𝑥 = [𝐴′, 0 · · · 0] for some (possibly empty) positive decreasing sequence A

(see Figure 10 left). This only adds 1 to the energy for the carrier Γ. Also note that, since 𝜅 is
the unique largest color in the system, it sits in the carrier Γ and does not interact with any other
incoming balls thereafter. We can think of this as the capacity of the carrier Γ being decreased
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Figure 10. Two capacity-j carriers over 𝜉 and 𝜉 ′ = T𝜅 (𝜉). They end up with the same energy.

to 𝑗 − 1 after time x. Then over the interval (𝑥,∞), the carriers go through the input [v0w] and
[v′1w′], respectively.

Ignoring 𝜅 in the carrier Γ and shift by 1, they both have the same dynamics (and hence the
same contribution to the energy) until the first time 𝑥∗ that Γ𝑥∗ is full and a new ball of color
𝜉𝑥∗+1 = 𝑞 > min Γ𝑥∗ . In this case, 𝑞 + 1 replaces 0 in Γ′

𝑥∗ , but it replaces 𝜅 in Γ𝑥∗ . If such 𝑥∗

is not encountered up to the location y of 1 in 𝜉 ′, then at site y, 0 replaces the maximum entry
in Γ𝑦 , but 1 replaces 0 in Γ′

𝑦 , so this makes up the energy gap of 1 between the two carriers.
Otherwise, suppose there exists such 𝑥∗ between x and y. Then we can write the carrier states as
Γ𝑥∗ = [𝜅, 𝐵] and Γ′

𝑥∗ = [𝐵 + 1, 0] for some positive decreasing sequence B of length 𝑗 − 1. Then
since 𝜉𝑥∗+1 = 𝑞 > min Γ𝑥∗ , inserting q (resp., 𝑞 + 1) into Γ𝑥∗ (resp., Γ′

𝑥∗ ) replaces 𝜅 (resp., 0), only
adding 1 to the energy for Γ′. Then Γ𝑥∗+1 = [𝐵, 𝑞] and Γ′

𝑥∗+1 = [𝐵 + 1, 𝑞 + 1] and all colors in Γ′

are at least 2, so inserting 0 and 1 at site y does not increment energies of both carriers. Hence,
they end up with the same energy. This shows the assertion.

(ii) Let (Γ𝑥)𝑥≥0 denote the capacity-j carrier process over 𝜉. We will partition the sites that contain
balls of positive colors into j disjoint sets 𝐴1, . . . , 𝐴 𝑗 such that if 𝑥 ∈ 𝐴𝑖 and the energy 𝐸 𝑗 increases
when inserting the ball 𝜉𝑥 into the carrier Γ𝑥−1, then either x is the rightmost (smallest) element of
𝐴𝑖 or there exists a unique 𝑦 ∈ 𝐴𝑖 such that (𝑦, 𝑥) counts as an ascent in 𝐴𝑖 . The existence of such
subsets 𝐴1, . . . , 𝐴 𝑗 implies that

𝑅 𝑗 (𝜉) ≥
𝑗∑

𝑖=1
NA(𝐴𝑖 , 𝜉) ≥ 𝐸 𝑗 (𝜉). (417)

For this proof, we will consider sites with color zero as having a ball of color zero. We will
recursively construct sets 𝐴1(𝑥), . . . , 𝐴 𝑗 (𝑥) for 𝑥 ≥ 0 as follows. Initially, make all j sets to be
empty. Consider the ball at site x with color 𝜉𝑥 (we may simply call it the ‘ball 𝜉𝑥’) is inserted into
the carrier Γ𝑥−1. There are j positions in Γ𝑥−1 at which 𝜉𝑥 can be placed after the insersion, and let
𝑟 (𝑥) ∈ {1, . . . , 𝑗} denote that position. Note that 𝑟 (𝑥) < 𝑗 if and only if 𝜉𝑥 > min Γ𝑥 if and only if
𝐸 𝑗 increase by one. Now define 𝐴1(𝑥), . . . , 𝐴 𝑗 (𝑥) as follows: For 𝑖 = 1, . . . , 𝑗 ,

If 𝑟 (𝑥) < 𝑗 : 𝐴𝑖 (𝑥) =
{
𝐴𝑖 (𝑥 − 1) ∪ {𝑥} if 𝑟 (𝑥) = 𝑖

𝐴𝑖 (𝑥 − 1) if 𝑟 (𝑥) ≠ 𝑖,
(418)

