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Learning Transition Operators From Sparse
Space-Time Samples

Christian Kümmerle, Mauro Maggioni, and Sui Tang

Abstract—We consider the nonlinear inverse problem of learn-
ing a transition operator A from partial observations at different
times, in particular from sparse observations of entries of its
powers A,A2

, · · · ,AT . This Spatio-Temporal Transition Operator

Recovery problem is motivated by the recent interest in learning
time-varying graph signals that are driven by graph operators
depending on the underlying graph topology. We address the
nonlinearity of the problem by embedding it into a higher-
dimensional space of suitable block-Hankel matrices, where it
becomes a low-rank matrix completion problem, even if A is
of full rank. For both a uniform and an adaptive random
space-time sampling model, we quantify the recoverability of
the transition operator via suitable measures of incoherence of
these block-Hankel embedding matrices. For graph transition
operators these measures of incoherence depend on the interplay
between the dynamics and the graph topology. We develop a
suitable non-convex iterative reweighted least squares (IRLS)
algorithm, establish its quadratic local convergence, and show
that, in optimal scenarios, no more than O(rn log(nT )) space-
time samples are sufficient to ensure accurate recovery of a rank-
r operator A of size n⇥n. This establishes that spatial samples
can be substituted by a comparable number of space-time
samples. We provide an efficient implementation of the proposed
IRLS algorithm with space complexity of order O(rnT ) and
per-iteration time complexity linear in n. Numerical experiments
for transition operators based on several graph models confirm
that the theoretical findings accurately track empirical phase
transitions, and illustrate the applicability and scalability of the
proposed algorithm.

Index Terms—Operator learning; block Hankel matrix com-
pletion; iterative reweighted least squares; nonlinear inverse
problem; graph signal processing.

I. INTRODUCTION

Signals that arise from social, biological or transport net-
works are typically interconnected and structured, and can be
modeled as residing on graphs. In many modern applications,
the graph signals are time-varying and driven by graph op-
erators that are dependent on the underlying graph topology.
For example, the traffic flow on the road network is changing
during a day; spatial temperature profiles measured by a
sensor network vary at different time instances. Estimating
such graph signals and dynamical processes from sparse
observations is a research topic of wide interest (see for exam-
ple [ISG18, PGM+16, IRG18, DTFV16, TDKF17, SMMR17,
MSMR19, PGM+17] and references therein).
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We consider dynamical processes on graphs in the form of
(discrete) linear dynamical systems:

xt+1 = Axt : t = 1, . . . , (1)

where xt is the graph signal and the transition operator A is
typically a function of an algebraic descriptor of the graph
structure (e.g. the adjacency matrix of the graph). Examples
for such transition operators include the random walk over a
graph and its variations, heat operators, and other averaging
processes. Powers of A lead to both multiscale analyses
on graphs [CM06], and eigenvectors of A often play an
important role in many machine learning applications such as
dimension reduction and clustering [CLL+05]. These models
are in part motivated by applications that include modeling
traffic in transportation networks [DM16], spatially-distributed
atmospheric variables (e.g. temperature, pressure) measured
by sensor networks [TDKF17], and neural activity in different
regions of the brain [Spo10].

In this paper, we are interested in learning A from partial
space-time observations of a temporal evolution. Let X0 2
R
n⇥m be a set of m initial states, one per column. We observe

a discrete time series of length T satisfying

Xt+1 = AXt , t 2 [T ] := 1, . . . , T (2)

via spatio-temporal samples

Yt = St(Xt) , (3)

for t 2 [T ] and St : R
n⇥m ! R

mt representing a linear
subsampling operator, typically returning a subset of the
entries of its input.

If we set aside the time evolution in (2), the task
of recovering Xt at a fixed time t from the observa-
tions Yt may be considered as a completion problem, and
may be tackled by low-rank matrix completion techniques
[CR09, CP11a, DR16, CLC19], even when the number of
observations mt is much less than the number of entries in Xt,
if Xt has low rank. When St ⌘ Id, the identity map, related
problems are also pursued in the model reduction community,
to extract dominant eigenvectors of A, for example via the
dynamic mode decomposition (DMD) [Sch10, KBBP16].

In this paper, however, we are interested in situations where
T > 1 and both Xt and A are not necessarily low rank.
At any single time t, we are not able to recover A from
Yt and Yt+1, as in practice we often have mt,mt+1 . n,
due to application-specific constraints. We seek to compensate
the insufficient spatial samples at a single given time t by
leveraging the temporal dependent observations across time,
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and tackle the fundamental problem of recovering A from
space-time samples {Yt : t 2 [T ]}. We restrict our attention,
for simplicity, to recovering A from partial observations of
A,A

2
, · · · ,AT , which, in the notation above, corresponds to

X0 = Id 2 R
n⇥n in (2). Already in this setting, learning

A is a nonlinear inverse problem (as long as T > 1), that is
beyond the scope of regular matrix completion, dynamic mode
decomposition, or subspace-based techniques [CIML20].

A. Spatio-Temporal Transition Operator Recovery
In the context of dynamical systems, it is expected that the

recoverability of a transition operator A 2 R
n⇥n depends

significantly on the structure of the space-time sampling as
well as on spectral properties of A. Denote the sampling
locations at t 2 [T ] by ⌦t ✓ [n]⇥[n], and let the corresponding
subsampling operator St : R

n⇥n ! R
⌦t be

St(M) : = (hEi,j ,Mi)
(i,j)2⌦t

= (Mi,j)(i,j)2⌦t
, (4)

where Ei,j is the matrix with 1 in its (i, j)-th entry and 0
elsewhere, for i, j 2 [n]. In applications, ⌦t may correspond
to an observation model with mobile sensors that are moved
to different locations at different times.

Denoting the set of all possible space-time sampling loca-
tions by I := [n]⇥ [n]⇥ [T ], we define the sampling set

⌦ := (⌦1 ⇥ {1}) [ · · · [ (⌦T ⇥ {T}) ⇢ I . (5)

Let Mn1,n2 denote the set of real n1⇥n2 matrices, abbreviated
as Mn if n = n1 = n2. We define the nonlinear monomial
operator QT : Mn ! M�T

n as

QT (A) := A�A
2 �A

3 � . . .�A
T 2 M�T

n , (6)

and the sampling operator P⌦ : M�T
n ! R

|⌦| as

eX :=X1 �X2 � . . .�XT 7!
P⌦(eX) =

⇥
S1(X1), S2(X2), . . . , ST (XT )

⇤ (7)

where St is as in (4), for t 2 [T ]. We consider the following:

Problem I.1 (Spatio-Temporal Transition Operator Recovery).
Given a space-time sampling set ⌦ ⇢ I , recover A 2 Mn

from the space-time samples

y = P⌦(QT (A)) =
⇥
S1(A

1), S2(A
2), . . . , ST (A

T )
⇤
, (8)

or from noisy space-time samples y = P⌦(QT (A))+⌘, where
⌘ is an (unknown) additive noise vector.

We focus on two questions arising naturally in Problem I.1:
• Under which conditions on A and on the distribution and

size of the sampling set ⌦ can we guarantee to accurately
estimate A in Problem I.1?

• Is there a computationally efficient recovery method to
estimate A in Problem I.1 in these cases?

It is well-known from the literature on other structured
inverse problems such as sparse vector recovery and ma-
trix completion that deterministic sampling sets may not
enable recovery from a minimal size of the sampling set |⌦|
[FR13,DR16]. For this reason, we focus on random space-time
sampling schemes, and consider two types of random models:

1) Uniform sampling: for m  n
2
T , a sampling set ⌦

consists of m spatio-temporal samples in [n]⇥ [n]⇥ [T ]
sampled uniformly at random without replacement;

2) Adaptive sampling: for each space-time index (i, j, t) 2
[n]⇥ [n]⇥ [T ], let pi,j,t 2 [0, 1]. An adaptive sampling set
⌦ ✓ [n]⇥ [n]⇥ [T ] consists of triplets (i, j, t) drawn from
i.i.d. Bernoulli trials with success probabilities pi,j,t. The
expected total number of samples is therefore mexp :=
E[|⌦|] =

Pn
i,j=1

PT
t=1

pi,j,t.
While uniform sampling is conceptually simple as it only

has one free parameter, m = |⌦|, adaptive sampling is
more flexible, in particular because its sampling probabilities
{pi,j,t}(i,j,t)2I can be tuned to include prior information about
a specific instance of Problem I.1.

B. Our Contribution
We tackle the spatio-temporal transition operator recovery

problem by first applying an embedding into a structured
block Hankel matrix space, under which the nonlinear rela-
tionship between different powers A,A

2
, . . . ,A

T of a matrix
A is mapped to a low-rank property of the block Hankel
matrix H(QT (A)), essentially in a one-to-one manner (Theo-
rem II.1). The block Hankel operator H : M�T

n ! Md1n,d2n,
with parameters d1, d2 2 N s.t. T = d1 + d2 � 1, is defined
as:

H (X1�. . .�XT ) :=

2

6666666664

X1 X2 X3

... Xd2

X2 X3

... ... ...

X3

... ... ... ...
... ... ... ... XT�1

Xd1

... ... XT�1 XT

3

7777777775

(9)

Related embeddings have been used to design computational
methods for the solution of classical problems in signal pro-
cessing and system identification, see Section I-C3 for details.

We then deploy an efficient low-rank optimization algorithm
based on Iteratively Reweighted Least Squares (IRLS), which
combines an iterative minimization of quadratic majorizing
functions with an appropriate smoothing strategy for a log-
determinant objective [DDFG10, MF12, KMV21] and, at the
same time, respects the block Hankel structure. We address the
connection between the choice of a space-time sampling set
⌦ and the identifiability of A by proving a local convergence
result for the proposed algorithm, called Transition Operator
IRLS (TOIRLS), which shows that the operator A can be ef-
ficiently computed from a number of spatio-temporal samples
that is comparable to the sample complexity of using only
spatial samples at time T = 1, for random sampling models
based on either uniform or adaptive sampling. In particular,
we show in Theorem IV.1 that in the noiseless case, with high
probability, TOIRLS exhibits locally quadratic convergence
if initialized close enough to the ground truth block matrix
H(QT (A)), as soon as only ⌦(µ0rn log(nT )) uniform or
adaptive samples are provided. An informal version of this
result may be stated as follows:
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Theorem I.1 (Local Convergence of TOIRLS, informal ver-
sion). Let A 2 Mn be a transition operator of rank r, and
let HA := H(QT (A)), with QT (A) and H as in (6) and (9),
respectively. Assume that either

(i) ⌦ is a space-time sampling set drawn by uniform sam-
pling of cardinality

m & µ0rn log(nT ), (10)

where µ0 is the incoherence factor (see Definition IV.1)
of HA, or

(ii) ⌦ is obtained by adaptive sampling with Bernoulli pa-
rameters

pi,j,t & min
⇣
µi,j,t

r

nT
log(nT ), 1

⌘
,

where µi,j,t is a local incoherence (see Definition IV.1)
of HA.

If, additionally, an iterate of TOIRLS (Algorithm 1), with
observations y = P⌦(QT (A)), is close enough to QT (A),
then, with high probability, the subsequent iterates converge
to QT (A) with a quadratic convergence rate.

In Section VI, we provide numerical experiments that illus-
trate that the order of convergence in Theorem I.1 captures the
empirical behavior of TOIRLS for several transition operators
on random graphs, and that its behavior appears robust to
additive noise in the observations.

This result implies that despite the fact that samples are
taken across T different powers of A, not only from A itself,
TOIRLS recovers A from essentially as few uniformly random
samples as in the classical low-rank matrix completion setting
[CR09,KBV09,CT10,Che15,CLC19], where O(⌫0rn log(n))
samples are necessary in a uniform sampling model for the
unique recovery of A by any algorithm, where ⌫0 is the
standard incoherence of A [Che15].

We also analyze the incoherence of HA by relating it
to that of A for several families of transition operators,
see Section IV-C. In particular, we show that if A is an
orthogonal matrix or a projection, the incoherence µ0 of HA

coincides with the incoherence ⌫0 of A, implying that the same
order ⌦(⌫0rn log(n)) of samples as in conventional matrix
completion is sufficient in our setting, at least when T . n.

Unlike in conventional matrix completion, our results are
nontrivial also when A is of full rank, i.e. r = rank(A) = n:
in this case, Theorem I.1 implies that O(µ0n

2 log(nT )) sam-
ples, scattered over the T observation times, are sufficient to
ensure local convergence of TOIRLS, i.e. we pay a multiplica-
tive oversampling factor of O(µ0 log(nT )) over the n2 degrees
of freedom of A. In particular, recovery is possible with a
budget of only O(n log(n)) sensors and T = n observation
times.

Finally, our results, such as Theorem I.1.2, on local
incoherence-based sampling of specific space-time locations,
inform adaptive sampling schemes that can be more data-
efficient than uniform sampling.

Our results are presented in Section IV-B in the context
of the spatio-temporal transition operator recovery problem.
However, we point out that they are valid more generally for
the problem of recovering a low-rank block Hankel matrix

via Algorithm 1 if its output is chosen to be the entire matrix
eX(K) 2 M�T

n instead of its restriction to its first block A
(K).

Remark I.1. In this work, we focus on the algorithmic
scheme TOIRLS optimizing non-convex surrogates in order
to explore the fundamental information-theoretic properties
of the underlying problem instead of a more traditional con-
vex approach used for other low-rank optimization problems
[CR09, Che15, DC20, CC14, YKJL17] (see also Sections I-C1
and I-C4 below) for two reasons:

• we are able to ensure fast, albeit local, convergence,
with high probability, under minimal assumptions on
the sample complexity (10). Using nuclear norm min-
imization on block Hankel matrices, we surmise that
it is possible to also obtain an exact recovery result,
albeit with possibly worse dependence on the sample
complexity, with additional logarithmic factors in r, µ0

and potentially T , when using techniques such as a dual
certificates or a leave-one-out analysis [Che15, DC20];

• using a nuclear norm approach does not by itself lead
to a scalable algorithm, as nuclear norm minimization is
equivalent to a semidefinite program (SDP) with matrix
variables of size O(nT ) ⇥ O(nT ). While some recent
approximate solvers for large-scale SDPs require space
of order only O(rnT + m) [YTF+21, DYC+21], these
methods do not find high-accuracy solutions. On the other
hand, methods which provably solve the original SDP
(e.g., interior-point methods [AHO98] or augmented La-
grangian methods [STYZ20]) have storage requirements
of O(n2

T
2) or larger.

We show in Theorem V.1 that TOIRLS is a scalable
algorithm with space complexity of O(rnT +m), a per-
iteration time complexity linear in n, and quickly leads
to high-accuracy solutions thanks to the guaranteed local
quadratic convergence rate.

C. Related Work
The transition operator recovery problem and the proposed

low-rank modeling have connections to several different fields,
which we briefly discuss.

1) Low-Rank Matrix Completion: pioneered by [Faz02,
CR09, CT10, Gro11, Che15] and popularized by applications
in recommender systems [ZWSP08, KBV09], the problem of
recovering a low-rank matrix from a subset of its entries
or from underdetermined linear observations has been an-
alyzed using both convex [RFP10, CT10, Che15] and non-
convex formulations [KMO10, SL16, CLC19]. The a minimal
sufficient condition for global convergence in the case of
uniform samples is due to [DC20], where it was shown that
⌦(⌫0rn log(n) log(⌫0r)) uniform samples are sufficient for the
convex nuclear norm minimization approach to succeed with
high probability if ⌫0 is the incoherence factor of [Che15],
n the dimensionality and r the rank of the matrix to be
recovered. Local quadratic convergence in the presence of only
⌦(⌫0rn log(n)) random observations was established for low-
rank completion for a method similar to TOIRLS in [KMV21]
and in [ZN22] for a Gauss-Newton method, improving pre-
vious works on related algorithms [MF12, FRW11, KS18]
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and [BNZ21], respectively. Low-rank matrix completion is
a special case of the transition operator recovery problem
Problem I.1 corresponding to T = 1; for T > 1, however,
Problem I.1 is nonlinear in the transition operator.

A nonlinear generalization of the matrix completion
problem that is different from ours was considered in
[OWNB17,OPAB+21], where the low-rank properties of ten-
sorized data matrices are leveraged. While these problems also
involve polynomial dependencies on a ground truth matrix,
these dependencies are columnwise and do not comprise
the rich algebraic structure of matrix polynomials present in
Problem I.1. The adaptive sampling model of Section I-A had
been considered for T = 1 in the works [CBSW15,EWW18].

2) Dynamical Sampling: here the aim is to recover a
linear dynamical system from the union of coarse spatial
samples at multiple time instances. A mathematical theo-
retical framework was proposed in [ADK13, ACMT17] for
linear systems of the form (1), motivated by the pioneering
work of [LV09] that considered the space-time sampling of
bandlimited diffusion fields over the real line. Several works
[Tan17b, LT19, AHP19, ACC+17, UZ21] focus on the case
where the transition operator A in (1) is known, and the
goal is to obtain sampling theorems ensuring exact recovery
of the initial state. For the case where A is unknown, it
has been shown that the eigenvalues of the matrix A can be
recovered from the space-time samples of a single trajectory,
see [AK14, Tan17a, CT21]. It is typically assumed that the
observation operator St is deterministic and independent of t.
Our paper is the first one, to our knowledge, to provide results
for estimating A from random space-time samples, i.e., for
random subsampling operators St varying over the time t.

3) System Identification: consider a linear time-invariant
dynamical system

xt+1 = Axt +But

yt = Cxt +Dut
(11)

where ut is the input vector and yt is the output vector. The
parameter estimation problem considered in control theory
aims to recover the system matrices A,B,C,D from the
input-output pairs (ut, yt). Classical results show that a nec-
essary condition to ensure identifiability is that C is full rank
[BÅ70]. In general, this problem is ill-posed and the focus
is to learn system matrices up to similarity transformations
(see subspace identification methods [Lju98, Qin06]) or the
impulse response function (also called the Markov parameters)
that determines the input-output map, both from a single
trajectory [Fat21, OO19, SR19] and from multiple trajectories
in [ZL20, SOF20, TBPR17]. In the case of B = D = 0
and C = I, a sufficient and necessary condition for the
identifiability of A from a single trajectory with a fixed
initial condition is that A has only one Jordan block for
each of its eigenvalues, together with certain constraints on
the initial condition [SRS14, DRS20]. The low-rankness of a
block-Hankel embedding of suitable powers and products of
the matrices A,B,C and D similar to (9) is known to underlie
the Kalman-Ho [HK66,OO19] method for finding a realization
of the system, and has been explicitly used as optimization
objective in [FPST13, MU13, Mar19, GRG18]. However, the

observation matrix C is fixed in all the works the authors are
aware of within this line of research, whereas in our setting,
C is random and varies over time t.

4) Recovery of Structured Signals: many structured signal
recovery problems can be represented in the following abstract
form: for a normed vector space V over C and a known linear
operator A : V ! V , one is interested in recovering a signal
f 2 V that is M -sparse in terms of eigenfunctions {vj} of
A, i.e., f =

P
j2J cjvj , where {cj}j is a set of coefficients

in C and |J | = M . The goal is to recover {cj}j2J and
{vj}j2J from observations F(A`

f) for ` = 0, 1, . . . , L where
F : V ! C is a linear functional. For example, let V be a
vector space consisting of continuous functions on the real
line and A be a shift operator (Af)(x) = f(x + 1). If one
takes vj = eajx for j 2 [M ] where {aj}Mj=1

are distinct
complex numbers and Im(aj) 2 [�⇡,⇡), F(f) = f(x0)
for some x0 2 R and L = 2M � 1, then the recovery
problem corresponds to the classical estimation of a sparse
exponential sum, called harmonic retrieval. The other instances
of this problem include super-resolution, blind deconvolution,
recovery of signals with finite rate innovation; we refer to
[PP13, HS17] for more details. Many well-known algorith-
mic approaches for these estimation problems are related to
the Hankel matrix formed from the samples {F(A`

f)}L`=1
,

including Prony’s method [PT10], matrix pencil methods
[HS90], and the algorithms MUSIC [LF16] and ESPRIT
[RK89]. A generalization to irregular sets of samples has been
considered in [CC14, JLY16, CWW19, KV19], by formulating
the signal recovery problem as a low-rank Hankel matrix
completion, relating the problem to techniques discussed in
Section I-C1 above. Multidimensional versions of these setting
have also been considered in these works, leveraging low-rank
properties of suitable multilevel Hankel or Toeplitz matrices,
as well as in [YXS16]. Specific to the 2D case, block Hankel
matrices with Hankel blocks arise in these applications. In
contrast, here the blocks of the block Hankel matrices we
leverage are in general not Hankel, but a general matrix related
to a linear dynamical system. Finally, we remark that while
the above works focus on recovering scalar signals, with the
shift operator A being known, here we address the problem
of estimating the unknown A, from partial observations along
different trajectories.

5) Graph Learning in Signal Processing: there have been
significant research efforts for inferring graph topology from
observations of graph signals. This includes [PIM10], where
the graph topology is estimated from full observations of
a solution of a system of linear SDEs on the graph, via
a regularized least squares approach, in particular focus-
ing on the length of time the system needs to be ob-
served in order to estimate the graph topology, as well
as on the role of sparsity of the graph topology. Other
existing approaches leverage a model based on graph fil-
ters [SMMR16, SMMR17], or enforce sparsity [MTF17] or
smoothness [Kal16, DTFV16, TDKF17, EPO18] of signals
using a penalized likelihood approach. Only a few works
consider the graph signals as states of an underlying dynamical
system, evolving according to the topology of the graph,
e.g., [CIML20], in which case the single-trajectory states are
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observed via a fixed observation matrix that is static over time.
In all cases, the identifiability of graph topology remains to be
a challenging problem, as do the recovery algorithms, which
lack theoretical guarantees.

