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Abstract

In this paper, we tackle a critical issue in nonparametric inference for systems of inter-
acting particles on Riemannian manifolds: the identifiability of the interaction functions.
Specifically, we define the function spaces on which the interaction kernels can be identified
given infinite i.i.d observational derivative data sampled from a distribution. Our method-
ology involves casting the learning problem as a linear statistical inverse problem using an
operator theoretical framework. We prove the well-posedness of the inverse problem by
establishing the strict positivity of a related integral operator and our analysis allows us
to refine the results on specific manifolds such as the sphere and Hyperbolic space. Our
findings indicate that a numerically stable procedure exists to recover the interaction kernel
from finite (noisy) data, and the estimator will be convergent to the ground truth. These
findings also answer an open question in [MMQZ21] and demonstrate that least square es-
timators can be statistically optimal in certain scenarios. Finally, our theoretical analysis
could be extended to the mean-field case, revealing that the corresponding nonparametric
inverse problem is ill-posed in general and necessitates e↵ective regularization techniques.

1 Introduction

Systems of interacting particles are ubiquitous in science and engineering, where the particles
may refer to fundamental particles in physics, planets in astronomy, animals in ecology, and cells
in biology. These systems exhibit a wide range of collective behaviors at di↵erent scales and
levels of complexity arising from individual interactions among particles. Understanding and
simulating such collective behavior requires the development of e↵ective di↵erential equation
models, which is a central subject in applied mathematics.

In many applications, particles may be associated with state variables that are defined
on or constrained to move in non-Euclidean spaces. This presents significant di�culties for
modeling, analysis, and numerical simulation. Despite these challenges, there has been a growing
interest in the last five years in modeling particles moving on various manifolds or surfaces.
One such example is a simple first-order system that models the consensus behavior of opinion
dynamics on a general Riemannian manifold. This system considers N interacting particles on
a Riemannian manifold (M, g), which evolve according to a general dynamics equation shown
in (1):
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ẋi =
1

N

NX

j=1

�(d(xi,xj))w(xi,xj), i = 1, · · · , N. (1)

Here, xi represents the position of the i-th particle on the manifold M. The radial interaction
kernel � is a scalar valued function defined over R

+; the distance function d(·, ·) with respect
to the Riemannian metric g, and influence vector w(xi,xj) 2 TxiM (the tangent space at xi)
are all defined in the equation. Other models, such as flocking models in [AHS21, AHPS21],
aggregation models in [FZ18, FPP21], and Kuramoto models in [Str00, HKK22], have also been
shown to reproduce various qualitative patterns of collective dynamics.

In the field of modelling, one of the greatest challenges is selecting the appropriate governing
equations to accurately describe the desired collective behaviour. In the past, this task relied
heavily on the expertise of the modeler. However, modern sensor and measurement technologies
now allow for the collection of large amounts of high-quality data from a diverse range of systems.
As a result, the discovery of interacting particle models that accurately match observational
data has become a major area of focus in recent years. This task is often di�cult and su↵ers
from the curse of dimensionality, but many systems have low-dimensional structures that enable
e�cient data-driven methods. Examples of this include the inference of stochastic interacting
particle systems in works such as [Kas90, B+11, GSW19, Che21, SKPP21, MB21a, GCL22,
DMH22, YCY22], and the learning of radial interaction kernels in [LMT21]. Deterministic
interacting particle systems on Euclidean domains have also been studied, with works such as
[BFHM17, LZTM19, LMT21, MTZM20] focusing on nonparametric inference methods.

Figure 1: The two examples of systems (1) using code provided in [MMQZ21]. The left models
the swarming behaviour of preys and predators on S

2 and the right models the aggregation
behaviours of opinions on Poincare disk. The color variations from orange to pink denotes the
forward time evolution of particles.

In their work [MMQZ21], the authors propose a least squares algorithm that uses the `2 ODE
residual (1) as the loss function and looks for an approximation of � over piecewise polynomial
spaces. This learning scheme exploits the low-dimensional structure of the problem, where the
unknown function � is a radial function defined on R

+ regardless of the value of N . However,
this approach leads to an inverse problem that requires solving for the identifiability of �, which
is essential for analyzing the statistical optimality of least squares estimators.

In this paper, we approach the identifiability of � in (1) from a linear statistical inverse
learning problem perspective [FRT21]. That is, the observational data comes in the form of
positions of the N particles on the manifold and the (possible noisy) first derivatives of these
positions with respect to time, and they follow a joint probability distribution. To simplify
notation, we write (1) as

Ẋ(t) = f�(X(t)) (2)
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where X = (x1, · · · ,xN ) 2 M
N and f�(X) 2 TXM

N . We denote M
N = M ⇥ · · · ⇥ M the

product manifold consisting of N copies of M, with TXM
N the tangent space of MN at X.

Let A be a linear operator that maps a function ' to f'. Our study addresses two fundamental
questions:

Question 1. What are function spaces H and F such that A 2 B(H,F) (bounded linear
operators mapping H to F)?

Question 2. Suppose A 2 B(H,F), when does the linear inverse problem

A' = f' (3)

have a stable solution?

We restrict our attention to F = L
2(MN ;µ;TXM

N ) where µ is the marginal distribution of
positions and H is a subspace of L2([0, R]; ⇢;R) with a suitable choice of measure ⇢ constructed
from µ. The use of L2 spaces in both H and F is a natural choice when dealing with the `2 loss
function used in the learning. The space F is a space of square-integrable vector fields on M

N

with respect to a probability measure µ, which is the marginal distribution of observational
position data. The space H is a space of square-integrable functions supported on an interval
[0, R] so that the ODE system (1) is well-posed. For example, if M is compact, one can
choose R to be the injectivity radius of M, see Section 2 in [MMQZ21] and [AMD17]. The
answers to Question 1 and 2 have significant practical implications for designing statistical
learning methods for predicting trajectories. In particular, the boundedness of A means that the
norm of H can be used as an e↵ective error metric for estimators, allowing for the production
of faithful approximations of the true velocity field. This is essential for accurate trajectory
prediction. Additionally, the stability of the minimizer allows for the use of numerically stable
procedures for obtaining faithful approximations of the minimizer from a finite amount of noisy
data. Such results are crucial in establishing the statistical optimality of computation methods.
Our findings provide a positive answer to the conjectured geometric coercivity condition in
[MMQZ21] where the measure µ is the distribution of noise-free trajectory data with randomized
initial distributions, but our framework can be applied to any measure µ obtained in a more
general observation regime, for example, taking the observation noise into account [FRT21].

