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Learning Transition Operators From Sparse
Space-Time Samples
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Abstract—We consider the nonlinear inverse problem of learn-
ing a transition operator A from partial observations at different
times, in particular from sparse observations of entries of its
powers A, A% ... AT, This Spatio-Temporal Transition Operator
Recovery problem is motivated by the recent interest in learning
time-varying graph signals that are driven by graph operators
depending on the underlying graph topology. We address the
nonlinearity of the problem by embedding it into a higher-
dimensional space of suitable block-Hankel matrices, where it
becomes a low-rank matrix completion problem, even if A is
of full rank. For both a uniform and an adaptive random
space-time sampling model, we quantify the recoverability of
the transition operator via suitable measures of incoherence of
these block-Hankel embedding matrices. For graph transition
operators these measures of incoherence depend on the interplay
between the dynamics and the graph topology. We develop a
suitable non-convex iterative reweighted least squares (IRLS)
algorithm, establish its quadratic local convergence, and show
that, in optimal scenarios, no more than O(rnlog(nT)) space-
time samples are sufficient to ensure accurate recovery of a rank-
r operator A of size n x n. This establishes that spatial samples
can be substituted by a comparable number of space-time
samples. We provide an efficient implementation of the proposed
IRLS algorithm with space complexity of order O(rnT) and
per-iteration time complexity linear in n. Numerical experiments
for transition operators based on several graph models confirm
that the theoretical findings accurately track empirical phase
transitions, and illustrate the applicability and scalability of the
proposed algorithm.

Index Terms—Operator learning; block Hankel matrix com-
pletion; iterative reweighted least squares; nonlinear inverse
problem; graph signal processing.

I. INTRODUCTION

Signals that arise from social, biological or transport net-
works are typically interconnected and structured, and can be
modeled as residing on graphs. In many modern applications,
the graph signals are time-varying and driven by graph op-
erators that are dependent on the underlying graph topology.
For example, the traffic flow on the road network is changing
during a day; spatial temperature profiles measured by a
sensor network vary at different time instances. Estimating
such graph signals and dynamical processes from sparse
observations is a research topic of wide interest (see for exam-
ple [ISG18, PGM™16,IRG18, DTFV16, TDKF17, SMMR17,
MSMR19,PGM™ 17] and references therein).
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We consider dynamical processes on graphs in the form of
(discrete) linear dynamical systems:

$t+1:A.’Et:t:1,..., (1)

where x; is the graph signal and the transition operator A is
typically a function of an algebraic descriptor of the graph
structure (e.g. the adjacency matrix of the graph). Examples
for such transition operators include the random walk over a
graph and its variations, heat operators, and other averaging
processes. Powers of A lead to both multiscale analyses
on graphs [CMO06], and eigenvectors of A often play an
important role in many machine learning applications such as
dimension reduction and clustering [CLL"05]. These models
are in part motivated by applications that include modeling
traffic in transportation networks [DM16], spatially-distributed
atmospheric variables (e.g. temperature, pressure) measured
by sensor networks [TDKF17], and neural activity in different
regions of the brain [Spol0].

In this paper, we are interested in learning A from partial
space-time observations of a temporal evolution. Let Xy €
R™*™ be a set of m initial states, one per column. We observe
a discrete time series of length T satisfying

X1 = AX:, te[T):=1,...,T )

via spatio-temporal samples
Vi = Si(X) 3)

for t € [T] and S; : R™™ — R™t representing a linear
subsampling operator, typically returning a subset of the
entries of its input.

If we set aside the time evolution in (2), the task
of recovering AX; at a fixed time ¢ from the observa-
tions ); may be considered as a completion problem, and
may be tackled by low-rank matrix completion techniques
[CRO9, CP11a, DR16, CLC19], even when the number of
observations m; is much less than the number of entries in X},
if X; has low rank. When S; = Id, the identity map, related
problems are also pursued in the model reduction community,
to extract dominant eigenvectors of A, for example via the
dynamic mode decomposition (DMD) [Sch10, KBBP16].

In this paper, however, we are interested in situations where
T > 1 and both X; and A are not necessarily low rank.
At any single time ¢, we are not able to recover A from
V; and Vi1, as in practice we often have my,mir1 < m,
due to application-specific constraints. We seek to compensate
the insufficient spatial samples at a single given time ¢ by
leveraging the temporal dependent observations across time,



and tackle the fundamental problem of recovering A from
space-time samples {); : t € [T]}. We restrict our attention,
for simplicity, to recovering A from partial observations of
A, A% ... AT which, in the notation above, corresponds to
Xo = Id € R™™ in (2). Already in this setting, learning
A is a nonlinear inverse problem (as long as T' > 1), that is
beyond the scope of regular matrix completion, dynamic mode
decomposition, or subspace-based techniques [CIML20].

A. Spatio-Temporal Transition Operator Recovery

In the context of dynamical systems, it is expected that the
recoverability of a transition operator A € R™*" depends
significantly on the structure of the space-time sampling as
well as on spectral properties of A. Denote the sampling
locations at t € [T'] by Q; C [n]X[n], and let the corresponding
subsampling operator Sy : R"*™ — R be

St(M) = (<Ei7j7M>) (Mi7j)(i7j)th )

where E; ; is the matrix with 1 in its (4, j)-th entry and 0
elsewhere, for i,j € [n]. In applications, §2; may correspond
to an observation model with mobile sensors that are moved
to different locations at different times.

Denoting the set of all possible space-time sampling loca-
tions by I := [n] x [n] x [T], we define the sampling set

Q= Q x {IHU---UQrx{THCI. &

(,5)€Qs —

Let M,,, », denote the set of real n; X7y matrices, abbreviated
as M,, if n = n; = ny. We define the nonlinear monomial
operator Q7 : M,, — M7 as

Or(A)=AcA’aA3e..a AT c MET | (6)
and the sampling operator Pq : M7 — RI% as

szl@XQ@@XT'—) (7)
Po(X) = [$1(X1), S2(X2), ..., Sr(Xp)]

where S; is as in (4), for t € [T]. We consider the following:

Problem I.1 (Spatio-Temporal Transition Operator Recovery).
Given a space-time sampling set 3 C I, recover A € M,,
from the space-time samples

Y = Pa(Qr(A)) = [S1(A"), S2(A%),... . ST(AT)] , (8)

or from noisy space-time samples’ y = Po(Qr(A))+n, where
n is an (unknown) additive noise vector.

We focus on two questions arising naturally in Problem I.1:

o Under which conditions on A and on the distribution and
size of the sampling set {2 can we guarantee to accurately
estimate A in Problem I.17

o Is there a computationally efficient recovery method to
estimate A in Problem I.1 in these cases?

It is well-known from the literature on other structured
inverse problems such as sparse vector recovery and ma-
trix completion that deterministic sampling sets may not
enable recovery from a minimal size of the sampling set ||
[FR13,DR16]. For this reason, we focus on random space-time
sampling schemes, and consider two types of random models:

1) Uniform sampling: for m < n?T, a sampling set (2
consists of m spatio-temporal samples in [n] X [n] x [T]
sampled uniformly at random without replacement;

2) Adaptive sampling: for each space-time index (i, j,t) €
[n] x [n] x [T, let p; j+ € [0, 1]. An adaptive sampling set
Q C [n] x [n] x [T] consists of triplets (¢, j,t) drawn from
i.i.d. Bernoulli trials with success probabilities p; ; ;. The
expected total number of samples is therefore mey, :=
E[0)) = 527501 S Pie

While uniform sampling is conceptually simple as it only

has one free parameter, m = ||, adaptive sampling is
more flexible, in particular because its sampling probabilities
{pi,j.t }(i,j,)er can be tuned to include prior information about
a specific instance of Problem I.1.

B. Our Contribution

We tackle the spatio-temporal transition operator recovery
problem by first applying an embedding into a structured
block Hankel matrix space, under which the nonlinear rela-
tionship between different powers A, A2,..., AT of a matrix
A is mapped to a low-rank property of the block Hankel
matrix H(Qr(A)), essentially in a one-to-one manner (Theo-
rem I1.1). The block Hankel operator H : MET — M, n don,
with parameters dy,ds € N s.t. T = dy + do — 1, is defined
as:

X: Xo X3 Xa,
X, Xs :
Xr-1
| X4, X1 X7

Related embeddings have been used to design computational
methods for the solution of classical problems in signal pro-
cessing and system identification, see Section [-C3 for details.

We then deploy an efficient low-rank optimization algorithm
based on Iteratively Reweighted Least Squares (IRLS), which
combines an iterative minimization of quadratic majorizing
functions with an appropriate smoothing strategy for a log-
determinant objective [DDFG10, MF12, KMV21] and, at the
same time, respects the block Hankel structure. We address the
connection between the choice of a space-time sampling set
Q) and the identifiability of A by proving a local convergence
result for the proposed algorithm, called Transition Operator
IRLS (TOIRLS), which shows that the operator A can be ef-
ficiently computed from a number of spatio-temporal samples
that is comparable to the sample complexity of using only
spatial samples at time 7" = 1, for random sampling models
based on either uniform or adaptive sampling. In particular,
we show in Theorem IV.1 that in the noiseless case, with high
probability, TOIRLS exhibits locally quadratic convergence
if initialized close enough to the ground truth block matrix
H(Qr(A)), as soon as only Q(ugrnlog(nT)) uniform or
adaptive samples are provided. An informal version of this
result may be stated as follows:



Theorem 1.1 (Local Convergence of TOIRLS, informal ver-
sion). Let A € M,, be a transition operator of rank r, and
let Hp :=H(Qr(A)), with Qp(A) and H as in (6) and (9),
respectively. Assume that either
(i) Q is a space-time sampling set drawn by uniform sam-
pling of cardinality

m 2, pornlog(nT), (10)

where g is the incoherence factor (see Definition IV.1)
of Ha, or

Q is obtained by adaptive sampling with Bernoulli pa-
rameters

(it)

. r
Pi,j.¢t 2 min (M’j’tﬁ log(nT), 1) ,

where p; ;¢ is a local incoherence (see Definition 1V.1)
Of HA.
If, additionally, an iterate of TOIRLS (Algorithm 1), with
observations y = Pq(Qr(A)), is close enough to Qr(A),
then, with high probability, the subsequent iterates converge
to Qr(A) with a quadratic convergence rate.

In Section VI, we provide numerical experiments that illus-
trate that the order of convergence in Theorem I.1 captures the
empirical behavior of TOIRLS for several transition operators
on random graphs, and that its behavior appears robust to
additive noise in the observations.

This result implies that despite the fact that samples are
taken across T different powers of A, not only from A itself,
TOIRLS recovers A from essentially as few uniformly random
samples as in the classical low-rank matrix completion setting
[CR09,KBV09,CT10,Chel5,CLC19], where O(vornlog(n))
samples are necessary in a uniform sampling model for the
unique recovery of A by any algorithm, where vy is the
standard incoherence of A [Chel5].

We also analyze the incoherence of Ha by relating it
to that of A for several families of transition operators,
see Section IV-C. In particular, we show that if A is an
orthogonal matrix or a projection, the incoherence py of Ha
coincides with the incoherence 1 of A, implying that the same
order Q(vgrnlog(n)) of samples as in conventional matrix
completion is sufficient in our setting, at least when 7' < n.

Unlike in conventional matrix completion, our results are
nontrivial also when A is of full rank, i.e. r = rank(A) = n:
in this case, Theorem L.1 implies that O(pon? log(nT))) sam-
ples, scattered over the 7' observation times, are sufficient to
ensure local convergence of TOIRLS, i.e. we pay a multiplica-
tive oversampling factor of O (g log(nT)) over the n? degrees
of freedom of A. In particular, recovery is possible with a
budget of only O(nlog(n)) sensors and T = n observation
times.

Finally, our results, such as Theorem I.1.2, on local
incoherence-based sampling of specific space-time locations,
inform adaptive sampling schemes that can be more data-
efficient than uniform sampling.

Our results are presented in Section IV-B in the context
of the spatio-temporal transition operator recovery problem.
However, we point out that they are valid more generally for
the problem of recovering a low-rank block Hankel matrix

via Algorithm 1 if its output is chosen to be the entire matrix
XE) e MET instead of its restriction to its first block A (5.

Remark I.1. In this work, we focus on the algorithmic
scheme TOIRLS optimizing non-convex surrogates in order
to explore the fundamental information-theoretic properties
of the underlying problem instead of a more traditional con-
vex approach used for other low-rank optimization problems
[CRO9, Chel5,DC20,CC14,YKIL17] (see also Sections I-CI
and I-C4 below) for two reasons:

e we are able to ensure fast, albeit local, convergence,
with high probability, under minimal assumptions on
the sample complexity (10). Using nuclear norm min-
imization on block Hankel matrices, we surmise that
it is possible to also obtain an exact recovery result,
albeit with possibly worse dependence on the sample
complexity, with additional logarithmic factors in r, g
and potentially T, when using techniques such as a dual
certificates or a leave-one-out analysis [Chel5,DC20];

e using a nuclear norm approach does not by itself lead

to a scalable algorithm, as nuclear norm minimization is
equivalent to a semidefinite program (SDP) with matrix
variables of size O(nT) x O(nT). While some recent
approximate solvers for large-scale SDPs require space
of order only O(rnT + m) [YTFT21,DYC"21], these
methods do not find high-accuracy solutions. On the other
hand, methods which provably solve the original SDP
(e.g., interior-point methods [AHO98] or augmented La-
grangian methods [STYZ20]) have storage requirements
of O(n®T?) or larger:
We show in Theorem V.1 that TOIRLS is a scalable
algorithm with space complexity of O(rnT +m), a per-
iteration time complexity linear in n, and quickly leads
to high-accuracy solutions thanks to the guaranteed local
quadratic convergence rate.

C. Related Work

The transition operator recovery problem and the proposed
low-rank modeling have connections to several different fields,
which we briefly discuss.

1) Low-Rank Matrix Completion: pioneered by [Faz02,
CRO09, CT10, Grol 1, Chel5] and popularized by applications
in recommender systems [ZWSP08, KBV(09], the problem of
recovering a low-rank matrix from a subset of its entries
or from underdetermined linear observations has been an-
alyzed using both convex [RFP10, CT10, Chel5] and non-
convex formulations [KMO10,SL16, CLC19]. The a minimal
sufficient condition for global convergence in the case of
uniform samples is due to [DC20], where it was shown that
Q(vornlog(n)log(vor)) uniform samples are sufficient for the
convex nuclear norm minimization approach to succeed with
high probability if vy is the incoherence factor of [Chel5],
n the dimensionality and r the rank of the matrix to be
recovered. Local quadratic convergence in the presence of only
Q(vornlog(n)) random observations was established for low-
rank completion for a method similar to TOIRLS in [KMV21]
and in [ZN22] for a Gauss-Newton method, improving pre-
vious works on related algorithms [MF12, FRW11, KS18]



and [BNZ21], respectively. Low-rank matrix completion is
a special case of the transition operator recovery problem
Problem I.1 corresponding to 7' = 1; for T' > 1, however,
Problem I.1 is nonlinear in the transition operator.

A nonlinear generalization of the matrix completion
problem that is different from ours was considered in
[OWNB17,0PAB"21], where the low-rank properties of ten-
sorized data matrices are leveraged. While these problems also
involve polynomial dependencies on a ground truth matrix,
these dependencies are columnwise and do not comprise
the rich algebraic structure of matrix polynomials present in
Problem I.1. The adaptive sampling model of Section I-A had
been considered for 7" = 1 in the works [CBSW15,EWW18].

2) Dynamical Sampling: here the aim is to recover a
linear dynamical system from the union of coarse spatial
samples at multiple time instances. A mathematical theo-
retical framework was proposed in [ADKI3, ACMT17] for
linear systems of the form (1), motivated by the pioneering
work of [LV09] that considered the space-time sampling of
bandlimited diffusion fields over the real line. Several works
[Tanl7b, LT19, AHP19, ACC*17, UZ21] focus on the case
where the transition operator A in (1) is known, and the
goal is to obtain sampling theorems ensuring exact recovery
of the initial state. For the case where A is unknown, it
has been shown that the eigenvalues of the matrix A can be
recovered from the space-time samples of a single trajectory,
see [AKI14, Tanl7a, CT21]. It is typically assumed that the
observation operator S; is deterministic and independent of t.
Our paper is the first one, to our knowledge, to provide results
for estimating A from random space-time samples, i.e., for
random subsampling operators S; varying over the time t.

3) System Identification: consider a linear time-invariant
dynamical system

Tiy1 = Azy + Buy

(11)
ys = Cxy + Duy

where u; is the input vector and y; is the output vector. The
parameter estimation problem considered in control theory
aims to recover the system matrices A,B,C, D from the
input-output pairs (u¢,y;). Classical results show that a nec-
essary condition to ensure identifiability is that C is full rank
[BA70]. In general, this problem is ill-posed and the focus
is to learn system matrices up to similarity transformations
(see subspace identification methods [Lju98, Qin06]) or the
impulse response function (also called the Markov parameters)
that determines the input-output map, both from a single
trajectory [Fat21,0019,SR19] and from multiple trajectories
in [ZL20, SOF20, TBPR17]. In the case of B = D = 0
and C = I, a sufficient and necessary condition for the
identifiability of A from a single trajectory with a fixed
initial condition is that A has only one Jordan block for
each of its eigenvalues, together with certain constraints on
the initial condition [SRS14, DRS20]. The low-rankness of a
block-Hankel embedding of suitable powers and products of
the matrices A, B, C and D similar to (9) is known to underlie
the Kalman-Ho [HK66,0019] method for finding a realization
of the system, and has been explicitly used as optimization
objective in [FPST13,MUI13, Marl9, GRG18]. However, the

observation matrix C is fixed in all the works the authors are
aware of within this line of research, whereas in our setting,
C is random and varies over time t.

