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Abstract.

In this paper, we focus on the data-driven discovery of a general second-order particle-based model that
contains many state-of-the-art models for modeling the aggregation and collective behavior of interacting agents
of similar size and body type. This model takes the form of a high-dimensional system of ordinary differential
equations parameterized by two interaction kernels that appraise the alignment of positions and velocities.
We propose a Gaussian Process-based approach to this problem, where the unknown model parameters are
marginalized by using two independent Gaussian Process (GP) priors on latent interaction kernels constrained
to dynamics and observational data. This results in a nonparametric model for interacting dynamical systems
that accounts for uncertainty quantification. We also develop acceleration techniques to improve scalability.
Moreover, we perform a theoretical analysis to interpret the methodology and investigate the conditions under
which the kernels can be recovered. We demonstrate the effectiveness of the proposed approach on various
prototype systems, including the selection of the order of the systems and the types of interactions. In particular,
we present applications to modeling two real-world fish motion datasets that display flocking and milling
patterns up to 248 dimensions. Despite the use of small data sets, the GP-based approach learns an effective
representation of the nonlinear dynamics in these spaces and outperforms competitor methods.

Key words. Particle-based system, data-driven methods, Gaussian process, kernel ridge regression, inverse
problems, randomized numerical linear algebra

1. Introduction. Interacting particle/agent systems are a broad spectrum of complex
systems with multiple components interacting with each other and co-evolving with time.
Individual interactions yield a wide variety of collective behaviors at different scales and
levels of complexity such as clustering, alignment, swarming, synchronization, or dancing
equilibrium. There are numerous real-world examples of such systems, including the orbits of
planets, motion of self-propelled particles, flocking of birds, schooling of fish, aggregation of
cells, consensus of opinions, and synchronization of oscillators over networks. Understanding
the link between individual interactions and global-scale collective behaviors is one of the most
fundamental problems in various disciplines.

Modeling interacting agents by differential equations has played a crucial role in exploring
the emergence of collective behaviors from individual interactions. However, such systems
are often high-dimensional and exhibit many possible dynamical couplings of components
that contribute to the dynamics, making them challenging to study [1, 2, 3, 4]. Despite
these challenges, recent work has made impressive progress in developing a general physical
model derived from Newton’s second law that can capture a wide range of collective behaviors
[5, 6, 7, 8, 9]. This model describes a system of N agents interacting according to a set of
ODESs, where each agent’s motion is influenced by self-propulsion, friction, and interactions
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with other agents, represented by energy and alignment-based radial interaction kernels: for
i=1,---,N

N
1
(L1) myd; = Fy(ai, @i, 00) + Y N [¢E(Hwi' —zil|) (@i — @) + ¢ ||z — i) (@0 — ﬂbi)},

=1

where m; > 0 is the mass of the agent i; &; € R? is the acceleration, &; € R? is the velocity,
and x; € R? is the position of agent i; the first term Fj is a parametric function of position
and velocities, modeling self-propulsion and frictions of agent ¢ with the environment with
scalar parameters oy; describing their strength; ||x; — ;|| is the Euclidean distance; and the
1D functions ¢%, ¢4 : Rt — R are called the energy and alignment-based radial interaction
kernels respectively. The ¢ term describes the alignment of positions based on the difference
of positions; the ¢ term describes the alignment of velocities based on the difference of
velocities. We summarize the relevant notations in Table 1.

Particular examples of (1.1) include the first-order systems (m; = 0, = 0) that model
clustering and aggregation of agents with application to opinion dynamics [10], the second-
order Cucker-Smale model (¢ = 0) [11] for the flocking behavior of animals and robots,
the second-order self-propelling particle model (¢4 = 0) that is shown to reproduce (double)
milling, ring, escaping or swarming behaviors of biological motors [12], and the anticipation
dynamics [13] (qﬁA, #¥ # 0) that describes the velocity alignment and spatial concentration of
animal groups. For simplicity of description, we assume the masses of all agents are the same
and equal to m. We write the second-order model (1.1) in a compact form:

(1.2) mZ(t) = Fa(Y (1) + £5(Y (1))

where Y (t) := [th

X (t), and fu(Y(
1

actions as in (1.

)] € R2N represents the state variable for the system, Z(t) = V(t) =

)) = f4e 4a(Y (t)) represents the sum of energy and alignment-based inter-

Table 1
Notations for second-order systems

Variable \ Definition
N number of agents
m; mass of agent i

x;(t) € R? position vector of agent ¢ at time ¢

x;(t) € RY velocity vector of agent 7 at time ¢

#;(t) € R? acceleration vector of agent 4 at time ¢
F non-collective force
« parameters of F'

oF oA energy and alignment-based interaction kernels respectively

Il Euclidean norm in R?
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1.1. Data-driven model selection problem. Recent advancements in data information
technology, such as digital imaging, high-resolution lightweight GPS devices, and particle
tracking methods, have allowed for the gathering of high-resolution trajectory data of indi-
vidual particles in various applications. However, a significant issue that remains scarcely
addressed is how to select models that match the observational data. For example, while
there are many theoretical models known to reproduce flocking patterns, it is challenging to
determine which one generates the pattern observed in the data. Previous theoretical and
numerical studies cannot address this problem, as predetermined governing equations are
needed, and the aim is often to reproduce qualitative rather than quantitative dynamics.

To address this issue, we consider the data-driven model selection problem, aiming to
select possible models from a general form to match the observational data. For instance,
given the motion data of a school of fish, we aim to determine whether to use first-order or
second-order models and which types of interactions, such as alignment versus energy-based
or both, contribute to collective patterns. These are challenging questions that practitioners
typically address based on their expertise in the field. In this paper, we seek to develop data-
driven methods to automate this step by considering a general model that incorporates many
classical models as special cases.

Mathematically, we formulate the problem as follows. Given approximate observations
of multiple trajectory data Dyrr := {Y™(t), Z(™ (tl)}%{; |» Where the observation time
instances are denoted by 0 =t < --- <tp, =T and m denotes the trial number of experiments
starting from different initial conditions, the goal is to infer the interaction kernels ¢ = ¢, ¢
as well as the unknown scalar parameters o and possibly m from the trajectory data Dy ..
Subsequently, we use the learned governing equations to make predictions about future events
or simulate new datasets.

1.2. Scalable Model Selection by Gaussian processes. The field of data-driven model
selection faces two primary practical challenges. Firstly, there is often limited information
available on the parametric forms of interaction kernels, making it difficult to select a suitable
approximation dictionary. Secondly, datasets may be scarce and noisy. Gaussian process (GP)
based approaches in machine learning offer a solution to these challenges, as they are known
for their ability to learn a rich class of nonlinear functions without making assumptions about
their parametric form and for quantifying the associated uncertainty. However, the challenge
of scalability to large-scale problems remains a significant hurdle for specific applications.

This paper proposes a novel approach to address these challenges by leveraging the infer-
ence power of Gaussian processes and developing efficient techniques to improve scalability.
Computationally,

e We propose a novel method by modeling interaction kernels as two independent Gauss-
ian processes to learn (1.1) from data with uncertainty quantification. We investigate
whether types of interaction kernels and order information (first versus second order)
of the system can be learned from scarce noisy data. We conduct intensive numer-
ical experiments on various prototypical systems exhibiting clustering, milling, and
flocking behaviors that demonstrate the effectiveness.

e We propose effective acceleration techniques based on the recent progress from ran-
domized numerical linear algebra.
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e Our method is applied to modeling two real-world fish motion sets that display flocking
and milling patterns up to 248 dimensions and outperforms competitor methods that
use SINDy and feed-forward neural networks.

Theoretically,

e We derive a Representer theorem that connects the GP-based estimators with the
kernel ridge regression estimators, shedding light on the role of the hyperparameters
in learning. It also provides a basis representation for the estimators of interaction
kernels, which enables efficient trajectory prediction using learned models over larger
time intervals.

e We study the well-posedness of the inverse problem for learning interaction kernels in
a statistical setting.

1.3. Relevant works. Integrating machine learning techniques into the data-driven dis-
covery of dynamical systems (see e.g. [14, 5, 15, 16, 6, 17, 18, 7, 8, 9, 19, 20, 21]) has become
a hot topic in scientific machine learning, as it provides powerful models to represent the com-
plex functional data. In terms of parametric methods, one can refer to [22] (and references
therein) for the most recent survey on deep learning techniques and [15, 23, 24, 25] for sparse
regression techniques.

Gaussian process regression (GPR) is a non-parametric Bayesian machine learning tech-
nique for supervised learning with a built-in quantification of uncertainty framework. As such,
GPs have been applied to learn ODEs, SDEs, and PDEs [26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36] and lead to more accurate and robust models of dynamical systems. Because of the
distinctive nature of dynamical data, it necessitates novel ideas and nontrivial efforts tailored
to particular types of dynamical systems and data regimes. We model the latent interaction
kernels as GPs and imbue them with the structure of our governing equations (translation and
rotational invariance). This makes our work distinguishable from most works, which model
state variables as GPs.

In the context of interaction kernel learning in interacting particle systems, least square
estimators derived from the maximum likelihood method are the most frequently used, where
a challenge lies in the selection of the basis to represent the interaction kernels. One can
refer to [1, 2, 3, 4] for the usage of a piecewise polynomial basis. The random feature method
together with sparse regression techniques is recently proposed in [37]. One can also refer
to the recent methodology development of interaction kernel/potential learning in mean-field
systems such as [38, 39, 40, 41, 42].

In particular, [3, 4] considered learning theory for heterogeneous systems and showed
that learning multiple interaction kernels simultaneously is challenging and regularization is
necessary.

For scarce noisy data, our GP method leverages the underlying statistical inference power
to select the best basis to represent the observational dynamics and provides effective regular-
ization. It yields accurate recovery of the governing equation beyond learning only interaction
kernels. It is well-known that the non-collective force also plays an important role in deter-
mining the collective behaviors. The governing equation recovery makes our method more
practical than previous work that only focuses on interaction kernels. Further, we analyze
the well-posedness of the inverse problems, which complements the missing analysis in [4].
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This work is an extension of our recent work [43] on a single kernel case where we assumed
#* = 0 and the focus was the theoretical framework for error analysis. Here, we consider a
more generalized model involving two types of kernels and consider the model selection prob-
lems. The focus is shifted to the computational aspects concerning scalability and uncertainty
quantification, and real data applications.

1.4. Notation and preliminaries.

Notation. Let p be a Borel positive measure on D dimensional Eucliean space R”. We
use L2(RP; p;R™) to denote the set of L?(p)-integrable vector-valued functions that map R”
to R™. For a function f € L2(R”;p;R"), and a vector X = [z], -,z ]T € R™P with
x; € RP, we use the notation f(X) to represent the image of the vector under the function of
F componentwisely, namely, f(X) = [f(z1)", -, f(zm)']" € R™. Let S; be a measurable
subset of R™, the restriction of the measure p on S, denote by pLS;, is defined as pLS1(S2) =
p(S1 N'Sy) for any measurable subset Sy of RP. We used N(0, Ijxq) to denote the standard
multivariate Gaussian distribution in R.