Related work and contribution Ordinary di↵erential equations (ODEs) are a well-established
tool for modeling dynamic processes with broad applications in various scientific fields. How-
ever, the explicit forms of these equations often remain elusive. The impressive advancement
in data science and machine learning prompts researchers to devise methods originated from
machine learning for data-driven discovery of dynamics. These examples include symbolic re-
gression (e.g.[SL09]), sparse regression/optimization (e.g.[BPK16, STW18, MB21b]), kernel and
Bayesian methods ([RPK17, HYM+18, YWK21]), deep learning (e.g.[QWX19, DGYZ22]. The
identifiability analysis is the first step in determining unknown parameters in ODE models. Pre-
vious work has mainly focused on parameter estimation. For instance, the identifiability analysis
from single trajectory data for linear dynamical systems with linear parameters is performed
in [SRS14], and later generalized to a�ne dynamical systems in [DRS20]. For nonlinear ODEs
arising from biomedical applications, one can refer to the survey in [MXPW11] for identifiability
analysis methodologies for nonlinear ODE models and references therein.

Our study focuses on the application of data-driven modeling to complex particle systems on
manifolds, and aims to conduct identifiability analysis motivated by the usage of nonparametric
statistical learning methods. Specifically, we extend previous work on identifying interaction
kernels in Euclidean spaces, as presented in [LZTM19, LMT21, LLM+21], to the more challeng-
ing manifold case. We explore how the geometry of the interacting domain a↵ects the learning
process. We adopt the newly developed linear statistical inverse problem framework in [FRT21],
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which allows for the analysis of data distributions from a broad range of observation regimes,
in contrast to the previous work that only considered noise-free observations. Our work makes
the following contributions:

• We find the solutions of Question 1 and Question 2 on general manifolds, thereby
providing a framework that includes the previous results as special cases.

• Using our analysis, we refine the generic results on specific manifolds, such as the sphere
and Hyperbolic space, providing a more nuanced understanding of the behavior of these
systems.

• Additionally, we investigate cases where the stability conditions may fail, deepening our
understanding of the limitations and potential pitfalls of our approach.

Considering the manifold case has significant implications for various fields such as physics,
biology, and social sciences, where systems can be modeled as interacting particles or agents on
a manifold. Our approach provides a computational foundation for the data-driven discovery
of these systems, leading to new insights and discoveries in these fields.

2 Notation and Preliminaries

Notation: Let ⌫ be a Borel positive measure on a domain D1. We use L2(D1; ⌫;D2) to denote
the set of L2(⌫)-integrable vector-valued functions that map D1 to D2.

Let S1 be a measurable subset of RD, then the restriction of the measure ⇢ on S1, denoted
by ⇢ S1, is defined as ⇢ S1(S2) = ⇢(S1\S2) for any measurable subset S2 of RD. For two Borel
positive measures ⇢1, ⇢2 defined on R

D, ⇢1 is said to be absolutely continuous with respect to
⇢2, denoted by ⇢1 ⌧ ⇢2, if ⇢1(S) = 0 for every set ⇢2(S) = 0, S ⇢ R

D. ⇢1 and ⇢2 are called
equivalent i↵ ⇢1 ⌧ ⇢2 and ⇢2 ⌧ ⇢1.

Let H1,H2 be Hilbert spaces. We use h·, ·iH1 to denote the inner product over H1, and still
use h·, ·i to denote the inner product on the Euclidean space. We denote by B(H1,H2) the set
of bounded linear operators mapping H1 to H2. Let A 2 B(H1,H2), we use kAk to denote its
operator norm.

2.1 Preliminaries in Geometry

We will use several geometric tools. For the convenience of the reader, we state them here.
More details of these can be found in various books such as [Car92] and [GHL04].

We let (M, g) denote a smooth, connected, and complete n-dimensional Riemannian mani-
fold with Riemannian metric g. For any point x 2 M, we let TxM be the tangent space at x
and let

expx : TxM ! M

denote the exponential map. If �x,v is the geodesic starting at x with initial velocity v, then
expx(v) = �x,v(1). Let I(x,v) > 0 be the first time when the geodesic s 7! expx(sv) stops to
be minimizing. Define

D(x) := {tv 2 TxM : v 2 S
n�1

, 0  t < I(x,v)},

where S
n�1 is the unit sphere in the tangent space with respect to the metric g(x), then expx

is a di↵eomorphism from D(x) onto its image, and

d(x,p) = | exp�1
x (p)|
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for any p 2 expx(D(x)). Recall that d(x,p) is the Riemannian distance between x and p,
which is obtained by minimizing the length of all piecewise C

1 curves connecting x and p. Let
CL(x) := expx(@D(x)) ⇢ M be the cut locus of x, it is known that for connected complete
Riemannian manifolds

M = expx(D(x)) [ CL(x)

for any x 2 M, and CL(x) has zero measure, see, e.g. [[GHL04], page 158, Corolarry 3.77]. We
denote Inj(x) := d(x, CL(x)) > 0 to be the injectivity radius at x 2 M (note that if CL(x) = ;,
Inj(x) = 1), and let Inj(M) = infx2M Inj(x) be the injectivity radius of M. If M is compact,
then Inj(M) is strictly positive.

It is easy to check that D(x) is an open star-shaped subset of TxM, so (D(x), expx) is a
smooth chart and one has that for any Borel measurable function f on M

Z

M

f dVM =

Z

D(x)
(f � expx)

p
det(Gx) d�

n
, (4)

where dVM is the Riemannian measure on the manifold (M, g), Gx := exp⇤x g is the pullback
of g by expx, and �

n denotes the n dimensional Lebesgue measure on R
n
. Notice that given

coordinates {u1, · · · , un} of D(x), for any u 2 D(x)

(exp⇤x g)u(
@

@ui
,
@

@uj
) = gexpx(u)

(d expx
��
u
(
@

@ui
), d expx

��
u
(
@

@uj
)),

where d expx
��
u
: TuD(x) ! Texpx(u)

M is the di↵erential of the exponential map.
As an explicit example to illustrate these concepts, let us consider the sphere M = S

n
⇢

R
n+1

, where one finds that

TxS
n = {v 2 R

n+1 : hx,vi = 0} =: x?
,

where h·, ·i denotes the standard inner product on R
n+1

. We choose the round metric on S
n

which is the pullback of the Euclidean metric of Rn+1
. In this metric, one can compute the

distance between two points as follows for any x,y 2 S
n
⇢ R

n+1
, we have

dSn(x,y) = arccos(hx,yi). (5)