4) Recovery of Structured Signals: many structured signal
recovery problems can be represented in the following abstract
form: for a normed vector space V' over C and a known linear
operator A : V' — V, one is interested in recovering a signal
f € V that is M-sparse in terms of eigenfunctions {v;} of
A, e, f =3 ,c;cjv;, where {c;}; is a set of coefficients
in C and |J| = M. The goal is to recover {c;};cs; and
{v;}jes from observations F(A*f) for £ =0,1,..., L where
F : V. — C is a linear functional. For example, let V be a
vector space consisting of continuous functions on the real
line and A be a shift operator (A f)(xz) = f(x + 1). If one
takes v; = e%7 for j € [M] where {aj}j”il are distinct
complex numbers and Im(a;) € [—m,m), F(f) = f(zo)
for some g € R and L = 2M — 1, then the recovery
problem corresponds to the classical estimation of a sparse
exponential sum, called harmonic retrieval. The other instances
of this problem include super-resolution, blind deconvolution,
recovery of signals with finite rate innovation; we refer to
[PP13, HS17] for more details. Many well-known algorith-
mic approaches for these estimation problems are related to
the Hankel matrix formed from the samples {F(A‘f)}L_,
including Prony’s method [PT10], matrix pencil methods
[HS90], and the algorithms MUSIC [LF16] and ESPRIT
[RK89]. A generalization to irregular sets of samples has been
considered in [CC14,JLY16,CWW19,KV19], by formulating
the signal recovery problem as a low-rank Hankel matrix
completion, relating the problem to techniques discussed in
Section I-C1 above. Multidimensional versions of these setting
have also been considered in these works, leveraging low-rank
properties of suitable multilevel Hankel or Toeplitz matrices,
as well as in [YXS16]. Specific to the 2D case, block Hankel
matrices with Hankel blocks arise in these applications. In
contrast, here the blocks of the block Hankel matrices we
leverage are in general not Hankel, but a general matrix related
to a linear dynamical system. Finally, we remark that while
the above works focus on recovering scalar signals, with the
shift operator A being known, here we address the problem
of estimating the unknown A, from partial observations along
different trajectories.

5) Graph Learning in Signal Processing: there have been
significant research efforts for inferring graph topology from
observations of graph signals. This includes [PIM10], where
the graph topology is estimated from full observations of
a solution of a system of linear SDEs on the graph, via
a regularized least squares approach, in particular focus-
ing on the length of time the system needs to be ob-
served in order to estimate the graph topology, as well
as on the role of sparsity of the graph topology. Other
existing approaches leverage a model based on graph fil-
ters [SMMR16, SMMR17], or enforce sparsity [MTF17] or
smoothness [Kall6, DTFV16, TDKF17, EPO18] of signals
using a penalized likelihood approach. Only a few works
consider the graph signals as states of an underlying dynamical
system, evolving according to the topology of the graph,
e.g., [CIML20], in which case the single-trajectory states are



observed via a fixed observation matrix that is static over time.
In all cases, the identifiability of graph topology remains to be
a challenging problem, as do the recovery algorithms, which
lack theoretical guarantees.

D. Outline

The paper is organized as follows. In Section II, we present
in which sense the transition operator recovery problem is
equivalent to a rank minimization problem over block Han-
kel matrices constrained to an affine space. In Section III,
we introduce TOIRLS, or Transition Operator Iteratively
Reweighted Least Squares, to solve the resulting structured
rank minimization problem. We introduce incoherence notions
of block Hankel matrices in Section IV, and present The-
orem IV.1, our main result that establishes local quadratic
convergence of TOIRLS for respective sample complexities
under both uniform and adaptive space-time sampling models.
In Section V, we elaborate on computational considerations for
TOIRLS, before presenting extensive numerical explorations
in Section VI. In Section VII, we provide the proof of the
main theorem of Section II and in Section VIII a proof outline
of Theorem IV.1. We conclude the main part of the paper in
Section IX. Finally, we present useful incoherence estimates
in Appendix A, present a complete proof of Theorem IV.1 in
Appendix B and detail a practical implementation of TOIRLS
in Appendix H.

E. Notation

We briefly summarize some notational conventions we use
in this paper. The set of orthogonal matrices of dimension d
is denoted by O = {M € M,, : M*M = Id }, while Id is
the identity matrix (omitting its dimension whenever suitable).
If Mg, x4, and v € R? is an arbitrary vector of dimension
d := min(dy, dy), the operator dg : RY — M, xd, maps v
to the (generalized) diagonal matrix dg(v) € My, x4, with
dg(v);; = v; if i = j and dg(v);; = 0 otherwise. For any
matrix H, we denote its spectral norm by |H|| := o1 (H) and
define the spectral norm ball with radius £ > 0 around H as
Bu(§) := {M € Ma,ndm : [M—H| <&}

II. RECOVERING TRANSITION OPERATORS FROM
SPACE-TIME SAMPLES USING LOW-RANK OPTIMIZATION

In this section, we detail an approach to solve the tran-
sition operator recovery problem introduced in Section I-A.
A fundamental issue is the nonlinearity of the operator Qr:
A Qr(A):=ADA20A3D...0 AT. We linearize this
nonlinearity by the transformation into the structured subspace
ImH C Mayndyn, where H : MET — My, p.a,n is the
block Hankel operator of (9) with parameters d;,ds € N.
H maps a direct sums of (n x n) matrices to a block
Hankel matrix with d; block rows and ds block columns.
In the remainder of the paper, we call d; and d- satisfying
T = dy + dy — 1 the (first and second) pencil parameter of
H, in accordance with [HS90,CC14].

The block Hankel operator H enables us to recover the
operator A and its powers A2 A3 ... AT from a block

Hankel matrix that is low rank (Theorem II.1), an observation
which lies at the core of our approach. We use a dedicated low-
rank optimization to recover a block Hankel-structured low-
rank matrix 7 (X*) compatible with the samples Po(Qr(A))
taken at space-time locations (). If a sufficient number of
random samples ) from a sampling model in Section I-A are
provided, the hope is there is a unique generator X* = Qr(A)
for the Hankel matrix, from which the transition operator A
can then be directly inferred.

A. Rank Minimization over Block Hankel Matrices

As a justification for our search for low-rank matrices in
the subspace of block Hankel structured matrices, we establish
in Theorem II.1 the strong relationship between the rank of
a block Hankel matrix H € Mg, 4,n» and the rank of an

underlying “generator” matrix A. We say that EI e RP™ is
a square extension of H if it is a block Hankel matrix with
pencil parameters D and D whose first 7" block anti-diagonals
coincide with the 7' anti-diagonals of H, and can otherwise
have arbitrary entries in the last 2D — d; — d2 blocks.

Theorem II.1. Recall the monomial operator Qr : M, —
MET A s ADA2 A3D...® AT from (6), and the block
Hankel operator H. : M%T — M, n,dyn from (9), with pencil
parameters di,ds. Then:

1) for any A € M,

rank (H(Qr(A))) = rank(A);

2) for any block Hankel matrix H € Mg, a,n with (n X n)
blocks, that has a positive semidefinite square extension

0

H € Mpy.pn, D = max(di,ds), which has its first
block Hy € M,, of rank r, and at least one other block
H; ¢ M,, 5 > 1, of rank r, there exists a pair of
matrices (Y,M), where Y € M, , and M € M, is
symmetric, with rank(H) = rank(Y) = rank(M) = r
such that

H=H(YY*8a YMY*&...e YM"'Y*). (12)

We refer to Section VII for a proof of Theorem II.1. Related
results have appeared in [FH96, YXS16, AC17]; however,
Theorem II.1 does not follow from these results.

Theorem II.1 implies a close relationship_between a low-
rank property of block Hankel matrices #(X) as in (9) and
the existence of an operator A such that Q7 (A) = X. While
Theorem II.1.1 implies that the rank of generator matrix A
is inherited by its block Hankel image, Theorem II.1.2 is a
statement in the other direction, i.e. about the existence of an
underlying rank-r generator matrix M of a matrix semigroup
associated to a rank-r block Hankel matrix. We show the
latter statement only if a positive semidefinite extension exists,
noting that similar statements apply if additional, typically
weak algebraic constraints are imposed on a general low-rank
block Hankel matrix H € Hg, 1 d,n, see [Tis92, FH96]. In
particular, note that is A € M,, if of full rank n, Theorem II.1
implies that H(Qp(A)) is also of rank n. This is, however,
low-rank if we choose min(d;, d2) > 1, as the maximal rank
of a (din X don) matrix is min(dy, d2)n, and not n.



At a high level, Theorem II.1 illustrates that the nonlinear
relationship between the matrix powers A, A% ... AT is
translated to linear dependences of the blocks in an associated
block Hankel matrix in Im %, motivating the pursuit of an
optimization approach that aims to find a completion of a block
Hankel matrix H(X) that is both low-rank and compatible
with the spatio-temporal measurements parametrized by the
sampling operator P from (7). This suggest a block Hankel
structured rank minimization problem

min

XeMmET rank (H(i)) st. Po(X) =y

13)

where y = Po(Qr(A)) the subset of observed entries of
Or(A) = A® A’ D A3 @ ... d AT, indexed by . More
generally, for a given regularization parameter A > 0, we

define the data fitting function G§ , - MET — R
~ Lp1y(X), if A=0,
Ghy(X)={ B W (14)
’ XHPQ(X)f if A >0,
where 1p-a : MET — RU{oo} is 0 if Po(X) =y, and 0o

otherwise. We then formulate the rank minimization problem

rank (’H(X)) + Gé}y(i) )

min

XeMET
which reduces to (13) for A = 0. In the presence of
inexact measurements with additive noise such that y =
Po(Qr(A)) + n for some n € R™, it can be benefi-
cial to choose a positive regularization parameter A > 0
[BSW11,Klo11].

Rank minimization problems such as (13) and (15) are
well-known to be NP-hard in general [RFP10], and different
convex and non-convex reformulations of such problems have
been studied for unstructured problems, i.e., for the case that
X itself is low-rank [CT10,KMO10,Recl1, Vanl3,PKCS18,
MWCC20]; see [DR16,CLC19] for recent surveys.

While (13) enables us to formulate or problem in the
language of optimization and to relate it to a common
algorithmic paradigm in machine learning and signal pro-
cessing, it poses several challenges from an optimization
perspective. First, the rank objective is a non-convex and
and non-smooth function, so that it is non-trivial to use
derivative-based algorithms. Furthermore, unlike most low-
rank optimization problems, the search space of (13) is the
H(X): X e MITL of Mgyndyn, mak-
ing the problem a structured low-rank optimization problem
[FPST13, Mar19, CC14, CWW18]. Lastly, due to the large
dimensionality of the ambient space M4, 4,n €ven for mod-
erate n and 7', only computationally efficient methods can be
used for transfer operators of non-trivial size.

5)

strict subspace

III. OUR APPROACH: ITERATIVELY REWEIGHTED LEAST
SQUARES

In several works in the literature, rank minimization prob-
lems have been tackled by designing optimization algo-
rithms that optimize non-convex, smoothed objective func-
tions whose minimizers are designed to coincide with those

— 1)
-=- J:(0)

Fig. 1: Illustration of the smoothing f.(o) of f(o) = log|o]|.

of the rank objective in many cases. It was observed in
[FHB03,CESV13,KMV21] that optimizing a log-determinant
objective often leads to solutions of underdetermined linear
systems of very low-rank even in the presence of relatively few
samples. Similarly, objective functions based on the Schatten-
p quasi-norm [MF12,LTYL15,0J17,KS18, GVRH20] and the
smoothed clipped absolute deviation (SCAD) of the singular
values [MSW20] have been used to derive competitive algo-
rithms for a variety of low-rank matrix recovery problems in
signal processing and statistics.

We propose an algorithm that adapts these ideas to the
block Hankel rank minimization problem (15) as presented
in Section II-A, which can be interpreted as an Iteratively
Reweighted Least Squares (IRLS) [HW77, DDFG10, MF12,
FRW11,0J17,KS18] strategy. Instead of optimizing the rank
objective (15) directly, let € > 0 be a smoothing parameter
and define the smoothed log-deteterminant objective F_
Main,dsn — R as

dn
)= fe(os(M)) (16)
i=1
where d = min(dy, ds) and
_ [log|al, ifo>e, 17
felo) = 10g(€)+%(%§*1>, if o <e, 17

which is continuously differentiable. If J. : M&T — RU{oc}
is the e-smoothed surrogate objective defined as
J.(X) = F-(H(X)) + G

0.y (X),

for a matrix X € MPT | the steps of an iteration of IRLS
can be understood as, first, the minimization of a quadratic
model function Q:(-|M) : Myndon — Mdayn,don that is
an appropriate, global upper bound of J.(-), leading to a
weighted least squares problems and, second, as an update
of the smoothing parameter £ and refinement of the quadratic
model function @) using the solution of the last weighted least
squares problem. The quadratic model functions Q. (-|M) can
be defined implicitly using weight operators, with which we
are then able to formulate TOIRLS, an IRLS algorithm for
transition operator learning (Algorithm 1).

Definition IIL.1 (see also [Kiim19, KKMV22]). Let M €
Ma,n,dn be a matrix with singular value decomposition

(18)



M = Udg(o)V*, where U € o4V e 0% gnd ¢ > 0.

1) The optimal weight operator Wy Ma,n,don —
M, n,dyn associated to M and € is the linear operator

Wwm(Z) = UE;}hU*zvz;;ZV*, (19)

where Y. 4, € Mg, and .4, € Mg,y are diag-
onal with (3¢ ,4,)ii = max(o;,€) for i € [din] and
(Ze,dz)jj = max(oj,€) for j € [dan].!

2) Let H : MPT — Mg nayn be the block Hankel
operator of (9). We define the effective weight operator
W : MET — MET as the linear operator

Wa(Z) = H *WH(Z) .

The choice of Wy in Definition III.1 in the weighted least
squares problem (20) of Algorithm 1 can be regarded as the
geometric operator mean of the one-sided weight operator
notions of the first IRLS papers considering rank optimization
[MF12, FRW11]. While a detailed discussion is beyond the
scope of this paper, we note that in [Kiim19, KKMV22] it is
shown that the associated quadratic model function Q. (-|M)
not only majorizes the e-smoothed surrogate objective J.(-) of
(18) pointwise, but also is optimal in the sense that any smaller
weight operator does not lead to majorizing quadratic model
functions. Using the pointwise majorization, it is possible to
show that the iterates (X*));>; of Algorithm 1 lead to a
monotonically decreasing sequence (J., (X(¥))) _ .. and that

each accumulation point of (f((k)) k>1 1s a stationary point of
J=z(+), where € := limg_, o £ [KMV21].

While the domain of the weighted least squares step (20) of
Algorithm 1 is MPT, by the definition of the effective weight
operator Wy, a spectral reweighting in the subspace of block
Hankel matrices is applied implicitly. As initialization for k =
1, the weight operator Wg, (19) is chosen to be the identity
operator, implying that the effective weight operator Wy, =
H *H = D? is a diagonal operator that is constant for each
summand of M®T and which amounts to the multiplicity
of each block in the block Hankel image (9) defined via the
operator #; cf. (44) in Appendix A.

a) Choice of regularization parameter \: the parameter
A > 0 in Algorithm 1 determines which surrogate objective
Je(+) is optimized by TOIRLS and which underlying rank
objective (15) is chosen. As described in Section II-A, the
choice of A = 0, which imposes an affine constraint defined
by the sampling operator Py and the observation vector y €
R™, is appropriate if exact space-time samples are provided
to the algorithm. While an optimal choice might correspond
to some A > 0 in the presence of inexact space-time samples
that depends on the order of magnitude of the noise, it turns
out that A = 0 is surprisingly robust to noise in practice, as
explored in Section VI-C. Theoretically, this observation is
related to the so-called quotient property of the measurement
operator, which has been used to establish robust guarantees
for equality-constrained low-rank and sparse recovery methods
[Woj10,CP11b,Liul1l, KKM?22].

lwith the convention that o; = 0 for min(d1, d2)n < i < max(d1, d2)n.

Algorithm 1 TOIRLS Transition Operator Iteratively
Reweighted Least Squares

Input: Indices Q C I, observations y € R™, rank estimate
r < mn, regularization parameter A > 0, first pencil
parameter 1 < dj < n.
Set £ = 0o and Wy, = H*H with H : MET —
Mg, n,don as in (9) where do =T —dy + 1.
for k=1to K do
Solve weighted least squares problem
X" = argmin {(X, War,, (X)) + Ga(X)} . 0)
XemPT
where Gy : MZT — R is the data fitting function
of (14) and W ,._,, is the effective weight operator of
Definition III.1.
Update smoothing: Compute (7 + 1)-st singular value
of Hj, = H(X®) to update

Ek = min (Ek_l,O';Jrl (Hk)) (21)

Update weight operator: For 7, := ‘{z € [dn]
o; (Hk) > sk} , compute reduced rank-rj, singular value
decomposition of of Hj, to obtain leading r, singular val-
ues 0;(Hy), i = 1,...,r; and matrices U € R™d1 X7
and V(&) € R™2%7% yge this to update WHk as defined
in Definition III.1.
k=k+ 1.
end for _
Extract the first block A (%) := [X(K )}

Output: A5,

of X(K),

1in,l:n

b) Choice of rank estimate 7: if the rank r = rank(A) of
the transition operator A to be recovered is known, one should
choose ¥ = r. If r is unknown, or if only a vague estimate is
available, it is advisable to overestimate the true rank, i.e. to
choose 7 > r. While exact recovery of the transition operator
might need more samples in that case, Algorithm 1 seems to
be often able to good estimates for A in that case.

c) Update rule for smoothing parameter ¢y after each
weighted least squares step, the smoothing parameter ¢y
is updated, cf. (21), in a non-increasing manner. This
distinguishes IRLS from a conventional majorize-minimize
(MM) method [Lanl6] for the smoothed surrogate objec-
tive Jo(-) for a fixed e. Similarly to related IRLS methods
[DDFG10, FRW11,VD17,KS18, KMV21], the choice of the
update rule quantifies the distance to a matrix of target rank 7
that is compatible with the observations y, playing a crucial
role in the design of the algorithm due to the non-convexity
of F., (+). If e, is large, J;, (-) will possess much fewer non-
global minima than if € is small, in which case, however,
F. () resembles much more the concave log-determinant
objective that is known to constitute a powerful surrogate for
the rank function [Foul8].

For a complexity analysis and implementation details, we
refer to Section V.



IV. MAIN RESULTS

In this section, we present a convergence theory for Algo-
rithm 1 for the problem of recovering transition operators from
sparse time-space samples.