D. Outline
The paper is organized as follows. In Section II, we present

in which sense the transition operator recovery problem is
equivalent to a rank minimization problem over block Han-
kel matrices constrained to an affine space. In Section III,
we introduce TOIRLS, or Transition Operator Iteratively
Reweighted Least Squares, to solve the resulting structured
rank minimization problem. We introduce incoherence notions
of block Hankel matrices in Section IV, and present The-
orem IV.1, our main result that establishes local quadratic
convergence of TOIRLS for respective sample complexities
under both uniform and adaptive space-time sampling models.
In Section V, we elaborate on computational considerations for
TOIRLS, before presenting extensive numerical explorations
in Section VI. In Section VII, we provide the proof of the
main theorem of Section II and in Section VIII a proof outline
of Theorem IV.1. We conclude the main part of the paper in
Section IX. Finally, we present useful incoherence estimates
in Appendix A, present a complete proof of Theorem IV.1 in
Appendix B and detail a practical implementation of TOIRLS
in Appendix H.

E. Notation
We briefly summarize some notational conventions we use

in this paper. The set of orthogonal matrices of dimension d

is denoted by O
d =

�
M 2 Mn : M⇤

M = Id
 

, while Id is
the identity matrix (omitting its dimension whenever suitable).
If Md1⇥d2 and v 2 R

d is an arbitrary vector of dimension
d := min(d1, d2), the operator dg : R

d ! Md1⇥d2 maps v

to the (generalized) diagonal matrix dg(v) 2 Md1⇥d2 with
dg(v)ij = vi if i = j and dg(v)ij = 0 otherwise. For any
matrix H, we denote its spectral norm by kHk := �1(H) and
define the spectral norm ball with radius ⇠ > 0 around H as
BH(⇠) := {M 2 Md1n,d2n : kM�Hk  ⇠}.

II. RECOVERING TRANSITION OPERATORS FROM
SPACE-TIME SAMPLES USING LOW-RANK OPTIMIZATION

In this section, we detail an approach to solve the tran-
sition operator recovery problem introduced in Section I-A.
A fundamental issue is the nonlinearity of the operator QT :
A 7! QT (A) := A�A

2 �A
3 � . . .�A

T . We linearize this
nonlinearity by the transformation into the structured subspace
ImH ⇢ Md1n,d2n, where H : M�T

n ! Md1n,d2n is the
block Hankel operator of (9) with parameters d1, d2 2 N.
H maps a direct sums of (n ⇥ n) matrices to a block
Hankel matrix with d1 block rows and d2 block columns.
In the remainder of the paper, we call d1 and d2 satisfying
T = d1 + d2 � 1 the (first and second) pencil parameter of
H, in accordance with [HS90, CC14].

The block Hankel operator H enables us to recover the
operator A and its powers A

2
,A

3
, . . .A

T from a block

Hankel matrix that is low rank (Theorem II.1), an observation
which lies at the core of our approach. We use a dedicated low-
rank optimization to recover a block Hankel-structured low-
rank matrix H(eX⇤) compatible with the samples P⌦(QT (A))
taken at space-time locations ⌦. If a sufficient number of
random samples ⌦ from a sampling model in Section I-A are
provided, the hope is there is a unique generator eX⇤ = QT (A)
for the Hankel matrix, from which the transition operator A

can then be directly inferred.

A. Rank Minimization over Block Hankel Matrices
As a justification for our search for low-rank matrices in

the subspace of block Hankel structured matrices, we establish
in Theorem II.1 the strong relationship between the rank of
a block Hankel matrix H 2 Md1n,d2n and the rank of an

underlying “generator” matrix A. We say that
⇤
H 2 R

Dn is
a square extension of H if it is a block Hankel matrix with
pencil parameters D and D whose first T block anti-diagonals
coincide with the T anti-diagonals of H, and can otherwise
have arbitrary entries in the last 2D � d1 � d2 blocks.

Theorem II.1. Recall the monomial operator QT : Mn !
M�T

n ,A 7! A�A
2�A

3� . . .�A
T from (6), and the block

Hankel operator H : M�T
n ! Md1n,d2n from (9), with pencil

parameters d1, d2. Then:
1) for any A 2 Mn,

rank (H(QT (A))) = rank(A) ;

2) for any block Hankel matrix H 2 Md1n,d2n with (n⇥n)
blocks, that has a positive semidefinite square extension
⇤
H 2 MDn,Dn, D = max(d1, d2), which has its first
block H1 2 Mn of rank r, and at least one other block
Hj 2 Mn, j > 1, of rank r, there exists a pair of
matrices (Y,M), where Y 2 Mn,r and M 2 Mr is
symmetric, with rank(H) = rank(Y) = rank(M) = r

such that

H = H
�
YY

⇤ �YMY
⇤ � . . .�YM

T�1
Y

⇤
�
. (12)

We refer to Section VII for a proof of Theorem II.1. Related
results have appeared in [FH96, YXS16, AC17]; however,
Theorem II.1 does not follow from these results.

Theorem II.1 implies a close relationship between a low-
rank property of block Hankel matrices H(eX) as in (9) and
the existence of an operator A such that QT (A) = eX. While
Theorem II.1.1 implies that the rank of generator matrix A

is inherited by its block Hankel image, Theorem II.1.2 is a
statement in the other direction, i.e. about the existence of an
underlying rank-r generator matrix M of a matrix semigroup
associated to a rank-r block Hankel matrix. We show the
latter statement only if a positive semidefinite extension exists,
noting that similar statements apply if additional, typically
weak algebraic constraints are imposed on a general low-rank
block Hankel matrix H 2 Hd1n,d2n, see [Tis92, FH96]. In
particular, note that is A 2 Mn if of full rank n, Theorem II.1
implies that H(QT (A)) is also of rank n. This is, however,
low-rank if we choose min(d1, d2) > 1, as the maximal rank
of a (d1n⇥ d2n) matrix is min(d1, d2)n, and not n.
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At a high level, Theorem II.1 illustrates that the nonlinear
relationship between the matrix powers A,A

2
, . . . ,A

T is
translated to linear dependences of the blocks in an associated
block Hankel matrix in ImH, motivating the pursuit of an
optimization approach that aims to find a completion of a block
Hankel matrix H( eX) that is both low-rank and compatible
with the spatio-temporal measurements parametrized by the
sampling operator P⌦ from (7). This suggest a block Hankel
structured rank minimization problem

min
eX2M

�T
n

rank
⇣
H(eX)

⌘
s.t. P⌦(eX) = y (13)

where y = P⌦(QT (A)) the subset of observed entries of
QT (A) = A � A

2 � A
3 � . . . � A

T , indexed by ⌦. More
generally, for a given regularization parameter � � 0, we
define the data fitting function G

�
⌦,y : M�T

n ! R

G
�
⌦,y(eX) =

8
<

:
◆P�1

⌦ (y)
(eX), if � = 0,

1

�

���P⌦(eX)� y

���
2

2

, if � > 0,
(14)

where ◆P�1
⌦ (y)

: M�T
n ! R[{1} is 0 if P⌦(eX) = y, and 1

otherwise. We then formulate the rank minimization problem

min
eX2M

�T
n

rank
⇣
H(eX)

⌘
+G

�
⌦,y(eX) , (15)

which reduces to (13) for � = 0. In the presence of
inexact measurements with additive noise such that y =
P⌦(QT (A)) + ⌘ for some ⌘ 2 R

m, it can be benefi-
cial to choose a positive regularization parameter � > 0
[BSW11, Klo11].

Rank minimization problems such as (13) and (15) are
well-known to be NP-hard in general [RFP10], and different
convex and non-convex reformulations of such problems have
been studied for unstructured problems, i.e., for the case that
eX itself is low-rank [CT10, KMO10, Rec11, Van13, PKCS18,
MWCC20]; see [DR16, CLC19] for recent surveys.

While (13) enables us to formulate or problem in the
language of optimization and to relate it to a common
algorithmic paradigm in machine learning and signal pro-
cessing, it poses several challenges from an optimization
perspective. First, the rank objective is a non-convex and
and non-smooth function, so that it is non-trivial to use
derivative-based algorithms. Furthermore, unlike most low-
rank optimization problems, the search space of (13) is the
strict subspace

n
H(eX) : eX 2 M�T

n

o
of Md1n,d2n, mak-

ing the problem a structured low-rank optimization problem
[FPST13, Mar19, CC14, CWW18]. Lastly, due to the large
dimensionality of the ambient space Md1n,d2n even for mod-
erate n and T , only computationally efficient methods can be
used for transfer operators of non-trivial size.

III. OUR APPROACH: ITERATIVELY REWEIGHTED LEAST
SQUARES

In several works in the literature, rank minimization prob-
lems have been tackled by designing optimization algo-
rithms that optimize non-convex, smoothed objective func-
tions whose minimizers are designed to coincide with those

"�"

f(�)

f"(�)

Fig. 1: Illustration of the smoothing f"(�) of f(�) = log |�|.

of the rank objective in many cases. It was observed in
[FHB03,CESV13,KMV21] that optimizing a log-determinant
objective often leads to solutions of underdetermined linear
systems of very low-rank even in the presence of relatively few
samples. Similarly, objective functions based on the Schatten-
p quasi-norm [MF12,LTYL15,OJ17,KS18,GVRH20] and the
smoothed clipped absolute deviation (SCAD) of the singular
values [MSW20] have been used to derive competitive algo-
rithms for a variety of low-rank matrix recovery problems in
signal processing and statistics.

We propose an algorithm that adapts these ideas to the
block Hankel rank minimization problem (15) as presented
in Section II-A, which can be interpreted as an Iteratively
Reweighted Least Squares (IRLS) [HW77, DDFG10, MF12,
FRW11, OJ17, KS18] strategy. Instead of optimizing the rank
objective (15) directly, let " > 0 be a smoothing parameter
and define the smoothed log-deteterminant objective F" :
Md1n,d2n ! R as

F"(M) :=
dnX

i=1

f"(�i(M)), (16)

where d = min(d1, d2) and

f"(�) =

(
log |�|, if � � ",

log(") + 1

2

⇣
�2

"2 � 1
⌘
, if � < ",

(17)

which is continuously differentiable. If J" : M�T
n ! R[{1}

is the "-smoothed surrogate objective defined as

J"(eX) = F"(H(eX)) +G
�
⌦,y(eX), (18)

for a matrix eX 2 M�T
n , the steps of an iteration of IRLS

can be understood as, first, the minimization of a quadratic
model function Q"(·|M) : Md1n,d2n ! Md1n,d2n that is
an appropriate, global upper bound of J"(·), leading to a
weighted least squares problems and, second, as an update
of the smoothing parameter " and refinement of the quadratic
model function Q" using the solution of the last weighted least
squares problem. The quadratic model functions Q"(·|M) can
be defined implicitly using weight operators, with which we
are then able to formulate TOIRLS, an IRLS algorithm for
transition operator learning (Algorithm 1).

Definition III.1 (see also [Küm19, KKMV22]). Let M 2
Md1n,d2n be a matrix with singular value decomposition
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M = U dg(�)V⇤, where U 2 O
d1n, V 2 O

d2n, and " > 0.

1) The optimal weight operator WM : Md1n,d2n !
Md1n,d2n associated to M and " is the linear operator

WM(Z) = U⌃�1

",d1
U

⇤
ZV⌃�1

",d2
V

⇤
, (19)

where ⌃",d1 2 Md1n and ⌃",d2 2 Md2n are diag-
onal with (⌃",d1)ii = max(�i, ") for i 2 [d1n] and
(⌃",d2)jj = max(�j , ") for j 2 [d2n].1

2) Let H : M�T
n ! Md1n,d2n be the block Hankel

operator of (9). We define the effective weight operator
fWM : M�T

n ! M�T
n as the linear operator

fWM(eZ) := H ⇤
WMH(eZ) .

The choice of WM in Definition III.1 in the weighted least
squares problem (20) of Algorithm 1 can be regarded as the
geometric operator mean of the one-sided weight operator
notions of the first IRLS papers considering rank optimization
[MF12, FRW11]. While a detailed discussion is beyond the
scope of this paper, we note that in [Küm19, KKMV22] it is
shown that the associated quadratic model function Q"(·|M)
not only majorizes the "-smoothed surrogate objective J"(·) of
(18) pointwise, but also is optimal in the sense that any smaller
weight operator does not lead to majorizing quadratic model
functions. Using the pointwise majorization, it is possible to
show that the iterates (eX(k))k�1 of Algorithm 1 lead to a
monotonically decreasing sequence

�
J"k(eX(k))

�
k�1

, and that
each accumulation point of (eX(k))k�1 is a stationary point of
J"(·), where " := limk!1 "k [KMV21].

While the domain of the weighted least squares step (20) of
Algorithm 1 is M�T

n , by the definition of the effective weight
operator fWM, a spectral reweighting in the subspace of block
Hankel matrices is applied implicitly. As initialization for k =
1, the weight operator WH0 (19) is chosen to be the identity
operator, implying that the effective weight operator fWH0 =
H ⇤H = D2 is a diagonal operator that is constant for each
summand of M�T

n , and which amounts to the multiplicity
of each block in the block Hankel image (9) defined via the
operator H; cf. (44) in Appendix A.

a) Choice of regularization parameter �: the parameter
� � 0 in Algorithm 1 determines which surrogate objective
J"(·) is optimized by TOIRLS and which underlying rank
objective (15) is chosen. As described in Section II-A, the
choice of � = 0, which imposes an affine constraint defined
by the sampling operator P⌦ and the observation vector y 2
R
m, is appropriate if exact space-time samples are provided

to the algorithm. While an optimal choice might correspond
to some � > 0 in the presence of inexact space-time samples
that depends on the order of magnitude of the noise, it turns
out that � = 0 is surprisingly robust to noise in practice, as
explored in Section VI-C. Theoretically, this observation is
related to the so-called quotient property of the measurement
operator, which has been used to establish robust guarantees
for equality-constrained low-rank and sparse recovery methods
[Woj10, CP11b, Liu11, KKM22].

1with the convention that �i = 0 for min(d1, d2)n < i  max(d1, d2)n.

Algorithm 1 TOIRLS Transition Operator Iteratively
Reweighted Least Squares

Input: Indices ⌦ ⇢ I , observations y 2 R
m, rank estimate

er  n, regularization parameter � � 0, first pencil
parameter 1  d1  n.
Set "

(0) = 1 and fWH0 = H ⇤H with H : M�T
n !

Md1n,d2n as in (9) where d2 = T � d1 + 1.
for k = 1 to K do

Solve weighted least squares problem
eX(k) := argmin

eX2M
�T
n

n
heX,fWHk�1(eX)i+G

�
⌦
(eX)

o
, (20)

where G
�
⌦

: M�T
n ! R is the data fitting function

of (14) and fWeX(k�1) is the effective weight operator of
Definition III.1.
Update smoothing: Compute (er + 1)-st singular value
of Hk = H(eX(k)) to update

"k := min ("k�1,�er+1 (Hk)) . (21)

Update weight operator: For rk :=
���i 2 [dn] :

�i

�
Hk

�
> "k

 ��, compute reduced rank-rk singular value
decomposition of of Hk to obtain leading rk singular val-
ues �i

�
Hk

�
, i = 1, . . . , rk and matrices U

(k) 2 R
nd1⇥rk

and V
(k) 2 R

nd2⇥rk , use this to update fWHk as defined
in Definition III.1.
k = k + 1.

end for
Extract the first block A

(K) :=
h
eX(K)

i

1:n,1:n
of eX(K).

Output: A(K).

b) Choice of rank estimate er: if the rank r = rank(A) of
the transition operator A to be recovered is known, one should
choose er = r. If r is unknown, or if only a vague estimate is
available, it is advisable to overestimate the true rank, i.e. to
choose er � r. While exact recovery of the transition operator
might need more samples in that case, Algorithm 1 seems to
be often able to good estimates for A in that case.

c) Update rule for smoothing parameter "k: after each
weighted least squares step, the smoothing parameter "k

is updated, cf. (21), in a non-increasing manner. This
distinguishes IRLS from a conventional majorize-minimize
(MM) method [Lan16] for the smoothed surrogate objec-
tive J"(·) for a fixed ". Similarly to related IRLS methods
[DDFG10, FRW11, VD17, KS18, KMV21], the choice of the
update rule quantifies the distance to a matrix of target rank er
that is compatible with the observations y, playing a crucial
role in the design of the algorithm due to the non-convexity
of F"k(·). If "k is large, J"k(·) will possess much fewer non-
global minima than if "k is small, in which case, however,
F"k(·) resembles much more the concave log-determinant
objective that is known to constitute a powerful surrogate for
the rank function [Fou18].

For a complexity analysis and implementation details, we
refer to Section V.
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IV. MAIN RESULTS

In this section, we present a convergence theory for Algo-
rithm 1 for the problem of recovering transition operators from
sparse time-space samples.

It has been an open problem to establish global conver-
gence of similar IRLS methods to minimizers of non-smooth,
non-convex surrogate objectives such as (18) underlying the
respective problems [DDFG10,MF12,KS18,KMV21], despite
it being observed numerically in simulations. For this reason,
we restrict the convergence analysis for TOIRLS to a local
one, which is based on the assumption we are given an iterate
eX(k) 2 M�T

n that is close to a ground truth which is an image
QT (A) of a transition operator A. We quantify this using the
set

BHA
(⇠) := {H 2 Md1n,d2n : kH�HAk  ⇠} (22)

that contains matrices close to the block Hankel matrix HA :=
H(QT (A)).

With Theorem IV.1 in Section IV-B below, we show suffi-
cient conditions on the number of space-time samples, under
either the uniform and adaptive sampling model, that, with
high probability, guarantee the local convergence of TOIRLS
to the ground truth, and therefore the recovery of A.

A. Incoherence for Block Hankel Matrices

Due to the coordinate-wise nature of either of our sampling
models, even for a fixed dimensionality n and fixed rank r,
it cannot be expected that each transition operator A will
require a similar number of samples for successful recovery.
In particular, a more localized transition operator with a non-
zero pattern that is not very distributed will not benefit from
space samples at locations associated to its zero coordinates.

In order to quantify which transition operators can be recov-
ered by either of our sampling models, we therefore introduce
a notion of incoherence for the block Hankel embedding ma-
trix HA of a transition operator A. This extends the fundamen-
tal ideas in low-rank matrix completion [CR09,Rec11,Che15],
where the difficulty of a completion problem is measured
by the incoherence of a low-rank matrix with respect to the
standard basis. We also introduce local incoherence quantities,
to be used to guide the adaptive sampling scheme.

Let TZ be the tangent space to the manifold of rank-
r matrices Mr = {X 2 Md1n,d2n : rank(X) = r}
at Z 2 Md1n,d2n, where r 2 N and Z 2 Md1n,d2n is
a rank-r matrix with compact singular value decomposition
Z = U⌃V⇤ with U 2 R

nd1⇥r and V 2 R
nd2⇥r with

orthonormal columns, and ⌃ 2 R
r⇥r the diagonal matrix of

non-increasing singular values of Z. By [Van13],

TZ :={UM
⇤

1
+M2V

⇤ :M1 2 R
nd2⇥r

,M2 2 R
nd1⇥r}. (23)

Definition IV.1. Let Z 2 Md1n,d2n be a rank-r matrix. Let
{Bi,j,t : (i, j, t) 2 I} be the standard basis of the space of
block Hankel matrices.2 Let d1, d2 be the pencil parameters
of the block Hankel operator H, and cs :=

T (T+1)

d1d2
.

2See Lemma A.1 in Appendix A for an explicit representation.

1) For 1  i, j  n and 1  t  T , we define the local
incoherence at space-time index (i, j, t) of Z as

µi,j,t :=
nT

csr
kPTZ

(Bi,j,t)k2F . (24)

2) We say that Z is µ0-incoherent if there exists a constant
µ0 � 1 such that

max
1i,jn,1tT

kPTZ
(Bi,j,t)kF 

r
µ0cs

r

nT
, (25)

i.e., if max1i,jn,1tT µi,j,t  µ0. We call the smallest
µ0 satisfying (25) the incoherence parameter of Z.

Intuitively, a rank-r matrix Z is µ0-incoherent with small µ0

if the projections of all elements of the standard basis of the
space of block Hankel matrices {Bi,j,t} onto the tangent space
TZ associated to Z are small. In order to use an incoherence
notion that is adequate for our purposes of understanding the
fundamental difficulty of an instance of Problem I.1, we follow
the notion of [Küm19, Definition 3.3.1] in (25), which is a
slightly weaker notion than the notions used in the context
of structured low-rank matrices [CC14, (27)] and [CWW19].
In fact, µ0 in (25) can be upper bounded by the incoherence
parameter of [Rec11,CC14] (see also [KMV21, Remark B.1.],
the discussion of Section IV-C and Lemma A.2).

B. Local Quadratic Convergence of TOIRLS

We are now ready to state local convergence guarantees of
TOIRLS (Algorithm 1) for the recovery of transition operators
from space-time samples.

