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We prove uniqueness of tangent cones for forced mean curvature flow, at both closed self-shrinkers
and round cylindrical self-shrinkers, in any codimension. The corresponding results for mean curva-
ture flow in Euclidean space were proven by Schulze and Colding–Minicozzi, respectively. We adapt
their methods to handle the presence of the forcing term, which vanishes in the blow-up limit but
complicates the analysis along the rescaled flow. Our results naturally include the case of mean
curvature flows in Riemannian manifolds.

1 Introduction
Uniqueness of blowups is a fundamental question in the singularity analysis of various geometric
partial differential equations. The most important notion of blowup concerning the formation of
singularities in geometric flows is the tangent flow—a limit of rescalings about a fixed spacetime
point. For mean curvature flow (MCF) of submanifolds Mn

s in Euclidean space, Schulze [27] proved the
uniqueness of this limit if the singularity is modelled on a compact shrinking soliton, and recently
Colding–Minicozzi [7, 14] proved uniqueness if the model is a round cylinder. The latter opened the
door to a rich regularity theory for mean curvature flows with “generic” singularities in R

N [6].
In this paper, we study forced MCF. A mean curvature flow with forcing (MCFf) is a family of

submanifolds Mn
s ⊂ UN ⊂ R

N which evolve by

dx
ds

= H + K⊥,

where H is the mean curvature vector and K : U → R
N is a smooth, ambient vector field. Note that by

isometric embedding, a MCF in an ambient Riemannian manifold (N, g) may be locally considered as a
MCF with forcing. Upon rescaling (N, g) will resemble Euclidean space. Similarly, if K is bounded then
it vanishes in the blowup limit, that is, the limiting singularity model is a Euclidean soliton. However,
as uniqueness concerns the convergence properties of the sequence, not just the limiting model, it is
not clear that uniqueness follows simply from the results of Schulze and Colding–Minicozzi. Our main
focus is the cylindrical case:

Theorem 1.1. Let U be an open subset of RN. Let Mn
t be a smooth, immersed MCF with forcing

in U ⊂ R
N. If one tangent flow at at a singular point is a multiplicity one cylinder, then the
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tangent flow at that point is unique. That is, any other tangent flow is also a cylinder (with the
same axis and multiplicity one).

We also cover the compact case, which is somewhat simpler, but will also be instructive of the
ultimate strategy for proving uniqueness:

Theorem 1.2. Let Mn
t be a smooth, immersed MCF with forcing in U ⊂ R

N. If one tangent flow at
at a singular point is a smooth closed shrinker � with multiplicity 1, then the tangent flow at
that point is unique. That is, any other tangent flow is also induced by � (with multiplicity 1).

In both cases we apply the general method of deriving uniqueness from a Łojasiewicz inequality
for the rescaled flow. In the compact case we are able to use the Simon–Łojasiewicz inequality due
to Schulze [27], while in the cylindrical case we prove a new Łojasiewicz-type inequality following the
methods of Colding–Minicozzi [7, 14]. We remark that our methods are fairly general and should also
apply, for instance, to the class of singularity models studied by the second named author in [32].

1.1 Background and history
Geometric flows have led to many striking results in topology, geometry, and general relativity during
the last decades, including proofs of the Poincaré conjecture [26], the Differentiable Sphere Theorem
[2], and the Riemannian Penrose Inequality [22].

MCF is the parabolic analog of minimal surfaces. Apart from their intrinsic appeal, minimal surfaces
hadmany geometric applications and contributed to our understanding ofmanifoldswith lower bounds
on their curvature.Recently, surfaces of prescribedmean curvature have attractedmuch attention.They
arise naturally as isoperimetric surfaces andμ-bubbles and led to several scalar curvature results which
previously have been inaccessible via the classical minimal surface or Dirac operator methods [3, 20].

The parabolic analog of surfaces of prescribed mean curvature is MCFf. In view of Nash’s embedding
theorem,MCFf in higher codimension also generalizesMCF in Riemannianmanifolds. For instance,MCF
in Riemannian manifolds recently led to Urysohn width and waist inequalities [24].

Most geometric PDE exhibit singular behavior, and it is of great importance to better understand these
singularities. Typically, this is done by rescaling arguments, and an important question is the uniqueness
of blowups at a singular point. For stableminimal surfaces, this has been resolved by Simonwho showed
in the pioneering work [28] uniqueness of tangent cones. The foundation of Simon’s proof is an infinite
dimensional Łojasiewicz inequality which he established using Lyapunov–Schmidt reduction.

Łojasiewicz inequalities have been a very active area of research the past years. For MCF, Schulze
applied Simon’s work to prove a Łojasiewicz inequality near compact shrinkers. More recently, Colding–
Minicozzi proved Łojasiewicz-type inequalities near the round cylinder in Euclidean space. As men-
tioned above, these results were used to prove uniqueness of tangent flows in the respective cases. For
other results on Łojasiewicz inequalities for geometric PDE, the reader may consult for instance, [5, 15,
18, 19, 29, 32].

With uniqueness at cylindrical tangent flows in hand, Colding–Minicozzi were able to develop a
regularity theory for MCF in Euclidean space with cylindrical singularities, including sharp estimates on
the singular set and regularity results for the arrival time [8–10, 12]. We expect that, as a consequence
of our results here, the corresponding results also hold for MCFf and for MCF in arbitrary manifolds
which encounter only cylindrical singularities (in particular, for mean convex MCF).

1.2 Proof strategy
Let us give a brief description of the proofs of Theorem 1.1 and Theorem 1.2, beginningwith Theorem 1.2
as it is indicative of the general “direct” method for uniqueness.

For MCF (without forcing), one observes that MCF corresponds to the gradient flow for the area
functional. Moreover, the rescaled flow �t = et/2Ms, t = − ln(−s) is the gradient flow for the Gaussian

area F(�n) = (4π)−n/2
∫
�
e− |x|2

4 . Uniqueness of the tangent flow toMs at (0, 0) is equivalent to uniqueness
of the t → ∞ limit of the rescaled flow.

The critical points of F are so-called shrinkers, which satisfy the elliptic PDE φ := H + x⊥
2 = 0, where

H is the mean curvature vector. Using Simon’s Łojasiewicz inequality, Schulze proved an inequality
bounding the oscillation of F by a power of ‖φ‖L2 near a compact shrinker �. A key lemma is that surfaces
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initially close to a compact shrinker remain close forwards in time. Using these ingredients and an
inductive argument, Schulze proved a differential inequality for F(�t)−F(�), the solution of which yields
a rate of convergence, and in particular implies uniqueness.

MCF with forcing is not the gradient flow of F, and so in our setting F is no longer monotone. Instead,
we perturb F to obtain a new monotone quantity F̃t, and also prove a stability lemma for almost
Brakke flows close to a shrinker. To use Schulze’s Simon–Łojasiewicz inequality, we compare F̃t to F,
which results in an additional term in the resulting differential inequality. Fortunately, the error term
is exponential, so we can complete the argument if we wait until a large initial time.

For cylindrical singularities, Colding–Minicozzi [7, 14] introduced several key innovations to deal
with the significant problem of a noncompact limiting object. They developed a method to directly
prove Łojasiewicz inequalities by iterated improvement and extension. Their “improvement step” can be
thought of as a Łojasiewicz inequality for surfaces close enough to a cylinder on a large enough set.
Their “extension step”, on the other hand, extends the closeness to the cylinder in space (we well as
time); this also has the effect of reducing error terms in the improvement step. By another inductive
argument, they are able to prove a recurrence or discrete differential inequality for F, the solution of
which implies uniqueness.

In our setting of MCF with forcing we encounter again several difficulties related to the loss of
gradient flow structure. Actually, even for MCF (without forcing), we also have to deal with some loss
of monotonicity when working locally, due to the noncompactness of the cylinder. One of the main
components of this paper is in proving a suitable “extension step”. The argument relies on several
monotonicity-type estimates to compare the flow at different points in spacetime,which is complicated
by the lack of monotonicity for F. It also relies onWhite’s version of Brakke regularity for almost Brakke
flows, and higher-order interior curvature estimates for such flows. A proof of the latter is also included
as, to the best of the authors’ knowledge, it is not yet in the literature.

Following the Colding–Minicozzi method, we then combine our extension step with the Colding-
Minicozzi “improvement step” to prove a scale comparison theorem,which relates the “cylindrical scale”
(that spatial scale on the rescaled flow is close to a cylinder) with the “shrinker scale” defined by e−R2

T/2 =∫ T+1
T−1 ‖φ‖2L2dt. However, due to the localization and other error terms,we have tomodify the shrinker scale
by an exponential error term. It turns out that this error, even after being compounded in both space
and time, is small enough that the discrete differential inequality (for the modified functional) still
gives a good rate of convergence, and hence uniqueness. For the final uniqueness, note that we adapt
the arguments of [7] based on the rigidity of the cylinder, rather than the arguments of [14].

Overview of the paper
In Section 2 we establish our notation as well as our notion of rescaled flow, which is used throughout
the paper. We also prove certain area bounds which replace entropy-monotonicity. We are then able to
immediately prove Theorem 1.2 in Section 3. The reader may consider this a lighter introduction to the
proof strategy used for the later cylindrical case.

In Section 4, we prove our “extension step” for graphs over a sufficiently large portion of the cylinder.
This is combined in Section 5 with Colding–Minicozzi’s “improvement step” to compare the cylindrical
scale with our modified shrinker scale. The cylindrical uniqueness Theorem 1.1 is proven in Section 6,
which also contains certain technical modifications of Section 3 to handle the noncompact case.

Appendix A deals with the solution of the discrete differential inequality while Appendix B contains
a calculation of the evolution of φ along MCFf. Finally, Appendix C handles interior estimates for MCFf,
in the spirit of Ecker–Huisken [16].

2 Preliminaries
2.1 Notation
We mainly consider submanifolds �n ⊂ R

N. For a vector v we denote by vT and v⊥ = �(v) the
components tangent and normal to �, respectively.

We define the mean curvature vector to be the negative trace of the second fundamental form, H =
−Aii. The shrinker mean curvature is φ = H + x⊥

2 .

The (spatial) L2-norm will always be weighted by the Gaussian ρ(x) = (4π)−n/2 exp(− |x|2
4 ).
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Given a submanifold � and a vector field U, we may consider the graph �U := {x(p) +U(p)|p ∈ �}. We
call this a normal graph if U is a normal vector field on �. When the base � is clear from context, we
write φU for the shrinker quantity associated to the normal graph �U.

Definition 2.1. We say that � is (C2,α , ε)-close to � if � may be written as the graph of a normal
vector field U over (a subset of) � with ‖U‖C2,α ≤ ε. We say that � is (C2,α , ε)-close to � on BR if
� ∩ BR is (C2,α , ε)-close to �.

2.2 Forced flows and rescaling
Fix once and for all r0 > 0.We will always assume thatMs is a MCF with forcing (MCFf) in B4r0 , that is,Ms

is a one-parameter family of submanifolds with no boundary in B4r0 ⊂ R
N, which satisfy dx

ds = H + K⊥.
We assume ‖K‖C3 ≤ K is uniformly bounded on B4r0 . In particular Ms is a K-almost Brakke flow in B4r0 .
For the definition of almost Brakke flows, one may consult [30, Section 11].

The corresponding rescaled flow (which we abbreviate RMCFf) is �t := et/2Ms, t = − ln(−s), and (up
to reparametrization) satisfies dx

dt = φ + e−t/2G⊥. Here G(x, t) = K(et/2x, s).
Throughout this paper, a RMCFf will always be a flow obtained by rescaling a MCFf as above.
To investigate uniqueness of tangent flows at s = 0, we need only consider a short time interval

[s∗, 0] beforehand, |s∗| � 1, and in particular we can assume sup[−s∗ ,0] H
n(Ms) ≤ CV for some CV < ∞. In

particular, we only need to consider the rescaled flow �t for t � 1.

Remark 2.2. To prove uniqueness, one ultimately needs to control the velocity φ̃ = φ + e−t/2G⊥ of
the rescaled flow,which differs from the shrinker mean curvature φ by a forcing term.We have
chosen to state our estimates for φ, to be consistent with the Łojasiewicz inequalities (which
do not involve a flow), with the trade-off of being less direct in estimating the velocity φ̃.

