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Abstract—We propose a digitally assisted analog computing
circuit for real-time model predictive control (MPC) of a DC-
DC buck converter. The computing circuit comprises analog
elements for speed and digital components for programmability.
It implements gradient-flow dynamics for a penalty-based refor-
mulation of the quadratic optimization problem corresponding
to the original MPC formulation. The MPC problem is set up to
regulate output voltage while explicitly enforcing constraints on
the buck converter’s inductor current and duty cycle. Simula-
tion results in a closed-loop configuration demonstrate superior
dynamic response with lower settling time and overshoot com-
pared to the Type-III controller and linear quadratic regulator
(LQR). The proposed approach achieves accuracy similar to the
numerically computed optimal solution from the interior-point-
convex algorithm of MATLAB’s quadprog solver while offering
real-time implementation capability.

Index Terms—Analog circuits, DC-DC power converters, dig-
ital circuits, gradient methods, optimization, predictive control.

I. INTRODUCTION

The drive to reduce the size of passive components has
increased switching frequencies for power converters across
applications. This reduces the passive components’ ability to
store energy, leading to faster dynamics. These rapid dynamics
necessitate that companion control and optimization routines
be executed faster. However, bottlenecks due to delays in
digital circuits (frequently leveraged for control and optimiza-
tion) are unavoidable. As a result, it is common to resort to
offline routines, such as look-up tables, rather than real-time
optimization [1]-[4]. This compromise often results in sub-
optimal converter performance and robustness.

This paper presents a digitally assisted analog computing
circuit (DAACC) that implements real-time model predictive
control (MPC) of a DC-DC buck converter. The optimiza-
tion problem is formulated to regulate output voltage while
enforcing bounds on inductor current and the duty cycle.
The DAACC is built with operational amplifiers (op-amps),
diodes, and passive circuit elements judiciously assisted by
a digital circuit. The proposed solution preserves desirable
attributes of digital computing (programmability customized to
the application) and analog circuits (speed of response). From

This work was supported in part by the National Science Foundation (NSF)
through awards 2305431 and 2305432.

a mathematical and control-theoretic point of view, the states
of the DAACC realize gradient-flow dynamics for a penalty-
based reformulation of the original MPC problem. Equilibria
of the DAACC are engineered to coincide with the first-order
Karush-Kuhn-Tucker (KKT) conditions for optimality [5].

Several works have proposed synthesizing analog circuits
to simulate and optimize a wide range of physical systems,
including power converters [3], [6]-[16]. Similarly, there has
been significant interest in MPC for power electronics [17]-
[27]. A comprehensive review of MPC formulations in power
electronics, including computational complexity and stability,
can be found in [2]. Most solutions for power electronics
applications have been implemented in the digital domain,
with the exception being [11]. Our implementation involving
penalty-based gradient-flow dynamics offers a different solu-
tion strategy compared to [11]. While not directly pursued in
this work, it can also encompass nonlinear objective (cost)
functions [3], [6], [28]. We demonstrate via switching-level
simulations that the proposed DAACC facilitates real-time
implementation of MPC.

The remainder of this paper is structured as follows. Sec-
tion II introduces the formulation of the MPC problem. The
reformulation of the MPC problem using the penalty method
and the circuit-based realization are described in Section III.
Section IV presents simulation results for the MPC problem
and a comparative analysis with conventional control methods.
Finally, Section V concludes the paper.

II. MoDEL PREDICTIVE CONTROL (MPC) PROBLEM
FORMULATION

This section presents the Model Predictive Control (MPC)
problem formulation for a DC-DC buck converter. We begin
by introducing the state-space model of the buck converter,
followed by the MPC problem formulation.

