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We prove uniqueness of tangent cones for forced mean curvature flow, at both closed self-shrinkers
and round cylindrical self-shrinkers, in any codimension. The corresponding results for mean curva-
ture flow in Euclidean space were proven by Schulze and Colding-Minicozzi, respectively. We adapt
their methods to handle the presence of the forcing term, which vanishes in the blow-up limit but
complicates the analysis along the rescaled flow. Our results naturally include the case of mean
curvature flows in Riemannian manifolds.

1 Introduction

Uniqueness of blowups is a fundamental question in the singularity analysis of various geometric
partial differential equations. The most important notion of blowup concerning the formation of
singularities in geometric flows is the tangent flow—a limit of rescalings about a fixed spacetime
point. For mean curvature flow (MCF) of submanifolds M! in Euclidean space, Schulze [27] proved the
uniqueness of this limit if the singularity is modelled on a compact shrinking soliton, and recently
Colding-Minicozzi [7, 14] proved uniqueness if the model is a round cylinder. The latter opened the
door to a rich regularity theory for mean curvature flows with “generic” singularities in RN [6].

In this paper, we study forced MCF. A mean curvature flow with forcing (MCFf) is a family of
submanifolds M! ¢ YN ¢ RN which evolve by

% =H-+K

where H is the mean curvature vector and K : & — RY is a smooth, ambient vector field. Note that by
isometric embedding, a MCF in an ambient Riemannian manifold (N, g) may be locally considered as a
MCF with forcing. Upon rescaling (N, g) will resemble Euclidean space. Similarly, if K is bounded then
it vanishes in the blowup limit, that is, the limiting singularity model is a Euclidean soliton. However,
as uniqueness concerns the convergence properties of the sequence, not just the limiting model, it is
not clear that uniqueness follows simply from the results of Schulze and Colding-Minicozzi. Our main
focus is the cylindrical case:

Theorem 1.1. Let U be an open subset of RY. Let M} be a smooth, immersed MCF with forcing
in U c RN, If one tangent flow at at a singular point is a multiplicity one cylinder, then the
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tangent flow at that pointis unique. That is, any other tangent flow is also a cylinder (with the
same axis and multiplicity one).

We also cover the compact case, which is somewhat simpler, but will also be instructive of the
ultimate strategy for proving uniqueness:

Theorem 1.2. Let M be a smooth, immersed MCF with forcing in & ¢ RN, If one tangent flow at
at a singular point is a smooth closed shrinker I with multiplicity 1, then the tangent flow at
that point is unique. That is, any other tangent flow is also induced by I' (with multiplicity 1).

In both cases we apply the general method of deriving uniqueness from a Lojasiewicz inequality
for the rescaled flow. In the compact case we are able to use the Simon-tojasiewicz inequality due
to Schulze [27], while in the cylindrical case we prove a new Lojasiewicz-type inequality following the
methods of Colding-Minicozzi [7, 14]. We remark that our methods are fairly general and should also
apply, for instance, to the class of singularity models studied by the second named author in [32].

1.1 Background and history

Geometric flows have led to many striking results in topology, geometry, and general relativity during
the last decades, including proofs of the Poincaré conjecture [26], the Differentiable Sphere Theorem
[2], and the Riemannian Penrose Inequality [22].

MCEF is the parabolic analog of minimal surfaces. Apart from their intrinsic appeal, minimal surfaces
had many geometric applications and contributed to our understanding of manifolds with lower bounds
on their curvature. Recently, surfaces of prescribed mean curvature have attracted much attention. They
arise naturally as isoperimetric surfaces and u-bubbles and led to several scalar curvature results which
previously have been inaccessible via the classical minimal surface or Dirac operator methods [3, 20].

The parabolic analog of surfaces of prescribed mean curvature is MCFf. In view of Nash's embedding
theorem, MCFf in higher codimension also generalizes MCF in Riemannian manifolds. For instance, MCF
in Riemannian manifolds recently led to Urysohn width and waist inequalities [24].

Most geometric PDE exhibit singular behavior, and itis of great importance to better understand these
singularities. Typically, thisis done by rescaling arguments, and an important question is the uniqueness
of blowups at a singular point. For stable minimal surfaces, this has been resolved by Simon who showed
in the pioneering work [28] uniqueness of tangent cones. The foundation of Simon'’s proof is an infinite
dimensional kojasiewicz inequality which he established using Lyapunov-Schmidt reduction.

Yojasiewicz inequalities have been a very active area of research the past years. For MCF, Schulze
applied Simon's work to prove a Lojasiewicz inequality near compact shrinkers. More recently, Colding—
Minicozzi proved Lojasiewicz-type inequalities near the round cylinder in Euclidean space. As men-
tioned above, these results were used to prove uniqueness of tangent flows in the respective cases. For
other results on Lojasiewicz inequalities for geometric PDE, the reader may consult for instance, [5, 15,
18,19, 29, 32].

With uniqueness at cylindrical tangent flows in hand, Colding-Minicozzi were able to develop a
regularity theory for MCF in Euclidean space with cylindrical singularities, including sharp estimates on
the singular set and regularity results for the arrival time [8-10, 12]. We expect that, as a consequence
of our results here, the corresponding results also hold for MCFf and for MCF in arbitrary manifolds
which encounter only cylindrical singularities (in particular, for mean convex MCF).

1.2 Proof strategy

Let us give a brief description of the proofs of Theorem 1.1 and Theorem 1.2, beginning with Theorem 1.2
as it is indicative of the general “direct” method for uniqueness.

For MCF (without forcing), one observes that MCF corresponds to the gradient flow for the area
functional. Moreover, the rescaled flow % = e¥2M;, t = —In(-s) is the gradient flow for the Gaussian
area F(Z") = (4m) ™2 [ e Uniqueness of the tangent flow to Ms at (0, 0) is equivalent to uniqueness
of the t — oo limit of the rescaled flow.

The critical points of F are so-called shrinkers, which satisfy the elliptic PDE ¢ := H + % =0, where
H is the mean curvature vector. Using Simon'’s Lojasiewicz inequality, Schulze proved an inequality
bounding the oscillation of F by a power of ||¢];» near a compact shrinker I'. A key lemma is that surfaces
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initially close to a compact shrinker remain close forwards in time. Using these ingredients and an
inductive argument, Schulze proved a differential inequality for F(Z;) —F(I'), the solution of which yields
a rate of convergence, and in particular implies uniqueness.

MCEF with forcing is not the gradient flow of F, and so in our setting F is no longer monotone. Instead,
we perturb F to obtain a new monotone quantity F;, and also prove a stability lemma for almost
Brakke flows close to a shrinker. To use Schulze’s Simon-tojasiewicz inequality, we compare F; to F,
which results in an additional term in the resulting differential inequality. Fortunately, the error term
is exponential, so we can complete the argument if we wait until a large initial time.

For cylindrical singularities, Colding-Minicozzi [7, 14] introduced several key innovations to deal
with the significant problem of a noncompact limiting object. They developed a method to directly
prove Lojasiewicz inequalities by iterated improvement and extension. Their “improvement step” can be
thought of as a Lojasiewicz inequality for surfaces close enough to a cylinder on a large enough set.
Their “extension step”, on the other hand, extends the closeness to the cylinder in space (we well as
time); this also has the effect of reducing error terms in the improvement step. By another inductive
argument, they are able to prove a recurrence or discrete differential inequality for F, the solution of
which implies uniqueness.

In our setting of MCF with forcing we encounter again several difficulties related to the loss of
gradient flow structure. Actually, even for MCF (without forcing), we also have to deal with some loss
of monotonicity when working locally, due to the noncompactness of the cylinder. One of the main
components of this paper is in proving a suitable “extension step”. The argument relies on several
monotonicity-type estimates to compare the flow at different points in spacetime, which is complicated
by the lack of monotonicity for F. It also relies on White’s version of Brakke regularity for almost Brakke
flows, and higher-order interior curvature estimates for such flows. A proof of the latter is also included
as, to the best of the authors’ knowledge, it is not yet in the literature.

Following the Colding-Minicozzi method, we then combine our extension step with the Colding-
Minicozzi “improvement step” to prove a scale comparison theorem, which relates the “cylindrical scale”
(that spatial scale on the rescaled flow is close to a cylinder) with the “shrinker scale” defined by e=%/2 =

TTfll Hd)Hf2 dt. However, due to the localization and other error terms, we have to modify the shrinker scale
by an exponential error term. It turns out that this error, even after being compounded in both space
and time, is small enough that the discrete differential inequality (for the modified functional) still
gives a good rate of convergence, and hence uniqueness. For the final uniqueness, note that we adapt
the arguments of [7] based on the rigidity of the cylinder, rather than the arguments of [14].