It has been an open problem to establish global conver-
gence of similar IRLS methods to minimizers of non-smooth,
non-convex surrogate objectives such as (18) underlying the
respective problems [DDFG10,MF12,KS18,KMV21], despite
it being observed numerically in simulations. For this reason,
we restrict the convergence analysis for TOIRLS to a local
one, which is based on the assumption we are given an iterate
X*) € MOT that is close to a ground truth which is an image
Or(A) of a transition operator A. We quantify this using the
set

Bu, (&) == {H € Mayndpn ¢ [|[H—Hall <&}

that contains matrices close to the block Hankel matrix Hp :=
H(Qr(A)).

With Theorem IV.1 in Section IV-B below, we show suffi-
cient conditions on the number of space-time samples, under
either the uniform and adaptive sampling model, that, with
high probability, guarantee the local convergence of TOIRLS
to the ground truth, and therefore the recovery of A.

(22)

A. Incoherence for Block Hankel Matrices

Due to the coordinate-wise nature of either of our sampling
models, even for a fixed dimensionality n and fixed rank r,
it cannot be expected that each transition operator A will
require a similar number of samples for successful recovery.
In particular, a more localized transition operator with a non-
zero pattern that is not very distributed will not benefit from
space samples at locations associated to its zero coordinates.

In order to quantify which transition operators can be recov-
ered by either of our sampling models, we therefore introduce
a notion of incoherence for the block Hankel embedding ma-
trix Ha of a transition operator A. This extends the fundamen-
tal ideas in low-rank matrix completion [CR09,Rec11,Chel5],
where the difficulty of a completion problem is measured
by the incoherence of a low-rank matrix with respect to the
standard basis. We also introduce local incoherence quantities,
to be used to guide the adaptive sampling scheme.

Let Tz be the tangent space to the manifold of rank-
r matrices M, = {X € Mg ndyn @ rank(X) = r}
at Z € Mgy ndyn, Where 7 € N and Z € Mgy don iS
a rank-r matrix with compact singular value decomposition
Z = USV* with U € R"™*" and V € R"*" with
orthonormal columns, and ¥ € R™" the diagonal matrix of
non-increasing singular values of Z. By [Vanl3],

Tz :={UMj + M,V*:M,; € R">*" M, € R""*"}. (23)

Definition IV.1. Let Z € Mg, 4,n be a rank-r matrix. Let

{Bij+:(i,5,t) € I} be the standard basis of the space of

block Hankel matrices.” Let di,ds be the pencil é?arameters
1

of the block Hankel operator H, and cs := T+

dids

2See Lemma A.1 in Appendix A for an explicit representation.

1) For 1 < i, <nand 1 <t < T, we define the local
incoherence at space-time index (i,7,t) of Z as

n

T
e IPr, (Busl

Pisjt = (24)
2) We say that Z is pg-incoherent if there exists a constant
o > 1 such that

.
anlF < ., @
Loy ax P (Biga)lle < m (25)

i.e., if maxi<; j<n,1<t<T Wi j,t < po.- We call the smallest
Lo satisfying (25) the incoherence parameter of Z.

Intuitively, a rank-r matrix Z is pg-incoherent with small fs
if the projections of all elements of the standard basis of the
space of block Hankel matrices {B;_; ; } onto the tangent space
Tz associated to Z are small. In order to use an incoherence
notion that is adequate for our purposes of understanding the
fundamental difficulty of an instance of Problem 1.1, we follow
the notion of [Kiim19, Definition 3.3.1] in (25), which is a
slightly weaker notion than the notions used in the context
of structured low-rank matrices [CC14, (27)] and [CWW19].
In fact, pp in (25) can be upper bounded by the incoherence
parameter of [Recl1,CC14] (see also [KMV21, Remark B.1.],
the discussion of Section IV-C and Lemma A.2).

B. Local Quadratic Convergence of TOIRLS

We are now ready to state local convergence guarantees of
TOIRLS (Algorithm 1) for the recovery of transition operators
from space-time samples.

Theorem IV.1 (Local Quadratic Convergence of TOIRLS).
There exist absolute constants ¢y, C' such that the following
holds. Let A € M., be a rank-r transition operator, let Hp =
H(Qr(A)) be the block Hankel matrix associated to the first
T time scales of A, where H : MST — M, n.don is the block
Hankel embedding map (9) with pencil parameters dy,ds. Let
X*) be the k-th iterate of Algorithm 1 with inputs Q, y =
Po(Qr(A)) and v = r, assume that the smoothing parameter
(21) satisfies ), = o, (H(X*)). Let k := o1(Ha)/o,(Ha)
denote the condition number of Hp.
Suppose that one of the following statements holds:

1) [Uniform sampling] Ha is pg-incoherent and that Q) is a
random subset of cardinality m uniformly drawn without

replacement in the set of space-time samples I = [n] x
[n] x [T], with

m= Q(Csﬂo”’l IOg(nT))v (26)
and, furthermore, H(X®)) € By, (Ro) with?
3/2 1/2
~ Mo r
= — —— X 0.(Ha). 27
Ro CO(nT) /@(dn—r)l/ZgT( A) 27)

2) [Adaptive sampling] With (1 5,¢)( ;)1 being the local
incoherences (24) of Ha, 2 consists of random index
triplets (i,7,t) € I that are independently observed

3recall that d := min(dy, d2)



according to Bernoulli distributions with probabilities
Dij,t each satisfying

i j ¢ log(nT)
nT

Dij,¢ = min (Ccs r, 1) , (28)

and, furthermore, H(X®)) € By , (Ro) with

13,5, log(nT) 3/27“1/20r(HA)
nT > k(dn —r)t/2"
(29)
Then, with probability of of at least 1 — 2n~2, the subse-
quent iterates of TOIRLS (Algorithm 1) converge to Ha, i.e.
H(i(k‘”)) LN Ha, with quadratic convergence rate: for
a dimension-dependent constant v.*

IHXFHD) — Ha |
< min(v|[H(X*H) — Ha|?, [|HX*H) — Hall) .

R() = E() min
(i,g,t)el

Theorem IV.1 justifies that the spatio-temporal transition
operator recovery problem can be solved efficiently using
TOIRLS given a number of random samples that is, up to
constants, only logarithmically larger than the r(2n — r) =
O(rn) free parameters that are required to describe a rank-r
transition operator A € M,,. In the case of adaptive sampling,
the condition (28) can be translated into a bound on the
number of expected samples mMmey, Since me, = E[|Q]] =
Y igmer Pigt = Cesgplog(nT) 3 5 ey tage (if the con-
stants in (28) are small enough to attain the minimum in the
first argument). See Section IV-C for further discussion.

The proximity assumptions (27) and (29), which ensure
that the spectral norm error of subsequent iterates of TOIRLS
decreases with a quadratic convergence rate, are comparably
restrictive due to their dependence on the n, d and 7', which
makes it hard to find an initialization that satisfy the conditions
for large-scale problems. However, extending the convergence
radius of IRLS methods remains an open problem even for
simpler problems such as sparse vector and unstructured low-
rank matrix recovery if a non-convex objective such as (16)
is used [DDFG10,KS18,KMV21]. In Section VI-A, we pro-
vide numerical experiments illustrating that in practice, exact
recovery of transition operators is observed empirically with
an empirical probability of essentially 1 once enough samples
are provided, even if TOIRLS is initialized with the natural,
data-agnostic weights of Wy, = H *H as in Algorithm 1.

The statements of Theorem IV.1 address the case of exact
observations y = Po(Qr(A)) that are not perturbed by any
noise. In Section VI-C, we provide numerical experiments
suggesting that TOIRLS is in practice robust in the presence
of noisy observations (including with a choice of the regular-
ization parameter A = 0).

The proof strategy for Theorem IV.1 is outlined in Sec-
tion VIII and detailed in Appendix C.

We note that while Section IV-B focuses on the the behavior
of Algorithm 1 in the context of the recovery of a transition
operator A from space-time samples, it is possible to extend
the applicability of Theorem IV.1 to Algorithm 1 recovering—
more generally—rank-r block Hankel matrices by choosing as

4See Appendix C for a possible choices for v.

output the entire matrix X&) € MET instead of its restriction
to its first block A(%), In particular, in this setting, the ground
truth Ha can be substituted by any ground truth H(Xo)
with rank(H (X)) = r, using the same notions of (local)
incoherence as in the presented results.

Remark IV.1. We recall that the pencil parameter d; is a free
parameter in Algorithm 1. Theorem IV.1 also has implications
for the choice of dy: for uniform sampling, the sampling
complexity (26) is minimized if we choose dy such that cs - ug
(both cs and g depend on dy) is minimized. The factor cs =
Tg;;l) _ dl(TqST;lJ)rl) is minimized for dy = |(T +1)/2],
vielding a roughly square block Hankel matrix. Such a choice
is observed to be favorable also for other problems using
structured low-rank optimization [CC14,CCY22].

A priori, the dependence of o on dy is unclear; however,
numerical experiments conducted in Section VI-A2 suggest
that this choice of dy also minimizes the product csug at least
in some of situations we consider.

C. Examples and Discussion of Sample Complexity

We now attempt to better understand the implications
of Section IV-B and, in particular, the sample complexity
conditions (26) and (28) for uniform and adaptive sampling
schemes. We provide sufficient conditions on the sample com-
plexity by providing bounds on the incoherence parameter (i
and local incoherences y; ; ¢, respectively, in various examples.

It is instructive to relate pg, the incoherence of the block
Hankel matrix Hay = H(Qr(A)), with the now-classical
incoherence notion [CT10,Chel5] of the transition operator
A (which coincides with Hp in the static case of T = 1).
While in general there is no direct relationship between these
two notions, as the singular vectors of Ha may not be
always expressed in terms of the singular vectors of A, In
two particular cases, when A is an orthogonal matrix or a
positive semi-definite matrix, it is possible to establish a simple
relationship between these incoherence notions.

a) Orthogonal matrices: If A € 0" := {X € M,, :
X*X = Id}, it holds that rank(A) = n. In this case, the
incoherence parameter po of Ha satisfies

po <1 =:p0

and, furthermore, the local incoherences p; ;: of Ha satisfy

Z pija < Tn?,
(3,9,t)T

see Appendix Al for details. The two parts of Theorem IV.1
therefore imply that for both uniform and adaptive sampling,
O(csn?log(Tn)) space-time samples are sufficient to establish
local convergence of IRLS with high probability. These results
are consistent with the intuition that a dynamical system driven
by an orthogonal transition operator is energy-preserving,
and from the bound O(csn?log(Tn)), we see that up to a
logarithmic factor of log(Tn), space-time samples contain a
comparable amount of information to that of static samples. As
the resulting sample complexity bound is of the same order in
both cases, we expect adaptive sampling and uniform sampling



to exhibit similar behavior for orthogonal transition operators.
We refer to Section VI-Al for numerical experiments.

b) Positive semi-definite matrices: Let di < do without
loss of generality. If the transition operator is a positive
semidefinite matrix A = 22:1 Asu;u; with (positive) eigen-
values \; and corresponding eigenvectors u;, we show that
the incoherence parameter po of H(Qr(A)) satisfies

s ndQ(UZ)? -
po < max Z ——di=1 \ga. — Mo (30)
tsisn i r(320Ly AP
In particular, if A is a rank-r projection and if d; = da,

this bound becomes (with e; denoting the i-th canonical basis
vector)

o = Mute|? = u

fio = max - [U%eilly =: vo,
which coincides with the incoherence constant of A as defined
in the low-rank matrix completion literature [CT10, Chel5].
In this case, we obtain a space-time sampling bound
O(csvprnlog(nT)), which is just slightly more than the neces-
sary condition of O(csvgrnlog(n)) for exact recovery by any
method under a uniform sampling model [CT10,Chel5]. For
adaptive sampling, we show an upper bound for ZZ it Pigit
as O(rnlog(nT)log(T)) (I > 3), and this bound can be
improved to O(rnlog(nT)) if A is a rank r projection. Our
bound is comparable with the one obtained in [CBSW 15, The-
orem 2] for Bernoulli sampling for low-rank matrix comple-
tion, namely, ©(rnlog?(n)) for the case T = 1. We refer to
Appendix A2 for proofs of the presented estimates.

In general, jiy could be larger or smaller than v, depending
on the interplay of the spectrum of A with the coherence
of the eigenvectors. For very spiky operators A with large
incoherence vy and quickly decaying spectrum, however, the
best estimate we obtain from (30) is jig < dov. This implies
that in such a setting, our estimates lead to a sufficient
condition of Q(csvornT log(nT)) required samples, which is
rather pessimistic.

V. COMPUTATIONAL CONSIDERATIONS

If H,.; = H()z(k’l))Nis the block Hankel matrix at
iteration k — 1, the solution X (%) of the weighted least squares
(20) can be written as (see Lemma A.8 in Appendix H)

1

(y)-

However, using this formula directly can be impractical as
we have no explicit representation of the inverse Wﬁ:_l :

MET — MPT of the effective weight operator Wy, | :
MET — MOT | unlike in the case of unstructured low-rank
optimization, where the optimization domain is not restricted
to a strict linear subspace such as H(MPT) € M, n.a,n and
for which a related IRLS method was studied in [KMV21]. A
space and memory-efficient implementation of the weighted
least squares step leveraging an underlying “low-rank plus
diagonal” structure of Wiy, , can still be achieved, as can
be seen in Theorem V.1.

Theorem V.1. Let X(=1) ¢ Ma, a, be the (k—1)-st iterate
of TOIRLS (Algorithm 1) for an observation vector y € R™

X0 =Wl Py (Nd+PaWy!  P5)

withm = |Q|, ¥ =r, and X\ > 0. Assume that T,y = r. Then
an approximation of the k-th iterate X¥) of TOIRLS can be
computed within Nce_inner Steps of a conjugate method solving
a O(rnT) x O(rnT) linear system with space complexity of

O(rnT+m) and in O(NcG_imnerrT (m~+nlogT+nrT)) time.

Theorem V.1 follows directly from Lemma A.9 in Ap-
pendix H, using the implementation outlined in Algorithm 2.
The linear systems solved within Lemma A.9 can be shown to
be well-conditioned under reasonable assumptions, in which
case a constant number Ncg_inner Of CG iterations is sufficient
to obtain an accurate approximation of X (%),

As stated in the weight operator update step of Algorithm 1,
the action of the effective weight operator Wﬁiil only uses
information about the r_; leading singular vector pairs and
singular values of 7(X(*~1). In particular, if for all iterations
where the smoothing update (21) is such that ¢, = o7, 1 (Hyg),
it holds that r, = 7. This means that, in this case, only 7
singular values and singular vector pairs of Hy need to be
computed in the weight update step of Algorithm 1, and these
can be computed up to high precision using matrix-matrix
multiplications with a randomized block Krylov method in
[MM15,YGLI18] in O(mTr+7rT(log T +rT)n+Tnr?) time
(using fast multiplication with block circulant matrices, see
also proof of Lemma A.9).

We conclude that one iteration of TOIRLS can be computed
with a time complexity that is linear in the dimension n of the
transition operator A, at least if it is of rank » = O(1). For
example, if || = m = ©(rnlog(nT')) space-time samples of
an O(1)-incoherent ground truth A are provided uniformly at
random, one full TOIRLS iteration using Lemma A.9 takes
O(nT?log(nT)) time.

VI. NUMERICAL EXPERIMENTS

In this section we explore the numerical performance of
TOIRLS, Algorithm 1 for estimating transition operators from
sparse space-time samples. We consider operators A € R™*"
associated with random graph models, as well as orthogonal
matrices A. These experiments are meant to shed light on the
sharpness of our sampling complexity results Theorem IV.1,
and verify they are consistent with the empirically observed
behavior. While there are no dedicated computational ap-
proaches to our recovery problem available in the literature,
we include also comparisons with the interior-point algo-
rithm [WMNOO6] used in the nonlinear optimization wrapper
fmincon of MATLAB, minimizing the objective f : M, —
R

f(B) = | Pa(Qr(B)) — Pa(Qr(A))l;5 GBD

using finite difference gradient approximations.

a) Numerical setup: since the number of degrees of
freedom is r(2n — r) for a rank-r matrix A € M, and
r(n—(r—1)/2) for a symmetric (n x n) rank-r matrix A, we
define, for myoiq1 = || space-time samples, the oversampling
factor p as, respectively,

o Miotal
P = r—1)/2)

Mtotal

— [Mtotal _ d
P r(2n—r) an



The average number of spatial samples taken at each time
instance 1S Myingle = Miotar/T- We use mq to denote the
number of samples taken at 7" = 1. We will use both the
uniform and adaptive schemes described in Section I-A.

In the numerical experiments, we use TOIRLS as out-
lined in Algorithm 1 using the implementation described in
Appendix H for computing the tangent spaces, and solving
the linear systems associated to the weighted least squared
problems with a conjugate gradient method.’ Unless stated
otherwise, we use Algorithm 1 with stopping criterion com-
bining a maximal number of iterations Ny = 250, a tolerance
tol = 10~*! with respect to the relative change in Frobenius
norm, and tol_CG = 10~ for the conjugate gradient step. We
provide the true rank(A) of the ground truth as the rank esti-
mate 77 = rank(A) to the algorithm. If not stated otherwise, we
provide TOIRLS with the pencil parameter d; = [(T' + 1)/2],
leading an (approximately) square dimensionality of the block
Hankel embedding space ran(H).

b) Evaluation metrics: we define the recovery error of
an estimator A of A as

Reca := A — Allr/|Allr.

For a random model, unless stated otherwise, we run 10
independent trials and report the mean and standard deviation
of the recovery errors.

¢) Graph Topology-Induced Transition Operators: We
consider operators representing dynamics on different graphs
and random graph models. Let G = (V, E, W) be an undi-
rected weighted graph with n vertices V. = {vy, - ,u,},
edges E C V xV and adjacency matrix W € R™*", ie,
W,; = 1if (i,j) € E and W;; = 0 otherwise. The degree
of a vertex v; € V is deg(v;) = Z;:l W,;;. Given a graph
G, a variety of associated transition operators can be defined,
encoding structural information about the graph [Chu97] and
associating to the graph certain dynamical processes on it.

Definition VI.1. The normalized diffusion operator of a
graph G = (V,E,W) is A := (D"1)2W (D 1)z, where
D := diag(deg(v;))v,ev and D~ denotes its pseudo-inverse.
The normalized graph Laplacian operator is L = Id —A. The
random walk matrix P is D~'W, and the heat diffusion
operator for time parameter T > 0 is exp(—7L).