Preliminaries on operator algebras. Let H1, Ho be Hilbert spaces. We use (-, )3, to denote
the inner product over Hj, and still use (-,-) to denote the inner product on the Euclidean
space. We denote by B(H1,Hz2) the set of bounded linear operators mapping H; to Ha. Let
A € B(Hi,H2), we use Im(A) to denote its range and ||A|| to denote its operator norm. A
is a compact operator if A maps bounded subsets of H; to relatively compact subsets of Ho
(subsets with compact closure in Hg). We use A* : Hy — H; to denote the adjoint operator
of A, that is, Vf € Hq, g € Ho, (Af,9) SJ,Ang

Ford, N,M,L € NT,letw = (wm“)le Lz = (zmlﬂ)MLN € RIVML with w,, 1 i, Zmi €

m,li=1
R?, we define

1 M,L,N
(1.3) <’IU,Z> = VIN Z <’wm,l,i>zm,l,i>>

m,l,i=1

where (W, 1, Zm,1i) is the canonical inner product on R
Then for vectors y € R™V and functions g : R™ — R for some m,n € NT, and let p
be a measure at a Borel subset ) of RV we have the norm:

(1.4) lo(w)l2(,) = - / Zum )I20(dy)

where g(z) is componentwise denoted by g;(y) : R™ — R,

For two Borel positive measures p1, po defined on R, p; is said to be absolutely continuous
with respect to pa, p1 < pa, if p1(S) = 0 for every set p2(S) = 0, S C RP. p1 and ps are called
equivalent iff p; < po and ps < p1. The product measure p; X ps is defined to be a measure
on R2P satisfying the property (p1 X p2)(S1 x S2) = p1(S1)p2(S2) for all subsets S; € RP,
i=1,2.

Preliminaries on GPs (Gaussian Processes) Prior . We say ¢ ~ GP(u, K) to denote our
prior on ¢. In particular, this means that for any r € R, the random variable ¢(r) is
Gaussian: ¢(r) ~ N(u(r), K(r,r)), where N denotes the normal or multivariable normal
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distributions, v : R — R is the mean function, and K : R x R — R is the covariance func-
(r)
o(r')

}) This extends in a natural way to any finite

tion. Similarly, for any (r,7') € R%, the joint distribution of [

[¢(7‘)] NN<[(U("’)] {K(N’) K(r,7')
o(r') (u(r)] " K@ r) K@)
set (r1,...,7ny) € RV,

Preliminaries on RKHSs. Let D be a compact subset of R”. We say that K : DxD — Ris a
Mercer kernel if it is continuous, symmetric, and positive semidefinite, i.e., for any finite set of
distinct points {z1,--- ,xp} C D, the matrix (K (x;, Cﬂj))%:1 is positive semidefinite. For x €
RP| K, is a function defined on D such that K,(y) = K(z,y), y € D. The Moore-Aronszajn
theorem proves that there is an RKHS H g associated with the kernel K, which is defined
to be the closure of the linear span of the set of functions {K, : * € D} with respect to
the inner product (-, )3, satisfying (K, Ky)u, = K(z,y). Let K be a Mercer kernel that
is defined on [0, R] x [0, R] and use Hx to denote the RKHS associated with K. For two
RKHS Hk,, Hxk,, with K1, Ky : D x D — R, the product RKHS Hg, x Hg, is defined
to be the closure of the linear span of the set of functions {(K1 z,, K24,) : 21,22 € D} with
respect to the inner product (-, ) a1, x#, satisfying (K1, Kow, ), (K1ys Koyo)) s, xHk, =
Ki(z1,y1) + Ka(x2,y2).

2. Methodology.
In this section, we propose a learning approach based on GPs for the model selection
problem.

} is multivariate Gaussian:

2.1. Two independent Gaussian process priors. We start by modeling the interaction
kernel functions ¢ and ¢* with the priors as two independent Gaussian processes

(2.1) oF ~ GP(0,Kgu(r,7)),  ¢* ~GP(0, Kya(r,")),

where Ky, Kpa are covariance functions with hyperparameters @ = (#%,64). 0 can either be
chosen by the modeler or tuned via a data-driven procedure discussed later.

2.2. Training of hyperparameters via maximum likelihood estimation. In real-world
modeling, it is possible that some other parameters such as a and noise level in the data are
unknown. In this section, we detail how to perform the estimation of these physical parameters
in the governing equation via a data-driven hyperparameter tuning process induced by the
Gaussian process. This flexible training procedure distinguishes the Gaussian process from
other kernel-based methods [44, 45, 46] and regularization-based approaches [47, 48, 49].

We organize the training data into the vector format Y = [Y(lvl), cee Y(M’L)]T € RINML,
and Z = [z, ZMDT ¢ RINML where
(2.2) ymd —ymg) zmh = zm ).

,ZSQV[’L)]T € RIVML where

To model the noise, we assume Z = [Z((:Q’l), .

(2.3) mZ5 = Fo (YD) 4 £, (Y D) 4 lmd),
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with 1.i.d (independent and identically distributed) noise €™ ~ A(0,02Iy) that is also
independent of the Gaussian processes. Later, we will show the role of ¢ in the prediction step
is equivalent to the role of the regularization constant in a Tikhonov regularization problem.

Therefore, based on the properties of Gaussian processes, with the priors of ¢¥, ¢4, we
have

(2.4) mZ ~ N (Fa(Y), Kg, (Y, Y;0) + 0 Lan i),

with the mean vector Fi(Y) = Vec({Fo (YD) }I1E ) € RIVML and Ky, (Y,Y;0) € RINMLxANML
is the covariance matrix between f,(Y) and f4(Y), which can be computed elementwise based
on the covariance functions Kyr, Kga, see Appendix section A for detailed formulas.

Thus, for the hyperparameters a;, 8, and ¢, we can train by maximizing the probability of
the observational data, which is equivalent to minimizing the negative log marginal likelihood
(NLML) (see Chapter 4 in [50])

1
—logp(mZ|Y,a,0,0%) = §(mZ - Fa(Y))T(Kf¢(Y, Y:0) + o Ignvarr) " HmZ — Fu(Y))

dNML
2

1
(2.5) + B log |Ks, (Y, Y;0) + o?Iynmr| + log 27r.

Note here the marginal likelihood does not simply favor the models that fit the training data
best, but induces an automatic trade-off between data-fit and model complexity. To solve for
the hyperparameters («, 8,0), we can apply the conjugate gradient (CG) optimization (see
Chapter 5 in [50]) to minimize the negative log marginal likelihood. More details are shown
in Appendix section A.

Table 2
Notations for covariances

Variable ‘ Definition

Kg(-,-) covariance kernel function with parameters 6
Kpe (), Kpa(-,-) covariance kernels for modeling ¢%, ¢4

Ks, () covariance matrix between fj(-) and f,(-)

K, g2(,) == Kgm g, (-, )T | covariance matrix between fy(-) and ¢ (-)
)

Kf¢’¢A(', = K¢A’f¢(', )T | covariance matrix between fs(-) and o4(

2.2.1. Parameter m- Model selection of the order for the dynamical system. When
modeling real-world dynamics, sometimes we are not sure whether to use first-order or second-
order systems. From the parameter estimation perspective, it is equivalent to determining if
the mass of particles is equal to zero. We can train m via minimizing (2.5). If the estimation
of m is close to zero, we can consider identifying the dynamics as a first-order system. One
can refer to subsection 4.3.



8 JINCHAO FENG, CHARLES KULICK, SUI TANG

Table 3
Notations for second-order systems

Variable Definition
X € R™W vectorization of position vectors (z;)N
V € RN vectorization of velocity vectors (v;)Y; = (&;)¥,
Y € R% Y = (X, V)T
Z ¢ R vectorization of (&)Y,
TZaTE/ERd X(t); = X(t)i, X(t); — X (1)
ri;ry €R? V(t)j — V), V{t); - V()
rfrf €RT rh = gl e = el
for, fha energy and alignment-based 1nteractlon force field
fs interaction force field with ¢ = (¢¥, $4)

2.3. Learning interaction kernels. We plug the estimators of hyperparameters obtained
in subsection 2.2 into the system and assume they are known. In this subsection, we show
how to learn interaction kernels. For any r* € R and the corresponding values of the kernel
functions, ¢%Pe(r*), type = E or A, since we have

2 *
(26) mZt _eFofk<Y) ~ N 07 Kf¢ (Y7 Y) - U*IdNML Kf¢7¢type (*Y’ : ) )
RES( Kyive £, (17, Y) Koype (r*,7%)

where Kf, gwoe(Y,7") = Kgupe s, (r*,Y)T denotes the covariance matrix between fy(Y) and
¢™Pe(r*). Conditioning on fy(Y), we obtain the posterior/predictive distribution for the kernel
function value at r*, ¢¥Pe(r*) (see Lemma D.3 in Appendix for detailed derivation), i.e.

@7 PONPIY, Z,7) ~ N(62, var(6°79)),
where
(28) qgtype — K¢type7f¢ (r*’ Y)(Kf¢ (Y’ Y) 4 O.QIdNML)—l(mZ _ Fa (Y))7

(29) 'Ua/r'((gtype) == K@typc (7’*, 7“*) - K¢typc7f¢ (7’*, Y)(Kf¢ (Y, Y) + O—QIdNML)_le¢7¢typc (Y7 7’*).

The posterior variance var(¢WPe) can be used as a good indicator for the uncertainty of the
estimation ¢%P¢ based on our Bayesian approach.

2.4. Prediction of trajectories and its uncertainty quantification. We use the posterior
mean estimators of ¢ in trajectory prediction by performing numerical simulations of the
equations

(2.10) mZ(t) = Fa(Y (1) + £5(Y (1))

We can also perform uncertainty quantification for the trajectory prediction via the un-
certainty band of ¢p. We adopted a Monte Carlo method, where we used ¢ sampled from the
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Algorithm 2.1 Learning kernels

Input: (Y, Z) (training data), r* (test point), Kg (covariance functions), fy (interaction func-
tion), Fy (force function)
L (&, 6, 62) = argmin — logp(mZ|Y, , 8, 5?)
«,0,02

{solve for parameters by minimizing NLML (2.5) using CG}
: L := cholesky(K¢, (Y,Y) + 6°1)
sy = LT\(L\(mZ — Fa(Y)))
4: KE = Kf¢”¢E (Y,T’*>

w N

I_(jl = K, ya(Y,77) {compute covariances between f,(Y) and ¢ (r*), ¢4(r*)}
5 pF* = (Kj)Ty
o = (K% Ty {predictive mean (2.8)}

6: vp = L\KE, VA = L\K:Z
7: var(¢pP*) := Kyp(r,r*) — vivg
Ua?"(ﬁf)A*) = Kga(r*,r*) — ’UZ;'UA {predictive variance (2.9)}
Output: ¢F*, $4* (mean), var(¢¥*), var(¢?*) (variance)

posterior distribution in each simulation. Then the predictions of the trajectories are given by
the mean of the trajectories’ samples and the uncertainty band of each trajectory is given by
the standard deviation, with the results of experiments shown in section 4. Another possible
alternative is to use step-wise uncertainty quantification based on the numerical integrator
scheme such as the one-step Euler method. In this case, it is easy to compute the variance
of the solution from the posterior distribution of ¢, since the vector field f'qg(Y(t)) is a linear

combination of ¢ by its definition, which suggests it also follows a Gaussian distribution and
the uncertainty band can be derived from its covariance matrix.

2.5. Acceleration of the Computation. While the full GP methods described above yield
extremely accurate predictions in our empirical examples, a well-known limitation is the com-
putational complexity; calculating the log determinant of Ky, and inverting the kernel ma-
trices in the maximum likelihood estimation and prediction steps scales cubically with the
matrix dimension, which is O((NdML)3). Therefore, the naive approach can quickly be-
come infeasible for large-scale problems. Below, we describe our integrated approach to the
scalable estimation of hyperparameters in maximum likelihood estimation and scalable kernel
prediction.