Overview of the paper

In Section 2 we establish our notation as well as our notion of rescaled flow, which is used throughout
the paper. We also prove certain area bounds which replace entropy-monotonicity. We are then able to
immediately prove Theorem 1.2 in Section 3. The reader may consider this a lighter introduction to the
proof strategy used for the later cylindrical case.

In Section 4, we prove our “extension step” for graphs over a sufficiently large portion of the cylinder.
This is combined in Section 5 with Colding-Minicozzi’s “improvement step” to compare the cylindrical
scale with our modified shrinker scale. The cylindrical uniqueness Theorem 1.1 is proven in Section 6,
which also contains certain technical modifications of Section 3 to handle the noncompact case.

Appendix A deals with the solution of the discrete differential inequality while Appendix B contains
a calculation of the evolution of ¢ along MCFf. Finally, Appendix C handles interior estimates for MCFf,
in the spirit of Ecker-Huisken [16].

2 Preliminaries
2.1 Notation
We mainly consider submanifolds " < RY. For a vector v we denote by v’ and vt = M) the
components tangent and normal to X, respectively.

We define the mean curvature vector to be the negative trace of the second fundamental form, H =
—Aj;. The shrinker mean curvature is ¢ = H + %

The (spatial) L>-norm will always be weighted by the Gaussian p(x) = (47)~"/? exp&%)
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Given a submanifold ¥ and a vector field U, we may consider the graph =y := {x(p) + U(p)|p € £}. We
call this a normal graph if U is a normal vector field on . When the base X is clear from context, we
write ¢y for the shrinker quantity associated to the normal graph Zy.

Definition 2.1. We say that ¥ is (C?¢,¢)-close to I if ¥ may be written as the graph of a normal
vector field U over (a subset of) ' with ||U||cz« < €. We say that X is (C?¢, ¢)-close to T on By if
¥ NBgis (C2¢,¢)-close toT.

2.2 Forced flows and rescaling

Fix once and for all ro > 0. We will always assume that M is a MCF with forcing (MCF{) in By, that is, M;
is a one-parameter family of submanifolds with no boundary in By, ¢ RN, which satisfy % =H+ K
We assume |K|cs < Kis uniformly bounded on By, . In particular M is a K-almost Brakke flow in By, .
For the definition of almost Brakke flows, one may consult [30, Section 11].

The corresponding rescaled flow (which we abbreviate RMCFf) is %; := e/?M;, t = —In(—s), and (up
to reparametrization) satisfies ‘% = ¢ + e /2G. Here G(x, t) = K(e/?x, s).

Throughout this paper, a RMCFf will always be a flow obtained by rescaling a MCFf as above.

To investigate uniqueness of tangent flows at s = 0, we need only consider a short time interval
[s«, 0] beforehand, |s.| < 1, and in particular we can assume SUP|_s, o H"(Ms) < Cv for some Cy < o0. In
particular, we only need to consider the rescaled flow %; for t > 1.

Remark 2.2. To prove uniqueness, one ultimately needs to control the velocity ¢ = ¢ + e /?G* of
the rescaled flow, which differs from the shrinker mean curvature ¢ by a forcing term. We have
chosen to state our estimates for ¢, to be consistent with the Lojasiewicz inequalities (which
do not involve a flow), with the trade-off of being less direct in estimating the velocity ¢.

2.3 Gaussian area functionals

Let pys(x) = (4mrs)~"2 exp(—%) and @y, (X, 5) = py,0—s(X). The usual F-functionals are Fy, (%) = [ py0,
with the distinguished functional F = Fyp1. The entropy of a submanifold £ measures its geometric
complexity and is defined as A(%) = SUPy gy Fy,(%). The normalization of F ensures that A(R" C
RNy =1.

,0>0

2.4 Almost monotonicity and area bounds
Fix once and for all a smooth cutoff function 0 < ¥ < 1 such that ¥ = 1in Bs,, and ¢ = 0 outside By,
with 1o|Dyr| + 13|D?y| < Ky

For unforced MCF, the monotonicity of the Colding-Minicozzi entropy (derived from Huisken's
monotonicity formula) provides uniform area growth bounds in terms of area bounds on the initial
slice.

For MCF with forcing, Huisken’s monotonicity no longer holds. Instead, for MCFf as above, we derive
area bounds for M; N By, based on almost-monotonicity formulae. For any submanifold M" define

FY, (M) = / Yoy,
M
Then,
Fyo (M N Bayy) < EYy (M) < Fyo (M N Bayy).

Note that |[D®y,| < % @y, . Following the calculations of Ilmanen [23, Proof of Lemma 7] and White

[30, Sections 10-11] we have, for any y € B,, and o > s, the almost monotonicity formula

d 1 K? 1 K
%F)X’ﬁvafs(Ms) + E/M ‘[’QZCDY,T = TF;{afs(Ms) + (FT% + s —WS)/ ¢y,01B4ro\Bzro’
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where

®-yt  Op*
200 —3) v |

Q=i+

Note that 2rp < |x —y| < 5rp for x € Byy, \ Bsy,. So the last term is bounded by

1 KW -n/2 _
Sl + (4n(o —s)) Ve 7,
lerg o -—s

where Cy is the global area bound as in Section 2.2. White notes that this is bounded for |o —s| < 12, but

in fact if we set z = %%, then the error term is given by (47r)’”/2,u,r6”’2(% +Kyz7hz2e /%, The latter
0
—n-2

is bounded by y := ury"“c(Ky,n) forall z > 0.
As in White [30, Proposition 11] this gives the almost monotonicity:

Lemma 2.3. Lety € B,,. Then the quantity
(s) = e SG-9FY_ (m 2y g 1
Jya(s) =e v.5—s(Ms) + ﬁ(e )
is non-increasing for s, <s < o.

Giveny € B, and s € [s,,0] and o > 0, choose & = o + 5. Then Jy,(s) <Jy+(s.) yields that

2 2 2
Fo (M) < e 757, (Ms) + Zre e,

Corollary 2.4. For t € [t,, 0] we have

K2

2 2
SUPyep, 020 Fyo (MM Bay) < €7 7% aMs,) + K%/EKT(S_S*)'
In particular, for small enough |s.| depending only on K, we have

SUPycp, 0-0 Fyo (Ms N Bar) < 24(Ms,) + 2. (2.1)

3 Uniqueness in the Compact Case

In this section, we describe the proof of uniqueness for the compact case (Theorem 1.2). This will
also illustrate the overall strategy and some main issues, which also need to be addressed in the
non-compact setting. Throughout this section, we consider a RMCFf of closed submanifolds ¥ as in
Section 2.2.

We may assume that ry is small enough that the sphere 9By, is a barrier; that is, any closed MCFf
that is initially inside By, remains inside Bay,.

3.1 Almost-monotonicity controls ¢
Recall

F(Et):(ébr)’"/z/ % =/ 0.
pot hoi

A straightforward calculation shows that ¢ = H+ % is precisely the L2-gradient of F, in particular

BF(S) = / pig. &+ e 2Gh).
P
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We estimate e~2|¢||G| < }|¢|? + e~'K?, where K is the upper bound for the forcing term K. Therefore,

8F(Z) < — / p(§|¢|2 —e-sz) — K F(sy - / ploP.
. \a ils,

Let q(t) = e~K%¢™ and define the modified functional
F(t) == q(OF(y).

Note that the modification only depends on K. The almost monotonicity becomes a genuine monotonic-
ity for F; in particular,

- 3
aF < jqa)/ PlgI. 3.1)
P
Choose t; such that q(to) = % Then fort, > t; > tg
ty ~ N
/ dt | 19’ p < 2(F(ty) — F(t2)). (3.2)
Jtg Xt
3.2 Lojasiewicz inequality and differential inequality

Recall Schulze’s Lojasiewicz-Simon inequality [27, Equation 3.1] (also see [11, Appendix A]):

Theorem 3.1. If ' is a closed shrinker then there exists C,e > 0,y € (0, 1) such thatif Uis a normal
vector field on I' with ||U||c2« < €, then

[F(Ty) — B < Cligull?.
From this we derive the following differential inequality:

Theorem 3.2. Fix n,N. There exist C1,e > 0, y € (0,1) and ty = to(K) such that if ; is a RMCFf
which is (C>%, €)-close to some closed shrinker I for t € [ty, t5], t1 > to, then

&F < —C1(F = F(T)™ 4 Cre 0T, (3.3)

Proof. Combining (3.1) and Theorem 3.1 gives for large enough to

&F < =2|¢1% < —CIF(Zy) — FD)|".