2.3 Gaussian area functionals
Let ρy,s(x) = (4πs)−n/2 exp(− |x−y|2

4s ) and 
y,σ (x, s) = ρy,σ−s(x). The usual F-functionals are Fy,σ (�) = ∫
�

ρy,σ ,
with the distinguished functional F = F0,1. The entropy of a submanifold � measures its geometric
complexity and is defined as λ(�) = supy∈RN ,σ>0 Fy,σ (�). The normalization of F ensures that λ(Rn ⊂
R
N) = 1.

2.4 Almost monotonicity and area bounds
Fix once and for all a smooth cutoff function 0 ≤ ψ ≤ 1 such that ψ = 1 in B3r0 and ψ = 0 outside B4r0 ,
with r0|Dψ | + r20|D2ψ | ≤ Kψ .

For unforced MCF, the monotonicity of the Colding–Minicozzi entropy (derived from Huisken’s
monotonicity formula) provides uniform area growth bounds in terms of area bounds on the initial
slice.

For MCF with forcing, Huisken’s monotonicity no longer holds. Instead, for MCFf as above, we derive
area bounds for Mt ∩ B2r0 based on almost-monotonicity formulae. For any submanifold Mn define

Fψ
y,σ (M) =

∫
M

ψρy,σ .

Then,

Fy,σ (M ∩ B3r0 ) ≤ Fψ
y,σ (M) ≤ Fy,σ (M ∩ B4r0 ).

Note that |D
y,σ | ≤ |x−y|
2(σ−s) 
y,σ . Following the calculations of Ilmanen [23, Proof of Lemma 7] andWhite

[30, Sections 10-11] we have, for any y ∈ Br0 and σ > s, the almost monotonicity formula

d
ds

Fψ
y,σ−s(Ms) + 1

2

∫
Ms

ψQ2
y,τ ≤ K2

2
Fψ
y,σ−s(Ms) +

(
1

16r20
+ Kψ

σ − s

)∫
Ms


y,σ1B4r0 \B3r0 ,
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where

Q =
∣∣∣∣H + (x − y)⊥

2(σ − s)
− (Dψ)⊥

ψ

∣∣∣∣ .
Note that 2r0 ≤ |x − y| ≤ 5r0 for x ∈ B4r0 \ B3r0 . So the last term is bounded by

CV

(
1

16r20
+ Kψ

σ − s

)
(4π(σ − s))−n/2e− r20

σ−s ,

where CV is the global area bound as in Section 2.2.White notes that this is bounded for |σ − s| � r2, but
in fact if we set z = σ−s

r20
, then the error term is given by (4π)−n/2μr−n−2

0 ( 1
16 + Kψz−1)z−n/2e−1/z. The latter

is bounded by γ := μr−n−2
0 c(Kψ ,n) for all z > 0.

As in White [30, Proposition 11] this gives the almost monotonicity:

Lemma 2.3. Let y ∈ Br0 . Then the quantity

Jy,σ̄ (s) := e
K2
2 (σ̄−s)Fψ

y,σ̄−s(Ms) + 2γ

K2
(e

K2
2 (σ̄−s) − 1)

is non-increasing for s∗ < s < σ .

Given y ∈ Br0 and s ∈ [s∗, 0] and σ > 0, choose σ̄ = σ + s. Then Jy,σ (s) ≤ Jy,σ (s∗) yields that

Fψ
y,σ (Ms) ≤ e

K2
2 s−s∗Fψ

y,σ̄−s∗ (Ms∗ ) + 2γ

K2
e

K2
2 (s−s∗).

Corollary 2.4. For t ∈ [t∗, 0] we have

supy∈Br0 ,σ>0 Fy,σ (Mt ∩ B3r0 ) ≤ e− K2
2 s∗ λ(Ms∗ ) + 2γ

K2
e

K2
2 (s−s∗).

In particular, for small enough |s∗| depending only on K, we have

supy∈Br0 ,σ>0 Fy,σ (Ms ∩ B3r0 ) ≤ 2λ(Ms∗ ) + 2γ . (2.1)

3 Uniqueness in the Compact Case
In this section, we describe the proof of uniqueness for the compact case (Theorem 1.2). This will
also illustrate the overall strategy and some main issues, which also need to be addressed in the
non-compact setting. Throughout this section, we consider a RMCFf of closed submanifolds �t as in
Section 2.2.

We may assume that r0 is small enough that the sphere ∂B4r0 is a barrier; that is, any closed MCFf
that is initially inside B4r0 remains inside B4r0 .

3.1 Almost-monotonicity controls φ

Recall

F(�t) = (4π)−n/2
∫

�t

e− |x|2
4 =

∫
�t

ρ.

A straightforward calculation shows that φ = H + x⊥
2 is precisely the L2-gradient of F, in particular

∂tF(�t) = −
∫

�t

ρ〈φ,φ + e−t/2G⊥〉.
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6 | S. Hirsch and J. J. Zhu

We estimate e−t/2|φ||G| ≤ 1
4 |φ|2 + e−tK2, where K is the upper bound for the forcing term K. Therefore,

∂tF(�t) ≤ −
∫

�t

ρ

(
3
4

|φ|2 − e−tK2
)

= K2e−tF(�t) − 3
4

∫
�t

ρ|φ|2.

Let q(t) = e−K2e−t
and define the modified functional

F̃(t) := q(t)F(�t).

Note that themodification only depends on K. The almostmonotonicity becomes a genuinemonotonic-
ity for F̃; in particular,

∂tF̃ ≤ −3
4
q(t)

∫
�t

ρ|φ|2. (3.1)

Choose t0 such that q(t0) = 2
3 . Then for t2 ≥ t1 ≥ t0

∫ t2

t1
dt

∫
�t

|φ|2ρ ≤ 2(F̃(t1) − F̃(t2)). (3.2)

3.2 Łojasiewicz inequality and differential inequality
Recall Schulze’s Łojasiewicz–Simon inequality [27, Equation 3.1] (also see [11, Appendix A]):

Theorem 3.1. If � is a closed shrinker then there exists C, ε > 0, γ ∈ (0, 1) such that ifU is a normal
vector field on � with ‖U‖C2,α ≤ ε, then

|F(�U) − F(�)|1+γ ≤ C‖φU‖2L2 .

From this we derive the following differential inequality:

Theorem 3.2. Fix n,N. There exist C1, ε > 0, γ ∈ (0, 1) and t0 = t0(K) such that if �t is a RMCFf
which is (C2,α , ε)-close to some closed shrinker � for t ∈ [t1, t2], t1 ≥ t0, then

∂tF̃ ≤ −C1(F̃ − F(�))1+γ + C1e−(1+γ )t. (3.3)

Proof. Combining (3.1) and Theorem 3.1 gives for large enough t0

∂tF̃ ≤ −2‖φ‖2L2 ≤ −C|F(�t) − F(�)|1+γ .

Now by the triangle inequality |F̃(t) − F(�)| ≤ q(t)|F(�t) − F(�)| + |q(t) − 1|F(�). It follows that

∂tF̃ ≤ −Cγ ((F̃(t) − F(�))1+γ − F(�)1+γ |q(t) − 1|1+γ ).

Using that |q(t) − 1| = O(K2e−t) for large t gives the result. �

We may solve the differential inequality as follows:

Lemma 3.3. Let f : [1,∞) → [0,∞) be a smooth, non-increasing function. Suppose there are

α, γ > 0 and E(t) ≥ 0 so that for t ≥ 1 we have f ′(t) ≤ −αf1+γ − E(t). If E(t) ∈ O(t
1+γ

γ ), then there
exists C depending only on α,E, γ , f (1) so that f (t) ≤ Ct−1/γ .

Proof. Let h(t) = f (t) − Ct−1/γ where C will be chosen later, but is large enough so that h(1) < 0. Suppose
h is not strictly negative. Then there must be a first time T > 1 at which h(T) = 0. Then h′(T) ≥ 0. On the
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Uniqueness of Blowups for Forced Mean Curvature Flow | 7

other hand we have for CE = supt(E(t)t
1+γ

γ )

h′(T) ≤ −αf (T)1+γ + (CE + C/γ )T− 1+γ

γ = −αC1+γT− 1+γ

γ + (CE + C/γ )T− 1+γ

γ .

This is a contradiction if C is chosen so large that αC1+γ > CE + C/γ . �

Wemay then use this solution and themonotonicity of F̃ to estimate the distance between time slices
of a RMCFf which is close enough to �:

Theorem 3.4. Let � be a closed shrinker. Suppose �t is a RMCFf and that for t ∈ [t0,T], t0 ≥ 1 we
canwrite�t as a normal graphU(t) over � with ‖U(·, t)‖C2,α ≤ σ0, and F̃(t) ≥ F(�). Then there exist
constants C0 > 0, depending only on σ0,K and �, λ0, and θ > 0 depending only on � such that

supt1≤t2∈[t0,T] ‖U(t2) − U(t1)‖L2 ≤ C0t−θ
1

Proof. By closeness to �, it follows from the RMCFf equation that

‖∂tU‖L2 ≤ C‖φ + e−t/2G⊥‖L2

for some constant C = C(σ0). Since, ‖φ + e−t/2G⊥‖L2 ≤ ‖φ‖L2 +Kλ0e−t/2, by the monotonicity for F̃, we have
for any δ > 0

∫ t2

t1
‖∂tU‖L2dt ≤ C

∫ t2

t1
‖φ‖L2dt + Ce−t1/2

≤ C
(∫ t2

t1
‖φ‖2L2 t1+δdt

) 1
2

(∫ t2

t1
t−1−δdt

) 1
2

+ Ce−t1/2

≤ C
(∫ t2

t1
−(∂tF̃)t1+δdt

) 1
2 (

t−δ
1 − t−δ

2

) 1
2 + Ce−t1/2,

where we have used Hölder’s inequality in the second line, and (3.1) for the third.
Now let f (t) = F̃(t) − F(�) so that ∂tf = ∂tF̃ ≤ 0. Integrating by parts, we have

∫ t2

t1
−(∂tF̃)t1+δdt = f (t1)t1+δ

1 − f (t2)t1+δ
2 + (1 + δ)

∫ t2

t1
f (t)tδdt.

By the differential inequality, Theorem 3.2 and Lemma 3.3, we have f (t) ≤ Ct−1/γ , where C depends on
f (t0). But then

∫ t2
t1

−(∂tF̃)t1+δdt ≤ Ct1+δ−1/γ

1 +C
∫ t2
t1
t−1/γ+δ ≤ Ct1+δ−1/γ

1 . Choosing δ so that θ := 1/γ −1− δ > 0
completes the proof. �

3.3 Extension of graph representation
In order to apply the Łojasiewicz inequality, we need to ensure that we are close to a model shrinker at
all sufficiently large times. In the compact setting, we have the following lemma, which states that if
we are initially close to a closed shrinker, then we remain close to it. We denote by �(0,0) the Gaussian
density at the spacetime point (0, 0), that is,

�(0,0)(Ms) = lim
s→0+

∫
Ms

ρ0,s.