Note that for this metric the exponential chart can be computed explicitly, being

expx(v) = cos(kvk)x+ sin(kvk)
v

kvk
for v 2 TxS

n = x?
. (6)

The cut domain is given by D(x) = B⇡(0) for any x 2 S
n
, i.e., the ball of radius ⇡ centered

at origin. Writing the metric in polar coordinates gSn = dr
2 + sin2(r)gSn�1 , we thus we get for

any measurable f on S
n that

Z

Sn
f dVSn =

Z ⇡

0

Z

Sn�1
f(expx(tv))sin

n�1(t) d�(v) dt, (7)

where S
n�1 denotes the n � 1 dimensional unit sphere and d� denotes the induced surface

measure.
The other simple case is the hyperbolic space, Hn = {x = (x1, · · · , xn) 2 R

n : xn > 0} with
the usual metric gHn = 1

x2
n
gEuclid. By the Hadamard theorem, we have that CL(p) = ; for any

p 2 H
n
, and that D(p) = R

n
. The equation (7) for H

n is the same except one has to change
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the area of integration and replaces sin by sinh :
Z

Hn
f dVHn =

Z
1

0

Z

Sn�1
f(expx(tv))sinh

n�1(t) d�(v) dt. (8)

2.2 Interactions on manifold

Following the work in [MMQZ21, AMD17], we choose d(xi,xj) to be the geodesic distance
of any two points xi,xj 2 M. Notice that we can connect xi and xj with a minimizing geodesic
which is unique if they are not cut points of each other. In view of that we define the influence
vector as

w(xi,xj) =

(
d(xi,xj)�̇xi,xj (0) if xi 6= xj , and xi /2 CL(xj)

0 otherwise,
(9)

where �xi,xj : [0, d(xi,xj)] ! M denotes the unique normalized minimizing geodesic connecting
xi and xj . So �̇xi,xj (0) is the unit tangent vector to the geodesic �xi,xj at xi. In particular,
w(x,y) = exp�1

x (y) for y /2 CL(x).

Remark 1. We add several comments on the first-order models.

• It is sometimes conventional to consider the unit norm influence vector by moving the

term d(xi,xj) in (9) to the interaction part, so the interaction kernel becomes �(·)·. The

analysis developed in this paper can be equivalently applied to this case as well by slight

modification on the function spaces.

• When M = R
n
or S

n
, we can calculate the influence vector as follows

w(xi,xj) =

(
⇧TxiM

(xj � xi) if ⇧TxiM
(xj � xi) 6= 0

0 otherwise.

where ⇧TxiM
denotes the orthogonal projection onto the tangent space TxiM. In partic-

ular, when M = R
n
, one has that the vectors of influence are simply

w(xi,xj) = xj � xi.

This recovers the classical first order models from [MT14].

• In [AMD17], the well-posedness of (1) is examined for compact manifolds. The well-

posedness for the mean-field equation of (1) is examined in [FZ18] on two dimensional

sphere and two dimensional hyperbolic spaces. It is established that if the support of the

interaction kernel is smaller than the injective radius, then (1) is well-posed. However, it

is worth noting that our analysis does not necessitate the manifold being compact.

We let MN = M⇥M⇥ · · ·⇥M be the canonical product of Riemannian manifolds with
product Riemannian metric given by g

N
M

. Denote by

X :=

2

664

...
xi
...

3

775 2 M
N
, (10)
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the tangent space at X is defined by TXM
N = Tx1M⇥ · · ·⇥ TxNM such that

⌧
2

664

...
ui
...

3

775 ,

2

664

...
vi
...

3

775

�

TXMN

:=
1

N

NX

i=1

g (ui,vi)

which is the weighted product metric induced by the metric g.

2.3 Preliminaries on probability

We say that N random vectors X1, · · · , XN are conditional i.i.d if there exists a random
vector ✓ ⇠ ⇡(✓) such that X1|✓, · · · , XN |✓ are independent and identically distributed. Then

p(X1, · · · , XN ) =

Z
p(X1|✓)p(X2|✓) · · · p(XN |✓)⇡(✓)d✓,

It is also called a mixture of i.i.d. For example, X1, · · · , XN is conditional i.i.d when they are
from an infinite exchangeable sequence, which is a consequence of the celebrated de Finetti’s
representation theorem. It also includes N i.i.d random vectors as a special example.

Examples of µ: In this paper, we assume that the observational data, consisting of pairs of
positions and velocities, follows a probability distribution, and µ represents the marginalization
of this joint distribution with respect to the position data. In [MMQZ21, LZTM19, LMT21,
FRT21], the authors explore the scenario involving multiple i.i.d. trajectory data, with initial
positions sampled i.i.d. from a probability measure �. In this framework, if observations occur
only at t = 0 (e.g., see Theorem 9 in [LMT21]), then µ can be equated to �. On the other hand,
in scenarios where one observes the steady state of particle dynamics, such as configurations
constituting vertices of regular complexes often seen in empirical phenomena (see an example
in Section 5), µ could become discrete.

3 On the Boundedness of A

We begin by defining a measure ⇢ on the Borel �-algebra of R+, which addresses Question 1.
Throughout the paper, if not specified otherwise, µ defined on M

N is assumed to be absolutely
continues with respect to the volume form.

Definition 1. Let X = (x1, · · · ,xN ) 2 M
N

and let B ⇢ R
+

be a Borel set. Then, we define

the positive measure ⇢ as follows:

⇢(B) =
1

N(N � 1)

X

i 6=j

Z

P�1
ij (B)

P
2
ij(X)dµ(X),

where the function Pij(X) := d(xi,xj) maps M
N

to R
+
. In other words, ⇢(B) is the average

of measures that are push-forwards of µ by the distance map P
2
ij.

The measure ⇢ can be conceptualized as an “occupancy” measure. More specifically, for
any interval I, ⇢(I) quantifies the likelihood of observing a pair of agents whose distance apart
falls within I. This measure is integral to understanding the dynamics within highly explored
regions—areas where agent interactions are frequent and thus provide a richer dataset for es-
timating the interaction kernel with greater accuracy. In a nutshell, the measure ⇢ serves to
capture the structural information of the governing equations (1) by quantifying the extent to
which regions of R+ are explored through samples from f�(X) at the population level.