2.5.1. Efficient Hyperparameter Optimization. There are many recent advancements in
accelerating the hyperparameter learning computations in the full GP methods for regression
tasks. Our problem, however, presents many numerical difficulties that dampen runtime gains
from traditional computational methods and must be addressed:

e Lack of sparsity. Many classical acceleration techniques rely on the sparsity of the
kernel matrix Kf,. As our kernel depends on pairwise distance and our modeling is
nonlocal, we do not have a sparse kernel matrix in our formulation. Our method must
be able to operate on dense Kf,.

e Extreme ill-conditioning and higher accuracy requirements. The L? condition
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number of a matrix is the ratio of its maximum and minimum singular values. When
much larger than 1, the condition number indicates that a matrix is nearly singular,
and thus accuracy-reducing errors in computation will occur. For many problems, such
as those addressed in section 5, the kernel matrix Ky, has observed L? condition num-
ber above 101, These extremely high condition numbers result in slow and inaccurate
computation when using traditional methods. Our problem is also an inverse problem
while learning our hyperparameters for K, (see subsection 3.1). This is very sensitive
to perturbations, especially as our optimization problem for the hyperparameters is
generally not convex. We must carefully balance the tradeoff between computational
time and accuracy.

We empirically observed the approzimately low-rank structure of Ky, in various exam-
ples. This motivated us to adapt two main classes of algorithms in [51] for acceleration (see
pseudocode and additional details in Appendix section B):

e Preconditioned conjugate gradient (PCG) algorithm. The PCG algorithm al-
lows us to avoid explicit computation of the inverse matrix (K, (Y,Y;0) +o*I)~" in
both MLE and prediction, as well as compute the coefficients needed in the stochastic
Lanczos quadrature below. Using preconditioners, a classical numerical technique to
lower condition numbers, is a necessity for variance reduction. In addition, we must
maintain a low error tolerance for PCG to preserve our accuracy throughout learning.
Finding effective preconditioners that are suitable to the unique structure of our kernel
matrices is a challenge. We propose using the Random Gaussian Nystrom precondi-
tioner [52] to ensure favorable tradeoffs in running time and accuracy. In our practical
implementation, this preconditioner outperformed other low-rank approximation pre-
conditioners and has low construction and inversion costs, see section 5.

e Stochastic trace estimation for log determinant acceleration. We utilize the iden-
tity:

log det (K, (Y,Y;0) + 0?I) = log det(P) + log det(P_%(K% (Y,Y;0) + 02I)P_%)

When P is chosen to be a preconditioner, this identity can prove highly useful. The
Random Gaussian Nystrom preconditioner allows us to efficiently compute log det(P),
and for the remainder, we use the recently developed variance reduced Hutchinson’s
Estimator [53] combined with stochastic Lanczos quadrature [51].

Analysis of new computational complexity. PCG can reduce explicit inversion complexity
from O((NdML)?) to O(t(NdML)?), where t is the number of iterations. The stochastic
Lanczos quadrature improves log determinant complexity from O((NdML)3) to O(t¢(NdML)?)+
O(log det(P)), where ¢ is both the number of eigenvalues and the number of iterations, ¢ is
the number of runs of stochastic Lanczos, and O(logdet(P)) is the complexity of computing
the log determinant of the preconditioner. In practice, we chose £,t << NdM L. This lowers
the theoretical complexity of these steps to the quadratic O(t¢{(NdM L)?). For the Random
Gaussian Nystrom preconditioner P with rank 7, we have construction in O(r?(NdM L) +r?)
time, inversion in O(r3) time and log determinant in O(r) time.
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3. Theoretical analysis. In this section, we are concerned with two theoretical problems
regarding learning interaction kernels in the prediction step. The first one is to understand
the role of hyperparameters in the prediction step of the Gaussian process, i.e., 8% 64, and
the Gaussian noise o. The second one is to study well-posedness as an inverse problem.

As in the prediction step, interaction kernels are the only unknown terms in the equations.

We make the following simplification on the form of equations to avoid unnecessary technical
hurdles:

(3.1) X (1) = £4(Y (1)) = £, (X (£) + £a (Y (1)),

where the masses of the agents are assumed to be one and non-collective forces are assumed
to be zero. Our analysis can be extended to general second-order systems (1.1) with known
mass and non-collective force terms with slight modifications.

3.1. The Representer theorem. In the classical regression setting [50], there is an in-
teresting link between GP regression and kernel ridge regression (KRR), where the posterior
mean can be viewed as a KRR estimator to solve a regularized least square empirical risk func-
tional. In our setting, we have noisy functional observations of the interaction kernels, i.e., the
{rXuss TVars Zo2 a } instead of the pairs {rx,,, o7 (rx,, ), #}(rx,,)}, where rx,,,rv,, € RMLN?
are the sets contains all the pairwise distances in Xz, and Vjy, i.e.

(82) = (F NN v = 0TS Zeear = (2000

so we face an inverse problem here, instead of a classical regression problem. Thanks to the
linearity of the inverse problem, we can still derive a Representer theorem [54] that helps
clarify the role of the hyperparameters.

Assumption 3.1. We assume that KF and K4 are two Mercer kernels defined on [0, R] x
[0, R] for some R > 0. The true interaction functions ¢¥ € Hycr, ¢ € Hya, and

K’QE = SuprG[O,R]KE(T7T) < o0,

Ky = supre[O’R]KA(r, r) < 00.
Theorem 3.2 (Representer theorem). Let KZ and K4 be two Mercer kernels that satisfy
Assumption (3.1). Given the training data {Yar, Zy2 0}, if the priors ¢F ~ GP(0,K¥),

¢4 ~ GP(0, KA) with KE = vafsz, K4 = M]QVIE)\A for some NE A4 > 0, then the posterior

mean ¢ = (¢¥,¢*) in (2.8) coincides with the minimizer of the reqularized empirical risk
functional EMM () on Hycr X Hya where EMNV() is defined by

m,l
(33)  EM(p): ij )= Z5 V1 + NP 1B + A e B,

lml

where A = {\F A4} and the estimator ¢ € Hyr X Hya can also be represented by

(34) Z CTI ,,.g;, Z érvK,,Az),

TEETX (re,r)E(rx,y Xrvy,)
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with
PN 1 T E -1
Crz = NTXM . (Kf¢(YM,YM) + A NMLIdNML) Zgz7M,
. 1 _

(3.5) & = NT$N[ (K, (Yar, Yar) + MNMLIgnar) ' Z o2 v,

where Cyz, v are the vectorizations of (érz)rzeer and (ér”)rvervM respectively, x,, X rv,, €

RMLN?*XMLN? o tphe set containing all the pairwise distances in Xy and their associated

pairwise distances in Vy as defined in (3.2), rx,, is the block-diagonal matriz defined by

. 2 . (m,l) (m,l) 2
diag(r x(m.y) € RMEANXMIN® gng p 0y = diag({[rX™", ..., 2"V HY,) € RIVN
ilarly for ry,,.

, Stm-

Detailed proof of Theorem 3.2 is shown in Appendix section D. From the theorem, it is
clear how hyperparameters affect the prediction of interaction kernels: 0¥, 64, and o jointly
affect the choice of Mercer kernels and regularization constant, which becomes quite crucial in
real data applications (see Figure 5). In (3.5), we also see that the posterior mean estimator
&P lies in the span of basis functions with indices determined by the pairwise distances, and
their coefficients are correlated with the basis functions. This is an effect imposed by the
structure of the governing equation encoded in fg.

3.2. Well-posedness. We are concerned with the nonparametric learning of interaction
kernels. That is, we do not assume the parametric form of interaction kernels. In this case, one
can not expect to recover the true interaction kernels from finite data as they live in infinite
dimensional spaces. Therefore, it is important to ensure one can asymptotically identify
the true interaction kernels as the number of observational data snapshots goes to infinity.
Otherwise, the empirical estimators from finite data will have limited value as a scientific
and predictive tool. Mathematically, we study the well-posedness under a statistical inverse
problem setting. We introduce a linear operator A : H s X Hya — L2(R¥N; py; R™V) defined
by

where f,, is the right hand side of system (3.1) by replacing ¢ with ¢, and py is the limiting

measure on R??V that we assume the observational data are sampled i.i.d from. For example,
if we assume that the initial condition of each trial is sampled i.i.d from a measure, then

| ML
(3.7) py (S) = A}lgloo M 2121 lymuoes

for any Borel set S C R?V and the limit does exist in the weak sense by the law of large
numbers. We denote the marginal probability measures for X and V by px, pyv respectively.

Then the well-posedness of (3.6) is reduced to studying under which conditions A has a
bounded inverse.
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3.2.1. Well-posedness on an L? space. We first consider the embedding of H s X Hca
to a suitable L? space and consider the well-posedness in a weaker L?-norm. Motivated by
(3.4) in the Representer theorem, we consider the measures pZ, ;3;4 for ¢, ¢ based on the
structure of f,

pE = - S(r) - (r®)? Ndr
(38) o= [, 1) 2 (1) 05 Ppx (X
~ 1 v* * *

(39) = [ v 3 b (0)- 03 P (X, ¥

for any set @) C [0, R], and 6(-) is the Dirac ¢ distribution. By the continuity, Hyxr X Hya
can be naturally embedded as a subspace of L2([0, R] x [0, R]; p,;R x R) with p, = pF x pi.
One can follow the proof of Proposition 9 in [43] to show that A is a bounded linear operator
from L2([0, R] x [0, R]; pr;R x R) to L?(R%; py-; R,

Now we can introduce a sufficient condition to guarantee the existence of a bounded inverse
of A on L?([0, R] x [0, R]; py;R x R), called the coercivity condition:

Definition 3.3. We say that the system (3.1) satisfies the coercivity condition if Ve €
Hir X Hia,

(3.10) 1AQIZ20y = [Eall32ryy = ety 102122y + ern 0™ 22050

for some constants CH, g CHya > 0.

Here we show one example to support the coercivity condition.

1.4

Theorem 3.4. Consider py = [p ] , where px is the product of N independent and identi-
v

cal measures with compact support on R%, and py is defined in the same way and is independent
of px. Then we have

N -1 N -1
(3.11) I£oll72(py) =~z 195117252y + W”SOAH%?(ﬁ;ﬂ)

Detailed proof of Theorem 3.4 is shown in Appendix section C. In [4], the identifiability of
a structured sum of ¢¥ and ¢4 is studied. Here we consider a stronger version of identifiability
as we want to individually recover ¢ and ¢*. Note that it is also possible for distributions
on R with non-i.i.d R components that satisfy the coercivity condition. Finally, we remark
that the coercivity condition (3.10) holds on measure pairs (pi,p2) equivalent to (pZ, ).
This can provide us with many nontrivial examples from the special case in Theorem 3.4. We
conjecture that the coercivity condition is generally satisfied and leave further investigation
as future work.
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3.2.2. Well-posedness on H = X Hyia and the convergence analysis. Now we turn to
study the well-posedness on Hyr X Hya with the stronger RKHS norm, and we make the
following assumption.

Assumption 3.5. We assume that p, is non-degenerate on [0, R] x [0, R].

We remark that the above assumption is mild. For example, we can pick py to be a
uniform measure supported on a large enough cube, then p, satisfies the assumption.