A. Recoverability in the Noiseless Setting

We first investigate the empirical recoverability of transition
operators A by Algorithm 1 from spatio-temporal samples {2
given different numbers of time steps 7', sampling schemes
and different sample complexities. Furthermore, we consider
different types of transition operators that include both full and
low-rank matrices, symmetric and non-symmetric matrices,
orthogonal matrices and operators associated to the topology
of graphs.

SFor problem instances with relatively large ambient dimension 7, such as
the Minnesota road network graph of Section VI-A4, we use a MATLAB
implementation that follows closely the steps outlined in the proof of
Lemma A.9.2. For problems with larger number of time steps 7', we used
matrix-vector multiplications in Algorithm 2 that include antiaveraging of
block Hankel matrices instead of block-wise fast Fourier transforms as these
turned out to be faster for the problem dimensions we were interested in.

1) Dependence on Number of Time Steps T: For a first
experiment, we fix the number m = || of uniformly sampled
space-time samples from Q7 (A) := A@A2@A3D...0 AT
and consider different choices of T'.

a) Random orthogonal matrices: we consider random
orthogonal matrices A € R™*", with n = 50, sampled from
the Haar measure on the orthogonal group O(n) = {A €
R™™ . AAT = ATA =T}. In this case, A has n? = 2500
degrees of freedom,® and we first fix the total number of
space-time samples (uniform sampling) to M = 7500,
corresponding to an oversampling factor of p = 3. We
investigate the performance of the proposed approach when
T is between 10 and 50, i.e., the average spatial samples per
time instance ranges from 750 to 150. We report the results
in Table I: our approach is able to recover A accurately
after about 30 IRLS iterations, even when T' grows larger,
increasing the apparent nonlinearity of the problem. This is
consistent with our theoretical analysis: in short, in an energy-
preserving system, one can trade spatial samples for an equal
amount of temporal samples without loss of information.

T Reca Mgingle | dof(A) | p | Iterations
10| (23+£0.2)- 107 [ 750 2500 | 3] 20.9+0.3
20 | (5.7+0.8)-107 " [ 375 2500 | 3 | 25.1+£0.6
30 | (1.14+£0.2)-107 2 | 250 2500 | 3 | 27.5+0.8
40 [ (1.1£0.1)-107 ] 1875 | 2500 |3 | 30.2+2
50 [ (1.84+0.3)-10" | 150 2500 | 3| 32.8+2

TABLE I: The estimation errors for random orthogonal matri-
ces of size 50 x 50 using uniform sampling with replacement.

In Figure 2, we report on an experiment with the same
data and sampling model, but where we vary both the number
of time steps 7" = 1,...,40 and the oversampling factor
p = 1,...,3.5. For 24 random instances, we visualize the
empirical probability of exact recovery (defined as a relative
Frobenius error of Reca < 10~%). We observe the existence
of a sharp phase transition between no recovery and exact
recovery for all instances, at an oversampling factor between

SIn fact, an orthogonal matrix has only n(n — 1)/2 degrees of freedom;
however, as reconstruction method is oblivious to the orthogonality con-
straints, we neglect these in our calculation.

Rank r

Oversampling p

Fig. 2: Phase transition plot for orthogonal matrices, with
oversampling factor p on the z-axis and time steps 7" on y-axis.
Yellow corresponds to exact recovery for all random instances
of the problem, blue corresponds to no recovery. Red line:
1+ 0.211og(nT).



p = 2 and p = 2.7, depending weakly on 7. This is
consistent with Theorem 1.1, which predicts exact recovery
from pn? > n%log(nT) samples, since here py = 1, cf.
Section IV-C. In fact, the phase transition in Figure 2 occurs
at around p ~ 1 + 0.21log(nT") for the tested parameters.

b) Erdds-Rényi Graphs.: In the next experiment, we
consider graph matrices A associated with Erd6s-Rényi graphs
[ER59, Gil59] with n = 60 nodes with connectivity prob-
ability of p = 0.8. With 7,(-) the map from a matrix to
its best rank-r approximation, for r between 1 and 60, we
create rank-truncated continuous-time heat diffusion operators
A = T, (exp(—7L)) € R™*", with L the normalized graph
Laplacian as in Definition VI.1, 7 = 0.4, on an instantiation
of an Erd6s-Rényi graph. In Figure 3, we depict Qr(A) for
such a transition operator, with » = 20 and 7' = 7 time steps.

As they are symmetric, such matrices have dof(A) =
r(n—(r—1)/2) degrees of freedom. In Figure 4, we visualize
the recovery performance of TOIRLS for varying numbers of
samples m = |Q|, for three different numbers of time steps 7.
In the left column of Figure 4, we see that the phase transition
for T' = 1 occurs extremely close to the information theoretical
limit—in this case, the setting coincides with low-rank matrix
completion via MatrixIRLS as described in [KMV21]. For
T = 4, the transition occurs at around m = 1.5rn. Apart
from the fact it is expected that generally, the phase transition
will occur at larger sample complexities than for 7" = 1 due
its the logarithmic dependence on 7', it is remarkable that the
quadratic dependence of dof(A) on 7 is not reflected in the
empirical transition curve. However, this is still compatible
with Theorem IV.1, as dependence on r in the sufficient con-
dition is linear. As expected due to the logarithmic dependence
on 7', we observe a similar, but slightly deteriorated transition
curve for T'= 7.

2) Choice of Pencil Parameter d;.: In the experiments of
Section VI-Al, we always chose the first pencil parameter d;
so that block Hankel matrices H(X) are square or as square
as possible, i.e., such that dy = [(T' + 1)/2].

Revisiting the experiments of Section VI-Al for the Erdds-
Rényi graph model and T' = 7 time steps, we now explore the
sensitivity of the problem to the choice of d;. In Figure 5, we
observe that for d; = 1/dy = 7, the phase transition occurs
only for significantly more samples m than for the square
choice of d; = dy = 4; for example, it can be seen that
for » = 20, the transition is at m = 3600 or p ~ 3.56 for
d; = 1, whereas it is at m = 2500 or p =~ 2.47 for d; =
4. For d; = 1, the recovery problem becomes impossible if
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the rank of A satisfies r = 60 due to a lack of any low-
rank property of the embedding matrix H(Qr(A)), and the
experiment indicates that even for lower ranks r» < 60, this
choice of d; is disadvantageous. For d; = 2 and d; = 3, the
behavior is quite similar to the square case in this example
with a just slightly worse phase transition.

Furthermore, we illustrate in the last column of Figure 5 the
values of the d;-dependent product c, iy, where ¢y = Tg;;l)
is the constant of Definition IV.1 and pg is the incoherence
parameter (25) of H(Qr(A)) for a given choice of the pencil
parameter d; . The values are illustrated with a one standard de-
viation confidence interval across 24 realizations of the Erdds-
Rényi model. We observe that ¢, is minimal for dy = 1 for
essentially all ranks r, indicating that our sample complexity
bound (26) in Theorem IV.1 indeed justifies a square choice

for the pencil parameter such that dy = [(T +1)/2].

3) Uniform Sampling vs. Adaptive Sampling: Next, we
explore the empirical benefits of adaptive sampling compared
to uniform sampling for the recovery of transition operators
A. In particular, we assume that we have knowledge about
the local incoherences pi; ;+ of A for all (4,5,t) € I, see
(24) in Section I'V-A, and design an adaptive sampling scheme
with probabilities p; ;; = cu; j¢ for all (4,7,t) € I, where
c > 0 is chosen such that the expected number of samples
Mmexp = E[|Q]] = Z(i7j’t)elp1‘,j7t. We vary then mey, in a
similar manner as m above for uniform sampling. We note
that this is not a very realistic sampling scheme, since local
incoherences are not immediately accessible as they require
the knowledge of A. An implementable approximation of the
ideal adaptive sampling scheme was proposed in [CBSW15]
for the related low-rank matrix completion problem; however,
an application to our setting is beyond the scope of this paper.

In Figure 6, we illustrate a realization of an expected
number of mex, = 3000 adaptive samples in the Erd6s-Rényi
setting of Section VI-Al, corresponding to an oversampling
factor p ~ 2.97. Applying TOIRLS to the recovery of heat
diffusion operators associated with Erdés-Rényi graphs from
adaptive sampling, we report the results of the experiment of
Section VI-Al in Figure 7. It can be seen that for 7" = 1
the phase transition is very similar to the one corresponding
to uniform sampling (see Figure 4), as it was already close
to the information theoretic threshold p = 1 (red curve).
For the dynamic cases T' = 4,7, we see that we obtain a
modest improvement compared to uniform sampling, with the
phase transition exceeding the line mey, = 1.5rn especially
for large » and T" = 4, and achieving recoverability of full
rank operators from around 6,000 samples for T' = 7, unlike

1Mos

06
0.4
0.2

0

Fig. 3: Left column: Realization of Erd&s-Rényi graph with n = 60 and p = 0.8. Other columns: Aggregation of matrix of
powers Q7 (A) of rank-20 truncation A of heat diffusion operator (color scheme normalized across powers, log-scale).
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Fig. 6: Adaptive space-time samples P (Q7(A)) of rank-20 truncation A of heat diffusion operator (1010 degrees of freedom,

log-scale) with mey, = 3000.

in the uniform sampling case.

a) Community Graphs: the improved efficiency of the
adaptive sampling scheme has been rather modest for the
heat diffusion operator based on a Erd6s-Rényi graph in our
parameter setting due to the relatively benign spectral decay
of A. We now consider a community graph with n = 60
vertices and 10 communities (eight of size 5, one of size
13 and one of size 7), with dense connections within a
community, and independent random inter-community edges
with probability 1/10. We use the Graph Signal Processing
(GSP) toolbox [PPST14] to create such graphs, and define
the associated transition matrix as the truncated random walk
matrix A = T, (P) = 7, (D7'W), cf. Definition VLI.
Note that this matrix is in general asymmetric. For r = 20
and T = 7, we visualize Qr(A), i.e., A and its powers
A2 ... A7 in Figure 8, together with an example of adaptive
samples for this setting with mey, = 3,000, computed based
on local incoherences. Comparing Figure 8 with the adaptive
sampling pattern for the Erd8s-Rényi heat diffusion model
(Figure 6), we note that the sampling density for larger time
steps such as ¢ = 5,6,7 is smaller for community graphs,
indicating that the adaptive sampling focuses now more on

smaller time scales than for the Erd6s-Rényi model. This is
expected, since the spectrum of the (untruncated) transition
matrix decays faster than for the Erd6s-Rényi heat diffusion
operator above, indicating that sampling large time steps is less
informative than sampling earlier time steps, see also Figure 8.

Empirically, this is confirmed in the experiment of Figure 9,
where we report on the phase transition for both adaptive
sampling and uniform sampling, considering 7" = 7 steps of a
random walk. Unlike for the Erd6s-Rényi transition operators
(Figure 4 and Figure 7), we observe a significant difference
between adaptive and uniform sampling for this model, as the
uniform sampling scheme requires approximately the double
amount of samples to obtain exact recovery, with this phase
transition being located at around m = 4.8rn (uniform
sampling) and m = 2.4rn (adaptive sampling), respectively.

4) Dependence on Graph Topology: We now elucidate how
the recovery of transition operators A by Algorithm 1 depends
on the fopology of an underlying graph.

a) Random walk matrix: We recall that a random walk
matrix, cf. Definition VI.1, is suitable to reveal structural
information of a graph: The multiplicity of the eigenvalue 1
is equal to the number of connected components; the second
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largest eigenvalue A, that describes the mixing rate of the
random walks; the spectral gap |A; — \z| represents how well
the graph is connected. We refer the readers to [Chu97] for a
detailed discussion.

In Table II, we report on experiments on the recovery
of (full-rank) random walk matrices A = P = D™'W
associated to two different graphs, both with n = 50 nodes: A
very regular path graph , and a more irregular community
graph (one community of size 9, eight of size 5, and a
single node) with inter-cluster connection probability of 1/50,
cf. Figure 10. As in Section VI-A3, we use both uniform
and adaptive sampling. We denote the number of degrees of
freedom by dof(A) and, in case of adaptive sampling, the

number of samples located at time ¢ = 1 (averaged across 10
realizations) as mj.

We observe that for the path graph, recovery by Algorithm 1
is possible for uniform sampling at an oversampling factor of
p = 3, as the recovery error Recp is of the order of magnitude
of the algorithmic tolerance with Reca = 10710, while exact
recovery fails for p = 2.8 even if adaptive sampling is chosen;
i.e., the performance is essentially the same for uniform and
adaptive sampling. For the community graph, for which we
now consider T' 10 time steps instead of 7' = b5, an
oversampling factor of p = 8 is not sufficient for uniform
sampling to recover the transition operator, however, a much
smaller sample complexity corresponding to p = 3.5 leads



Models Sampling | T | mgipge | M dof(A) | p Reca

Path graph | uniform 5 1500 2500 3 9.6-10"11 £9.2.10727
Path graph | adaptive | 5 2169 | 2500 28 | 72-1007+23-1073
Community | uniform 10 | 2000 2500 8 76-10°+-58-1078
Community | adaptive | 10 2297 | 2500 3544-1073+£ 5810713

TABLE II: Recovery errors Reca of Algorithm 1 for random walk matrix of path/community graphs for different sampling

sets.

already to exact recovery for adaptive sampling. While these
graphs are simple examples, they show illustrate that the
difficulty of the setup is negatively affected by the irregularity
of the underlying graph.
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(a) Community graph (b) Path graph

Fig. 10: The plot of two random walk matrices used in the simulation. Both
of matrices are sparse with significant nonzero entries.

b) Heat diffusion operator: We now revisit the heat
diffusion operators A = 7, (exp(—7L)) from Section VI-Al,
focussing on how the number of time steps 7, the heat
diffusion scale 7 and the structure of the underlying graph
G determine the recoverability of A from time-space samples
that are sampled uniformly at random, for settings of slightly
larger scale. To that end, we consider a Swiss roll graph with
n = |V| = 200 nodes and graph representing the roads of the
state of Minnesota [DH11, KAB™19] with n = |V| = 2642
nodes, using the default settings of the GSP toolbox [PPS ™ 14];
see Figure 11 for a visualization.

Fig. 11: Left: Swiss roll graph. Right: Minnesota road network graph.

Furthermore, we consider heat diffusion operators corre-
sponding to slow and fast energy dissipation, corresponding to
small and large choices of 7. Since we choose = 10, we have
that Ajpin(A) = exp(—7A19(L)), which is larger for slow
energy dissipation and smaller or faster energy dissipation.
Here, A\1o(L) corresponds to the 10th largest eigenvalue of
the Laplacian L.

In Table III, we report parameter choices and sample sizes
and the smallest oversampling factor p (stepsize 0.5) that

allows for accurate recovery, i.e., Reca of the order of the
stopping condition, of the transition operator via Algorithm 1.
We observe the transition operator is recoverable even if the
expected number of samples mgipee for a single time step is
below the number of degrees of freedom dof (A), which would
not be possible in the static setting of 7' = 1. Furthermore,
we see that in the case of faster energy dissipation (A, (A)
small), the threshold oversampling factor p is larger. This is
consistent with the worse bound fig in (30) and the sufficient
condition (26) for the local convergence of Algorithm 1.

B. Comparison with Black-Box Nonlinear Optimization

We now compare the performance of Algorithm 1 for the
problem studied in this paper to the one of a black-box
nonlinear optimization solver applied to the nonlinear least
squares objective (31) [WMNOOG], as used by the wrapper
function fmincon of MATLAB. For fmincon, we use the
zero-padded observations P Po(Qr(A)) as initialization.

Unlike Algorithm 1, this method is not able to algorith-
mically utilize the low-rank structure of the problem in the
case of rank-truncated transition operators A, which is why
it is not suitable to handle large-scale problem instances with
many unknowns such as, for example, those associated to the
Minnesota road network graph considered in Table III-in fact,
it is infeasible to run it on a personal computer already for
transition operator sizes of n > 200, unlike Algorithm 1.

Instead, we consider rank-truncated heat diffusion operator
associated to the Swiss roll graph used in the first row of
Table III, and the random walk matrices associated to a path
graph and the community graph of Table II, each with uniform
sampling.

Setting the maximal number of iterations equal to 200, we
report the observed recovery errors Reca in Table IV. We
see that for the oversampling factors for which Algorithm 1
essentially leads to exact recovery, fmincon exhibits recov-
ery errors of the order 10~! or 10~2 for the Swiss roll and
community graph models, indicating that exact recovery does
not happen. For the path graph, on the other hand, the recovery
error is of order 10~7. Taking the often larger computational
cost of the generic nonlinear optimization solver into account,
while it cannot be ruled out that an increase in the iteration
number will eventually lead to smaller errors, we conclude
that Algorithm 1 works significantly better than fmincon
for irregular graphs.

C. Robustness to Noisy Observations

In all previous experiments in Section VI, we have assumed
that the observations y € R™ provided to the recovery method



Models /\mm (A) T msingle dOf(A) P RCCA

Swiss roll | 0.21 6 | 1629 1955 5[14-1073+£42-1071
Swiss roll | 0.89 6 | 978 1955 311.9-10712+34-10712
Minnesota | 0.64 5 | 32082 | 26375 6 [83-1071¥+52-10713
Minnesota | 0.9 5 | 21100 | 26375 41381071 +6.6-10"11

TABLE III: Parameter choices for accurate recovery of rank-10 heat diffusion operators using uniform sampling with

replacement, sample complexities at phase transition.

Models Sampling | n Rank r | T | myginge or m; | dof(A) | p Reca

Swiss roll uniform 200 | 10 6 1629 1955 5 5.5-10 T £3.3-10 2
Path graph | adaptive | 50 | 50 5 | 2169 2500 |3 | 68-10°£24-10°°
Community | adaptive 50 50 10 | 2297 2500 35 1.5-10 74+2.3-10 3

TABLE IV: Recovery errors using interior-point solver of nonlinear least squares formulation (31) (fmincon).

correspond to exact space-time samples y = Pq(Qr(A)).
While, taken literally, the local convergence statements of
Theorem IV.1 only apply to this setting, for practical appli-
cability it is important that the problem is also solvable in
the presence of additive noise such that y = Po(Qr(A))+1,
where the noise 7 is unknown to the algorithm. We investigate
the noise robustness of the IRLS approach of Algorithm 1 by
reconsidering the Erd&s-Rényi and community graph transition
operator models of Section VI-Al and Section VI-A3 for
noisy observations with random spherical noise such that
y = Po(Qr(A) +n = Po(Qr(A)) + 1Oy,
where v is a vector drawn uniformly at random from the
unit sphere and SNR correponds to the signal-to-noise ration
SNR = || Po(Q7(A))|3/|In||3. Despite the presence of noise,
we apply Algorithm 1 with regularization parameter A = 0.