Lemma 3.5. Let β > 1 and � be a shrinker. For every σ > 0 there exist ε0 > 0 and τ0 < 0 depending
only on σ ,β,�,K such that if Ms is a unit density K-almost Brakke flow with �(0,0)(M) ≥ F(�)
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8 | S. Hirsch and J. J. Zhu

and 1√−s
Ms is a smooth graph over � of a normal vector field U for s ∈ [βτ , τ ], where τ0 ≤ τ < 0,

‖U‖C2,α (�×[βτ ,τ ]) ≤ σ (3.4)

and

sups∈[βτ ,τ ] ‖U(·, s)‖L2(�) ≤ ε0, (3.5)

then 1√−s
Ms is the graph of an extended U for s ∈ [βτ , τ/β], with

‖U‖C2,α (�×[βτ ,τ/β]) ≤ σ . (3.6)

Proof. This is essentially Schulze’s Lemma2.2 in [27] and the proof goes throughwithoutmajor changes.
For the convenience of the reader we provide a brief sketch nonetheless:

Let M�
s = √−s� be the unforced MCF induced by �. Assuming the result does not hold, we find a

sequence of K-almost Brakke flows Mk
s and τk ↗ 0, satisfying the assumption (3.4) with

sups∈[βτk ,τk]
‖U(·, s)‖L2(�) ≤ 1

k
, (3.7)

but where 1√−s
Mk

s is not a smooth graph over � for s ∈ [τk, τk/β] satisfying (3.6). Let M̃k
s be the parabolic

rescaling ofMk
s so that each is defined on [−β,−1], that is, M̃k

s = |τk|2Mk
|τk |s. Then each M̃k

s is a |τk|K-almost
Brakke flow. By the compactness theorem for almost Brakke flows (cf. [30, Section 11]), and a diagonal
argument, M̃k

s converges to an unforced Brakke flow. It follows from (3.7) and the monotonicity formula
that the limit coincides with M�

s for s ∈ (−β, 0). The convergence is smooth on any compact subset of
this interval by White’s version of Brakke’s regularity theorem (for almost Brakke flows) [31], which
gives the desired contradiction. �

3.4 Uniqueness
Theorem 3.6. Let Mn

s be an embedded MCF with forcing in U ⊂ R
N. If one tangent flow at

at a singular point is induced by a smooth closed shrinker � with multiplicity 1, then the
tangent flow at that point is unique. That is, any other tangent flow is also induced by � (with
multiplicity 1).

Proof. We may assume without loss of generality that the singular point is (0, 0). Let �t be the
corresponding RMCFf as in Section 2.

By the convergence to �, we have:

(†) For any T0, ε, t∗ > 0, there exists t0 > t∗ so that �t is (C2,α , ε)-close to � on [t0, t0 + T0].

Fix any T0 > 0, and choose β = eT0 . Let ε0, τ0 be as in Lemma 3.5, and θ , σ be as in Theorem 3.4. Let
ε ∈ (0, σ) be such that εF(�) ≤ ε0/10. By monotonicity of F̃, there exists t∗ so that F̃(t) − F(�) < ε for any
t ≥ t∗. Let C0 be the constant in Theorem 3.4, which by the last inequality depends only on ε (and σ , but
in particular not on the choice of t∗). Let t0 be large enough so that C0t−θ

0 < ε0/10.
Suppose �t is (C2,α , ε)-close to � on [t0, t0 + T], with t0 > max(t∗,− ln(−τ0)) and T ≥ T0. Note that this

holds with T = T0 by (†). Then by Theorem 3.4, we have

supt0≤t1≤t2≤t0+T ‖U(t2) − U(t1)‖L2 ≤ C0t−θ
1 .

In particular, this does not depend on T (nor t0). By the triangle inequality we then have

‖U(t2)‖L2 ≤ ‖U(t0)‖L2 + C0t−θ
1 ≤ ‖U(t0)‖C2,αF(�) + C0t−θ

0 ≤ εF(�) + ε0/10 < ε0

for all t2 ∈ [t0, t0 + T].
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Uniqueness of Blowups for Forced Mean Curvature Flow | 9

Applying Lemma 3.5 on [t0, t0+T], wemay extend the graphical representation (for the rescaled flow)
by log β = T0. That is, �t will be (C2,α , σ) close to � for t ∈ [t0, t0 + T+ T0]. By induction on T, we conclude
that �t is (C2,α , σ) close to � for all t ≥ t0.

Then by Theorem 3.4 ‖U(t2) − U(t1)‖L2 ≤ C0t−θ
1 → 0 for all t2 ≥ t1 ≥ t0, which implies uniqueness. �

Remark 3.7. Schulze [27] in fact proves a somewhat stronger statement than the uniqueness of
tangent flows. We have chosen to focus on uniqueness and present a more streamlined proof,
although one could modify Schulze’s proof in the analogous manner to prove a version of [27,
Theorem 0.1] for forced MCF.

4 The Extension Step
The goal of this section is to show that if we are very close to a cylinder � on BR, we are still pretty close
to a cylinder on B(1+μ)R for some fixed constant μ which is subject of Theorem 4.1 below. In the next
section (the improvement step) we show that if we are pretty close to a cylinder on B(1+θ)R, we must in
fact be very close to a (potentially different) cylinder on BR. Crucially,μ > θ which allows us to iteratively
apply this extension step and improvement step to obtain the scale comparison theorem 5.4.

We remind the reader that (spatial) L2 norms are weighted by the Gaussian ρ.

4.1 Shrinker and localization scales
We define a shrinker scale RT by

e−R2
T/2 =

∫ T+1

T−1
‖φ‖2L2(�t∩B3et/2 r0 )

dt. (4.1)

In comparison to [7], our scale differs by localizing the integral to B3et/2r0 .
In this section, we will often work on regions of the rescaled flow, and we would like these to

correspond to regions inside the fixed ball Br0 for the original flow. To accomplish this, we will choose a
localization scale which satisfies Rloc

t ∈ o(et/2). However, the localization also introduces error terms, and
to overcome these (see estimate (4.7)) we make the specific choice Rloc

t := 2
√
t + 1.

We also define λ0 to be a constant such that supx∈BR ,r>0 r
−n|�t ∩ Br(x)| ≤ λ0. Several results in this

section will be stated with this hypothesized area bound. In papers on unforced MCF, this hypothesis
would follow from an initial entropy bound. In this work, the required area bound instead follows from
bounds for the initial surface by Corollary 2.4, so long as R < Rloc

t .

4.2 The extension step
We may now state the extension step:

Theorem 4.1. Let �t be a RMCFf with supx∈BR ,r>0 r
−n|�t ∩ Br(x)| ≤ λ0 for all t and some constant

λ0. Given ε2 > 0, there exist constants ε3, t0,R0,C,μ,Cl,Cg > 0 so that if T ≥ t0, R0 ≤ R <

min(RT,Rloc
T−1) and BR ∩ �t is given by the graph U over a fixed cylinder � with ‖U‖C2,α (BR) ≤ ε3 for

t ∈ [T − 1/2,T + 1], then for t ∈ [T − 1/2,T + 1] we have the following:

(1) B(1+μ)R ∩ �t is contained in the graph of some extended U with ‖U‖C2,α (B(1+μ)R) ≤ ε2;

(2) ‖φ‖2L2(B(1+μ)R∩�t)
≤ Ce− R2T

2 + Cgλ0e−T/2; and

(3) |∇ lA| ≤ Cl on B(1+μ)R ∩ �t for each l.

To prove this result we follow the overall proof strategy in Section 5 of [7], which consists of three
main steps:

• Step 1: Curvature bounds on a larger time interval.
• Step 2: Cylindrical estimates on a larger time interval.
• Step 3: Cylindrical estimates on a larger scale.

Here “cylindrical estimates” means estimating closeness to the cylinder (in C2,α). To give an overview
of these steps, we work backwards: The idea is that a uniform short-time stability for MCFf (Step 3)
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10 | S. Hirsch and J. J. Zhu

will translate to an increase in scale for the rescaled flow. This requires, on a larger time interval, both
being close enough to the cylinder on the original scale (Step 1) and having curvature estimates on
the extended scale (Step 2). For Step 1, by a monotonicity-type calculation we show that Gaussian area
bounds can be pulled backward in time. These can be improved to curvature estimates using White’s
Brakke regularity theorem [31], and higher order interior estimates for MCFf. These curvature estimates
imply that the speed of RMCFf is small, which is used in Step 2 to allow us to extend the graphical scale
backwards in time.

4.3 Pulling back density estimates in time
As in [7, Corollary 5.15], we show that we can pull back density estimates in time assuming the speed
of the flow is small in an integral sense. This comes at the cost of moving slightly inwards in space, but
only by a fixed additive amount.

Compared to Colding–Minicozzi, we need to additionally assume in the lemma below that R is
bounded from above by the localization scale. Since e−t0/2Rloc

t0 → 0, this allows us to control the error
terms coming from the forcing term.

Lemma 4.2. Given ε2 > 0, τ ∈ (0, 1/2], λ0, there exists ω > 0, R0, t0 such that the following holds:
Suppose t0 ≤ t1 < t2 and {�t}[t1,t2] is a RMCFf such that for some λ0 we have supx∈BR ,r>0 r

−n|�t ∩
Br(x)| ≤ λ0. Further suppose that R + 3 ≤ Rloc

t0 and for x0 ∈ BR−R0 ,

∫ t2

t1

(∫
BR+2∩�t

|φ|2ρ
)
dt ≤ ω2e−(R+2)2/4

R2(t2 − t1 + 1)
,

(4πτ)−n/2
∫

�t2

e− |x−x0 |2
4τ ≤ 1 + 1

2
ε2.

Then,

(4πτ)−n/2
∫

�t1

e− |x−x0 |2
4τ ≤ 1 + ε2.

Proof. By the RMCFf equation we have

∂t

∫
�t

fρ =
∫

�t

〈D log f ,φ〉fρ −
∫

�t

|φ|2fρ + e−t/2
∫

�t

〈G⊥,Df − fφ〉ρ.

Set f (x) = ηe
|x|2
4 e− |x−x0 |2

4τ for a smooth cutoff function η chosen below. We obtain

∫
�t2

ηe− |x−x0 |2
4τ −

∫
�t1

ηe− |x−x0 |2
4τ =

∫ t2

t1

(∫
�t

(
〈Dη,φ〉e− |x−x0 |2

4τ + η
〈x0,φ〉
2τ

e− |x−x0 |2
4τ

))
dt

+
∫ t2

t1

(∫
�t

((
1 − 1

τ

) 〈x,φ〉
2

ηe− |x−x0 |2
4τ − η|φ|2e− |x−x0 |2

4τ

))
dt

+
∫ t2

t1
e−t/2

(∫
�t

〈G⊥,Df − fφ〉ρ
)
dt.

Due to the area growth bound there exists R0 = R0(n) such that

(4πτ)−n/2
∫

�t\BR0√
τ (y)

e− |x−x0 |2
4τ ≤ ε2/100.
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Choose a smooth cut-off function η with η ≤ 1, |Dη| ≤ 1 and η = 1 on BR and η = 0 outside BR+2. Let
τ ≤ 1. Then,

∫
BR∩�t1

e− |x−x0 |2
4τ ≤

∫
�t1

ηe− |x−x0 |2
4τ

≤
∫
BR+2∩�t2

e− |x−x0 |2
4τ

+
∫ t2

t1

(∫
�t∩(BR+2\BR)

(
|φ|e− |x−x0 |2

4τ + |〈x0,φ〉|
2τ

e− |x−x0 |2
4τ

))
dt

+
∫ t2

t1

(∫
BR+2∩�t

((
1
τ

− 1
) |〈x,φ〉|

2
ηe− |x−x0 |2

4τ + |φ|2e− |x−x0 |2
4τ

))
dt

+
∫ t2

t1
e−t/2

(∫
�t

〈G⊥,Df − fφ〉ρ
)
dt.

Using the bounds for G, we have

∣∣∣∣
∫ t2

t1
e−t/2

(∫
�t

〈G⊥, fφ〉ρ
)
dt

∣∣∣∣ ≤ Ke−t1/2
∫ t2

t1

(∫
BR+2∩�t

|φ|e− |x−x0 |2
4τ

)
dt.

As in the proof of Corollary 5.15 of [7], we can use Cauchy–Schwarz and the area growth bound to
estimate

∫ t2

t1

(∫
BR+2∩�t

|φ|e− |x−x0 |2
4τ

)
dt ≤

√
(4πτ)n/2(t2 − t1)λ0e

(R+2)2
8

(∫ t2

t1

(∫
BR+2∩�t

|φ|2ρ
)
dt

)1/2

.

Also, we have |D log f | ≤ |D log η| + 1
τ
(R + 2). Therefore,

∣∣∣∣
∫ t2

t1

(
e−t/2

∫
�t

〈G⊥,Df 〉ρ
)
dt

∣∣∣∣ ≤1
τ
K

∫ t2

t1
e−t/2

(∫
BR+2∩�t

(R + 3)e− |x−x0 |2
4τ

)
dt

≤1
τ
Ke−t1/2(R + 3)(4πτ)n/2λ0.