Now by the triangle inequality |E(t) — F(I)| < q()|F(Sy) — E(T)| + |q(t) — 1|F(T). It follows that
F < —C, (F(t) — FO)™ — F(O)H q(t) — 11",
Using that |q(t) — 1| = O(K?e~") for large t gives the result. [ |
We may solve the differential inequality as follows:
Lemma 3.3. Let f : [1,00) — [0,00) be a smooth, non-increasing function. Suppose there are
a,y > 0and E(t) > 0 so that for t > 1 we have f'(t) < —af " — E(t). If E(t) € O(t“TV), then there
exists C depending only on «, E, ¥, f(1) so that f(t) < Ct='/r.

Proof. Let h(t) = f(t) — Ct=*7 where C will be chosen later, but is large enough so that h(1) < 0. Suppose
h is not strictly negative. Then there must be a first time T > 1 at which h(T) = 0. Then h'(T) > 0. On the
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I+y
other hand we have for Cg = sup,(E(H)t )
W(T) < —af (D)™ + (Ce + C/NT™ 7 = —aCH/ T3 4 (Ce + C/T 7

This is a contradiction if C is chosen so large that «C**” > Cg + C/y. |

We may then use this solution and the monotonicity of F to estimate the distance between time slices
of a RMCFf which is close enough to T':

Theorem 3.4. Let I be a closed shrinker. Suppose ¥; is a RMCFf and that for t € [to, T], to > 1 we
can write X as a normal graph U(t) over I' with |U(:, t)[|cz« < 0o, and E(t) > F(I"). Then there exist
constants Cp > 0, depending only on o9, K and T', A9, and 6 > 0 depending only on I" such that

SUPy, e, 1y 1U(2) — Ut 2 < Cot7”
Proof. By closeness to T, it follows from the RMCFf equation that
I8:Ull> < Clig + eG4 |1z

for some constant C = C(op). Since, ||¢p +e~/2G||2 < |¢ll.» +Kroe 2, by the monotonicity for F, we have
forany s >0

to ta
/|@wmm§6/|wmﬁ+6€wz

ty ty

ty % to %
<C ( / ||¢||§zt1+5dt) ( / tfHdt) + Ce11/?
Jt1 ty

1
t . 2 1
<C ( / —(atF)tht) (&7 —15°)F + Ce™/2,

t

where we have used Holder’s inequality in the second line, and (3.1) for the third.
Now let f(t) = F(t) — F(I') so that af = &:F < 0. Integrating by parts, we have

t) t2
/ —@B e = ft)a — f? + A+ a)/ fotdt.
t

t1

By the differential inequality, Theorem 3.2 and Lemma 3.3, we have f(t) < Ct~/7, where C depends on
f(to). But then [ —(@F)t'dt < Ct;™ "7 +-C [ t1/7+ < Ct;** /7. Choosing § so that # := 1/y —1-8 > 0
completes the proof. |

3.3 Extension of graph representation

In order to apply the Lojasiewicz inequality, we need to ensure that we are close to a model shrinker at
all sufficiently large times. In the compact setting, we have the following lemma, which states that if
we are initially close to a closed shrinker, then we remain close to it. We denote by ©, the Gaussian
density at the spacetime point (0, 0), that is,

O0,00(Ms) = lim/ P05
s—0* M

Lemma 3.5. Let 8 > 1 and I' be a shrinker. For every o > 0 there exist ¢ > 0 and 7y < 0 depending
only on o, 8,T,K such that if M is a unit density K-almost Brakke flow with © (M) > F(I')
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and J%Ms is a smooth graph over I' of a normal vector field U for s € [87, t], where tp < 7 <0,
1Ullczewxipe,ey < 0 (3.4)
and
SUPgc(pr 1] UG, )2y < €o, (3.5)

then M is the graph of an extended U for s € [f7, 7/8], with

NUllc2erxpr,erpy < O (3.6)

Proof. Thisisessentially Schulze’s Lemma 2.21in [27] and the proof goes through without major changes.
For the convenience of the reader we provide a brief sketch nonetheless:

Let MI' = /=sI" be the unforced MCF induced by I'. Assuming the result does not hold, we find a
sequence of K-almost Brakke flows M¥ and 7, 7 0, satisfying the assumption (3.4) with

1
SUDgc(pr, o) UG, Sz < % (3.7)

but where LM is not a smooth graph over I' for s € [z, 7/p] satisfying (3.6). Let M be the parabolic

rescaling of M¥ so that each is defined on [-g, —1], that is, M¥ = |z|?M, ;. Then each Mf is a |z |K-almost
Brakke flow. By the compactness theorem for almost Brakke flows (cf. [30, Section 11]), and a diagonal
argument, M¥ converges to an unforced Brakke flow. It follows from (3.7) and the monotonicity formula
that the limit coincides with M! for s € (=g, 0). The convergence is smooth on any compact subset of
this interval by White's version of Brakke’s regularity theorem (for almost Brakke flows) [31], which

gives the desired contradiction.

3.4 Uniqueness
Theorem 3.6. Let M! be an embedded MCF with forcing in &« < RY. If one tangent flow at
at a singular point is induced by a smooth closed shrinker I' with multiplicity 1, then the
tangent flow at that point is unique. That is, any other tangent flow is also induced by I' (with

multiplicity 1).

Proof. We may assume without loss of generality that the singular point is (0,0). Let = be the
corresponding RMCFf as in Section 2.
By the convergence to I', we have:

(1) For any To, ¢, t, > 0, there exists to > t, so that ¥ is (C?%, €)-close to I" on [to, to + To].

Fix any To > 0, and choose g = e™. Let €, 7o be as in Lemma 3.5, and 6, ¢ be as in Theorem 3.4. Let
€ € (0,0) be such that eF(I') < ¢y/10. By monotonicity of F, there exists t, so that F(t) — F(I') < ¢ for any
t > t.. Let Co be the constant in Theorem 3.4, which by the last inequality depends only on € (and o, but
in particular not on the choice of t,). Let t; be large enough so that Cotge < €p/10.

Suppose X is (C?%, €)-close to T on [to, to + T], with to > max(t,, — In(-1)) and T > To. Note that this
holds with T = Ty by (). Then by Theorem 3.4, we have

SuptoshstzstoJrT ”U(tZ) - U(tl)”L2 = COtI6~
In particular, this does not depend on T (nor tp). By the triangle inequality we then have
Ul < U012 + Coty” < U(to)llc2« F(T) + Cotg? < €F(I) +€0/10 < €0

for all t; € [to, to + T).
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Applying Lemma 3.5 on [to, to+T], we may extend the graphical representation (for the rescaled flow)
by log g = To. That is, ¥; will be (C2%, ) close to T for t € [to, to + T + To]. By induction on T, we conclude
that ¥; is (C2*,0) close to " for all t > to.

Then by Theorem 3.4 ||U(t,) — U(t1)ll;2 < Coty? — O forall t, > t; > to, which implies uniqueness. W

Remark 3.7. Schulze [27] in fact proves a somewhat stronger statement than the uniqueness of
tangent flows. We have chosen to focus on uniqueness and present a more streamlined proof,
although one could modify Schulze’s proof in the analogous manner to prove a version of [27,
Theorem 0.1] for forced MCF.

4 The Extension Step

The goal of this section is to show that if we are very close to a cylinder I on Bg, we are still pretty close
to a cylinder on B(14,r for some fixed constant x4 which is subject of Theorem 4.1 below. In the next
section (the improvement step) we show that if we are pretty close to a cylinder on B9z, We must in
fact be very close to a (potentially different) cylinder on Bg. Crucially, u > 6 which allows us to iteratively
apply this extension step and improvement step to obtain the scale comparison theorem 5.4.

We remind the reader that (spatial) L> norms are weighted by the Gaussian p.

4.1 Shrinker and localization scales
We define a shrinker scale Ry by

@ ™
R :/H e .1)

In comparison to [7], our scale differs by localizing the integral to Bsezy, .

In this section, we will often work on regions of the rescaled flow, and we would like these to
correspond to regions inside the fixed ball B, for the original flow. To accomplish this, we will choose a
localization scale which satisfies R{OC € 0(e/?). However, the localization also introduces error terms, and
to overcome these (see estimate (4.7)) we make the specific choice R := 2/ + 1.

We also define 2o to be a constant such that sup,p, ,.o7"|Zt N B/(X)| < Ao. Several results in this
section will be stated with this hypothesized area bound. In papers on unforced MCF, this hypothesis
would follow from an initial entropy bound. In this work, the required area bound instead follows from
bounds for the initial surface by Corollary 2.4, so long as R < R

4.2 The extension step
We may now state the extension step:

Theorem 4.1. Let X be a RMCFf with sup,p, .o 7 "IZ: N B/(X)| < Ao for all t and some constant
Xo. Given e, > 0, there exist constants es, to,Ro,C, 1, C,Cy > 0so thatif T > to, Ro < R <
min(Rr, Rl{’fl) and Bg N X; is given by the graph U over a fixed cylinder T’ with |U|lc2« @, < €3 for
te[T—1/2,T+1],thenforte [T—1/2,T+ 1] we have the following:

(1) Bawr N Tt is contained in the graph of some extended U with [|U|lc2e g,z < €2;

R2
2) 161, <Ce ¥ 4+ Cyaoe ™ and

1+wRNEL) —

(3) IV!A| < Cjon Bgy,yr N Z¢ for each 1.