We observe that for sample complexities below the phase
transition thresholds in Section VI-A1 and Section VI-A3, the
resulting recovery errors Reca are consistently of the order
107! to 10!, as even in the noiseless case recovery is not
possible. For p chosen above the phase transition threshold,
we observe a linear decrease in Reca with respect to the SNR
in the log-log plots of Figure 12 with an approximate slope
of —1/2, empirically supporting the relationship

IA = Allp = 1/VSNR = |||z

whenever exact recovery occur in the noiseless case. For p =
2.2 in Figure 12(a), we see that the accuracy of the outputs
of Section VI has large variance: this is because the sample
complexity is set to be right at the phase transition for the
uniform sampling (see Figure 4).

(32)

We recall that in view of (15) and the majorization-
minimization interpretation of IRLS [DDFGI10, KMV2I,
KKMV?22], it is possible to choose a regularization parameter
A in Algorithm 1 that is adapted to the noise level via
cross validation, leading to a potential improvement in the
dependency of Reca with respect to ||n]|2. This necessitates
determining an additional free parameter in the method. In
fact, Figure 12 and (32) suggest that the improvement might
be modest, of the order of a constant, and that the choice A = 0
may be a valid option even in the case of noisy observations.
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Fig. 12: Median recovery error Reca with 25% and 75%
quantiles, vs. signal-to-noise ratio (SNR), 100 realizations,
different oversampling factors p. T' = 7 time steps, n = 50
nodes, rank r = 20.

VII. PROOF OF THE LOW-RANK PROPERTY OF BLOCK
HANKEL MATRIX

Before proceeding with the proof of Theorem II.1, we show
a corollary of Theorem II.1 that generalizes the well-known
Vandermonde decomposition for Hankel matrices.

Corollary VIL1 (Generalized Vandermonde Decomposition).
Let H € Mg, n d,n be a block Hankel matrix with (n x n)
O

blocks, that has a positive semidefinite square extension H €
Mpn,.pn, D = max(di,ds), such that



o its first block Hy € M., if of rank r, and
o at least one other block H; € M,,, j > 1, is of rank r.

Then there exists a triple (U,N,X) with U € M,, , with
orthonormal columns, ¥ € M, positive definite diagonal, and
N € M, that is Y-self-adjoint®, such that each block Hy,
satisfies
H, = UN*~yU*,
and H has the generalized Vandermonde decomposition
H =V, (U’ N)Zde (U’ N)*a (33)
where
Vi (N, A) = ((UNO)* (UND*
E anXT

(UNmfl)*)*

is a generalized Vandermonde matrix with m € N.

Proof of Corollary VILI1. If Y € M, , and M € M,
with rank(H) = rank(Y) = rank(M) = r are the
matrices from Theorem II.1.2, we can write the square ex-

O O
tension H € Mp, p, of H as H = LL*, where L =
Ly, ..., L}]" € Mpy, is a block matrix with L; =Y
and
L =YW

for1 < j < D-1. Let Y = USV* be a singular value
decomposition, where ¥ € M,. contains the non-zero singular
values of Y, U € M, , the corresponding left singular
vectors and V. € M, the right singular vectors in their
columns. Defining ¥ = 2 and N = XVMVX ! we can
write each block Hj, of the block Hankel matrix H as

H, = YM' 'Y* = USV*MF1VvE*U*
= ULV*MF Ve~ 122U0* = UNF 13U,

since
Nf = (SV*MVEH)F = SVAMVE - {(EV MVEH)E-!

= YV*MFVE !
for each k € N, using the fact that V has orthogonal columns.
Furthermore, we can verify that N is X-adjoint, since

IN* = 325" 'V*MVYE = SVMVY 152 = NY,

using also that M is symmetric and that ¥ = ¥2. The ¥-
adjointness of N allows us to write the occurrence of Hj, in
the ¢-th row block and the j-th column block as

H, = UN"!'%(N*)/-1U*

for ¢ and j satisfying k = ¢+ 7 — 1. From this, we see that H
attains the generalized Vandermonde decomposition (33) since

H). = (V4, (U,N)%Vy, (U, N)*), . = UN'"'5(N*)/ U

for 4, j with k =i+ j — 1, using the definition V,,,(IN,A) =
((UN%)*  (UN?)* (UN™"1*)" for m = d; and
m = da, respectively. O

We now continue with the proof of Theorem II.1. The

8which means that NX = SIN*.

proof has similarities to the proof of a similar result for block
Toeplitz matrices [YXS16, Lemma 2].

Proof of Theorem II.1. For the first statement of Theo-
rem IL.1, let A be a rank-r matrix and denote by A = UJ U-!
its Jordan decomposition, i.e., U € C"*" is invertible and
J € C™*™ is an upper triangular matrix with rank(J) = r.
This decomposition shows that ’H(QT(A)) € Ma,n,dyn 18
similar to the matrix

J J? Jh
J2 J3 Jd1+1
S =

J;Zz Jdg‘—‘rl . JT

J

J2

= . (Id J Jdl_l) =:5:1S,,

g

where Id € R"™ " is the identity matrix. We note that
rank(S;) > rank(J) = r, as the linear independence of
each r of its columns is implied by the linear independence
of any r columns of J. To show the reverse inequality, we
observe that the rows of the lower blocks of S; are all,
in fact, in the row space of J as these blocks are simply
subsequent powers of J, which implies that rank(S;) <
rank(J) = r. Furthermore, it holds that rank(Ss) = n due
to the full rank of Id € R™ ™. The decomposition above
shows that rank(S) < min{r,n} = r. On the other hand, Let
E;=(Id 0 0 0) € R™*"42_ Thus, S; = SE{ and
rank(SE] ) = r < min{rank(S),rank(E;)}, which finally
implies rank(S) = 7.

We continue with the proof of the second statement of The-

orem IL1. Since the block Hankel matrix H € Mg, ,, 4, has
O

a square extension H € M p,, p,, that is positive semidefinite

and of rank r, there exists a block matrix L. € M p,,«, such

that

H, H, Hp
H- |H

H>p_o

Hp Hop_o Hop_g
L,
Lo

—LL' = [L; Li... L3,

Lp

where the columns of L are linear independent. In the last
equality, we wrote L = [L{, ey L}‘D}* with block row
matrix with blocks L; € M, , for each j = 1,...,D.
Now we denote the lower submatrix of L as L; =
[Li, ..., Lj_;]" and the upper submatrix L as Ly =

« O
[L3, ..., L}] . Due to the Hankel structure of H, the
D — 1 left lower and D — 1 right upper blocks coincide, and
therefore Ly L} = LpLj;. Since by assumption at least one



O
other matrix block of H, besides the first one, is of rank

r = rank(EI), it follows that both L; and Ly have full
column rank. Furthermore, since this matrix is symmetric and
its columns are both in the span of the columns of Ly, and Ly,
then the column spans of Ly and L coincide. Thus, there
exists a unique invertible matrix M € M,. such that

Ly =L, M. (34)

Comparing the D — 1 blocks of the latter matrix, we note that
L;11 =L;M for each j =1,...,D — 1, and therefore

L =LM (35)
O

for each j = 1,..., D — 1. Inserting this into H = LL*,

we observe that Hy = LiML] = L;M*Lj, implying that

M is symmetric. The representation (12) of H follows with

Y = L; from inserting the definition of the right hand side

and multiplying the resulting block matrices. O

VIII. PROOF OUTLINE FOR THEOREM IV.1

The proof of Theorem IV.1 consists of multiple steps.
First, we formulate a local restricted isometry property, Prop-
erty VIII.1, and show that it holds with high probability for
uniform and adaptive sampling if enough samples are provided
or if the local sampling probabilities are large enough, respec-
tively (Lemma VIII.1). Using perturbation arguments, we then
show with Lemmas VIII.2 and VIIL.3 that this regularity also
extends to the neighborhood of the ground truth.

In order to have a chance of establishing recovery guar-
antees, it is necessary to understand when a coodinatewise
sampling operator provided related to the sampling set 2 C [
is invertible restricted to a subspace associated to low-rank
matrices.

Let Pp, : MZT — MET (or, in short, Pr) be the
orthogonal projection onto Tz. If H is the block Hankel
operator (9) and E; ;, is element (4, j, t) of the standard basis
of M®T st.

(Eijt, X)p = (Eij, Xe)r = (X4)i

forany X = X; X, ®X3®...0X 1 € MET, then we define
normalized block Hankel operator G : MPT — Min.don aS

N T n ~ H(E; 5t
GX):=>_ > <Ei’j’t’X>FW((Elﬂ¥’f))F.

t=14,j=1

(36)

With this definition, we formulate the following property.

Property VIIL.1 (Local restricted isometry property). Let Z €
M, be of rank v, let Tz C Mg, pn,d,n be the associated
tangent space (23) to the manifold of rank-r matrices, and let
a> 0. Let Rg : MET — MPT be a self-adjoint, normalized
sampling operator relative to a sampling set Q) C I. We say
that Rq satisfies the local restricted isometry property with
respect to Tz and constant « if

||PTZQRQQ*PTZ - /Pngg*,PTZ || <a,

where Pr, : MET — MSET is the orthogonal projection
onto the linear subspace T'z.

(37

Condition (37) is referred as a local restricted isome-
try property since it is not a restricted isometry property
with respect to the entire manifold of low-rank matrices
[REFP10, DR16], but rather one that holds with respect to a
particular (tangent) subspace associated to the low-rank matrix
manifold around a point. Similar conditions have been used
for structured low-rank matrix completion [CC14, Lemma 1],
[YKIJL17, Lemma 20].

With Lemma VIII.1, we establish Property VIII.1 with high
probability for uniform and adaptive sampling with respect to
the block Hankel matrix H 5 associated to a transition operator
A.

Lemma VIIIL.1 (Local RIP for sampling operators). Let A €
M., be of rank-r, let T := Tu, be the tangent space to
the rank-r matrix manifold at the block Hankel matrix Ha =
H(Qr(A)) associated to Qr(A). Let 0 < aw < 1 and G :
M;‘?T — Mad,n,dyn be the normalized block Hankel operator
of (36). There exists a constant C' > 0 such that the following
holds:

1) [Uniform sampling model] Suppose that Q) is a ran-
dom subset of cardinality m uniformly drawn without
replacement among the set of space-time samples I =
[n] x [n] x [T] . Let Rg : MET — MST be the
normalized sampling operator

n2T
L — Rq(L) := Z ?<Ei,j,taL>FEi,j,t~
(i,7,t)EQ

(38)
Then Rq satisfies the local restricted isometry property
with respect to Ha with constant o (Property VIILI),
with probability at least 1 — n~2, provided that

Ces
m > a—z,uorn log(nT), (39)

if Ha is po-incoherent as per Definition 1V.1.

2) [Adaptive sampling] Suppose that Q) consists of random
index triplets (i, j,t) € I that are independently observed
according to Bernoulli distributions with probabilities
(pijt) el Let Rg : MET — MET be the nor-
malized sampling operator

L > Ro(L) =
(2,5,t)eQ

—(Eijt, L) P Ej
Dijit

(40)

Then Rq satisfies the local restricted isometry property
with respect to Ha with constant o (Property VIIL1),
with probability at least 1 —n~2, provided that, for each
(i,7,t) € I, we have

. [ Ccq r
Pij,¢ = Min <042M1:,j,tnT log(nT), 1) ; 41)

if (li,jt)(i,j,t)er are the local incoherences (24) of Ha
as in Definition 1V.1.

We note that the incoherence parameters of the matrix Ha
play an important role in quantifying the number of space-
time samples that are sufficient to establish Property VIII.1 for
sampling operators. The proof can be found in Appendix D.

In Lemma VIII.2, we extend Property VIII.1 to a neighbor-
hood of Hp.



Lemma VIIL2. Assume that the local restricted isometry
property Property VIII.1 holds true for a normalized sampling
operator Rq M;‘?T — M%T with respect to Ha =
H(Qr(A)), where A has a rank-r, and constant o > 0. If
H € Mg,n,d,n is of rank v and

H € By, <g (\/HRQ” 1+a)+ 1>_1 UT(HA)> . (42

then
[Prs; GRQG” Pryy — Pryy 99° Pry || < 20,
where Ty is the tangent space to the rank-r manifold at H.

The proof is postponed to Appendix E.

As the next step, we establish a null space-type property
that shows that not too much mass can be concentrated on the
tangent space Ty among block Hankel matrices in the null
space of the sampling operator.

Lemma VIIL3. Let Rq : MET — MPT be a normalized
sampling operator as in (38) or (40). If H € Mg, p d,n is of
rank v and Ty C Mg, n.d,n is the tangent space (23) to the
rank-r manifold at H, then

[Pre GRQG" Pry — Pry 99" Prull < -, (43)

(231 )

implies
1M ()l <§(||73 I 4 8/5) || Py H(n) )
b <5 URall+8/5) [Pry Hon),
for each n € ker Rq.

We refer to Appendix F for the proof.

Finally, Proposition VIII.1 relates Property VIII.1 with
respect to the block Hankel matrix of a transition operator
to the local quadratic convergence of TOIRLS.

Proposition VIIL.1 (Local Convergence with Quadratic
Rate). There exists an absolute constant co such that
the following holds. Assume that A € M, is of rank
r, and that Property VIII.I holds for the normalized
sampling operator Rg : MIT — MIT with respect to
Ha = H(Qr(A)) and constant o = 1/5. Let X*) s
the k-th iterate of TOIRLS Algorithm 1 with inputs: (),
y = Po(Qr(A)), and 7 = r. If we assume that the smoothing
parameter fulfills e, = o1 (H(X®)) and if H(XP) €
Bu, (col|Ral=*/2r~tk~Y(dn — r)~Y20,(Ha)), where
k= 01(Ha)/o-(Ha) is the condition number of Ha, then
there exists v such that for all £ > 0

IHXEHHD) — Ha |
< min(v|[H(X*H) — Ha|?, [|H(X*H) — Hal)).

{— 00

In other words, H(X*+0) 222 H, with quadratic con-

vergence rate.

The proof (see Appendix G) crucially relies on estimates
from [KMV21] on the action of the weight operator WH(fU ")

of Definition TII.1 where X*) is an TOTIRLS iterate, and
combines them with Lemma VIII.3.

Putting the results of this section together amounts finally to
the proof of Theorem IV.1, which is detailed in Appendix C.

IX. CONCLUSION & OUTLOOK

In this paper, we developed a framework for the learning of
linear transition operators from random sparse observations of
space-time samples, and provided a local convergence analysis
for the non-convex optimization approach TOIRLS for solving
that problem, quantifying the number and distribution of
samples sufficient for convergence. The current work could
be extended in several directions: the presented convergence
analysis for TOIRLS is inherently local, i.e., requires an iterate
that is already close to a low-rank ground truth matrix. The
empirical results suggest that a global convergence of TOIRLS
might be possible, despite being beyond the scope of this
paper. Furthermore, not only entrywise, but general linear
sampling operators could be considered, cf. (7), as well as
applications to a broader family of dynamical systems such
as linear time-invariant systems with input terms (11). Finally,
it would be of interest to combine the setup considered in
this paper with additional prior knowledge on the transition
operator A, such as sparsity, which is common for example
in the context of graph transition operators.

APPENDIX
A. Incoherence Estimates

In this subsection, we provide estimates for the incoher-
ence parameters fi; j; and pg of the block Hankel matrix
H(Qr(A)) associated with a linear operator A € M,,, which
have been defined in Definition IV.1. Also for use in other
proofs, we state the following result that elucidates the action
of the block Hankel operator .

Lemma A.1. Recalling the normalized block Hankel operator
g : M%T — Mayndyn of (36), let {Ei,j,t}(i,j,t)el be the
standard basis of MET and {Bijt}ner the standard
basis of the space of block Hankel matrices H(MPT). Then
we have that the diagonal operator D : MET — MST
D(Eijt) : = [H(Eija) | Ei gt
= V/min(t, T+ 1 —t,dy,d2)E; j,

(44)

for each (i,j,t) € I, satisfies H = GD, which is equivalent
to
Biji=H(D ™ Eije) = G(Eij).-

Furthermore, it holds that H*H : MET — MPT satisfies,
Sor all (i,j,t) € I,

H*H(Eiyj’t) = min(t, T + 1-— t, dl, dQ)Ei’j,t.

Proof. The first statement follows by combining the definition
(44) with (36), and by counting the number of occurrences of
each block in (9). The last statement follows from

(B (B )) = M| = [ HE0 |7
= ||D(Ez‘,j,t)’|§ =min(t, T +1—t¢,di,dp)
for all (z,7,t) € I due to (44). O



With the following lemma, we bound the local incoherence
parameter as defined in Definition IV.l by the incoherence
parameter based on the related incoherence parameter in (45)
in the spirit of [CC14, (27)] and [CWW19].

Lemma A.2. Let Z € Mg, n,d,n be of rank v with leading
left and right singular vector matrices U € R™ ™" and V €
Rrd2xr respectively, and let Tz be the associated tangent
space (23). Suppose there exists a positive constant gy > 0
such that

max |U*B
1<i<j<n,1<t<T

-
Ve < -
195;33,1§th BijeViF < \/NOTalg7

where {Bi’j’t}(ijt)el is the standard basis of the space of
block Hankel matrices H(MET).
Then, for each (i,j,t) € [n] x [n] x [T},

HPTZ(B

where ¢, = ngtl). In particular, Z is pg-incoherent in the

sense of Definition 1V.1.

.
igtllF < Mo

(45)

-
iat)llF < HoCs —s

Proof. 1t is well-known [Recl1, Eq. (3)] that the action of the
projection operator Pr,, can be written such that
Pr(M) =UU'M+MVV* - UU"MVV"”
=UU*M(I-VV")+MVV*
for any matrix M. Therefore, we estimate that
[Pr(M)|[7 = [[UUMI - VV*)|[% + [MV V|3
< [UUM|[E[IX = VV)[? + [MVV*[7
< UM% + MV V[
< [UM[f; + [MV|%.