It is straightforward to see that the coercivity condition implies injectivity of A on H e X
Hpa: ¢ = 0 everywhere on [0, R] when Ap = 0 for ¢ € Hyre X Hya. This is due to the
non-degeneracy of p, on [0, R] x [0, R] and the continuity of ¢. Therefore, A is injective.
However, showing A has a bounded inverse on H e X Hya is impossible when it is infinitely
dimensional, as A is a compact operator. Suppose the coercivity condition (3.10) holds, then
following the theoretical framework developed in [43], one could prove the well-posedness on
a suitable subspace determined by the source conditions on ¢, ¢ following inverse problem
literature. In this case, it is possible to prove one could recover both kernels with a statistically
optimal rate under the corresponding RKHS norm. We obtained the result for the single-kernel
case in our recent work [43], and we leave the work for the double-kernel case for the future
investigation.

4. Numerical examples. In this section, we investigate the performance of the algorithm
proposed in section 2 to show the effectiveness of model selection in (1.1). Specific instances
of (1.1) have found many applications in modeling the clustering, swarming, and alignment
behaviors of collective agents. The examples include (1) Cucker-Smale dynamics (CS) with
friction force (m; = 1, ¢F = 0, ¢ # 0) in subsection 4.2.1, (2) fish milling dynamics (FM)
with friction force (m; = 1, ¢F # 0, ¢* = 0) in subsection 4.2.2, (3) anticipation dynamics
(AD) (m; = 1, ¢, ¢ # 0) in subsection 4.2.3 and (4) opinion dynamics (OD) with stubborn
agents (m; =0, ¢F # 0, ¢ = 0) in subsection 4.3. In (1)-(3), the mass of agents is known in
advance, i.e, they are second-order systems. We are interested in learning ¢¥, ¢4, and other
hyperparameters a from data, resulting in the selection of types of interactions (energy versus
alignment interactions). In (4), we used the prior knowledge that ¢4 = 0 and investigate if
the true zero mass of the opinions and ¢¥ can be learned from data, resulting in the selection
of the order of the system (first versus second order).

The detailed setups of each dynamic are shown in Table 4. We applied the strategies
proposed in section 2 to learn « in Fy, and the interaction kernels ¢ (1), ¢ (r). We initialize
the parameters in a randomly from the uniform distribution ([0, 1]), and the same for ¢ in
the cases with noisy data. In each experiment, we run 10 independent trials and report the
errors of the estimations for a, the estimation errors for ¢¥, ¢4 in the (relative) L>°([0, R])-
norm, and compare the discrepancy between the true trajectories (evolved using a, ¢F, ¢4)
and predicted trajectories (evolved using &, (ﬁAE, qﬁAA) on both the training time interval [0, 7]
and on the future time interval [T',T%], over two different sets of initial conditions (IC) —
one taken from the training data, and one consisting of new samples from the same initial
distribution.

Real data application. We also apply our method to two real datasets of fish in subsec-
tion 4.4, where one shows a flocking behavior and another shows a milling behavior. We fit
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them into the Cucker-Smale and fish milling dynamics respectively and perform comparisons
with two other classical approaches: SINDy [55] and feed-forward neural networks.

Numerical Setup.. We simulate the trajectory data (Y,Z) on the time interval [0, 7] with
given i.i.d initial conditions generated from the probability measures specified for each system
as shown in Table 4. For the training data sets, we generate M trajectories and observe each
trajectory at L equidistant times 0 = ¢; < tp < --- < tr, = T and add Gaussian noise to Z
with level 0. We construct an empirical approximation to the probability measure p,, with
2000 trajectories and let [0, R] be its support. All ODE systems are evolved using odel5s in
MATLAB® with a relative tolerance at 107> and absolute tolerance at 1076, For noise-free
training data, we add a jitter constant ~ 1076 as a way of regularization. We apply the
minimize function in the GPML package™ to train the parameters using conjugate gradient
optimization with the partial derivatives shown in section 2, and set the maximum number of
function evaluations to 400.

In almost all examples, we use the full GP methods, as we use scarce data and there is
no need for acceleration. However, we show the effectiveness of our acceleration techniques in
Fish milling dynamics in section 5 when we have a larger scale of data.

Table 4
System parameters in the dynamics

System CS FM AD oD
d 2 2 2 1
N 10 10 10 5
m; 1 1 1 0
0; T T] [0; 10; 20] [0; 5; 10] [0; 10; 20] [0; 2; 20]
ue Unif([-2,2]%) | Unif([-0.5,0.5]%) Unif ([0, 5]%) Unif([—1,1])
ue Unif([-1,1]?) Unif ([0, 0]?) Unif ([0, 5]%) -
oF 0 % —e ¥ e ) (1&}%2.5 + (1+71n)0.5 (4.4)
¢A (1+7‘12)1/4 O (1_;'_9,:21)0.5 O
Fa, @, 0) | kaey(1— [[&]P) | (v = Bllail*)a: 0 (4.5)
ey (k,p) = (1,2) | (v,8) = (1.5,0.5) - (P1, k) = (1,10)

Choice of the covariance function.. We choose the Matérn covariance function defined on
[0, R] x [0, R] for the Gaussian process priors in our numerical experiments, i.e.,

2 21_V( v 2V||T B TIH )l/B ( Vv 2I/||T — TJH
*T(v) We v We

(4.1) Ky(r,r") =s ),

where the parameter v > 0 determines the smoothness; I'(v) is the Gamma function; B, is the
modified Bessel function of the second kind; and the hyperparameters 6 = {si,c%} quantify
the amplitude and scale. In our numerical examples, we choose v = p+ 1/2 with p =0 or 1.

*Carl Edward Rasmussen & Hannes Nickisch (http://gaussianprocess.org/gpml/code)
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The Reproducing Kernel Hilbert Space (RKHS), Hsqatérn, associated with this Matérn

kernel is norm-equivalent to the Sobolev space Wy 1/ 2([O, R]) defined by

(42) w0 ) = {f € La(0. R IR e = >0 IDPFIE, <o)
’ BeNG:|8|<v+1/2

That is to say, Haratern = W5 ([0, R]) as a set of functions, and there exists constants ¢1,c2 > 0
such that

(4.3) allfl ey < U aracern < 2NFI sy V€ Hatatern.

W2 W2
In other words, H psqtérn consists of functions that are differentiable up to order v and weak
differentiable up to order s = v + %

4.1. Summary of the numerical experiments.

e The proposed learning approach performs simultaneous precise model selections from
small amounts of noisy observation data. The numerical results in all different
dynamics show that the algorithm can accurately identify the existence of energy-
based/alignment-based interactions and can learn order information of dynamics be-
tween agents in the systems.

e The GP method selects a kernel basis to represent the underlying sparse dynamics that
generalizes remarkably well in larger time prediction with new initial conditions. The
occasional larger prediction errors that occur in a larger time interval may be caused
by the propagation of estimation errors. We believe the performance is satisfactory
since we only have very limited and noisy training data. Even in cases where the
prediction errors are relatively large, the estimators can predict remarkably accurate
collective behaviors of the agents, e.g. the consensus in the opinion dynamics, the
flocking behavior in the Cucker-Smale dynamics, and the milling pattern in the fish
milling dynamics.

e In synthetic experiments, the uncertainty quantification band for the trajectories is
rather small (O(1073)), resulting from the narrow uncertainty bands of ¢. In real
data experiments, we found models using interaction kernels sampled from uncertainty
bands all reproduced the true dynamics very well.

e The real data experiments show that the proposed GP approach combined with the
particle-based models is practically applicable, and outperformed two other competi-
tors in preserving the physics of the true dynamics.

4.2. Model selection for types of interaction kernels.

4.2.1. Cucker-Smale dynamics with friction force. The Cucker-Smale system [56, 57, 58]
is used to model collective behaviors in a system of agents that follow a prescribed protocol
of communication, such as wedges of bird flocks, lattices in cell organization, or bee hives
[59, 60, 61]. We consider the system of N agents in the form (1.1) with components defined
in Table 4, where ¢* is a communication kernel, or influence function, that makes the agents
flock, and F, a Rayleigh-type friction force that pushes all magnitudes of the velocities ||v;]|
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Figure 1. Results of learning different dynamics using the Matérn kernel. Top: Learning CSF

{N,M,L,c} = {10,6,3,0.1}); Middle: Learning FM ({N,M,L,c} = {10,3,3,0.1}); Bottom: Learning AD
({N,M,L,c} = {10,12,3,0.01}). Left, Center: Predictive mean ¢AE and ¢AA of the true kernels, and two-
standard-deviation band (light blue color) around the means. The grey bars represent the empirical density
of the pr; Right: the true (left) versus predicted (right) trajectories using & and ¢ with initial conditions of
training data (top) and testing data (bottom,)

towards the same value 1 and counteracts the directional alignment forces governed by ¢
to produce a rich variety of collective dynamics depending on the relative strengths of the
involved forces.

In this example, the unknown parameters @ = (k,p) are nonlinear with respect to the
system. We show the errors of our estimation for o and ¢¥, ¢ in Table 5. Note that for this
model, ¢ is in the RKHS generated by the Matérn kernel we pick. The estimated interaction
kernel <;§A can recover the true ¢A(T) almost perfectly in the region within the support of
the empirical p, from both noise-free and noisy training data. Moreover, the true interaction
kernel ¢4 (r) is fully covered in the uncertainty region we constructed using the posterior
variances. Table 5 also shows that our method can identify the nonexistence of the energy-
based interaction well with small errors (at most O(10~%)) from zero in L>([0, R])-norm. See
also in Figure 1(a),(b). The errors for the predicted trajectories are shown in Table 6. We
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can see that in both the training time interval [0,10] and future time interval [10,20], the
estimators can produce accurate approximations of the true trajectories and the performance
becomes better when we increase the size of training data (M or L).

Table 5
Means and standard deviations of the errors of & (including 6 when noise exists) and (Z) for different
settings of the CS dynamics.

{N,M,L,o} & — oo 167 = 0]loo 6% = oo/ 116" oo
{10,1,3,0} 1.9-103+£1.0-100% 21-107°+4.0-107° 5.6-1072+1.5-1072
{10,3,3,0} 1.1-103+79-107*% 26-107°+6.5-107> 45-1072+£2.0-1072
{10,6,3,0} 1.3-102+25.-10% 1.1-10°4+1.3-107° 3.2-1072+1.0-10"2

{10,6,3,0.05} 1.1-107'+1.1-107' 1.2-107*+1.6-107* 1.6-107'4+8.6-102

{10,6,3,0.1}  23-107'+23-107' 14-107*£29-107* 1.8-107'48.0-1072

Table 6
The trajectory prediction errors for different settings.

{N,M,L,c} Training IC [0, 10] Training IC [10, 20] new IC [0, 10] new IC [10, 20]
{10,1,3,0} 49-107%4+4.2-107*  6.7-107*+1.3-107% 1.8.-10°+44-107% 14-1072+4.2.1072
{10,3,3,0} 25.-1004+20-100*  15-100*+13-100%  49.107*+49-107* 87-107%+1.7-1072
{10,6,3,0} 15-107*+1.2-107%* 94-107°4+9.2.-107° 27-107%+41-107% 23-10*+46-10"*

{10,6,3,0.05} 2.3-10724+1.3-1072 1.9-1072+£1.3-1072 2.7-10724+1.9-1072 25-10724£2.0-1072

{10,6,3,0.1}  4.2-10724£26-1072 3.8-1072+28-1072 49-10724+34-1072 45-1072+3.9-1072

4.2.2. Fish-Milling dynamics with friction force. In this subsection, we consider another
type of cohesive collective system that produces milling patterns [62, 63]. A special instance
of such systems is the D’Orsogna model [12, 61, 64], which describes the motion of N self-
propelled particles powered by biological or mechanical motors, that experience a frictional
force, and can produce a rich variety of collective patterns. We consider the system of N
agents of the form (1.1) with components defined in Table 4, where the interaction kernel
P is derived from the Morse-type potential. Since it is singular at » = 0, we truncate it
at ro = 0.05 with a function of the form ae™"" to ensure the new function has a continuous
derivative. The force function F'¥ includes self-propulsion with strength v and nonlinear drag
with strength .