Given a density function µ, directly deriving an analytical expression for ⇢ can be challenging.
A simple case is when M = R and µ is the uniform distribution on [0, 1]N , then ⇢ is compactly
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supported on [0, 1] with density function 2(1�t) for 0  t  1. One can also refer to a derivation
of ⇢ in the Euclidean case when µ is Gaussian (see Theorem 9 in [LMT21]). In general, we can
employ Monte Carlo simulations and density estimation techniques to approximate ⇢. We have
elaborated on this methodological approach and provided an illustrative example in Figure
2, which demonstrates the practical application of these techniques in estimating ⇢ based on
specified µ values.

By virtue of being the average of measures that are push-forwards of µ by the distance map
P

2
ij , ⇢ inherits some properties of µ. For instance, if µ is a Borel regular measure on M

N , then ⇢
is also Borel regular on R

+. Given our assumption that µ is absolutely continuous with respect
to the volume measure VMN of MN , it follows that ⇢ enjoys the same property, as succinctly
outlined below:

Lemma 3.1. The measure ⇢ in Definition 1 is absolute continuous with respect to the Lebesgue

measure of R+.

Proof. It su�ces to show that for any i, j, the measure ⇢ij given by

⇢ij(A) =

Z

P�1
ij (A)

P
2
ij(X) dµ(X)

is absolutely continuous with respect to | · |, the one dimensional Lebesgue measure. Let A ⇢ R
+

satisfying |A| = 0. We denote A
2 = {x

2 : x 2 A}, then |A
2
| = 0 too. Notice that P 2

ij : M
N

!

R
+ is smooth, and the set of critical points (i.e. with zero gradient) of P 2

ij is

{X = (x1, · · · ,xN ) 2 M
N : xi = xj},

which is of zero measure, therefore VMN ((P 2
ij)

�1(A2)) = 0 whenever |A
2
| = 0. It follows that

VMN (P�1
ij (A)) = VMN ((P 2

ij)
�1(A2)) = 0. Since µ is absolutely continuous with respect to VMN ,

we obtain that µ(P�1
ij (A)) = 0, thus ⇢ij(A) = 0. This shows that ⇢ is absolute continuous with

respect to the Lebesgue measure | · | on R
+.

In summary, the measure ⇢ is derived from µ and shares numerous properties with it,
rendering it a valuable instrument in analyzing the operator A and characterizing the function
space H. With this groundwork laid, we are prepared to present the key outcome of this section.

Proposition 3.2. Let H be a subspace of L
2([0, R]; ⇢ [0, R];R) or itself. Then A 2 B(H,F)

and kAk 
N�1
N .

Proof. It su�ces to prove this result when H := L
2([0, R]; ⇢ [0, R];R). Observe that for any

' 2 H, one has that

kf'k
2
L2(µ) =

1

N

NX

i=1

Z

MN
k
1

N

X

j 6=i

'(d(xi,xj))!(xi,xj)k
2
dµ(X).

We now estimate the integrand using Cauchy-Schwartz and Young’s inequality: for any

8



i = 1, . . . , N

k
1

N

X

j 6=i

'(d(xi,xj))!(xi,xj)k
2 = g

⇣ 1

N

X

j 6=i

'(d(xi,xj))!(xi,xj),
1

N

X

k 6=i

'(d(xi,xk))!(xi,xk)
⌘

=
1

N2

X

j 6=i

X

k 6=i

'(d(xi,xj))'(d(xi,xk))g (!(xi,xj),!(xi,xk))


1

N2

X

j 6=i

X

k 6=i

��'(d(xi,xj))'(d(xi,xk))
��d(xi,xj)d(xi,xk)


1

2N2

X

j 6=i

X

k 6=i

'
2(d(xi,xj))d

2(xi,xj) + '
2(d(xi,xk))d

2(xi,xk)

=
N � 1

N2

X

j 6=i

'
2(d(xi,xj))d

2(xi,xj).

From this estimate we get that

kf'k
2
L2(µ) 

N � 1

N3

X

i 6=j

Z

MN
'
2(d(xi,xj))d

2(xi,xj) dµ(X)

Moreover, one has that

k'k
2
L2(⇢) =

1

N(N � 1)

X

i 6=j

Z

MN
'
2(d(xi,xj))d

2(xi,xj) dµ(X),

from which we get that

kf'k
2
L2(µ) = kA'k

2
L2(µ) 

(N � 1)2

N2
k'k

2
L2(⇢),

as desired.

The above theorem establishes that the L
2 norm induced by ⇢ is a potent metric for data-

driven estimators. Estimators that yield small L2(⇢) errors provide accurate approximations of
the velocity field, thereby guaranteeing reliable trajectory prediction outcomes. Notably, the
L
2(⇢) norm has been utilized as an evaluation metric for the generalization error of least square

estimators in [MMQZ21].

4 Well-posedness

In this section, we present stability results for a specific family of measures, namely the joint
distribution of N independent and identically distributed random variables on M. In the for-
ward problem, it is often assumed that the initial conditions of particles are i.i.d. because these
particles are indistinguishable. Under certain conditions, such as the absence of significant inter-
actions between the particles and N is su�ciently large, the system may remain approximately
i.i.d. over time. In our analysis, we leverage the i.i.d assumption to facilitate computation
and prove that the associated integral operator is positive and even strictly positive. We later
demonstrate that the stability results hold more generally for the joint distribution of N condi-
tionally i.i.d. random variables by leveraging De Finetti’s representation theorem. Finally, we
show that the stability results hold for their equivalent measures in Corollary 4.5.

Proposition 4.1. Suppose that µ is the joint distribution of N i.i.d random variables. Then

9



we have that 8' 2 H = L
2([0, R]; ⇢ [0, R];R)

kA'kL2(µ) �

p
N � 1

N
k'kL2(⇢)

Proof. We calculate that

kA�k
2
L2(µ) = EX⇠µ

h
kf�(X)k2TXMN

i

= EX⇠µ

NX

i=1

1

N
g

0

@ 1

N

X

j 6=i

�(Pij(X))!(xi,xj),
1

N

X

k 6=i

�(Pik(X))!(xi,xk)

1

A

=
1

N3

X

j 6=i

EX⇠µ

h
�
2(Pij(X))P 2

ij(X)
i

+
1

N3

X

j 6=i,k 6=j,k 6=i

EX⇠µ

h
�(Pij(X))�(Pik(X))g

⇣
!(xi,xj),!(xi,xk)

⌘i
,

where we used the fact that in view of (9), one has that k!(xi,xj)k2 = P
2
ij(X). Note that

1

N3

X

j 6=i

EX⇠µ

h
�
2(Pij(X))P 2

ij(X)
i

=
N(N � 1)

N3

Z

MN

1

N(N � 1)

X

i 6=j

�
2(Pij(X))P 2

ij(X) dµ(X)

=
N � 1

N2
k�k

2
L2(⇢).

This gives that

kA�k
2
L2(µ)

=
N � 1

N2
k�k

2
L2(⇢) +

1

N3

X

i 6=j 6=k

EX⇠µ

h
�(Pij(X))�(Pik(X))g

⇣
!(xi,xj),!(xi,xk)

⌘i
.