A. Buck Converter State-space Model

We develop an MPC solution for a buck converter to
step down input voltage, Vin, to output voltage, vc, across
a (variable) load modeled by resistance Rjoaq. (See Fig. 1.)
The DAACC regulates vc to a desired reference voltage, vyer,
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Fig. 1: A DC-DC buck converter with a DAACC implementing MPC. The
goal is to enforce constraints i1, < Imax (to avoid inductor saturation and
limit switch current) and dmin < d < dmax while regulating vc 10 vres.

by computing a control input duty cycle, d. The continuous-
time dynamics of the buck converter are governed by state-
space equations given in (1) [29]. The state variables, in-
ductor current and capacitor voltage, are represented as = =
[z1 xg]T = [iL Uc]T. The control input u = d is used
to regulate the converter output voltage. System dynamics can
be expressed in state-space form

-'I.: :ACI—’_BCH) y:CC'T: (l)

Vin

g],ccz[o 1].

0 _1
L
AC = ll 1 ] ] BC =
E _-RlciadCl

B. MPC Problem Formulation

We consider an MPC formulation that minimizes a quadratic
objective function f over a finite prediction horizon, N, with
constraints on states and control inputs: [30], [31]

N-1
. o _ T _
dg,dlliljl.l.fld;v_lf - z_: (mref mk} Q (mref -Tk)

T1,T2,00 TN —1 k=1
N-1

+ ) dy Rdy, (2a)
k=0

s.t. Try1 :Adxk—f—dek, szo,...,N— ]_, (Zb)

Tmin < Tk < Tmax, VE=1,...,N—1, (2¢)

dpin < dp < dpay, Yk=0,....N—1, (2d)

where Zror = [iref  Uret) T is the reference state, and the duty
cycles over the horizon, di’s are the optimization variables.
The state of the system at the k& + 1-st instant, zgyq, i
predicted using the current state zj, and the control input

dp by discretizing the dynamics (1) using a zeroth-order
hold. Symmetric weighting matrices @ = 0 and R > 0
are tuned for desired closed-loop performance. The limits on
state variable values are given by zmin and zmax, while the
bounds on control input dy are given by dpyin and dmax.
The problem is solved in each sampling period (which is
equal to the switching period in our case), T, with initial
state measurement, zg, and the duty cycle, d, is set to be
the optimizer djj. Matrices Aq, Bq are obtained through the
discretization of the continuous system dynamics (1) over T:

Ts
Ag=e*Ts, By= (/ eAch'r) B..
T=0

C. MPC with Terminal Cost for Stability

Unlike the stability properties of infinite-horizon linear
quadratic regulator (LQR), in finite-horizon MPC, ensuring
stability—convergence of the solution to the optimization
problem—requires careful design of the objective function,
prediction horizon, and constraints [30], [31]. To promote
the stability of the MPC formulation, a terminal cost term,
(Trer — mN)TP(mref —zp), can be added to the objective
function (2a) of the optimization problem in (2) to approximate
the infinite-horizon LQR behavior. The modified objective
function becomes: [30], [31]

N-1

. _ _ T _
du,d1l:[:13£liw_1f = Z (mref -Tk) Q(-Tref -T'k} 3)
T1,Tay., Ty k=1
N-1
+ Z d;chdk + (xref - -TN)T P (mref - mN] -
k=0

The constraints remain the same as in (2b), (2c), and (2d).
The matrix P is determined from the discrete algebraic Riccati
equation: [31]

P=Q+AJPA4 @)
— (ATPBa) (R+ B PBa)”' (B PAq).

While we focus on a quadratic objective function, it is worth
noting that simpler objective functions (e.g., || - |1 norm)
are used to reduce the computational burden in fast-dynamic
power electronic systems [2]. These alternatives often trade
off closed-loop performance for faster computation.

III. SYNTHESIS OF THE DIGITALLY ASSISTED ANALOG
CoMPUTING CIrRcUIT (DAACC) FOR MPC

This section presents the design of a Digitally Assisted
Analog Computing Circuit (DAACC) implementing the MPC
problem from Section II. We transform the MPC problem in
terms of control variables, reformulate it using the penalty
method to handle constraints, and describe the DAACC im-
plementation using gradient-flow dynamics for a real-time
solution.
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A. Transformation of MPC Problem