To prove this result we follow the overall proof strategy in Section 5 of [7], which consists of three
main steps:

e Step 1: Curvature bounds on a larger time interval.
e Step 2: Cylindrical estimates on a larger time interval.
e Step 3: Cylindrical estimates on a larger scale.

Here “cylindrical estimates” means estimating closeness to the cylinder (in C2¢). To give an overview
of these steps, we work backwards: The idea is that a uniform short-time stability for MCFf (Step 3)

G20z 1sNBny GO Uo Jasn npa-uojeould@aiiyd Aq 2201 L08/EZONeU/F/SZ0Z/AI0IME/uIW/WO0d"dNOOlWapED.//:Sd)lY WOl papeojumod



10 | S.Hirsch and].]. Zhu

will translate to an increase in scale for the rescaled flow. This requires, on a larger time interval, both
being close enough to the cylinder on the original scale (Step 1) and having curvature estimates on
the extended scale (Step 2). For Step 1, by a monotonicity-type calculation we show that Gaussian area
bounds can be pulled backward in time. These can be improved to curvature estimates using White's
Brakke regularity theorem [31], and higher order interior estimates for MCFf. These curvature estimates
imply that the speed of RMCFf is small, which is used in Step 2 to allow us to extend the graphical scale
backwards in time.

4.3 Pulling back density estimates in time
As in [7, Corollary 5.15], we show that we can pull back density estimates in time assuming the speed
of the flow is small in an integral sense. This comes at the cost of moving slightly inwards in space, but
only by a fixed additive amount.

Compared to Colding-Minicozzi, we need to additionally assume in the lemma below that R is
bounded from above by the localization scale. Since e*tO/leth — 0, this allows us to control the error
terms coming from the forcing term.

Lemma 4.2. Given e; > 0, 7 € (0,1/2], Ao, there exists w > 0, Ry, to such that the following holds:

Suppose to < t1 < tp and {Zt}y;, 1) is @ RMCFf such that for some o we have sup,p o7 "5t N
B,(x)| < Ao. Further suppose that R+ 3 < R{‘(’f and for xo € Br_g,,

t X w2e—R+2)7/4
lpl°p Jdt <5,
-/U AR+ZGEL Ri(t, -t +1)

x—x2 1
(4711)_”/2/ e H <1+ —€.
5 2

2
Then,

[x=xg[2
(47”)’”/2/ e wm <l+4e.
b

t

Proof. By the RMCFf equation we have

o, /E fo= /E (Dlogf, $)fp — /Z 6P fp +e V2 /E (G4, Df — fé)p.

x12 x—x012 . .
Set f(x) = ne’r e~ "% for a smooth cutoff function n chosen below. We obtain

2 x-xgl2 t x=xg? x—x012
/ o= _/ pe"32 =/ (/ ((Dn,¢)e*% +n<xo’¢>e*%)) dt
J Xty J Xy Jt VI 2t
ty x—xg12 x—xo?
L) o)
Ju \Us, T 2
t
+ / et/2 ( / (G*,Df —f¢>>p) dt.
ty P2

Due to the area growth bound there exists Ry = Ro(n) such that

_Ix=x9 2

(4;11)*”/2/ e~ & < €/100.
Zi\Bry sz ()
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Uniqueness of Blowups for Forced Mean Curvature Flow | 11

Choose a smooth cut-off function n with n < 1, |Dy| < 1 and n = 1 on By and n = 0 outside Bg,,. Let

t < 1. Then,
Ix=xol? x=xgl?
e w® < ne” =
JBrNZ, J By

B x—xo|2 2
+/ (/ (\¢|e—‘ = \(x;.qb)\e,%)) it

t ZtN(Br4+2\Br) T

t —xol? x—xg12
+/2 (/ ((},1) LI

t Bri2NZt T 2

tz
o[ e (e son)

t1 5

Using the bounds for G, we have

ta t2 x=xg12
[ e (/ <GL,f¢>p)dt’sKe*1“/ (/ gle )dt.
t ¢ t BryoNZt

As in the proof of Corollary 5.15 of [7], we can use Cauchy-Schwarz and the area growth bound to
estimate

)

1/2

t k=12 ®+2)2 E
/ (/ |ple” = ) dt < v (4rt)V2(ty — t1)roe ° (/ (/ |¢|2,0) dt)
t BriaNZt t1 Bri2NZt

Also, we have [Dlogf| < [Dlogn| + %(R + 2). Therefore,

ta 1 ty oxg 2
/ (e—t/Z/ (GL’Df)p) dt‘ S*K/ o t/2 (/ R+ 3)e )dt
ty i T Jun Bry2NZt

1
<ZKe™"2(R +3)(dr )" ho.
T

Again following [7], we have

—n/2 " _ kg
(4m1) e~ &
b

th
€2

| X=X 2
<(rr) / e 4 C/r + o +we /%) + Kaoe O R + <.
P

o

Since e~/2Rl% — 0 by our definition of the localization scale, choosing w small and t, large yields the
result.

4.4 Extending the curvature bound

Having a density estimate, we apply pseudolocality for MCF to obtain curvature estimates. Here we state
the result in terms of the rescaled flow, and the rescaling contributes to the increase in scale.

Proposition 4.3. Given n, Ao, there exist o and §, such that for any t € (0, 1/2], there exists o, to
such that the following holds:

Suppose to < t1 < tp and {Zt}y;, 1) is @ RMCFf such that for some Ao we have sup,p o7 "5t N
B,(X)| < Ao. Further suppose that R+ 3 < thgc and for xo € Br_y,

"t 2,—(R+2)%/4
Ho€
|¢|2,,) dt< —2———
/n (/Bmmz‘ Rty —t1+ 1)
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12 | S.Hirsch and].]. Zhu

and

Supg

o /T(X0)NEL.

|A]? < 8y/7.
2

Then for all t € [t; —log(1l — 77/8),t; —log(1 — 7)], we have

2 Iivla 2
SUp; ez, (AP + TIVIAP) < Ci/z.

Proof. We proceed as in [7], applying White’s version [31] of Brakke’s regularity theorem to the original
flow as an almost Brakke flow in By,,; note that we always apply it at a centre y € B,,. Observe that
Brakke's e-regularity theorem can be applied since the bound on |A|? implies a density estimate which
we pull back in time via Lemma 4.2. Interior estimates for MCF with forcing (see Appendix C) give the
higher derivative estimates. Note that we can do so because R < RI% so in particular e™*/?R < o < 1o for
large to.

We remark that White’s theorem is stated as a C2¢ estimate; one could also prove a C'¢ version of
White’s theorem following his arguments; see, for instance, [17, Section 8], where such a result is proven
in the free boundary setting. This would alleviate the need for the PDE interior estimates in Appendix
C, but we have included them as they are somewhat more concrete and may be of independent
interest. |

4.5 The mean value inequality

In this section we prove a mean value inequality for the rescaled flow, which will be required for the
proof of the ||¢|;2 bound appearing in Theorem 4.1. It will show that |¢|;2 can be controlled on most
time slices by its average in time. First, we define the elliptic operators

1
L=L+ 7 + (-, Ar)Agl

and

1
Li=a- 2V

Next, we record the evolution of ¢ under the rescaled flow (recall I is the normal projection):

Lemma 4.4. If ¥, is a RMCF{, then we have the evolution equation

(Vo, = L)p = €2 (AG + (G, Ay) Ay + %A(XT, Gh - %V;TG + %Gi).

In particular,
(Va = L)@ +e7GH) =di(e™/*GY)

- %e-t/zc;l + DG - (6 +e2G1) + (H)(G).