It therefore su�ces to show that for i 6= j 6= k (any three non-equal indices)

Cijk = EX⇠µ

h
�(Pij(X))�(Pik(X))g

⇣
!(xi,xj),!(xi,xk)

⌘i
� 0.

Due to the special structure of µ, i.e. µ = µ0⇥ · · ·⇥µ0 with µ0 the same probability measure
for each xi, i = 1, . . . , N , the values of Cijk’s are equal and therefore we just need to show it
is positive for one such term. Without loss of generality, let i = 1, j = 2 and k = 3, and we
further simplify the notations by denoting x := x1, y := x2 and z := x3. We then get that

C123 = Ex,y,z

h
g

⇣
�(d(x,y))w(x,y),�(d(x, z))w(x, z)

⌘i

= ExEy,z

h
�(d(x,y))�(d(x, z))g(w(x,y), w(x, z))

���x
i
, (11)

where the second equality is true due to the independence of x,y and z.
It therefore su�ces to show that for any fixed x, we have that

Ey,z

h
�(d(x,y))�(d(x, z))g(w(x,y), w(x, z))

���x
i
� 0.

Now for each fixed x, �(d(x,y))�(d(x, z)) and g(w(x,y), w(x, z)) are positive definite kernels

10



with respect to (y, z) 2 M ⇥ M by Theorem 7.1 (2)(3) (notice that g is positive definite on
TxM ⇥ TxM), therefore their product is a positive definite kernel by Theorem 7.1 (1). Then
by (4) of Theorem 7.1, the conclusion follows.

Remark 2. In fact, the same analysis can be extended to cover the case of N conditionally i.i.d.

random variables, by invoking de Finetti’s representation theorem. Specifically, in (11),given
three conditionally i.i.d random variables x,y, z, one can do

C123 = E✓Ex|✓,y|✓,z|✓

h
g

⇣
�(d(x|✓,y|✓))w(x|✓,y|✓),�(d(x|✓, z|✓))w(x|✓, z|✓)

⌘���✓
i

(12)

where ✓ is the latent random variable conditioning on which that x|✓, y|✓, z|✓ are independent.

Then with a slight modification on the proof, we can show that C123 � 0.

4.1 Discussion on the sharpness of the bound

p
N�1
N on specific manifolds

The bound
p
N�1
N exhibits a somewhat counterintuitive characteristic: it decreases as N

increases. At first glance, one might expect that more data, represented by a larger N , would
naturally enhance the learning process due to the increased number of equations in our model.
Notably, our kernel remains a 1D function, consistent across all these equations.

However, this initial intuition overlooks the complexities inherent in inverse problems, par-
ticularly in the context of dynamical systems where data dependencies can be intricate. This
observation has prompted a deeper analysis of the underlying dynamics and their impact on
our learning process.

In this section, we explore whether this bound is sharp or can be enhanced by either confining
H to a smaller subspace, such as a compact subspace of L2([0, R]; ⇢ [0, R];R), or by considering
specific manifolds that enable us to refine the outcomes. We first discuss a criterion to decide
whether, given a compact subset H ⇢ L

2([0, R]; ⇢ [0, R];R), there is going to be a larger bound
in general or not, when restricting the map A to it.

Theorem 4.2. Suppose that µ is the joint distribution of N i.i.d random variables on M. Let

H ⇢ L
2([0, R]; ⇢ [0, R];R) be a compact subspace (i.e., the unit ball of H is compact with respect

to the L
2(⇢) norm) consisting of continuous functions. If for any nonzero ' 2 H, there exists

some x 2 supp(µ) ⇢ M
N

such that

Ey,z

h
'(d(x,y))'(d(x, z))g

⇣
!(x,y),!(x, z)

⌘���x
i
> 0, (13)

Then one has that

inf
'2H,' 6=0

kA'k
2
L2(µ)

k'k
2
L2(⇢)

�
N � 1

N2
+ cH,M

(N � 1)(N � 2)

N2
,

where

cH,M := inf
'2H,k'kL2(⇢)=1

E

h
'(d(x,y))'(d(x, z))g

⇣
w(x,y), w(x, z)

⌘i
> 0. (14)

Proof. We divide the proof into several steps.
Step 1. We claim that the function

x 7! Ey,z

h
'(d(x,y))'(d(x, z))g

⇣
!(x,y),!(x, z)

⌘���x
i

is continuous. Take a sequence {xn} ⇢ M such that limn!1xn = x. Due to the continuity of ',

11



the (Lipschitz) continuity of d(·,y), and d(·, z), respectively, we have '(d(xn,y))'(d(xn, z)) !
'(d(x,y))'(d(x, z)) as n ! 1 for each y, z 2 M.

Recall that w(x,y) = exp�1
x (y), w(x, z) = exp�1

x (z) for y, z /2 CL(x). Moreover, if
y, z /2 CL(x), then y, z /2 CL(xn) for n su�ciently large. Therefore, exp�1

xn
(y) ! exp�1

x (y),
exp�1

xn
(z) ! exp�1

x (z) as n ! 1, for y, z /2 CL(x). Note that CL(x) has zero measure with
respect to µ0, it follows that g(w(xn,y), w(xn, z)) ! g(w(x,y), w(x, z)) a.e. on M⇥M with
respect to the measure µ0 ⇥ µ0. Note that we have

����'(d(xn,y))'(d(xn, z))g
⇣
!(xn,y),!(xn, z)

⌘����  k'k
2
1R

2

µ� almost everywhere thanks to the compact support of '. The claim then follows from
dominated convergence theorem as the integrand is continuous in x for almost every (y, z) 2
M⇥M.

We thus have that

lim
n!1

Ey,z

h
'(d(xn,y))'(d(xn, z))g

⇣
!(xn,y),!(xn, z)

⌘���xn

i

= lim
n!1

Z

M⇥M

'(d(xn,y))'(d(xn, z))g
⇣
!(xn,y),!(xn, z)

⌘
dµ(y)dµ(z)

=

Z

M⇥M

'(d(x,y))'(d(x, z))g
⇣
!(x,y),!(x, z)

⌘
dµ(y)dµ(z),

as desired.
Step 2. Consider the bilinear map

G : L2([0, R]; ⇢ [0, R];R)⇥ L
2([0, R]; ⇢ [0, R];R) ! R

defined by

G(', ) := E

h
'(d(x,y)) (d(x, z))g

⇣
w(x,y), w(x, z)

⌘i
.