Again following [7], we have

(4πτ)−n/2
∫

�t1

e− |x−x0 |2
4τ

≤(4πτ)−n/2
∫

�t2

e− |x−x0 |2
4τ + C(ω/τ + ω2 + ωe−t0/2) + Kλ0e−t0/2Rloc

t0 + ε2

100
.

Since e−t0/2Rloc
t0 → 0 by our definition of the localization scale, choosing ω small and t0 large yields the

result. �

4.4 Extending the curvature bound
Having a density estimate,we apply pseudolocality forMCF to obtain curvature estimates.Here we state
the result in terms of the rescaled flow, and the rescaling contributes to the increase in scale.

Proposition 4.3. Given n, λ0, there exist σ and δ2 such that for any τ ∈ (0, 1/2], there exists ω, t0
such that the following holds:

Suppose t0 ≤ t1 < t2 and {�t}[t1,t2] is a RMCFf such that for some λ0 we have supx∈BR ,r>0 r
−n|�t ∩

Br(x)| ≤ λ0. Further suppose that R + 3 ≤ Rloc
t0 and for x0 ∈ BR−σ ,

∫ t2

t1

(∫
BR+2∩�t

|φ|2ρ
)
dt ≤ μ2

2e
−(R+2)2/4

R2(t2 − t1 + 1)
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12 | S. Hirsch and J. J. Zhu

and

supBσ
√

τ(x0 )∩�t2
|A|2 ≤ δ2/τ .

Then for all t ∈ [t1 − log(1 − 7τ/8), t1 − log(1 − τ)], we have

supB√
τ/3(e(t−t1 )/2x0)∩�t

(|A|2 + τ l|∇ lA|2) ≤ Cl/τ .

Proof. We proceed as in [7], applying White’s version [31] of Brakke’s regularity theorem to the original
flow as an almost Brakke flow in B2r0 ; note that we always apply it at a centre y ∈ Br0 . Observe that
Brakke’s ε-regularity theorem can be applied since the bound on |A|2 implies a density estimate which
we pull back in time via Lemma 4.2. Interior estimates for MCF with forcing (see Appendix C) give the
higher derivative estimates. Note that we can do so because R < Rloc

t0 so in particular e−t0/2R ≤ σ < r0 for
large t0.

We remark that White’s theorem is stated as a C2,α estimate; one could also prove a Cl,α version of
White’s theorem following his arguments; see, for instance, [17, Section 8], where such a result is proven
in the free boundary setting. This would alleviate the need for the PDE interior estimates in Appendix
C, but we have included them as they are somewhat more concrete and may be of independent
interest. �

4.5 The mean value inequality
In this section we prove a mean value inequality for the rescaled flow, which will be required for the
proof of the ‖φ‖L2 bound appearing in Theorem 4.1. It will show that ‖φ‖L2 can be controlled on most
time slices by its average in time. First, we define the elliptic operators

L := L + 1
2

+ 〈·,Akl〉Akl

and

L := � − 1
2

∇xT .

Next, we record the evolution of φ under the rescaled flow (recall � is the normal projection):

Lemma 4.4. If �t is a RMCFf, then we have the evolution equation

(∇∂t − L)φ = e−t/2(�G⊥ + 〈G⊥,Aij〉Aij + 1
2
A(xT,GT) − 1

2
∇⊥
xTG + 1

2
G⊥).

In particular,

(∇∂t − L)(φ + e−t/2G⊥) =∂t(e−t/2G⊥)

= − 1
2
e−t/2G⊥ + �(DG · (φ + e−t/2G⊥)) + (∂t�)(G).

The proof of Lemma 4.4 is deferred to Appendix B.We now proceed to prove amean value inequality:

Lemma 4.5. There exists t0 such that for t2 ≥ t1 ≥ t0 the following holds:
Let �t be a RMCFf on [t1, t2], let β ∈ (0, t2 − t1), 0 < R ≤ Rloc

t1 , |A| ≤ M on �s ∩ BR+1 for all t ∈ [t1, t2].
Then, there exists a C = C(n,K,M) such that

max
t∈[t1+β,t2]

‖φ‖2L2(�s∩BR)
≤ (C + β−1)

∫ t2

t1
dt

∫
�t∩BR+1

|φ|2ρ + Ce−t1 max
t∈[t1,t2]

F(�t).
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Proof. Let 0 ≤ η ≤ 1 be a cutoff function supported on BR+1 with η = 1 on BR and |Dη| ≤ 2. For the
purposes of this proof define φ̃ := (φ + e−t/2G⊥)|�t and note that this is the velocity of the flow. Consider

g(t) = ∫
�t

|φ̃|2η2e
−|x|2

4 . Arguing similarly to [7] we have

g′(t) =
∫

�t∩BR+1

ρ
(
η2(∂t − L)|φ̃|2 + η2L|φ̃|2 + |φ̃|2〈Dη2, φ̃〉 − η2〈φ, φ̃〉|φ̃|2

)

=
∫

�t∩BR+1

ρ
(
η2(∂t − L)|φ̃|2 − 〈∇η2,∇|φ̃|2〉 + |φ̃|2〈Dη2, φ̃〉 − η2〈φ, φ̃〉|φ̃|2

)
.

(4.2)

We estimate each of these four terms individually. First, since (∇∂t − L)φ̃ = 0 we have

(∂t − L)|φ̃|2 = 2〈φ̃, (∂t − L)φ̃〉 − 2|∇φ̃|2 = (2|A|2 + 1)|φ̃|2 − 2|∇φ̃|2. (4.3)

For the second, we estimate

4η|Dη||φ̃||∇φ̃| ≤ η2|∇φ̃|2 + 4|φ̃|2|Dη|2. (4.4)

For the third, we use

2|φ̃|3η|Dη| ≤ 1
2

η2|φ̃|4 + 2|φ̃|2|Dη|2. (4.5)

Finally, we have

− η2〈φ, φ̃〉|φ̃|2 = −η2|φ̃|4 + e−t/2η2〈G⊥, φ̃〉|φ̃|2 ≤ −η2|φ̃|4 + 1
2
Ke−t/2(|φ̃|2 + |φ̃|4)η2. (4.6)

Combining (4.2-4.5) and using |Dη| ≤ 2, |A| ≤ M then gives

g′(t) ≤
∫

�t

ρ

(
1
2

(Ke−t/2 − 1)η2|φ̃|4 − |∇φ̃|2 + (2M + 1 + 1
2
Ke−t/2)η2|φ̃|2 + 6|Dη|2|φ̃|2

)

≤ C(M,K)

∫
�t∩BR+1

η2|φ̃|2ρ,

as long as t0 is so large that Ke−t0/2 ≤ 1. Take t∗ ∈ [t1, t1 + β] so that g(t∗) = mint∈[t1,t1+β] g(t). Then for
t ∈ [t1 + β, t2] we have

g(t) = g(t∗) +
∫ t

t∗
g′(τ )dτ ≤ 1

β

∫ t1+β

t1
g(τ )dτ + C

∫ t

t1

(∫
�τ ∩BR+1

η2|φ̃|2ρ
)
dτ

≤ (C + β−1)

∫ t

t1

(∫
�τ ∩BR+1

η2|φ̃|2ρ
)
dτ .

By the squared triangle inequality twice we now have

max
t∈[t1+β,t2]

‖φ‖2L2(�s∩BR)
− 2K2e−t max

t∈[t1+β,t2]
F(�t) ≤ 2 max

t∈[t1+β,t2]
‖φ̃‖2L2(�t∩BR)

≤ 2(C + β−1)

∫ t2

t1

(∫
�t∩BR+1

η2|φ̃|2ρ
)
dt

≤ 4(C + β−1)

∫ t2

t1

(∫
�t∩BR+1

η2|φ|2ρ
)
dt + 4(C + β−1)K2

∫ t2

t1
e−tF(�t)dt,

which implies the result. �

Note that by the almost monotonicity (Section 2.4), we can assume F(�t) ≤ λ0 for t ≥ t0.
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14 | S. Hirsch and J. J. Zhu

4.6 Short-time stability of the cylinder
We need a short-time stability result for solutions of forced MCF. Specifically, we consider MCF with
forcing as a parabolic system on the normal bundle over a base submanifold�. Intuitively, if the velocity
of the flow is bounded (in C2,α , say) then the solutionsmust stay close to� in a parabolic neighbourhood.
Even though the proof below of this lemma is elementary it is one of the main ingredients to extend
our graphical scale in Theorem 4.1. Moreover, it is the only “parabolic ingredient” of the proof.

Lemma 4.6. Let � ⊂ R
N be a complete submanifold with uniformly bounded geometry, so that

sup�

∑3
j=0 |∇ jA� | < ∞. There exists R0 such that for every R > R0, ε > 0 and C0 > 0, there are

δ3 > 0 and γ > 0 such that if Mt is a MCF with forcing term K satisfying

• BR+2 ∩ M−1 is a normal graph U over � ∈ Ck with ‖U‖C2,α ≤ δ3; and
• |A| + |∇A| + |∇2A| + |∇3A| + |K| + |DK| + |D2K| + |D3K| ≤ C0 on BR+2 ∩ Mt for t ∈ [−1 − 1

C0
,−1 + 1

C0
];

then for each t ∈ [−1 − γ ,−1 + γ ], we have that BR ∩ Mt is a normal graph over
√−t� with C2,α

norm at most ε.

Proof. Since |A| and |K| are bounded, the MCF with forcing equation implies that |∂tx| is also bounded.
Likewise, the bounds on |DK| and |∇A| (and thus on |∇H|) implies that also |∂t�| is uniformly bounded,
where � is the projection onto the normal bundle. Combining these bounds, it follows that BR+1 ∩ Mt

remains graph over � of a normal vector field U with uniform bounds

|∂tU| + |∂t∇U| ≤ C1 for t ∈ [−1 − θ2,−1 + θ2],

where θ2 > 0 and C1 depends on C0, ε,n. The higher order bounds follow in the same fashion. �

4.7 Proof of the extension step
We proceed with the main theorem of this section. As mentioned at the beginning of the section, we
first establish curvature estimates backward in time, then show that the speed of the flow is small
which then allows us to extend the cylindrical scale by the short time stability of the cylinder.

In our presentation of this subsection, we adopt some clarifications based, in part, on notes of
Mantoulidis [25], which the reader may also find helpful.

Proof of Theorem 4.1. Step 1: Curvature bounds on a larger time interval. First, we establish some
curvature bounds on some extended scale backwards in time. Let A0 be the curvature (norm of the
second fundamental form) of the cylinder �.We choose ε3 so that any surface �′ which is (C2,α , ε3)-close
to � has curvature at most A0 + 1. Let δ2 be the constant from Proposition 4.3. Take a constant τ ≤ 1

100

which is small enough that (A0 + 1)2 ≤ δ2
τ
. Then in particular, |A|2 ≤ δ2/τ for each point in �t ∩ BR,

t ∈ [T − 1/2,T + 1].
Now using that R + 2 ≤ 3r0eT/2 and R ≤ RT, we have by definition of shrinker scale

∫ T+1

T−1
dt

∫
�t∩BR+2

|φ|2ρ ≤
∫ T+1

T−1
‖φ‖2L2(�t∩B3r0et/2 )

dt = e−R2
T/2.

Moreover, by choosing t0 and R0 sufficiently large we can ensure that

e−R2
T/2 <

ω2e−(R0+2)2/4

2R2
0

,

where ω is the small constant from Proposition 4.3.
Let σ be as in the statement of Proposition 4.3.We apply that proposition at all x ∈ BR−σ with t2 = T+1.