The proof of Lemma 4.4 is deferred to Appendix B. We now proceed to prove a mean value inequality:

Lemma 4.5. There exists to such that for t, > t; > to the following holds:
Let ¥ be a RMCFf on [t1, t], let B € (0,t, — t1), 0 < R < R, JA| < M on s N Bgyy forall t € [ty t).
Then, there exists a C = C(n, K, M) such that

t
2 -1 2 —t
max <(C+ dt/ + Ce™™ max F(%y).
te[ti+8,t2] WALz ey = € 4 ). t J£iMBrot ¢ telts,to] (=)
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Proof. Let 0 < n < 1 be a cutoff function supported on Bgi1 with n = 1 on Bg and |Dy| < 2. For the

purposes of this proof define ¢ := (¢ +e~/?G")|5, and note that this is the velocity of the flow. Consider
~ —| ><2 . . .

g = fy, |§|2n2%e %" . Arguing similarly to [7] we have

9O = [ o (0= LR+ LI + D8~ 16, DG
ZtNBr41

(4.2)
= /WM p (1@ = DIGF = (V0 VIBP) + B D, §) — n (6, 913
We estimate each of these four terms individually. First, since (V; — L)¢ = 0 we have
@ — L)IPI” = 2(¢, (3 — L)P) — 2IVeI* = QIAI* + DI|* — 2|Ve|*. (4.3)
For the second, we estimate
4n|Dnl|@l IVl < n*|V|* + 4I$|*[Dnl*. (4.4)
For the third, we use
2141%n|Dn| < %n2|4~>\4 +2|¢” Dyl (4.5)
Finally, we have
-0’ (@, D)PI° = =1’ 11" + e 0’ (G, B)B” < —n’Il* + %Ke—wzw + 16150’ (4.6)

Combining (4.2-4.5) and using |Dy| < 2, |A| < M then gives
’ 1 —t/2 274 702 1 —t/2. 2152 2,712
gm =/ p §(Ke = Dn%lgpl" — Vol + QM + 1+ EKE n°1é1” + 61Dn|" ¢l
Zt

< C(M,K) n’1e1%p,

ZNBr41

as long as to is so large that Ke~%/? < 1. Take t, € [t1,t; + 8] so that g(t,) = min, 1,44 9(t). Then for
t € [t1 + B, tz] we have

t 1 t1+8 t B
9(t) = g(t,) +/ g(0)dr < 7/ g(nydr +C (/ n2|¢|29) dr
ty ﬁ t1 t1 2. NBry1

t
<C+pY (/Z B n2|¢3|2p)dr.
ty 7 NBr41

By the squared triangle inequality twice we now have

2 2 ,—t 2
max |l g qp,y — 2K°eT max F(E) <2 max ol g g,

te[ti+8,t] te[t1+8,t2] te[ti+5,]
t _
<2C+pY (/ r72|¢>|2p) dt
t1 BtNBr+1
t) ty
<4C+pY ( / r72|¢>|2p) dt+4C+pOR [ e Rt
t1 T:NBr+1 th
which implies the result. u

Note that by the almost monotonicity (Section 2.4), we can assume F(Z;) < Ao for t > to.

G20z 1sNBny GO Uo Jasn npa-uojeould@aiiyd Aq 2201 L08/EZONeU/F/SZ0Z/AI0IME/uIW/WO0d"dNOOlWapED.//:Sd)lY WOl papeojumod



14 | S.Hirsch and].]. Zhu

4.6 Short-time stability of the cylinder

We need a short-time stability result for solutions of forced MCF. Specifically, we consider MCF with
forcing as a parabolic system on the normal bundle over a base submanifold . Intuitively, if the velocity
of the flow is bounded (in C?¢, say) then the solutions must stay close to ¥ in a parabolic neighbourhood.
Even though the proof below of this lemma is elementary it is one of the main ingredients to extend
our graphical scale in Theorem 4.1. Moreover, it is the only “parabolic ingredient” of the proof.

Lemma 4.6. Let & ¢ RN be a complete submanifold with uniformly bounded geometry, so that
supy Zf;o [VIAZ| < co. There exists Ry such that for every R > Rg, € > 0 and Cp > 0, there are
83 > 0 and y > 0 such that if M; is a MCF with forcing term K satisfying

® Bryo NM_4 is a normal graph U over £ € C, with ||[U||cz« < 83; and
* |Al+|VA|+|V?A| +|V3A| + [K| + [DK| + |D’K| + |D°K| < Co on Bgyo NM; forte [-1— &, —1+ &;

then for each t € [-1 — y,—1 + y], we have that Bz N M; is a normal graph over /—t% with C?¢
norm at most e.

Proof. Since |A| and |K| are bounded, the MCF with forcing equation implies that |9:x| is also bounded.
Likewise, the bounds on |DK| and |[VA| (and thus on |VH]|) implies that also [3:I1] is uniformly bounded,
where IT is the projection onto the normal bundle. Combining these bounds, it follows that Bgy1 N M
remains graph over ¥ of a normal vector field U with uniform bounds

|3tU|+|a[VU| <C forte [—1—02,—14—92],

where 6, > 0 and C; depends on Cy, €, n. The higher order bounds follow in the same fashion. |

4.7 Proof of the extension step

We proceed with the main theorem of this section. As mentioned at the beginning of the section, we
first establish curvature estimates backward in time, then show that the speed of the flow is small
which then allows us to extend the cylindrical scale by the short time stability of the cylinder.

In our presentation of this subsection, we adopt some clarifications based, in part, on notes of
Mantoulidis [25], which the reader may also find helpful.

Proof of Theorem 4.1. Step 1: Curvature bounds on a larger time interval. First, we establish some
curvature bounds on some extended scale backwards in time. Let Ay be the curvature (norm of the
second fundamental form) of the cylinder I'. We choose e3 so that any surface I'" which is (C?¢, e3)-close
to I has curvature at most Ag + 1. Let §, be the constant from Proposition 4.3. Take a constant < ﬁ
which is small enough that (Ag + 1)? < 572 Then in particular, |[A]? < 8/t for each point in ¥; N Bg,
te[T—1/2,T+1].

Now using that R+ 2 < 3rpe™/? and R < Ry, we have by definition of shrinker scale

T+1

it/ ] = / ' el dt=e 7/
I L?(Z:NB. .
ZiNBr+2 . &N 3'oe‘/2>

T-1 T-1

Moreover, by choosing to and R sufficiently large we can ensure that

w2e—Rot+27°/4

e’R%/2 < 5
2Rj

)

where o is the small constant from Proposition 4.3.

Let o be as in the statement of Proposition 4.3. We apply that proposition at all x € Bg_, with t, = T+1.
This will give curvature estimates at times t € [t; — log(1 — 77/8),t; —log(1 —7)], forany t; < T+ 1—r<.
In particular, we conclude that for each [,

supy, 5, (A1 +7|IV'A]") < G/t
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Uniqueness of Blowups for Forced Mean Curvature Flow | 15

foranyte [T—1-1log(l—77/8), T+ 11—t +log(l—1)], where R, = g +(1—1)?[R=-0). Choosing Ro
sufficiently large, we have Ry > (1 + )R for some « € (0, /2 — 1). Hence, we have obtained a curvature
estimate on a larger time interval [T — 3/4,T+ 1 + y] and a larger ball B, r. Here y = y(v) > 0.

Step 2: Cylindrical estimates on a larger time interval. Having established curvature bounds, by the
mean value inequality (Lemma 4.5) and the definition of shrinker scale (4.1), for t € [T —7/8,T + 1] we
now have

T+1
2 2 ~T/2 _ ~,—R2/2 -T/2
”¢“L2(Ba+mﬂ2r) < C/T . ||¢||L2():mszet/2m)dt + Cg)»oe = Ce "/ 4 Cg)»oe .

By interpolation (cf. [7, Appendix B] or [32, ]), the curvature bounds, and since R < Rr, for t in the time
interval [T — 3/4, T + 1], we have

1+4x)°R?/8 1-8
lllcze B serinz) <C(e1HRY/ lol2Basernz) )
4.7
<C(Ce<1+x>7R7/se—R%/4 + e(1+K)7R7/8e—T/2)1—5I <C.

Note that we have used R < R to control the term eL+)°R*/8g=T/2,

Since V'A is bounded and G is bounded, G* is also bounded in C2*(By) for t € [T — 3/4, T + 1]. Hence,
the velocity ¢ + e~z G* of the rescaled flow is bounded. Thus, the initial (C2, e3)-closeness to I' on Bg,
forte [T —1/2,T + 1], extends to give (C?¢, 2e3)-closeness on Bg_1, fort € [T—1/2 — &, T+ 1]. Here £ > 0
depends only on e3, [|G[|c2« and [|@]lcze.

Step 3: Cylindrical estimates on a larger scale. We have now established curvature bounds on X N
Bator, t € [T—1/2 —&,T+ 1+ y], and cylindrical estimates on Bg fort € [T — 1/2 — §,T + 1]. Take
Co > max(1/&,1/y) and let u be as in the short-time stability Lemma 4.6. We also may choose § < §3/2.