We claim that the map

L
2([0, R]; ⇢ [0, R];R) ! R, ' 7! G(',') := E

h
'(d(x,y))'(d(x, z))g

⇣
w(x,y), w(x, z)

⌘i

(15)

is continuous. Using Cauchy–Schwarz inequality

|G(', )|  k'kL2(⇢)k kL2(⇢)

Then notice that

|G('n,'n)�G(',')|  k'n � 'kL2(⇢)k'kL2(⇢) + k'n � 'kL2(⇢)k'nkL2(⇢).

Let 'n ! ' in H endowed with L
2(⇢) norm, and then we know if n is large enough, we have

k'nkL2(⇢)  2k'kL2(⇢). Consequently, we have

lim
n!1

G('n,'n) = G(',').

12



Step 3. Note that by the total law of probability we have

cH,M = inf
'2H,k'kL2(⇢)=1

E

h
'(d(x,y))'(d(x, z))g

⇣
w(x,y), w(x, z)

⌘i
(16)

= inf
'2H,k'kL2(⇢)=1

ExE

h
'(d(x,y))'(d(x, z))g

⇣
w(x,y), w(x, z)

⌘���x
i

(17)

and recall that

E

h
'(d(x,y))'(d(x, z))g

⇣
w(x,y), w(x, z)

⌘���x
i
� 0

by the proof of Proposition 4.1 so that cH,M � 0.
By compactness ofH, the continuity of the conditional expectation w.r.t x and the continuity

of the map (15), one can conclude that cH,M is positive once the property (13) is satisfied. Then
using (11) in the proof of Proposition 4.1, we see that this implies

kA'k
2
L2(⇢) �

N � 1

N2
k'k

2
L2(⇢) + cH,M

N(N � 1)(N � 2)

N3
k'k

2
L2(⇢)

which gives the result.

Remark 3. Theorem 4.2 provides a way to explore whether we can improve the bound by

restricting on a smaller compact subspaces of L
2([0, R]; ⇢ [0, R];R). Using exponential map,

one can easily check the condition (13).
Specifically, let ' 2 L

2(⇢) and x,y, z ⇠ µ0 i.i.d with densitiy function p(·). We denote

u := !(x,y) and v := !(x, z). Notice that for y , z /2 CL(x),

u = exp�1
x (y) and v = exp�1

x (z),

so kuk = d(x,y) and kvk = d(x, z). Moreover, since the volume measure of CL(x) is zero,

µ0(CL(x)) = 0 too. In view of (4), we obtain that

Ey,z

h
'(d(x,y))'(d(x, z))g(w(x,y), w(x, z))

���x
i

=

Z

M

Z

M

'(d(x,y))'(d(x, z))gx (w(x,y), w(x, z)) p(y)p(z) dVM(y)dVM(z)

=

Z

D(x)

Z

D(x)
'(kuk)'(kvk)g(u, v)p(expx(u))p(expx(v))

p
det(Gx(u))

p
det(Gx(v)) d�

n(u)d�n(v).

We choose an orthonormal basis (ei)ni=1 at x with respect to the metric g on TxM, so u =Pn
i=1 u

i
ei, v =

Pn
i=1 v

i
ei and

gx(u, v) =
nX

i=1

u
i
v
i
.

Then

Ey,z

h
'(d(x,y))'(d(x, z))g(w(x,y), w(x, z))

���x
i

=
nX

i=1

hZ

D(x)
u
i
'(kuk)p(expx(u))

p
det(Gx(u)) d�

n(u)
i2

� 0

It thus su�ces to find x 2 supp(µ0) such that

Z

D(x)
u
i
'(kuk)p(expx(u))

p
det(Gx(u)) d�

n(u) 6= 0 (18)

13



for some i = 1, . . . , n. In summary, we simplify the estimation of the condition number of the

operator A by leveraging the indistinguishability among particles. This approach narrows the

estimation to a functional, denoted by equation (13), which only involves a pair of particles

relative to a reference particle. Utilizing the coordinate system of the manifold, we further

streamline the process to checking an explicit integral outlined in (18). The proposed strategy

could be beneficial in choosing hypothesis space wherever it is feasible to compute or estimate

the quantity (18). Later, we show it proves e↵ective in both spherical and hyperbolic contexts,

as detailed in Propositions 4.3 and 4.4.

The reference [MMQZ21] provides numerical examples of first-order opinion dynamics and
Lennard-Jones dynamics on both the sphere and the Poincaré disk. These examples motivated
our exploration of refining stability results on these spaces, as well as on hyperbolic space more
generally.

4.1.1 Sphere

We first consider M = S
n, and µ = Unif((Sn)N ) is the uniform distribution on sphere.

Proposition 4.3. If M = S
n
and we choose µ = Unif((Sn)N ). Then one has that

inf
'2H,' 6=0

kA'kL2(µ)

k'kL2(⇢)
=

p
N � 1

N

for any nontrivial subspace H ⇢ L
2([0, R]; ⇢ [0, R];R).

Proof. Since we consider the uniform distribution, the density function of each particle is p(u) =
1

Vol(Sn) . Recall that in the sphere case, we have that

Z

D(x)
ui'(kuk)p(expx(u))

p
Gx(u) du

=
1

Vol(Sn)

Z ⇡

0
sinn�1(t)t'(t) dt

Z

Sn�1
ui d�(u) dt = 0

for any i = 1, . . . , n, as the functions ui are odd and domain of integration is symmetric. The
claim then follows from the computation done in Remark 3.

We see that in the sphere case, (13) is always zero. As a consequence, on any compact
subsets H ⇢ L

2([0, R]; ⇢ [0, R];R), we find that the cH,M is equal to zero and consequently,

the bound
p
N�1
N is sharp.

4.1.2 Hyperbolic space

Next we show a positive result on the hyperbolic space H
n, where µ is a product of uniform

distribution on a ball of radius R0 > 0. In this case, we can establish a better bound, depending
on H.

Proposition 4.4. Let R0 > 0, p 2 M := H
n
(see definition in section 2), where we assume n =

2 or n = 3, and µ have the density function
1

VolHn (BR0 (p))
N 1BR0 (p)⇥···⇥BR0 (p)

(X). Then for any

H ⇢ {' 2 C([0, 2R0]; ⇢ [0, 2R0];R) : supp(') ⇢ [0, R0),' only has finite number of zeros in supp(')}
compact (with respect to the topology of L

2(⇢)) we get that

inf
'2H,' 6=0

kA'k
2
L2(µ)

k'k
2
L2(⇢)

�
N � 1

N2
+ cH,M

(N � 1)(N � 2)

N2
.