(46)
Thus, (45) implies that
r HoT di + ds r
P —_ = S o
[ Pr(Bij0) |7 < po d +Mond2 n didy HoCs -
setting M = B, ; ; for any (i, j,t) € I. O

Before providing the proof of the incoherence estimates for
the examples of Section IV-C, we note that it follows from (28)
in Theorem IV.1 that for adaptive sampling with probabilities
satisfying p; ;1 > Ccspi ji o log(nT') for all (i,5,t) € I,

where C' is the constant from (28).2 and ¢, = ngzl),
number of
mexp —E|Q‘ Z pzjt
(,5,t)el (47)
> Cey Z Wit log(nT)
(i,5,t)el

expected samples will enable local convergence of TOIRLS
in the adaptive model for €.

1) Orthogonal Matrices : To understand the incoherences
of block Hankel matrices Ha = H(Qr(A)) associated to
orthonormal matrices A € O", we observe that a compact
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singular value decomposition of Ha can be given by Ha =
Ugn,XVy, with
A I
1 (A v 1 A
Ha — ——~— )
AT dy .
Ad1 Ad2_1

Un, € Mud, n» VHa € My, n and X = +/di1do Id € M,,.
Using this, we obtain the following proposition.

Uny, =

Vi | |

Proposition A.l1. If the transition operator A € O" is an
orthogonal matrix, then

1) Ha = H(Qr(A)) is po-incoherent with pg < 1.
2) The local incoherences of Ha satisfy Z(” tyer Hijt <
nT?.
As a consequence, for both uniform and adaptive sampling,
a sample complexity of order ©(n?log(nT)) is sufficient to
satisfy the assumption of Theorem IV.1.

Proof. First, it is straightforward to verify from a block-wise
computation that |[Us;, Bi jl|r = ﬁ for each (4, j,t) € I,
since ||(A7)*M||r = ||[M]||r for each j, for each block M of
B; ; ¢, due to the preservation of norms through multiplication
with orthogonal matrices. Similarly, |B; ; : Vi, || = \/% for
each (i,7,t) € I.

This implies that (45) is satisfied with pg as r =
rank(Ha ) = rank(A) = n. In view of Lemma A.2, it follows
that Ha is po-incoherent in the sense of Definition IV.1 with
o < 1 since

1
[Pr(Bijo )7 < Csim

for each (i,7,t) € I, where Pr is the projection operator
onto the subspace T = T, . This shows the first statement
of Proposition A.l

Estimating the sum of local incoherences p; ; ¢+ of Ha, we
obtain

T
> mige= > ;llPT(Bi,j,t)H%
(i,4,t)el 1<i<j<n,t=1,..,T °
d1d2 2
= — = _||Pp(B,.;
Z (dl +d2) || T( 7J7t)||F

1<i<j<n,t=1,..,T

didy 2 2
< Y (Ui, BijulF + IBiji Vuall?)
1<i<j<n (dy + dp)
=1,..7T

(]

s (1,1
1<i<j<n,t=1,...,T (di +d2) \dv ~ dy

= > 1=Tn?,
1<i<j<n,t=1,..,T
using (46) in the inequality.
Therefore, in view of (47), a sufficient number of expected
space-time samples ey, to enable the local convergence
guarantee of Proposition A.1 is mexy = O(n?log(nT)). O

2) Positive Semi-Definite Matrices: We now justify the
bounds of Section IV-C for positive semidefinite transition
operators A € M,,. To this end, we provide a closed formula



for a singular value decomposition for the associated block
Hankel matrix Hy = H(Qr(A)) in Theorem A.1.

Theorem A.l. Suppose A = > ,_, Ayw;u; = UAU* is
a positive semidefinite matrix with r positive eigenvalues
Aly.. o, Arand g, Ug, ..., U, are the corresponding eigenvec-
tors, so that A = diag(\1,...,\.) and U = (u1 uT).
For a vector u € R", an integer m and a scalar )\, we define

Au
Via (ll) = eR™
Ay

and the generalized Vandermonde matrix, in M, r,

UA°
| UA!
Vm(UaA): Vm,/\1(u1) Vm)w(“f) = .
UAm71
Let A = diag(/\zn)r 1 with /\’” = \/Z;”:_Ol A2¢ for all

¢ € [r]. Then a compact singular value decomposition of Ha
can be written such that

H, = Un,DVj, (48)
where
o = Va, (U, A)(A%)
Via = Vi, (U, A)(A%) !
D = (A%)A(A%).

In particular, the nonzero singular values of Ha are

di—1 do—1

PRV ND IR
t=0 t=0

for =1,....r, and the first r right and left singular vectors

are {(A?Q)ilvdm)\l (ui)}zzl and {(Azl )71Vd1,)\1 (ui)}E:p re-
spectively.

Proof. To prove the statements, the equality (48) can be
verified expanding the right hand side, and furthermore, since

U*U = Id,, the orthogonality of the columns of the singular
vector matrices can be verified, i.e. U;IAUH . = Id, and
ViV, = 1d,. O

Following the notation in (48), we compute estimates of
lUti, (B j)ll7 and ||(Bij:)VHa|lF. As a preparation of
what follows, we recall from (44) that

Vit
\/min{dl, dg} if
vI'+1-—t

if E; ;. is the standard basis matrix of index (¢,7,t) € I of
MET The above observation yields the following lemma.

if t < min{dy,ds},

min{d;,ds} <t
< max{d;,ds}’

if t > max{d,,d>},

[H(Ei )l F =

21

Lemma A.3. Let Bi,j,t = H(Ei,j,t)/”H(Ei,j,t)”F S

My n,dyn be the standard basis matrix of index (i, j,t) € I of
’H(./\/lj?T). For 2 < dy < ds, we have the following identities
if U, and Vu, are as in Theorem A.1l:

[Ut1,Bijie

lF=

t—1 y25 ||iir
T oA lup Eill? .
\/Zﬁ—l Edl—ol ;25 - t - ’ lft < dl’
/ E, .
— Z[ 1 Hu[ 7“ lf‘dl S t S d2’
‘“ ' lluz By |12
s‘ t—d Z ij .
EZ 1 dl 12>\ 2s Té_’_lzit ) lf‘t > d2)
14
and
IBijt Vaallr =
t—1 y2s
T 2o B WHQ :
\/Ze 1242 01)\25 = ift <di,
e M I Byu
\/Z@ 1 d2 11>\2g | Lih | ’ lfdl S t S d27
. d1 A |Egue)?
\/Ze 15T\ THi—t ift > dy.

We restrict our attention to normalized positive semidefi-
nite transition operators A whose eigenvalues are within the
interval [0, 1]. To simplify the analysis and avoid unnecessary
technicalities, we restrict ourselves to the case of d; = ds.

Proposition A.2. Let A be a positive semidefinite transition
operator as in A.1 and assume that 0 < A, < ... < )\ < 1.
Assume also that dy = do and T = di + dy — 1 > 3. Then:
1) Ha = H(Qr(A)) is po-incoherent with
nds (Ug)2

A,

T

o < max

1<i<n 2(d2— 1))
===

r(1+ A2 +

2) The local incoherences of Ha satisfy

Z i gt

(2,5, t) €I

B 'fl2d2 da— 127: (1+)\2(d2 t))zt71 )\gs +i

T t=1 ¢=1 tZdQ 1)\25 da
(49)

< 4.4n*T log(T). (50)

Consequently, for the adaptive sampling model, it is
possible to satisfy the assumption of Theorem IV.1 with

Meyp = E[|Q]] = O(rnlog(nT’)log(T))
expected samples.

Proof. 1. Define the function g : [0,1] x N x N — R such that
Zt—l S
s
We observe that g has following properties:

o Forafixedd € Nand X € [0, 1],
function with respect to ¢t € N.

o For fixed d € N and ¢t € N, g()\,d,t) is a decreasing
function with respect to A on [0, c0).

g\ d,t) = (SD

g(\,d,t) is a decreasing



Using Lemma A.3 and the properties of the function g, we
obtain that

U1, Bije)llr = max [|[Ug, (Biji1)llr

1<i<j<n

XN, 10>

r

Z (UZ)?

— max =1 125"
- s
=1 2sm0 M

1<i<n

By symmetry, we have

|Bij,t V| F = max

max
1<i<j<n1<t<T 1<i<n

z’“: (u)?
da—1 -
=1 82:0 A?é

From this and from the fact that d; < d5, we see that we can

choose
I

nda(ug)?
di—1 25
1 r(Cste AP)
to satisfy the inequalities of (45), from which it follows that
H A is pg-incoherent by Lemma A.2.

2. To obtain an upper bound for -, ,, f1; j,+, we use that

Z (051, Bijell % + IBijie VHA I7)

1<i,j<n

0 — Inax
H 1<i<n 7

Z;=1 29(A%,d2,t)ﬂ7 fOr t < dQ7
= fTZv for t = da,
P/ 2)\5(#(12)9()\%, do, T —t+1)n, fort > ds.

Therefore

T
Y D (Ui, Big)lE + 1Bije Veralf)

= 3 3201+ A ) oy + o = 9G(A, T,
2

where G(A, T) == 3232 300, (1427 7)g(N, d, 1)+
is a constant that only depends on the eigenvalues (\;)s, da
and 7. Finally, it follows then from (46) that

nd> N
> opiga< > 2”; (1051, Bi el F+1Bi st Vaa l7)
(ig el Ggtyer =2

2
n-d
< 2

G(AT),
which amounts to the first desired bound (49). Moreover, using

the properties of g described previously, one can show that

1
g()‘%7d27t) < g(O,d27t) = z

Since furthermore Zfi;l % < ¢y +1log(ds), where ¢, < 0.58
is the Euler-Mascheroni constant, we have

do—1 7r 2(d2—t)

G(A L) < ZZ%*%

t=1 (=1
< 2r(cy + log(da)) + N
2
< (1.16 + 2log(da) + 1/(rd2))r < 4.47log(T),

using that Ay < 1 for all ¢ € [r] in the second inequality and
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2 < dy < T in the last inequality. This yields the second
desired bound (50) and concludes the proof.

Therefore, analgously as to the argument in the proof
of Proposition A.l1, it follows that a sufficient number
of expected space-time samples ey, to enable the lo-
cal convergence guarantee of Proposition A.l is My =
O(rnlog(nT) log(T)). O

We conclude this section by noting that if A is a rank-r
projection, this amounts to a positive semidefinite transition
operator with Ay = Xy = ... = A. = 1. In this case,
the function g of (51) can be simplified to g(1,d,t) = %,
which simplifies the expression for G(A, L) to G(A, L) =
(2de — 1)/dy = 2 — i This means that in fact, for rank-r
projection matrices, Mmeyp = O(rnlog(nT’)) expected samples
in the adaptive regime are sufficient.

B. Proofs

In the next sections, we provide the proofs of the main
local convergence result for TOIRLS, Theorem IV.1, as well as
the proofs of Lemmas VIII.1 to VIII.3 and proposition VIII.1
which are auxiliary results for proving Theorem IV.1.

C. Proof of Theorem IV.1

In this section, we provide the proof of Theorem IV.1, which
is based on combining Proposition VIII.1 and Lemma VIIL.1.
As an additional ingredient, we bound the spectral norm || Rq |
of the normalized sampling operators Rq of (38) and (40).

Lemma A4. Let Q be a random subset of the index set
I = [n] x [n] x [T] of size m that is sampled uniformly
i.i.d. with replacement, where m < n*T. Let 3 > 1. Then
with probability at least 1 — (n*T)' =8, the maximal number
of repetitions of any entry in § is less than %6 log(nT) for
nvVT > 9 and 58> 1

Consequently, we have that with probability of at least
1 — (n®T)'=5, the operator Rq : Ma, 4, — Ma, .4, of (38)
fulfills

8 n?T
IRall < 3L tog(nT),
where |Rql| is the spectral norm of Rq.

The proof of Lemma A.4 is a simple adaptation of [ReclI,
Proposition 5]. We proceed to the proof of our main result,
Theorem IV.1.

Proof of Theorem IV.1.1. By choosing § = 2 in Lemma A 4,
it follows that with probability of at least 1 — (n?T)~1,

16 n2T
[Rall2 < 3 log(nT)

(52)
Recall that d = min(d;, d2) was chosen to be the minimum of
the pencil parameters d; and ds, which satisfy dy+ds—1 =T.
Let ¢y be the constant of Proposition VIII.1 and C' the constant
of Lemma VIIIL.1.1.

Fix now a = 1/5. From the statement of Lemma VIIL1.1,
if follows that if

m > 25Ccspornlog(nT), (53)



with a probability at least 1 — n~2 the normalized sampling
operator Rq : MPT — MPT of (38) satisfies

1
|PrGRaG*Pr — PrGG*Pr|| < R

i.e., Property VIII.1 is satisfied with respect to T = Ty, and
constant a = 1/5. _

Let now X(*) be such that H(X(®)) satisfies assumption
(27) of Theorem IV.1.1. It follows from Proposition VIII.1 and
(52) that on an event E of probability of at least 1—(n?7T) ! —
n~2 >1—2n"2, if ¢y is the constant of Proposition VIII.1,
C' the constant of (39) and ¢ := ¢o(75C¢,/16)/2, it holds
that

[H(X¥) —Ha
< Goplg!* (nT) =/ 2r 2 (dn
(25Cc, )3/2 3/2 rl/2
- (16/3)3/2n3/2T3/2 {@n =iz (Ha)
. (25005)3/2ug/2r3/2n3/2 log®?(nT)o, (Ha)
(16/3)3/2n3T3/2 10g> 2 (nT)rr(dn — 1)1/2
< ¢ m3/20'T (HA)
(16/3)3/2n3T3/2 10g®/*(nT)r(dn — r)1/2
UT(HA)
Ra||3/2rk(dn — r)1/2’
using also (53) in the second inequality.

Therefore, the conclusion of Proposition VIII.1 holds with

constant (see the proof of Proposition VIII.1 in Appendix G)
20
=——(1+6 R 8/5
v = 5o (U 09 (1Rall +8/5)r

20 6 n2T
< —7——(1 771 T)
< 30r(HA)( + 6k) ( 3 og(n +8/5>

)20, (Hy)

<c¢o

which means that [|H(X*+1)) — Ha|| < min(v[|H(X®) —
Ha ||2, |[#(X®))—Ha ) and furthermore, H (X (:+0) Looo,
Ha, on the event E from above.

This finishes the proof of Theorem IV.1.1. O

Proof of Theorem 1V.1.2. Let C' > 0 be the constant of (28).
To show Theorem IV.1 in the case of adaptive sampling, we
recall the definition

L— Ro) =
(4,4,t)€Q
of the normalized sampling operator R,
this case, cf. (40).

Fix oo = 1/5. It follows from the definition of Rg and the
Bernoulli sampling model that

—(Eijt, L) FEi jt.
Dijit

L MET 5 MET in

nT
= 25Ccrlog(nT) ming j ¢yer it
(54

IRall £ min
(i,5,t)€l Di gt

using assumption (28) in the last inequality. Under the same
assumption, it follows from Lemma VIII.1.2 that with prob-
ability at least 1 — n~2, the local isometry property on
T = Ty, with constant 1/5 holds, i.e.,

1
|PrGRaG*Pr — PrGG*Pr|| < 5
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which entails that Property VIIL1 is satisfied for « = 1/5.
As above, it follows from Proposition VIII.1 and (54) that on
an event of probability at least 1 — n2>1-2n"2 if ¢ is
the constant of Proposition VIII.1, C' the constant of (28) and
go = 60(25005)3/2,

IH(X™®) — Ha||
e ming j yer u%—?trlm log‘o’/2 (nT)
= (nT)3/2k(dn — r)1/2

(25Cc,)3/2r1/2 logS/z(nT) ming jyer M?ﬁ
(nT)3/2k(dn — r)1/2
1

- r(Ha),

= ORalrn(n — 727 A

and therefore, the conclusion of Proposition VIII.1 holds with
constant

20
V= m(l +65) (|Rall +8/5)r

20
< — (1
< o (1469 v85)
which means that ||’H()A§(k+1)) —Hall < min(l/H’H(f((k)) -

Ha |2, ||H(X®)—Ha||) and furthermore, H (X *+9) foee,
H, and therefore concludes the proof of Theorem IV.1. [

O’T(HA)

< Co Or (HA)

nT(min(i7j7t)e] Ni,j,t)il
25Ccgrlog(nT)

D. Proof of Lemma VIII.1

In this section, we prove Lemma VIIL.1, our main result
about the regularity of the normalized sampling operators
Ra : MET — MPT for the uniform and adaptive sampling
models, see (38) and (40), respectively. The proof uses a non-
commutative Bernstein inequality:

Lemma A.S (Noncommutative Bernstein inequality, cf.
[Recll, Theorem 4] or [Verl8, Theorem 5.4.1]). Let
Z1,..., 2y be independent, Hermitian zero-mean random
operators of dimension n*dydy x n?dydy. Suppose that p*> =
lED i1 Ze24|| and || Z4|| < M almost surely for all £ € [m)].

Then for any o > 0,
—a?/2
P < 2n2dyd —— .
< =1 ) ST anew <p2+Ma/3>

PIEL
The proof of Lemma VIIL.1.1 follows the proof idea of
[CC14, Lemma 3] and [LLJY 18, Lemma 23].

Proof of Lemma VIL1.1. 1f {E; .} . c; is the standard
basis of MPT and {B;j},;,; the standard basis of the
space of block Hankel matrices H(MET), we recall from
Lemma A.1 that G(F; ;) = B, ;. for each (i,7,t) € I.

We first assume a slightly different sampling model than
that considered in the statement of Lemma VIIL.1: let 2 =
{(4e, je, o)}y C I be a set of m indices sampled uniformly
i.i.d. with replacement. For ¢ € [m], define the operators Z,
and Z, such that

n?T =
Zp = 722 - *PTQQ Pr
T
= 7,PTgEzg jg,tg Zl e, teg 7)T - 77)ng 73T




Then the expectation E[Z/] of Z, satisfies
E[ZZ] = E I:PTgEiZ:jth lg,jg tzg*PT:I

n

= QL Z Z,PTgEiyj’thjig*lpT

n?T
ij=1,i<j t=1

1
= WPTQQ*PT

(55)

and furthermore,

n*T

E[Z¢] = 7E[Zé] - *Png Pt =0.