Then for any fixed t € [T — 1/2 — 0, T + 1], we may apply that lemma to the MCFf starting from X;
the conclusion at time t + p (translated to RMCFf) implies that X, is (C?%, 2¢;)-close to I' on B4 r. In
particular, this establishes the desired cylindrical estimates on B4,z forany t € [T —1/2, T+ 1]. |

5 Shrinker Scale and Cylindrical Scale

5.1 Improvement step

The following tojasiewicz inequality follows from the work of Colding-Minicozzi. Note that the
Lojasiewicz inequality is purely a statement about submanifolds, and does not explicitly involve
any flow.

Theorem 5.1 ([14]). There exists €, > 0 such that given €; > 0, Ao, y € (0,1) and B, 8,k < 1, there
exist Ro,1 > 0 and Cy4 5, such thatif =" RN has A(Z) < Ao and:

(1) For some R > Rq, we have that ByNX is a C>* normal graph U over some cylinder with Ul c2epyy < €2;
(2) IVA| <CjonBrN X forallj <I;

then Bu_,r, N T is a graph V over some (possibly different) cylinder with [|V|jcz« < € and

2’
IVl @oye,) < €077 7, where
68 = 6 I L,
Ri = maX[fs R=1[Cyp, (H¢u|\f¢“ + gl + 1UIGT + R /4) <e '/4ﬁ] . )

Proof. This essentially follows from the proof of (2) in [14, Proof of Theorem 7.4]; the point is to apply
[14, Proposition 4.47] on the largest scale possible R; (the parameter y in our notation corresponds to
« in [14, Proposition 4.47]). The only difference is that we do not assume explicit bounds on ¢, so we
follow their proof up to [14,(7.24)], which gives a bound for for |Vz|;» involving the interpolated terms
lgullwnz < lgullf, and ligullwe: < ligullfs-

We then interpolate directly to obtain pointwise bounds for (|¢| + |V¢| + |V?¢[) and (|Vz| + |V27]), at
the cost of the exponent B (similar to [14,(7.24)], but without using [14,(7.25-6)]). These pointwise bounds
allow us to use [14, Proposition 4.47] to obtain the stated L? bounds on V. |
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The above may be used to prove the following scale improvement theorem:

Theorem 5.2 ([14]). There exists e; > 0 such that given ¢; > 0, u > 0, Ao and 0 € (0, ) satisfying

ﬁ < 1;;(11;3;7 , there exist Ro, lp > 0 such that if &" ¢ RN has A(Z) < Ao, and for some Ry <R <

R, we have:

(1) BRN = is a C2* graph U over some cylinder with |Ullcze, < €2 and |U[1% ;. , < CakoR" %€ T :

(2) 191122 5,5, < CoeRo/2;
(3) IVIA|<CionBrN'E for alll < ly;

(Br) —

then Bgjate N T 1s a graph V over some (possibly different) cylinder with ||V|cz« < € and
Vil

Briasn) =€ mwl :
Proof. We want to use the assumed estimates for U and ¢ so that when we apply the Lojasiewicz
inequality (Theorem 5.1), we will have Ry > W for some y > 0. Thus, the goal is to show that
for some « € (0,1], 8, B < 1 and large enough R we will have

_ 6 R
C(H¢UII = +leullf, + IUIE" +R2e /) < o™ a7 | 5.2
L L

To do so, we first note that ||¢yll> and ||¢ll;> differ essentially by the L? norm of ¢ outside of Bg. The
resulting error term may be estimated using [14, Lemma 7.16], and we will refer to similar error terms
as cutoff error. On the other hand, ||¢|/;2 is bounded by assumption (2).

In fact, since R < R,, cutoff error contributes the dominant term, and we have ||<;>U||2 < CR%e®/* and
lgully: < CR™—teR/4,

This bounds the left hand side of (5.2) by a constant times \|U|| “ 4+ R"e” %5 . The second term is

ey 38 3 1
dominated by e w7 50 long as > For the first term we need 7 > gy Choose

3+k ﬂ(l-w)2
« so that 2 = m, one may verify that this choice gives 33~ = 1;&“32 . Since this was strictly
larger than (1+9)2 it is clear that we can choose 8, 8 very close to 1 so that both the desired inequalities
are satisfied. |

Remark 5.3. A similar scale improvement theorem in fact holds for certain generalized shrinking
cylinders by work of the second named author; see [32, Theorem 7.2].

5.2 Scale comparison

We define now R, by e ®/2 = ¢=Ri/2 4 ¢-T/2_ Combining our extension step above with the Colding-
Minicozzi improvement step shows that the graphical scale extends to a fixed factor larger than R, by
a bootstrapping argument. In other words, we can precisely control the size of £; which is close to a
cylinder and the rate is given by R,.

Theorem 5.4 (Scale comparison). Given ey > 0, 8 € (0, 1) there exist R, u > 0 and ¢; > 0 such that
if ¥; is a RMCFf that is C>*, ¢; close to a fixed cylinder on By, for t € [T — 1, T + 1], then there
exist C,C; such that foreachte [T —1/2, T+ 1]

A+
(1) Biyp, Nt is a graph of some U with ||U||cz« < €o, ||U|I7, < CR}%e” @7 R4 and lgull?, < Ce” o */

L)’
where 6 € (0, n) is defined by <1+9)2 =8 ;((H*ﬂ’;; ;

(2) For each | we have supg 5, IVIA| < C.

Proof. The point is to use the extension step, Theorem 4.1, to extend the graphical scale by factor 1+ u
and the improvement step, Theorem 5.2, to retain good estimates, after coming in by a (smaller) factor
1+ 0. Take € as in Theorem 5.2 and 3 as given by Theorem 4.1. We may do so under the inductive
hypotheses that for each t € [T — 1/2, T + 1]:

(1) Br N % is given by the graph of U over a fixed cylinder I' with ||U||cz.«,) < €3;
(2) For each | we have supp 5. IVIA| < Q.

—R?2 4
(3) U2, < e
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For €; < €3 small enough depending on R4, these will be satisfied at the initial scale R;. Assuming the
inductive hypothesis at scale R < R,, we may apply Theorem 4.1 to extend the graph U and the curvature
estimates to scale (1+ p)R. By hypothesis (3), the extended graph will have L? norm dominated by cutoff
error, that is, by [14, Lemma 7.16],

9 _R?
”Ullgz(BklﬂuR) = Cn)»oRn 2/ (53)

By conclusion (2) of the extension step and the definition of R,, we have

2 —R2/2
I|¢||L2(B(1+M)Rm2t) =< CQe )

so long as (1 4+ w)R < R.. We may then apply Theorem 5.2 (on each time-slice). The conclusions of the
improvement step mean that the inductive hypothesis is satisfied at scale %R.

The improvement step can be used up to scale R,, so the last iteration will give that the inductive
hypotheses hold at scale ﬁR*. Using the extension step one last time extends the scale to ﬁ’; R,, where
again by by [14, Lemma 7.16], we have

-—L5R2/4 _o ——L-R%/4 _o ——L-R2/4
||UHE7 <e w2 -/ + CuoR! 2o~ o R/ < CR! 2o~ o R/

Biipp )
T8

Similarly, the L? norm for ¢y at this scale is also dominated by cutoff error; by [14, Lemma 7.16] again
we have

) _aw? o2 _Ww? po
<eR/2 4 CR%e™ @+ R4 < C'Rle” @o? R4

2
lpul ...
T+6

R*)

6 Uniqueness of Cylindrical Tangent Flows

In this section, we prove uniqueness for the cylindrical case, Theorem 1.1. The overall structure is similar
to Section 3, but there are several modifications to handle the noncompactness, compounded by only
having almost-monotonicity for F. Throughout this section, we consider a RMCFf %; as in Section 2.2,
with A(Ms,) < Ao.

6.1 Almost monotonicity controls ¢
Here we again show that a modified functional F is monotone and its gradient controls the shrinker
quantity ¢, although the definition is more complicated than the compact case because of the need for
localization.