14



where cH,M > 0 is defined in (14).

Proof. The density function p(x) for marginal distribution of each particle is given by

p(x) =
1

VolHn(BR0(p))
1BR0 (p)

(x)

and recall that

CL(x) = ; for any x 2 H
n
.

In view of Equality (18), we only need to consider the integrals

Z

Rn
1exp�1

x (BR0 (p))
(u)'(kuk)ui

p
Gx(u) du for i = 1, . . . n. (19)

We now pick a geodesic � through p and let q1, q2 2 @BR0(p) \ �(R), where we assume that
�(0) = q1 and �(R0) = p. Let e1 = �̇(0) 2 Tq1H

n and then, completing this into an orthonormal
basis (ei), gives after parallel translating this along � an orthonormal basis on all of �. Then
the integrals (19) at x = �(t) and i = 1 are given by

Z

exp�1
�(t)(BR0 (p))

'(kuk)u1
sinhn�1(kuk)

kukn�1
du.

All we need to show is that this is a non-constant function in t. To do so, we di↵erentiate the
integral w.r.t. t and show that for suitable values of t, the derivative is non-zero. Note that the
integrand is time independent, in view of Reynold’s transport theorem, see e.g. [Lea07], we get
that

d

dt

Z

exp�1
�(t)(BR0 (p))

'(kuk)u1
sinhn�1(kuk)

kukn�1
du =

Z

@ exp�1
�(t)(BR0 (p))

'(kuk)u1
sinhn�1(kuk)

kukn�1
ft(u) d�,

(20)

where ft(u) = ~n(u, t)·vt(u) with ~n the outward pointing unit normal vector at u 2 @ exp�1
�(t)(BR0(p)),

and vt denotes the velocity vector field on @ exp�1
�(t)(BR0(p)) (i.e. the unique vector field on

@ exp�1
�(t)(BR0(p)) pointing into the future movement of @ exp�1

�(t)(BR0(p)) as t varies). Note

that since exp�1
�(t) : H

n
! R

n is a smooth di↵eomorphism (in view of the Hadamard Theorem,

see e.g. [Car92], Chapter 7), we have that

@ exp�1
�(t)(BR0(p)) = exp�1

�(t)(@BR0(p)).

Moreover, we let F : [0,1)⇥ @BR0(p) ! R
n be given by

F (t, p) = exp�1
�(t)(p),

so that F (t, ·) is a smooth immersion for each t. The vector field vt : @ exp
�1
�(t)(BR0(p)) ! R

n is
then given by

vt(u) =
@F
@t (t, exp�(t)(u)).

Since ' 2 Cc[0, R0) and has finite number of zeros in its support, for any nonzero ' we get that
there are 0 < " < T < R0 such that '(t) = 0 for any t � T and ' is strictly positive or negative
on (T � ", T ). Now we consider the ball of radius T around 0 (with respect to the Euclidean

distance k · k), denoted by B
k·k

T . Let 0 < � < " be su�ciently small, then for t� = 2R0 � T + �,
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B
k·k

T \ @ exp�1
�(t�)

(BR0(p)) has positive surface measure, moreover

T � " < kuk < T and u1 > 0, 8u 2 B
k·k

T \ @ exp�1
�(t�)

(BR0(p)).

In the meantime, notice that (T��)e1 2 B
k·k

T \@ exp�1
�(t�)

(BR0(p)) and vt�((T��)e1) = �~n((T�

�)e1, t�), so ft�((T � �)e1) = �1 < 0. It follows that for any u 2 B
k·k

T \@ exp�1
�(t�)

(BR0(p)), since

� is small enough, ft�(u) < 0 by continuity. Note that for � su�ciently small

Z

@ exp�1
�(t�)

(BR0 (p))
'(kuk)u1

sinhn�1(kuk)

kukn�1
ft�(u) d�

=

Z

B
k·k
T \@ exp�1

�(t�)
(BR0 (p))

'(kuk)u1
sinhn�1(kuk)

kukn�1
ft�(u) d�.

Now the above analysis implies that the integral is non-zero. This concludes the proof.

Examples of such hypothesis spaces in Proposition 4.4 include finite-dimensional piecewise
polynomials, trigonometric polynomials, splines restricted to [0, R0], and real analytic functions
on (0, R0).

4.2 Generalization

Finally, we remark that the stability results also hold on equivalent families of measure µ,
which are not necessarily the product of the conditionally i.i.d distribution on M

N . Below
we provide an empirical example of learning interaction kernels in opinion dynamics on the
sphere. Starting with the initial conditions that follows a distribution with i.i.d components,
the distribution µ for observation data coming from i.i.d trajectories over the time interval [0,5]
does not have i.i.d components anymore. But its associated measure ⇢ is equivalent to the one
formed by the initial condition. So our stability results can be applied to this case as well.

0.5 1 1.5 2 2.5
0

0.5

1

1.5

2
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3.5
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10-1

0.5 1 1.5 2 2.5
0

1

2

3

4
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10-1

Figure 2: Two examples of ⇢ from di↵erent observation regimes in the same opinion dynamics
on S

2 with a piecewise linear kernel � that is compactly supported on [0, 5
p
⇡
], where there are 20

agents/opinions evolving as in [MMQZ21] and the injective radius is 5
p
⇡
. To obtain empirical

approximations of ⇢1 and ⇢2, we use 3000 trajectories. In the first example, denoted by ⇢1, we
choose µ1 to be the product of uniform distribution on S

2 and observe the position and velocity
at t = 0 using i.i.d samples from µ1. In the second example, denoted by ⇢2, we choose µ2 to be
the distribution of positions by observing infinite i.i.d trajectories at time interval [0,5] using
µ1 as the initial distribution. Note that while µ1 has i.i.d components, µ2 does not due to time
evolution. Despite this di↵erence, we observe numerical evidence that ⇢2 is equivalent to ⇢1 on
[0, 5

p
⇡
]. Hence, Corollary 4.5 suggests that the stability result also holds for ⇢2.
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Corollary 4.5. Suppose that ũ and ⇢̃ are equivalent measures to µ and ⇢ [0, R] that are

defined on M
N

and [0, R] respectively, then A 2 B(H̃, F̃ ) where H̃ = L
2([0, R]; ⇢̃ [0, R];R)

and F̃ = L
2(MN ; µ̃;TXM

N ). Moreover, A admits a bounded inverse on H̃ provided it has a

bounded inverse on H = L
2(MN ;µ;TXM

N )

Proof. The conclusion follow by the fact that Radon-Nikodym derivative of two measures are
bounded below and above by two positive constants on [0, R].