This will give curvature estimates at times t ∈ [t1 − log(1 − 7τ/8), t1 − log(1 − τ)], for any t1 ≤ T + 1 − τ .
In particular, we conclude that for each l,

supBR1 ∩�t
(|A|2 + τ l|∇ lA|2) ≤ Cl/τ ,
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Uniqueness of Blowups for Forced Mean Curvature Flow | 15

for any t ∈ [T − 1 − log(1 − 7τ/8),T + 1 − τ + log(1 − τ)], where R1 =
√

τ

3 + (1 − τ)− 1
2 (R − σ). Choosing R0

sufficiently large, we have R1 ≥ (1 + κ)R for some κ ∈ (0,
√
2 − 1). Hence, we have obtained a curvature

estimate on a larger time interval [T − 3/4,T + 1 + γ ] and a larger ball B(1+κ)R. Here γ = γ (τ) > 0.
Step 2: Cylindrical estimates on a larger time interval.Having established curvature bounds, by the

mean value inequality (Lemma 4.5) and the definition of shrinker scale (4.1), for t ∈ [T − 7/8,T + 1] we
now have

‖φ‖2L2(B(1+κ)R∩�t)
≤ C

∫ T+1

T−1
‖φ‖2L2(�t∩B3et/2 r0 )

dt + Cgλ0e−T/2 = Ce−R2
T/2 + Cgλ0e−T/2.

By interpolation (cf. [7, Appendix B] or [32, ]), the curvature bounds, and since R < RT, for t in the time
interval [T − 3/4,T + 1], we have

‖φ‖C2,α (B(1+κ)R−1∩�t) ≤C(e(1+κ)2R2/8‖φ‖L2(B(1+κ)R∩�t))
1−δl

≤C(Ce(1+κ)2R2/8e−R2
T/4 + e(1+κ)2R2/8e−T/2)1−δl ≤ C.

(4.7)

Note that we have used R < Rloc
t to control the term e(1+κ)2R2/8e−T/2.

Since ∇ lA is bounded and G is bounded, G⊥ is also bounded in C2,α(BR) for t ∈ [T − 3/4,T + 1]. Hence,
the velocity φ + e− t

2 G⊥ of the rescaled flow is bounded. Thus, the initial (C2,α , ε3)-closeness to � on BR,
for t ∈ [T − 1/2,T + 1], extends to give (C2,α , 2ε3)-closeness on BR−1, for t ∈ [T − 1/2 − ξ ,T + 1]. Here ξ > 0
depends only on ε3, ‖G⊥‖C2,α and ‖φ‖C2,α .

Step 3: Cylindrical estimates on a larger scale.We have now established curvature bounds on �t ∩
B(1+κ)R, t ∈ [T − 1/2 − ξ ,T + 1 + γ ], and cylindrical estimates on BR for t ∈ [T − 1/2 − ξ ,T + 1]. Take
C0 > max(1/ξ , 1/γ ) and let μ be as in the short-time stability Lemma 4.6. We also may choose δ < δ3/2.

Then for any fixed t ∈ [T − 1/2 − θ ,T + 1], we may apply that lemma to the MCFf starting from �t;
the conclusion at time t+ μ (translated to RMCFf) implies that �t+μ is (C2,α , 2ε2)-close to � on B(1+μ)R. In
particular, this establishes the desired cylindrical estimates on B(1+μ)R for any t ∈ [T − 1/2,T + 1]. �

5 Shrinker Scale and Cylindrical Scale
5.1 Improvement step
The following Łojasiewicz inequality follows from the work of Colding–Minicozzi. Note that the
Łojasiewicz inequality is purely a statement about submanifolds, and does not explicitly involve
any flow.

Theorem 5.1 ([14]). There exists ε2 > 0 such that given ε1 > 0, λ0, γ ∈ (0, 1) and β, β̄, κ < 1, there
exist R0, l > 0 and Cβ,β̄,κ such that if �n ⊂ R

N has λ(�) ≤ λ0 and:

(1) For some R > R0,we have that BR∩� is a C2,α normal graphU over some cylinder with ‖U‖C2,α (BR) ≤ ε2;
(2) |∇ jA| ≤ Cj on BR ∩ � for all j ≤ l;

then B(1−γ )R1 ∩ � is a graph V over some (possibly different) cylinder with ‖V‖C2,α ≤ ε1 and

‖V‖L2(B(1−γ )R1 ) ≤ e−(1−γ )2
R21
4 , where

R1 = max
{
r ≤ R − 1

∣∣∣Cβ,β̄,κ

(
‖φU‖

6β̄

3+κ

L2 + ‖φU‖β̄

L1 + ‖U‖
6

3−κ

L2 + Rn−2e−R2/4
)

≤ e−r2/4β

}
. (5.1)

Proof. This essentially follows from the proof of (2) in [14, Proof of Theorem 7.4]; the point is to apply
[14, Proposition 4.47] on the largest scale possible R1 (the parameter γ in our notation corresponds to
α in [14, Proposition 4.47]). The only difference is that we do not assume explicit bounds on φ, so we
follow their proof up to [14,(7.24)], which gives a bound for for ‖∇τ‖L2 involving the interpolated terms
‖φU‖W1,2 ≤ ‖φU‖β̄

L2 and ‖φU‖W2,1 ≤ ‖φU‖β̄

L1 .
We then interpolate directly to obtain pointwise bounds for (|φ| + |∇φ| + |∇2φ|) and (|∇τ | + |∇2τ |), at

the cost of the exponent β (similar to [14,(7.24)], but without using [14,(7.25-6)]). These pointwise bounds
allow us to use [14, Proposition 4.47] to obtain the stated L2 bounds on V. �
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16 | S. Hirsch and J. J. Zhu

The above may be used to prove the following scale improvement theorem:

Theorem 5.2 ([14]). There exists ε2 > 0 such that given ε1 > 0, μ > 0, λ0 and θ ∈ (0,μ) satisfying
1

(1+θ)2
<

1+(1+μ)2

2(1+μ)2
, there exist R0, l0 > 0 such that if �n ⊂ R

N has λ(�) ≤ λ0, and for some R0 ≤ R ≤
R∗ we have:

(1) BR ∩ � is a C2,α graph U over some cylinder with ‖U‖C2,α (BR) ≤ ε2 and ‖U‖2L2(BR)
≤ Cnλ0Rn−2e− R2

4(1+μ)2 ;

(2) ‖φ‖2L2(BR∩�)
≤ C2e−R2∗/2;

(3) |∇ lA| ≤ Cl on BR ∩ � for all l ≤ l0;

then BR/(1+θ) ∩ � is a graph V over some (possibly different) cylinder with ‖V‖C2,α ≤ ε1 and

‖V‖L2(BR/(1+θ)) ≤ e− R2

4(1+θ)2 .

Proof. We want to use the assumed estimates for U and φ so that when we apply the Łojasiewicz
inequality (Theorem 5.1), we will have R1 ≥ R

(1−γ )(1+θ)
for some γ > 0. Thus, the goal is to show that

for some κ ∈ (0, 1], β, β̄ < 1 and large enough R we will have

C(‖φU‖
6β̄

3+κ

L2 + ‖φU‖β̄

L1 + ‖U‖
6

3−κ

L2 + Rn−2e−R2/4) ≤ e
− R2

4β(1+θ)2 . (5.2)

To do so, we first note that ‖φU‖L2 and ‖φ‖L2 differ essentially by the L2 norm of φ outside of BR. The
resulting error term may be estimated using [14, Lemma 7.16], and we will refer to similar error terms
as cutoff error. On the other hand, ‖φ‖L2 is bounded by assumption (2).

In fact, since R < R∗, cutoff error contributes the dominant term, and we have ‖φU‖2L2 ≤ CRne−R2/4 and
‖φU‖L1 ≤ CRn−1e−R2/4.

This bounds the left-hand side of (5.2) by a constant times ‖U‖
6

3−κ

L2 + Rne− 3β̄

3+κ
R2
4 . The second term is

dominated by e
− R2

4β(1+θ)2 so long as 3β̄

3+κ
> 1

β(1+θ)2
. For the first term we need 3

(3−κ)(1+μ)2
> 1

β(1+θ)2
. Choose

κ so that 3
3+κ

= 3
(3−κ)(1+μ)2

; one may verify that this choice gives 3
3+κ

= 1+(1+μ)2

2(1+μ)2
. Since this was strictly

larger than 1
(1+θ)2

it is clear that we can choose β, β̄ very close to 1 so that both the desired inequalities
are satisfied. �

Remark 5.3. A similar scale improvement theorem in fact holds for certain generalized shrinking
cylinders by work of the second named author; see [32, Theorem 7.2].

5.2 Scale comparison
We define now R∗ by e−R2∗/2 = e−R2

T/2 + e−T/2. Combining our extension step above with the Colding–
Minicozzi improvement step shows that the graphical scale extends to a fixed factor larger than R∗ by
a bootstrapping argument. In other words, we can precisely control the size of �t which is close to a
cylinder and the rate is given by R∗.

Theorem 5.4 (Scale comparison). Given ε0 > 0, β ∈ (0, 1) there exist R1,μ > 0 and ε1 > 0 such that
if �t is a RMCFf that is C2,α , ε1 close to a fixed cylinder on BR1 for t ∈ [T − 1,T + 1], then there
exist C,Cl such that for each t ∈ [T − 1/2,T + 1]:

(1) B 1+μ
1+θ

R∗ ∩ �t is a graph of some U with ‖U‖C2,α ≤ ε0, ‖U‖2L2 ≤ CRn−2∗ e− 1
(1+θ)2

R2∗/4 and ‖φU‖2L2 ≤ Ce− (1+μ)2

(1+θ)2
R2∗/4,

where θ ∈ (0,μ) is defined by 1
(1+θ)2

= β
1+(1+μ)2

2(1+μ)2
;

(2) For each l we have supB(1+μ)R∗ ∩�t
|∇ lA| ≤ Cl.

Proof. The point is to use the extension step, Theorem 4.1, to extend the graphical scale by factor 1+ μ

and the improvement step, Theorem 5.2, to retain good estimates, after coming in by a (smaller) factor
1 + θ . Take ε2 as in Theorem 5.2 and ε3 as given by Theorem 4.1. We may do so under the inductive
hypotheses that for each t ∈ [T − 1/2,T + 1]:

(1) BR ∩ �t is given by the graph of U over a fixed cylinder � with ‖U‖C2.,α (BR) ≤ ε3;
(2) For each l we have supBR∩�t

|∇ lA| ≤ Cl.
(3) ‖U‖2L2(BR)

≤ e−R2/4;
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Uniqueness of Blowups for Forced Mean Curvature Flow | 17

For ε1 ≤ ε3 small enough depending on R1, these will be satisfied at the initial scale R1. Assuming the
inductive hypothesis at scale R ≤ R∗, wemay apply Theorem 4.1 to extend the graphU and the curvature
estimates to scale (1+μ)R. By hypothesis (3), the extended graph will have L2 norm dominated by cutoff
error, that is, by [14, Lemma 7.16],

‖U‖2L2(B(1+μ)R)
≤ Cnλ0Rn−2e−R2/4. (5.3)

By conclusion (2) of the extension step and the definition of R∗, we have

‖φ‖2L2(B(1+μ)R∩�t)
≤ C2e−R2∗/2,

so long as (1 + μ)R ≤ R∗. We may then apply Theorem 5.2 (on each time-slice). The conclusions of the
improvement step mean that the inductive hypothesis is satisfied at scale 1+μ

1+θ
R.

The improvement step can be used up to scale R∗, so the last iteration will give that the inductive
hypotheses hold at scale 1

1+θ
R∗. Using the extension step one last time extends the scale to 1+μ

1+θ
R∗, where

again by by [14, Lemma 7.16], we have

‖U‖2L2(B 1+μ
1+θ

R∗ )
≤ e− 1

(1+θ)2
R2∗/4 + Cnλ0Rn−2

∗ e− 1
(1+θ)2

R2∗/4 ≤ CRn−2
∗ e− 1

(1+θ)2
R2∗/4.

Similarly, the L2 norm for φU at this scale is also dominated by cutoff error; by [14, Lemma 7.16] again
we have

‖φU‖2L2(B 1+μ
1+θ

R∗ )
≤ e−R2∗/2 + CRn

∗e
− (1+μ)2

(1+θ)2
R2∗/4 ≤ C′Rn

∗e
− (1+μ)2

(1+θ)2
R2∗/4.