Recall the notation of Section 2.2, Section 2.4, and in particular the fixed cutoff function ¢ supported
on Byy,. Let y:(x) = ¥ (e72x),

By =FY (30 = / ¥2p,
P

and q(t) = exp(—Kqe™!), where K; = K? + 2K§,r§ + KKWE? The modified functional we consider is

Et) := qF(®) + Kse 2,

where K3 = %2 K, = 4Ky, Curo(12719)V2, and C, is a constant depending only on n which will be

et
determined below.
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Lemma 6.1. Assume ; is an RMCFf as above. Then there exists ty > 0 such that for all t,t, > tg
we have

ty . .
/ ( / |¢2p) dt < 4(F(ty) — F(t2)). (6.1)
t ZiNBsty2,

Proof. We compute

&=

F=- w§<¢,¢+e—t/2G>p+/ 2y (Dyr(e™?x), 672 p +e7'G — e 7x/2)p.
P

P

We estimate e™V2|¢||G| < $|¢|? + e"'K? and 2e~Y2yx|Dyr||p| < 11p|?yZ + 2~ |Dy|?. We also have [Dy| <
Ky15?, and for e/?x to be in the support of [Dy| we must have 3ry < e~"/?|x| < 47o. This yields

d - 1 N
EF <- 5/ YR1g12p + (€K + 27 K5 5% + e KK, 1o HE()
P
+ 4K‘/’ /):z plBéleuzro\Bkl/zro'

Using the area growth bound (Corollary 2.4) on the last term we have
d . 1 2 2 —tr T —nt/2
—Fs—f/ Wil o + e KaF(D) + Koe "2,
dt 2 Js,

where Ky = K2+ 2K3 13 + KK, 1ot and K, = 4Ky, Crro(12710)2. Choose to so that (to) = . Then for t > to,
we have 1 < q < 1. Hence, for,

F(t) = q(OE(t) + Kze™™/?

where K3 = %2, we have
d - 1 1
S ot 22<—7/22.
GiF =500 [ worp <=5 [ wiwio
In particular, F(%) is non-increasing, and integrating gives
t2 N N
/ dt / 16170 < 4(F(t) — F(t2)) (6.2)
t Eth3gl/2ro

which finishes the proof. n

6.2 Discrete differential inequality

The required Lojasiewicz inequalities follow from the improvement and extension steps above. We also
need the following fact:

By [14, Proposition 6.5], for compactly supported normal graphs over the cylinder with graph function
U with small enough C? norm, we have

IF(I'y) — F(M)| < Cligullz Ul + CIUIE,. (6.3)

We now proceed to prove the discrete differential inequality for the cylindrical case:
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Theorem 6.2. Given n, N, there exist K, C,¢,to and 8 € (0, 1/2) such that if =, is a RMCFf which is
(€,Rq, C>¥)-close to some cylinder I' for t € [T — 1, T+ 1], T > to, then

6 461

IF(T) = F(O)| < KET - 1) = FT+1) % +Ce T
Proof. First, by the triangle inequality we have
|F(t) = F(D)| < Kae™™2 4 q(0)|F(t) — F(D)| + F(D)|q(t) — 11.

Recall the definition of R, from Section 5.2.Consider 8 € (0,1) to be determined later; by the scale

comparison Theorem 5.4, we will have 0 < 6 < u so that ﬁ =p 1;((1%;‘;;2 and ¥t is a graph U over the

cylinder I at scale Biug, . SO again using [14, Lemma 7.16] to estimate the cutoff error, we have
LR,

(0? p2 g

IB(T) = F(D)| = |FY% (Er) — F(D)| < |FY4 (D) — F(D)| 4 CooRI—2e ™ e

2
Since R, < R, we have Fg'_Tl(I“U) = F(Ty).
1 2
Moreover, the conclusions of the scale comparison Theorem 5.4 gave that HUHf2 < Ce e B4 ang

9 _aw? pa g
l¢ully, < Ce” @” ™" so by (6.3) we have

_x0em? o gy __3 R
|[F(I'y) — ()| < Ce™ 20407 +/ + Ce  a+0)? ~/‘

. . 1,2y2 - .
Note that, by definition of #, one may verify that 1;((11*'9*)‘32 =8 (“(‘1‘1;)’2‘ " This is strictly greater than 1,

so long as B is chosen close enough to 1. In particular, we may then choose § > 0 so that

S T+u+3ud)? 3 1+ p)?
1+9<mln(ﬂ( wt 2% 1+

A+w? ' (1+6)? 1+6)2°

and, consequently,

IF(T) = F(D)| < Ce™ /%,

Finally, substituting the definition of R, and using (6.2), we have

14

|B(T) — E(T)| < CAFET = 1) = BT+ 1)) + e 7% 4 Kze 2 4 F(D))| exp(—Kie™T) — 1.

Since T > to is large, we may estimate this by

146

IF(T) = F(0)| < CET = 1) —FT+1)F +Ce 7. -

6.3 Graphical representation
Again, to apply the Lojasiewicz inequalities we need a good graphical representation of : over the
cylinder T'. In the non-compact setting, even the initial closeness is nontrivial. As in [7], we use the
rigidity of the cylinder to get closeness (to some cylinder) at all times:

First, we prove the following analog of [4, Corollary 0.3] for MCF with forcing, which establishes
uniqueness of tangent type.

Proposition 6.3. If one tangent flow at a singular point of mean curvature flow with forcing is a
multiplicity one cylinder, they all are.

The proof of this proposition largely follows that of [4]. The key is to replace their Proposition 2.13.
Instead, we show:
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Lemma 6.4. Given n, rg,e > 0, there exists § > 0 and ty € (0, 00) so that if & ¢ R"* is a RMCFf
with SUDycp, ro0 T 12t N Br(X)] < Ao forte [T, T+ 1], T > to, and

F(21) = F(Zr41) < 6.

Then thereis an F-stationary varifold = such that dy (%, ) < eforallt € [T,T+1] and F(X) < A¢.

Here we use the metric dy from [4, Equation 2.11]. This metric is defined on finite Radon measures
and its induced topology is the weak topology of Radon measures.

Proof. Suppose the lemma is false. Then there exists T; — oo and a sequence ! of RMCFf’s such that
F(EiTl) - F(E.}lﬂ) < 1 and that for every F-stationary varifold %, we have

dv(Z, ) 2 €>0 (6.4)

for some t; € [T}, T; + 1].

Let £ = »{ ; and M{ = /=s%}, t = —In(-s), be the corresponding “unrescaled” flows, which are
e~TiK-almost Brakke flows. By the compactness theorem for almost Brakke flows (cf. [30, Section 11])
and using a diagonal subsequence, we find that the M. converge to an unforced Brakke flow M. The
corresponding flow £ = e'/?M is a unforced rescaled MCF, and satisfies F(£5°) — F(£$°) = 0.

But then by the monotonicity of F under RMCF, £* = % must be a static RMCF, that is, induced by
some F-stationary varifold £°. However, this contradicts (6.4) for £ = £, |

We now complete the proof of Proposition 6.3:

Proof of Proposition 6.3. Suppose that one of the tangent flows that (0, 0) is cylindrical. By monotonicity
of F, we have F(t) \, F(I'). In particular, for any § > 0 there exists t, > 1 such that F(t) — F(t + 1) <
Fty —F() < % for all t > to. Moreover, for ty sufficiently large (so that u(to) is close to 1) we can ensure
that |E(t) — F(Zp)| < & forall t > to. Then by the triangle inequality, F(Z:) — F(Zi41) < 8 for any t > to.

We may then apply Lemma 6.4 to deduce the existence of an F-stationary varifold ¥ such that
dv(E, %) < eforallt e [T,T + 1] and A(X) < Aro. The rigidity of the cylinder [4, Corollary 2.12] (see
also [13, Theorem 0.11]), finishes the proof. |

Remark 6.5. The proof above is slightly simpler than the proof of [4, Theorem 0.2]. The sim-
plification arises from the fact that we again focus on the uniqueness of cylindrical tangent
flows, corresponding to their Corollary 0.3, rather than their full Theorem 0.2, which may be
considered an e-regularity result for tangent flows at nearby points. However, the proof above
can also be adapted to also give the e regularity result for MCF with forcing.

6.4 Final uniqueness

Theorem 6.6. Let M" be an immersed MCF with forcing in & < RN. If one tangent flow at at a
singular point is a multiplicity one cylinder, then the tangent flow at that point is unique. That
is, any other tangent flow is also a cylinder (with the same axis and multiplicity one).

Proof. We may assume without loss of generality that the singular point is (0, 0), and take 1o > 0 such
that B4, C U. Then we consider the corresponding RMCFf %, to which all the results of this section

apply. )
Let §; = /F(j — 1) — F(j + 2). By equation (6.1) we have that (fjjff Il‘p”%Z(ZmBget/%)dt) - C8;. We proceed

as in [7, Theorem 0.2]. By Proposition 6.3, any other tangent flow must be induced by a cylinder. By

White’s local regularity, it follows that for any R there exists t; so that the RMCFf satisfies:

(1) For any T > to, there is a cylinder I" so that for all t € [T — 1, T + 1], =; N Bg, is a normal graph over
I' with C>® norm at most ;.

Since |G| is bounded, the L' distance between time slices of the RMCFf is bounded by § + Ke /2,
Thus to prove unigueness, it is enough to show that 37 (5; +e77/2) converges. The geometric series > e 2
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certainly converges, and combining the discrete differential inequality, Theorem 6.2, with Lemma A.1
and Lemma A.2 for f(t) = F(t) — E(I') shows that in fact Zj Sf converges for some g < 1. This completes
the proof. |
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A Solving the Discrete Differential Inequality

Lemma A.1. Suppose that f : [0,00) — [0, 00) is a non-increasing function, and there are constants
y > 0,K > 0and E(t) > 0 so that for t > 1, we have

FOM <Kt -1 —ft+ 1) +E@®.