Theorem IV.1 (Local Quadratic Convergence of TOIRLS).
There exist absolute constants ec0, C such that the following
holds. Let A 2 Mn be a rank-r transition operator, let HA =
H(QT (A)) be the block Hankel matrix associated to the first
T time scales of A, where H : M�T

n ! Md1n,d2n is the block
Hankel embedding map (9) with pencil parameters d1, d2. Let
eX(k) be the k-th iterate of Algorithm 1 with inputs ⌦, y =
P⌦(QT (A)) and er = r, assume that the smoothing parameter
(21) satisfies "k = �r(H(eX(k))). Let  := �1(HA)/�r(HA)
denote the condition number of HA.

Suppose that one of the following statements holds:

1) [Uniform sampling] HA is µ0-incoherent and that ⌦ is a
random subset of cardinality m uniformly drawn without
replacement in the set of space-time samples I = [n] ⇥
[n]⇥ [T ] , with

m = ⌦(csµ0rn log(nT )), (26)

and, furthermore, H(eX(k)) 2 BHA
(R0) with3

R0 := ec0
✓
µ0

nT

◆3/2
r
1/2

(dn� r)1/2
�r(HA) . (27)

2) [Adaptive sampling] With (µi,j,t)(i,j,t)2I being the local
incoherences (24) of HA, ⌦ consists of random index
triplets (i, j, t) 2 I that are independently observed

3recall that d := min(d1, d2)
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according to Bernoulli distributions with probabilities
pi,j,t each satisfying

pi,j,t � min

✓
Ccs

µi,j,t log(nT )

nT
r, 1

◆
, (28)

and, furthermore, H(eX(k))2BHA
(R0) with

R0 := ec0 min
(i,j,t)2I

✓
µi,j,t log(nT )

nT

◆3/2
r
1/2

�r(HA)

(dn� r)1/2
.

(29)
Then, with probability of of at least 1 � 2n�2, the subse-
quent iterates of TOIRLS (Algorithm 1) converge to HA, i.e.
H(eX(k+`))

`!1���! HA, with quadratic convergence rate: for
a dimension-dependent constant ⌫.4

kH(eX(k+`+1))�HAk
 min(⌫kH(eX(k+`))�HAk2, kH(eX(k+`))�HAk) .

Theorem IV.1 justifies that the spatio-temporal transition
operator recovery problem can be solved efficiently using
TOIRLS given a number of random samples that is, up to
constants, only logarithmically larger than the r(2n � r) =
O(rn) free parameters that are required to describe a rank-r
transition operator A 2 Mn. In the case of adaptive sampling,
the condition (28) can be translated into a bound on the
number of expected samples mexp since mexp = E[|⌦|] =P

(i,j,t)2I pi,j,t � Ccs
r
nT log(nT )

P
(i,j,t)2I µi,j,t (if the con-

stants in (28) are small enough to attain the minimum in the
first argument). See Section IV-C for further discussion.

The proximity assumptions (27) and (29), which ensure
that the spectral norm error of subsequent iterates of TOIRLS
decreases with a quadratic convergence rate, are comparably
restrictive due to their dependence on the n, d and T , which
makes it hard to find an initialization that satisfy the conditions
for large-scale problems. However, extending the convergence
radius of IRLS methods remains an open problem even for
simpler problems such as sparse vector and unstructured low-
rank matrix recovery if a non-convex objective such as (16)
is used [DDFG10, KS18, KMV21]. In Section VI-A, we pro-
vide numerical experiments illustrating that in practice, exact
recovery of transition operators is observed empirically with
an empirical probability of essentially 1 once enough samples
are provided, even if TOIRLS is initialized with the natural,
data-agnostic weights of fWH0 = H ⇤H as in Algorithm 1.

The statements of Theorem IV.1 address the case of exact
observations y = P⌦(QT (A)) that are not perturbed by any
noise. In Section VI-C, we provide numerical experiments
suggesting that TOIRLS is in practice robust in the presence
of noisy observations (including with a choice of the regular-
ization parameter � = 0).

The proof strategy for Theorem IV.1 is outlined in Sec-
tion VIII and detailed in Appendix C.

We note that while Section IV-B focuses on the the behavior
of Algorithm 1 in the context of the recovery of a transition
operator A from space-time samples, it is possible to extend
the applicability of Theorem IV.1 to Algorithm 1 recovering—
more generally—rank-r block Hankel matrices by choosing as

4See Appendix C for a possible choices for ⌫.

output the entire matrix eX(K) 2 M�T
n instead of its restriction

to its first block A
(K). In particular, in this setting, the ground

truth HA can be substituted by any ground truth H(eX0)
with rank(H(eX0)) = r, using the same notions of (local)
incoherence as in the presented results.

Remark IV.1. We recall that the pencil parameter d1 is a free
parameter in Algorithm 1. Theorem IV.1 also has implications
for the choice of d1: for uniform sampling, the sampling
complexity (26) is minimized if we choose d1 such that cs ·µ0

(both cs and µ0 depend on d1) is minimized. The factor cs =
T (T+1)

d1d2
= T (T+1)

d1(T�d1+1)
is minimized for d1 = b(T + 1)/2c,

yielding a roughly square block Hankel matrix. Such a choice
is observed to be favorable also for other problems using
structured low-rank optimization [CC14, CCY22].

A priori, the dependence of µ0 on d1 is unclear; however,
numerical experiments conducted in Section VI-A2 suggest
that this choice of d1 also minimizes the product csµ0 at least
in some of situations we consider.

C. Examples and Discussion of Sample Complexity

We now attempt to better understand the implications
of Section IV-B and, in particular, the sample complexity
conditions (26) and (28) for uniform and adaptive sampling
schemes. We provide sufficient conditions on the sample com-
plexity by providing bounds on the incoherence parameter µ0

and local incoherences µi,j,t, respectively, in various examples.
It is instructive to relate µ0, the incoherence of the block

Hankel matrix HA = H(QT (A)), with the now-classical
incoherence notion [CT10, Che15] of the transition operator
A (which coincides with HA in the static case of T = 1).
While in general there is no direct relationship between these
two notions, as the singular vectors of HA may not be
always expressed in terms of the singular vectors of A, In
two particular cases, when A is an orthogonal matrix or a
positive semi-definite matrix, it is possible to establish a simple
relationship between these incoherence notions.

a) Orthogonal matrices: If A 2 O
n := {X 2 Mn :

X
⇤
X = Id}, it holds that rank(A) = n. In this case, the

incoherence parameter µ0 of HA satisfies

µ0  1 =: eµ0

and, furthermore, the local incoherences µi,j,t of HA satisfy
X

(i,j,t)2I

µi,j,t  Tn
2
,

see Appendix A1 for details. The two parts of Theorem IV.1
therefore imply that for both uniform and adaptive sampling,
⇥(csn2 log(Tn)) space-time samples are sufficient to establish
local convergence of IRLS with high probability. These results
are consistent with the intuition that a dynamical system driven
by an orthogonal transition operator is energy-preserving,
and from the bound ⇥(csn2 log(Tn)), we see that up to a
logarithmic factor of log(Tn), space-time samples contain a
comparable amount of information to that of static samples. As
the resulting sample complexity bound is of the same order in
both cases, we expect adaptive sampling and uniform sampling
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to exhibit similar behavior for orthogonal transition operators.
We refer to Section VI-A1 for numerical experiments.

b) Positive semi-definite matrices: Let d1  d2 without
loss of generality. If the transition operator is a positive
semidefinite matrix A =

Pr
i=1

�iuiu
⇤

i with (positive) eigen-
values �i and corresponding eigenvectors ui, we show that
the incoherence parameter µ0 of H

�
QT (A)

�
satisfies

µ0  max
1in

rX

`=1

nd2(u`)2i
r(
Pd1�1

s=0
�2s
` )

=: eµ0. (30)

In particular, if A is a rank-r projection and if d1 = d2,
this bound becomes (with ei denoting the i-th canonical basis
vector)

eµ0 = max
1in

n

r
kU⇤

eik22 =: ⌫0 ,

which coincides with the incoherence constant of A as defined
in the low-rank matrix completion literature [CT10, Che15].
In this case, we obtain a space-time sampling bound
⇥(cs⌫0rn log(nT )), which is just slightly more than the neces-
sary condition of ⇥(cs⌫0rn log(n)) for exact recovery by any
method under a uniform sampling model [CT10, Che15]. For
adaptive sampling, we show an upper bound for

P
i,j,t pi,j,t

as ⇥(rn log(nT ) log(T )) (T � 3), and this bound can be
improved to ⇥(rn log(nT )) if A is a rank r projection. Our
bound is comparable with the one obtained in [CBSW15, The-
orem 2] for Bernoulli sampling for low-rank matrix comple-
tion, namely, ⇥(rn log2(n)) for the case T = 1. We refer to
Appendix A2 for proofs of the presented estimates.

In general, eµ0 could be larger or smaller than ⌫0, depending
on the interplay of the spectrum of A with the coherence
of the eigenvectors. For very spiky operators A with large
incoherence ⌫0 and quickly decaying spectrum, however, the
best estimate we obtain from (30) is eµ0  d2⌫0. This implies
that in such a setting, our estimates lead to a sufficient
condition of ⌦(cs⌫0rnT log(nT )) required samples, which is
rather pessimistic.

V. COMPUTATIONAL CONSIDERATIONS

If Hk�1 = H(eX(k�1)) is the block Hankel matrix at
iteration k�1, the solution eX(k) of the weighted least squares
(20) can be written as (see Lemma A.8 in Appendix H)

eX(k) = fW�1

Hk�1
P

⇤

⌦

⇣
� Id+P⌦

fW�1

Hk�1
P

⇤

⌦

⌘�1

(y) .

However, using this formula directly can be impractical as
we have no explicit representation of the inverse fW�1

Hk�1
:

M�T
n ! M�T

n of the effective weight operator fWHk�1 :
M�T

n ! M�T
n , unlike in the case of unstructured low-rank

optimization, where the optimization domain is not restricted
to a strict linear subspace such as H(M�T

n ) ⇢ Md1n,d2n and
for which a related IRLS method was studied in [KMV21]. A
space and memory-efficient implementation of the weighted
least squares step leveraging an underlying “low-rank plus
diagonal” structure of fWHk�1 can still be achieved, as can
be seen in Theorem V.1.

Theorem V.1. Let eX(k�1) 2 Md1,d2 be the (k� 1)-st iterate
of TOIRLS (Algorithm 1) for an observation vector y 2 R

m

with m = |⌦|, er = r, and � � 0. Assume that rk�1 = r. Then
an approximation of the k-th iterate eX(k) of TOIRLS can be
computed within NCG inner steps of a conjugate method solving
a O(rnT ) ⇥ O(rnT ) linear system with space complexity of
O(rnT+m) and in O(NCG innerrT (m+n log T+nrT )) time.

Theorem V.1 follows directly from Lemma A.9 in Ap-
pendix H, using the implementation outlined in Algorithm 2.
The linear systems solved within Lemma A.9 can be shown to
be well-conditioned under reasonable assumptions, in which
case a constant number NCG inner of CG iterations is sufficient
to obtain an accurate approximation of eX(k).

As stated in the weight operator update step of Algorithm 1,
the action of the effective weight operator fW�1

Hk�1
only uses

information about the rk�1 leading singular vector pairs and
singular values of H(eX(k�1)). In particular, if for all iterations
where the smoothing update (21) is such that "k = �er+1 (Hk),
it holds that rk = er. This means that, in this case, only er
singular values and singular vector pairs of Hk need to be
computed in the weight update step of Algorithm 1, and these
can be computed up to high precision using matrix-matrix
multiplications with a randomized block Krylov method in
[MM15,YGL18] in O(mTr+rT (log T +rT )n+Tnr

2) time
(using fast multiplication with block circulant matrices, see
also proof of Lemma A.9).

We conclude that one iteration of TOIRLS can be computed
with a time complexity that is linear in the dimension n of the
transition operator A, at least if it is of rank r = O(1). For
example, if |⌦| = m = ⇥(rn log(nT )) space-time samples of
an O(1)-incoherent ground truth A are provided uniformly at
random, one full TOIRLS iteration using Lemma A.9 takes
O(nT 2 log(nT )) time.

VI. NUMERICAL EXPERIMENTS

In this section we explore the numerical performance of
TOIRLS, Algorithm 1 for estimating transition operators from
sparse space-time samples. We consider operators A 2 R

n⇥n

associated with random graph models, as well as orthogonal
matrices A. These experiments are meant to shed light on the
sharpness of our sampling complexity results Theorem IV.1,
and verify they are consistent with the empirically observed
behavior. While there are no dedicated computational ap-
proaches to our recovery problem available in the literature,
we include also comparisons with the interior-point algo-
rithm [WMNO06] used in the nonlinear optimization wrapper
fmincon of MATLAB, minimizing the objective f : Mn !
R

f(B) := kP⌦(QT (B))� P⌦(QT (A))k2
2

(31)

using finite difference gradient approximations.
a) Numerical setup: since the number of degrees of

freedom is r(2n � r) for a rank-r matrix A 2 Mn and
r(n�(r�1)/2) for a symmetric (n⇥n) rank-r matrix A, we
define, for mtotal = |⌦| space-time samples, the oversampling
factor ⇢ as, respectively,

⇢ =
mtotal

r(2n� r)
and ⇢ =

mtotal

r(n� (r � 1)/2)
.
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The average number of spatial samples taken at each time
instance is msingle = mtotal/T . We use m1 to denote the
number of samples taken at T = 1. We will use both the
uniform and adaptive schemes described in Section I-A.

In the numerical experiments, we use TOIRLS as out-
lined in Algorithm 1 using the implementation described in
Appendix H for computing the tangent spaces, and solving
the linear systems associated to the weighted least squared
problems with a conjugate gradient method.5 Unless stated
otherwise, we use Algorithm 1 with stopping criterion com-
bining a maximal number of iterations N0 = 250, a tolerance
tol = 10�11 with respect to the relative change in Frobenius
norm, and tol CG = 10�13 for the conjugate gradient step. We
provide the true rank(A) of the ground truth as the rank esti-
mate er = rank(A) to the algorithm. If not stated otherwise, we
provide TOIRLS with the pencil parameter d1 = b(T + 1)/2c,
leading an (approximately) square dimensionality of the block
Hankel embedding space ran(H).

b) Evaluation metrics: we define the recovery error of
an estimator Â of A as

RecA := kÂ�AkF /kAkF .

For a random model, unless stated otherwise, we run 10
independent trials and report the mean and standard deviation
of the recovery errors.

c) Graph Topology-Induced Transition Operators: We
consider operators representing dynamics on different graphs
and random graph models. Let G = (V,E,W) be an undi-
rected weighted graph with n vertices V = {v1, · · · , vn},
edges E ⇢ V ⇥ V and adjacency matrix W 2 R

n⇥n, i.e.,
Wij = 1 if (i, j) 2 E and Wij = 0 otherwise. The degree
of a vertex vi 2 V is deg(vi) =

Pn
j=1

Wij . Given a graph
G, a variety of associated transition operators can be defined,
encoding structural information about the graph [Chu97] and
associating to the graph certain dynamical processes on it.

Definition VI.1. The normalized diffusion operator of a
graph G = (V,E,W) is A := (D�1)

1
2W(D�1)

1
2 , where

D := diag(deg(vi))vi2V and D
�1 denotes its pseudo-inverse.

The normalized graph Laplacian operator is L = Id�A. The
random walk matrix P is D

�1
W, and the heat diffusion

operator for time parameter ⌧ > 0 is exp(�⌧L).

A. Recoverability in the Noiseless Setting
We first investigate the empirical recoverability of transition

operators A by Algorithm 1 from spatio-temporal samples ⌦
given different numbers of time steps T , sampling schemes
and different sample complexities. Furthermore, we consider
different types of transition operators that include both full and
low-rank matrices, symmetric and non-symmetric matrices,
orthogonal matrices and operators associated to the topology
of graphs.

5For problem instances with relatively large ambient dimension n, such as
the Minnesota road network graph of Section VI-A4, we use a MATLAB
implementation that follows closely the steps outlined in the proof of
Lemma A.9.2. For problems with larger number of time steps T , we used
matrix-vector multiplications in Algorithm 2 that include antiaveraging of
block Hankel matrices instead of block-wise fast Fourier transforms as these
turned out to be faster for the problem dimensions we were interested in.

1) Dependence on Number of Time Steps T : For a first
experiment, we fix the number m = |⌦| of uniformly sampled
space-time samples from QT (A) := A�A

2�A
3� . . .�A

T

and consider different choices of T .
a) Random orthogonal matrices: we consider random

orthogonal matrices A 2 R
n⇥n, with n = 50, sampled from

the Haar measure on the orthogonal group O(n) = {A 2
R
n⇥n : AA

T = A
T
A = I}. In this case, A has n

2 = 2500
degrees of freedom,6 and we first fix the total number of
space-time samples (uniform sampling) to mtotal = 7500,
corresponding to an oversampling factor of ⇢ = 3. We
investigate the performance of the proposed approach when
T is between 10 and 50, i.e., the average spatial samples per
time instance ranges from 750 to 150. We report the results
in Table I: our approach is able to recover A accurately
after about 30 IRLS iterations, even when T grows larger,
increasing the apparent nonlinearity of the problem. This is
consistent with our theoretical analysis: in short, in an energy-
preserving system, one can trade spatial samples for an equal
amount of temporal samples without loss of information.

T RecA msingle dof(A) ⇢ Iterations
10 (2.3± 0.2) · 10�14 750 2500 3 20.9± 0.3
20 (5.7± 0.8) · 10�14 375 2500 3 25.1± 0.6
30 (1.1± 0.2) · 10�13 250 2500 3 27.5± 0.8
40 (1.1± 0.1) · 10�13 187.5 2500 3 30.2± 2
50 (1.8± 0.3) · 10�13 150 2500 3 32.8± 2

TABLE I: The estimation errors for random orthogonal matri-
ces of size 50⇥ 50 using uniform sampling with replacement.

In Figure 2, we report on an experiment with the same
data and sampling model, but where we vary both the number
of time steps T = 1, . . . , 40 and the oversampling factor
⇢ = 1, . . . , 3.5. For 24 random instances, we visualize the
empirical probability of exact recovery (defined as a relative
Frobenius error of RecA < 10�4). We observe the existence
of a sharp phase transition between no recovery and exact
recovery for all instances, at an oversampling factor between

6In fact, an orthogonal matrix has only n(n � 1)/2 degrees of freedom;
however, as reconstruction method is oblivious to the orthogonality con-
straints, we neglect these in our calculation.
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Fig. 2: Phase transition plot for orthogonal matrices, with
oversampling factor ⇢ on the x-axis and time steps T on y-axis.
Yellow corresponds to exact recovery for all random instances
of the problem, blue corresponds to no recovery. Red line:
1 + 0.21 log(nT ).
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⇢ = 2 and ⇢ = 2.7, depending weakly on T . This is
consistent with Theorem I.1, which predicts exact recovery
from ⇢n

2 & n
2 log(nT ) samples, since here µ0 = 1, cf.

Section IV-C. In fact, the phase transition in Figure 2 occurs
at around ⇢ ⇡ 1 + 0.21 log(nT ) for the tested parameters.

b) Erdős-Rényi Graphs.: In the next experiment, we
consider graph matrices A associated with Erdős-Rényi graphs
[ER59, Gil59] with n = 60 nodes with connectivity prob-
ability of p = 0.8. With Tr(·) the map from a matrix to
its best rank-r approximation, for r between 1 and 60, we
create rank-truncated continuous-time heat diffusion operators
A = Tr (exp(�⌧L)) 2 R

n⇥n, with L the normalized graph
Laplacian as in Definition VI.1, ⌧ = 0.4, on an instantiation
of an Erdős-Rényi graph. In Figure 3, we depict QT (A) for
such a transition operator, with r = 20 and T = 7 time steps.

As they are symmetric, such matrices have dof(A) =
r(n�(r�1)/2) degrees of freedom. In Figure 4, we visualize
the recovery performance of TOIRLS for varying numbers of
samples m = |⌦|, for three different numbers of time steps T .
In the left column of Figure 4, we see that the phase transition
for T = 1 occurs extremely close to the information theoretical
limit—in this case, the setting coincides with low-rank matrix
completion via MatrixIRLS as described in [KMV21]. For
T = 4, the transition occurs at around m = 1.5rn. Apart
from the fact it is expected that generally, the phase transition
will occur at larger sample complexities than for T = 1 due
its the logarithmic dependence on T , it is remarkable that the
quadratic dependence of dof(A) on r is not reflected in the
empirical transition curve. However, this is still compatible
with Theorem IV.1, as dependence on r in the sufficient con-
dition is linear. As expected due to the logarithmic dependence
on T , we observe a similar, but slightly deteriorated transition
curve for T = 7.

2) Choice of Pencil Parameter d1.: In the experiments of
Section VI-A1, we always chose the first pencil parameter d1
so that block Hankel matrices H(eX) are square or as square
as possible, i.e., such that d1 = b(T + 1)/2c.