Since for any M € R xdan

Z,(M) = (Pr(Bi, j,.0,), M) pPr(Bi, j, 1,
we obtain
HE@(M)”F < |<,PT(Biz,jz,tz)7M>F| HPT(Bitz,je,ttz)”F

< 1P (Biy o) I M 7

by Cauchy-Schwarz, and thus obtain
- 2
|2 < 1Px®Bi )7

|Px(B LoCsT (56)

< max
nT ’

T 1<i<j€[n],te[T]

i,j,t)”F >

using the incoherence assumption on H 4 in the last inequality,
as well as d; +do — 1 = T and the definition of ¢; = T'(T +
1)/(d1d2). Analogously, we estimate that

n T
1 " 1 * *
HmPng Pr|| < >0 |D_PrOB.E,9 Pr
i,j=1,i<j || t=1
- n?T figcst  poCsTn
~m T  m

(57)
We observe that if A and B are positive semidefinite operators,
it holds that || A—B|| < max(||.A]|, ||B]|). Therefore, it follows
from (56) and (57) that

n2T pocsr uocsrn> _ HoGstn (58)
m

|Zg||§max< m nlT = m

almost surely for all £ € [m], as the operators involved are
positive semidefinite. Further we compute that

E[Z:Z/]

_ (”;TQ)Q e|ZZ) - ”LTE [z}] PrGG*Pr

_ ﬂpng “PrE [zg] + 23 PrGG PrPrGG P
_ <”;T2>2 £ (22 - PrGG PrPrGG Py,

using that E {274 = ﬁ”PTQQ*PT, cf. (55). In order to esti-
mate the latter terms, we observe that for any M € RAinxdzn
ZKZZ(M) = <7DT(Bizsz,ttz)v ZE(M»PT (Biz,je,tz>
2
= HPT(Biz,jz,tz ) HF <PT (Biz,je7tz)>
5 ~
= [P (Bi, ot )| Z:(M)

M>PT (Bitz Jeste )
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and therefore

EZNZNH: HE Bi, joi )3 Ze(M))|
|22 = | max | |[ENPe®B: sl 20|
EZ, H
z<g€[n]t€ T) ||7)T( bt HFH ¢ (59)
uocsr 1 « HoCsT
< B IPrGG Pl < S,
using (56) in the second inequality and the fact

IPrGG*Pr|| <1 in the third in equality. For the expectation
of the squares of Z,, we obtain

Z IEZe 20|l
=1

ax (n2T2 HEZNggg s

)

INA
NE

B

&
N

n%T)? pocsr 1
(m)2 n3T2’ m2

(60)

using again that ||.A — B|| < max(||A],||B]|) for positive
semidefinite operators in the second inequality, (59) and the
fact that ||PrGG*Pr|| < 1 in the third inequality.

Next, recalling the definition (38) of the normalized
sampling operator R : MET — MET of the state-
ment of Lemma VIIL.1, we observe that PrGRqG*Ptr =
TLQTT Iy gf-

Since the Z,’s are Hermitian, we can now apply the
matrix Bernstein inequality [Recll, Theorem 4] in form of
Lemma A.5 above to obtain, for 0 < a < 1, the estimate

P (||PeGRaG* Pt — PrGG* Pr| > )
< 2n?did, exp (—

ma?
2uocstn(l + a/3)
T 1 2 2
< THD (L mee

4 2pupcsrn(4/3)

(T + 1)%n? ( 3ma? )

=——ep |-,

2 8lpcsrn

using the norm estimates of (58) and (60) to estimate the
respective quantities in Lemma A.5. From this, we see that

P (|[PrGRaG*Pr — PrGG*Pr| > o) < n>

3ma

if %(T-i- 1)2n4 < exp (Suoc;n)’ which is further implied by

the condition

16¢,
m > ?jguorn log(nT).
This shows that for the constant C' :=
then with probability at least 1 — n =2,
[PrGRaG* Pt — PrGG Pr| < «

if m 1.i.d. samples are uniformly sampled with replacement.
With the argument of [Rec1 1, Proposition 3], we conclude that

16 if (39) is fulfilled,



the statement with the same probability bound holds true for
the sampling model where (2 is a random subset of cardinality
m, uniformly drawn without replacement, if m satisfies (39),
which finishes the proof.

O

Proof of Lemma VIII.1.2. To show the second part of
Lemma VIIL1, we consider for each (¢,7,t) € I a random
variable ¢; ;; that is 1 if (7,7,¢t) € Q and O otherwise. With
that notation, R of (38) can be written as

PrGRoG* Pr= Y ’“PTQE,NEWQ Pr

(igner Pt
Sy ~
= =2
(iger Pt
defining operators Z; ;; : M®T — M®T for each (i, j,t) €

I. With this, we obtain
PrGRaG*Pr — PrGG*Pr

= Z 0i Ziit Z; it — Z Z;';i,j,t

Dijt

(g t)el (g t)el
5i ~
=) (w’t - 1> Zige= Y Zigw
2 Pijzt -
(g t)el (igt)El

defining the random operators Z; ; ;. Based on the assumption
on the sampling model, the Z; ;; are independent and as the
d;,j,« are Bernoulli variables with success probabilities p; ; ¢,
it follows that

E[Zi.] = (
Let M € R%1"X42" pe arbitrary. Since

Z;j4(M) = (Bj 4, Pr(M)) pPr(Bi ;1)
= (Pr(Bi ), M)rPr(Bi )

E[0s,5,1]

—~ ) PrGE; ;. F; ;6" Pt = 0.
Dij.t

(61)

we obtain

1Zi54(M)[[p < [(Pr(Bi 1), M)p|||Pr(B
1P (B o) 17 M
T(d1 + dg)
— Mz

nd1d2 T

using the definition of the local incoherence factor p; ;¢, cf.
Definition IV.1. This implies that

i)l 7

IN

IN

JtHMHF <

”ZJtH < Tﬂz]t

almost surely for each i < j < n and each ¢ < T and,
since 9; ;.+ /P ;, tZ i,j,¢ and Z 4,5,¢ are both positive semidefinite
operators, that

6, . ~ ~
12 4]l < max (p”’t il ||Zm-,t||> (62)
7,7t
CsT
Z P (63)
p” I 7J»t| i tnTMm’t

almost surely as well. Furthermore, for the expectation of the
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squares of Z; ;; we obtain

EZijtZije
52,] : Oi,jt
=E Zz 2Js tZz gt T 2B i Zz J,tZz gt| + Z ;JﬂfZ%J,t
,Jﬂf bt
pw t = z .z
Zz 2Js tZi B,5,t Ziyj,tzi,j,t
pw t

1
= -1)Z; fZ7 ‘-
<pi,jt ) ” ”

Now, using (61) and observing that for any M e R917xd2"
Zij42i56(M) = [|Px(By 5.0 |5 (Pr(Bij), M) rPr(B
= [Pr(Bij)|PrBi;sB; ;  Pr(M),

we obtain the spectral norm bound

irjist)

|20 2] < 1Pe (B [ PrBe s B P
T(dl —+ d2) CgT
< N T B
>~ nd1d2 Hi gt > nT,Ufz,j,ta
using the definition of p;;; and the fact that

||’PTBi,j,tB;jﬁt,PTH < 1, as well as dy +dy — 1 = T
and the definition of ¢, = T(T + 1)/(didz) in the last
inequality. Due to a similar argument as made in (62), we
obtain that

>

1
> EZiaZija||= ( —1)zmzm
Pijt

(.5, t)el (i,4,t)€D
1

| = (5 1) 1PeB P8 B P
(i,j,t)eD Pijt

- 1) 1Pe(Biy)l2

1
< max
(#.3" ¢ )ET \ Pijt

Z PrB; ;B Pr

(irgt)El (64)
CeT AR
< max S ELMp GGt py|
(5 ¢)€el nT Pir g, ¢
< CsT by gt —. E

(@ trer nT Dir gt/

using the formulas for EZ; ;:Z; ;, and §i7j,t§i7j)t from
above, the fact that the

PrB,; ;. B; . +Pr are all positive semidefinite and the assump-
tion the p; ; < 1 forall (¢, 4,t) € I. Furthermore, we used the
definition of the local coherences i,/ ; ¢+ from Definition I'V.1
in the first inequality, and the fact that |PrGG*Pr| < 1 in
the last inequality.

As the Z; ; ; are Hermitian, we can now use (64) and (62) to
apply the matrix Bernstein inequality Lemma A.5 to estimate



that
P ([PrGRaG* Pt — PrGG Pr| = )
a?/2
< 2n*dyd ——
= Zntay 2exp< c—l—ca/?))
T +1)2 2/2
< 27( +1) n? exp 7~7a~/
4 ¢+ca/3
1 2
< §(T+ 1)?n% exp <_??5> <n7?,
where the last inequality holds if ¢! >

755 (4log(n) + log(1/2) + 2log(T + 1)), which, in view of
the definition of ¢ from (64) , is implied by the condition

32 T
Pijit 2 g5 HijeCs o log((T + 1)n)
forall 1 <i<j3<n,1<t<T.

This shows that there exists an absolute constant C' > 1 such
that if (28) is fulfilled for each (i, 7,t) € I, with probability
at least 1 — n?, it holds that

[PrGRaG* Pt — PrGG Pr|l < a,
which finishes the proof of Lemma VIII.1. O

E. Proof of Lemma VIII.2

To show the perturbation result of Lemma VIIL.2, we use
ideas from the proof of [CWW 19, Lemma 8]. As an auxiliary
result, we also use the following lemma.

Lemma A.6 ((WCCL20, Lemma 4.2], [KMV21, Eq. (30)]).
If T := Tu, and Ty are the tangent spaces of the rank-r
matrix manifold at Ha and H, respectively, then

4|Ha —H|
or(Ha)
Proof of Lemma VIII.2. Recall that T = Ty, C My,n.don 18
the tangent space onto M, at Ha. For any Z € Mg, don,
we have
IReG*Pr(2)|7
= (RaG*Pr(Z), RaG*Pr(Z)) = (G*Pr(Z), R4,G*Pr(Z))
< Rl {G"Pr(Z), RaG" Pr(Z))
= [|[Rall(Z, PrGRaG Pr(Z))
=Rl ((Z, (PrGRoG* Pt — PrGG*Pr) Z)
+(Z,PrGG*PrZ))
< [Rall (@l Z|F + 12]1%) = [[Rall (1 + a) |Z]|%

[P — Pryll <

using the fact that Rq is self-adjoint in the second inequality
and Property VIII.1 in the last inequality. From this, it follows
that

[PrGRall = [RaG " Pr[ < VIIRal (1 + ).

With this preparation, we can now apply the triangle inequality

(65)
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multiple times to estimate that

Py GRAG" Pryy — Prw GG Pry |

< [[(Pry =Pr) GReG" Pry|l + [PTGReG” (Pry —Pr)||
+ |PrGRaG*Pr — PrGG* Pr||

+[[PrGG* (Pr — Pry)ll + [(Pryy —Pr) GG" Pry ||

< Pra =Pzl [ReG” Prull + [PrGRal [[Pry —Prll + o
+IPelHIGGT P = Prall + 1Pre =Prll 197 [Py
[Pry =Pl 2|ReG” Prull) + a + 2{|Pry, —Pr|

8||H —Hall
< TA)A (\/HRQH 1+a)+ 1) ta

g

IN

N

<a+ a=2aq,

using the sub-multiplicativity of the spectral norm multiple
times, Property VIIL.1, in the second inequality, and (65) and
Lemma A.6 in the penultimate inequality. Finally, we conclude
the proof by using the closeness assumption (42) in the last
inequality. O

F. Proof of Lemma VIII.3

We present the proof of Lemma VIIL.3, which is inspired
by the proofs of [YKJL17, Lemma 20] and [CC14, Lemma
1], but refines the respective arguments.

Proof of Lemma VIII.3. Letn € ker Rq. Due to the entrywise
nature of the normalized sampling operator Rg, it holds
that n € kerRq if and only if Dn € kerRq due to the
diagonality of the diagonal operator D : M7 — MPT from
(44). Therefore, it holds that RaG*H(n) = RaG*GD(n) =
RaD(n) = 0, as G*G = Id is the identity operator and
as H = GD due to Lemma A.1, which implies further that
GRaG " H(n) =0
Furthermore, this also implies that

(Id=GG*) H(n) = (9D - GG"GD)n = (D - GD)n = 0.
Therefore, taking the scalar product with P, H(n), we note
that

0= (Pry H(n), (GRG™ +1d =GG") H(n))
= <7DTH /H(n)’ (gRQg* +1d _gg*) Pry H(W)>
+ (Pra H(0), (GRaG" +1d-GG") Py Hn)),

and furthermore, taking the scalar product with PTﬁ”H(n), we
also observe that

0= (Pry H(n). (GRaG" +1d~GG*) H(n))
= (PraH(n), (GRG” +1d —GG*) Pry H(n))
+ (PraH(n), (GReG” +1d —=GG") PpiH(n)),
which is equivalent to
(Prat(n), (GReG" +1d —=GG") Py, H(n))
= (Pry H(n), (GRQG" +1d =GG") PrpH(n))
= —(Pr.H(n), (GRaG" +1d~GG*) PruH(n),

where we used in the first equality the fact that GRqaG* +
Id —GG* is self-adjoint as a sum of self-adjoint operators.

(66)



Inserting this into (66), we obtain

<PTH H(n>7 (gRQg* +1d _gg*) PTH H(n))

= (PpsH(n), (GRaG" +1d =GG") PraH(n)).

We now bound the left and right hand side of the latter equality
separately. On the one hand, we obtain a lower bound

(67)

{Pry M), (GRAG" +10-GG) Py H(n)|
> |(Pryy ), Py H()
— |(Pra HO), (GRaG" —GG°) Pryy Hn)|
= [Pr HI% -
[Py H(n), (Pryy GRaG* Pry — Pry GG Pry) Pry Hn))
> |[Pry, HO)I2
[Pry GROG™ Pryy — Pryy GG Pryg || | Prgg Hn) |3
> [Pry HOIE ~ 2 [Pro MO

using the projection property Pr,,> = Pr,, in the equality
and (43) in the last inequality, which implies that

[Py HOIIE
< 2 |(Pru Hn), (GRaG" +1d~GG") Pryy Hn))| - (68)
On the other hand, we have the upper bounds

|(PryH), (GRAG" +Td~GG") Py H())|

< g, 1ma5 g 0],

e wa-s1 o]

< 191 1Ral 16 N[ Prg Hn)|, + ][ Prg )|

< (IRall + 1) [Py o)

using the sub-mulitiplicativity of the spectral norm and the
fact that Id —GG* is a projection in the third inequality, and
observing that ||G|| < 1 and||G*|| < 1 in the last inequality.
Combining this with (67) and (68), this implies

Pry HO)IE < 2 (1Rall +1) [Prg )|

and therefore
IHIF = P
< 2 (IRall +8/5) [Pry o)

2
H 5+ [[Prs Hm) |
which finishes the proof. O

Next, we provide an auxiliary result of similar flavor as
Lemma VIIL.3 to be used in the convergence analysis of
TOIRLS.

Lemma A.7. Assume that Property VIIL.I1 holds true for a
normalized sampling operator Rq : MET — MOT ywith
respect to a rank-r matrix Hy € Mg,y 4,n and constant

a = 1/5. If X® € MET is such that the best rank-r
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approximation of a matrix Hy, := H(X(k)), ie.,

T-(Hy) = 1Z —Hygll  (69)

arg min
ZeMayn,dynirank(Z)<r

satisfies

O'T(HA)

32./rk (,/6||RQ||/5 + 1)

T-(Hy) € Bug,

then it holds that

IHH™M)| < \/2; (IRall +8/5)Vdn — roy1(Hy)

where n®) = X*) — Qr(A).

Proof. 1f Ty := T, (g, is tangent space onto the manifold
of rank-r matrices at 7,.(Hy) and if Uf) € R (din=r) ang
Vf) € R%mX(42n=1) yre the matrices with the last dyn—r and
last don —r left and right singular vectors of Hy, respectively,
we can write the action of the projection ’PT¢ t Main,dan =
M, n.d,n onto the orthogonal complement Tﬁ of T}, as

Prs(2) = U U ZvE v

cf., e.g., [Recll]. Let d = min(dy,dy). If Zﬁ €
R(din=m)x(d2n=r) ¢ diagonal with the last dn — r singular
values of Hj, ordered in an non-increasing way, we observe
that

Prs (Hy) = UP ovi”,

Now, if Ha = Ug%¢V{ is a compact singular value decom-
position of Ha, we estimate

[Pr: DIl < [Pry (H)l 7+ [Py (Ha) 7

dn
<\ Y orE) + [P Ul EAVE VT
i=r+1
dn
k k)* k k)*
<\ 2 o2y + Ul ul AV v
1=r+1

k)x* * k
< Vdn — o1 (H) + U U120 [V V|

using the definition of n(¥), the triangle inequality, the fact
that ||[AB||r < ||AJ|||B||F for all matrices A and B, and that
k)* k
VP =l =1
By the classical perturbation bound due to Wedin [Wed72,
Ste06], cf. also [KMV21, Lemma B.6],

k)x* * k 1
max{ [ UM Uo||, [[VeV |} < @HHWUH :

if Hy, € Bu, (¢) with 0 < ¢ < 1. By assumption ¢ < 1/2, so

(¢
1Prs (H0™)) e
Vidn — o (Hy) + 8| H (™"

< N|*vro1(Ha)
< Vdn —ro.1 (Hy) + 8||H(n*

NP VKo, (Ha).

Due to our assumptions, we can apply Lemma VIIL.2 for
o = 1/5 and further Lemma VIIL3 for = n(*) to estimate



that
[H0" ) < HO™)]|

< \/2 (IRall +8/3) Py (KO
< /2 (IRall +8/5)

Vn =7 - 01 () + 8- () [2V/rno, (Ha))

/\

< \/2 (IRall + 8/5)Van =7 -y ()

8v/riy /3 (IRall +8/5)
+ )
(32v/7w) (V/BIRI/5 + 1)
> (IRall + 8/5)Van =7 - 7y (Be) + 5[ H ()|

Rearranging this estimate, we obtain

IH0™) < \/230 (IRall +8/5)Vdn — royy1(Hy).
O

G. Proof of Proposition VIII.1

In this section, we provide the proof of Proposition VIII.I.
For this purpose, we use key results of [KMV21], adapted to
our notation.