The errors of the estimations for a after our training procedure and the learned ¢, ¢ are
shown in Table 7. In this model, ¢¥ is in the RKHS generated by the chosen Matérn kernel.
We can see that our estimators produced faithful approximations to the true kernel based on
the results we report in Table 7 and Figure 1(d),(e). They also show that we can identify the
nonexistence of the alignment-based interaction with very small errors and select the correct
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model. The discrepancy between the true trajectories and the predicted trajectories on both
the training time interval [0, 5] and future time interval [5,10] are shown in Table 8. Even if
the trajectory prediction errors can go up to O(107!) with the presence of a relatively large
noise for the systems with NV = 10, our estimators provided faithful predictions to most of the
agents in the system and the milling pattern as shown in Figure 1(f).

Table 7
Means and standard deviations of the errors of & (including 6 when noise exists) and (Z) for different
settings of FM dynamics.

{N,M,L,0} 6 — o] 167 — 67100 /116" |1 164 = Olloc
{10,1,3,0} 79-107%4+£1.0-107%  3.6-1072+43-107% 6.6-107*+6.9-107*
{10,1,9,0} 6.4-107°+62-107> 39-1072+27-10% 16-107*+1.3-107*
{10,3,3,0} 4.7-10°+5.0-107° 3.8-1024+54-1073 1.2-107*+1.7-107*

{10,3,3,0.01} 3.4-10734+19-107% 2.9-10724+57-1073 2.9-103+4.3-1073
{10,3,3,0.05} 1.4-1072+£85-107% 49-10724+15-1072 4.6-107°+7.0-10°°
{10,3,3,0.1}  35-1072+£7.2-1072 7.1-1072£2.0-1072 2.9-107249.0-102

Table 8
The trajectory prediction errors for different settings of FM dynamics.

{N,M,L,c} Training IC [0, 5] Training IC [5, 10] new IC [0, 5] new IC [5, 10]
{10,1,3,0} 21-10734£2.0-1073  1.0-1072£87-107% 1.9-1073+£19-103 54-1034+44-1073
{10,1,9,0} 3.4-107%+29-107% 1.4.-1034+1.2.-1073 47.100%+42-100* 1.3.-103+1.2.1073
{10,3,3,0} 81-107*+8.0-107% 22.1073+20-107% 88-107*+88-107* 35-10%+28-1073

{10,3,3,0.01} 83-10734+38-1073 1.8-1072412-1072 6.6-1073+£3.2-107% 1.4-10724+9.3-1073
{10,3,3,0.05} 3.4-107242.1-1072  7.1-1072+£4.7-1072 3.7-107241.9-1072  7.0-10724+4.7-1072
{10,3,3,0.1} 8.0-107249.8-1072 1.5-107'+1.9-107% 95-10724+1.3-107! 1.5-107'+23-107"

4.2.3. Anticipation Dynamics. In this subsection, we consider a more complicated model
where the interactions depend on both the pairwise distance and the differences in velocities,
i.e. both ¢¥ and ¢ are nonzero. The anticipation dynamics (AD) models in [13] are suitable
candidates, and we consider the system of N agents in the form (1.1) with components defined
in Table 4.

The errors of the estimations for a and the learned ¢, ¢ are shown in Table 9. In this
model, both ¢¥ and ¢ are in the RKHS generated by the chosen Matérn kernel. We can see
that our estimators produced faithful approximations to both true kernels based on the results
we report in Table 9 and Figure 1(g),(h). The comparisons between the true trajectories and
the predicted trajectories on both the training time interval [0, 10] and future time interval
[10,20] are shown in Table 10. The estimators can produce accurate approximations of the
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true trajectories with errors at most O(1071), see also Figure 1(i).

Table 9
Means and standard deviations of the errors of 6 (when noise exists) and qAS for different settings of AD
dynamics.

{N,M, Lo} 16— ol 167 = 6% oo/ 85110 1164 = oo/ 16" 1o
{10, 3, 3,0} - 92-1072+74-107% 45-1072+£1.0-1072
{10,6,3,0} - 79-10724+6.7-107%  43-1072+£5.1-1073
{10,12,3,0} - 74-10724+6.1-100% 36-102+7.0-1073

{10,12,3,0.005} 8.8-107°+5.1-10° 1.3-107'4+1.7-1072 7.3-1072+£3.2-1072
{10,12,3,0.01} 1.8-1074+£9.9-10° 1.6-107'£1.9-1072  9.3-10724+4.1-1072

Table 10
The trajectory prediction errors for different settings of AD dynamics.

{N,M,L,c} Training IC [0, 10] Training IC [10, 20] new IC [0, 10] new IC [10, 20]
{10,3,3,0} 42-1004+38-107% 23.10%+21-107* 6.1-1074+84-10* 3.5-107*4+5.0-107*
{10,6,3,0} 6.6-107*+74-107* 3.8-107*+4.1-100* 7.1-100*+9.2-100* 39-1074+52-10*
{10,12,3,0} 62-100*+6.8-100* 3.3-107*+3.7-100* 3.7-107%+52-107* 21-1074+3.1-107*
{10,12,3,0.005} 1.9-107342.1-1073 1.1-10734+1.2-107% 1.1-103+£1.2-1073 6.8-1074+7.1-107*
{10,12,3,0.01}  3.4-1073+£43-107% 1.9-103+£24.107% 1.9-103+21.10% 1.2-1073+1.3.1073

4.3. Model selection for the order of systems. An example of opinion dynamics is shown
below to test the validity of our method for identifying the order of dynamic systems. This is
a first-order system of N interacting agents, and each agent ¢ is characterized by a continuous
opinion variable z; € R. The dynamics of opinion exchange are governed by the first-order
equation mentioned in subsection 2.2.1 with

257 ifo0<r<04,

10 if 0.4 <r < 0.6,
(4.4) ¢P(r) = .

25 —25r if 0.6 <r <1,

0 ifr>1.

The interaction kernel ¢ encodes the non-repulsive interactions between agents: all agents
aim to align their opinions to their connected neighbors according to distance-based attractive
influences. We consider the case where there is no non-collective force, i.e. Fj(x;,a) = 0. We
also consider a more complicated case where there exist stubborn agents, i.e.

—k(x; — P;) if agent ¢ is stubborn with bias P,

(4.5) Fi(zi, a) = {

0 otherwise
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where Fj(x;, o) describes the additional influence induced by the stubbornness: the stubborn
agents have strong desires to follow their bias P;, and x controls the rate of convergence
towards their bias. The stubborn agents may cause a major effect on the collective opinion
formation process. If k = 0, then stubborn agents do not follow their biases and behave as
regular agents.

Table 11 shows the errors of the estimations for m, a, and ¢¥ (r) in 10 independent trails
of experiments. It shows our method can identify the order of dynamics with the estimation
of m = 0 and learn the interaction kernel ¢ simultaneously, see also Figure 2.

Table 11
Means and standard deviations of the errors of ™ (including & when noise exists) and (;Aﬁ for different
settings of OD dynamics.

Model {N,M,L,o} 172 — 0] lé — o] 16 — Blloo/l16]loo
oD {5,6,3,0} 85-107*4+9.0-107* - 3.8-103+1.1-1073
OD {5,6,3,0.1} 4.8-1073+£52-107* 3.2-1072£16-1072 1.1-1072+£5.6-1073

ODS  {10,3,3,0} 5.5-107%4+28-107*% 7.2-10724+4.1-1072 5.2-10724+4.4-1072
oDS  {10,3,3,0.1} 3.8-10734+1.8-1073% 9.0-107'+1.1-10° 3.3-10724+1.9-1072
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Figure 2. Model selection of OD ({N,M,L} = {5,6,3}) and ¢ = 0,0.1 using the Matérn kernel. Left:
Predictive mean quS of the true kernel, and two-standard-deviation band (light blue color) around the mean. The
grey bars represent the empirical density of the pr. Right: the true (left) versus predicted (right) trajectories
using & and ¢ with initial conditions of training data (top) and testing data (bottom) when o = 0.1.

4.4. Real fish data. Finally, we test the performance of our method using two real
datasets of swimming fish by Couzin et al., which are available at ScholarsArchive of Oregon
State University'. The experimental arena consisted of a white shallow tank of size 2.1 x 1.2
m (7 x 4 ft) surrounded by a floor-to-ceiling white curtain. Water depth was chosen to be
4.5-5 cm so the schools would be approximately 2D. We consider two data sets, one is from

TKatz, Yael, Kolbjorn Tunstrom, Christos C Ioannou, Cristian Huepe, and Iain D Couzin, 2021. The URL
address is https://ir.library.oregonstate.edu/concern/datasets/zk51vq07c
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frame 2201 to frame 2296 which consists of 50 fish and forms a flocking behavior, and another
one is from frame 4601 to frame 4798 which consists of 124 fish and forms a milling behav-
ior. We relabel them as frame 0 to frame 95 and frame 0 to frame 198 respectively, refer to
more details of the dataset in the supplementary information of [65]. We first normalize the
position data into the region [0,1], and then we smooth the data by using a moving window
average with a window size of 10 frames and apply the finite difference method to calculate
the velocities and accelerations.

Flocking behavior example. For the first data set, as shown in Figure 3(e), the fish will
eventually follow approximately the same direction as time evolves. In this case, the magnitude
of the velocity data of fish is relatively small. The velocities can be considered the same, as
long as their normalized direction vectors are very close. So the fish exhibit approximate
flocking behavior (i.e. ||v; — v.|| &~ 0 for all ¢ and some common velocity v.). Therefore, we
use the Cucker-Smale system shown in subsection 4.2.1 to model the flocking behavior, i.e.
considering the governing equation (1.1) with corresponding interaction kernel ¢ and force
F(x;,¢;,a), oo = (K, p) shown in Table 4 for CS dynamics.

The training data consists of frame 0 and frame 28. In the training procedure, we first use
a subset of data with two selected agents, the initialization of hyperparameters for 0% 64, o,
and a are (1,1),(1,1),0.001, (1, 1), and we set the length of runs in the minimizer solver to be
100. The results shown in Figure 3(a),(b) suggest there only exist alignment-based interactions
since the estimated energy-based interaction ¢ = 0. Therefore, we use all data to learn the
system with only ¢?. After we obtain the estimators, we run the learned dynamical system
on the time interval [0,20] with frame 0 as the initial condition. We find that the simulated
position data at t = 19 matches the position data at frame 95 very well. We then compare
the original position data set with the simulated ones at t = 0:0.2: 19.

Milling behavior example. For the second data set, as shown in Figure 3(g), the fish will
eventually follow approximately a milling pattern. Therefore, we use the Fish-Milling system
shown in subsection 4.2.2 to model the milling behavior, i.e. considering the governing equa-
tion (1.1) with interaction kernel ¢¥ and force F(=x;,%;, o), a = (7, 3) shown in Table 4 for
FM dynamics.