If E(t) = o( ’%), there exists a constant C so that f(t) < Ct~ forall t > 1.

Proof. Following Colding-Minicozzi [7], by scaling and translating f, we may assume without loss of
generality that f(0) € (0,1/2] and K = 1. By the assumption on E(t) there exists t; so that 5 Et-1) <
1f(O)* fort > t1. Now set to = 2 + max(ty, 2> f(0) 7 y~).

Choose C so that f(0) = Ctgl/y. This implies f(t) < Ct=/ for all t < to. We show by induction on j that
this inequality holds for all t < to + 2j. Indeed, suppose this holds for some j.

By the recurrence on f and using K = 1, we have for t > 2

FOW <ft -1 <f(t—2) —f(t) + Et—1). (A1)

Suppose for the sake of contradiction that f(t) > Ct=*7 for some t € (to + 2j,to + 2j + 2]. Note that by
choice of to which implies t > 1 and t > t;, we have

CUYWEE-1) < %c-lf(O)Wt—l < %cytﬂ (A.2)
Then using (1 +h)™” <1 —2"17yhfor h < 1, we have by (A.1), (A.2), and our choice of to
ft=2)7 <C"t(A+C't7t = CU WY E( - 1)
1
<CTHL+ 5Ot
<CT(t=2727yC)
<C77(t—2).

But f(t — 2) < C(t — 2)~Y” by the inductive hypothesis, so this is a contradiction. This completes the
induction and the proof of the lemma. |

The following is essentially the content of the proof of Lemma 7.8 in the high codimension paper
[14]:
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Lemma A.2. Suppose that 3°%;6? < Cj for some p > 1 and some constant C. Then there exists
a < 1 such that Zf; 5)@ < 00.

Note thatif y < 1, the previous lemma would allow this lemma to be applied with § = /f()) —f( + 1)
and p=1/y.

B Evolution of ¢

Proof of Lemma 4.4. Recall that ¢ = H+ % and the RMCFf satisfies 8;x = ¢ + e~/2G*+ where G is a fixed
ambient vector field. According to Proposition 1.3 in [14], for a general submanifold we have

LAy =Ajj + 2(Aj;, Ag) Al — (Ami, An)Aj

— (Aj, Am)Aim + Hessg (61, €) + (¢, Aim) Ay,
where L = £ + 1 + (-, A)Ay with £ = A — 1V,r, and
LH=H+ A¢ + (¢, AjAj.
According to equation 20 in [1], for a normal flow a:x = V, the time evolution is
Va Ajj = Hessy (e, €)) + Aik(\7, Ajr).
Taking the trace gives V, H = AV) + Aj(Ag, \7). In our setting this becomes

Vo H = A¢ + (A, 9)Aj + e 2 (AGH + (A, GHAy).

Consider the normal projection I1. We use IT" to denote its derivative in either a spatial or time
direction. Differentiating 1% = IT implies that [T' o [T+ ITo IT" = IT". Composing with IT on both sides then
gives o I1' o IT = 0. Also by symmetry we have (I1' o I1(V), g;) = (I1(V), IT'(¢))). For the spatial derivatives,
differentiating I(e;) = O gives

(ViID(ep) = —T(Vje) = —Aj;.
It follows that ViIT(x) = —A(e;, XT) — €j(Ay;, x*). One can follow [14, Lemma 2.7] in normal coordinates to
find that V- VI TI(x) = —(VA)(e;, e, XT) — Ae;, V)TXT). Note that (e, V}.TXT> = gj — (ex, Vixh) = gj + (Aje, xH).
Therefore,

Vi VIO = —(VA) (@i, e, XT) — Aj — A (Aje, X5).

Taking the trace gives ATI(x) = —V#H — H — (x*, Aj)A;j; and adding the lower order terms gives
1 L 1 1
Lx =7VXT¢7H+§X .

For the time derivative, differentiating I(e;) = 0 and commuting the time derivative gives (3:IT)(e;) =
—T(de;) = =V (¢ + e/>G*). Using the spatial derivative, this becomes

@ (e) = —Vi'gp — e /> (—A(e;, G) + VI G).
In particular,

H(MX) =@ (X) + [(3x) = ¢ + e /2G+ — Vig

+e AN, G —g(x*t, Vi'g — e (A(e;, GT) + Vi G)).
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Combining this we obtain
(Va, — L) = 2 (AG" + (G+, Aj)Aj + %A(XT, G - %v;c; + %G)
which finishes the proof. n

C Interior Estimates for MCF with Forcing Term

Let K be a smooth vector field on RN and x : I x M" — RN a smooth family of embeddings which satisfy
9x =H+K*.

Our goal of this section is to prove interior estimates for this flow. For this purpose we begin with
computing the evolution equations.
Proposition C.1. We have

(@ — A)|VFAP?
- _ 2|Vk+1A|2 + VkA * Vk+2KL

+ VRA % Z VIA % V2A %« VBA + VRA % Z VIA % V2A % VKL

i1+ +s=k f1+i2+is=k

Note that the VK* terms may be related to Euclidean derivatives of K by

VK = > ViAx..xVFAxDK
JiteHatatb=k

Proof. From the timelike Codazzi equations, cf. [1, Equation (18)], we obtain
dA; =V§ H+KY + H+K AgAp)
@ —A)A=V’K' + AxAxA+K-xAxA.
Applying the lemma below, we inductively obtain

VA =AVFA 4 VKL

+ D VIAxVIAXVEA+ > VEARVZAxVEKE

i1+ +is=k 1+l +iz=k
Next, we note that
AIVFA)? = 2(AVEA, VEA) 4 2|VFT1A|2
and the inverse metric evolves as
ag) = 2(H+ K Ay).

Combining all the above identities yields the proposition. |
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Lemma C.2. Let S and T be tensors satisfying the evolution equation
9:S=AS+T,
then the covariant derivative VS satisfies an equation of the form

#VS=AVS+AxAxVS+AxVAxS+VT.
Proof. Lemma 13.11n [21] states
VS =AVS+Rmx*VS+Sx VRm+VT.

Hence, the result follows from the Gauss and Codazzi equations. ]

To state the interior estimates it will be convenient to define r(x,t) = |x|? 4+ 2nt. As in [16, Theorem
3.7], we obtain:

Theorem C.3. Let R > 0 be such that {x € M; : r(x,t) < R?} is compact for t € [0, T]. Then for 0 < 6 < 1,
t € [0, T] and any integers [, m > 0, we have

+l a2 —1
SUPxeM, r(x,t)<6R? [VTTAI” < Gt

where

m

a2
C1 = C] (K[, m,n, N, 0, supxeMS:r(x,s)sRZ,se[oyt] Z |V1A| ),

i=0

where
l+m+2
. k
K= > ID*Klcon).
k=0

Proof. The proof follows essentially as in [16], with some modifications to handle the forcing term. One
proceeds by induction on I: Assume that for all k <[ we have

+k A2 -k
SupxeMt:r(x,t)geRz Ivm AI Sckl// )

where Cy is defined as above and v (t) = RR%‘

It follows immediately from the evolution equations for A and its derivatives that
@ — A)‘Vm+l+1A|2

< — 2IVMIHRZA2 4 gyt A > [VI1A]...|VA||DK|
j1+-Ha+a+b=m+1+3

+ C|VMtHlA) > IVIA[|V2A|VEA]

i1z +iz=m+1+1

+ vl > [VIA||V2A| > |VI1A]...|VA||DYK|
1+ +Hz=m+l+1 j14--+a+a+b=i3

Using Young's inequality and then the induction hypotheses on the last two terms, one can estimate
all derivatives of A up to order m with powers of ¢~ ; the highest degree that appears is m + 1 + 1.
One proceeds similarly for the second term, using the first term to absorb the highest order derivative
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|[VM++2 A (Note that the second and fourth terms arise from the forcing term for the flow.) Ultimately,
this yields

3 . .
0 — A)|Vm+1+‘lA|2 < §|Vm+l+2A|2 + C|Vm+l+lA\2 + Cv/—m—l
for some constant C depending on Cy, k <1, and K. Similarly, we obtain
3 .
@ — A)leYH»IA‘Z <— §|Vm+l+1A|2 + CI//im.

The remainder of the proof follows exactly as in [16], by applying the maximum principle to the same
test function

f — 1//erl|Vv|ﬂ+l+1A|2(A + 1//WI|VW!+IA|2)’
for some large constant A depending on C and Kj,1. |
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