If 𝑟 (𝑥) = 𝑗 : 𝐴𝑖 (𝑥) =
{
𝐴𝑖−1 (mod 𝑗) (𝑥 − 1) ∪ {𝑥} if 𝑖 = 𝑗

𝐴𝑖−1 (mod 𝑗) (𝑥 − 1) if 𝑖 ≠ 𝑗 .
(419)

That is, if the energy 𝐸 𝑗 increases by inserting the ball 𝜉𝑥 into the carrier Γ𝑥−1, which occurs
exactly when 𝑟 (𝑥) < 𝑗 , we append x to the set 𝐴𝑖 (𝑥 − 1) where the new ball 𝜉𝑥 is placed at in Γ𝑥−1.
Otherwise, the new ball 𝜉𝑥 is inserted in position j, and all the other balls are shifted to the left
by one, while the ball at position 1 is dropped out. In this case, we first shift the indices of all sets
𝐴1 (𝑥 − 1), . . . , 𝐴 𝑗 (𝑥 − 1) by −1 modulo j, and then append x to the set with index j (previously of
index 1).

Then clearly, 𝐴𝑖’s are disjoint and partitions N. Moreover, we claim that it has the required
properties. Indeed, suppose that the energy 𝐸 𝑗 increases when inserting the ball 𝜉𝑥 into the carrier
Γ𝑥−1 (i.e., 𝜉𝑥 > min Γ𝑥−1). Then 𝜉𝑥 replaces some ball 𝜉𝑦 (possibly 0) in Γ𝑥−1. Then necessarily,
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𝜉𝑦 < 𝜉𝑥 . Moreover, if 𝜉𝑥 is inserted in the ith position in Γ𝑥−1, then the ball 𝜉𝑦 it is replacing should
also be in the ith position in Γ𝑥−1. By construction, we have 𝑦, 𝑥 ∈ 𝐴𝑖 . So (𝑦, 𝑥) is an ascent in 𝐴𝑖 ,
as desired.

For the other direction, suppose that 𝑅 𝑗 (𝜉) is achieved by a collection of disjoint sets 𝐴′
1, · · · , 𝐴

′
𝑗

that are different from the sets 𝐴1, · · · , 𝐴 𝑗 computed by the carrier process. Find the first place that
they differ, say that x belongs to 𝐴𝑖 but to 𝐴′

𝑖∗ for 𝑖∗ ≠ 𝑖. Then perform the following surgery: let

𝐴′′
ℓ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
([1, 𝑥] ∩ 𝐴𝑖) ∪ ((𝑥,∞) ∩ 𝐴′

𝑖∗ ) if ℓ = 𝑖

([1, 𝑥] ∩ 𝐴𝑖∗ ) ∪ ((𝑥,∞) ∩ 𝐴′
𝑖) if ℓ = 𝑖∗

𝐴′
ℓ otherwise.

(420)

Then by construction, this new collection of sets 𝐴′′
1 , · · · , 𝐴

′′
𝑗 has at least as many ascents as the

𝐴′-sequences do, and the point of disagreement with the A’s is moved later. Therefore, repeating
this process eventually produces the sets 𝐴1, · · · , 𝐴𝑘 and does not decrease the number of ascents.
This shows 𝑅 𝑗 (𝜉) ≤ 𝐸 𝑗 (𝜉), as desired.

(iii) Let 𝐿new
𝑗 := 𝐿 𝑗 (𝜉 ′). We wish to show 𝐿 𝑗 = 𝐿new

𝑗 . We begin by showing that 𝐿 𝑗 ≤ 𝐿new
𝑗 . In the

original system 𝜉, fix a set of k noninterlacing decreasing subsequences whose sum of penalized
lengths is the maximum value 𝐿 𝑗 . We will produce a set of noninterlacing decreasing subsequences
in 𝜉 ′ that have the same sum of penalized lengths. We call the unique ball of color 𝜅 in 𝜉 ′ by simply
𝜅. Suppose 𝜅 is in position a, and that positions 𝑎 + 1, 𝑎 + 2, . . . , 𝑏 − 1 have balls in them, but that
position b is empty; let 𝐼 = {𝑎, · · · , 𝑏 − 1}. There are cases, depending on two different questions:
whether 𝜅 is part of a decreasing subsequence, or is in the interval spanned by a decreasing
subsequence, or neither; and whether there is a decreasing subsequence whose interval spans b, or
one that ends in I with no other sequence that spans b, or neither.