The training data consists of frame 0 and frame 28. In the training procedure, we first use
a subset of data with two selected agents, the initialization of hyperparameters for %, 04, o,
and a are (1,1),(1,1),0.001,(1,1), and we set the length of runs in the minimizer solver to
be 100. With the estimated parameters, we obtained the estimators for ¢ and ¢4 using all
data, and run the learned dynamical system at the time interval [0,38] with the frame 0 as
the initial condition.

Measure of Performance. To evaluate the performance at the group level, we consider the
group polarisation M (t) [66], which is a vector order parameter that encapsulates both the
direction and degree of the fish alignment, which is defined by

1 N
(4.6) M(t) = = > ai(t)
=1

where ;(t) = v;(t)/||vi(t)|| is the direction of motion of the i-th fish (at time t). When |M|
is close to 1, the fish are moving in a coherent direction, whereas when |M| is close to zero,
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Figure 3. (a)(b): Fitting into a Cucker-Smale system (dim=100), estimated ¢ and ¢ with all data;
(c)(d): Fitting into a Fish-Milling system (dim=248), estimated $¥ and ¢** with data of 2 agents; (e)(g): true
dynamics (left) v.s. the predicted dynamics using our proposed approach, SINDy model, and FNN model, with
frame 0 as the initial condition; (f)(h): baseline comparisons using the group polarisation parameter M (t).

there is no prevailing direction and individual motion is effectively isotropic.

Baseline Comparisons. We perform comparisons with approaches that learn the right-hand
side function of (1.1) directly from trajectory data: the first one is SINDy [55], which aims
at finding a sparse representation for each row of governing equations in a (typically large)
dictionary; the second one is regression using feed-forward neural networks, for which we use
the MATLAB® 2021a Deep Learning Toolbox .

For the SINDy model, we apply a reasonably large dictionary consisting of monomials
up to order 2, sines, and cosines of frequencies {k}}cozl For the neural network model, we
consider a three-layer FNN (Feed-Forward Neural Network) with [50, 50, 25] hidden units for
the flocking behavior example, and a two-layer FNN with [40, 20] hidden units for the milling
behavior example.

The predictive trajectories for the flocking behavior example using different models are
shown in Figure 3(e). We compare the performances in terms of group polarisation M ()
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in Figure 3(f), and the order-1 Wasserstein distances between the empirical distributions of
M (t) in true data and the predicted dynamics are W (pY*¢, p37) = 0.0112, W (pl/e, pﬂNDy) =
0.5497, and W (pirre, p¥) = 0.5869, see Figure 4 (Left). The results for the milling behavior
example are shown in Figure 3(g). We compare the performances in Figure 3(h), and the
order-1 Wasserstein distances between the empirical distributions of M (¢) in the true data
and the predicted dynamics are W (p4/e,p%) = 0.0087, W(p'}\}”e,pijDy) = 0.0530, and
W (plrue, pV) = 0.1055, see Figure 4 (Right). In both examples, we can see that although
both predictions using the SINDy and FNN models look similar to the true trajectories,
based on the group polarisation parameter M (t) and comparing the changes of M (t) in ¢ or
the empirical distributions of M (t), only our model using GP captures the group behaviors.

True Traj GP Approx True Traj GP Approx
60 60 15 - 15
40 40 10 10
i i l 5 WH Wﬂw .
0 0 0 0
0 0.5 1 0 0.5 1 0.1 0.2 0.3 0.1 0.2 0.3
IM(t)! IM(t)! IM(t)! IM(t)!
SINDy Approx FNN Approx SINDy Approx FNN Approx
20 30 20 30
20 20
10 10
10 10
0 80 Y rH 0 LS || 0 0
0 0.5 1 0 0.5 1 0.1 0.2 0.3 0.1 0.2 0.3
IM(t)! IM(t)! IM()! IM()!

Figure 4. Baseline comparisons using the group polarisation parameter M (t). Left: the empirical dis-
tribution of M(t) in the flocking behavior example, the order-1 Wasserstein distances between true data and
the predicted dynamics are W (pi, p9%) = 0.0112, W (p4e, pif N PY) = 0.5497, and W (phe, phi¥) = 0.5869.
Right: the empirical distribution of M(t) in the milling behavior example, the order-1 Wasserstein distances
between true data and the predicted dynamics are W (ph*c,p%?) = 0.0087, W(pf&“e,pf/[[NDy) = 0.0530, and
W (phe, pAfY) = 0.1055.

We also compare our result with two other GP models in the milling behavior example,
where the parameters a are not estimated properly: (1) we use the initial values of hyper-
parameters, i.e. let 0¥ 04,0 and a equal (1,1),(1,1),0.001,(1,1), and do not train those
hyperparameters; (2) we apply the noise-free model, i.e. do not consider noise and let o = 0.
The results of these two GP models are shown in Figure 5.

5. Acceleration Result Comparison. We now present our acceleration (see subsection 2.5)
results for a 20-dimensional Fish Milling (FM) system with increasing observational data.
When we have a larger amount of observational data, we will focus on learning o,~, and £,
and use A = 94 = 1 for a default prior with the Matérn kernel. We will show the impact on
kernel predictions is minimal.

We use v = % for all examples below. All results shown are averaged over 10 complete runs
with standard deviation included where we used the same training data but with initialized
hyperparameters uniformly at random from an interval centered at the ground truth with
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Figure 5. Fitting into a Fish-Milling system (dim=248). Top: estimated &P, ¢, and predictive trajectory
with initial parameters, i.e. no training (NT) for hyperparameters 0F,0% o, and a; Bottom: estimated ¢=,
@, and predictive trajectory using noise-free (NF) model, i.e. 6 =0.

radius 0.5 in each trial. We use the randomized Gaussian Nystrom preconditioner [52] for
all tests with rank the floor of 10g3(012) log(X ‘%4 L), While we would ideally use the effective
rank of our kernel matrix, this is expensive to compute in practice and we resort to empirical
approximation for our trials.

Table 12
System parameters in Fish Milling above

d N [0;T:Tf] a=(v,0) It Tt
2 20 [0,510] (1.5,0.5) Unif([-1,1]2) Unif([0,0]?)

Figure 6 shows that our hyperparameter learning method is able to accurately recover
the hyperparameters o, ~, 8 with greatly improved runtime compared to the full GP method.
Once these hyperparameters are learned, our acceleration can also be utilized for the prediction
of the kernel, which also has a low observed error, see Figure 7. Most errors of the kernel
prediction occur away from the support of observed data in the FM system and do not affect
the trajectory prediction of our system. This is quantified in the very low relative L? error of
the predicted trajectories of the FM system using our predicted kernel as shown in Figure 8.

These results provide clear evidence of successful acceleration options while maintaining
highly acceptable accuracy. While the running time of accelerated MLE can still be expensive
for prohibitively large data, the accelerated method scales much better than the fully explicit
method and opens up exciting possibilities in modeling large datasets. We note that prediction
also scales quite well and relies only upon PCG and preconditioner choice, allowing the usage
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Figure 6. Log plot of absolute error of learned hyperparameters v (red), 8 (yellow), and o (blue) for the
FM system ({N,M, L} = {20, M,6}) with varying M. True values are o = 0.01,y = 1.5, 8 = 0.5. Shown also
is a runtime comparison with Full GP.
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Figure 7. Accelerated kernel prediction error for the experiments above. Left is the L™ error, relative for
¢F and absolute for ¢* as ¢ = 0 is the ground truth. Right is the Lf, error, relative for ¢ and absolute for
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Figure 8. Relative trajectory prediction error on testing data, FM system ({N,M,L} = {20, M,6}) with
varying M. This plot uses test error on the full interval of [0,10]. Prediction error quickly goes to zero in
testing. Shown also is a runtime comparison with full GP.

of efficient cross-validation techniques for hyperparameter choice in certain classes of problems.
Our central findings are the following:

e We have discovered that accurate hyperparameter recovery can be achieved using a
small set of observational data, and using more training data does not necessarily
improve the accuracy. This is due to the lack of consistency in the training of MLE,
which is a well-known result in Gaussian process regression. We recommend that one
should split a small subset for hyperparameter tuning and then use the full dataset
for kernel learning. We have seen empirical success with this method.

e In 10 trials with small M, we often observed one or two trials with relatively large
recovery errors in hyperparameters. We removed these outliers from our data before
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plotting above. We attribute this to the instability of the Lanczos algorithm or the
non-convexity of the optimization problem, as in these cases, we observed that the
minimization of MLE stopped very early. Nonetheless, we would like to point out that
even in these cases, we obtained very satisfying performance in kernel learning and
trajectory prediction.

e There are additional opportunities for acceleration in kernel learning that depend
on the specific problem and infrastructure available. For instance, in the case of
v= %, we may exploit sparsity in a decomposition of the kernel matrix K, (Y,Y;0), as
developed in [67], while maintaining desired exactness. We leave the extension of this
method to all half-integer v values for future work. Furthermore, there are avenues
for accelerating GP learning using modern hardware. With access to GPUs, one
can parallelize the explicit construction of kernel matrices and the Lanczos algorithm
calculations. These steps are embarrassingly parallel and allow for demanding much
greater accuracy.

6. Final remarks and future work. In this work, we present an approach based on Gauss-
ian processes to perform the model selection of particle/agent-based models from scarce and
noisy data. We propose efficient acceleration techniques to improve the scalability. The
methodology is extendable to cover heterogeneous systems with multiple types of agents and
external potentials. It is also possible to extend the learning approach to the mean-field limits
of the particle models. Another line of future work is to apply the quantitative framework
developed in this paper to design a data acquisition plan (active learning). The goal is to
optimize the kernel learning using the least amount of trajectory data by looking at their
marginal pairwise distance distributions. We leave it as future work.

Acknowledgments. Charles Kulick was partially supported by NSF DMS-2111303. S.T.
was partially supported by Hellman Family Faculty Fellowship, and the NSF DMS-2111303.
S.T. would like to thank Hengrui Luo and Didong Li for their helpful discussions.

7. Appendix.

A. Learning approach for model selection. Our learning approach is a generalization of
the methodology proposed in [43]; to be self-contained, we state the detailed formulation here.