5 Examples where the stability result would fail

In the preceding sections, we demonstrated that if µ is a product of conditionally independent
and identically distributed (i.i.d) distributions, then A has a bounded inverse and we derived an
estimate on the lower bound of its operator norm. While restricting the space H to a compact
subset of L2([0, R]; ⇢ [0, R];R) for some manifold can improve this lower bound, it remains
sharp for S

n, irrespective of the choice of H. It is worth recalling that we assumed that µ

is absolutely continuous with respect to the volume measure on M
N , and this assumption is

fundamental in establishing stability, which was utilized at several key points in the proofs. We
shall now provide examples of singular measures where stability may not hold.

Specifically, we start by demonstrating an example of a measure µ such that f�(X) = 0 for
X ⇠ µ. We choose M = S

n for n � 1 and we pick N = n + 2 interacting particles. We begin
by considering the case where µ = �X0 where the vector X0 = [· · · ,vi, · · · ]> 2 (Sn)N stacks
the vertices of an n+ 1 dimensional regular unit simplex. In this case, we have

NX

i=1

vi = 0,

|hvi,vji| ⌘ c0, i 6= j

!Sn(vi,vj) = vj � hvj ,viivi,

where c0 is a nonzero constant that is the cosine of the angle between two edges. For example,
c0 = 1

2 when n = 1. From (5), we have dSn(vi,vj) ⌘ arccos(c0) for all i 6= j. Using these
expressions, we have for i = 1, · · · , N

[f�(X0)]i =
1

N

X

j 6=i

�(arccos(c0))!(vi,vj)

=
1

N
�(arccos(c0))(

NX

j=1

vj � h

NX

j=1

vj ,viivi)

= 0

Therefore, f�(X) = 0 whenever X ⇠ µ. More generally, let U be any orthogonal matrix, and
note that f�(UX0) ⌘ 0. If we take µ to be the uniform distribution over the image of X0 under
the orthogonal group, then we shall also have kA�kL2(µ)=0. However, even in this case, µ is

still not absolutely continuous with respect to the volume measure on (Sn)N .
In conclusion, our findings emphasize the importance of the assumptions made in estab-

lishing stability results for f�(X), particularly with regards to the absolute continuity of the
measure with respect to the volume measure on the underlying manifold. Understanding the
impact of singular measures on stability is crucial for the development of more robust and
accurate data-driven discovery methods.
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6 Conclusion

We investigate the problem of identifiability of interaction kernels in a first-order system from
data. We show that for a large family of distributions µ, the statistical inverse problem is well-
posed in specific function spaces. In particular, when µ is also the distribution of independent
trajectories with random initialization, our results provide positive examples to the geometric
coercivity conjecture in [MMQZ21], which implies that the least square estimators constructed
in [MMQZ21] can achieve the mini-max rate of convergence. In addition, our results indicate
that in the mean-field case (N ! 1), the inverse problem becomes ill-posed and e↵ective
regularization techniques are needed.

The characterization of the stability of the inverse problem, influenced by the underlying
geometry, remains largely open. This challenge arises from understanding how the geometry
impacts the measure µ when observing trajectory data, as well as its e↵ect on the integral
in Equation (18). We leave these considerations for future research. There are also several
other avenues for future work, including investigating identifiability under stronger norms such
as the RKHS norm, generalizing to second-order systems, possibly with multiple interaction
kernels, and studying mean-field systems on Riemannian manifolds. These directions can po-
tentially lead to a deeper understanding of the identifiability problem and can have important
applications in various fields, such as physics, biology, and social sciences.

7 Appendix

Definition 2. Let X be a nonempty set. A map k : X ⇥ X ! R is called a positive definite

kernel if k is symmetric and
mX

i,j=1

cicjk(xi, xj) � 0

for all m 2 N, {x1, x2, · · · , xm} ⇢ X and {c1, c2, · · · , cm} ⇢ R.

Theorem 7.1 (Properties of positive-definite kernels). Suppose that k, k1, k2 : X⇥ X ! R are

positive-definite kernels. Then

1. k1k2 is positive-definite.

2. f(x)f(y) is positive-definite for any function f : X ! R.

3. k(g(u), g(v)) is positive-definite for any map g : Y ! X with another nonempty set Y.

4. Let (X,U) be a measurable space with a �-finite measure µ. If k(x, y) is measurable and

integrable with respect to µ⇥ µ, then
RR

k(x, y)dµ(x)dµ(y) � 0.

Proof. Property 1 and 2 can be found in [VDBCR12, p.69]. Property 3 can be easily checked by
applying the definition 2. Property 4 can be found in [RKSF13, p. 524, Property 21.2.12].
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Boston, 1992.

[Che21] Xiaohui Chen. Maximum likelihood estimation of potential energy in interact-
ing particle systems from single-trajectory data. Electronic Communications in

Probability, 26:1–13, 2021.

[DGYZ22] Qiang Du, Yiqi Gu, Haizhao Yang, and Chao Zhou. The discovery of dynamics
via linear multistep methods and deep learning: Error estimation. SIAM Journal

on Numerical Analysis, 60(4):2014–2045, 2022.

[DMH22] Laetitia Della Maestra and Marc Ho↵mann. The lan property for mckean-vlasov
models in a mean-field regime. arXiv preprint arXiv:2205.05932, 2022.

[DRS20] X Duan, JE Rubin, and D Swigon. Identification of a�ne dynamical systems from
a single trajectory. Inverse Problems, 36(8):085004, 2020.

[FPP21] Razvan C Fetecau, Hansol Park, and Francesco S Patacchini. Well-posedness and
asymptotic behavior of an aggregation model with intrinsic interactions on sphere
and other manifolds. Analysis and Applications, 19(06):965–1017, 2021.

[FRT21] Jinchao Feng, Yunxiang Ren, and Sui Tang. Data-driven discovery of interacting
particle systems using gaussian processes. arXiv preprint arXiv:2106.02735, 2021.

[FZ18] Razvan C Fetecau and Beril Zhang. Self-organization on riemannian manifolds.
arXiv preprint arXiv:1802.06089, 2018.

[GCL22] Valentine Genon-Catalot and Catherine Larédo. Inference for ergodic mckean-
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