Revisiting the experiments of Section VI-A1 for the Erdős-
Rényi graph model and T = 7 time steps, we now explore the
sensitivity of the problem to the choice of d1. In Figure 5, we
observe that for d1 = 1/d2 = 7, the phase transition occurs
only for significantly more samples m than for the square
choice of d1 = d2 = 4; for example, it can be seen that
for r = 20, the transition is at m = 3600 or ⇢ ⇡ 3.56 for
d1 = 1, whereas it is at m = 2500 or ⇢ ⇡ 2.47 for d1 =
4. For d1 = 1, the recovery problem becomes impossible if

the rank of A satisfies r = 60 due to a lack of any low-
rank property of the embedding matrix H

�
QT (A)

�
, and the

experiment indicates that even for lower ranks r ⌧ 60, this
choice of d1 is disadvantageous. For d1 = 2 and d1 = 3, the
behavior is quite similar to the square case in this example
with a just slightly worse phase transition.

Furthermore, we illustrate in the last column of Figure 5 the
values of the d1-dependent product csµ0, where cs =

T (T+1)

d1d2

is the constant of Definition IV.1 and µ0 is the incoherence
parameter (25) of H(QT (A)) for a given choice of the pencil
parameter d1. The values are illustrated with a one standard de-
viation confidence interval across 24 realizations of the Erdős-
Rényi model. We observe that csµ0 is minimal for d4 = 1 for
essentially all ranks r, indicating that our sample complexity
bound (26) in Theorem IV.1 indeed justifies a square choice
for the pencil parameter such that d1 = b(T + 1)/2c.

3) Uniform Sampling vs. Adaptive Sampling: Next, we
explore the empirical benefits of adaptive sampling compared
to uniform sampling for the recovery of transition operators
A. In particular, we assume that we have knowledge about
the local incoherences µi,j,t of A for all (i, j, t) 2 I , see
(24) in Section IV-A, and design an adaptive sampling scheme
with probabilities pi,j,t = cµi,j,t for all (i, j, t) 2 I , where
c > 0 is chosen such that the expected number of samples
mexp = E[|⌦|] =

P
(i,j,t)2I pi,j,t. We vary then mexp in a

similar manner as m above for uniform sampling. We note
that this is not a very realistic sampling scheme, since local
incoherences are not immediately accessible as they require
the knowledge of A. An implementable approximation of the
ideal adaptive sampling scheme was proposed in [CBSW15]
for the related low-rank matrix completion problem; however,
an application to our setting is beyond the scope of this paper.

In Figure 6, we illustrate a realization of an expected
number of mexp = 3000 adaptive samples in the Erdős-Rényi
setting of Section VI-A1, corresponding to an oversampling
factor ⇢ ⇡ 2.97. Applying TOIRLS to the recovery of heat
diffusion operators associated with Erdős-Rényi graphs from
adaptive sampling, we report the results of the experiment of
Section VI-A1 in Figure 7. It can be seen that for T = 1
the phase transition is very similar to the one corresponding
to uniform sampling (see Figure 4), as it was already close
to the information theoretic threshold ⇢ = 1 (red curve).
For the dynamic cases T = 4, 7, we see that we obtain a
modest improvement compared to uniform sampling, with the
phase transition exceeding the line mexp = 1.5rn especially
for large r and T = 4, and achieving recoverability of full
rank operators from around 6, 000 samples for T = 7, unlike
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Fig. 3: Left column: Realization of Erdős-Rényi graph with n = 60 and p = 0.8. Other columns: Aggregation of matrix of
powers QT (A) of rank-20 truncation A of heat diffusion operator (color scheme normalized across powers, log-scale).
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Fig. 6: Adaptive space-time samples P⌦(QT (A)) of rank-20 truncation A of heat diffusion operator (1010 degrees of freedom,
log-scale) with mexp = 3000.

in the uniform sampling case.

a) Community Graphs: the improved efficiency of the
adaptive sampling scheme has been rather modest for the
heat diffusion operator based on a Erdős-Rényi graph in our
parameter setting due to the relatively benign spectral decay
of A. We now consider a community graph with n = 60
vertices and 10 communities (eight of size 5, one of size
13 and one of size 7), with dense connections within a
community, and independent random inter-community edges
with probability 1/10. We use the Graph Signal Processing
(GSP) toolbox [PPS+14] to create such graphs, and define
the associated transition matrix as the truncated random walk
matrix A = Tr (P) = Tr

�
D

�1
W
�
, cf. Definition VI.1.

Note that this matrix is in general asymmetric. For r = 20
and T = 7, we visualize QT (A), i.e., A and its powers
A

2
, . . . ,A

7 in Figure 8, together with an example of adaptive
samples for this setting with mexp = 3, 000, computed based
on local incoherences. Comparing Figure 8 with the adaptive
sampling pattern for the Erdős-Rényi heat diffusion model
(Figure 6), we note that the sampling density for larger time
steps such as t = 5, 6, 7 is smaller for community graphs,
indicating that the adaptive sampling focuses now more on

smaller time scales than for the Erdős-Rényi model. This is
expected, since the spectrum of the (untruncated) transition
matrix decays faster than for the Erdős-Rényi heat diffusion
operator above, indicating that sampling large time steps is less
informative than sampling earlier time steps, see also Figure 8.

Empirically, this is confirmed in the experiment of Figure 9,
where we report on the phase transition for both adaptive
sampling and uniform sampling, considering T = 7 steps of a
random walk. Unlike for the Erdős-Rényi transition operators
(Figure 4 and Figure 7), we observe a significant difference
between adaptive and uniform sampling for this model, as the
uniform sampling scheme requires approximately the double
amount of samples to obtain exact recovery, with this phase
transition being located at around m = 4.8rn (uniform
sampling) and m = 2.4rn (adaptive sampling), respectively.

4) Dependence on Graph Topology: We now elucidate how
the recovery of transition operators A by Algorithm 1 depends
on the topology of an underlying graph.

a) Random walk matrix: We recall that a random walk
matrix, cf. Definition VI.1, is suitable to reveal structural
information of a graph: The multiplicity of the eigenvalue 1
is equal to the number of connected components; the second
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Fig. 8: First row: Rank-r truncation A of random walk transition operator of random community graph with 60 nodes for
r = 20, aggregation QT (A) of T = 7 matrix powers; Second row: Adaptive space-time samples P⌦(QT (A)) of rank-20
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Fig. 9: Left: Community graph with n = 60 vertices in 10 communities; Center and right: Phase transition, uniform vs. adaptive
sampling for the recovery of truncated random walk matrices of random community graph, T = 7 time steps. Center: Uniform
sampling, pink dotted line: 4.8rn. Right: Adaptive sampling, pink dotted line: 2.4rn. Red curved line: dof(A) = r(2n � r)
of (n⇥ n)-matrix A of rank-r.

largest eigenvalue �2 that describes the mixing rate of the
random walks; the spectral gap |�1 ��2| represents how well
the graph is connected. We refer the readers to [Chu97] for a
detailed discussion.

In Table II, we report on experiments on the recovery
of (full-rank) random walk matrices A = P = D

�1
W

associated to two different graphs, both with n = 50 nodes: A
very regular path graph , and a more irregular community
graph (one community of size 9, eight of size 5, and a
single node) with inter-cluster connection probability of 1/50,
cf. Figure 10. As in Section VI-A3, we use both uniform
and adaptive sampling. We denote the number of degrees of
freedom by dof(A) and, in case of adaptive sampling, the

number of samples located at time t = 1 (averaged across 10
realizations) as m1.

We observe that for the path graph, recovery by Algorithm 1
is possible for uniform sampling at an oversampling factor of
⇢ = 3, as the recovery error RecA is of the order of magnitude
of the algorithmic tolerance with RecA ⇡ 10�10, while exact
recovery fails for ⇢ = 2.8 even if adaptive sampling is chosen;
i.e., the performance is essentially the same for uniform and
adaptive sampling. For the community graph, for which we
now consider T = 10 time steps instead of T = 5, an
oversampling factor of ⇢ = 8 is not sufficient for uniform
sampling to recover the transition operator, however, a much
smaller sample complexity corresponding to ⇢ = 3.5 leads
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Models Sampling T msingle m1 dof(A) ⇢ RecA
Path graph uniform 5 1500 2500 3 9.6 · 10�11 ± 9.2 · 10�207

Path graph adaptive 5 2169 2500 2.8 7.2 · 10�4 ± 2.3 · 10�3

Community uniform 10 2000 2500 8 7.6 · 10�5 ± ·5.8 · 10�8

Community adaptive 10 2297 2500 3.5 4.4 · 10�13 ± ·5.8 · 10�13

TABLE II: Recovery errors RecA of Algorithm 1 for random walk matrix of path/community graphs for different sampling
sets.

already to exact recovery for adaptive sampling. While these
graphs are simple examples, they show illustrate that the
difficulty of the setup is negatively affected by the irregularity
of the underlying graph.
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Fig. 10: The plot of two random walk matrices used in the simulation. Both
of matrices are sparse with significant nonzero entries.

b) Heat diffusion operator: We now revisit the heat
diffusion operators A = Tr (exp(�⌧L)) from Section VI-A1,
focussing on how the number of time steps T , the heat
diffusion scale ⌧ and the structure of the underlying graph
G determine the recoverability of A from time-space samples
that are sampled uniformly at random, for settings of slightly
larger scale. To that end, we consider a Swiss roll graph with
n = |V | = 200 nodes and graph representing the roads of the
state of Minnesota [DH11, KAB+19] with n = |V | = 2642
nodes, using the default settings of the GSP toolbox [PPS+14];
see Figure 11 for a visualization.

Fig. 11: Left: Swiss roll graph. Right: Minnesota road network graph.

Furthermore, we consider heat diffusion operators corre-
sponding to slow and fast energy dissipation, corresponding to
small and large choices of ⌧ . Since we choose r = 10, we have
that �min(A) = exp(�⌧�10(L)), which is larger for slow
energy dissipation and smaller or faster energy dissipation.
Here, �10(L) corresponds to the 10th largest eigenvalue of
the Laplacian L.

In Table III, we report parameter choices and sample sizes
and the smallest oversampling factor ⇢ (stepsize 0.5) that

allows for accurate recovery, i.e., RecA of the order of the
stopping condition, of the transition operator via Algorithm 1.
We observe the transition operator is recoverable even if the
expected number of samples msingle for a single time step is
below the number of degrees of freedom dof(A), which would
not be possible in the static setting of T = 1. Furthermore,
we see that in the case of faster energy dissipation (�min(A)
small), the threshold oversampling factor ⇢ is larger. This is
consistent with the worse bound eµ0 in (30) and the sufficient
condition (26) for the local convergence of Algorithm 1.

B. Comparison with Black-Box Nonlinear Optimization
We now compare the performance of Algorithm 1 for the

problem studied in this paper to the one of a black-box
nonlinear optimization solver applied to the nonlinear least
squares objective (31) [WMNO06], as used by the wrapper
function fmincon of MATLAB. For fmincon, we use the
zero-padded observations P

⇤

⌦
P⌦(QT (A)) as initialization.

Unlike Algorithm 1, this method is not able to algorith-
mically utilize the low-rank structure of the problem in the
case of rank-truncated transition operators A, which is why
it is not suitable to handle large-scale problem instances with
many unknowns such as, for example, those associated to the
Minnesota road network graph considered in Table III–in fact,
it is infeasible to run it on a personal computer already for
transition operator sizes of n > 200, unlike Algorithm 1.

Instead, we consider rank-truncated heat diffusion operator
associated to the Swiss roll graph used in the first row of
Table III, and the random walk matrices associated to a path
graph and the community graph of Table II, each with uniform
sampling.

Setting the maximal number of iterations equal to 200, we
report the observed recovery errors RecA in Table IV. We
see that for the oversampling factors for which Algorithm 1
essentially leads to exact recovery, fmincon exhibits recov-
ery errors of the order 10�1 or 10�2 for the Swiss roll and
community graph models, indicating that exact recovery does
not happen. For the path graph, on the other hand, the recovery
error is of order 10�7. Taking the often larger computational
cost of the generic nonlinear optimization solver into account,
while it cannot be ruled out that an increase in the iteration
number will eventually lead to smaller errors, we conclude
that Algorithm 1 works significantly better than fmincon

for irregular graphs.

C. Robustness to Noisy Observations
In all previous experiments in Section VI, we have assumed

that the observations y 2 R
m provided to the recovery method
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Models �min(A) T msingle dof(A) ⇢ RecA
Swiss roll 0.21 6 1629 1955 5 1.4 · 10�13 ± 4.2 · 10�14

Swiss roll 0.89 6 978 1955 3 1.9 · 10�12 ± 3.4 · 10�12

Minnesota 0.64 5 32082 26375 6 8.3 · 10�13 ± 5.2 · 10�13

Minnesota 0.9 5 21100 26375 4 3.8 · 10�11 ± 6.6 · 10�11

TABLE III: Parameter choices for accurate recovery of rank-10 heat diffusion operators using uniform sampling with
replacement, sample complexities at phase transition.

Models Sampling n Rank r T msingle or m1 dof(A) ⇢ RecA
Swiss roll uniform 200 10 6 1629 1955 5 5.5 · 10�1

± 3.3 · 10�2

Path graph adaptive 50 50 5 2169 2500 3 6.8 · 10�8
± 2.4 · 10�8

Community adaptive 50 50 10 2297 2500 3.5 1.5 · 10�2
± 2.3 · 10�3

TABLE IV: Recovery errors using interior-point solver of nonlinear least squares formulation (31) (fmincon).

correspond to exact space-time samples y = P⌦(QT (A)).
While, taken literally, the local convergence statements of
Theorem IV.1 only apply to this setting, for practical appli-
cability it is important that the problem is also solvable in
the presence of additive noise such that y = P⌦(QT (A))+⌘,
where the noise ⌘ is unknown to the algorithm. We investigate
the noise robustness of the IRLS approach of Algorithm 1 by
reconsidering the Erdős-Rényi and community graph transition
operator models of Section VI-A1 and Section VI-A3 for
noisy observations with random spherical noise such that
y = P⌦(QT (A)) + ⌘ = P⌦(QT (A)) + kP⌦(QT (A))k2

p
SNR

v,
where v is a vector drawn uniformly at random from the
unit sphere and SNR correponds to the signal-to-noise ration
SNR = kP⌦(QT (A))k2

2
/k⌘k2

2
. Despite the presence of noise,

we apply Algorithm 1 with regularization parameter � = 0.

We observe that for sample complexities below the phase
transition thresholds in Section VI-A1 and Section VI-A3, the
resulting recovery errors RecA are consistently of the order
10�1 to 101, as even in the noiseless case recovery is not
possible. For ⇢ chosen above the phase transition threshold,
we observe a linear decrease in RecA with respect to the SNR
in the log-log plots of Figure 12 with an approximate slope
of �1/2, empirically supporting the relationship

kÂ�AkF ⇣ 1/
p

SNR ⇣ k⌘k2 (32)

whenever exact recovery occur in the noiseless case. For ⇢ =
2.2 in Figure 12(a), we see that the accuracy of the outputs
of Section VI has large variance: this is because the sample
complexity is set to be right at the phase transition for the
uniform sampling (see Figure 4).

We recall that in view of (15) and the majorization-
minimization interpretation of IRLS [DDFG10, KMV21,
KKMV22], it is possible to choose a regularization parameter
� in Algorithm 1 that is adapted to the noise level via
cross validation, leading to a potential improvement in the
dependency of RecA with respect to k⌘k2. This necessitates
determining an additional free parameter in the method. In
fact, Figure 12 and (32) suggest that the improvement might
be modest, of the order of a constant, and that the choice � = 0
may be a valid option even in the case of noisy observations.
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(a) Heat diffusion operator, Erdős-Rényi graph
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(b) Random walk, Community graph

Fig. 12: Median recovery error RecA with 25% and 75%
quantiles, vs. signal-to-noise ratio (SNR), 100 realizations,
different oversampling factors ⇢. T = 7 time steps, n = 50
nodes, rank r = 20.

VII. PROOF OF THE LOW-RANK PROPERTY OF BLOCK
HANKEL MATRIX

Before proceeding with the proof of Theorem II.1, we show
a corollary of Theorem II.1 that generalizes the well-known
Vandermonde decomposition for Hankel matrices.

Corollary VII.1 (Generalized Vandermonde Decomposition).
Let H 2 Md1n,d2n be a block Hankel matrix with (n ⇥ n)

blocks, that has a positive semidefinite square extension
⇤
H 2

MDn,Dn, D = max(d1, d2), such that
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• its first block H1 2 Mn if of rank r, and
• at least one other block Hj 2 Mn, j > 1, is of rank r.

Then there exists a triple (U,N,⌃) with U 2 Mn,r with
orthonormal columns, ⌃ 2 Mr positive definite diagonal, and
N 2 Mr that is ⌃-self-adjoint8, such that each block Hk

satisfies
Hk = UN

k�1⌃U⇤
,

and H has the generalized Vandermonde decomposition

H = Vd1(U,N)⌃Vd2(U,N)⇤, (33)

where

Vm(N,⇤) =
�
(UN

0)⇤ (UN
1)⇤ . . . (UN

m�1)⇤
�⇤

2 R
nm⇥r

is a generalized Vandermonde matrix with m 2 N.

Proof of Corollary VII.1. If Y 2 Mn,r and M 2 Mr

with rank(H) = rank(Y) = rank(M) = r are the
matrices from Theorem II.1.2, we can write the square ex-

tension
⇤
H 2 MDn,Dn of H as

⇤
H = LL

⇤, where L =⇥
L
⇤

1
, . . . , L

⇤

D

⇤⇤ 2 MDn,r is a block matrix with L1 = Y

and
Lj+1 = YM

j

for 1  j  D � 1. Let Y = Ue⌃V⇤ be a singular value
decomposition, where e⌃ 2 Mr contains the non-zero singular
values of Y, U 2 Mn,r the corresponding left singular
vectors and V 2 Mr the right singular vectors in their
columns. Defining ⌃ = e⌃2 and N = e⌃V⇤

MVe⌃�1, we can
write each block Hk of the block Hankel matrix H as

Hk = YM
k�1

Y
⇤ = Ue⌃V⇤

M
k�1

Ve⌃⇤
U

⇤

= Ue⌃V⇤
M

k�1
Ve⌃�1e⌃2

U
⇤ = UN

k�1⌃U⇤
,

since

N
k = (e⌃V⇤

MVe⌃�1)k = e⌃V⇤
MVe⌃�1(e⌃V⇤

MVe⌃�1)k�1

= e⌃V⇤
M

k
Ve⌃�1

for each k 2 N, using the fact that V has orthogonal columns.
Furthermore, we can verify that N is ⌃-adjoint, since

⌃N⇤ = e⌃2e⌃�1
V

⇤
MVe⌃ = e⌃V⇤

MVe⌃�1e⌃2 = N⌃,

using also that M is symmetric and that ⌃ = e⌃2. The ⌃-
adjointness of N allows us to write the occurrence of Hk in
the i-th row block and the j-th column block as

Hk = UN
i�1⌃(N⇤)j�1

U
⇤

for i and j satisfying k = i+ j� 1. From this, we see that H
attains the generalized Vandermonde decomposition (33) since

Hk = (Vd1(U,N)⌃Vd2(U,N)⇤)i,j = UN
i�1⌃(N⇤)j�1

U
⇤

for i, j with k = i+ j � 1, using the definition Vm(N,⇤) =�
(UN

0)⇤ (UN
1)⇤ . . . (UN

m�1)⇤
�⇤ for m = d1 and

m = d2, respectively.

We now continue with the proof of Theorem II.1. The

8which means that N⌃ = ⌃N⇤.

proof has similarities to the proof of a similar result for block
Toeplitz matrices [YXS16, Lemma 2].

Proof of Theorem II.1. For the first statement of Theo-
rem II.1, let A be a rank-r matrix and denote by A = UJU

�1

its Jordan decomposition, i.e., U 2 C
n⇥n is invertible and

J 2 C
n⇥n is an upper triangular matrix with rank(J) = r.

This decomposition shows that H
�
QT (A)) 2 Md1n,d2n is

similar to the matrix

S :=

0

BBB@

J J
2 · · · J

d1

J
2

J
3 · · · J

d1+1

...
... · · ·

...
J
d2 J

d2+1 · · · J
T

1

CCCA

=

0

BBB@

J

J
2

...
J
d2

1

CCCA
�
Id J · · · J

d1�1
�
=: S1S2,

where Id 2 R
n⇥n is the identity matrix. We note that

rank(S1) � rank(J) = r, as the linear independence of
each r of its columns is implied by the linear independence
of any r columns of J. To show the reverse inequality, we
observe that the rows of the lower blocks of S1 are all,
in fact, in the row space of J as these blocks are simply
subsequent powers of J, which implies that rank(S1) 
rank(J) = r. Furthermore, it holds that rank(S2) = n due
to the full rank of Id 2 R

n⇥n. The decomposition above
shows that rank(S)  min{r, n} = r. On the other hand, Let
E1 =

�
Id 0 0 · · · 0

�
2 R

n⇥nd2 . Thus, S1 = SE
>

1
and

rank(SE>

1
) = r  min{rank(S), rank(E1)}, which finally

implies rank(S) = r.
We continue with the proof of the second statement of The-

orem II.1. Since the block Hankel matrix H 2 Md1n,d2n has

a square extension
⇤
H 2 MDn,Dn that is positive semidefinite

and of rank r, there exists a block matrix L 2 MDn⇥r such
that

⇤
H =

2

6666664

H1 H2

... HD

H2

... ... ...
... ... ... H2D�2

HD
... H2D�2 H2D�1

3

7777775

= LL
⇤ =

2

6664

L1

L2

...
LD

3

7775
⇥
L
⇤

1
L
⇤

2
. . . L

⇤

D

⇤
,

where the columns of L are linear independent. In the last
equality, we wrote L =

⇥
L
⇤

1
, . . . , L

⇤

D

⇤⇤ with block row
matrix with blocks Lj 2 Mn,r for each j = 1, . . . , D.
Now we denote the lower submatrix of L as LL =⇥
L
⇤

1
, . . . , L

⇤

D�1

⇤⇤ and the upper submatrix L as LU =
⇥
L
⇤

2
, . . . , L

⇤

D

⇤⇤. Due to the Hankel structure of
⇤
H, the

D � 1 left lower and D � 1 right upper blocks coincide, and
therefore LUL

⇤

L = LLL
⇤

U . Since by assumption at least one
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other matrix block of
⇤
H, besides the first one, is of rank

r = rank(
⇤
H), it follows that both LL and LU have full

column rank. Furthermore, since this matrix is symmetric and
its columns are both in the span of the columns of LL and LU ,
then the column spans of LU and LL coincide. Thus, there
exists a unique invertible matrix M 2 Mr such that

LU = LLM. (34)

Comparing the D�1 blocks of the latter matrix, we note that
Lj+1 = LjM for each j = 1, . . . , D � 1, and therefore

Lj+1 = L1M
j (35)

for each j = 1, . . . , D � 1. Inserting this into
⇤
H = LL

⇤,
we observe that H2 = L1ML

⇤

1
= L1M

⇤
L
⇤

1
, implying that

M is symmetric. The representation (12) of H follows with
Y = L1 from inserting the definition of the right hand side
and multiplying the resulting block matrices.