Lemma A.1. Let ¢ = (¢F,¢A) be two Gaussian processes with mean zero and covariance
function Kye, Kga : [0, R] x [0, R] = R respectively, i.e., $"P® ~ GP(0, Kgwpe(r,7")), type =
E or A, and mZ(t) = Fo(Y (1)) + £5(Y (t)) as defined in (1.2). Then for any t,t’' € [0,T],
we have that,

(A1) i)~V ([ Feoro.xen),

where K, (X (t), X (t'))) is the covariance matriz Cov(f4(X (t)), fs(X (t'))) with (i, j)th block

1 / /T / ;T
Cov([fp(Y)ls, [f¢(Y,)]j) - N2 Z (KaE (Tﬁ,rfk/)rﬁcrfk/ + Kya (Tﬁ,rfk/)rfkr})k/ ),
ki, k' #£j
(A.2)
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see Table 3 for the definitions.
Proof. For ¢ ~ GP(0, Ky(r,r')), and any r,r" € [0, R], we have that,
(A.3) Elo(r)] = 0,
(A.4) Cov|p(r), o(r")] = Kg(r,r").
Therefore, for any collection of states {r;}; C [0, R], and {a;}!" {,{bi}]~; C R, the linear
operator on function values L({¢(r)}7 ) := (aip(ri) + b;)[- satisfies
(A5) LHArIH) ~ Mvee ()i, e

where N denotes the Gaussian distribution, vec({b;}?_;) € R™ is the vectorization of {b;} |,
and the covariance matrix Xpg) = {a;a;Ko(ri, ;) }7 ;- € R™™

Therefore, since ¢, ¢ are independent, and f4(Y (t)) is linear in ¢, for any ¢, ¢/, we have
that

(A.6) [ffjg:((f))))] ~N(0,Ke, (Y (1), Y (1)),
where Ky, (Y (t),Y (t'))) is the covariance matrix
(A7) Cov(E5(Y (1), (Y (#))) = (Cov([£5 (¥ ()]s [E5(Y ()];) 2,

with (4, j)th block

1 / ' T / ;T
Cov([fp(Y)ls, [f¢>(Y,)]j) - N2 Z (KGE (7% Tfk/)’“ﬁ’“fk/ + Kga(rig, Tfk/)’“fk’“}’k/ ),

ki k' £j
Thus, by (1.2), the observation Z in the model follows the Gaussian distribution
mZ(t) Fa(Y (1)) /
(A3) M B Ry A R SR T -
Then suppose that the training data consists of
(Ag) {YMazo'2,M} - {XM7VM72027M}
with
Xy = Vec({X(m’l)}%’lL:l) € RINML
Vi = Vec({V(m’l)}nAf’lel) = Vec({X(m’l)}%’lel) e RINML
Zy2 = Vec({Zégn’l)}nj\i’lil) = Vec({X(m’l) + 026(m’l)}n]‘i’lL:1) € RINML
where we observe the dynamics at 0 = ¢} < to < --- < tp = T; m indexes trajectories

corresponding to different initial conditions at ¢; = 0; X (™1 i 1y s ym1) L gy (18, p1d)
are two independent probability measure on R?; the noise term elml) 11 N(0,1;n); we
assume that po = (uf, ng) is independent of the distribution of noise.

Applying Lemma A.1, we now derive the negative log marginal likelihood for training
parameters a, 8, and o, with given observational data as specified above.



DATA-DRIVEN MODEL SELECTION FOR SECOND-ORDER PARTICLE BASED DYNAMICS 29

Proposition A.2. Denote Y (™) = Y (™) (t;) and fog”’” = ZM (1)) 4 €D with i.i.d noise
el ~ N(0, 02 Ignwan). Suppose we are given the training data set (Yar, Zy2 pp) =
(YD, ZUmDNME - or ML € N, such that

g

(A.10) 20 = P (YD) 4 £, (Y (mD) 4 (md),

o2

with Fo, fy defined in Table 5. Then the negative log marginal likelihood of Z,2 py given Yy
and parameters o, 0, o satisfies

(A11)  —logp(mZys pr|Yar, e, 0,07)
1 _
- 5(mz(,Q,M — Fa(Yar)) (Kg, (Yar, Yar;0) + 0 Ianarr) ™ (mZy2 o — Fa(Yar))
1 dNML
(A.12) + 3 log | K, (Yar, Yar; ) + o2 Iynurr| + log 27r.

where Ignprr 18 the identity matriz of consistent size.

Proof. Using Lemma A.1, since (™)

initial distributions, we have that

is i.i.d Gaussian noise and is independent of the

(A13) mZU27M ~ N(Fa(YM), de)(YM,YM; 0) + U2IdNML),

where the mean vector Fo(Yy) = Vec((Fa(Y ™D)ME ) € RINML and the covariance

matrix Ky (Yar, Yar; 0) = (Cov(fa(Y 09)), £ (¥ (79))) 15000 € RINMIXANML can be com-
puted by using (A.7). According to the properties of the Gaussian distribution, given Y,

and parameters «a, 0, o, we have the negative log marginal likelihood function as shown in
(A.12). |

As mentioned in the main text, we can apply the gradient-based method [68], to minimize
the negative log marginal likelihood and solve for the hyperparameters (a, 8, o).

Proposition A.3. Let v = (Kg,(Yar, Yar;0) + 0°I) " (mZy2 yy — Fa(Yar)). The partial
derivatives of the marginal likelihood w.r.t. the parameters a, 6, and o can be computed as
follows:

(A.14)

0F,(Y
log p(mZ,» M|YM,a,0,02) = ')ITM
ooy ’ Oay;

(A.15)

0 1
g 18P Za Yo 0,0,0%) = §Tr (7" = (K, (Yar, Yars) 4 0°1) )
J

(A.16)
0
% logp(mzo2,M|YMa «, 05 02) =Tr ((77T - (de,(YMa YM7 0) + 021)_1)) g.

0K, (Yar, Yur; 0)
26, ‘

With the updated prior ¢ from 8, and the parameters «, o, we show the detailed derivation
of our estimators for the prediction ¢(r*) at r* € [0, R].
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Theorem A.4. Suppose we are given the training data set (Yar, Zg2 pr) == {(Y ™), Z(E_T’l))}M’L

m,l=1
defined in Proposition A.2, and the hyperparameters (a,0,0) are known. Then for any

r* € [0, R], type = E or A, ¢¥Pe(r*) satisfies

(A.17) POV ()Y a1, Zg2 ap) ~ N(PVPC, var (997°)),
where
(A.18)
VP = Kyrvne g, (1, Yar) (Ke, (Yar, Yar) + 0 Ianain) ™ (mZy2 0 — Fa(Yar)),
(A.19)

var(qgtype) = thype(T'*, 7’*) — K¢type7f¢(r*, YM)(Kf¢ (YM, YM) + UQIdNML)ileqb’d)type (YM, T*).

and Ky, givoe (Yar, 1) = Kgive £, (17, Yu)T denotes the covariance matriz between £5(Yrr) and
$v(r).

Proof. Since f(Yar) is defined componentwisely as in (1.2), for any r* € [0, R], we have
that

f¢(YM)]N < [de,(YM,YM) waype(YM,r*)D
(AQO) |:¢type(,r*) N O, K¢type7f¢(r*,YM) K@type(?"*,’l”*) )

where Kr, (Y, Yar) is the covariance matrix between fy(Yar) and f(Yar) as we defined in
Proposition A.2, and K, gipe (Yar, %) = Kyyve g, (r*,Yr)T is the covariance matrix between

f5(Yar) and ¢¥Pe(r*), ie., Kg, gove(Yar, 1) = (Cov(fs(Y D), pe(r*))) 20 | and the ith
component of Cov(fg(Y (™), ¢™P(r*)) is computed by

(a21) Cov(f (Y ™) 6 () = 3 Kow X" rt)rX ",
k;éz

(4.22) Cov([Es(¥ )i 64(1) = 3 S Koa X ™1™
k;éz

Note that mZ((TT’l) = Fo (YD) 4 £,( X MDY 4 0 with i.i.d noise ™Y ~ N(0,0%1;y) for
all (m,1), so we have

(A.23) mZy2 n — Fa(YM)} N (0 [Kf¢ (Yar, Yur) + 0 lanmr - K, givee (YM,r*)}>

(JStype(T‘*) K¢type’f¢ (T*, YM) K@type (’I“*, T*)

Therefore, based on the properties of the joint Gaussian distribution (see Lemma D.3), con-
ditioning on (Yas,Z,2 pr), we have that

(A.24) DA (1Yo, Zoo ag, 1) ~ N (@27, var(37°)),

where ¢%P¢ and var(¢WP®) are defined as in (A.18) and (A.19). [ |
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B. Psuedocode for Acceleration. In this section, we discuss in detail the acceleration
of the computations used in our GP framework. We first review the bottleneck in the com-
putation: our likelihood function evaluation is very slow, as it involves inverting the kernel
matrix (Kf, (Y, Y;0) + 02I)~! and computing the log determinant log det (K, (Y,Y;0) + o?I).

We also require evaluation of the gradient for exact optimization, which further requires eval-
K¢, (Y,Y;0 .
uation of the trace Tr((Kt,(Y,Y;0) + UQI)_l%) for each parameter ¢; as shown in

Proposition A.3.

Our primary goal is to avoid explicit inversion of the kernel matrix entirely by utilizing the
Preconditioned Conjugate Gradient (PCG) algorithm, see Algorithm B.1. PCG is an iterative
method that can solve systems Az = b for & without explicitly inverting A through clever
choices of update at each step. This algorithm is central for scalability when solving large-
scale linear systems with positive definite matrices in the numerical linear algebra literature.
Note that the standard CG method is unlikely to work, as our kernel matrix is likely to be
very ill-conditioned. An efficient preconditioner will be necessary to avoid extremely slow
convergence. As mentioned in the main paper, we recommend the Randomized Gaussian
Nystrom preconditioner for improving performance.

Algorithm B.1 Preconditioned CG for solving (K¢, (Y,Y;0) + o’z =b

Input: Kg,(Y,Y;0) + o2l (matrix-vector multiplication of kernel), P (precondi-
tioner), b (target vector), o (initial guess), errorTol (error tolerance), t (itera-
tions)

L 7o :=b— (K¢, (Y,Y;0) + a2z

2: zp,dg := Prg

3: while ||ry|| > errorTol and n < t

4: Vp 1= (Kf¢ (Y,Y; 9) + JZI)dn_l

T
T, _12Zn—1
5: oy =
n d£71vn
6: Tp = Tp_1 + apdp_1
7 Tp = Tp—1 — QpUp
8: zn 1= Pry
T
ZiTrn
9: =
P Zr a1

10: dp = 2n + Bpdn_1
Output: z,, (solution to (K¢, (Y,Y;0) + o?l)x = b),
{(au, B;) for all i < n} (exclusively for constructing Lanczos weights)

Now we can solve the problem of slow likelihood function evaluations. Instead of inver-
sion, our proper preconditioner will allow us to apply PCG and reduce the computational
complexity from cubic for inversion to quadratic, see Algorithm B.1. Note that PCG is only
limited by the runtime of matrix-vector multiplication, and in the presence of sparsity or other
structural features that allow for linear time matrix-vector multiplication, the complexity of
PCG will also reduce to linear time. This can be accomplished in the v = % case using [69].

Then we consider the log determinant evaluation. Using stochastic Lanczos quadrature,
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we can instead compute an estimator for Tr(log((K¢,(Y,Y;0) + 02I))), see Algorithm B.2.
This algorithm requires quadrature weights, but these can be efficiently recovered by running
the PCG algorithm and arranging a, 8 in a tridiagonal matrix, as seen in [70]. Then we apply
stochastic trace estimation, as developed in [51]. These methods also extend to gradient
calculations.

Algorithm B.2 Stochastic Trace Estimation with Lanczos Quadrature

Input: (Kg,(Y,Y;0) + 0?I) (matrix-vector multiplication for kernel matrix), P
(preconditioner), n (number of test vectors), m (number of Lanczos coeffi-
cients)
1: for ¢ from 1 to n
2: vp, ~ Rademacher {draw from Rademacher distribution}
3 T := PCG((Kz,(Y,Y;0) + 0°I), P,v,, £ = m) {get Lanczos coefficients}
£ WA = eig(T)
5: for j from 1 to m
6 Vi =i + Wi log(\)
7: trest := logdet(P) + % Yo i
Output: tres (estimated trace of log((Kg, (Y, Y;0) + a2I)))

When choosing a preconditioner, we must have a method for fast and accurate computation
of matrix-vector multiplication by P~! and evaluation of logdet(P), as these are necessary
operations in the above algorithms.

One widely applicable class of preconditioners for positive semi-definite matrices is the
low-rank Nystrom approximation. The central idea is to create a low-rank approximation P
of a matrix A of interest, with the expectation that P~'A will have a condition number close
to 1. One common implementation is to subsample r columns of the matrix and use these to
construct an approximation for the missing entries with rank at most r.