Proposition A.3 ([KMV21, Lemma B.8 and Lemma B.9]).
Let Ho = H(Qr(A)) € RanH be a matrix of rank r, let
X¥) be the k-th iterate of Algorithm 1 for input parameters
Q, y = Po(Qr(A)), =0 and ¥ = r. For Hy, := H(X®),
assume that e, = o1 (Hy) and that

[HMp < Cl[Pr Hn)llp  forall n € kerRo

for some constant C, where Ty = T (m,) is the tangent
space onto the manifold of rank-r matrices at T,(Hy). Then

IH(X Ha| < C%;||Wa, (Ha)lls,,

where Wy, : My n.don — Madyn,dyn IS the optimal weight
operator of Hy, as in (19), and ||- || s, describes the Schatten-1
norm.

Furthermore, if additionally H(X®) € By, (¢) for some
0< (<1, then

[H(XFY) ~ Ha|| < Cr(1 = ()20, (Ha) ™
(gi + e [[H(X®) — Ha |k + 2 H(XEFD) — HA||2/<> :

k+1 )

where k = 01(Ha)/0.(HAa) is the condition number of Ha.

We can now put Lemma VIII.3, Lemma VIII.2 and Propo-
sition A.3 together to prove Proposition VIIL.1, showing that
we attain locally quadratic convergence under the stated as-
sumptions.

Proof of Proposition VIII.1. Let k € N and X*) be the k-th
iterate of Algorithm 1 with inputs €2, y = Po(Qr(A)), A =0
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and 7 = r. First, we observe that

. 1 32
o= min (G g ) = min (Rl
3 (1+6k)'o.(Ha)
20r  |[Rall+8/5
3% (146k)"' 0,(Ha) 1)

3
2

2037 (| R +8/5)% (dn —r) 2

We note that Property VIIL1 is satisfied with respect to
Ha and constant o = 1/5. Since #(X®) € Bu, ((3) (as
(3 < ¢2), we also have that a best rank-r approximation
T (H(X®))) of H(X*)) satisfies

| 72X ) ~ Ha |

< [HX®) = Ha |+ [[EXD) = T (X))

~ 1 -1
< 2 H(X®) — Hal| <26 < 5 (VOIRaB+1)

from which it follows due to Lemma VIIL2 that (43) holds
true for H := 7,.(H#(X®))). Thus, Lemma VIIL3 implies that

5 2
IO IE < 3 (IRall +8/5) |[Pry ™) |

where %) := X% — Q7 (A) and Ty = Tr = Tr %))
is tangent space onto the manifold of rank-r matrices at H.

Next, since g, = oppq(H(X®)), it follows from the
Eckardt-Young-Mirsky theorem [Mir60] that
ex = o1 (H(XH))

= [HX®) — H| < [HXP) — Hall = [|[HHP)]],

where we used that Hp is of rank r in the inequality.
Since also H(X®) € By, (1/2), it follows therefore from
Proposition A.3 that

(0]
20 .
< 3 (IRall +8/5) o, (Ha)

(22 + aek B0 ™) s+ 21 H ™) )
20
<2 (14 65) [ (™),

(70)

(IRl +8/5) rov(Ha) ™

where K = 01(Ha)/o,.(Ha) is the condition number of Ha
and n(k+1) — X(k+1) _ Or(A).

If, additionally, we assume that 7(X*)) € By, (2), then
we can further bound the right hand side of (70) to obtain

[HO*D) | < 7O, (71)
and also obtain a quadratic decay in the spectral error
[HnFED)| < vl Hn™))1?,
7(1+6r) ([[Rell +8/5) .

. _ 20
with v = 3o (HA)

What remains to be shown is that the (r + 1)-st singular
value H (X(k)) is strictly decreasing from one iterate to the



next. If #(X®)) € By, (1), it follows that
or (HXFHD)) < [ H(n*HY))|

20
< 35 (Ral + 8/5)ra(Ha) ™!

(1 +6r) [[H(n ™)

20 3/2
<(Fural+s) - )

(14 6K)Vdn — ro,41

< o (H(XW)Y),

using (70) in the second inequality, Lemma A.7 in the third
inequality, and #(X*)) € By, ((3) in the last inequality.
Finally, we recall the update rule (21), which gives that (72)
implies that e = 0,1 (H(X*+1)), so that (71) ensures
that the assumptions of Proposition VIII.1 are not only fulfilled
for iteration &, but also for iteration k£ + 1. By induction, this
implies that H(X(*++9) ol Hq,, concluding the proof of
Proposition VIIL.1. O

(GG

or(Ha)

(HEX®))

H. Computational Details

In this section, we detail some aspects of anx efficient
implementations of TOIRLS, cf. Algorithm 1.

1) Explicit Expression for Weighted Least Squares Solution:
First, we justify the explicit formula of Section V provided for
the k + 1-st iterate X(*+1) of TOIRLS.

Lemma A.8. For any \ > 0, it holds that the solution X (k+1)
of the weighted least squares problem (20) satisfies

~ —~ — —1
XD — TPy ()\Id+PQWI}iP5> (y),  (73)

where ’Wﬁi :
effective weight operator Wy,
Definition I11.1.

Main.dsn — Mdyn,don IS the inverse of the
: Mdln,dzn — Mdln,dzn of

Proof. Using the substitution X' =
obtain that

Wi 2(X) in (20), we

X (k+1) _ W—1/2 (X/(k))

where

< (k1)

X’ = arg min {(5(',{(’

X'emE*
~ argmin {AHX’HZF + | FX)
X/ MGBT
= F*\d+FF) 'y

2
-}
2

-1

(¥),

defining F := P o Wﬁim : Mayn,dn — R™ to interpret
the problem as a ridge regression/{s-penalized least squares
problem in the second equality, and using the inner product
implementation of ridge regression in the third equality (see,
e.g., [FLZZ20, Theorem 2.4]). This shows (73).

For A = 0, we note that

= Wy /* P ()\ 1d +PQVNVI;;P;;)

X (k+1)

arg min

-~ o~ — —~(k
(X, War, (X)) = g2 (X'( ))
ieM?T:Pg(i)zy

2
s o)

29

with
(k1 —
/D = arg min_ ||X/||%' = F* (.7:.7:*)_1
X eMETF(X)=y
—1/2 * T1i7—1 px -1
:WHk Pg (PQWHszz) (¥),

using an analogous substitution as above and the fact that
Ft = F*(FF*)~" is the Moore-Penrose inverse of F as
defined above. O

2) Efficient Implementation of TOIRLS: In this section we
outline the main computational steps of an efficient imple-
mentation of TOIRLS. In particular, we provide an algorithm,
Algorithm 2, for computing the weighted least squares solution
(73) essentially via a conjugate gradient method applied to a
(ri(ndi+nda+rg) xri(ndy+nde+ry)) = O(rnT) xO(rnT)
linear system.

In the following, we let Sy := Rrk(”d1+jd2+r’“), and we
recall from the proof of Lemma A.7 that if X (k) ¢ Min.don
is the k-th iterate of TOIRLS and Hy := H(X®), T} :=
Tﬂk (H(X®)) denotes tangent space onto the manifold of

rank-r;, matrices at 7, (H(i““)) (here, with 7}, instead of
r), where 7, (Hy) is the best rank-r 7} approximation of
H;, cf. (69). Given the subspace T C Mg, n dyn, We let
Pr, : S — Ty be the parametrization operator defined, for
v € Sk, as

Pr, () = UMD VO L UL, 4+ T3V,

where T'; € R™*™ I'y € R"™*7d2 and T'y € R"x7k
are matricizations of the first r,%, central rpnds and final
rgnds coordinates of v € Si, respectively. We note that
the projection operator Pr, Maindon — Mdin,den
can be implemented via Pr, = Pr,Pr, - Recall that
G : MPT — Muyynayn is the normalized block Hankel
operator (36) and D : MPT — MPT the diagonal operator
of (44). Finally, I,,, and Ig, are identity matrices on R™ and
Sk, respectively, and Dg, : S, — Si is a diagonal matrix

-1
that contains coordinates (Zak dm)“_ (ng’ d2”)jj =
-1 -1

max (0'( ), €k max (O’;k), €k) for  (i,7) €
{(i,§) € [nd1] x [nda] :i <7 or j<rr} on its
diagonal, which is related to the weight operator

P Mdln,dgn — Mdln,dzn Of (19) by
Wa,(Z) = (Pr,Ds,Pj, + ¢, (Id— Pr,P})) Z, (74)

cf. [KMV21, Appendix A, Eq. (12)]. With these notational
conventions, we can formulate Algorithm 2.

Lemma A.9 shows that Algorithm 2 indeed computes the
weighted least squares solution X (%)

Lemma A.9. Let X®) ¢ M, n.don be the k-th iterate of
TOIRLS (Algorithm 1) for an observation vector 'y € R™
with m = ||, A > 0 and smoothing parameter €, > 0, let
H,=H ()N((k) [{i € [dn] : ; (Hg) > e }|. Then
the following statements hold.

1) The (k + 1)-st iterate X (k+1) of Algorithm 1 satisfies

X*+) = DB (prsa) + D'G* Pr, (Yrra)

) and r. =



Algorithm 2 Implementation of k+1-st weighted least squares
step of TOIRLS

Input: Set €, observations y € R™, X\ > 0, matrices U*) ¢
RéXme (k) ¢ RI2XTk of singular vectors and 7, leading
singular values 0" ) of H hi

gular values o, /, ..., 0y, of Hy , smoothing parameter
e initialization 7§, = Py, Pr, ,(v,) € R7+(nditndat)
where v, € RT-1(ndidndadTio1) g regpective parameter
(76) of the k-th iteration.

Let K := \e;,’I 4+ PoD 2P and
M := Py, GD™'P;K ™ 'PoD~'G* Pr,

Dg! (75)
+——2— — Pp. GG*"Pr,.
ngl - gilsk T o

I: Compute h) := Pj GD'PiKly — My, ¢
Rrk(ndl—&-ndz—l-rk)'

2: Solve linear system

MA~Y;; 1 = h) (76)

for A1 € Sk by the conjugate gradient method [HS52,
Meu06]. (

3: Compute Vg1 = %ﬁgl + AVpy1.

4: Compute  tesidual  ppy1 = Ky -
PoD71G*Pr, (yk+1)) € R™ where
K := \e; I+ PoD ? P, (77)

Output: p,1 € R™ and 41 € Rk (ndi+nda+ry)

where ppr1 € R™ and yppq € RTe(ditndatre) g the
output of Algorithm 2 if the linear system of (76) is solved
exactly.

2) The vector 41 € REhtnd2tm) corpesponding to
an iterative solution of (76) using Nce_inner iterations
of a conjugate gradient method® can be computed in
O(NcG_imerreT(m + nlogT + nrgT)) time. Thus, a
parametrization of an approximation of the (k + 1)-
st iterate X¥1) of Algorithm 1 can be computed in
O(Nce_inerrT(m + nlog T + nriT)) time.

The statement of Lemma A.9.2 enables Algorithm 2 to
compute an accurate approximation of X *+1) in O (1, T'(m+
nlogT + nriT)) time in many situations, in particular, if
X*) is close to an image Q7 (A) of a transition operator A
satisfying Po(Qr(A)) = y and if the normalized sampling
operator R associated to the sampling set {2 satisfies a
local restricted isometry property (37), as in this case, it can
be shown that the condition number of the matrix M of
linear system (76) is a small constant. We do not provide
the full proof for that statement as it amounts to a variant of
[KMV21, Theorem 4.2] and its proof.

9or of related iterative solvers based on matrix-vector multiplication
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Proof of Lemma A.9.1. We recall from Lemma A.8 that
i(k+1)

—~ —~ —1
= Wil Po (Nd+PW! PS) - () %)
o\ 1 =1\t
_p! (Wg(k)) B ()\ Id + Py (Wék>) ng) (y)

using the notation Wg(k) = G*Wy, G and Pq := PoD~'. The
last inequality holds due to

Wy = (H'Wu,H)~' = (DG*Wx,GD) ™"
_p! (@k))‘l p-1
Using (74) and G*G = Id, we can write
(Wém)_l (G Wi, G)
= (G (Pr, (Ds, —¢;,°1s,) Py, +¢;°1d) G)~
= (G"Pr, (Ds, —&;1s,) P3G +e;21d) .

For the next step, we recall the Sherman-Morrison-Woodbury
formula [Woo50, FRWI11], [HJ12, (0.7.4.1)], which states
that for any invertible matrices B, C and matrices E, F of
appropriate dimensions,

(B+ECF*) '=B'-B'E(C"+F'B'E) F*B".

(79)
Applying (79) for B = E;zld, E=¢"Pr,,F* = P1 G and
C = Dg, — ¢}, ’Is, yields then

(W) oz 1a

_ -1
' Pr, (=2 (Ds, — 5:°s,) '+ P3, 66" Pr, ) Pi, ).
(80)

1

Thus,
—1

(/\ 1d-+Po (W) _1135;> =i (A L+ PoPy - 2) -

where
-1

-2
e, Ig, * * * *
kS 4 Pi GG PTk> P4 GPg.

E :=PoG" Pr, ( =

* ]:)S,C — & 2ISk

Here, we can again use Sherman-Morrison-Woodbury (79)

with C = N"'E = F = E and B = K with K from
(77), E = PoG* Pr, and

-1
N:= 7_1Dsk2 —~ P3, GG Pr,
Ds ~ e 81)
_ €k ISk

— (k% 4 P GG*P )
(Dsk — 5];2IS;€ T T



to obtain

~ —~ -1 -
¥y = ()\ 1d + P, (Wé’“) P;g) (¥)
~ [~ ~ -1 -
— 2K M(y) — ¢, 2K~'E (E*K*IE + N) E'K !(y)
= 5;2K71 (y - E%H) )
(32)

using the notation that ;41 € Sy is solution to the invertible
linear system

(E*K_lﬁ + N) Yo = B Kty
Furthermore, y,y and -4 are related by
SE(Y)
=E'K! (y - E%H)
~ ~ [~ ~ -1 - ~
= E*K—l(y -E (E*K—lE + N) E*K—ly): E'K 'y
~ ~ ~ ~ -1 .
- (E*K—lE N N) <E*K‘1E n N) E'K 'y
~ ~ -1 -
- N (E*K*E n N) E'K ly.
(83)

Inserting these equalities back into the expression (78) for
X (k+1) we observe that

XEHD = D=L (W) T By (A Td + P (W) T B~
=D (W) Pa()
= 2D [ 1d+G* Pr, N P} G| Py(¥)
= 2D ' Py(Y) + 3D G Pr, NT'E*(¥)
= kD' PS(Y)

1

(¥)

+eiD7'g" Pr, (E'K'E+N) TEK®)
=D 'PS(Y) + 2D G* Pr, (Yes1)

=D 'PsK! (y - E%H) +D'G* Pr, (Vks1)
= D P4(prs1) + DG Pr, (Yis)-

In the second equality, we used the definition of

B -1
y; in the third equality, we used that ( ék)) =

2 [Id+g*PTkN*1P$kQ}, which follows from (80) and
(81). In the fifth equality, we used (83); in the sixth
equality the definition of ~;y;. In the seventh equal-
ity, we used (82) and in the last equality, we use the
definition pyy1 = K7'(y— PoD7'G*Pr, (i41)) =
K-! (y — E(wkﬂ)) of the residual py4i1. This concludes
the proof of Lemma A.9. O

Proof of Lemma A.9.2. In line 3 of Algorithm 2, ~yiyp i
computed by adding 71?21 (which is an input) and Avyg41, the
solution of the positive definite linear system of (76), which
requires O(ry(ndy + ndz + 1)) computations.

To solve (76), a conjugate gradient method can be applied,
whose cost crucially depends on the cost of executing matrix-
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vector multiplications with the matrix M from (75). We
address the matrix-vector multiplication cost of the three
summands of M separately, as we can obtain M~ for v €
R7(nditndatT) by adding/substracting the three resulting
vectors in additional 3ry(nd; + nds + ry) time.
Dg!

Dg ! —ctls,
is diagonaly, since Dyg, is, resulting in a time complexity
of ri(ndy + nds + T‘k;).

o Matrix-vector multiplication with : this matrix

e Matrix-vector multiplication with
P{ng_lPéK_lPQD_lg*PTk. This can me
implemented by the successive application of
the three operators Py GD~ 'ps, K~!  and

PoD~1G* Pr,. Applying PoD~1G* Pr, can be done in
O(mTry + rinT) + mT = O(mTry + rinT) time by
evaluating the tangent space matrix returned by Pr, at
m/" locations (which correspond to the support set of
H(Ps(y))) via Algorithm 4 of the paper [KMV21] and
averaging the entries across the Hankel blocks. K~! can
be applied by in 74 (ndy + nds + ) time as PaD ™2 P
is a diagonal (m x m) matrix whose i-th diagonal entry
is the inverse number of occurrences of the Hankel block
which corresponds to the i-th observation in (2. Finally,
the application of Pr}ng’lpé can be implemented via
Algorithm 3 of [KMV21] as the image of GD~ Py is a
sparse (nd; X nds) matrix with a support set of size mT,
giving a time complexity of O(mTry + rinT). Thus,
the total time complexity of the entire matrix-vector
multiplication is O(mTry, + rinT).

o Matrix-vector multiplication with P;kgg*PTk. We ob-
serve that block Hankel matrices of size (nd; x nds)
with (n x n) blocks can be embedded into a (nT x nT)
block circulant matrix (up to reordering of columns), cf.,
e.g., [KS99, Section 8.3.1], and such block circulant ma-
trices can be diagonalized by a "block™ discrete Fourier
transform. Using the fast Fourier transform across blocks,
it is possible to compute the image of Py GG*Pr, in
O(rgnT log T +r3T?n) time, see also [Kiim19, Section
3.4] for a related algorithm for Hankel matrices.

We refer to our MATLAB implementation for further details
on the above. Overall, the matrix-vector multiplication of M
with a vector v € R7(d+ndadm) capn pe performed in
O(riT(m + nlogT + nriT)) time. Since the computations
necessary to obtain hg and pg1 in line 1 and 4, respectively,
involve only operations whose order we quantified above, this
concludes the proof of Lemma A.9.2. O
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