VIII. PROOF OUTLINE FOR THEOREM IV.1
The proof of Theorem IV.1 consists of multiple steps.

First, we formulate a local restricted isometry property, Prop-
erty VIII.1, and show that it holds with high probability for
uniform and adaptive sampling if enough samples are provided
or if the local sampling probabilities are large enough, respec-
tively (Lemma VIII.1). Using perturbation arguments, we then
show with Lemmas VIII.2 and VIII.3 that this regularity also
extends to the neighborhood of the ground truth.

In order to have a chance of establishing recovery guar-
antees, it is necessary to understand when a coodinatewise
sampling operator provided related to the sampling set ⌦ ⇢ I

is invertible restricted to a subspace associated to low-rank
matrices.

Let PTZ
: M�T

n ! M�T
n (or, in short, PT) be the

orthogonal projection onto TZ. If H is the block Hankel
operator (9) and Ei,j,t is element (i, j, t) of the standard basis
of M�T

n , s.t.

hEi,j,t,
eXiF = hEi,j ,XtiF = (Xt)i,j

for any eX = X1�X2�X3�. . .�XT 2 M�T
n , then we define

normalized block Hankel operator G : M�T
n ! Md1n,d2n as

G(eX) :=
TX

t=1

nX

i,j=1

hEi,j,t,
eXiF

H(Ei,j,t)

kH(Ei,j,t)kF
. (36)

With this definition, we formulate the following property.

Property VIII.1 (Local restricted isometry property). Let Z 2
Mn be of rank r, let TZ ⇢ Md1n,d2n be the associated
tangent space (23) to the manifold of rank-r matrices, and let
↵ > 0. Let R⌦ : M�T

n ! M�T
n be a self-adjoint, normalized

sampling operator relative to a sampling set ⌦ ⇢ I . We say
that R⌦ satisfies the local restricted isometry property with
respect to TZ and constant ↵ if

kPTZ
GR⌦G⇤PTZ

� PTZ
GG⇤PTZ

k  ↵, (37)

where PTZ
: M�T

n ! M�T
n is the orthogonal projection

onto the linear subspace TZ.

Condition (37) is referred as a local restricted isome-
try property since it is not a restricted isometry property
with respect to the entire manifold of low-rank matrices
[RFP10, DR16], but rather one that holds with respect to a
particular (tangent) subspace associated to the low-rank matrix
manifold around a point. Similar conditions have been used
for structured low-rank matrix completion [CC14, Lemma 1],
[YKJL17, Lemma 20].

With Lemma VIII.1, we establish Property VIII.1 with high
probability for uniform and adaptive sampling with respect to
the block Hankel matrix HA associated to a transition operator
A.

Lemma VIII.1 (Local RIP for sampling operators). Let A 2
Mn be of rank-r, let T := THA

be the tangent space to
the rank-r matrix manifold at the block Hankel matrix HA =
H(QT (A)) associated to QT (A). Let 0 < ↵ < 1 and G :
M�T

n ! Md1n,d2n be the normalized block Hankel operator
of (36). There exists a constant C > 0 such that the following
holds:

1) [Uniform sampling model] Suppose that ⌦ is a ran-
dom subset of cardinality m uniformly drawn without
replacement among the set of space-time samples I =
[n] ⇥ [n] ⇥ [T ] . Let R⌦ : M�T

n ! M�T
n be the

normalized sampling operator

L ! R⌦(L) :=
X

(i,j,t)2⌦

n
2
T

m
hEi,j,t,LiFEi,j,t. (38)

Then R⌦ satisfies the local restricted isometry property
with respect to HA with constant ↵ (Property VIII.1),
with probability at least 1� n

�2, provided that

m � Ccs

↵2
µ0rn log(nT ) , (39)

if HA is µ0-incoherent as per Definition IV.1.
2) [Adaptive sampling] Suppose that ⌦ consists of random

index triplets (i, j, t) 2 I that are independently observed
according to Bernoulli distributions with probabilities
(pi,j,t)(i,j,t)2I . Let R⌦ : M�T

n ! M�T
n be the nor-

malized sampling operator

L ! R⌦(L) :=
X

(i,j,t)2⌦

1

pi,j,t
hEi,j,t,LiFEi,j,t. (40)

Then R⌦ satisfies the local restricted isometry property
with respect to HA with constant ↵ (Property VIII.1),
with probability at least 1�n

�2, provided that, for each
(i, j, t) 2 I , we have

pi,j,t � min

✓
Ccs

↵2
µi,j,t

r

nT
log(nT ), 1

◆
, (41)

if (µi,j,t)(i,j,t)2I are the local incoherences (24) of HA

as in Definition IV.1.

We note that the incoherence parameters of the matrix HA

play an important role in quantifying the number of space-
time samples that are sufficient to establish Property VIII.1 for
sampling operators. The proof can be found in Appendix D.

In Lemma VIII.2, we extend Property VIII.1 to a neighbor-
hood of HA.
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Lemma VIII.2. Assume that the local restricted isometry
property Property VIII.1 holds true for a normalized sampling
operator R⌦ : M�T

n ! M�T
n with respect to HA =

H(QT (A)), where A has a rank-r, and constant ↵ > 0. If
H 2 Md1n,d2n is of rank r and

H 2 BHA

✓
↵

8

⇣p
kR⌦k (1 + ↵) + 1

⌘�1

�r(HA)

◆
, (42)

then

kPTH
GR⌦G⇤ PTH

�PTH
GG⇤ PTH

k  2↵,

where TH is the tangent space to the rank-r manifold at H.

The proof is postponed to Appendix E.
As the next step, we establish a null space-type property

that shows that not too much mass can be concentrated on the
tangent space TH among block Hankel matrices in the null
space of the sampling operator.

Lemma VIII.3. Let R⌦ : M�T
n ! M�T

n be a normalized
sampling operator as in (38) or (40). If H 2 Md1n,d2n is of
rank r and TH ⇢ Md1n,d2n is the tangent space (23) to the
rank-r manifold at H, then

kPTH
GR⌦G⇤ PTH

�PTH
GG⇤ PTH

k  2

5
, (43)

implies

kH(⌘)k2F  5

3
(kR⌦k+ 8/5)

���PT
?
H

H(⌘)
���
2

F

for each ⌘ 2 kerR⌦.

We refer to Appendix F for the proof.
Finally, Proposition VIII.1 relates Property VIII.1 with

respect to the block Hankel matrix of a transition operator
to the local quadratic convergence of TOIRLS.

Proposition VIII.1 (Local Convergence with Quadratic
Rate). There exists an absolute constant c0 such that
the following holds. Assume that A 2 Mn is of rank
r, and that Property VIII.1 holds for the normalized
sampling operator R⌦ : M�T

n ! M�T
n with respect to

HA := H(QT (A)) and constant ↵ = 1/5. Let eX(k) is
the k-th iterate of TOIRLS Algorithm 1 with inputs: ⌦,
y = P⌦(QT (A)), and er = r. If we assume that the smoothing
parameter fulfills "k = �r+1(H(eX(k))) and if H(eX(k)) 2
BHA

�
c0kR⌦k�3/2

r
�1


�1(dn� r)�1/2

�r(HA)
�
, where

 := �1(HA)/�r(HA) is the condition number of HA, then
there exists ⌫ such that for all ` � 0

kH(eX(k+`+1))�HAk
 min(⌫kH(eX(k+`))�HAk2, kH(eX(k+`))�HAk).

In other words, H(eX(k+`))
`!1���! HA with quadratic con-

vergence rate.

The proof (see Appendix G) crucially relies on estimates
from [KMV21] on the action of the weight operator W

H(eX(k))

of Definition III.1 where eX(k) is an TOIRLS iterate, and
combines them with Lemma VIII.3.

Putting the results of this section together amounts finally to
the proof of Theorem IV.1, which is detailed in Appendix C.

IX. CONCLUSION & OUTLOOK

In this paper, we developed a framework for the learning of
linear transition operators from random sparse observations of
space-time samples, and provided a local convergence analysis
for the non-convex optimization approach TOIRLS for solving
that problem, quantifying the number and distribution of
samples sufficient for convergence. The current work could
be extended in several directions: the presented convergence
analysis for TOIRLS is inherently local, i.e., requires an iterate
that is already close to a low-rank ground truth matrix. The
empirical results suggest that a global convergence of TOIRLS
might be possible, despite being beyond the scope of this
paper. Furthermore, not only entrywise, but general linear
sampling operators could be considered, cf. (7), as well as
applications to a broader family of dynamical systems such
as linear time-invariant systems with input terms (11). Finally,
it would be of interest to combine the setup considered in
this paper with additional prior knowledge on the transition
operator A, such as sparsity, which is common for example
in the context of graph transition operators.

APPENDIX

A. Incoherence Estimates

In this subsection, we provide estimates for the incoher-
ence parameters µi,j,t and µ0 of the block Hankel matrix
H
�
QT (A)

�
associated with a linear operator A 2 Mn, which

have been defined in Definition IV.1. Also for use in other
proofs, we state the following result that elucidates the action
of the block Hankel operator H.

Lemma A.1. Recalling the normalized block Hankel operator
G : M�T

n ! Md1n,d2n of (36), let {Ei,j,t}(i,j,t)2I be the
standard basis of M�T

n and {Bi,j,t}(i,j,t)2I the standard
basis of the space of block Hankel matrices H(M�T

n ). Then
we have that the diagonal operator D : M�T

n ! M�T
n

D(Ei,j,t) : = kH(Ei,j,t)kFEi,j,t

=
p

min(t, T + 1� t, d1, d2)Ei,j,t,
(44)

for each (i, j, t) 2 I , satisfies H = GD, which is equivalent
to

Bi,j,t = H(D�1
Ei,j,t) = G(Ei,j,t) .

Furthermore, it holds that H⇤H : M�T
n ! M�T

n satisfies,
for all (i, j, t) 2 I ,

H⇤H(Ei,j,t) = min(t, T + 1� t, d1, d2)Ei,j,t.

Proof. The first statement follows by combining the definition
(44) with (36), and by counting the number of occurrences of
each block in (9). The last statement follows from

hEi,j,t,H⇤H(Ei,j,t)i =
��H(Ei,j,t)

��2
F
=
��H(Ei,j,t)

��2
F

=
��D(Ei,j,t)

��2
F
= min(t, T + 1� t, d1, d2)

for all (i, j, t) 2 I due to (44).
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With the following lemma, we bound the local incoherence
parameter as defined in Definition IV.1 by the incoherence
parameter based on the related incoherence parameter in (45)
in the spirit of [CC14, (27)] and [CWW19].

Lemma A.2. Let Z 2 Md1n,d2n be of rank r with leading
left and right singular vector matrices U 2 R

nd1⇥r and V 2
R
nd2⇥r, respectively, and let TZ be the associated tangent

space (23). Suppose there exists a positive constant µ0 > 0
such that

max
1ijn,1tT

kU⇤
Bi,j,tkF 

r
µ0

r

nd1
,

max
1ijn,1tT

kBi,j,tVkF 
r
µ0

r

nd2
, (45)

where {Bi,j,t}(i,j,t)2I is the standard basis of the space of
block Hankel matrices H(M�T

n ).
Then, for each (i, j, t) 2 [n]⇥ [n]⇥ [T ],

kPTZ
(Bi,j,t)k2F  µ0cs

r

nT
,

where cs = T (T+1)

d1d2
. In particular, Z is µ0-incoherent in the

sense of Definition IV.1.

Proof. It is well-known [Rec11, Eq. (3)] that the action of the
projection operator PTZ

can be written such that

PT(M) = UU
⇤
M+MVV

⇤ �UU
⇤
MVV

⇤

= UU
⇤
M(I�VV

⇤) +MVV
⇤

for any matrix M. Therefore, we estimate that

kPT(M)k2F = kUU
⇤
M(I�VV

⇤)k2F + kMVV
⇤k2F

 kUU
⇤
Mk2F k(I�VV

⇤)k2 + kMVV
⇤k2F

 kUU
⇤
Mk2F + kMVV

⇤k2F
 kU⇤

Mk2F + kMVk2F .
(46)

Thus, (45) implies that

kPT(Bi,j,t)k2F  µ0

r

nd1
+µ0

r

nd2
=

µ0r

n

d1 + d2

d1d2
= µ0cs

r

nT
,

setting M = Bi,j,t for any (i, j, t) 2 I .

Before providing the proof of the incoherence estimates for
the examples of Section IV-C, we note that it follows from (28)
in Theorem IV.1 that for adaptive sampling with probabilities
satisfying pi,j,t � Ccsµi,j,t

r
nT log(nT ) for all (i, j, t) 2 I ,

where C is the constant from (28).2 and cs = T (T+1)

d1d2
, a

number of

mexp := E[|⌦|] =
X

(i,j,t)2I

pi,j,t

� Ccs

X

(i,j,t)2I

µi,j,t
r

nT
log(nT )

(47)

expected samples will enable local convergence of TOIRLS
in the adaptive model for ⌦.

1) Orthogonal Matrices : To understand the incoherences
of block Hankel matrices HA = H(QT (A)) associated to
orthonormal matrices A 2 O

n, we observe that a compact

singular value decomposition of HA can be given by HA =
UHA

⌃V⇤

HA
with

UHA
=

1p
d1

0

BBB@

A

A
2

...
A

d1

1

CCCA
, VHA

=
1p
d2

0

BB@

I

A

· · ·
A

d2�1

1

CCA ,

UHA
2 Mnd1,n, VHA

2 Mnd2,n and ⌃ =
p
d1d2 Id 2 Mn.

Using this, we obtain the following proposition.

Proposition A.1. If the transition operator A 2 O
n is an

orthogonal matrix, then
1) HA = H(QT (A)) is µ0-incoherent with µ0  1.
2) The local incoherences of HA satisfy

P
(i,j,t)2I µi,j,t 

nT
2.

As a consequence, for both uniform and adaptive sampling,
a sample complexity of order ⇥(n2 log(nT )) is sufficient to
satisfy the assumption of Theorem IV.1.

Proof. First, it is straightforward to verify from a block-wise
computation that kU⇤

HA
Bi,j,tkF = 1

p
d1

for each (i, j, t) 2 I ,
since k(Aj)⇤MkF = kMkF for each j, for each block M of
Bi,j,t, due to the preservation of norms through multiplication
with orthogonal matrices. Similarly, kBi,j,tVHA

kF = 1
p
d2

for
each (i, j, t) 2 I .

This implies that (45) is satisfied with µ0 as r =
rank(HA) = rank(A) = n. In view of Lemma A.2, it follows
that HA is µ0-incoherent in the sense of Definition IV.1 with
µ0  1 since

kPT(Bi,j,t)k2F  cs
1

T

for each (i, j, t) 2 I , where PT is the projection operator
onto the subspace T = THA

. This shows the first statement
of Proposition A.1

Estimating the sum of local incoherences µi,j,t of HA, we
obtain

X

(i,j,t)2I

µi,j,t =
X

1ijn,t=1,...,T

T

cs
kPT(Bi,j,t)k2F

=
X

1ijn,t=1,...,T

d1d2

(d1 + d2)
kPT(Bi,j,t)k2F


X

1ijn
t=1,...,T

d1d2

(d1 + d2)

�
kU⇤

HA
Bi,j,tk2F + kBi,j,tVHA

k2F
�


X

1ijn,t=1,...,T

d1d2

(d1 + d2)

✓
1

d1
+

1

d2

◆

=
X

1ijn,t=1,...,T

1 = Tn
2
,

using (46) in the inequality.
Therefore, in view of (47), a sufficient number of expected

space-time samples mexp to enable the local convergence
guarantee of Proposition A.1 is mexp = ⇥(n2 log(nT )).

2) Positive Semi-Definite Matrices: We now justify the
bounds of Section IV-C for positive semidefinite transition
operators A 2 Mn. To this end, we provide a closed formula
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for a singular value decomposition for the associated block
Hankel matrix HA = H(QT (A)) in Theorem A.1.

Theorem A.1. Suppose A =
Pr

`=1
�`uiu

⇤

i = U⇤U⇤ is
a positive semidefinite matrix with r positive eigenvalues
�1, . . . ,�r and u1,u2, . . . ,ur are the corresponding eigenvec-
tors, so that ⇤ = diag(�1, . . . ,�r) and U =

�
u1 . . . ur

�
.

For a vector u 2 R
n, an integer m and a scalar �, we define

Vm,�(u) =

0

BBB@

u

�u

...
�
m�1

u

1

CCCA
2 R

nm

and the generalized Vandermonde matrix, in Mnm,r,

Vm(U,⇤)=

0

@Vm,�1(u1) . . . Vm,�r (ur)

1

A=

0

BBB@

U⇤0

U⇤1

...
U⇤m�1

1

CCCA
.

Let
#   »
⇤m := diag(

#   »
�
m
` )r`=1

with
#   »
�
m
` =

qPm�1

s=0
�2s
` for all

` 2 [r]. Then a compact singular value decomposition of HA

can be written such that

HA = UHA
DV

⇤

HA
(48)

where

UHA
= Vd1(U,⇤)(

#    »

⇤d1)�1

VHA
= Vd1(U,⇤)(

#    »

⇤d2)�1

D = (
#    »

⇤d1)⇤(
#    »

⇤d2) .

In particular, the nonzero singular values of HA are

�`

vuut
d1�1X

t=0

�2t
`

vuut
d2�1X

t=0

�2t
` ,

for ` = 1, . . . , r, and the first r right and left singular vectors
are {(

#   »

�
d2
` )�1Vd2,�1(ui)}r`=1

and {(
#   »

�
d1
` )�1Vd1,�1(ui)}r`=1

, re-
spectively.

Proof. To prove the statements, the equality (48) can be
verified expanding the right hand side, and furthermore, since
U

⇤
U = Idr, the orthogonality of the columns of the singular

vector matrices can be verified, i.e. U
⇤

HA
UHA

= Idr and
V

⇤

HA
VHA

= Idr.

Following the notation in (48), we compute estimates of
kUHA

(Bi,j,t)kF and k(Bi,j,t)VHA
kF . As a preparation of

what follows, we recall from (44) that

kH(Ei,j,t)kF =

8
>>><

>>>:

p
t if t  min{d1, d2},

p
min{d1, d2} if

min{d1, d2} < t

 max{d1, d2}
,

p
T + 1� t if t > max{d1, d2},

if Ei,j,t is the standard basis matrix of index (i, j, t) 2 I of
M�T

n . The above observation yields the following lemma.

Lemma A.3. Let Bi,j,t = H(Ei,j,t)/kH(Ei,j,t)kF 2
Md1n,d2n be the standard basis matrix of index (i, j, t) 2 I of
H(M�T

n ). For 2  d1  d2, we have the following identities
if UHA

and VHA
are as in Theorem A.1:

kU⇤

HA
Bi,j,tkF =

=

8
>>>>><

>>>>>:

rPr
`=1

Pt�1
s=0 �2s

`Pd1�1
s=0 �2s

`

ku
⇤
`Eijk

2

t , if t < d1,

qPr
`=1

ku
⇤
`Eijk

2

d1
, if d1  t  d2,r

Pr
`=1

Pd1�1
s=t�d2

�2s
`

Pd1�1
s=0 �2s

`

ku
⇤
`Eijk

2

T+1�t , if t > d2,

and
kBi,j,tVHA

kF =

=

8
>>>>>><

>>>>>>:

rPr
`=1

Pt�1
s=0 �2s

`Pd2�1
s=0 �2s

`

kEiju`k
2

t , if t < d1,

r
Pr

`=1

Pt�1
s=t�d1

�2s
`

Pd2�1
s=0 �2s

`

kEiju`k
2

d1
, if d1  t  d2,

r
Pr

`=1

Pd2�1
s=t�d1

�2s
`

Pd2�1
s=0 �2s

`

kEiju`k
2

T+1�t , if t > d2.