The randomized Gaussian Nystrom preconditioner builds on this idea. Written in a gen-
eral form, we have P = AQ(QTAQ)TQT AT for a chosen matrix Q € RVIMLxr  Column
subsampling is a special case where columns of the matrix {2 have a single non-zero entry of
the unit 1. However, ) can also be populated with randomized Gaussian entries. This idea,
developed in [52], has resulted in better empirical performance and enjoys theoretical support.
For an implementation see Algorithm B.3.

C. Proof of the Coercivity condition in subsection 3.2.

Theorem C.1. Consider py = [ﬁX] , where py s the product of N independent and identi-
\%4

cal measures with compact support on R and py is defined in the same way and is independent
of px. Then we have

N-—-1 N-—-1
(C1) I£61172(py) = WHSOEH%z(ﬁg) + WHSOAH%W;\)
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Algorithm B.3 Randomized Gaussian Nystrom Preconditioner

Input: K¢, (Y,Y;0) (matrix-vector multiplication for kernel matrix), o2 (noise hyperparame-
ter), r (rank of preconditioner)

1:

,_.
@

11:

Q ~ Standard Gaussian € RV4MLxr

R =QR(Q) using economy QR
Y = K, (Y,Y;0)R

v = eps(IY||F)

Y, =Y +vR

C = chol(R"Y,)

B=Y,/C

U,% =svd(B) using economy svd

A = max(0,%2 — vI)
P~ = (A(~1) + UM +0*1) ' UT + I~ UU”
log det(P) = sum(sum(log(ﬁ)))

Output: P!, logdet(P) (needed preconditioner quantities)

1 N
(A ANEESY

Proof. Following the definition of measure py and the norm in (1.4), we have

Ny 2
> & ¢ (e — @)@ — @) + ¢ (@i — @i)(vr - v)|

L2(py)
N

N N
1 A
- N3 Z Z + Z CzEgk + ik + Dijk
=1 j=k=1 j#k=1
N

(C.2) =~ (19" 72y + 1021 7250)) + R

N2

Cik = (0" (s — @ill) (2 — @), 0" (laek — @ill) (@ — 22)) 1,
Ol = (s = il (25 = 01), @ — i) (01 = ) 1z
Dy = (0"l — i)l (25 — i), ™ (e — @il)) (vk = vi)) 2,y
+ (0l — @il (w5 — i), " (s, — il ) (@g — 20)) o, ) =0,
| X
R=732>. D (Ch+Ch
i=1 jk,ji ki
By the property of py, when ¢, j, k are distinct, we have

Clr = E[e”(I1IX1 = X2 (|1 X1 — X3]|) (X2 — X1, X3 — X1) |
Ci = E[e? (IIX1 — Xa])e? (|1 X1 — X3)JE[ (Vo — V4, V5 — W) |,
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for all (i,j,k), where X;s and V;s are identical copies of the position and velocity variables
x;,v;s. From the Lemma C.2 below,

CE>0,C8, >0

1, 1,

and we used the fact
E[(Va—W,Va = V1) ] = E(IVil®) = [E(V)II* > 0
Therefore,

N -1
e e T Ay 0

The proof of Theorem C.1 uses the following lemma.

Lemma C.2. If X|Y,Z are i.i.d random wvectors, then for any measurable function g on
R?, we have that
Elg(X —=Y)g(X = 2)(X =Y, X - Z)] >0,
Elg(X —Y)g(X - 2)] 20,
provided the expectation exists.

Proof. Without loss of generality, suppose the probability density function of X is p(z).
(The discrete distribution case follows from the same argument). Let (U,V) = (X -Y, X —Z2).
By the independence of XY, Z, the pdf of (U,V) is

p(u,v) = /p(ac)p(x —u)p(x — v)dx.

Since
N N N
S>> cieiplusuy) = [ p@)] 3 ciple - w)Pds =0
i=1 j=1 i=1

which means p(u, v) is positive definite (p.d.) As (u,v) is p.d and g(u)g(v) is p.d. [71], we get
g(u)g(v){u,v)p(u,v) is p.d.. Note that

€3 EGX V)X - D)X ~¥.X = 2)] = [ gu)glo)u o, v)duds,
if the function g(u)g(v)(u,v)p(u,v) is measurable and integrable. Then the inequality holds
by p.d. property. Similarly, one can prove the second inequality. |

D. Proof of Representer Theorem. We prove the Representer Theorem (Theorem 3.2 in
main text subsection 3.1) by using an operator-theoretic approach.

Proposition D.1. Given the empirical noisy trajectory data (Yar, Zy2 pr) = {Xar, Ve, Zo2 pr }-
We define the sampling operator Any : Hyr X Hyga — RIVML py
m, )\ M,L m, m, )\ M,L
(D.1) A = £ (Xar) = Vee({fo (YD)} 102 ) = Vee({£,6 (YD) + £, (Y D)1 100 ),

m,l=1 m,l=1

RdNML

where is equipped with the inner product defined in (1.3).
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1. The adjoint operator A}, is a finite rank operator. For any noise vector W in RANML

let Wy, 15 € RY denote the i-th component of (m,1)th block of W as the same way in
Y, then we have

. 1 1 (m,1)
= 3 S K
I;m= 11’—11’/;&1’ i
(m,1)
(D2 D S SR R
lm li= 11’#1

For any function ¢ € Hie X Hya, we have that

1 (m,l) (m,1)
e AX o E E B x(m, x(m,
BMCP o AMAMLP - <LM Z Z WK X(m,l) (<()0 7K X(m,l) >HKE <ri7;/ ,TZ'Z'//
I,m=11i=1,i’ 3" #i T T
A 1A x(mil) s (m.l)
+ (" K x(m ) >7-lKA (riv ST ),

il

1 1 (m,D) (m.)
(D4) m Z Z N K X(m l)(<(10A7KAX(m l)>7‘lKA <T‘z‘z// 7'ri‘i/” >

il
— y— 51 51
Iym=1i=1."3"#i

E E v (m,l) X (m,l)
(D5) + <(P s KT?X//(m'l) >HKE <T’ii’ s Ty >)) .
2. If A= ()\E, )\A) > 0, a unique minimaizer ¢;\{7ZEXHKA that solves

argmin  EM (@) i= || Anre = Zo2 mr* + IVA- @150, s
PEH X H o n

exists and is given by
AM —1 4%
(D.6) O pxtn = By +A) VAN Z 2 .

where we interpret the map X(@) by X - ¢ = (NP, A\pA).

Proof. The part 1 of Proposition D.1 can be derived by using the identity (A, w) =
<<,0,A}k\4'w>%KEX9{K - Part 2 of Proposition D.1 is straightforward by solving the normal
equation. m

Now we derive a basis representation formula for the empirical minimizer of (D.6)

Theorem D.2. If A > 0, then the minimizer of the reqularized empirical risk functional
EMM (L) has the form

(D.7) quKEX%KA_ > ewKE, > e KA,

e\ (re,r)E(rx,y Xrvy,)
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where rx,, € RMLN® s the set contains all the pair distances in Xy, i.e.
(D.8)
T
11 1,1 1,1 11 M,L M,L M,L M,L
TXy\ = [7“§1 )7"'7T§N)7'"’T§V1)7"'>TJ(VN)""7T§1 )7"'>T§N ),...,rg\n ),...,’I“](VN )] ,

€ RMLN*XMLN? s tne set contains all the pair distances in Xy and their

and rx,, X Tv,,
associated pair distances in V.

Moreover, we have

1
bpe = —rx,, - (Ke,(Yar,Yar) + \CNMLI) 7' Z,2 5,

N
. 1 _

(D.9) o = NT\T,’M (K, (Yar, Yar) + MANMLI)'Z,2 o,
where the block-diagonal matriz rx,, = diag(rxm.n) € RMLANXMLN? g g Tx(mi) € RANXN?
defined by

S

0 ror ey 0

(D.10) T x(ml) = ) 2 ] N ) ] ,

Tap e TN

and same for ry,,.

Proof. Let Hyr )y be the subspace of Hr spanned by the set of functions {KF :r e
Xy}, and similarly for H 4 5. By Proposition Proposition D.1, we know that By (HE 5, x
’H}%’ u) C "HI% M X 7—[}%7 M- Since By is self-adjoint and compact, by the spectral theory of
self-adjoint compact operator (see [72]), Hf{’ M X 7{% s is also an invariant subspace for the
operator (Bys + AI)~1. Then by (D.6), there exists vectors ¢z, & such that

M . .
(D‘ll) ¢HKE><KA :( Z CT‘IK1§7 Z CT"UK;'%C)‘

TTETX), (r=,r)E(rxy XTX 1)
Then, multiplying (Bps + A) on both sides of (D.6) and plugging in (D.11), we can obtain

{(T){NI’I’XMKE(TXM,TXM) + )\ENSMLI)@,I + T§MTVMKA(TXM7TXM)érv = Nr)ng2027M

(18, P KA (rx, s rxoy) + AANBMLI) o + 18 ¢, KE (rx,, 3o )ére = N1 Zo2

using the matrix representation of (Bjs +A) with respect to the spanning sets {K” : r € rx,, }
and {K2 :r €rx,, }-

Recall that we have KZ(rx,,,rx,,) = (KE(TU,Ti/j/))rij,ri/j,eer, KA(rx,,,m,,) =
(KA (ri, Piti)rig o rerx,, a0d Ke, (Yar, Yar) = Cov(fg(Yar), f4(Yar)), so using the identity

(D.12) TXMKE(TXM,TXM)T§M + TVMKA(T)(M, TXM)’I‘\Y;M = NZKf¢(YM,YM)
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and the fact that the matrices (T;*QM Pxa KE (rx,y 70 ) FAEN3MLI), ('r\?M vy, KA (), T, )+
MN3MLI ) are invertible, one can verify that

(D.13) ere = wrxy, - (Key(Yar,Yar) + AENMLI) 7 Z 2
ero =y, (Key(Yar, Yar) + AMNMLI) ' Z,2 ),

is the solution.

Now we are ready to finish the proof of the Representer theorem.
g 21 FE g 21A
Proof. Let K% = 3705, K4 = 35
Since ¢F ~ GP(0, KF), ¢4 ~ GP(0, K*), the posterior mean in (2.8) will then become

Par(r*) = f(qu,fd,(T*, XM)(Rf¢(YMaYM) + ‘72[)_1202,M

1 - N ~ _
= NKT%M (7’ )’I’%M (Kf¢(YM,YM) + O'QI) 1202,M
_1
N

= Kye g, (", Xar) (e, (Yar, Yar) + NMIXPI)™'Z 2

= > &Kf,

T’ETXM

KTE;M (r)r,, (Ke, (Yar, Yar) + NMLAPI) 7 Z 2 o

where ¢ is defined in (D.9) and we used the identity Ky ¢, (r*, Xpr) = LKE (r)rl  (also
)

T%0s Xm

for K ) in the proof. Similarly, we can get the posterior mean for (5]‘?/1 (r* u

Lemma D.3. Let ® and y be jointly Gaussian random vectors

(D.14) [Z] ~N( {Z:] : |:6«4T g]),

then the marginal distribution of x and the conditional distribution of x given y are
(D.15) T ~ N(pie, A),  and xly ~ N (i + CB™ (y — py), A — CB~'CT).

Proof. See, e.g. [50], Appendix A. [ |
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