�

6 Uniqueness of Cylindrical Tangent Flows
In this section,we prove uniqueness for the cylindrical case,Theorem1.1.The overall structure is similar
to Section 3, but there are several modifications to handle the noncompactness, compounded by only
having almost-monotonicity for F. Throughout this section, we consider a RMCFf �t as in Section 2.2,
with λ(Ms∗ ) ≤ λ0.

6.1 Almost monotonicity controls φ

Here we again show that a modified functional F̃ is monotone and its gradient controls the shrinker
quantity φ, although the definition is more complicated than the compact case because of the need for
localization.

Recall the notation of Section 2.2, Section 2.4, and in particular the fixed cutoff function ψ supported
on B4r0 . Let ψt(x) = ψ(e−t/2x),

F̂(t) = Fψ2
t

0,1(�t) =
∫

�t

ψ2
t ρ,

and q(t) = exp(−K1e−t), where K1 = K2 + 2K2
ψ r

2
0 + KKψ r−1

0 . The modified functional we consider is

F̃(t) := q(t)F̂(t) + K3e−nt/2,

where K3 = 4K2
n , K2 = 4KψCnλ0(12πr0)n/2, and Cn is a constant depending only on n which will be

determined below.
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18 | S. Hirsch and J. J. Zhu

Lemma 6.1. Assume �t is an RMCFf as above. Then there exists t0 ≥ 0 such that for all t1, t2 ≥ t0
we have

∫ t2

t1

(∫
�t∩B3et/2 r0

|φ|2ρ
)
dt ≤ 4(F̃(t1) − F̃(t2)). (6.1)

Proof. We compute

d
dt
F̂ = −

∫
�t

ψ2
t 〈φ,φ + e−t/2G〉ρ +

∫
�t

2ψt〈Dψ(e−t/2x), e−t/2φ + e−tG − e−t/2x/2〉ρ.

We estimate e−t/2|φ||G| ≤ 1
4 |φ|2 + e−tK2 and 2e−t/2ψt|Dψ ||φ| ≤ 1

4 |φ|2ψ2
t + 2e−t|Dψ |2. We also have |Dψ | ≤

Kψ r−1
0 , and for e−t/2x to be in the support of |Dψ | we must have 3r0 ≤ e−t/2|x| ≤ 4r0. This yields

d
dt
F̂ ≤ − 1

2

∫
�t

ψ2
t |φ|2ρ + (e−tK2 + 2e−tK2

ψ r
−2
0 + e−tKKψ r−1

0 )F̂(t)

+ 4Kψ

∫
�t

ρ1B4et/2 r0 \B3et/2 r0 .

Using the area growth bound (Corollary 2.4) on the last term we have

d
dt
F̂ ≤ −1

2

∫
�t

ψ2
t |φ|2ρ + e−tK1F̂(t) + K2e−nt/2,

where K1 = K2 + 2K2
ψ r

2
0 + KKψ r−1

0 and K2 = 4KψCnλ0(12πr0)n/2. Choose t0 so that q(t0) = 1
2 . Then for t ≥ t0,

we have 1
2 ≤ q ≤ 1. Hence, for,

F̃(t) = q(t)F̂(t) + K3e−nt/2

where K3 = 4K2
n , we have

d
dt
F̃ ≤ −1

2
q(t)

∫
�t

ψ2
t |φ|2ρ ≤ −1

4

∫
�t

ψ2
t |φ|2ρ.

In particular, F̃(�t) is non-increasing, and integrating gives

∫ t2

t1
dt

∫
�t∩B3et/2 r0

|φ|2ρ ≤ 4(F̃(t1) − F̃(t2)) (6.2)

which finishes the proof. �

6.2 Discrete differential inequality
The required Łojasiewicz inequalities follow from the improvement and extension steps above.We also
need the following fact:

By [14, Proposition 6.5], for compactly supported normal graphs over the cylinder with graph function
U with small enough C2 norm, we have

|F(�U) − F(�)| ≤ C‖φU‖L2‖U‖L2 + C‖U‖3L2 . (6.3)

We now proceed to prove the discrete differential inequality for the cylindrical case:
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Uniqueness of Blowups for Forced Mean Curvature Flow | 19

Theorem 6.2. Given n,N, there exist K,C, ε, t0 and θ̄ ∈ (0, 1/2) such that if �t is a RMCFf which is
(ε,R1,C2,α)-close to some cylinder � for t ∈ [T − 1,T + 1], T ≥ t0, then

|F̃(T) − F(�)| ≤ K(F̃(T − 1) − F̃(T + 1))
1+θ̄
2 + Ce− 1+θ̄

4 T.

Proof. First, by the triangle inequality we have

|F̃(t) − F(�)| ≤ K3e−nt/2 + q(t)|F̂(t) − F(�)| + F(�)|q(t) − 1|.

Recall the definition of R∗ from Section 5.2.Consider β ∈ (0, 1) to be determined later; by the scale
comparison Theorem 5.4, we will have 0 < θ < μ so that 1

(1+θ)2
= β

1+(1+μ)2

2(1+μ)2
and �T is a graph U over the

cylinder � at scale B 1+μ
1+θ

R∗ . So again using [14, Lemma 7.16] to estimate the cutoff error, we have

|F̂(T) − F(�)| = |Fψ2
T

0,1(�T) − F(�)| ≤ |Fψ2
T

0,1(�U) − F(�)| + Cnλ0Rn−2
∗ e− (1+μ)2

(1+θ)2
R2∗/4.

Since R∗ ≤ Rloc
T−1, we have F

ψ2
T

0,1(�U) = F(�U).

Moreover, the conclusions of the scale comparison Theorem 5.4 gave that ‖U‖2L2 ≤ Ce− 1
(1+θ)2

R2∗/4 and

‖φU‖2L2 ≤ Ce− (1+μ)2

(1+θ)2
R2∗/4, so by (6.3) we have

|F(�U) − F(�)| ≤ Ce− 1+(1+μ)2

2(1+θ)2
R2∗/4 + Ce− 3

(1+θ)2
R2∗/4.

Note that, by definition of θ , one may verify that 1+(1+μ)2

2(1+θ)2
= β

(1+μ+ 1
2 μ2)2

(1+μ)2
. This is strictly greater than 1,

so long as β is chosen close enough to 1. In particular, we may then choose θ̄ > 0 so that

1 + θ̄ < min

(
β

(1 + μ + 1
2μ2)2

(1 + μ)2
,

3
(1 + θ)2

)
<

(1 + μ)2

(1 + θ)2
,

and, consequently,

|F̂(T) − F(�)| ≤ Ce−(1+θ̄ )R2∗/4.

Finally, substituting the definition of R∗ and using (6.2), we have

|F̃(T) − F(�)| ≤ C(4(F̃(T − 1) − F̃(T + 1)) + e−T/2)
1+θ̄
2 + K3e−nT/2 + F(�)|exp(−K1e−T) − 1|.

Since T ≥ t0 is large, we may estimate this by

|F̃(T) − F(�)| ≤ C(F̃(T − 1) − F̃(T + 1))
1+θ̄
2 + C′e− 1+θ̄

4 T. �

6.3 Graphical representation
Again, to apply the Łojasiewicz inequalities we need a good graphical representation of �t over the
cylinder �. In the non-compact setting, even the initial closeness is nontrivial. As in [7], we use the
rigidity of the cylinder to get closeness (to some cylinder) at all times:

First, we prove the following analog of [4, Corollary 0.3] for MCF with forcing, which establishes
uniqueness of tangent type.

Proposition 6.3. If one tangent flow at a singular point of mean curvature flow with forcing is a
multiplicity one cylinder, they all are.

The proof of this proposition largely follows that of [4]. The key is to replace their Proposition 2.13.
Instead, we show:
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20 | S. Hirsch and J. J. Zhu

Lemma 6.4. Given n, λ0, ε > 0, there exists δ > 0 and t0 ∈ (0,∞) so that if �t ⊂ R
n+k is a RMCFf

with supx∈BR ,r>0 r
−n|�t ∩ Br(x)| ≤ λ0 for t ∈ [T,T + 1], T ≥ t0, and

F(�T) − F(�T+1) ≤ δ.

Then there is an F-stationary varifold � such that dV(�,�t) ≤ ε for all t ∈ [T,T+1] and F(�) ≤ λ0.

Here we use the metric dV from [4, Equation 2.11]. This metric is defined on finite Radon measures
and its induced topology is the weak topology of Radon measures.

Proof. Suppose the lemma is false. Then there exists Ti → ∞ and a sequence �i
t of RMCFf’s such that

F(�i
Ti

) − F(�i
Ti+1) ≤ 1

i and that for every F-stationary varifold �, we have

dV(�,�i
ti
) ≥ ε > 0 (6.4)

for some ti ∈ [Ti,Ti + 1].
Let �̃i

t = �i
t−Ti

and M̃i
s = √−s�̃i

t, t = − ln(−s), be the corresponding “unrescaled” flows, which are
e−TiK-almost Brakke flows. By the compactness theorem for almost Brakke flows (cf. [30, Section 11])
and using a diagonal subsequence, we find that the M̃i

s converge to an unforced Brakke flow M̃∞
s . The

corresponding flow �̃∞
t = et/2M̃∞

s is a unforced rescaled MCF, and satisfies F(�̃∞
0 ) − F(�̃∞

1 ) = 0.
But then by the monotonicity of F under RMCF, �̃∞

t ≡ �̃∞ must be a static RMCF, that is, induced by
some F-stationary varifold �̃∞. However, this contradicts (6.4) for � = �̃∞. �

We now complete the proof of Proposition 6.3:

Proof of Proposition 6.3. Suppose that one of the tangent flows that (0, 0) is cylindrical. Bymonotonicity
of F̃, we have F̃(t) ↘ F(�). In particular, for any δ > 0 there exists t0 ≥ 1 such that F̃(t) − F̃(t + 1) ≤
F̃(t) − F(�) < δ

3 for all t ≥ t0. Moreover, for t0 sufficiently large (so that μ(t0) is close to 1) we can ensure
that |F̃(t) − F(�t)| ≤ δ

3 for all t ≥ t0. Then by the triangle inequality, F(�t) − F(�t+1) ≤ δ for any t ≥ t0.
We may then apply Lemma 6.4 to deduce the existence of an F-stationary varifold � such that

dV(�,�t) ≤ ε for all t ∈ [T,T + 1] and λ(�) ≤ λ0. The rigidity of the cylinder [4, Corollary 2.12] (see
also [13, Theorem 0.11]), finishes the proof. �

Remark 6.5. The proof above is slightly simpler than the proof of [4, Theorem 0.2]. The sim-
plification arises from the fact that we again focus on the uniqueness of cylindrical tangent
flows, corresponding to their Corollary 0.3, rather than their full Theorem 0.2, which may be
considered an ε-regularity result for tangent flows at nearby points. However, the proof above
can also be adapted to also give the ε regularity result for MCF with forcing.

6.4 Final uniqueness
Theorem 6.6. Let Mn

τ be an immersed MCF with forcing in U ⊂ R
N. If one tangent flow at at a

singular point is a multiplicity one cylinder, then the tangent flow at that point is unique. That
is, any other tangent flow is also a cylinder (with the same axis and multiplicity one).

Proof. We may assume without loss of generality that the singular point is (0, 0), and take r0 > 0 such
that B4r0 ⊂ U . Then we consider the corresponding RMCFf �t, to which all the results of this section
apply.

Let δj =
√
F̃(j − 1) − F̃(j + 2). By equation (6.1) we have that

(∫ j+2
j−1 ‖φ‖2L2(�t∩B3et/2 r0 )

dt
) 1

2

< Cδj. We proceed

as in [7, Theorem 0.2]. By Proposition 6.3, any other tangent flow must be induced by a cylinder. By
White’s local regularity, it follows that for any R there exists t0 so that the RMCFf satisfies:

(†) For any T ≥ t0, there is a cylinder � so that for all t ∈ [T − 1,T + 1], �t ∩ BR1 is a normal graph over
� with C2,α norm at most ε1.