We restrict our attention to normalized positive semidefi-
nite transition operators A whose eigenvalues are within the
interval [0, 1]. To simplify the analysis and avoid unnecessary
technicalities, we restrict ourselves to the case of d1 = d2.

Proposition A.2. Let A be a positive semidefinite transition
operator as in A.1 and assume that 0 < �r  . . .  �1  1.
Assume also that d1 = d2 and T = d1 + d2 � 1 � 3. Then:

1) HA = H(QT (A)) is µ0-incoherent with

µ0  max
1in

rX

`=1

nd2(u`)2i

r(1 + �2

` + · · ·+ �
2(d2�1)

` )
.

2) The local incoherences of HA satisfy
X

(i,j,t)2I

µi,j,t

 n
2
d2

r

 
d2�1X

t=1

rX

`=1

(1 + �
2(d2�t)
` )

Pt�1

s=0
�
2s
`

t
Pd2�1

s=0
�2s
`

+
1

d2

!

(49)
 4.4n2

T log(T ). (50)

Consequently, for the adaptive sampling model, it is
possible to satisfy the assumption of Theorem IV.1 with

mexp = E[|⌦|] = ⇥(rn log(nT ) log(T ))

expected samples.

Proof. 1. Define the function g : [0, 1]⇥N⇥N 7! R such that

g(�, d, t) =

Pt�1

s=0
�
s

t
Pd�1

s=0
�s

. (51)

We observe that g has following properties:

• For a fixed d 2 N and � 2 [0, 1], g(�, d, t) is a decreasing
function with respect to t 2 N.

• For fixed d 2 N and t 2 N, g(�, d, t) is a decreasing
function with respect to � on [0,1).
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Using Lemma A.3 and the properties of the function g, we
obtain that

max
1ijn,1tT

kU⇤

HA
(Bi,j,t)kF = max

1ijn
kU⇤

HA
(Bi,j,1)kF

= max
1in

vuut
rX

`=1

(u`)2iPd1�1

s=0
�2s
`

.

By symmetry, we have

max
1ijn,1tT

kBi,j,tVHA
kF = max

1in

vuut
rX

`=1

(u`)2iPd2�1

s=0
�2s
`

.

From this and from the fact that d1  d2, we see that we can
choose

µ0 = max
1in

rX

`=1

nd2(u`)2i
r(
Pd1�1

s=0
�2s
` )

to satisfy the inequalities of (45), from which it follows that
HA is µ0-incoherent by Lemma A.2.

2. To obtain an upper bound for
P

i,j,t µi,j,t, we use that
X

1i,jn

�
kU⇤

HA
Bi,j,tk2F + kBi,j,tVHA

k2F
�

=

8
><

>:

Pr
`=1

2g(�2

` , d2, t)n, for t < d2,

2n
d2
, for t = d2,Pr
`=1

2�2(t�d2)

` g(�2

` , d2, T � t+ 1)n, for t > d2.

Therefore
X

1i,jn

TX

t=1

�
kU⇤

HA
(Bi,j,t)k2F + kBi,j,tVHA

k2F
�

=
d2�1X

t=1

rX

`=1

2(1 + �
2(d2�t)
` )g(�2

` , d2, t)n+
2n

d2
= 2G(⇤, T )n,

where G(⇤, T ) :=
Pd2�1

t=1

Pr
`=1

(1+�
2(d2�t)
` )g(�2

` , d2, t)+
1

d2

is a constant that only depends on the eigenvalues (�`)`, d2
and T . Finally, it follows then from (46) that
X

(i,j,t)2I

µi,j,t 
X

(i,j,t)2I

nd
2

2

2rd2
(kU⇤

HA
Bi,j,tk2F +kBi,j,tVHA

k2F )

 n
2
d2

r
G(⇤, T ),

which amounts to the first desired bound (49). Moreover, using
the properties of g described previously, one can show that

g(�2

` , d2, t)  g(0, d2, t) =
1

t
.

Since furthermore
Pd2�1

t=1

1

t < c� + log(d2), where c� < 0.58
is the Euler-Mascheroni constant, we have

G(⇤, L) 
d2�1X

t=1

rX

`=1

1 + �
2(d2�t)
`

t
+

1

d2

 2r(c� + log(d2)) +
1

d2

 (1.16 + 2 log(d2) + 1/(rd2))r  4.4r log(T ),

using that �`  1 for all ` 2 [r] in the second inequality and

2  d2  T in the last inequality. This yields the second
desired bound (50) and concludes the proof.

Therefore, analgously as to the argument in the proof
of Proposition A.1, it follows that a sufficient number
of expected space-time samples mexp to enable the lo-
cal convergence guarantee of Proposition A.1 is mexp =
⇥(rn log(nT ) log(T )).

We conclude this section by noting that if A is a rank-r
projection, this amounts to a positive semidefinite transition
operator with �1 = �2 = . . . = �r = 1. In this case,
the function g of (51) can be simplified to g(1, d, t) = 1

d ,
which simplifies the expression for G(⇤, L) to G(⇤, L) =
(2d2 � 1)/d2 = 2 � 1

d2
. This means that in fact, for rank-r

projection matrices, mexp = ⇥(rn log(nT )) expected samples
in the adaptive regime are sufficient.

B. Proofs
In the next sections, we provide the proofs of the main

local convergence result for TOIRLS, Theorem IV.1, as well as
the proofs of Lemmas VIII.1 to VIII.3 and proposition VIII.1
which are auxiliary results for proving Theorem IV.1.

C. Proof of Theorem IV.1
In this section, we provide the proof of Theorem IV.1, which

is based on combining Proposition VIII.1 and Lemma VIII.1.
As an additional ingredient, we bound the spectral norm kR⌦k
of the normalized sampling operators R⌦ of (38) and (40).

Lemma A.4. Let ⌦ be a random subset of the index set
I = [n] ⇥ [n] ⇥ [T ] of size m that is sampled uniformly
i.i.d. with replacement, where m < n

2
T . Let � > 1. Then

with probability at least 1 � (n2
T )1�� , the maximal number

of repetitions of any entry in ⌦ is less than 8

3
� log(nT ) for

n
p
T � 9 and � > 1.

Consequently, we have that with probability of at least
1� (n2

T )1�� , the operator R⌦ : Md1,d2 ! Md1,d2 of (38)
fulfills

kR⌦k  8

3
�
n
2
T

m
log(nT ),

where kR⌦k is the spectral norm of R⌦.

The proof of Lemma A.4 is a simple adaptation of [Rec11,
Proposition 5]. We proceed to the proof of our main result,
Theorem IV.1.

Proof of Theorem IV.1.1. By choosing � = 2 in Lemma A.4,
it follows that with probability of at least 1� (n2

T )�1,

kR⌦k2  16

3

n
2
T

m
log(nT ) (52)

Recall that d = min(d1, d2) was chosen to be the minimum of
the pencil parameters d1 and d2, which satisfy d1+d2�1 = T .
Let c0 be the constant of Proposition VIII.1 and C the constant
of Lemma VIII.1.1.

Fix now ↵ = 1/5. From the statement of Lemma VIII.1.1,
if follows that if

m � 25Ccsµ0rn log(nT ), (53)
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with a probability at least 1 � n
�2 the normalized sampling

operator R⌦ : M�T
n ! M�T

n of (38) satisfies

kPTGR⌦G⇤PT � PTGG⇤PTk  1

5
,

i.e., Property VIII.1 is satisfied with respect to T = THA
and

constant ↵ = 1/5.
Let now eX(k) be such that H(eX(k)) satisfies assumption

(27) of Theorem IV.1.1. It follows from Proposition VIII.1 and
(52) that on an event E of probability of at least 1�(n2

T )�1�
n
�2 � 1 � 2n�2, if c0 is the constant of Proposition VIII.1,

C the constant of (39) and ec0 := c0(75Ccs/16)3/2, it holds
that

kH(eX(k))�HAk
 ec0µ3/2

0
(nT )�3/2

r
1/2


�1(dn� r)�1/2

�r(HA)

= c0
(25Ccs)3/2µ

3/2
0

r
1/2

(16/3)3/2n3/2T 3/2(dn� r)1/2
�r(HA)

= c0
(25Ccs)3/2µ

3/2
0

r
3/2

n
3/2 log3/2(nT )�r(HA)

(16/3)3/2n3T 3/2 log3/2(nT )r(dn� r)1/2

 c0
m

3/2
�r(HA)

(16/3)3/2n3T 3/2 log3/2(nT )r(dn� r)1/2

 c0
�r(HA)

kR⌦k3/2r(dn� r)1/2
,

using also (53) in the second inequality.
Therefore, the conclusion of Proposition VIII.1 holds with

constant (see the proof of Proposition VIII.1 in Appendix G)

⌫ =
20

3�r(HA)
(1 + 6) (kR⌦k+ 8/5) r

 20

3�r(HA)
(1 + 6)

✓
16

3

n
2
T

m
log(nT ) + 8/5

◆
r,

which means that kH(eX(k+1))�HAk  min(⌫kH(eX(k))�
HAk2, kH(eX(k))�HAk) and furthermore, H(eX(k+`))

`!1���!
HA, on the event E from above.

This finishes the proof of Theorem IV.1.1.

Proof of Theorem IV.1.2. Let C > 0 be the constant of (28).
To show Theorem IV.1 in the case of adaptive sampling, we
recall the definition

L ! R⌦(L) =
X

(i,j,t)2⌦

1

pi,j,t
hEi,j,t,LiFEi,j,t.

of the normalized sampling operator R⌦ : M�T
n ! M�T

n in
this case, cf. (40).

Fix ↵ = 1/5. It follows from the definition of R⌦ and the
Bernoulli sampling model that

kR⌦k  min
(i,j,t)2I

1

pi,j,t
 nT

25Ccsr log(nT )min(i,j,t)2I µi,j,t
,

(54)
using assumption (28) in the last inequality. Under the same
assumption, it follows from Lemma VIII.1.2 that with prob-
ability at least 1 � n

�2, the local isometry property on
T = THA

with constant 1/5 holds, i.e.,

kPTGR⌦G⇤PT � PTGG⇤PTk  1

5
,

which entails that Property VIII.1 is satisfied for ↵ = 1/5.
As above, it follows from Proposition VIII.1 and (54) that on
an event of probability at least 1� n

�2 � 1� 2n�2, if c0 is
the constant of Proposition VIII.1, C the constant of (28) and
ec0 = c0(25Ccs)3/2,

kH(eX(k))�HAk

 ec0
min(i,j,t)2I µ

3/2
i,j,tr

1/2 log3/2(nT )

(nT )3/2(dn� r)1/2
�r(HA)

 c0

(25Ccs)3/2r1/2 log
3/2(nT )min(i,j,t)2I µ

3/2
i,j,t

(nT )3/2(dn� r)1/2
�r(HA)

 c0
1

kR⌦k3/2r(dn� r)1/2
�r(HA),

and therefore, the conclusion of Proposition VIII.1 holds with
constant

⌫ =
20

3�r(HA)
(1 + 6) (kR⌦k+ 8/5) r

 20

3�r(HA)
(1 + 6)

✓
nT (min(i,j,t)2I µi,j,t)�1

25Ccsr log(nT )
+ 8/5

◆
r,

which means that kH(eX(k+1))�HAk  min(⌫kH(eX(k))�
HAk2, kH(eX(k))�HAk) and furthermore, H(eX(k+`))

`!1���!
HA, and therefore concludes the proof of Theorem IV.1.

D. Proof of Lemma VIII.1
In this section, we prove Lemma VIII.1, our main result

about the regularity of the normalized sampling operators
R⌦ : M�T

n ! M�T
n for the uniform and adaptive sampling

models, see (38) and (40), respectively. The proof uses a non-
commutative Bernstein inequality:

Lemma A.5 (Noncommutative Bernstein inequality, cf.
[Rec11, Theorem 4] or [Ver18, Theorem 5.4.1]). Let
Z1, . . . ,Zm be independent, Hermitian zero-mean random
operators of dimension n

2
d1d2 ⇥ n

2
d1d2. Suppose that ⇢2 =

kE
P

`=1
Z`Z`k and kZ`k  M almost surely for all ` 2 [m].

Then for any ↵ > 0,

P

 �����

mX

`=1

Z`

�����

!
 2n2

d1d2 exp

✓
�↵

2
/2

⇢2 +M↵/3

◆
.

The proof of Lemma VIII.1.1 follows the proof idea of
[CC14, Lemma 3] and [LLJY18, Lemma 23].

Proof of Lemma VIII.1.1. If {Ei,j,t}(i,j,t)2I is the standard
basis of M�T

n and {Bi,j,t}(i,j,t)2I the standard basis of the
space of block Hankel matrices H(M�T

n ), we recall from
Lemma A.1 that G(Ei,j,t) = Bi,j,t for each (i, j, t) 2 I .

We first assume a slightly different sampling model than
that considered in the statement of Lemma VIII.1: let ⌦ =
{(i`, j`, t`)}m`=1

⇢ I be a set of m indices sampled uniformly
i.i.d. with replacement. For ` 2 [m], define the operators Z`

and eZ` such that

Z` :=
n
2
T

m

eZ` �
1

m
PTGG⇤PT

:=
n
2
T

m
PTGEi`,j`,t`E

⇤

i`,j`,t`G
⇤PT � 1

m
PTGG⇤PT.
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Then the expectation E[ eZ`] of eZ` satisfies

E[ eZ`] = E
⇥
PTGEi`,j`,t`E

⇤

i`,j`,t`G
⇤PT

⇤

=
1

n2T

nX

i,j=1,ij

TX

t=1

PTGEi,j,tE
⇤

i,j,tG⇤PT

=
1

n2T
PTGG⇤PT

(55)

and furthermore,

E[Z`] =
n
2
T

m
E[ eZ`]�

1

m
PTGG⇤PT = 0.

Since for any M 2 R
d1n⇥d2n,

eZ`(M) = hPT(Bi`,j`,t`),MiFPT(Bi`,j`,t`),

we obtain

k eZ`(M)kF  |hPT(Bi`,j`,t`),MiF | kPT(Bi`,j`,t`)kF
 kPT(Bi`,j`,t`)k2F kMkF

by Cauchy-Schwarz, and thus obtain
��� eZ`

���  kPT(Bi`,j`,t`)k
2

F

 max
1ij2[n],t2[T ]

kPT(Bi,j,t)k2F  µ0csr

nT
,

(56)

using the incoherence assumption on HA in the last inequality,
as well as d1 + d2 � 1 = T and the definition of cs = T (T +
1)/(d1d2). Analogously, we estimate that
����
1

m
PTGG⇤PT

����  1

m

nX

i,j=1,ij

�����

TX

t=1

PTGEi,j,tE
⇤

i,j,tG⇤PT

�����

 n
2
T

m

µ0csr

nT
=

µ0csrn

m
.

(57)
We observe that if A and B are positive semidefinite operators,
it holds that kA�Bk  max(kAk, kBk). Therefore, it follows
from (56) and (57) that

kZ`k  max

✓
n
2
T

m

µ0csr

nT
,
µ0csrn

m

◆
=

µ0csrn

m
(58)

almost surely for all ` 2 [m], as the operators involved are
positive semidefinite. Further we compute that

E [Z`Z`]

=
(n2

T )2

m2
E

h
eZ`
eZ`

i
� n

2
T

m2
E

h
eZ`

i
PTGG⇤PT

� n
2
T

m2
PTGG⇤PTE

h
eZ`

i
+

1

m2
PTGG⇤PTPTGG⇤PT

=
(n2

T )2

m2
E

h
eZ`
eZ`

i
� 1

m2
PTGG⇤PTPTGG⇤PT,

using that E

h
eZ`

i
= 1

n2T PTGG⇤PT, cf. (55). In order to esti-
mate the latter terms, we observe that for any M 2 R

d1n⇥d2n,

eZ`
eZ`(M) = hPT(Bi`,j`,t`), eZ`(M)iPT(Bi`,j`,t`)

= kPT(Bi`,j`,t`)k
2

F hPT(Bi`,j`,t`),MiPT(Bi`,j`,t`)

= kPT(Bi`,j`,t`)k
2

F
eZl(M)

and therefore
���E eZ`

eZ`

��� = max
kMkF=1

���E kPT(Bi`,j`,t`)k
2

F
eZ`(M)

���
F

 max
ij2[n]t2[T ]

kPT(Bi,j,t)k2F
���E eZ`

���

 µ0csr

nT

1

n2T
kPTGG⇤PTk  µ0csr

n3T 2
,

(59)

using (56) in the second inequality and the fact
kPTGG⇤PTk  1 in the third in equality. For the expectation
of the squares of Z`, we obtain

mX

`=1

kEZ`Z`k

 1

m2

mX

`=1

max
⇣
n
2
T

2

���E eZ`
eZ`

���,kPTGG⇤PTPTGG⇤PTk
⌘


mX

`=1

max

✓
(n2

T )2

(m)2
µ0csr

n3T 2
,
1

m2

◆

=
mX

`=1

max

✓
n

m2

µ0csr

1
,
1

m2

◆

 µ0csrn

m
,

(60)

using again that kA � Bk  max(kAk, kBk) for positive
semidefinite operators in the second inequality, (59) and the
fact that kPTGG⇤PTk  1 in the third inequality.

Next, recalling the definition (38) of the normalized
sampling operator R⌦ : M�T

n ! M�T
n of the state-

ment of Lemma VIII.1, we observe that PTGR⌦G⇤PT =
n2T
m

Pm
`=1

eZ`.
Since the Z`’s are Hermitian, we can now apply the

matrix Bernstein inequality [Rec11, Theorem 4] in form of
Lemma A.5 above to obtain, for 0 < ↵ < 1, the estimate

P (kPTGR⌦G⇤PT � PTGG⇤PTk � ↵)

 2n2
d1d2 exp

✓
� m↵

2

2µ0csrn(1 + ↵/3)

◆

 2
(T + 1)2

4
n
2 exp

✓
� m↵

2

2µ0csrn(4/3)

◆

=
(T + 1)2n2

2
exp

✓
� 3m↵

2

8µ0csrn

◆
,

using the norm estimates of (58) and (60) to estimate the
respective quantities in Lemma A.5. From this, we see that

P (kPTGR⌦G⇤PT � PTGG⇤PTk � ↵)  n
�2

if 1

2
(T +1)2n4  exp

⇣
3m↵2

8µ0csrn

⌘
, which is further implied by

the condition
m � 16cs

3↵2
µ0rn log(nT ).

This shows that for the constant C := 16

3
, if (39) is fulfilled,

then with probability at least 1� n
�2,

kPTGR⌦G⇤PT � PTGG⇤PTk < ↵

if m i.i.d. samples are uniformly sampled with replacement.
With the argument of [Rec11, Proposition 3], we conclude that
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the statement with the same probability bound holds true for
the sampling model where ⌦ is a random subset of cardinality
m, uniformly drawn without replacement, if m satisfies (39),
which finishes the proof.

Proof of Lemma VIII.1.2. To show the second part of
Lemma VIII.1, we consider for each (i, j, t) 2 I a random
variable �i,j,t that is 1 if (i, j, t) 2 ⌦ and 0 otherwise. With
that notation, R⌦ of (38) can be written as

PTGR⌦G⇤PT =
X

(i,j,t)2I

�i,j,t

pi,j,t
PTGEi,j,tE

⇤

i,j,tG⇤PT

=:
X

(i,j,t)2I

�i,j,t

pi,j,t

eZi,j,t,

defining operators eZi,j,t : M�T
n ! M�T

n for each (i, j, t) 2
I . With this, we obtain

PTGR⌦G⇤PT � PTGG⇤PT

=
X

(i,j,t)2I

�i,j,t

pi,j,t

eZi,j,t �
X

(i,j,t)2I

eZi,j,t

=
X

(i,j,t)2I

✓
�i,j,t

pi,j,t
� 1

◆
eZi,j,t =:

X

(i,j,t)2I

Zi,j,t,

defining the random operators Zi,j,t. Based on the assumption
on the sampling model, the Zi,j,t are independent and as the
�i,j,t are Bernoulli variables with success probabilities pi,j,t,
it follows that

E[Zi,j,t] =

✓
E[�i,j,t]

pi,j,t
� 1

◆
PTGEi,j,tE

⇤

i,j,tG⇤PT = 0.

Let M 2 R
d1n⇥d2n be arbitrary. Since

eZi,j,t(M) = hBi,j,t,PT(M)iFPT(Bi,j,t)

= hPT(Bi,j,t),MiFPT(Bi,j,t)
(61)

we obtain

k eZi,j,t(M)kF  |hPT(Bi,j,t),MiF | kPT(Bi,j,t)kF
 kPT(Bi,j,t)k2F kMkF

 r(d1 + d2)

nd1d2
µi,j,tkMkF  csr

nT
µi,j,tkMkF ,

using the definition of the local incoherence factor µi,j,t, cf.
Definition IV.1. This implies that

k eZi,j,tk  csr

nT
µi,j,t

almost surely for each i  j  n and each t  T and,
since �i,j,t/pi,j,t

eZi,j,t and eZi,j,t are both positive semidefinite
operators, that

kZi,j,tk  max

✓
�i,j,t

pi,j,t
k eZi,j,tk, k eZi,j,tk

◆
(62)

 1

pi,j,t
k eZi,j,tk  csr

pi,j,tnT
µi,j,t (63)

almost surely as well. Furthermore, for the expectation of the

squares of Zi,j,t we obtain

EZi,j,tZi,j,t

= E

"
�
2

i,j,t

p2i,j,t

eZi,j,t
eZi,j,t

#
� 2E


�i,j,t

pi,j,t

eZi,j,t
eZi,j,t

�
+ eZi,j,t

eZi,j,t

=
pi,j,t

p2i,j,t

eZi,j,t
eZi,j,t � eZi,j,t

eZi,j,t

=

✓
1

pi,j,t
� 1

◆
eZi,j,t

eZi,j,t.