To implement the MPC problem using a DAACC, the
problem is first transformed so that the objective function only
features the control variables, dj [30]. This transformation
eliminates the need for explicit state prediction in the circuit
implementation. It is achieved by using the discrete-time state-
space solution to the equality constraint (2b), which expresses
the current state, z, in terms of the initial measured state, zg,
and the sequence of control inputs, d,Vk=1,...,N:

k-1
z = Akzo + Y Ay ' Bad;. Q)
§=0
Substituting (5) into the objective function f from (2a) and
constraints from (2c), we obtain a transformed MPC problem
that depends only on the control variables d:

N-1 k—1
. T Ak k—j—lp 5 \W\T
g min  f= kz::l (zrer — (Agzo + ;}Ad Bad;)) ' Q
kE—1 ) N-1
(@rer — (Afzo+ Y A5/ 'Bad;)) + ) di Rdyx,  (6a)
=0 k=0
k—1 .
St Ty < Agm{) + Z Ag_J_ledj < Tmax,
j=0
Yk=1,...,N, (6b)
pin < dp <dpax, Yk=0,...,N—1 (6c)

Notice that the equality constraint (2b) is eliminated from the

original MPC problem (2), as the system dynamics are now
directly represented in the objective function and inequality
constraints on the state.

B. Penalty-based Reformulation of the MPC Problem

To solve the constrained optimization problem in (6) using
a DAACC, we further reformulate it into an unconstrained
problem using the penalty method [5]. This is accomplished
by penalizing inequality constraint violations via a penalty
function ¢ : R — R. The problem then boils down to:

oz P
- 7
mnin f+5¢, )

where

=

k-1

-1
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+
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+ ((min([], di — dmin))g + (min(0, dmax — dk))2 )

=
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Il
o

The inequality constraints are implicitly handled through the
penalty function, ¢, which, in our implementation, is a sum
of quadratic forms (min(-,-))2. The quadratic form ensures
that the penalty is zero when the constraint is satisfied and

increases quadratically with the magnitude of the violation.
A penalty parameter p € R determines the extent of the
constraint violation applied and is selected such that £¢ >> 0.
Sufficiently large values ensure that the solution to (7) closely
approximates the solution to the original constrained problem
in (2). This penalty-based reformulation allows us to solve the
MPC problem using gradient-based methods, which can be
implemented using DAACC. The following subsection will
detail the DAACC implementation based on gradient-flow
dynamics to solve this reformulated problem in real-time.

C. DAACC Based on Gradient-flow Dynamics

The reformulated unconstrained problem is solved by ap-
plying the following continuous-time gradient-flow dynamics
for all d,k=0,...,N —1:

dd of  p 9

—_— = —_— —_—— 8

a (Bdk * 284y | ®)
where v € R~( is a constant, a%é is the gradient of the

function f(-), and % is the gradient of the penalty function
¢(-) given by:

of

N-1

— =2Rdj, — 2 — ;) QAT F B
a4, k g=zk;r1 (zref — x2) QA d
— 2 (zret — )| PAY 5By, ©
3] . .
5'—5; =2Bq(min (0, Tk4+1 — Tmin) — min (0, Zmax — Tey1))

+ 2(min(0, dg — dmin) — Min(0, dmax — di)). (10)

The circuits in Fig. 2 show the proposed DAACC imple-
menting dynamics (8) for prediction horizons N = 1 with
terminal cost term (P # 0), N = 2, and N = 3 without
terminal cost term (P = 0) respectively. To keep the circuit
size low, we enforce the inductor current constraint only at
the first prediction step. The circuit realization relates to the
dynamics (8) via the parametric relationship:

_ 1 _ R,
"= Rmeo PR
Analog Subsystem: The terms in %%1_ are implemented via

an analog circuit consisting of op-amps, diodes, and resistors.
Inputs to the analog circuit stage are either constants (such
as Imax, @max, dmin) O derived from inverting op-amp stages
(not shown in the Fig. 2) that linearly manipulate voltages such
as Aq,,iL, A4,,vc, Ba,,do, where the subscripts denote the
respective elements of matrices A4 and By (e.g., Aq,, is the
(1,1) element of matrix Ag). High-gain inverting amplifiers
with a gain (R,/R,), then, impose significant penalties (p)
to constrain d and i, within bounds. The min(:,-) function
is realized using an op-amp paired with a diode, where Rjip
restricts current flowing through the op-amp output terminal
and associated diode. Unity-gain buffer follows the min(-,-)
function stage to provide sufficient buffering. Finally, we
incorporate an inverting amplifier, which provides a gain
(Rex/Ro) equivalent to scalar term in % (such as By),
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where £ denotes the specific constraint and k the prediction
step. B

Digital Subsystem: Terms in % can be generated by
a digital circuit, such as a Field-Programmable Gate Array
(FPGA) or digital microcontroller.