Since |G⊥| is bounded, the L1 distance between time slices of the RMCFf is bounded by δj + Ke−j/2.
Thus to prove uniqueness, it is enough to show that

∑
j(δj+e−j/2) converges. The geometric series

∑
j e

−j/2
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certainly converges, and combining the discrete differential inequality, Theorem 6.2, with Lemma A.1
and Lemma A.2 for f (t) = F̃(t) − F(�) shows that in fact

∑
j δ

β

j converges for some β < 1. This completes
the proof. �
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A Solving the Discrete Differential Inequality
Lemma A.1. Suppose that f : [0,∞) → [0,∞) is a non-increasing function, and there are constants

γ > 0, K > 0 and E(t) ≥ 0 so that for t ≥ 1, we have

f (t)1+γ ≤ K(f (t − 1) − f (t + 1)) + E(t).

If E(t) = o(t−
γ+1

γ ), there exists a constant C so that f (t) ≤ Ct−1/γ for all t ≥ 1.

Proof. Following Colding–Minicozzi [7], by scaling and translating f , we may assume without loss of

generality that f (0) ∈ (0, 1/2] and K = 1. By the assumption on E(t) there exists t1 so that t
γ+1

γ E(t − 1) ≤
1
2 f (0)1+γ for t ≥ t1. Now set t0 = 2 + max(t1, 23+γ f (0)−γ γ −1).

Choose C so that f (0) = Ct−1/γ

0 . This implies f (t) ≤ Ct−1/γ for all t ≤ t0. We show by induction on j that
this inequality holds for all t ≤ t0 + 2j. Indeed, suppose this holds for some j.

By the recurrence on f and using K = 1, we have for t ≥ 2

f (t)1+γ ≤ f (t − 1)1+γ ≤ f (t − 2) − f (t) + E(t − 1). (A.1)

Suppose for the sake of contradiction that f (t) > Ct−1/γ for some t ∈ (t0 + 2j, t0 + 2j + 2]. Note that by
choice of t0 which implies t > 1 and t > t1, we have

C−1t1/γ E(t − 1) ≤ 1
2
C−1f (0)1+γ t−1 ≤ 1

2
Cγ t−1. (A.2)

Then using (1 + h)−γ ≤ 1 − 2−1−γ γh for h ≤ 1, we have by (A.1), (A.2), and our choice of t0

f (t − 2)−γ <C−γ t(1 + Cγ t−1 − C−1t−1/γ E(t − 1))−γ

≤C−γ t(1 + 1
2
Cγ t−1)−γ

≤C−γ (t − 2−2−γ γCγ )

≤C−γ (t − 2).

But f (t − 2) ≤ C(t − 2)−1/γ by the inductive hypothesis, so this is a contradiction. This completes the
induction and the proof of the lemma. �

The following is essentially the content of the proof of Lemma 7.8 in the high codimension paper
[14]:
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Lemma A.2. Suppose that
∑∞

i=j δ
2
i ≤ Cj−ρ for some ρ > 1 and some constant C. Then there exists

ᾱ < 1 such that
∑∞

j=1 δᾱ
j < ∞.

Note that if γ < 1, the previous lemma would allow this lemma to be applied with δj = √
f (j) − f (j + 1)

and ρ = 1/γ .

B Evolution of φ

Proof of Lemma 4.4. Recall that φ = H+ x⊥
2 and the RMCFf satisfies ∂tx = φ + e−t/2G⊥ where G is a fixed

ambient vector field. According to Proposition 1.3 in [14], for a general submanifold we have

LAij =Aij + 2〈Ajl,Aik〉Alk − 〈Aml,Ail〉Ajm

− 〈Ajl,Aml〉Aim + Hessφ(ei, ej) + 〈φ,Aim〉Amj,

where L = L + 1
2 + 〈·,Akl〉Akl with L = � − 1

2∇xT , and

LH = H + �φ + 〈φ,Aij〉Aij.

According to equation 20 in [1], for a normal flow ∂tx = �V, the time evolution is

∇∂tAij = Hess�V(ei, ej) + Aik〈�V,Ajk〉.

Taking the trace gives ∇∂tH = �(�V) + Aij〈Aij, �V〉. In our setting this becomes

∇∂tH = �φ + 〈Aij,φ〉Aij + e−t/2(�G⊥ + 〈Aij,G⊥〉Aij).

Consider the normal projection �. We use �′ to denote its derivative in either a spatial or time
direction. Differentiating �2 = � implies that �′ ◦�+�◦�′ = �′. Composing with � on both sides then
gives � ◦ �′ ◦ � = 0. Also by symmetry we have 〈�′ ◦ �(V), ej〉 = 〈�(V),�′(ej)〉. For the spatial derivatives,
differentiating �(ei) = 0 gives

(∇j�)(ei) = −�(∇jei) = −Aij.

It follows that ∇i�(x) = −A(ei, xT) − ej〈Aij, x⊥〉. One can follow [14, Lemma 2.7] in normal coordinates to
find that ∇⊥

k ∇⊥
i �(x) = −(∇A)(ei, ek, xT) −A(ei,∇T

j x
T). Note that 〈ek,∇T

j x
T〉 = gjk − 〈ek,∇jx⊥〉 = gjk + 〈Ajk, x⊥〉.

Therefore,

∇⊥
k ∇⊥

i �(x) = −(∇A)(ei, ek, x
T) − Aij − Aik〈Ajk, x

⊥〉.

Taking the trace gives ��(x) = −∇⊥
xTH − H − 〈x⊥,Aij〉Aij and adding the lower order terms gives

Lx⊥ = −∇⊥
xTφ − H + 1

2
x⊥.

For the time derivative, differentiating �(ei) = 0 and commuting the time derivative gives (∂t�)(ei) =
−�(∂tei) = −∇⊥

i (φ + e−t/2G⊥). Using the spatial derivative, this becomes

(∂t�)(ei) = −∇⊥
i φ − e−t/2(−A(ei,GT) + ∇⊥

i G).

In particular,

∂t(�(x)) =(∂t�)(x) + �(∂tx) = φ + e−t/2G⊥ − ∇⊥
xTφ

+ e−t/2A(xT,GT) − ej〈x⊥,∇⊥
j φ − e−t/2(A(ej,GT) + ∇⊥

j G)〉.
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Combining this we obtain

(∇∂t − L)φ = e−t/2(�G⊥ + 〈G⊥,Aij〉Aij + 1
2
A(xT,GT) − 1

2
∇⊥
xTG + 1

2
G)

which finishes the proof. �

C Interior Estimates for MCF with Forcing Term
Let K be a smooth vector field on R

N and x : I×Mn → R
N a smooth family of embeddings which satisfy

∂tx = H + K⊥.

Our goal of this section is to prove interior estimates for this flow. For this purpose we begin with
computing the evolution equations.

Proposition C.1. We have

(∂t − �)|∇kA|2

= − 2|∇k+1A|2 + ∇kA ∗ ∇k+2K⊥

+ ∇kA ∗
∑

i1+i2+i3=k

∇ i1A ∗ ∇ i2A ∗ ∇ i3A + ∇kA ∗
∑

i1+i2+i3=k

∇ i1A ∗ ∇ i2A ∗ ∇ i3K⊥.

Note that the ∇K⊥ terms may be related to Euclidean derivatives of K by

∇kK⊥ =
∑

j1+···+ja+a+b=k

∇ j1A ∗ · · · ∗ ∇ jaA ∗ DbK.

Proof. From the timelike Codazzi equations, cf. [1, Equation (18)], we obtain

∂tAij =∇2
ij (H + K⊥) + 〈H + K⊥,AikAjk〉

where {ei}i=1,...,n are an orthonormal frame of TM. By Simons’ identity, cf. [1, Equation (23)], we have

(∂t − �)A = ∇2K⊥ + A ∗ A ∗ A + K⊥ ∗ A ∗ A.

Applying the lemma below, we inductively obtain

∂t∇kA =�∇kA + ∇k+2K⊥

+
∑

i1+i2+i3=k

∇ i1A ∗ ∇ i2A ∗ ∇ i3A +
∑

i1+i2+i3=k

∇ i1A ∗ ∇ i2A ∗ ∇ i3K⊥.

Next, we note that

�|∇kA|2 = 2〈�∇kA,∇kA〉 + 2|∇k+1A|2

and the inverse metric evolves as

∂tgij = 2〈H + K⊥,Aij〉.

Combining all the above identities yields the proposition. �
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Lemma C.2. Let S and T be tensors satisfying the evolution equation

∂tS = �S + T,

then the covariant derivative ∇S satisfies an equation of the form

∂t∇S = �∇S + A ∗ A ∗ ∇S + A ∗ ∇A ∗ S + ∇T.

Proof. Lemma 13.1 in [21] states

∂t∇S = �∇S + Rm ∗∇S + S ∗ ∇ Rm+∇T.

Hence, the result follows from the Gauss and Codazzi equations. �

To state the interior estimates it will be convenient to define r(x, t) = |x|2 + 2nt. As in [16, Theorem
3.7], we obtain:

Theorem C.3. Let R > 0 be such that {x ∈ Mt : r(x, t) ≤ R2} is compact for t ∈ [0,T]. Then for 0 ≤ θ < 1,
t ∈ [0,T] and any integers l,m ≥ 0, we have

supx∈Mt :r(x,t)≤θR2 |∇m+lA|2 ≤ Clt−l,

where

Cl = Cl

(
Kl,m,n,N, θ , supx∈Ms :r(x,s)≤R2, s∈[0,t]

m∑
i=0

|∇ iA|2
)
,

where

Kl :=
l+m+2∑
k=0

‖DkK‖C0(RN).

Proof. The proof follows essentially as in [16], with some modifications to handle the forcing term. One
proceeds by induction on l: Assume that for all k ≤ l we have

supx∈Mt :r(x,t)≤θR2 |∇m+kA|2 ≤ Ckψ
−k,

where Ck is defined as above and ψ(t) = R2t
R2+t .

It follows immediately from the evolution equations for A and its derivatives that

(∂t − �)|∇m+l+1A|2

≤ − 2|∇m+l+2A|2 + C|∇m+l+1A|
⎛
⎝ ∑

j1+···+ja+a+b=m+l+3

|∇ j1A| . . . |∇ jaA||DbK|
⎞
⎠

+ C|∇m+l+1A|
∑

i1+i2+i3=m+l+1

|∇ i1A||∇ i2A||∇ i3A|

+ C|∇m+l+1A|
∑

i1+i2+i3=m+l+1

|∇ i1A||∇ i2A|
⎛
⎝ ∑

j1+···+ja+a+b=i3

|∇ j1A| . . . |∇ jaA||DbK|
⎞
⎠ .

Using Young’s inequality and then the induction hypotheses on the last two terms, one can estimate
all derivatives of A up to order m with powers of ψ−1 ; the highest degree that appears is m + l + 1.
One proceeds similarly for the second term, using the first term to absorb the highest order derivative
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|∇m+l+2A|. (Note that the second and fourth terms arise from the forcing term for the flow.) Ultimately,
this yields

(∂t − �)|∇m+l+1A|2 ≤ − 3
2

|∇m+l+2A|2 + C̃|∇m+l+1A|2 + C̃ψ−m−1

for some constant C̃ depending on Ck, k ≤ l, and Kl+1. Similarly, we obtain

(∂t − �)|∇m+lA|2 ≤ − 3
2

|∇m+l+1A|2 + C̃ψ−m.

The remainder of the proof follows exactly as in [16], by applying the maximum principle to the same
test function

f := ψm+1|∇m+l+1A|2(� + ψm|∇m+lA|2),

for some large constant � depending on C̃ and Kl+1. �

References

1. Andrews, B. and C. Baker. “Mean curvature flow of pinched submanifolds to spheres.” J. Differential Geom.
85, no. 3 (2010): 357–95. https://doi.org/10.4310/jdg/1292940688.

2. Brendle, S. and R. Schoen. “Manifolds with 1/4-pinched curvature are space forms.” J. Amer. Math. Soc.
22, no. 1 (2009): 287–307. https://doi.org/10.1090/S0894-0347-08-00613-9.

3. Chodosh, O. and C. Li. “Generalized soap bubbles and the topology of manifolds with positive scalar
curvature.” Ann. of Math. (2) 199, no. 2 (2024): 707–40. https://doi.org/10.4007/annals.2024.199.2.3.