If 𝜅 belongs to a decreasing subsequence, it is the largest entry. Therefore, removing it decreases
the length by 1 and does not add a penalty (because the gap created is not in the interior of any
remaining sequence). If 𝜅 is in the interval spanned by a decreasing subsequence but does not
belong to it, removing 𝜅 introduces a gap and so penalizes the length of that sequence by 1. If
neither holds, removing 𝜅 does not change the penalized lengths of any subsequences. Adding 1 to
every ball label does not change the penalized lengths of any subsequences. If a sequence spans b,
then inserting the new ball 1 removes a gap from that sequence, and so increases its penalized
length by 1. If a sequence ends in I and no subsequence spans b, then the 1 inserted in position
b can be appended to this sequence; there are no gaps in I, so this increases the penalized length
by 1. And if neither holds, then inserting 1 does not change the penalized lengths of any of the
subsequences. Then, it is enough to observe that in either of the cases that result in a decrease of 1,
it is necessarily the case that some sequence ends in I or spans b. Thus, 𝐿new

𝑗 ≥ 𝐿 𝑗 , as claimed.
Finally, to show that actually 𝐿new

𝑗 = 𝐿 𝑗 , we apply the ‘reverse-complement’ operation, re-
versing the order of Z and the order of the labels. This preserves decreasing subsequences, the
noninterlacing relation between them and their penalized lengths; moreover, one time-step in the
reverse-complement is exactly the reverse-complement of one inverse time-step in the original.
Thus also, 𝐿new

𝑗 ≤ 𝐿 𝑗 . This shows 𝐿 𝑗 = 𝐿new
𝑗 , as desired. �

13. Open questions and final remarks

In this section, we discuss some open problems and future directions.

Two-sided limiting shape of the Young diagrams. Many of the known results in scaling limits of
invariant Young diagrams of randomized BBS ([LLP20, KL20, KLO18] and the present paper) concern
rescaling of the first finite rows or columns. Is it possible to jointly scale the rows and columns and
obtain the proper two-sided limiting shape of the Young diagram as in the case of the Plancherel measure
[KKR88] [IO02]? This question is not entirely obvious since the top rows (soliton numbers) obey the
laws of large numbers, whereas the top columns (soliton lengths) obey extreme value statistics.
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Column length scaling of higher order invariant Young diagrams. The 𝜅-color BBS is known to have
𝜅-tuple of invariant Young diagrams, where the ‘higher order’ Young diagrams describe the internal
degrees of the freedom of the solitons [KL20]. It is our future work to extend the methods and results in
the present paper for the first-order Young diagram of the 𝜅-color BBS into higher-order Young diagrams.

Generalization to discrete KdV. One of the most well-known integrable nonlinear partial differential
equations is the Korteweg-de Vries (KdV) equation:

𝑢𝑡 + 6𝑢𝑢𝑡 + 𝑢𝑥𝑥𝑥 = 0, (421)

where 𝑢 = 𝑢(𝑥, 𝑡) is a function of two continuous parameters x and t, and the lower indexes denote
derivatives with respect to the specified variables. In 1981, Hirota [Hir81] introduced the following
discrete KdV (dKdV) equation that arises from KdV by discretizing space and time:

𝑦𝑡𝑘 + 𝛿

𝑦𝑡
𝑖+1

=
𝛿

𝑦𝑡+1
𝑘

+ 𝑦𝑡+1
𝑘+1. (422)

A further discretization of the continuous box state in dKdV leads to the ultradiscrete KdV (udKdV)
equation, which corresponds to the 𝜅 = 1 BBS by Takahashi-Satsuma [TS90]:

𝑈𝑡+1
𝑛 = min

(
1 −𝑈𝑡

𝑛,
𝑛−1∑

𝑘=−∞
(𝑈𝑡

𝑘 −𝑈𝑡+1
𝑘 )

)
, (423)

where 𝑈𝑡
𝑘 denotes the number of balls at time t in box k.

The scaling limit of soliton numbers and lengths of various BBS with random initial configuration
has been studied extensively [LLP20, KL20, KLO18], including the present paper. Hence, a natural open
question is to generalize the similar program to the case of discrete KdV (as opposed to ultradiscrete).
For instance, suppose we initialize dKdV (422) so that the first n box states are independent Exp(1)
random variables and evolve the system until solitons come out. What is the scaling limit of the soliton
lengths and numbers as 𝑛 → ∞? Can we at least obtain estimates on their expectation? These are much
harder questions for dKdV because not everything decomposes into solitons: just like in the usual KdV,
there is chaotic ‘radiation’ left behind.
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