Now, using (61) and observing that for any M 2 R
d1n⇥d2n

eZi,j,t
eZi,j,t(M) = kPT(Bi,j,t)k2F hPT(Bi,j,t),MiFPT(Bi,j,t)

= kPT(Bi,j,t)k2FPTBi,j,tB
⇤

i,j,tPT(M),

we obtain the spectral norm bound
��� eZi,j,t

eZi,j,t

���  kPT(Bi,j,t)k2F
��PTBi,j,tB

⇤

i,j,tPT

��

 r(d1 + d2)

nd1d2
µi,j,t 

csr

nT
µi,j,t,

using the definition of µi,j,t and the fact that��PTBi,j,tB
⇤

i,j,tPT

��  1, as well as d1 + d2 � 1 = T

and the definition of cs = T (T + 1)/(d1d2) in the last
inequality. Due to a similar argument as made in (62), we
obtain that

������

X

(i,j,t)2I

EZi,j,tZi,j,t

������
=

������

X

(i,j,t)2I

✓
1

pi,j,t
� 1

◆
eZi,j,t

eZi,j,t

������

=

������

X

(i,j,t)2I

✓
1

pi,j,t
� 1

◆
kPT(Bi,j,t)k2FPTBi,j,tB

⇤

i,j,tPT

������

 max
(i0,j0,t0)2I

✓
1

pi,j,t
� 1

◆
kPT(Bi,j,t)k2F

·

������

X

(i,j,t)2I

PTBi,j,tB
⇤

i,j,tPT

������

 max
(i0,j0,t0)2I

csr

nT

µi0,j0,t0

pi0,j,0t0
kPTGG⇤PTk

 max
(i0,j0,t0)2I

csr

nT

µi0,j0,t0

pi0,j,0t0
=: ec

(64)

using the formulas for EZi,j,tZi,j,t and eZi,j,t
eZi,j,t from

above, the fact that the
PTBi,j,tB

⇤

i,j,tPT are all positive semidefinite and the assump-
tion the pi,j,t  1 for all (i, j, t) 2 I . Furthermore, we used the
definition of the local coherences µi0,j0,t0 from Definition IV.1
in the first inequality, and the fact that kPTGG⇤PTk  1 in
the last inequality.

As the Zi,j,t are Hermitian, we can now use (64) and (62) to
apply the matrix Bernstein inequality Lemma A.5 to estimate
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that
P (kPTGR⌦G⇤PT � PTGG⇤PTk � ↵)

 2n2
d1d2 exp

✓
� ↵

2
/2

ec+ ec↵/3

◆

 2
(T + 1)2

4
n
2 exp

✓
� ↵

2
/2

ec+ ec↵/3

◆

 1

2
(T + 1)2n2 exp

✓
�3↵2

8ec

◆
 n

�2
,

where the last inequality holds if ec�1 �
8

3↵2 (4 log(n) + log(1/2) + 2 log(T + 1)), which, in view of
the definition of ec from (64) , is implied by the condition

pi,j,t �
32

3↵2
µi,j,tcs

r

nT
log((T + 1)n)

for all 1  i  j  n, 1  t  T .

This shows that there exists an absolute constant C > 1 such
that if (28) is fulfilled for each (i, j, t) 2 I , with probability
at least 1� n

2, it holds that

kPTGR⌦G⇤PT � PTGG⇤PTk < ↵,

which finishes the proof of Lemma VIII.1.

E. Proof of Lemma VIII.2

To show the perturbation result of Lemma VIII.2, we use
ideas from the proof of [CWW19, Lemma 8]. As an auxiliary
result, we also use the following lemma.

Lemma A.6 ([WCCL20, Lemma 4.2], [KMV21, Eq. (30)]).
If T := THA

and TH are the tangent spaces of the rank-r
matrix manifold at HA and H, respectively, then

kPT � PTH
k  4 kHA �Hk

�r(HA)
.

Proof of Lemma VIII.2. Recall that T = THA
⇢ Md1n,d2n is

the tangent space onto Mr at HA. For any Z 2 Md1n,d2n,
we have

kR⌦G⇤PT(Z)k2F
= hR⌦G⇤PT(Z),R⌦G⇤PT(Z)i =

⌦
G⇤PT(Z),R2

⌦
G⇤PT(Z)

↵

 kR⌦k hG⇤PT(Z),R⌦G⇤PT(Z)i
= kR⌦k hZ,PTGR⌦G⇤PT(Z)i
= kR⌦k

�
hZ, (PTGR⌦G⇤PT � PTGG⇤PT)Zi
+ hZ,PTGG⇤PTZi

�

 kR⌦k
�
↵kZk2F + kZk2F

�
= kR⌦k (1 + ↵) kZk2F

using the fact that R⌦ is self-adjoint in the second inequality
and Property VIII.1 in the last inequality. From this, it follows
that

kPTGR⌦k = kR⌦G⇤PTk 
p
kR⌦k (1 + ↵). (65)

With this preparation, we can now apply the triangle inequality

multiple times to estimate that

kPTH
GR⌦G⇤ PTH

�PTH
GG⇤ PTH

k
 k(PTH

�PT)GR⌦G⇤ PTH
k+ kPTGR⌦G⇤ (PTH

�PT)k
+ kPTGR⌦G⇤PT � PTGG⇤PTk
+ kPTGG⇤ (PT � PTH

)k+ k(PTH
�PT)GG⇤ PTH

k
 kPTH

�PTk kR⌦G⇤ PTH
k+ kPTGR⌦k kPTH

�PTk+ ↵

+ kPTk kGG⇤k kPT � PTH
k+ kPTH

�PTk kGG⇤k kPTH
k

 kPTH
�PTk (2 kR⌦G⇤ PTH

k) + ↵+ 2 kPTH
�PTk

 8 kH�HAk
�r(HA)

⇣p
kR⌦k (1 + ↵) + 1

⌘
+ ↵

 ↵+ ↵ = 2↵,

using the sub-multiplicativity of the spectral norm multiple
times, Property VIII.1, in the second inequality, and (65) and
Lemma A.6 in the penultimate inequality. Finally, we conclude
the proof by using the closeness assumption (42) in the last
inequality.

F. Proof of Lemma VIII.3

We present the proof of Lemma VIII.3, which is inspired
by the proofs of [YKJL17, Lemma 20] and [CC14, Lemma
1], but refines the respective arguments.

Proof of Lemma VIII.3. Let ⌘ 2 kerR⌦. Due to the entrywise
nature of the normalized sampling operator R⌦, it holds
that ⌘ 2 kerR⌦ if and only if D⌘ 2 kerR⌦ due to the
diagonality of the diagonal operator D : M�T

n ! M�T
n from

(44). Therefore, it holds that R⌦G⇤H(⌘) = R⌦G⇤GD(⌘) =
R⌦D(⌘) = 0, as G⇤G = Id is the identity operator and
as H = GD due to Lemma A.1, which implies further that
GR⌦G⇤H(⌘) = 0

Furthermore, this also implies that

(Id�GG⇤)H(⌘) = (GD � GG⇤GD) ⌘ = (GD � GD) ⌘ = 0.

Therefore, taking the scalar product with PTH
H(⌘), we note

that
0 = hPTH

H(⌘), (GR⌦G⇤ + Id�GG⇤)H(⌘)i
= hPTH

H(⌘), (GR⌦G⇤ + Id�GG⇤)PTH
H(⌘)i

+ hPTH
H(⌘), (GR⌦G⇤ + Id�GG⇤)PT?

H

H(⌘)i,
(66)

and furthermore, taking the scalar product with PT?
H

H(⌘), we
also observe that

0 = hPT?
H

H(⌘), (GR⌦G⇤ + Id�GG⇤)H(⌘)i
= hPT?

H

H(⌘), (GR⌦G⇤ + Id�GG⇤)PTH
H(⌘)i

+ hPT?
H

H(⌘), (GR⌦G⇤ + Id�GG⇤)PT?
H

H(⌘)i,

which is equivalent to

hPT?
H

H(⌘), (GR⌦G⇤ + Id�GG⇤)PTH
H(⌘)i

= hPTH
H(⌘), (GR⌦G⇤ + Id�GG⇤)PT?

H

H(⌘)i
= �hPT?

H

H(⌘), (GR⌦G⇤ + Id�GG⇤)PT?
H

H(⌘)i,

where we used in the first equality the fact that GR⌦G⇤ +
Id�GG⇤ is self-adjoint as a sum of self-adjoint operators.
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Inserting this into (66), we obtain

hPTH
H(⌘), (GR⌦G⇤ + Id�GG⇤)PTH

H(⌘)i
= hPT?

H

H(⌘), (GR⌦G⇤ + Id�GG⇤)PT?
H

H(⌘)i. (67)

We now bound the left and right hand side of the latter equality
separately. On the one hand, we obtain a lower bound

|hPTH
H(⌘), (GR⌦G⇤ + Id�GG⇤)PTH

H(⌘)i|
� |hPTH

H(⌘),PTH
H(⌘)i|

� |hPTH
H(⌘), (GR⌦G⇤ � GG⇤)PTH

H(⌘)i|
= kPTH

H(⌘)k2F �
|hPTH

H(⌘), (PTH
GR⌦G⇤ PTH

�PTH
GG⇤ PTH

)PTH
H(⌘)i|

� kPTH
H(⌘)k2F �

kPTH
GR⌦G⇤ PTH

�PTH
GG⇤ PTH

k kPTH
H(⌘)k2F

� kPTH
H(⌘)k2F � 2

5
kPTH

H(⌘)k2F ,

using the projection property PTH

2 = PTH
in the equality

and (43) in the last inequality, which implies that

kPTH
H(⌘)k2F

 5

3
|hPTH

H(⌘), (GR⌦G⇤ + Id�GG⇤)PTH
H(⌘)i| (68)

On the other hand, we have the upper bounds
���hPT?

H

H(⌘), (GR⌦G⇤ + Id�GG⇤)PT?
H

H(⌘)i
���


���PT?

H

H(⌘)
���
F
kGR⌦G⇤k

���PT?
H

H(⌘)
���
F

+
���PT?

H

H(⌘)
���
F
kId�GG⇤k

���PT?
H

H(⌘)
���
F

 kGk kR⌦k kG⇤k
���PT?

H

H(⌘)
���
2

F
+
���PT?

H

H(⌘)
���
2

F

 (kR⌦k+ 1)
���PT?

H

H(⌘)
���
2

F
,

using the sub-mulitiplicativity of the spectral norm and the
fact that Id�GG⇤ is a projection in the third inequality, and
observing that kGk  1 andkG⇤k  1 in the last inequality.
Combining this with (67) and (68), this implies

kPTH
H(⌘)k2F  5

3
(kR⌦k+ 1)

���PT?
H

H(⌘)
���
2

F

and therefore

kH(⌘)k2F = kPTH
H(⌘)k2F +

��PT?
H

H(⌘)
��2
F

 5

3
(kR⌦k+ 8/5)

���PT?
H

H(⌘)
���
2

F
,

which finishes the proof.

Next, we provide an auxiliary result of similar flavor as
Lemma VIII.3 to be used in the convergence analysis of
TOIRLS.

Lemma A.7. Assume that Property VIII.1 holds true for a
normalized sampling operator R⌦ : M�T

n ! M�T
n with

respect to a rank-r matrix HA 2 Md1n,d2n and constant
↵ = 1/5. If eX(k) 2 M�T

n is such that the best rank-r

approximation of a matrix Hk := H(eX(k)), i.e.,

Tr(Hk) = argmin
Z2Md1n,d2n:rank(Z)r

kZ�Hkk (69)

satisfies

Tr(Hk) 2 BHA

0

@ �r(HA)

32
p
r

⇣p
6kR⌦k/5 + 1

⌘

1

A ,

then it holds that

kH(⌘(k))k <

r
20

3
(kR⌦k+ 8/5)

p
dn� r�r+1(Hk)

where ⌘
(k) = eX(k) �QT (A).

Proof. If Tk := TTr(Hk)
is tangent space onto the manifold

of rank-r matrices at Tr(Hk) and if U(k)
?

2 R
d1n⇥(d1n�r) and

V
(k)
?

2 R
d2n⇥(d2n�r) are the matrices with the last d1n�r and

last d2n�r left and right singular vectors of Hk, respectively,
we can write the action of the projection P

T
?
k
: Md1n,d2n !

Md1n,d2n onto the orthogonal complement T?

k of Tk as

P
T

?
k
(Z) = U

(k)
?

U
(k)⇤
?

ZV
(k)
?

V
(k)⇤
?

,

cf., e.g., [Rec11]. Let d = min(d1, d2). If ⌃?

k 2
R
(d1n�r)⇥(d2n�r) is diagonal with the last dn � r singular

values of Hk ordered in an non-increasing way, we observe
that

P
T

?
k
(Hk) = U

(k)
?

⌃?

k V
(k)⇤
?

.

Now, if HA = U0⌃0V
T
0

is a compact singular value decom-
position of HA, we estimate

kP
T

?
k
(H(⌘(k)))kF  kP

T
?
k
(Hk)kF + kP

T
?
k
(HA)kF



vuut
dnX

i=r+1

�2

i (Hk) +
���U(k)

?
U

(k)⇤
?

HAV
(k)
?

V
(k)⇤
?

���
F



vuut
dnX

i=r+1

�2

i (Hk) + kU(k)
?

k
���U(k)⇤

?
HAV

(k)
?

���
F
kV(k)⇤

?
k


p
dn� r�r+1(Hk) + kU(k)⇤

?
U0kk⌃0kF kV⇤

0
V

(k)
?

k

using the definition of ⌘
(k), the triangle inequality, the fact

that kABkF  kAkkBkF for all matrices A and B, and that
kV(k)⇤

?
k = kU(k)

?
k = 1.

By the classical perturbation bound due to Wedin [Wed72,
Ste06], cf. also [KMV21, Lemma B.6],

max{kU(k)⇤
?

U0k, kV⇤

0
V

(k)
?

k} 
p
2
1

⇣
kH(⌘(k))k ,

if Hk 2 BHA
(⇣) with 0 < ⇣ < 1. By assumption ⇣ < 1/2, so

kP
T

?
k
(H(⌘(k)))kF


p
dn� r�r+1(Hk) + 8kH(⌘(k))k2

p
r�1(HA)


p
dn� r�r+1(Hk) + 8kH(⌘(k))k2

p
r�r(HA).

Due to our assumptions, we can apply Lemma VIII.2 for
↵ = 1/5 and further Lemma VIII.3 for ⌘ = ⌘

(k) to estimate
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that

kH(⌘(k))k  kH(⌘(k))kF


r

5

3
(kR⌦k+ 8/5)kP

T
?
k
(H(⌘(k)))kF


r

5

3
(kR⌦k+ 8/5)

⇣p
dn� r · �r+1(Hk) + 8kH(⌘(k))k2

p
r�r(HA)

⌘


r

5

3
(kR⌦k+ 8/5)

p
dn� r · �r+1(Hk)

+
8
p
r

q
5

3
(kR⌦k+ 8/5)

(32
p
r)

⇣p
6kR⌦k/5 + 1

⌘kH(⌘(k))k

<

r
5

3
(kR⌦k+ 8/5)

p
dn� r · �r+1(Hk) +

1

2
kH(⌘(k))k.

Rearranging this estimate, we obtain

kH(⌘(k))k <

r
20

3
(kR⌦k+ 8/5)

p
dn� r�r+1(Hk).

G. Proof of Proposition VIII.1

In this section, we provide the proof of Proposition VIII.1.
For this purpose, we use key results of [KMV21], adapted to
our notation.

Proposition A.3 ([KMV21, Lemma B.8 and Lemma B.9]).
Let HA = H(QT (A)) 2 RanH be a matrix of rank r, let
eX(k) be the k-th iterate of Algorithm 1 for input parameters
⌦, y = P⌦(QT (A)), � = 0 and er = r. For Hk := H(eX(k)),
assume that "k = �r+1(Hk) and that

kH(⌘)kF  CkP
T

?
k
H(⌘)kF for all ⌘ 2 kerR⌦

for some constant C, where Tk = TTr(Hk)
is the tangent

space onto the manifold of rank-r matrices at Tr(Hk). Then

kH(eX(k+1))�HAk  C
2
"
2

kkWHk(HA)kS1 ,

where WHk : Md1n,d2n ! Md1n,d2n is the optimal weight
operator of Hk as in (19), and k ·kS1 describes the Schatten-1
norm.

Furthermore, if additionally H(eX(k)) 2 BHA
(⇣) for some

0 < ⇣ < 1, then

kH(eX(k+1))�HAk  C
2
r(1� ⇣)�2

�r(HA)�1

⇣
"
2

k + 4"kkH(eX(k))�HAk+ 2kH(eX(k+1))�HAk2
⌘
,

where  = �1(HA)/�r(HA) is the condition number of HA.

We can now put Lemma VIII.3, Lemma VIII.2 and Propo-
sition A.3 together to prove Proposition VIII.1, showing that
we attain locally quadratic convergence under the stated as-
sumptions.

Proof of Proposition VIII.1. Let k 2 N and eX(k) be the k-th
iterate of Algorithm 1 with inputs ⌦, y = P⌦(QT (A)), � = 0

and er = r. First, we observe that

⇣3 = min

✓
⇣1, ⇣2, ⇣3,

1

2

◆
:= min

✓
(32

p
r)

�1

p
6kR⌦k/5 + 1

,

3

20r

(1 + 6)�1
�r(HA)

kR⌦k+ 8/5
,

3
3
2 (1 + 6)�1

�r(HA)

20
3
2 r (kR⌦k+ 8/5)

3
2 (dn� r)

1
2

,
1

2

◆
.

We note that Property VIII.1 is satisfied with respect to
HA and constant ↵ = 1/5. Since H(eX(k)) 2 BHA

(⇣3) (as
⇣3 < ⇣2), we also have that a best rank-r approximation
Tr(H(eX(k))) of H(eX(k)) satisfies
��Tr(H(eX(k)))�HA

��


��H(eX(k))�HA

��+
��H(eX(k))� Tr(H(eX(k)))

��

 2
��H(eX(k))�HA

��  2⇣3  1

40

⇣p
6kR⌦k/5 + 1

⌘�1

,

from which it follows due to Lemma VIII.2 that (43) holds
true for H := Tr(H(eX(k))). Thus, Lemma VIII.3 implies that

kH(⌘(k))k2F  5

3
(kR⌦k+ 8/5)

���PT
?
k
H(⌘(k))

���
2

F
,

where ⌘
(k) := eX(k) �QT (A) and Tk = TH = T

Tr(H(eX(k)))

is tangent space onto the manifold of rank-r matrices at H.

Next, since "k = �r+1(H(eX(k))), it follows from the
Eckardt-Young-Mirsky theorem [Mir60] that

"k = �r+1(H(eX(k)))

= kH(eX(k))�Hk  kH(eX(k))�HAk = kH(⌘(k))k,

where we used that HA is of rank r in the inequality.
Since also H(eX(k)) 2 BHA

(1/2), it follows therefore from
Proposition A.3 that

kH(⌘(k+1))k

 20

3
(kR⌦k+ 8/5) r�r(HA)�1

⇣
"
2

k + 4"kkH(⌘(k))k+ 2kH(⌘(k))k2
⌘

 20

3
(kR⌦k+ 8/5) r�r(HA)�1 (1 + 6) kH(⌘(k))k2,

(70)

where  = �1(HA)/�r(HA) is the condition number of HA

and ⌘
(k+1) = eX(k+1) �QT (A).

If, additionally, we assume that H(eX(k)) 2 BHA
(⇣2), then

we can further bound the right hand side of (70) to obtain

kH(⌘(k+1))k < kH(⌘(k))k , (71)

and also obtain a quadratic decay in the spectral error

kH(⌘(k+1))k  ⌫kH(⌘(k))k2 ,

with ⌫ = 20

3�r(HA)
(1 + 6) (kR⌦k+ 8/5) r.

What remains to be shown is that the (r + 1)-st singular
value H

⇣
eX(k)

⌘
is strictly decreasing from one iterate to the
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next. If H(eX(k)) 2 BHA
(⇣1), it follows that

�r+1(H(eX(k+1)))  kH(⌘(k+1))k

 20

3
(kR⌦k+ 8/5) r�r(HA)�1 (1 + 6) kH(⌘(k))k2

<

✓
20

3
(kR⌦k+ 8/5)

◆3/2

r

· (1 + 6)
p
dn� r�r+1(H(eX(k)))

kH(⌘(k))k
�r(HA)

 �r+1(H(eX(k))),

(72)

using (70) in the second inequality, Lemma A.7 in the third
inequality, and H(eX(k)) 2 BHA

(⇣3) in the last inequality.
Finally, we recall the update rule (21), which gives that (72)

implies that "k+1 = �r+1(H(eX(k+1))), so that (71) ensures
that the assumptions of Proposition VIII.1 are not only fulfilled
for iteration k, but also for iteration k + 1. By induction, this
implies that H(eX(k+`))

`!1���! HA, concluding the proof of
Proposition VIII.1.