4. Colding, T. H., T. Ilmanen, and W. P. Minicozzi II. “Rigidity of generic singularities of mean curvature
flow.” Publ. Math. Inst. Hautes Études Sci. 121 (2015): 363–82. https://doi.org/10.1007/s10240-015-0071-3.

5. Colding, T. H. and W. P. Minicozzi II. “On uniqueness of tangent cones for Einstein manifolds.” Invent.
Math. 196, no. 3 (2014): 515–88. https://doi.org/10.1007/s00222-013-0474-z.

6. Colding, T., H. and W. P. Minicozzi II. “Łojasiewicz inequalities and applications.” Surveys in Differential
Geometry, 2014. Regularity and Evolution of Nonlinear Equations, volume 19 of Surv. Differ. Geom., 63–82.
Somerville, MA: Int. Press, 2015.

7. Colding, T. H. and W. P. Minicozzi II. “Uniqueness of blowups and Łojasiewicz inequalities.” Ann. of Math
(2) 182, no. 1 (2015): 221–85. https://doi.org/10.4007/annals.2015.182.1.5.

8. Colding, T. H. and W. P. Minicozzi II. “Differentiability of the arrival time.” Comm. Pure Appl. Math. 69,
no. 12 (2016): 2349–63. https://doi.org/10.1002/cpa.21635.

9. Colding, T. H. andW. P.Minicozzi II. “The singular set of mean curvature flow with generic singularities.”
Invent. Math. 204, no. 2 (2016): 443–71. https://doi.org/10.1007/s00222-015-0617-5.

10. Colding, T. H. and W. P. Minicozzi II. “Regularity of the level set flow.” Comm. Pure Appl. Math. 71, no. 4
(2018): 814–24. https://doi.org/10.1002/cpa.21703.

11. Colding, T., H. and W. P. Minicozzi II. “Wandering singularities.” J. Differential Geom 119, no. 3 (2021):
403–20. https://doi.org/10.4310/jdg/1635368532

12. Colding, T. H. and W. P. Minicozzi II. “Arnold–Thom gradient conjecture for the arrival time.” Comm. Pure
Appl. Math. 72, no. 7 (2019): 1548–77. https://doi.org/10.1002/cpa.21824.

13. Colding, T. H. and W. P. Minicozzi II. “Complexity of parabolic systems.” Publ. Math. IHES 132, (2020):
83–135. https://doi.org/10.1007/s10240-020-00117-x.

14. Colding, T. H. and W. P. Minicozzi II. “Regularity of elliptic and parabolic systems.” Ann. Sci. Éc. Norm.
Supér. (4) 56, no. 6 (2023): 1883–1921. https:doi.org/10.24033/asens.2569

15. Deruelle, A. and T. Ozuch. “A Lojasiewicz inequality for ale metrics.” arXiv preprint. arXiv:2007.09937.
(2020).

16. Ecker, K. and G.Huisken. “Interior estimates for hypersurfaces moving bymean curvature.” Invent. Math.
105, no. 3 (1991): 547–69. https://doi.org/10.1007/BF01232278.

17. Edelen, N. “The free–boundary Brakke flow.” J. Reine Angew. Math. 2020 (2020): 95–137. https://doi.
org/10.1515/crelle-2017-0053.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2025/4/rnaf023/8011072 by philib@
princeton.edu user on 05 August 2025

https://doi.org/10.4310/jdg/1292940688
https://doi.org/10.4310/jdg/1292940688
https://doi.org/10.4310/jdg/1292940688
https://doi.org/10.4310/jdg/1292940688
https://doi.org/10.1090/S0894-0347-08-00613-9
https://doi.org/10.1090/S0894-0347-08-00613-9
https://doi.org/10.1090/S0894-0347-08-00613-9
https://doi.org/10.1090/S0894-0347-08-00613-9
https://doi.org/10.4007/annals.2024.199.2.3
https://doi.org/10.4007/annals.2024.199.2.3
https://doi.org/10.4007/annals.2024.199.2.3
https://doi.org/10.4007/annals.2024.199.2.3
https://doi.org/10.1007/s10240-015-0071-3
https://doi.org/10.1007/s10240-015-0071-3
https://doi.org/10.1007/s10240-015-0071-3
https://doi.org/10.1007/s10240-015-0071-3
https://doi.org/10.1007/s00222-013-0474-z
https://doi.org/10.1007/s00222-013-0474-z
https://doi.org/10.1007/s00222-013-0474-z
https://doi.org/10.1007/s00222-013-0474-z
https://doi.org/10.1007/s00222-013-0474-z
https://doi.org/10.4007/annals.2015.182.1.5
https://doi.org/10.4007/annals.2015.182.1.5
https://doi.org/10.4007/annals.2015.182.1.5
https://doi.org/10.4007/annals.2015.182.1.5
https://doi.org/10.1002/cpa.21635
https://doi.org/10.1002/cpa.21635
https://doi.org/10.1002/cpa.21635
https://doi.org/10.1002/cpa.21635
https://doi.org/10.1007/s00222-015-0617-5
https://doi.org/10.1007/s00222-015-0617-5
https://doi.org/10.1007/s00222-015-0617-5
https://doi.org/10.1007/s00222-015-0617-5
https://doi.org/10.1002/cpa.21703
https://doi.org/10.1002/cpa.21703
https://doi.org/10.1002/cpa.21703
https://doi.org/10.1002/cpa.21703
https://doi.org/10.4310/jdg/1635368532
https://doi.org/10.4310/jdg/1635368532
https://doi.org/10.4310/jdg/1635368532
https://doi.org/10.4310/jdg/1635368532
https://doi.org/10.1002/cpa.21824
https://doi.org/10.1002/cpa.21824
https://doi.org/10.1002/cpa.21824
https://doi.org/10.1002/cpa.21824
https://doi.org/10.1007/s10240-020-00117-x
https://doi.org/10.1007/s10240-020-00117-x
https://doi.org/10.1007/s10240-020-00117-x
https://doi.org/10.1007/s10240-020-00117-x
https://doi.org/10.1007/s10240-020-00117-x
https:doi.org/10.24033/asens.2569
https:doi.org/10.24033/asens.2569
https:doi.org/10.24033/asens.2569
https:doi.org/10.24033/asens.2569
https://doi.org/10.1007/BF01232278
https://doi.org/10.1007/BF01232278
https://doi.org/10.1007/BF01232278
https://doi.org/10.1007/BF01232278
https://doi.org/10.1515/crelle-2017-0053
https://doi.org/10.1515/crelle-2017-0053
https://doi.org/10.1515/crelle-2017-0053
https://doi.org/10.1515/crelle-2017-0053


26 | S. Hirsch and J. J. Zhu

18. Feehan, P. M. N. “Resolution of singularities and geometric proofs of the Łojasiewicz inequalities.” Geom.
Topol. 23, no. 7 (2019): 3273–313. https://doi.org/10.2140/gt.2019.23.3273.

19. Feehan, P. M. N. “On the Morse-Bott property of analytic functions on Banach spaces with Łojasiewicz
exponent one half.” Calc. Var. Partial Differential Equations 59, no. 2 (2020) Paper No. 87, 50. https://doi.
org/10.1007/s00526-020-01734-4.

20. Gromov, M. “No metrics with positive scalar curvatures on aspherical 5-manifolds.” arXiv preprint,
arXiv:2009.05332. (2020).

21. Hamilton, R. S. “Three-manifolds with positive Ricci curvature.” J. Differential Geom. 17, no. 2 (1982):
255–306. https://doi.org/10.4310/jdg/1214436922.

22. Huisken, G. and T. Ilmanen. “The inverse mean curvature flow and the Riemannian Penrose inequality.”
J. Differential Geom. 59, no. 3 (2001): 353–437. https://doi.org/10.4310/jdg/1090349447.

23. Ilmanen, T. “Singularities of mean curvature flow of surfaces.” (1995): preprint.
24. Liokumovich, Y. and D. Maximo. “Waist inequality for 3-manifolds with positive scalar curvature.”

In Perspectives in scalar curvature, vol. 2, 799–831. Hackensack, NJ: World Sci. Publ., 2023.
25. Mantoulidis, C. “T. H. Colding andW. P.Minicozzi’s Uniqueness of blowups and Lojasiewicz inequalities.”

(2014): unpublished lecture notes.
26. Perelman, G. “The entropy formula for the ricci flow and its geometric applications .” arXiv preprint,

math/0211159. (2002).
27. Schulze, F. “Uniqueness of compact tangent flows in mean curvature flow.” J. Reine Angew. Math. 2014

(2014): 163–72. https://doi.org/10.1515/crelle-2012-0070.
28. Simon, L. “Asymptotics for a class of non-linear evolution equations, with applications to geometric

problems.” Ann. of Math. (2) 118 (1983): 525–71. https://doi.org/10.2307/2006981.
29. Sun, A. and J. J. Zhu. “Rigidity and Lojasiewicz inequalities for Clifford self-shrinkers.” arXiv preprint,

arXiv:2011.01636. (2020).
30. White, B. “Stratification ofminimal surfaces,mean curvature flows, and harmonicmaps.” J. Reine Angew.

Math. 1997 (1997): 1–36. https://doi.org/10.1515/crll.1997.488.1.
31. White, B. “A local regularity theorem for mean curvature flow.” Ann. of Math. (2) 161, no. 3 (2005):

1487–519. https://doi.org/10.4007/annals.2005.161.1487.
32. Zhu, J. J. “Łojasiewicz inequalities, uniqueness and rigidity for cylindrical self-shrinkers .” arXiv preprint,

arXiv:2011.01633. (2020).

© The Author(s) 2025. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
International Mathematics Research Notices, 2025, 1–26
https://doi.org/10.1093/imrn/rnaf023
Article

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2025/4/rnaf023/8011072 by philib@
princeton.edu user on 05 August 2025

https://doi.org/10.2140/gt.2019.23.3273
https://doi.org/10.2140/gt.2019.23.3273
https://doi.org/10.2140/gt.2019.23.3273
https://doi.org/10.2140/gt.2019.23.3273
https://doi.org/10.1007/s00526-020-01734-4
https://doi.org/10.1007/s00526-020-01734-4
https://doi.org/10.1007/s00526-020-01734-4
https://doi.org/10.1007/s00526-020-01734-4
https://doi.org/10.4310/jdg/1214436922
https://doi.org/10.4310/jdg/1214436922
https://doi.org/10.4310/jdg/1214436922
https://doi.org/10.4310/jdg/1214436922
https://doi.org/10.4310/jdg/1090349447
https://doi.org/10.4310/jdg/1090349447
https://doi.org/10.4310/jdg/1090349447
https://doi.org/10.4310/jdg/1090349447
https://doi.org/10.1515/crelle-2012-0070
https://doi.org/10.1515/crelle-2012-0070
https://doi.org/10.1515/crelle-2012-0070
https://doi.org/10.1515/crelle-2012-0070
https://doi.org/10.2307/2006981
https://doi.org/10.2307/2006981
https://doi.org/10.2307/2006981
https://doi.org/10.1515/crll.1997.488.1
https://doi.org/10.1515/crll.1997.488.1
https://doi.org/10.1515/crll.1997.488.1
https://doi.org/10.1515/crll.1997.488.1
https://doi.org/10.4007/annals.2005.161.1487
https://doi.org/10.4007/annals.2005.161.1487
https://doi.org/10.4007/annals.2005.161.1487
https://doi.org/10.4007/annals.2005.161.1487
https://doi.org/10.1093/imrn/rnaf023

	 Uniqueness of Blowups for Forced Mean Curvature Flow
	 1Introduction
	 2Preliminaries
	 3Uniqueness in the Compact Case
	 4The Extension Step
	 5Shrinker Scale and Cylindrical Scale
	 6Uniqueness of Cylindrical Tangent Flows
	Funding
	Acknowledgments
	A  Solving the Discrete Differential Inequality
	B  Evolution of <0:tex-math 0:notation="LaTeX" 0:id="ImEquation860" > phi    
	C  Interior Estimates for MCF with Forcing Term