The analog integrators, each composed of a capacitor C,,
and resistor R, sum the output from the digital circuit
generating a%& and the analog circuit implementing %%
to produce the sequence of optimal duty cycles dj, of which,
d} is applied as the duty cycle for the subsequent sampling
(switching) period.

IV. PERFORMANCE VALIDATION

This section presents simulation results for the proposed
DAACC implementing MPC for a buck converter, followed
by a comparative analysis with conventional control methods
and numerical optimization techniques.

A. DAACC Simulation Results

The proposed DAACC circuit implementing MPC for a
buck converter, shown in Fig. 2, is simulated using the
LTspice circuit simulator. The buck converter parameters used
in our simulations are listed in Table I. The digital circuit
is implemented using behavioral sources with its outputs
limited to +5 V. In these LTspice simulations, we have
assumed instantaneous output from the digital circuit without
delay. However, it is important to note that digital delays
can introduce instability depending on time delay values [15],
[28], [32]. The analog circuit implementing 2—2% terms and
integrators, utilizes AD8039 op-amps chosen for their high
speed (350 MHz bandwidth) and high slew rate (425 V /pus).
The analog circuit uses a high gain (R,/R, = 100) to
implement large penalties (p) for constraint handling, with its
outputs limited to £12 V.

The MPC formulation uses weighting matrices Q > 0 and

R > 0 selected as follows:

Q:[O 0], R=1

11
0 10% an

These values are chosen to prioritize output voltage regulation
while moderating control efforts. Additionally, the zero ele-
ments in @ reduce computational complexity by simplifying
the calculation of terms in %.

All results are reported in Figs. 3a, 3b, and 3c and described
subsequently. The output (capacitor) voltage v aligns with
the reference voltage v,s of 5 V at start-up. Subsequently,
Uref 1S Step changed to 10 V at time ¢ = 0.2 ms, and vc

TABLE I: Buck Converter Parameters

Parameter Value

Input voltage, Vin 48V
Inductor, L 30 uH
Capacitor, C' 10 uF
Load resistance, Rjgaq 10
Switching period, Ts 1 us

(@N=1,P#0
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Fig. 2: Circuit implementation of the DAACC solving the MPC problem. The
circuit enforces constraints iy, < Imax and dyijn < d < dmax. The circuit
component values are Ro = Ry, = R30 = Ra,1 = R3 o = Ry =10k(],
Ry 0= B4,,Ro, Rp =1MQ, and Cy =1 nF.
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Fig. 3: Simulation results for the buck converter controlled by: (a),(b).(c) the proposed DAACC using MPC with different prediction horizons (switched-model
simulation), compared with (d) Type-III controller (switched-model simulation), (e) LQR (averaged-model simulation), and (f) MATLAB's quadprog solver
(averaged-model simulation).

settles within approximately 50 ps. The DAACC maintains with the trade-off of an increased circuit size. Furthermore,
the state constraints to limit the inductor current 7y, < 3 A, the effect of including a terminal cost is demonstrated in

which significantly reduces overshoot in vc. The v regulation  Fig. 3a, which shows the case where N = 1, P # 0,
for a step change in Rjpaq from 10 €2 to 5 2 carried out at corresponding to the objective function in (3), which includes
t = 0.4 ms is also depicted in Figs. 3a, 3b, and 3c. the terminal cost term. Here, P is computed using the discrete

algebraic Riccati equation (4). This achieves a better dynamic
response compared to the higher prediction horizon case of
N = 2, P = 0 shown in Fig. 3b, which corresponds to the

The dynamic response of the buck converter improves with
an increasing prediction horizon N = 2 to N = 3 without ter-
minal cost term (P = 0), as seen in Figs. 3b and 3c, although

3994

Authonized licensed use limited to: University of Minnesota. Downloaded on August 05,2025 at 18:51:57 UTC from IEEE Xplore. Restrictions apply.



objective function in (2a) without the terminal cost term.