H. Computational Details
In this section, we detail some aspects of anx efficient

implementations of TOIRLS, cf. Algorithm 1.
1) Explicit Expression for Weighted Least Squares Solution:

First, we justify the explicit formula of Section V provided for
the k + 1-st iterate eX(k+1) of TOIRLS.

Lemma A.8. For any � � 0, it holds that the solution eX(k+1)

of the weighted least squares problem (20) satisfies

eX(k+1) = fW�1

Hk
P

⇤

⌦

⇣
� Id+P⌦

fW�1

Hk
P

⇤

⌦

⌘�1

(y), (73)

where fW�1

Hk
: Md1n,d2n ! Md1n,d2n is the inverse of the

effective weight operator fWHk : Md1n,d2n ! Md1n,d2n of
Definition III.1.

Proof. Using the substitution fX0 = fW 1/2
Hk

(eX) in (20), we
obtain that

eX(k+1) = fW�1/2
Hk

✓
fX0

(k)
◆

where

fX0
(k+1)

= argmin
fX02M

�T
n

⇢
heX0

, eX0i+ 1

�

���P⌦(fW�1/2
Hk

(eX0))� y

���
2

2

)

�

= argmin
fX02M

�T
n

⇢
�keX0k2F +

���F(eX0)� y

���
2

2

�

= F⇤ (� Id+FF⇤)�1
y

= fW�1/2
Hk

P
⇤

⌦

⇣
� Id+P⌦

fW�1

Hk
P

⇤

⌦

⌘�1

(y),

defining F := P⌦ � fW�1/2
Hk

: Md1n,d2n ! R
m to interpret

the problem as a ridge regression/`2-penalized least squares
problem in the second equality, and using the inner product
implementation of ridge regression in the third equality (see,
e.g., [FLZZ20, Theorem 2.4]). This shows (73).

For � = 0, we note that

eX(k+1) = argmin
eX2M

�T
n :P⌦(eX)=y

heX,fWHk(eX)i = fW�1/2
Hk

✓
fX0

(k)
◆

with

fX0
(k+1)

= argmin
fX02M

�T
n :F(fX0)=y

kfX0k2F = F⇤ (FF⇤)�1
y

= fW�1/2
Hk

P
⇤

⌦

⇣
P⌦
fW�1

Hk
P

⇤

⌦

⌘�1

(y) ,

using an analogous substitution as above and the fact that
F† = F⇤ (FF⇤)�1 is the Moore-Penrose inverse of F as
defined above.

2) Efficient Implementation of TOIRLS: In this section we
outline the main computational steps of an efficient imple-
mentation of TOIRLS. In particular, we provide an algorithm,
Algorithm 2, for computing the weighted least squares solution
(73) essentially via a conjugate gradient method applied to a
(rk(nd1+nd2+rk)⇥rk(nd1+nd2+rk)) = O(rnT )⇥O(rnT )
linear system.

In the following, we let Sk := R
rk(nd1+nd2+rk), and we

recall from the proof of Lemma A.7 that if eX(k) 2 Md1n,d2n

is the k-th iterate of TOIRLS and Hk := H(eX(k)), Tk :=
T

Trk(H(eX(k))) denotes tangent space onto the manifold of

rank-rk matrices at Trk
⇣
H(eX(k))

⌘
(here, with rk instead of

r), where Trk (Hk) is the best rank-r rk approximation of
Hk, cf. (69). Given the subspace Tk ⇢ Md1n,d2n, we let
PTk : Sk ! Tk be the parametrization operator defined, for
� 2 Sk, as

PTk(�) := U
(k)�1V

(k)⇤ +U
(k)�2 + �3V

(k)⇤
,

where �1 2 R
rk⇥rk ,�2 2 R

rk⇥nd2 and �d 2 R
nd1⇥rk

are matricizations of the first r
2

k, central rknd2 and final
rknd2 coordinates of � 2 Sk, respectively. We note that
the projection operator PTk

: Md1n,d2n ! Md1n,d2n

can be implemented via PTk = PTkP
⇤

Tk
· Recall that

G : M�T
n ! Md1n,d2n is the normalized block Hankel

operator (36) and D : M�T
n ! M�T

n the diagonal operator
of (44). Finally, Im and ISk are identity matrices on R

m and
Sk, respectively, and DSk : Sk ! Sk is a diagonal matrix

that contains coordinates
⇣P

"k,d1n

⌘�1

ii

⇣P
"k,d2n

⌘

jj
=

max
⇣
�
(k)
i , "k

⌘�1

max
⇣
�
(k)
j , "k

⌘�1

for (i, j) 2
{(i, j) 2 [nd1]⇥ [nd2] : i  rk or j  rk} on its
diagonal, which is related to the weight operator
WHk : Md1n,d2n ! Md1n,d2n of (19) by

WHk(Z) =
�
PTkDSkP

⇤

Tk
+ ✏

�2

k

�
Id� PTkP

⇤

Tk

��
Z, (74)

cf. [KMV21, Appendix A, Eq. (12)]. With these notational
conventions, we can formulate Algorithm 2.

Lemma A.9 shows that Algorithm 2 indeed computes the
weighted least squares solution eX(k).

Lemma A.9. Let eX(k) 2 Md1n,d2n be the k-th iterate of
TOIRLS (Algorithm 1) for an observation vector y 2 R

m

with m = |⌦|,� � 0 and smoothing parameter "k > 0, let
Hk = H

⇣
eX(k)

⌘
and rk = |{i 2 [dn] : �i (Hk) > "k}|. Then

the following statements hold.
1) The (k + 1)-st iterate eX(k+1) of Algorithm 1 satisfies

eX(k+1) = D�1 eP ⇤

⌦
(pk+1) +D�1G⇤

PTk (�k+1)
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Algorithm 2 Implementation of k+1-st weighted least squares
step of TOIRLS

Input: Set ⌦, observations y 2 R
m, � � 0, matrices U(k) 2

R
d1⇥rk , V(k) 2 R

d2⇥rk of singular vectors and rk leading
singular values �(k)

1
, . . . ,�

(k)
rk of Hk , smoothing parameter

"k, initialization �
(0)

k+1
= P

⇤

Tk
PTk�1(�k) 2 R

rk(nd1+nd2+rk)

where �k 2 R
rk�1(nd1+nd2+rk�1) is respective parameter

(76) of the k-th iteration.
Let K := �"

�2

k I+ P⌦D�2
P

⇤

⌦
and

M := P
⇤

Tk
GD�1

P
⇤

⌦
K

�1
P⌦D�1G⇤

PTk

+
D

�1

Sk

D
�1

Sk
� "2kISk

� P
⇤

Tk
GG⇤

PTk .
(75)

1: Compute h
0

k := P
⇤

Tk
GD�1

P
⇤

⌦
K

�1
y � M�

(0)

k+1
2

R
rk(nd1+nd2+rk).

2: Solve linear system

M��k+1 = h
0

k (76)

for ��k+1 2 Sk by the conjugate gradient method [HS52,
Meu06].

3: Compute �k+1 = �
(0)

k+1
+��k+1.

4: Compute residual pk+1 := K
�1(y �

P⌦D�1G⇤
PTk(�k+1)) 2 R

m where

K := �"
�2

k I+ P⌦D�2
P

⇤

⌦
. (77)

Output: pk+1 2 R
m and �k+1 2 R

rk(nd1+nd2+rk).

where pk+1 2 R
m and �k+1 2 R

rk(nd1+nd2+rk) is the
output of Algorithm 2 if the linear system of (76) is solved
exactly.

2) The vector �k+1 2 R
rk(nd1+nd2+rk) corresponding to

an iterative solution of (76) using NCG inner iterations
of a conjugate gradient method9 can be computed in
O(NCG innerrkT (m + n log T + nrkT )) time. Thus, a
parametrization of an approximation of the (k + 1)-
st iterate eX(k+1) of Algorithm 1 can be computed in
O(NCG innerrkT (m+ n log T + nrkT )) time.

The statement of Lemma A.9.2 enables Algorithm 2 to
compute an accurate approximation of eX(k+1) in O(rkT (m+
n log T + nrkT )) time in many situations, in particular, if
eX(k) is close to an image QT (A) of a transition operator A

satisfying P⌦(QT (A)) = y and if the normalized sampling
operator R⌦ associated to the sampling set ⌦ satisfies a
local restricted isometry property (37), as in this case, it can
be shown that the condition number of the matrix M of
linear system (76) is a small constant. We do not provide
the full proof for that statement as it amounts to a variant of
[KMV21, Theorem 4.2] and its proof.

9or of related iterative solvers based on matrix-vector multiplication

Proof of Lemma A.9.1. We recall from Lemma A.8 that

eX(k+1)

= fW�1

Hk
P

⇤

⌦

⇣
� Id+P⌦

fW�1

Hk
P
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fW (k)
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⌦

✓
� Id+ eP⌦

⇣
fW (k)

G

⌘�1 eP ⇤

⌦

◆�1

(y)

(78)

using the notation fW (k)
G

:= G⇤
WHkG and eP⌦ := P⌦D�1

. The
last inequality holds due to

fW�1

Hk
= (H⇤

WHkH)�1 = (DG⇤
WHkGD)�1

= D�1

⇣
fW (k)

G

⌘�1

D�1

Using (74) and G⇤G = Id, we can write
⇣
fW (k)

G

⌘�1

= (G⇤
WHkG)
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�
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�
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k ISk

�
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⇤
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k Id
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��1
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�
G⇤
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�
DSk � "
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k ISk

�
P

⇤

Tk
G + "

�2

k Id
��1

.

For the next step, we recall the Sherman-Morrison-Woodbury
formula [Woo50, FRW11], [HJ12, (0.7.4.1)], which states
that for any invertible matrices B,C and matrices E,F of
appropriate dimensions,

(B+ECF
⇤)�1= B

�1�B
�1

E
�
C

�1+ F
⇤
B

�1
E
��1

F
⇤
B

�1
.

(79)
Applying (79) for B = "

�2

k Id,E = G⇤
PTk ,F

⇤ = P
⇤
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G and

C = DSk � "
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⌘�1

= "
2

k

h
Id

� G⇤
PTk

⇣
"
�2

k

�
DSk � "

�2

k ISk

��1

+P
⇤

Tk
GG⇤

PTk

⌘�1

P
⇤

Tk
G
i
.

(80)

Thus,
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k
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where
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PTk
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k ISk

+ P
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GG⇤

PTk

◆�1

P
⇤

Tk
G eP ⇤

⌦
.

Here, we can again use Sherman-Morrison-Woodbury (79)
with C = N

�1
,E = F = eE and B = K with K from

(77), eE = eP⌦G⇤
PTk and

N :=
D

�1

Sk

D
�1

Sk
� "2kISk

� P
⇤

Tk
GG⇤

PTk

= �
✓

"
�2

k ISk

DSk � "
�2

k ISk

+ P
⇤
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GG⇤
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◆ (81)
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to obtain

ey :=

✓
� Id+ eP⌦

⇣
fW (k)

G

⌘�1 eP ⇤

⌦

◆�1

(y)
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k K
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�2

k K
�1eE
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⌘�1 eE⇤
K

�1(y)

= "
�2

k K
�1
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y � eE�k+1

⌘
,

(82)

using the notation that �k+1 2 Sk is solution to the invertible
linear system

⇣
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K
�1eE+N

⌘
�k+1 = eE⇤

K
�1

y

Furthermore, y, ey and �k+1 are related by

"
2

k
eE⇤(ey)

= eE⇤
K

�1

⇣
y � eE�k+1

⌘

= eE⇤
K

�1

✓
y � eE

⇣
eE⇤

K
�1eE+N

⌘�1 eE⇤
K

�1
y

◆
= eE⇤

K
�1

y

�
⇣
eE⇤

K
�1eE+N�N

⌘⇣
eE⇤

K
�1eE+N

⌘�1 eE⇤
K

�1
y

= N

⇣
eE⇤

K
�1eE+N

⌘�1 eE⇤
K

�1
y.

(83)

Inserting these equalities back into the expression (78) for
eX(k+1), we observe that

eX(k+1) = D�1
�fW (k)

G

��1 eP ⇤

⌦

�
� Id+ eP⌦

�fW (k)
G

��1 eP ⇤

⌦

��1

(y)

= D�1
�fW (k)

G

��1 eP ⇤

⌦
(ey)

= "
2

kD�1
⇥
Id+G⇤

PTkN
�1

P
⇤

Tk
G
⇤ eP ⇤

⌦
(ey)

= "
2

kD�1 eP ⇤

⌦
(ey) + "

2

kD�1G⇤
PTkN

�1eE⇤(ey)
= "

2

kD�1 eP ⇤

⌦
(ey)

+ "
2

kD�1G⇤
PTk

⇣
eE⇤

K
�1eE+N

⌘�1 eE⇤
K

�1(ey)

= "
2

kD�1 eP ⇤

⌦
(ey) + "

2

kD�1G⇤
PTk(�k+1)

= D�1 eP ⇤

⌦
K

�1

⇣
y � eE�k+1

⌘
+D�1G⇤

PTk(�k+1)

= D�1 eP ⇤

⌦
(pk+1) +D�1G⇤

PTk(�k+1).

In the second equality, we used the definition of
ey; in the third equality, we used that

⇣
fW (k)

G

⌘�1

=

"
2

k

⇥
Id+G⇤

PTkN
�1

P
⇤

Tk
G
⇤
, which follows from (80) and

(81). In the fifth equality, we used (83); in the sixth
equality the definition of �k+1. In the seventh equal-
ity, we used (82) and in the last equality, we use the
definition pk+1 = K

�1
�
y � P⌦D�1G⇤

PTk (�k+1)
�

=

K
�1

⇣
y � eE (�k+1)

⌘
of the residual pk+1. This concludes

the proof of Lemma A.9.

Proof of Lemma A.9.2. In line 3 of Algorithm 2, �k+1 is
computed by adding �

(0)

k+1
(which is an input) and ��k+1, the

solution of the positive definite linear system of (76), which
requires O(rk(nd1 + nd2 + rk)) computations.

To solve (76), a conjugate gradient method can be applied,
whose cost crucially depends on the cost of executing matrix-

vector multiplications with the matrix M from (75). We
address the matrix-vector multiplication cost of the three
summands of M separately, as we can obtain M� for � 2
R
rk(nd1+nd2+rk) by adding/substracting the three resulting

vectors in additional 3rk(nd1 + nd2 + rk) time.

• Matrix-vector multiplication with
D

�1
Sk

D
�1
Sk

�"2kISk

: this matrix
is diagonaly, since DSk is, resulting in a time complexity
of rk(nd1 + nd2 + rk).

• Matrix-vector multiplication with
P

⇤

Tk
GD�1

P
⇤

⌦
K

�1
P⌦D�1G⇤

PTk . This can me
implemented by the successive application of
the three operators P

⇤

Tk
GD�1

P
⇤

⌦
, K

�1 and
P⌦D�1G⇤

PTk . Applying P⌦D�1G⇤
PTk can be done in

O(mTrk + r
2

knT ) +mT = O(mTrk + r
2

knT ) time by
evaluating the tangent space matrix returned by PTk at
mT locations (which correspond to the support set of
H(P ⇤

⌦
(y))) via Algorithm 4 of the paper [KMV21] and

averaging the entries across the Hankel blocks. K�1 can
be applied by in rk(nd1 + nd2 + rk) time as P⌦D�2

P
⇤

⌦

is a diagonal (m⇥m) matrix whose i-th diagonal entry
is the inverse number of occurrences of the Hankel block
which corresponds to the i-th observation in ⌦. Finally,
the application of P ⇤

Tk
GD�1

P
⇤

⌦
can be implemented via

Algorithm 3 of [KMV21] as the image of GD�1
P

⇤

⌦
is a

sparse (nd1⇥nd2) matrix with a support set of size mT ,
giving a time complexity of O(mTrk + r

2

knT ). Thus,
the total time complexity of the entire matrix-vector
multiplication is O(mTrk + r

2

knT ).
• Matrix-vector multiplication with P

⇤

Tk
GG⇤

PTk . We ob-
serve that block Hankel matrices of size (nd1 ⇥ nd2)
with (n⇥ n) blocks can be embedded into a (nT ⇥ nT )
block circulant matrix (up to reordering of columns), cf.,
e.g., [KS99, Section 8.3.1], and such block circulant ma-
trices can be diagonalized by a ”block” discrete Fourier
transform. Using the fast Fourier transform across blocks,
it is possible to compute the image of P

⇤

Tk
GG⇤

PTk in
O(rknT log T + r

2

kT
2
n) time, see also [Küm19, Section

3.4] for a related algorithm for Hankel matrices.
We refer to our MATLAB implementation for further details
on the above. Overall, the matrix-vector multiplication of M

with a vector � 2 R
rk(nd1+nd2+rk) can be performed in

O(rkT (m + n log T + nrkT )) time. Since the computations
necessary to obtain h

0

k and pk+1 in line 1 and 4, respectively,
involve only operations whose order we quantified above, this
concludes the proof of Lemma A.9.2.
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[BÅ70] R. Bellman and K. J. Åström, On structural identifiability, Math.
Biosci. 7 (1970), no. 3-4, 329–339.

[BNZ21] J. Bauch, B. Nadler, and P. Zilber, Rank 2r iterative least
squares: efficient recovery of ill-conditioned low rank matrices
from few entries, SIAM J. Math. Data Sci. 3 (2021), no. 1, 439–
465.

[BSW11] F. Bunea, Y. She, and M. H Wegkamp, Optimal selection of
reduced rank estimators of high-dimensional matrices, Ann. Stat
39 (2011), no. 2, 1282–1309.

[CBSW15] Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward, Completing
any low-rank matrix, provably, J. Mach. Learn. Res. (JMLR) 16
(2015), no. 1, 2999–3034.

[CC14] Y. Chen and Y. Chi, Robust Spectral Compressed Sensing via
Structured Matrix Completion, IEEE Trans. Inf. Theory 60
(2014), no. 10, 6576–6601.

[CCY22] H. Cai, J.-F. Cai, and J. You, Structured gradient descent for
fast robust low-rank hankel matrix completion, arXiv preprint
arXiv:2204.03316 (2022).

[CESV13] E. J. Candès, Y. Eldar, T. Strohmer, and V. Voroninski, Phase
Retrieval via Matrix Completion, SIAM J. Imag. Sci. 6 (2013),
no. 1, 199–225.

[Che15] Y. Chen, Incoherence-Optimal Matrix Completion, IEEE Trans.
Inf. Theory 61 (2015), no. 5, 2909–2923.

[Chu97] F. R. K. Chung, Spectral graph theory, Vol. 92 of the CBMS
Regional Conference Series in Mathematics, American Mathe-
matical Society, 1997.

[CIML20] M. Coutino, E. Isufi, T. Maehara, and G. Leus, State-space
network topology identification from partial observations, IEEE
Trans. Signal Inf. Process. Netw. 6 (2020), 211–225.

[CLC19] Y. Chi, Y. M. Lu, and Y. Chen, Nonconvex Optimization Meets
Low-Rank Matrix Factorization: An Overview, IEEE Trans.
Signal Process. 67 (2019), no. 20, 5239–5269.

[CLL+05] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler,
F. Warner, and S. W. Zucker, Geometric diffusions as a tool for
harmonic analysis and structure definition of data: Diffusion
maps, Proc. Natl. Acad. Sci. U.S.A. 102 (2005), no. 21, 7426–
7431.

[CM06] R. R. Coifman and M. Maggioni, Diffusion wavelets, Appl.
Comp. Harm. Anal. 21 (2006), no. 1, 53–94.

[CP11a] E. J. Candès and Y. Plan, Tight Oracle Inequalities for Low-Rank
Matrix Recovery From a Minimal Number of Noisy Random
Measurements, IEEE Trans. Inf. Theory 57 (2011), no. 4, 2342–
2359.

[CP11b] E. J. Candès and Y. Plan, Tight oracle inequalities for low-
rank matrix recovery from a minimal number of noisy random
measurements, IEEE Trans. Inf. Theory 57 (2011), no. 4, 2342–
2359.

[CR09] E. J. Candès and B. Recht, Exact matrix completion via convex
optimization, Found. Comput. Math. 9 (2009), no. 6, 717–772.

[CT10] E. J. Candès and T. Tao, The Power of Convex Relaxation: Near-
Optimal Matrix Completion, IEEE Trans. Inf. Theory 56 (2010),
no. 5, 2053–2080.

[CT21] J. Cheng and S. Tang, Estimate the spectrum of affine dynamical
systems from partial observations of a single trajectory data,
Inverse Probl. 38 (2021), no. 1, 015004.

[CWW18] J.-F. Cai, T. Wang, and K. Wei, Spectral compressed sensing via
projected gradient descent, SIAM J. Optim. 28 (2018), no. 3,
2625–2653.

[CWW19] , Fast and provable algorithms for spectrally sparse
signal reconstruction via low-rank Hankel matrix completion,
Appl. Comput. Harmon. Anal. 46 (2019), no. 1, 94–121.

[DC20] L. Ding and Y. Chen, Leave-one-out approach for matrix com-
pletion: Primal and dual analysis, IEEE Trans. Inf. Theory. 66
(2020), no. 11, 7274–7301.

[DDFG10] I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk,
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