As N increases, although dynamic response improves, the
number of analog components grows linearly. Assuming that
the bounds on ¢, are implemented at the start of the prediction
horizon, there is an increase of approximately & op-amps per
prediction horizon. Moreover, the computation in the digital
circuit increases, resulting in a longer computational delay.

B. Comparative Analysis

We compare the DAACC-based MPC with a third-order
Type-III controller (Fig. 3d) and discrete LQR (Fig. 3e).
Type-III controller can be viewed as a proportional-integral-
derivative (PID) controller with a second-order lag [33]. The
transfer function G(s) of a Type-III controller is:

_ gy Ot s/ ) (1 /)
S(l + S/wPL)(l + S/wpg) '

where Go = 1.2 x 10* is the controller gain, w,, = 5.1 x 10*
rad/s and w,, = 5.7 x 10* rad/s are the angular frequencies of
the zeros, and wp, = 3.3x 10° rad/s and wp,, = 3.6 x 10 rad/s
are the angular frequencies of the poles. These parameters
are designed using MATLAB’s sisotool to provide a gain
margin of 20 dB and a phase margin of 60° at 102 kHz. This
s-domain transfer function is simulated in a closed loop with
the buck converter using Plexim’s PLECS simulator. Note that
simulating the Type-III controller with op-amp can introduce
additional limitations that further degrade performance com-
pared to the s-domain simulation.

The LQR control minimizes a quadratic objective function
J over an infinite horizon, given as: [31]

G(s)

[= e}
J = Z ((-Tref - mk}—r Q(eref - mk) + d;:erk) )
k=0

where dy = K (zrer — x1) is the control input that minimizes
J. The gain matrix K is computed in MATLAB as:

K = (R+B]PBy) ' (B]PAd) = [0.96 7.28]

where P satisfies the algebraic Riccati equation given by (4).
The matrices @ and R for discrete LQR control are the same
as that for MPC, as given by (11). This discrete LQR controller
is simulated using MATLAB in a closed loop with the buck
converter.

As shown in Fig. 3, the DAACC-based MPC achieves faster
settling time with a lower overshoot in the output voltage
ve while limiting ir,. In contrast, both the Type-III controller
and LQR lack inherent structure for constraining iy, (which
leads to overshoots in vc). Furthermore, while DAACC-based
MPC directly incorporates control input d constraints within
its formulation, the conventional Type-III controller and LQR
require external limiting for d. However, these traditional con-
trollers have the advantage of lower computational complexity.

To validate the optimality of our proposed DAACC ap-
proach, we compare the DAACC case of N = 3,P = 0
in Fig. 3c with an equivalent MPC implementation using
MATLAB’s quadprog solver in Fig. 3f, which employs

an interior-point-convex algorithm. The quadprog solver
returns the global optimal solution of the convex quadratic
problem and serves as a benchmark for our DAACC im-
plementation. The dynamic response obtained from MAT-
LAB’s quadprog solver closely aligns with that of the
DAACC implementing penalty-based gradient-flow dynamics
(Fig. 3c). This similarity in response indicates that both meth-
ods converge to comparable optimal solutions. However, while
MATLAB’s quadprog solver faces real-time implementation
challenges, the DAACC-based MPC is designed for real-time
application in fast dynamic power converters.

V. CONCLUSIONS

This paper presents a digitally assisted analog computing
circuit (DAACC) for real-time MPC applied to a DC-DC
buck converter. The proposed DAACC yields a fast dynamic
response with minimal overshoots in the output voltage while
maintaining limits on the inductor current and duty cycle.
The DAACC outperforms conventional Type-IIl and LQR
controllers in dynamic response and constraint handling. In
addition, while achieving performance comparable to MAT-
LAB’s quadprog solver, the DAACC-based MPC enables
real-time implementation for power converters with rapid
dynamics.
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